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1 Introduction

Duality symmetries play a distinguished role in string and M-theory. They are believed to

be part of the ‘stringy gauge symmetry’ that should govern the so far elusive fundamental

formulation of string/M-theory. A better understanding of the geometrical nature of these

duality symmetries may give insights into the very geometry underlying string theory. The

simplest duality is T-duality that relates equivalent toroidal string backgrounds T d via

the non-compact group O(d, d,Z) and also appears in the supergravity approximation as

a continuous non-linearly realized global O(d, d,R) symmetry. Double field theory is an

approach to make this symmetry manifest at the level of the effective spacetime action [1],

and our goal in this paper is to generalize the recent developments in [2–5] (see also [6–8]

for earlier results).

Double field theory (DFT) introduces doubled coordinates transforming in the funda-

mental representation of O(d, d) together with an O(d, d) valued ‘generalized metric’. The

extra coordinates are well-motivated from string theory, where they are dual to winding

modes and, in fact, the cubic approximation to DFT has initially been derived from closed

string field theory [2, 9]. DFT provides, in particular, a strikingly simple formulation

of the usual (super)gravity actions, including the heterotic theory [1, 10], massless and
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massive type II theories [11–14], and their supersymmetric extensions [1, 15–18], and also

leads to a compelling generalization of Riemannian geometry [1, 19–24], which in turn is

closely related to (and an extension of) results in the ‘generalized geometry’ of Hitchin and

Gualtieri [25–27] (see [28–34] for other applications and [35–38] for reviews).

Given the close relation between 10-dimensional string theory and 11-dimensional M-

theory it is natural to suspect that there should be similar extensions or reformulations

of M-theory or, in its 2-derivative approximation, of D = 11 supergravity, that renders

U-duality symmetries manifest by introducing extra coordinates that transform under the

U-duality group. Upon torus compactification, D = 11 supergravity gives rise to excep-

tional symmetry groups such as E7(7) in D = 4 and E8(8) in D = 3 [39]. Already in the

1980’s this spurred interest in the question to what extent these structures are present in

eleven dimensions. The work of de Wit and Nicolai presents a reformulation of D = 11

supergravity that abandons manifest 11-dimensional covariance, using a Kaluza-Klein in-

spired 4 + 7 or 3 + 8 splitting of the coordinates, but which exhibits an enhanced local

Lorentz symmetry in accordance with the (composite) gauge symmetries appearing in the

D = 4 or D = 3 coset models [40, 41]. However, it did not manifest the exceptional groups,

and further work in [42] suggested that additional coordinates should be introduced in order

to achieve this, an idea that also features prominently in the proposal of [43]. Later work

in [44] gave a manifestly E7(7) covariant formulation for a certain 7-dimensional truncation

of D = 11 supergravity by introducing coordinates in the 56 of E7(7).

The purpose of this paper is to show that it is possible to reformulate complete gravity

theories in a U-duality covariant manner. We will follow a strategy similar to the one

employed by de Wit-Nicolai: we decompose the fields and coordinates à la Kaluza-Klein

without truncation and then reorganize them, however, now in a way that is fully U-duality

covariant by virtue of the extra coordinates. In addition, we will have to introduce extra

fields and constraints, but the extra fields can be eliminated once the constraints are solved.

After the advent of DFT, there have already been quite a number of papers extending the

techniques developed here to various U-duality groups [45–51] (see also [52, 53] for earlier

results). The actions given in this context exhibit manifest En(n) symmetry for n ≤ 7

and describe truncations of D = 11 supergravity. More precisely, D = 11 supergravity is

truncated by setting to zero the off-diagonal components of the metric and of the 3-form,

assuming that all fields depend only on ‘internal’ coordinates, and freezing the external

metric to be the flat Minkowski metric (sometimes up to a warp factor). In terms of the

more general gravity actions to be introduced here this truncation amounts to eliminating

all but one term, the ‘potential’ term. However, the detailed relation of our results to those

of [45–49] is not entirely transparent, as we briefly discuss below.

Trying to write a complete U-duality covariant gravity theory one encounters two

(related) obstacles:

(i) The off-diagonal field components (as the Kaluza-Klein vector originating from the

metric) do not naturally fit into the generalized metric that is used in DFT to write

the action.

(ii) In order to manifest the duality symmetries in lower dimensions it is typically nec-

essary to dualize some of the off-diagonal field components into forms of lower rank.
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Such transformations are specific to a given dimension, and so it is not clear how to

employ the required dual fields in, say, the full D = 11 supergravity.

For definiteness we consider in this paper a 3 + n decomposition, which is appropriate for

the case of D = 3 duality symmetries. For n = 8 the duality group is E8(8), the case

relevant for 11-dimensional supergravity, while here we restrict ourselves to the simplest

toy model, n = 1, relevant for D = 4 Einstein gravity, for which the duality group is the

Ehlers group SL(2,R). The D = 3 case is particularly interesting for various reasons. In

D = 3 the Kaluza-Klein vector needs to be dualized into a scalar, which together with

the Kaluza-Klein dilaton then parametrizes the SL(2,R)/SO(2) coset space [54]. Since

the Kaluza-Klein vector originates from the metric, from a D = 4 perspective this is like

dualizing (part of) the graviton, something that due to the no-go results of [55] is usually

considered to be impossible. Indeed, previous papers on the subject have unanimously

concluded that, presumably for this reason, the D = 3 case cannot be incorporated into

a U-duality covariant framework [48, 49, 56]. However, it turns out that the techniques

to deal with dual fields in gauged supergravity developed in [57, 58] are quite sufficient

to address this problem, a fact that has already been employed a while ago in [59, 60],

which will be crucial for our construction. This resolution of the ‘dual graviton problem’

(which can also be employed in a fully covariant framework [61–63]) may appear somewhat

trivial, but as we will see is exactly what is needed in order to achieve a duality covariant

formulation. While in this paper we will restrict ourselves to the 3 + n decomposition,

we expect that along similar lines, using the techniques of gauged supergravity in generic

dimensions, there will be formulations of the complete 11-dimensional supergravity that

are covariant with respect to various U-duality groups.

The SL(2,R) covariant formulation of D = 4 Einstein gravity to be developed in this

paper introduces coordinates Y M in the 3 of SL(2,R), M = 1, 2, 3, which is the adjoint

representation or, equivalently, the fundamental representation of the isomorphic group

SO(1, 2).1 As in DFT we have to subject the theory to a (covariant) ‘section constraint’

that effectively implies that among the three coordinates Y M only one is physical, which

then completes the remaining 2+ 1 coordinates to those of D = 4 gravity. The constraints

take the form

ηMN∂M ⊗ ∂N = 0 , fMNK∂N ⊗ ∂K = 0 , (1.1)

where we introduced the Cartan-Killing form ηMN of SL(2,R) (or, equivalently, the SO(1, 2)

invariant metric) and its structure constants fMNK . Here, the notation ⊗ indicates that

the differential operator annihilates all fields, but also all of their products. The first

constraint in (1.1) takes the same form as the ‘strong constraint’ in DFT, but with the

O(d, d) metric replaced by the SO(1, 2) metric. The second constraint has appeared in

an analogous form in other U-duality covariant formulations [49]. Its addition in (1.1)

actually does not make the first constraint any stronger, for the first one implies already

1This choice is motivated by the observation that the gauge vectors, which naturally couple to the

extended derivatives, typically live in the adjoint representation of the duality group in D = 3 gauged

supergravity.
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that all fields depend only on one of the Y M coordinates, which then automatically solves

the second constraint.

As in DFT we introduce a generalized metric MMN that, in a D = 3 language, encodes

the scalar fields. Alternatively, we can introduce a frame field VM
A, with inverse VA

M ,

subject to local SO(2) transformations from the right, and define M = VVT . These fields

transform under gauge transformations with a parameter ΛM that is the SL(2,R) covariant

extension of the 4th diffeomorphism parameter. It acts on the fields via the generalized

Lie derivative

δΛVA
M =

[
Λ,VA

]M
D

≡ ΛN∂NVA
M +

(
∂MΛN − ∂NΛM

)
VA

N , (1.2)

where we introduced the analogue of the ‘D-bracket’ in DFT (again with O(d, d) replaced

by SO(1, 2)), which in turn reduces to the Dorfman bracket of generalized geometry when

the dependence on the extra coordinates is dropped. The D-bracket is not antisymmetric.

Its antisymmetrization is the C-bracket that governs the gauge algebra of generalized Lie

derivatives, and which in the O(d, d) case reduces to the Courant bracket of generalized

geometry when there is no dependence on extra coordinates. It does not define a Lie

algebra, because it does not satisfy the Jacobi identity; however, its ‘Jacobiator’ is of a

particular exact form.

In our formulation, all fields depend on the Y M , but also on the ‘external’ spacetime

coordinates xµ, e.g., V = V(x, Y ). The transformations (1.2) are gauge transformations

from the (2+1)-dimensional perspective in that the parameter ΛM depends on x. Therefore

we also need to introduce a gauge vector Aµ
M that gauges (1.2) and which is the SL(2,R)

covariant version of the Kaluza-Klein vector. It transforms as

δΛAµ
M = ∂µΛ

M +
[
Λ, Aµ

]M
D

. (1.3)

Formally, this is the usual Yang-Mills gauge transformation, but the bracket does not define

a Lie algebra, so this is not a conventional gauge connection. This gauge field can still be

used, however, to define covariant derivatives, so that, e.g., DµVA
M transforms covariantly

under (1.2). Due to the failure of the C-bracket to satisfy the Jacobi identity, the naive

field strength

Fµν
M = ∂µAν

M − ∂νAµ
M −

[
Aµ, Aν

]M
C

, (1.4)

does not transform covariantly. However, its failure to transform covariantly is such that

by the section constraint (1.1) it is covariant when contracted with ∂M ,

δΛFµν
M ⊗ ∂M =

[
Λ, Fµν

]M
D

⊗ ∂M . (1.5)

Due to the lack of covariance of Fµν
M we cannot write an invariant action for Aµ

M

alone. For this and other reasons it turns out to be necessary to introduce a second gauge

vector BµM , which can be viewed as a gauge connection for SL(2,R). Naively this appears

to introduce too much gauge symmetry because we would then seem to be able to gauge

MMN to the unit matrix. However, B and its gauge parameter will actually have to satisfy

some (covariant) constraints inherited from (1.1), which effectively reduces the number of

– 4 –



J
H
E
P
0
9
(
2
0
1
3
)
0
8
0

components of BµM and the amount of gauge symmetry. We will discuss this in detail

below. The additional constraints can be motivated from the observation that, on-shell

and to lowest order, BµM is determined to be dual to a Noether current of the coset

space sigma model, schematically ⋆dBM ∼ ∂MM−1 ∂M. Contracting this relation with

∂M it is only consistent with the section constraint (1.1) if we also require Bµ
M∂M = 0.

Given this constraint, we can now write a gauge invariant action, the Chern-Simons 3-form

BM ∧ FM . This coupling is also needed in order to guarantee the on-shell equivalence

with conventional Einstein gravity: after solving the section constraints BµM becomes an

auxiliary field whose field equation implies the duality relation between Fµν and the dual

scalar (being the only remnant of the ‘dual graviton’).

The complete U-duality covariant gravity action is given by

S =

∫
d3x d3Y

(
e R̂− 1

2
√
2
εµνρBµMFνρ

M +
1

16
e gµνDµMMNDνMMN − e V (M, g)

)
,

(1.6)

c.f. (4.1) below. Here, all fields depend on the D = 3 spacetime coordinates xµ and the Y M .

The first term is the usual D = 3 Einstein-Hilbert term, but with all partial derivatives

replaced by covariant derivatives with respect to A and an additional improvement of the

Riemann tensor that is necessary in order to render theD = 3 local Lorentz transformations

a symmetry in presence of ∂M derivatives. The potential V reads

V (M, g) =− 3

16

(
MKL∂KMMN∂LMMN − 4MKL∂KMMN∂NMML

)

− 1

2
g−1∂Mg ∂NMMN − 1

4
MMNg−1∂Mg g−1∂Ng − 1

4
MMN∂Mgµν ∂Ngµν .

(1.7)

The terms in the first line agree precisely with the corresponding terms in the DFT action,

particularly the relative coefficient. The terms in the second line resemble the dilaton

couplings in DFT, with g = |det g| playing the role of the dilaton. There is one novelty,

however, in that the full (2+1)-dimensional metric gµν enters the last term. The action (1.6)

takes the form of (2 + 1)-dimensional gravity coupled to a Chern-Simons-matter theory.

However, if we solve the section constraint by setting ∂M = (∂y, 0, 0), the action (1.6) will

be shown to be exactly equivalent to the D = 4 Einstein-Hilbert action. All symmetries

are manifest, except for the (2 + 1)-dimensional diffeomorphisms that are generated by a

parameter ξµ(x, Y ) that depends also on Y . In fact, it is this symmetry that uniquely fixes

all relative coefficients in (1.6).

This paper is organized as follows. In section 2 we introduce the required background

material from DFT, including the generalized Lie derivative and the D- and C-bracket.

Based on this we present a generalization of Yang-Mills theory, with gauge connections

based on the D- and C-bracket algebra rather than a Lie algebra, leading to a struc-

ture that resembles the tensor hierarchy in gauged supergravity. Then we introduce the

SL(2,R) gauge field BµM and discuss its constraints. In section 3 we define the (3 + 3)-

dimensional theory, systematically introducing the Chern-Simons term, the scalar kinetic

term and potential and the covariantized Einstein-Hilbert term. In section 4 we discuss
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the (2 + 1)-dimensional diffeomorphisms parametrized by ξµ(x, Y ), which tie together the

various terms. Finally, in section 5 we prove that upon solving the section constraint the

theory is precisely equivalent to D = 4 Einstein gravity. We conclude with an outlook in

section 6, discussing possible generalizations such as to the E8(8) covariant formulation of

11-dimensional supergravity.

2 Algebraic structures

2.1 Generalities

We start by recalling some central concepts inspired by DFT. Instead of the T-duality

group we consider the group SL(2,R) ∼= SO(1, 2), whose invariant Cartan-Killing form we

choose to be of signature (−++),

ηMN =



0 0 1

0 1 0

1 0 0


 , (2.1)

where M,N = 1, 2, 3 label the 3 representation. The structure constants of SL(2,R) can

be written in terms of the Levi-Civita symbol,

fMNK = εMNK , (2.2)

which implies standard identities like fMKLfMPQ = −2δ
[K
P δ

L]
Q.

We introduce coordinates Y M in the 3 representation, with dual derivatives ∂M . As

in DFT, the theory is subject to the ‘strong constraint’

ηMN∂M∂NA = 0 , ηMN∂MA∂NB = 0 , (2.3)

for arbitrary A, B. In fact, with ∂M in the adjoint representation of SL(2,R), this constraint

turns out to imply another seemingly stronger constraint

fKMN∂MA∂NB = 0 , (2.4)

with the antisymmetric structure constants of the SL(2,R) algebra. It will sometimes be

convenient to encode (2.3) and (2.4) into a single equation of the type

PKL
MN ∂M ⊗ ∂N = 0 , (2.5)

with a projector of the form

PKL
MN ≡ 1

3
ηKLη

MN − 1

2
fKLP f

MNP . (2.6)

Next we introduce the generalized Lie derivative L̂Λ that governs gauge transformations

with respect to a vector parameter ΛM . On a vector V M it reads

δΛV
M = L̂ΛV

M ≡ ΛN∂NV M +
(
∂MΛN − ∂NΛM

)
V N , (2.7)
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where here and in the following all indices are raised and lowered with ηMN . The terms

on the right-hand side are also denoted as the ‘D-bracket’ so that we also write

δΛV
M =

[
Λ, V

]M
D

. (2.8)

The generalized Lie derivative acts similarly on higher tensors, with each index rotated as

in the second term in (2.7). We note that due to the constraint (2.3), parameters of the

form ΛM = ∂Mχ do not generate gauge transformations, and we will refer to such gauge

parameters as ‘trivial’.

The gauge transformations governed by generalized Lie derivatives (2.7) close according

to the ‘C-bracket’, [
L̂Λ1 , L̂Λ2

]
= L̂[Λ1,Λ2]C , (2.9)

where [
Λ1,Λ2

]M
C

= ΛN
1 ∂NΛM

2 − 1

2
Λ1N∂MΛN

2 − (1 ↔ 2) . (2.10)

The C-bracket is the antisymmetrization of the D-bracket in that the D-bracket differs

from the antisymmetric C-bracket by a symmetric term,

[
V,W

]M
C

=
[
V,W

]M
D

− 1

2
∂M
(
V NWN

)
. (2.11)

Crucially, the C-bracket does not satisfy the Jacobi identity. Rather, there is a non-trivial

Jacobiator,
[[
U, V

]
C
,W
]M
C

+ cycl. =
1

6
∂M

([
U, V

]N
C
WN + cycl.

)
. (2.12)

Note that, although non-zero, the Jacobiator is of a trivial form and therefore does not

generate gauge transformations, in agreement with the fact that the symmetry variations

δΛ of fields always satisfy the Jacobi identity.

We now discuss various objects that are tensorial in the generalized sense of (2.7).

First, the scalar fields are encoded by an SL(2,R) vector transforming according to (2.7)

under gauge transformations. More precisely, they are given by a coset representative VM
A

of SL(2,R)/SO(2), which is subject to global and local transformations

V(Y ) → V ′(Y ′) = gT V(Y )h(Y ) , h(Y ) ∈ SO(2) , g ∈ SO(1, 2) , (2.13)

where Y ′ = gY . In the following we will mainly work with the generalized metric MMN =

(V VT )MN , so that all expressions are manifestly invariant under local SO(2) transforma-

tions. As in DFT, we have a second metric, ηMN , of different signature. Since this metric

is used in the generalized Lie derivative (2.7) to raise and lower indices, it is easy to see

that acting on ηMN itself the generalized Lie derivative is zero,

L̂ΛηMN = 0 . (2.14)

In the SL(2,R) invariant formulation to be developed here there is another invariant tensor,

given by the structure constants (2.2) or the epsilon symbol. To see that this is indeed an

invariant tensor under generalized Lie derivatives, we compute first

L̂ΛεMNK = ΛP∂P εMNK + 3
(
∂[MΛP − ∂PΛ[M

)
εNK]P . (2.15)

– 7 –
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With the Schouten identity ∂[MΛP εPNK] = 0 we have

∂MΛP εPNK + ∂NΛP εMPK + ∂KΛP εMNP = ∂PΛ
P εMNK , (2.16)

and similarly with −∂PΛ[MεPNK] = 0 we find

− ∂PΛM εPNK − ∂PΛN εMPK − ∂PΛK εMNP = −∂PΛ
P εMNK . (2.17)

Thus, the terms in the generalized Lie derivative of εMNK cancel and we conclude

L̂Λε
MNK = L̂Λf

MNK = 0 . (2.18)

Therefore, both the SL(2,R) metric ηMN and the structure constants fMNK are gauge in-

variant. Note that the cancellation between (2.16) and (2.17) was due to the antisymmetric

combination of ∂Λ entering the Lie derivative. In contrast, in conventional geometry there

is no such cancellation, so that the epsilon tensor is a tensor density rather than a strictly

invariant tensor.

2.2 Covariant derivatives for the D- and C-bracket

As explained in the introduction, in our formulation all fields depend not only on Y M but

also the (2 + 1)-dimensional spacetime coordinates xµ. In particular, a gauge parameter

such as ΛM depends on xµ, and so from the perspective of the external space the transfor-

mations (2.7) are gauge transformations. A spacetime derivative such as ∂µV then does not

transform covariantly with the generalized Lie derivative and therefore we have to intro-

duce a gauge connection Aµ
M and covariant derivatives, as we will do in this section. The

structure is completely analogous to that in DFT, which we recently investigated in [64].

Here we summarize the main results and refer to [64] for detailed derivations.

We start with the gauge transformations of Aµ
M , which in analogy to ordinary Yang-

Mills theory we define to be

δΛAµ
M ≡ ∂µΛ

M +
[
Λ, Aµ

]M
D

= ∂µΛ
M −

[
Aµ,Λ

]M
D

+ ∂M
(
ΛNAµN ) . (2.19)

Since the D-bracket is not antisymmetric, we had to employ (2.11) in order to reverse the

arguments. We see that the two ‘natural’ ways to write the gauge transformations à la

Yang-Mills differ by a total ∂M derivative. As we will explain below, this difference is

irrelevant due to an extra shift gauge symmetry on Aµ
M . Similarly, we could have also

written the transformation with the C-bracket. Explicitly, the gauge transformations can

be written as

δΛAµ
M = ∂µΛ

M + ΛN∂NAµ
M +

(
∂MΛN − ∂NΛM

)
Aµ

N , (2.20)

which shows that this is the covariant transformation plus the inhomogeneous term ∂µΛ.

With the gauge field Aµ
M we can next define a covariant xµ-derivative, which reads

Dµ = ∂µ − L̂Aµ . (2.21)

– 8 –
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Here, the generalized Lie derivative acts in the representation of the object on which Dµ

acts. Despite the slightly non-standard form of the gauge transformations of the gauge

fields, these derivatives are fully covariant under local ΛM transformations. Let us fi-

nally specialize (2.21) to the covariant derivative for the scalars encoded by MMN , which

reads explicitly

DµMMN = ∂µMMN −Aµ
K∂KMMN − 2

(
∂(MAµ

K − ∂KAµ(M

)
MN)K . (2.22)

We now turn to the field strength of Aµ
M , which like in Yang-Mills theory we define as

Fµν
M = ∂µAν

M − ∂νAµ
M −

[
Aµ, Aν

]M
C

. (2.23)

As usual, the field strength emerges through the commutator of covariant derivatives,

[
Dµ, Dν

]
= −L̂Fµν . (2.24)

Since the C-bracket does not satisfy the Jacobi identity, Fµν
M does not transform fully

covariantly. An explicit computation shows

δΛFµν
M = L̂ΛFµν

M + ∂M
(
∂[µΛ

NAν]N

)
. (2.25)

Thus, while Fµν
M is not fully gauge covariant, by the section condition it is gauge invari-

ant in terms with Fµν
M∂M . This will be sufficient for all its appearances in this paper.

Similarly, one verifies that the general variation of the field strength Fµν
M takes the form

δFµν
M = Dµ(δAν

M )−Dν(δAµ
M ) + ∂M (A[µ

NδAν]N ) , (2.26)

while its Bianchi identity is given by

D[µFνρ]
M = −∂M

(
A[µ

N∂νAρ]N − 1

3
A[µN

[
Aν , Aρ]

]N
C

)
. (2.27)

I.e. also all these relations are covariant up to terms that vanish under contraction with

∂M due to the section constraint. In the spirit of the tensor hierarchies of gauged super-

gravity [65, 66], this suggests to introduce a 2-form potential Bµν as

Fµν
M ≡ Fµν

M − ∂MBµν , (2.28)

with proper transformation behavior, to compensate for the non-covariance, cf. [64]. For

the actions discussed in this paper this extension will not be relevant, as the field strength

always appears under contractions such that the non-covariant terms vanish.

2.3 Gauge connection for SL(2,R)

We now introduce the second gauge connection, BµM , that formally plays the role of an

SL(2,R) gauge field. As such, we will introduce covariant derivatives both with respect to

A and B, which read on a general vector,

DµVM = ∂µVM −Aµ
K∂KVM −

(
∂MAµ

K − ∂KAµM

)
VK +Bµ

KfKM
LVL . (2.29)
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This is a fully covariant derivative, with respect to Λ gauge transformations and local

SL(2,R) transformations with parameter ΣM , provided B transforms as

δBµM = DµΣM + L̂ΛBµM , (2.30)

where L̂Λ acts on BµM as a vector, see (2.7). Writing this out explicitly, we have

δBµM = ∂µΣM −Aµ
K∂KΣM −

(
∂MAµ

K−∂KAµM

)
ΣK−ΣKfKM

NBµN +L̂ΛBµM . (2.31)

It is non-trivial that simultaneous SL(2,R) and ΛM gauge transformations are consistent, in

particular that they close. Closure can, however, be easily established using the result (2.18)

that the structure constants are Λ gauge invariant:

[
δΛ, δΣ

]
V M = δΛ

(
fMNKΣNVK

)
− δΣ

(
L̂ΛV

M
)

= fMNKΣN L̂ΛVK − L̂Λ

(
fMNKΣNVK

)

= −fMNK(L̂ΛΣN )VK ≡ δΣ′V M ,

(2.32)

with the effective parameter Σ′
M = −L̂ΛΣM . Although we have closure, we will see that

in the following there are not really two completely independent gauge symmetries with

parameters ΛM and ΣM . Rather, gauge invariance of the theory requires an extension of

the section constraint (1.1) involving field components of A and B (and correspondingly

of their gauge parameters).

In order to state these constraints it will be convenient to introduce the following

combinations of A and B (and their parameters)

B̃M = BM − fMNK∂NAK ,

Σ̃M = ΣM − fMNK∂NΛK .
(2.33)

The reason is that in terms of these variables the complete version of the section con-

dition (1.1) can be written most concisely (while the action and gauge transformations

are more naturally written in terms of B). The full set of constraints for the following

construction is given by the requirement that

PKL
MNCM ⊗ C ′

M = 0 , ∀ C,C ′ ∈ {∂, B̃, Σ̃} , (2.34)

with the projector from (2.6), and where C and C ′ denotes any elements of the list above.

For instance, taking C ′
M = B̃M and CM = ∂M , the constraint states that B̃M∂M = 0 in

arbitrary combinations, in particular ∂M B̃M = 0 (sometimes we leave out ⊗ when there is

no possible confusion). Another special case is

fMNK∂N ⊗ Σ̃K = 0 . (2.35)

From this we can immediately derive some further constraints. Consider

0 = B̃M ⊗ ∂M = (BM − fMNK∂NAK)⊗ ∂M = BM ⊗ ∂M , (2.36)
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using in the last step fMNK∂N ⊗∂K = 0, which is implied by the constraint in (2.34). The

analogous conclusion follows for the gauge parameter ΣM . Thus, in addition to B̃M∂M =

Σ̃M∂M = 0 the constraints also imply

BM∂M = 0 , ΣM∂M = 0 . (2.37)

Another curious consequence follows by multiplying fMNK∂N ⊗ ∂K = 0 with fMPQ and

using standard identities for the structure constants (2.2):

∂P ⊗ ∂Q − ∂Q ⊗ ∂P = 0 . (2.38)

In other words, here the section constraints imply that the order of partial derivatives can

be changed in arbitrary products. Similarly, taking CM = ∂M and C ′
M = B̃M we obtain

∂M ⊗ B̃N − ∂N ⊗ B̃M = 0 . (2.39)

The analogous relation holds also for Σ̃. We stress that this relation does not hold for B.

Finally, we present an alternative form of the gauge transformations of BµM . The

conventional form (2.30) is fixed by the requirement that covariant derivatives transform

covariantly. In particular, BµM transforms as a vector under Λ transformations. On

the other hand, in the next section we will introduce a Chern-Simons action of the form∫
BM ∧ FM , whose invariance requires B to be a Λ density of weight one rather than a

vector. Surprisingly, it turns out that as a consequence of the section constraints (2.34),

the variation of B can be rewritten so that a density term ∂NΛN appears. Specifically, we

show that δB can equivalently be written as

δBµM = ∂µΣM −Aµ
K∂KΣM −

(
∂MAµ

K − ∂KAµM

)
ΣK − ∂KAµ

KΣM

+ L̂ΛBµM + ∂NΛNBµM .
(2.40)

This again takes the form of (2.30), but now with B and Σ being Λ densities (of weight

one) not transforming under the local SL(2,R) and with Dµ and L̂Λ acting accordingly.

Therefore, in presence of a separate SL(2,R) gauge symmetry, and with the section con-

straints (2.34), there is no invariant distinction between a Λ vector and a vector-density,

which is crucial for the following construction. For this to happen, it is essential that we

impose the section constraints (2.34) for the combination B̃µM from (2.33), and not for

the SL(2,R) connection BµM .

Let us now prove the equivalence of (2.31) and (2.40), which requires

− ΣKfKM
NBµN = −∂KAµ

KΣM + ∂NΛNBµM . (2.41)

We start by computing for the left-hand side

(l.h.s.) ≡ −ΣKfKM
NBµN =−

(
Σ̃K + fKPQ∂PΛQ

)
fKM

N
(
B̃µN + fNRS∂

RAµ
S
)

=− fKPQfKM
N∂PΛQB̃µN − Σ̃KfKM

NfNRS∂
RAµ

S

− fKPQfKM
NfNRS∂

RAµ
S∂PΛQ .

(2.42)
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Here we set to zero the term of the form fΣ̃B̃, as it vanishes by the constraints (2.34).

Next, we simplify the various contractions of structure constants, using the identity stated

after (2.2),

(l.h.s.) = ∂MΛN B̃µN − Σ̃K∂MAµK + fNRS∂
RAµ

S(∂MΛN − ∂NΛM )

= ∂NΛN B̃µM − Σ̃M∂KAµK + fNRS∂
RAµ

S(∂MΛN − ∂NΛM ) .
(2.43)

We omitted terms with Σ̃K∂K , etc., and we used (2.39), together with its analogue for Σ̃,

in the second equation. Using (2.39) once more and translating everything back in B,Σ

basis we obtain

(l.h.s.) = ∂NΛN (BµM − fMPQ∂
PAµ

Q)− ∂KAµ
K(ΣM − fMPQ∂

PΛQ)

+ fNRS∂
RAµ

S(∂MΛN − ∂NΛM )

= ∂NΛNBµM − ∂KAµ
KΣM

− fMPQ∂NΛN∂PAµ
Q + fMPQ∂

PΛQ∂NAµ
N

+ fNPQ∂MΛN∂PAµ
Q − fNPQ∂

NΛM∂PAµ
Q .

(2.44)

The first line on the right-hand side of the final equality coincides with the required right-

hand side of (2.41). Thus, it remains to show that the last four terms are zero. Using the

Schouten identity 0 = f[MPQ ∂N ]Λ
N and the section constraint ∂P ∂P = 0 one can check

that among these four terms the first and third combine into one, so that we obtain for

them in total

fMNP∂QΛ
N∂PAµ

Q + fMPQ∂
PΛQ∂NAµ

N − fNPQ∂
NΛM∂PAµ

Q

= fMNP∂
PΛN∂QAµ

Q + fMPQ∂
PΛQ∂NAµ

N = 0 ,
(2.45)

where in the final step we used (2.38) in the first term and the section constraint in

the last term. We therefore proved (2.41) and thus the alternative form (2.40) of the

gauge transformations. Let us note that along similar lines one may verify that the gauge

variation (2.31) is compatible with the constraints (2.34).

Finally, we introduce the field strength associated to this gauge connection as

GµνM ≡ DµBνM −DνBµM − fMNKBµ
NBν

K , (2.46)

with Aµ-covariantized derivatives from (2.21), such that

[
Dµ,Dν

]
VM = −L̂FµνVM +Gµν

KfKM
LVL , (2.47)

extending (2.24). Upon using the Schouten identity and the constraints similar to the

computation of (2.41), this field strength may be recast in the form

GµνM = DµBνM −DνBµM − 2
(
∂NA[µ

N
)
Bν]M . (2.48)

Again, this shows that as a consequence of the particular form of the section con-

straints (2.34), the field Bµ simultaneously plays the role of an SL(2,R) connection and of

an SL(2,R) singlet with non-trivial Λ-weight.
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3 (3 + 3)-dimensional theory

Using the techniques developed above, we introduce the (3 + 3)-dimensional formulation

of D = 4 Einstein gravity. The action consists of three main ingredients: a (general-

ized) Chern-Simons-matter Lagrangian, a covariantized Einstein-Hilbert term and a scalar

potential. In the following three subsections we introduce these actions and prove their

gauge invariance.

3.1 Chern-Simons term and scalar kinetic term

The Chern-Simons action is defined by

SCS =

∫
d3x d3Y εµνρBµMFνρ

M , (3.1)

up to a pre-factor that we shall neglect in this subsection. We will now show that this action

is invariant under local Λ transformations in that the Lagrangian transforms into a total

derivative. First note that the field strength transforms according to (2.25), which implies

that upon contraction with BM , as in the Chern-Simons term, it transforms covariantly

thanks to the constraint (2.37). Then the full Λ invariance follows with the form of the

gauge variation in (2.40) that treats B as a Λ density:

δΛSCS =

∫
d3x d3Y εµνρ

(
ΛN∂N (BµMFνρ

M ) + ∂NΛNBµMFνρ
M
)

=

∫
d3x d3Y εµνρ ∂N

(
ΛNBµMFνρ

M
)
= 0 ,

(3.2)

where we used in the first line that the covariant terms in the variation of B and F combine

into the Lie derivative of a scalar.

Next, we turn to the invariance under local SL(2,R) transformations parametrized by

ΣM . The gauge field A and thus its field strength F are inert under these transformations,

while δΣBµM = DµΣM . Here we take again the form of the gauge variation in (2.40), so

that the covariant derivative Dµ acts on ΣM as a Λ density. Consequently, we can integrate

by parts with this covariant derivative and obtain for the gauge variation of the action

δΣSCS =

∫
d3x d3Y εµνρDµΣMFνρ

M = −
∫

d3x d3Y εµνρΣMDµFνρ
M = 0 , (3.3)

using the Bianchi identity (2.27) and the constraint (2.37) in the last step. In total we

have shown that the Chern-Simons term is invariant under all local symmetries except the

(2+1)-dimensional diffeomorphisms parameterized by ξµ(x, Y ), which will be discussed in

the next section.

Finally let us turn to the scalar kinetic term involving MMN , which transforms under

the local symmetries as

δMMN = L̂ΛMMN − 2ΣP fP (M
QMN)Q . (3.4)

Thus, the fully covariant derivative of MMN reads

DµMMN = DµMMN + 2Bµ
P fP (M

QMN)Q , (3.5)
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with the covariant derivative Dµ with respect to A defined in (2.22). This derivative is

manifestly covariant under local Λ and Σ transformations. For covariance under the latter

symmetries we have to employ the original form (2.31) of the gauge transformations that

treats BµM as a conventional SL(2,R) gauge field.

Summarizing, we can define the total action consisting of scalar-kinetic term and

Chern-Simons term,

SCS−matter =

∫
d3x d3Y

(
− 1

2
√
2
εµνρBµMFνρ

M +
1

16
egµνDµMMNDνMMN

)
, (3.6)

where we inserted the proper coefficient of the Chern-Simons term. This action is manifestly

invariant under Λ and Σ gauge transformations. Curiously, however, in order to make the

Σ invariance manifest we had to employ two different but equivalent forms of δB for the

scalar kinetic term and the Chern-Simons term.

3.2 Covariantized Einstein-Hilbert term

We next discuss the Einstein-Hilbert term in the ‘dreibein’ formalism with eµ
a and spin

connection ωµ
a, which we can treat as a Lorentz vector. Under local Λ transformations

they transform as

δΛeµ
a = ΛN∂Neµ

a + ∂NΛNeµ
a ,

δΛωµ
a = ΛN∂Nωµ

a ,
(3.7)

and so their covariant derivatives with respect to A read

Dµeν
a = ∂µeν

a −Aµ
N∂Neν

a − ∂NAµ
Neν

a ,

Dµων
a = ∂µων

a −Aµ
N∂Nων

a .
(3.8)

We can now write an ‘A covariantization’ of the D = 3 Einstein-Hilbert term,

SEH =

∫
d3x d3Y eR = −

∫
d3x d3Y εµνρ eµ

aRνρa

≡−
∫

d3x d3Y εµνρ eµ
a
(
Dνωρa −Dρωνa + εabcων

bωρ
c
)
,

(3.9)

where we defined the covariantized D = 3 Riemann tensor and the corresponding Ricci

scalar. This action is manifestly invariant under local Λ transformations, because eµ
a

transforms as a Λ density so that the full Lagrangian transforms into a total derivative.

In the action (3.9) we may treat the spin connection ωµ
a as an independent field or

as determined by means of its field equations in terms of (derivatives of) the dreibein eµ
a.

More precisely, as in standard gravity the field equation for ωµ
a implies vanishing torsion,

Tµν
a = Dµeν

a −Dνeµ
a + εabceµb ωνc − εabceνb ωµc = 0 . (3.10)

This can be solved in the standard fashion, giving ω = ω(e,A), the only difference being

that all occuring derivatives are covariant with respect to A. Specifically, the Lorentz
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vector spin connection is related to the usual one via ωµ
ab = −ǫabcωµc, which in turn is

given by

ωabc =
1

2
(Ωabc − Ωbca +Ωcab) , Ωabc = −Ωbac = (ea

µeb
ν − eb

µea
ν)Dµeνc , (3.11)

where all indices haven been flattened. For definiteness we view ω as determined in this way.

We now turn to the local Lorentz transformations with parameter λa,

δλeµ
a = εabceµbλc , δλωµ

a = Dµ(ω)λ
a ≡ Dµλ

a + εabc ωµb λc , (3.12)

where we indicated by Dµ(ω) the covariant derivative with respect to both ω and A. It

turns out that due to the A covariantization of the Riemann tensor it no longer transforms

fully covariantly under local Lorentz transformations. In order to see this we compute

δλRνρ a = 2D[ν δωρ]a =
[
Dν , Dρ

]
λa . (3.13)

Since the covariant derivative denotes the full covariant derivative with respect to both the

spin connection and with respect to Aµ, the commutator does not only give the Riemann

tensor, which represents the covariant term, but also the curvature F of A. Therefore,

denoting the non-covariant variation by ∆nc we find

∆nc
λ Rνρ a = −Fνρ

M∂Mλa . (3.14)

The Einstein-Hilbert term then transforms as

δλ
(
− εµνρeµ

aRνρ a

)
= εµνρeµ

aFνρ
M∂Mλa . (3.15)

This non-invariance can be cured by introducing an improved Riemann tensor

R̂µν a = Rµν a +
1

2
eερσ[µF

ρσM∂Meν]a , (3.16)

which leads to the following modification of the Einstein-Hilbert term,

eR̂ = −εµνρeµ
aR̂νρ a = eR− eeaµebνFµν

Meb
ρ∂Meρa . (3.17)

The new term induces a non-covariant variation under the local Lorentz transforma-

tions (3.12) due to the ∂M derivative:

δλ
(
− eeaµebνFµν

Meb
ρ∂Meρa

)
= − eeaµebνFµν

Meb
ρεa

cdeρc∂Mλd

= − eeaµebνεab
dFµν

M∂Mλd

= − εµνρeµ
aFνρ

M∂Mλa .

(3.18)

This cancels exactly (3.15) and so the improved Einstein-Hilbert term is invariant under

local Lorentz transformations. Moreover, it is still invariant under Λ transformations,

although this is not totally trivial due the ∂Me term. From (3.7) we find, however,

δΛ
(
eb

ρ∂Meρa
)
= L̂Λ

(
eb

ρ∂Meρa
)
+ eb

ρeρa∂M∂NΛN , (3.19)

so that the second, non-covariant term is symmetric in a, b and hence drops out from (3.17),

where this is contracted with the antisymmetric F ab. Summarizing, the improved Einstein-

Hilbert term (3.17) is invariant under local Lorentz and Λ transformations.
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3.3 Scalar potential

In this subsection we prove that the potential term (1.7),

eV (M, g) = − 3

16
e
(
MKL∂KMMN∂LMMN − 4MMN∂MMPQ∂QMPN

)

− 1

2
eg−1∂Mg ∂NMMN − 1

4
eMMNg−1∂Mg g−1∂Ng

− 1

4
eMMN∂Mgµν ∂Ngµν ,

(3.20)

is gauge invariant under Λ and Σ transformations. At first sight one would suspect that

the proof of Λ invariance proceeds more or less precisely as in DFT, with the dreibein eµ
a

and its determinant e ≡ det (eµ
a) ≡

√
|det gµν | ≡

√
g playing the role of the dilaton density

in string theory. From (3.7) we infer that eµ
a indeed transforms as a Λ density of weight

one. However, this implies that e transforms as a density of weight 3, which is puzzling

because with MMN being a tensor and not a tensor density, invariance of (3.20) seems

to require e to have weight one. A related puzzle is that we require the separate local

SL(2,R) symmetry, and due to the partial derivatives in (3.20) it appears challenging to

make the action invariant. The resolution of both obstacles is related and again hinges on

the particular form of the constraints (2.34), which imply a relation between the Λ and Σ

parameters. These will lead to additional density-type terms ∂NΛN in the variation, which

in turn complete the weight of the Lagrangian to the ‘correct’ one. We then establish full

invariance of the potential term.

We now turn to a detailed computation of the gauge variation of (3.20), starting with

the local SL(2,R) symmetry. We first recall that the scalars transform under Σ as

δΣMMN = −ΣP fPM
QMQN − ΣP fPN

QMMQ . (3.21)

Let us first compute the gauge variation of the partial derivative ∂KMMN , which contains

covariant and non-covariant terms. The covariant terms automatically cancel out in the

variation of the potential, the latter being an SL(2,R) singlet. Thus, we collect only the

non-covariant terms, denoting the corresponding variation by ∆nc,

∆nc
Σ (∂KMMN ) = ΣP fPK

Q∂QMMN − 2∂KΣP fP (M
QMN)Q

= fPRS∂RΛSfPK
Q∂QMMN − 2∂KΣP fP (M

QMN)Q

= − ∂PΛ
P ∂KMMN − 2∂KΣP fP (M

QMN)Q .

(3.22)

In the first line we used that the non-covariant terms are those where ∂K acts on the gauge

parameter, while the first term compensates for ∂Q being inert under SL(2,R). In the first

term of the second line we expressed Σ in terms of Σ̃ and used the constraint (2.35). The

first term in the last line then shows that ∂M receives a weight −1. This is precisely the

weight needed for invariance: since the terms in the first line of (3.20) have two ∂M, each

of weight −1, they combine with the e of weight 3 to a total weight of 1. Rewriting the

second term in the last line of (3.22) in terms of Σ̃ we get

−2∂KΣP fP (M
QMN)Q = − 2∂K(Σ̃P + fPRS∂RΛS)fP (M

QMN)Q

= − 2∂KΣ̃P fP (M
QMN)Q + 2∂K(∂(MΛQ − ∂QΛ(M )MN)Q .

(3.23)
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Interestingly, the second term coincides with the non-covariant variation of ∂KMMN under

Λ transformations. More precisely, defining the non-covariant variation ∆nc
Λ = δΛ − L̂Λ

one finds

∆nc
Λ (∂KMMN ) = 2∂K(∂(MΛQ − ∂QΛ(M )MN)Q . (3.24)

We have therefore shown

∆nc
Σ (∂KMMN ) = −2∂KΣ̃P fP (M

QMN)Q − ∂PΛ
P ∂KMMN +∆nc

Λ (∂KMMN ) . (3.25)

It is this form that we will use below to verify invariance of the full potential.

In order to compute the full variation of the potential (3.20) we need the variation of gµν
and g = |det gµν |. Since gµν is inert under local Σ transformations, the only non-covariant

variation of ∂Mgµν originates by the partial derivative not rotating under SL(2,R). Thus,

∆nc
Σ (∂Mgµν) = ΣP fPM

Q∂Qgµν = −∂PΛ
P∂Mgµν , (3.26)

where the last step follows by precisely the same argument as in (3.22). Thus, as for ∂M,

this gives a weight −1 to ∂Mg, so that with the determinant e having weight +3 this

completes the weight of the terms in the second and third line of (3.20) to the desired +1.

Note that there is no Σ̃ term left in (3.26).

We have written the variations of the various terms with Λ and Σ̃. Our strategy is now

to check cancellation of terms with Λ and Σ̃ separately, starting with the Σ̃ invariance. We

first note from (3.25)

∆nc
Σ̃
(∂NMMN ) = −∂N Σ̃QfQ

MPMP
N , (3.27)

where we used that by the section constraint (2.35) one term is zero. Again by the section

constraint this vanishes when contracted with ∂Mg. Thus, for the non-covariant Σ̃ terms

it remains to verify cancellation in the first line of (3.20). Denoting these two terms in the

potential as − 3
16(V

(1) + V (2)) + · · · we compute with (3.25)

δΣ̃V
(1) = −4MKL∂KΣ̃QfQ

MPMP
N∂LMMN , (3.28)

and for the second term

δΣ̃V
(2) =4MMN

(
∂M Σ̃RfR

PSMS
Q + ∂M Σ̃RfR

QSMS
P
)
∂QMPN

+ 4MMN∂MMPQ
(
∂QΣ̃

RfRP
SMSN + ∂QΣ̃

RfRN
SMSP

)
.

(3.29)

Distributing the terms this reads

δΣ̃V
(2) = 4MMN∂M Σ̃RfR

PSMS
Q∂QMPN + 4MMN∂M Σ̃RfR

QSMS
P∂QMPN

+ 4∂MMPQ∂QΣ̃
RfRP

M + 4MMN∂MMPQ∂QΣ̃
RfRN

SMSP

= 4MMN∂M Σ̃RfR
PSMS

Q∂QMPN + 4MMN∂MMPQ∂QΣ̃
RfRN

SMSP .

(3.30)

Here we used that the second and third term in the first equation are zero by the constraint.

Next we use a Schouten identity in the second term of the last line, with a total antisym-

metrization in Q,R,N, S in the ∂Σ̃f term. One term vanishes by the section constraint
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and we obtain

δΣ̃V
(2) = 4MMN∂M Σ̃RfR

PSMS
Q∂QMPN + 4MMN∂MMPQ∂N Σ̃RfRQ

SMSP

+ 4MMN∂MMPQ∂SΣ̃RfRNQMSP

= 4MMN∂M Σ̃RfR
PSMS

Q∂QMPN + 4MMN∂MMPQ∂N Σ̃RfRQ
SMSP

+ 4MQS∂QMNP∂M Σ̃RfRSPMMN

= 4MMN∂MMPQ∂N Σ̃RfRQ
SMSP .

(3.31)

Here we relabeled indices in the second equation in order to make it manifest that the first

and third term cancel. The remaining term cancels against (3.28), completing the proof

that the potential is Σ̃ invariant.

Let us now turn to the Λ invariance. Recall from (3.7) that

δΛgµν = ΛN∂Ngµν + 2∂NΛNgµν , (3.32)

which yields for the non-covariant Λ variations2

g−1∆nc
Λ (∂Mg) = 6∂M∂NΛN ,

∆nc
Λ (∂Mgµν) = 2∂M∂NΛNgµν .

(3.33)

We can now use a result from DFT since the first line in the potential (3.20) precisely

agrees, up to the overall factor, with the corresponding terms in the DFT scalar curvature.

We have to remember, however, not only to collect the non-covariant Λ variations of ∂M
terms, but also the same terms that originated from the Σ variation above, see (3.25). In

other words, each of the ∆nc
Λ terms gets doubled. Taking this factor of 2 into account we

can read off the variation of the first line from eq. (4.47) in [5]

δΛ
(
eMKL∂KMMN∂LMMN − 4eMMN∂MMPQ∂QMPN

)
= −16e∂M∂NΛP∂PMMN .

(3.34)

From (3.33) we find for the variation of the second line

δΛ

(
− 1

2
eg−1∂Mg ∂NMMN − 1

4
eMMNg−1∂Mg g−1∂Ng − 1

4
eMMN∂Mgµν ∂Ngµν

)

= −3e∂M∂PΛ
P ∂NMNM + eg−1∂Mg ∂P∂QΛ

MMPQ − eMMNg−1∂Mg ∂N∂PΛ
P .

(3.35)

The total variation of the potential is then given by

δΛ(eV ) = 3e∂M∂NΛP∂PMMN − 3e∂M∂PΛ
P∂NMMN

+ 2∂Me ∂P∂QΛ
MMPQ − 2MMN∂Me ∂N∂PΛ

P .
(3.36)

Next, we integrate by parts in the second line in order to remove ∂Me terms. The generated

∂3Λ terms cancel each other, while the remaining terms combine with those in the first

line, so that

δΛ(eV ) = e∂M∂NΛP∂PMMN − e∂M∂PΛ
P∂NMMN . (3.37)

2We note that the non-covariant variation of the last two terms in (3.20) are equal. Therefore, Λ gauge

invariance does not determine their relative coefficients.
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Finally, using the section constraint in the form (2.38) to exchange ∂N and ∂P we see that

the remaining two terms cancel. We have thus proved the complete gauge invariance of

the potential.

4 (2 + 1)-dimensional diffeomorphisms

The full (3 + 3)-dimensional action that we have been putting together in the last section

takes the form

S=

∫
d3x d3Y

(
e R̂(e, ω,A)− 1

2
√
2
εµνρBµMFνρ

M+
1

16
egµνDµMMNDνMMN−e V (M, g)

)
.

(4.1)

The first term is the covariantized Einstein-Hilbert term from (3.17), the last term is the

potential (3.20), and the kinetic term carries the full covariant derivatives Dµ from (3.5).

In the last section, we have shown that separately all terms are invariant under Λ and Σ

gauge transformations.

Invariance of (4.1) under standard x-dependent (2 + 1)-dimensional diffeomorphisms

is manifest. In this section, we will discuss invariance of the action under those (2 + 1)-

dimensional diffeomorphisms whose parameter ξµ also depends on the extra coordinates

Y , which turns out to be much more involved. This requires the interplay and various

conspiracies among the variations of the four terms in (4.1), none of which is separately

invariant. In particular, this generalised diffeomorphism invariance uniquely fixes all the

relative coefficients in the action above. For transparency of the presentation, we shall in

the following discussion of invariance suppress a class of terms that cancel independently.

These are of the form MMN∂M ⊗∂N with no other scalar field dependence than the single

matrix MMN . These terms cancel separately among themselves, and with the explicit

parametrization (5.20) adopted in the next section, it is straightforward to verify that their

cancellation is completely parallel to the calculation that ensures standard diffeomorphism

invariance in four-dimensional Einstein gravity. In particular, these terms do not interfere

with the non-trivial checks of generalized diffeomorphism invariance that we present in the

following, giving rise to the cancellations of all the remaining structures. Similarly, in the

following we will also neglect all terms in the variation that carry explicit gauge fields. Such

terms e.g. arise from the connection part upon partial integration from the fact that the

integrand is not of Λ-weight one. Their vanishing can be shown by a separate calculation

similar to establishing the Λ-invariance of the action in the last section.

The action of the gauge covariant diffeomorphisms on the scalars and the vielbein is

expected to take the standard form

δξMMN = ξµDµMMN , δξeµ
a = ξρDρeµ

a +Dµξ
ρeρ

a , (4.2)

of a combined diffeomorphism and (Λ, Σ) gauge transformation. Accordingly, the covariant

derivatives carry the connections from (3.5), (3.8). In contrast, their action on the vector

fields Aµ
M , BµM turns out to carry explicitly non-covariant terms. For their transformation
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laws, we start from the following ansatz

δ
(0)
ξ Aµ

M = ξνFνµ
M +MMNgµν∂Nξν , (4.3)

δ
(0)
ξ BµM = ξνGνµM + fMN

K Fµν
N∂Kξν + fMNK∂N (MKLgµν∂Lξ

ν) (4.4)

+
1

2
(MQN∂MMPN )fQK

P∂Kξλgλµ −
√
2 gµλ e

−1ελνρDν (∂Mξσgρσ) ,

which combines the covariant part of the transformation expressed in terms of the field

strengths from (2.23), (2.46) with explicitly non-covariant terms that are required for in-

variance of the action. Their presence is already observed in the corresponding (3 + 1)-

dimensional reformulation of four-dimensional Einstein gravity, that we review in the next

section, cf. (5.15), (5.18) below. As we will witness in the course of the calculation, both

transformation laws will acquire yet further (on-shell vanishing) contributions. We note,

that the transformation law (4.4) is compatible with the constraints (2.34) imposed on the

vector field BµM , as can be verified by a quick explicit computation.

Since the variation of the vector fields (4.3), (4.4) plays the crucial role in showing

invariance of the action under generalized diffeomorphisms, let us first spell out the general

variation of the Lagrangian under variation of the vector fields, which up to total derivatives

takes the form

δL = − 1

2
√
2
εµνρ

(
E(A)
νρ

M δBµM + E(B)
νρM δAµ

M
)

, (4.5)

with the combinations

E(A)
µν

M≡Fµν
M − 1

2
√
2
eεµνρ f

MK
LDρMLNMNK , (4.6)

E(B)
µν M≡Gµν M +

1√
2
εµνρ

(
∂K
(
eMMLDρMLK

)
− 1

4
e∂MMKLDρMKL

)
+Ωµν M ,

exhibiting the duality equations relating vector and scalar fields, typical in three dimen-

sions.3 The term Ωµν M comprises all contributions that descend from variation of the

improved Einstein-Hilbert term, whose explicit form will not be needed in the following.

Note though that all these terms carry an explicit ∂M and thus vanish when contracted

with another ∂M .

Let us now study the variation of the action (4.1) under the generalized diffeomor-

phisms (4.2)–(4.4). First, we consider the covariantized Einstein-Hilbert term. In addition

to the above listed fields, this term depends on the spin connection that transforms exactly

like eµ
a together with non-covariant terms descending from (4.3)

δ
(0)
ξ ωµ

ab = Lξ(ωµ
ab)− 3gµν MMN eaρ∂Meρ

b ∂Nξν , (4.7)

which may be verified with (3.11). However, the non-covariant term in this variation

is of the type MMN∂M ⊗ ∂N that cancel separately. We note that the antisymmetric

εµνρ satisfies

δξε
µνρ = 0 = Lξε

µνρ +Dλξ
λ εµνρ , (4.8)

3Strictly speaking, not all components of E
(A)
µν

M are independent equations of motion, since the vector

field BµM is subject to the constraints (2.34), but this does not affect the proof of gauge invariance here.
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where now

Dµξ
ν = ∂µξ

ν −Aµ
N∂Nξν . (4.9)

Thus, as for standard diffeomorphisms, this object is a density and the Einstein-Hilbert

term is invariant except for terms that originate from the non-commutativity of Dµ and

the non-covariant contributions from (4.3). Projected with εµνρ we have

δ
(0)
ξ (Dνωρa) = Dν(δξωρa)− δ

(0)
ξ Aν

N∂Nωρa

= Lξ(Dνωρa) + ξλ[Dν , Dλ]ωρa +
1

2
ωλa[Dν , Dρ]ξ

λ − δ
(0)
ξ Aν

N∂Nωρa .

(4.10)

The commutator is generally given by (2.24). Thus, using this for the Λ scalars ω and ξ,

δξ(Dνωρa) = Lξ(Dνωρa)− ξλFνλ
N∂Nωρa −

1

2
Fνρ

N∂Nξλωλa − δ
(0)
ξ Aν

N∂Nωρa . (4.11)

As usual for gauge covariant diffeomorphisms, the first Fµν-term cancels against the same

term from δξA, c.f. (4.3). In contrast, the second Fµν-term survives in the variation,

such that

δ
(0)
ξ LEH = −2εµνρδξ

(
eµ

aDνωρa

)
= εµνρeµ

aFνρ
N∂Nξλωλa . (4.12)

Again, we have suppressed all terms of type MMN∂M ⊗ ∂N induced by the non-covariant

transformation of (4.3). For the improved Einstein-Hilbert term, we further need the non-

covariant variation of ∂Meρa, which is given by

∆nc
ξ

(
∂Meρa

)
= ∂MξλDλeρa − ξλ∂M∂NAλ

Neρa +Dρ(∂Mξλ) eλa . (4.13)

Putting everything together, the total variation of the improved Einstein-Hilbert term reads

δ
(0)
ξ

(
eR̂
)
= δξ

(
εµνρeµ

aRνρa + eeaµebνFµν
Meb

ρ∂Meρa
)

= εµνρeµ
aFνρ

N∂Nξλωλa − eeaµebνFµν
Meb

ρ∂MξλDλeρa

− eeaµebνFµν
Meb

ρDρ(∂Mξλ)eλa ,

(4.14)

up to total derivatives. Notice that the second term from (4.13) actually drops out in

here by the antisymmetry of F . After some algebra for the spin connection, employing its

determined form (3.11), we find that

eeb
νec

ρFνρ
M∂Mξλεabcωλa = eFνρ

M∂Mξλ
(
gνµgρσDµgσλ − (Dλea

ν)eaρ
)
, (4.15)

such that the variation (4.14) reduces to

δ
(0)
ξ

(
eR̂
)
= eFµνNDµ(∂Nξρgρν) , (4.16)

up to extra O(Aµ) terms from replacing Dµ by Dµ.
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Next, we consider the variation of the Chern-Simons term in (4.1), given by

δ
(0)
ξ LCS = − 1

2
√
2
εµνρ

(
(δξBµM )Fνρ

M + (δξAµ
M )GνρM

)

= − 1

2
√
2
εµνρ

(
MMNgµλ∂NξλGνρM + fMN

K Fµλ
N∂Kξλ Fνρ

M

+
1

2
(MQN∂MMPN ) fQK

P∂Kξλgλµ Fνρ
M (4.17)

+ fMNK∂N (MKLgµλ∂Lξ
λ)Fνρ

M

)
− eFµνNDµ(∂Nξρgρν) ,

and we recognize a first conspiracy between the last term and (4.16).

The kinetic term in (4.1) is not invariant under the full diffeomorphisms either, due

to anomalous terms of similar origin as in (4.10). Specifially, with (4.3), (4.4), the scalar

current transforms as

δ
(0)
ξ

(
DµMMN

)
= Lξ

(
DµMMN

)
+ 4Fµν

PMP (M∂N)ξ
ν − 4Fµν(MMN)

P∂P ξ
ν

−MKQ(∂K MMN )∂Qξ
νgµν − 4MK(M∂N)(MKQ∂Qξ

νgµν)

+4∂K(∂QξνgµνMQ(M )MN)K

+(MQS∂KMPS)fQR
P ∂Rξ

λgλµ fK(M
LMN)L

−2 fK(M
LMN)L gµλ e

−1ελνρDν (∂Kξσgρσ) . (4.18)

Up to total derivatives, the kinetic term thus varies into

δ
(0)
ξ Lkin = eDµMMN Fµν

PMPM∂Nξν

− eDµMMN

(
MKM ∂NMKQ +

1

8
MKQ ∂KMMN − 1

2
∂MMN

Q

)
∂Qξ

µ

− 1

2
√
2
εµνρ fKM

LMNLDµMMN Dν (∂Kξσgρσ) . (4.19)

After partial integration, the last term takes the form

− 1

4
√
2
εµνρ [Dµ,Dν ]MMN fKM

P MPN ∂Kξλ gλρ

+
1

2
√
2
εµνρDµMMNDνMPN fKM

P ∂Kξλ gλρ , (4.20)

of which the commutator term reduces to

1

2
√
2
εµνρMMN GµνM∂Nξλgλρ (4.21)

+
1

2
√
2
εµνρ Fµν

M

(
1

2
(MQN∂MMPN )fQK

P∂Kξλgλρ + fMNK∂N (MKL∂Lξ
λgλρ)

)
,

up to total derivatives, and entirely cancels against the corresponding terms in the varia-

tion (4.17) of the Chern-Simons term.
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Finally, we consider the anomalous variation of the potential V (M, g). This is due to

the transformations

δξ(∂KMMN ) = ξµDµ(∂KMMN ) + ∂KξµDµMMN − 4∂K(∂(MAµ
P − ∂PAµ(M )MN)P

+ ξµ(∂LAµ
L)(∂KMMN ) + 2 ξµ∂KB̃µ

L fL(M
PMN)P ,

δξ(∂Mgµν) = Lξ(∂Mgµν) + (∂Mξρ)Dρgµν + 2gρ(µDν)(∂Mξρ)

− 2ξρgµν (∂M∂NAρ
N )+ξρ(∂NAρ

N ) (∂Mgµν)+2(∂NA(µ
N ) (∂Mξρ) gν)ρ ,

δξ(∂Mg) = Lξ(∂Mg) + (∂Mξµ)Dµg + 2gDµ(∂Mξµ)− 6 ξµ g ∂M∂NAµ
N

+ ξµ(∂NAµ
N ) ∂Mg + 2g(∂NAµ

N ) ∂Mξµ . (4.22)

Again, we suppress in the following all terms with explicit appearance of the gauge fields,

as these cancel separately. The variation of the potential then gives rise to

δξ(−eV (M, g)) =
3

8
e ∂Lξ

µDµMMN ∂KMMNMKL− 3

2
e ∂Lξ

µDµMMN ∂MMN
KMKL .

(4.23)

Collecting all the terms that we have encountered in (4.16), (4.17), (4.19)–(4.21),

and (4.23), we are left with

δ(0)L =
1

4
eDµMMN

(
∂KMMN − 2 ∂NMKM + 2MKL ∂MMN

L
)
MKQ ∂Qξ

µ

− 1

2
√
2
εµνρ fMN

K∂Kξλ
(
Fµν

M Fρλ
N −DµMMLDνML

N gλρ
)

+ eDµMMN Fµν
PMPM∂Nξν . (4.24)

Some algebra (e.g., using an explicit parametrization as in (5.20) below) shows that the

first line in this expression is actually vanishing, while the remaining terms can be recast

into the compact form

δ
(0)
ξ S = − 1

2
√
2

∫
d3x d3Y εµνρ fMN

K ∂Kξλ E(A)
µν

ME(A)
ρλ

N , (4.25)

in terms of the duality equation (4.5). I.e. the anomalous variation of the action comes

out to be proportional to the duality equations (4.5) obtained by varying the Lagrangian

w.r.t. to the vector fields. We conclude that invariance of the action can be achieved

by properly modifying the transformation law (4.4) for the vector field BµM . However,

naively modifying the transformation law (4.4) induces a variation of the vector field,

that is no longer compatible with the constraints (2.34), rendering the diffeomorphism

symmetry inconsistent. Fortunately, this can be remedied by modifying the transformation

laws (4.3), (4.4) by another trivial (formal ‘equations-of-motion’-)symmetry. The resulting

full diffeomorphism transformations of the vector fields take the form

δξAµ
M ≡ δ

(0)
ξ Aµ

M − ξν E(A)
νµ

M ,

δξBµM ≡ δ
(0)
ξ BµM + fKM

N ∂Nξν E(A)
µν

K − ξν E(B)
νµM . (4.26)
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The second term in the variation of BµM is precisely necessary in order to cancel the

anomalous variation of (4.25), such that the action becomes invariant. The last terms in

the variation of Aµ
M and BµM , respectively, constitute an ‘equations-of-motion’-symmetry

of the Lagrangian, as follows immediately from (4.5) and (4.26), and thus do not corrupt

the invariance of the action. Their presence however is crucial in order to maintain com-

patibility of the transformation laws (4.26) with the constraints (2.34) imposed on the

combination of vector fields B̃µM . To show this, we calculate from (4.26)

δξ
(
BµM − fKM

N∂NAµ
K
)
= ξν

(
GνµM − fKM

N∂NFνµ
K
)
−ξν

(
E(B)
νµM − fKM

N∂NE(A)
νµ

K
)

+OµM , (4.27)

where by OµM we collect all terms that are separately compatible with the con-

straints (2.34), i.e.

PKL
MN OµM ⊗ CN = 0 , ∀ CM = (∂M , B̃M , Σ̃M ) . (4.28)

Specifically, in (4.27) all terms collected in OµM carry an explicit derivative ∂M , such

that (4.28) is manifest. Using the explicit form of (4.6), a quick calculation shows that the

first two terms on the r.h.s. of (4.27) mutually cancel, leaving only the OµM term. Thus

we conclude that

PKL
MN δξB̃µM ⊗ CN = 0 , ∀ CM = (∂M , B̃M , Σ̃M ) , (4.29)

as required for consisteny.

Summarizing, we have shown that the action (4.1) is invariant under generalized dif-

feomorphisms with parameters ξµ(x, Y ), provided the fields transform as (4.2), (4.26). It

is remarkable, that in the final transformation law for the vector fields, all terms carrying

explicit field strengths drop out, e.g.

δξAµ
M = MMNgµν∂Nξν − 1

2
√
2
eεµνρ ξ

νfMK
LDρMLNMNK . (4.30)

This reflects the fact that the vector fields in this three-dimensional formulation do not

carry propagating degrees of freedom, but are related to the scalar fields by means of the

duality equations (4.6). Indeed, similar structures arise in three-dimensional supergravity,

where the supersymmetry algebra closes into transformations of the type (4.30) rather than

into the standard covariant form [66].

5 Reduction to D = 4 Einstein gravity

In this section we verify that by explicitly solving the constraint (2.34) and reducing to

fields that depend only on four coordinates, we recover precisely D = 4 Einstein gravity.

To this end we rewrite in the first subsection Einstein gravity à la Kaluza-Klein via a

(3 + 1) splitting of the coordinates, reviewing the results of [59, 60]. We stress that this

does not involve any truncation, as we keep the dependence on all four coordinates. In the

second subsection we show that the (3+ 3)-dimensional theory reduces to Einstein gravity

in this formulation.
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5.1 (3 + 1) splitting of D = 4 Einstein gravity

In this section, we recast four-dimensional Einstein gravity into the form of a three-

dimensional gravitational theory by rearranging the fields in Kaluza-Klein form but keeping

the full dependence on the fourth coordinate y. We follow [59, 60], see also [67, 68]. We

start from the D = 4 Einstein-Hilbert action (with mostly plus signature),

SEH =

∫
d4x eR ≡

∫
d4x e eâ

µ̂eb̂
ν̂Rµ̂ν̂

âb̂ , (5.1)

where D = 4 world and Lorentz indices are denoted by µ̂, ν̂, . . . and â, b̂, . . ., respectively.

Next, we perform a splitting of coordinates, xµ̂ = (xµ, y), and indices, µ̂ = (µ, 3), etc., and

reduce the Lorentz gauge symmetry to SO(1, 2) by choosing an upper-triangular gauge,

eµ̂
â =

(
φ−1/2eµ

a φ1/2Aµ

0 φ1/2

)
. (5.2)

In the following it will be convenient to have the action of the full four-dimensional diffeo-

morphisms (parameterized by ξµ̂ = (ξµ,Λ)) at our disposal. Applying

δξeµ̂
â = ξν̂∂ν̂eµ̂

â + ∂µ̂ξ
ν̂eν̂

â , (5.3)

to (5.2) we have to add a compensating local Lorentz transformation, with parameter

λa
3 = φ−1∂yξ

νeν
a, in order to preserve the gauge choice. Under ξµ diffeomorphisms, the

fields thus transform as

δξeµ
a = ξρ∂ρeµ

a + ∂µξ
ρeρ

a + ∂yξ
ρAρeµ

a ,

δξAµ = ξρ∂ρAµ + ∂µξ
ρAρ −Aµ∂yξ

ρAρ + φ−2∂yξ
νgνµ ,

δξφ = ξρ∂ρφ+ 2φ∂yξ
ρAρ .

(5.4)

Under dimensional reduction, i.e. ∂y = 0 this reduces to the standardD = 3 diffeomorphism

transformations. The action of the four-dimensional Λ diffeomorphisms takes the form

δΛeµ
a = Λ∂yeµ

a + ∂yΛeµ
a ,

δΛAµ = ∂µΛ + Λ∂yAµ −Aµ∂yΛ ,

δΛφ = Λ∂yφ+ 2φ∂yΛ ,

(5.5)

of an infinite-dimensional non-abelian gauge structure in three dimensions. Accordingly,

we can define covariant derivatives and field strengths for the Λ transformations, as

Dµeν
a = ∂µeν

a −Aµ∂yeν
a − eν

a∂yAµ ,

Fµν = ∂µAν − ∂νAµ −Aµ∂yAν +Aν∂yAµ ,

Dµφ = ∂µφ−Aµ∂yφ− 2φ∂yAµ .

(5.6)

The complete action (5.1) can then be expressed in terms of manifestly Λ-covariant

objects as

SEH =

∫
d3x dy e

[
R(3),cov − 1

4
φ2FµνFµν −

1

2
φ−2gµνDµφDνφ− Lm

]
, (5.7)
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where R(3),cov denotes the generalized Ricci scalar with respect to the covariantized con-

nection (5.6). The last term reads

Lm =
1

4
φ−2gµνgρσ(DygµρDygνσ −DygµνDygρσ) + eaµebνFµν eb

ρ∂yeρa . (5.8)

with Dygµν ≡ ∂ygµν−gµν φ
−1∂yφ . Upon some rearrangement, the D = 4 Lagrangian takes

the form

L = e

(
R̂− 1

4
φ2FµνFµν −

1

2
φ−2gµνDµφDνφ

+
3

2
φ−4(∂yφ)

2 − g−1∂yg φ
−3∂yφ+

1

4
φ−2(g−1∂yg)

2 +
1

4
φ−2∂yg

µν ∂ygµν

)
,

(5.9)

with the ‘improved’ Einstein-Hilbert term given by the Lorentz invariant combination

eR̂ = −εµνρeµ
aR(3),cov

νρa − eeaµebνFµνeb
ρ∂yeρa . (5.10)

5.2 (3 + 1) Chern-Simons form of D = 4 Einstein gravity

We have rewritten four-dimensional Einstein gravity in the form (5.9) reminiscent of the

three-dimensional Kaluza-Klein form. Indeed, upon dimensional reduction ∂y = 0, this

action reduces to the standard form of a Maxwell and a scalar field coupled to three-

dimensional gravity. In that case, the three-dimensional duality symmetry SL(2,R) is made

manifest by dualizing the Maxwell field into another scalar giving rise to a SL(2,R)/SO(2)

target space [54]. A similar construction is possible for the full four-dimensional the-

ory [59]. Since due to the y-dependence the modes of the Kaluza-Klein vector carry a

non-abelian gauge structure, their dualization necessitates the introduction of additional

non-propagating vector fields [57]. The resulting theory takes the form of a scalar sigma-

model coupled to Chern-Simons vectors.

To this end, we introduce the dual scalar ϕ by means of the duality equation together

with a vector field Bµ

Dµϕ ≡ ∂µϕ−Aµ∂yϕ− 2ϕ∂yAµ +Bµ ≡ 1

2
eεµνρ φ

2F νρ , (5.11)

such that the Bianchi identity and the Yang-Mills field equation for Fµν give rise to the

field and duality equations for ϕ and Bµ, respectively. On the level of the action (5.9), this

corresponds to replacing

− 1

4
φ2FµνFµν −→ −1

2
φ−2gµνDµϕDνϕ+

1

2
εµνρBµFνρ . (5.12)

The Yang-Mills form of the action is then recovered by integrating out B. The Lagrangian

of four-dimensional Einstein gravity in this formulation thus is given by

L = e

(
R̂− 1

2
φ−2gµν (DµφDνφ+DµϕDνϕ) +

1

2
εµνρBµFνρ

+
3

2
φ−4(∂yφ)

2 − g−1∂yg φ
−3∂yφ+

1

4
φ−2(g−1∂yg)

2 +
1

4
φ−2∂yg

µν ∂ygµν

)
,

(5.13)
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with the ‘improved’ Ricci scalar from (5.10). Under dimensional reduction ∂y = 0, it

reduces to the form of the three-dimensional theory in which (modulo integrating out the

vector fields) the global duality symmetry SL(2,R) is manifest.

We deduce from (5.11), that the action of Λ-transformations (5.5) on the new fields is

given by

δΛϕ = Λ∂yϕ+ 2ϕ∂yΛ , δΛBµ = Λ∂yBµ + 2Bµ∂yΛ . (5.14)

It is slightly more involved to derive the transformation law for Bµ under covariantized

diffeomorphisms with the remaining fields transforming as

δξφ = ξµDµφ , δξϕ = ξµDµ ϕ ,

δξAµ = ξνFνµ + φ−2∂yξ
νgνµ ≡ ξνFνµ +∆nc

ξ Aµ , (5.15)

under a proper combination of (5.4) and (5.5). The transformation of Bµ then is fixed

from requiring that the total variation of the action remains unchanged under the replace-

ment (5.12). With the variation of the Yang-Mills term given by

δξ

(
− e

1

4
φ2FµνFµν

)
= −eφ2FµνDµ

(
∆nc

ξ Aν

)
, (5.16)

it is straightforward to derive that invariance of the action under the replacement (5.12)

requires that

δξ (Dµϕ) = Lξ (Dµϕ) + e−1gµν ε
νλρφ2Dλ

(
φ−2∂yξ

σgσρ
)
. (5.17)

With the explicit covariant derivative defined in (5.11), we deduce that

δξBµ = ξνGνµ − 2ϕFµν∂yξ
ν +∆ξA

nc
µ ∂yϕ+ 2ϕ∂y(∆

nc
ξ Aµ) + e−1gµν ε

νλρφ2Dλ

(
∆nc

ξ Aρ

)
,

(5.18)

under covariant diffeomorphisms, where we defined the field strength of Bµ,

Gµν = DµBν −DνBµ , (5.19)

using Λ covariant derivatives. Under dimensional reduction ∂y = 0, this reduces to the

standard transformation law of three-dimensional vector fields.

5.3 Reduction of the (3 + 3)-dimensional theory

In this section, we consider the (3+3)-dimensional action (4.1) and show that after explicitly

solving the section condition (2.34) this action reduces to (5.13) which we have obtained

as an equivalent reformulation of four-dimensional Einstein gravity.

To start with, we choose an explicit parametrisation of the matrix V from (2.13) in

triangular gauge. Denoting the basis of the Lie algebra sl(2,R) by {e, h, f} we write

V = exp(
√
2ϕf) exp(− lnφh) =




φ
√
2ϕ −ϕ2φ−1

0 1 −
√
2ϕφ−1

0 0 φ−1


 . (5.20)
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In this basis, we normalise the antisymmetric structure constants fMNK by fhef = 1, and

take the metric ηMN of the form (2.1), i.e. ηhh = ηef = 1 . Next, we choose an explicit

solution to the section constraints (2.3), (2.4) by restricting the Y M dependence of all fields

to a single coordinate y ≡ Y e, such that derivatives ∂M reduce to

∂h = ∂f = 0 . (5.21)

Similarly, we solve (2.34) by setting B̃µ
h = B̃µ

e = 0, implying that

Bµ
h + ∂yAµ

e = 0 = Bµ
e , (5.22)

for the components of the vector field Bµ
M . With this choice, a short calculation reveals

that the kinetic and the Chern-Simons term of the action (4.1) reduce to

1

16
DµMMN DµMMN

∣∣∣
(5.20)–(5.22)

= − 1

2φ2
(DµφD

µφ+DµϕDµϕ) ,

− 1

2
√
2
εµνρBµMFνρ

M
∣∣∣
(5.20)–(5.22)

=
1

2
εµνρBµ Fνρ , (5.23)

reproducing the corresponding terms in the Lagrangian (5.13), with covariant derivatives

and field strength from (5.6), upon the identification

Aµ ≡ Aµ
e , Bµ ≡ − 1√

2

(
Bµ

f + ∂yAµ
h
)

. (5.24)

In particular, with this solution of the section constraint, the Lagrangian depends only on

the two remaining combinations (5.24) of the original vector fields Aµ
M and BµM , which

take the role of the vector fields of the Lagrangian (5.13).

It remains to calculate the form of the scalar potential (3.20) in this parametrisation

and after plugging in (5.21). A straightforward calculation confirms that

V (M, g)
∣∣∣
(5.20)–(5.22)

= −3

2
φ−4(∂yφ)

2 + g−1∂yg φ
−3∂yφ

− 1

4
φ−2

(
(g−1∂yg)

2 + ∂yg
µν ∂ygµν

)
, (5.25)

which is in agreement with (5.13). In particular, there is no dependence left on ϕ. This fin-

ishes our demonstration that the action (4.1) reduces to four-dimensional Einstein gravity

(in the form (5.13)) upon explicitly solving the section condition (2.34).

To complete this section, it is instructive to consider the action induced by the

(3+ 3)-dimensional diffeomorphisms (4.26) on the vector fields that survive in the (3+ 1)-

dimensional action. Evaluating these transformations for the specific vector compo-

nents (5.24) upon imposing (5.21), (5.22), leads to

δξAµ = φ−2 (gµν∂yξ
ν + eεµνρ ξ

νDρϕ) ,

δξBµ = ∂y
(
2φ−2ϕgµν ∂yξ

ν
)
− φ−2 ∂yϕgµν ∂yξ

ν + gµλ e
−1ελνρDν (∂yξ

σgρσ)

+ εµνρ

(
2∂y

(
eξν φ−2 (φDρφ+ ϕDρϕ)

)
− φ−2 eξν (∂yφD

ρφ+ ∂yϕDρϕ)
)

+
1√
2
ξν Ωνµ e . (5.26)
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Modifying these transformation laws by a standard equations-of-motion-symmetry

δAµ → δAµ + eεµνρ ξ
ν ∂L
∂Bρ

, δBµ → δBµ + eεµνρ ξ
ν ∂L
∂Aρ

, (5.27)

which separately leaves the action (5.13) invariant, the transformation laws take the more

familiar form

δmod
ξ Aµ = ξνFνµ + φ−2gµν∂yξ

ν ,

δmod
ξ Bµ = ξνGνµ + ϕ∂y

(
2φ−2gµν ∂yξ

ν
)
+ φ−2 ∂yϕgµν ∂yξ

ν + gµλ e
−1ελνρDν (∂yξ

σgρσ)

+ 2e εµνρ ∂yξ
ν φ−2 (φDρφ+ ϕDρϕ) . (5.28)

Finally, we may apply yet another modification to the transformation law of Bµ

δmod
ξ Bµ → δmod

ξ Bµ − 2ϕεµνρ ∂yξ
ν

(
φ−2Dρϕ− 1

2
ερστ Fστ

)
, (5.29)

by a term proportional to ∂L
∂Bρ

which constitutes a separate invariance of the Lagrangian.

The resulting expressions (5.28), (5.29) precisely reproduce the transformation behavior of

the vector fields (5.15), (5.18). We have thus shown that the (3+3)-dimensional generalized

diffeomorphisms that we have defined in the previous section, consistently reduce to the

action of the standard (3 + 1)-dimensional diffeomorphisms, once the explicit solution of

the section constraints is evaluated. This agreement holds up to transformations of the

‘equations-of motion-symmetry’ type, that separately leave the (3 + 1)-dimensional action

invariant. We recall, that in (3 + 3) dimensions similar contributions (4.26) proportional

to the duality equations have appeared in the derivation of the vector field transformation

law. However, unlike (5.27), (5.29), the transformation law in (3 + 3) dimensions in fact

has no ambiguity, with the form of (4.26) uniquely determined by gauge invariance and

compatibility of the transformation with the constraints (2.34) on the vector fields.

6 Conclusions and outlook

In this paper we have presented a duality-covariantization of D = 4 Einstein gravity that is

manifestly covariant with respect to the Ehlers group SL(2,R). To this end we performed

a Kaluza-Klein inspired 3 + 1 split of fields and coordinates in the Einstein-Hilbert action

(without any truncation or assumption on the topology of spacetime) and then enhanced

the ‘internal’ coordinate to Y M in the 3 of SL(2,R). The theory is subject to a number

of SL(2,R) covariant ‘section constraints’, which implies that only one coordinate among

the Y M is physical, but also that among the components of the SL(2,R) gauge field Bµ
M

only one survives. Solving the constraints accordingly and eliminating auxiliary fields, we

recover D = 4 Einstein gravity. We may also reduce to D = 3, directly starting from our

formulation, by setting ∂M = 0, after which we recover the usual SL(2,R) invariant action.

In this sense, our formulation explains the emergence of the hidden symmetry group found

by Ehlers in general relativity (with one isometry) more than 50 years ago [54].

As mentioned in the introduction, the truncation assumed in previous papers in our

language amounts to keeping only the potential term, i.e. the last term in (4.1). The
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explicit comparison with these approaches is less straightforward, as our construction relies

on the proper normalisation of the group valued matrix MMN . In particular, the specific

actions of [45–47] carry terms that are zero when detM = 1 and cannot show up in

our construction.

The approach introduced here should be straightforwardly extendable to higher-

dimensional gravity theories, in particular to 11-dimensional supergravity, in which case

SL(2,R) is enhanced to E8(8). Previous papers have found problems in the formulation of

E8(8) covariant structures and ascribed these obstacles to the dual graviton problem. In

contrast, our construction naturally incorporates all dual fields and we are confident that

it may be extended to the full 11-dimensional supergravity and yield an E8(8) covariant

formulation of the type (4.1).

There are various possible directions of extending the present theory. One problem, as

in DFT, is the question whether there is any way to relax the section constraints. Although

there is a growing body of work fearlessly going ahead and abandoning the constraints,

we believe that a proper understanding of how to do this consistently (that is, in a gauge

invariant manner) is lacking. A related issue in our present theory is that we need to impose

additional (yet covariant) ‘section constraints’ involving the field Bµ
M . This is perhaps the

least satisfactory feature of our formulation, and one may hope that eventually it can be

relaxed so that, e.g., the conditions on Bµ
M are recovered as on-shell equations. E.g. the

first-order duality equations (4.6) obtained as field equations by variation of the Lagrangian

w.r.t. Aµ
M imply that only one component of the field strength associated with the gauge

field B̃µM is actually non-vanishing and thus is compatible with the constraints (2.34). It

is tempting to contemplate the idea that this field equation is not only compatible with

but may in fact imply (part of) the constraints (2.34).

Another feature that is different from DFT is that the invariance under (2 + 1)-

dimensional diffeomorphisms parametrized by ξµ(x, Y ) is highly non-manifest and can only

be checked by a quite tedious computation. It would be desirable to have a formulation

that makes also this symmetry manifest. In this regard comparison with DFT is quite illu-

minating in that we may also here perform a Kaluza-Klein-like D = n+ d decomposition,

where D is the total number of spacetime dimensions, and we showed in an accompanying

paper that the resulting formulation looks very similar to the one presented here, carrying

O(d, d) instead of SL(2,R) covariance [64]. In the case of DFT we can recover the fully

covariant theory by simply reverse engineering and enhancing the group as

O(n− 1, 1)×O(d, d) → O(n+ d, n+ d) = O(D,D) , (6.1)

doubling also the non-compact coordinates, thus realizing the O(d, d) invariant theory as a

reduced and Lorentz gauge fixed form of a fully covariant theory with O(D,D) symmetry.

The analogous step in the SL(2,R) invariant theory would be to introduce an enlarged

vielbein, say, (3 + 3)-dimensional,

EM̂
Â =

(
eµ

a Aµ
MVM

A

0 VM
A

)
. (6.2)
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Such an ansatz indeed has the potential to generate, e.g., the M-dependent term in δξAµ
M ,

see (4.3), through compensating Lorentz gauge transformations, exactly as happens in

DFT [64]. However, it is evident that the story cannot quite be as simple, for there is no

room for the extra field Bµ
M and it is also not clear what kind of generalized diffeomor-

phisms should be postulated in the (3 + 3) (or higher-)dimensional theory. The structure

of O(D,D) seems to be rather special, and it appears as if in the case of U-duality groups

one cannot enhance the symmetry as simply. In fact, the case of E8(8) makes it evident

that there is no simple (finite-dimensional) group that could incorporate all fields. One

may be inclined to resort to one of the proposals such as E11 or E10 [69, 70], but then of

course one would have to explain the fate of the infinite number of extra fields.

Another improved formulation or extension of our theory might be obtained starting

from the observation in [59, 60] that in the (3 + 1)-dimensional theory the gravity fields

e and ω and the gauge fields A and B fit, remarkably, into a Chern-Simons theory for

an enhanced gauge group. While it has been known for quite a while that pure gravity

in 2 + 1 dimensions can be written as a Chern-Simons gauge theory, based on either the

(anti-)de Sitter or the Poincaré group [71, 72], the results of [59, 60] showed that this group

can be extended by generators Q and E, so that all the gauge fields fit into an enlarged

gauge connection

Aµ = eµ
aPa + ωµ

aJa +Aµ Q+Bµ E . (6.3)

The Poincaré algebra of translation generators P and Lorentz generators J is then extended

to a semi-direct-like product with (Q,E) such that the Poincaré subalgebra receives a non-

central extension by E. Schematically,

[
J , P

]
∼ P + E . (6.4)

Thanks to this non-central extension there is now an invariant inner product, containing

the pairing 〈Q ,E〉 ∼ 1, that can be used to define a Chern-Simons action for the full

algebra. This action precisely reproduces not only the (covariantized) Einstein-Hilbert

term but also the needed B ∧ F term. So if this construction could be extended to the

SL(2,R) covariant fields the full action could be written as

S=

∫
d3x d3Y

(
εµνρ

〈
Aµ, ∂νAρ +

1

3

[
Aν ,Aρ

]〉
+

1

16
egµνDµMMNDνMMN − e V (e,M)

)
.

(6.5)

In this form, D = 4 gravity would take the form of a true Chern-Simons-matter theory. It

is clear, however, that it is not quite as simple to make complete sense of the form (6.5).

For instance, the ‘Lie algebra’ part corresponding to A is given by the C-bracket, which

does not define an actual Lie algebra, thus requiring a suitable extension of Chern-Simons

theory. Moreover, B satisfies constraints that the other fields do not need to satisfy and

therefore these constraint first would need to be made more democratic among the fields.

Finally, we had to replace the Einstein-Hilbert term by an improved version in order to

keep local Lorentz symmetry, and it is not obvious how to incorporate this into a Chern-

Simons formulation. Despite these obstacles one feels that the existence of an algebraic
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structure such as (6.4) cannot be a mere coincidence and should be a glimpse of some

deeper structure.

Finally, let us mention that recently it has been shown that DFT can be generalized

so that it also encodes higher-derivative α′ corrections [73]. Remarkably, in the context of

such an α′-geometry the theory is almost uniquely determined by its gauge structure, thus

giving a new approach to determine the higher-derivative corrections. It is reasonable to

expect that a similar extension exists for theories of the type discussed here, in particular

for an E8(8) covariant form of 11-dimensional supergravity. If so this would allow us to

compute the higher-derivative M-theory corrections in a manifestly E8(8) covariant fashion.
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