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ABSTRACT: We extend the techniques of double field theory to more general gravity the-
ories and U-duality symmetries, having in mind applications to the complete D = 11
supergravity. In this paper we work out a (3 4+ 3)-dimensional ‘U-duality covariantization’
of D = 4 Einstein gravity, in which the Ehlers group SL(2,R) is realized geometrically,
acting in the 3 representation on half of the coordinates. We include the full (2 + 1)-
dimensional metric, while the ‘internal vielbein’ is a coset representative of SL(2,R)/SO(2)
and transforms under gauge transformations via generalized Lie derivatives. In addition,
we introduce a gauge connection of the ‘C-bracket’, and a gauge connection of SL(2,R),
albeit subject to constraints. The action takes the form of (2 + 1)-dimensional gravity cou-
pled to a Chern-Simons-matter theory but encodes the complete D = 4 Einstein gravity.
We comment on generalizations, such as an ‘FEgg) covariantization’ of M-theory.
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1 Introduction

Duality symmetries play a distinguished role in string and M-theory. They are believed to
be part of the ‘stringy gauge symmetry’ that should govern the so far elusive fundamental
formulation of string/M-theory. A better understanding of the geometrical nature of these
duality symmetries may give insights into the very geometry underlying string theory. The
simplest duality is T-duality that relates equivalent toroidal string backgrounds 7% via
the non-compact group O(d,d,Z) and also appears in the supergravity approximation as
a continuous non-linearly realized global O(d, d,R) symmetry. Double field theory is an
approach to make this symmetry manifest at the level of the effective spacetime action [1],
and our goal in this paper is to generalize the recent developments in [2-5] (see also [6-8]
for earlier results).

Double field theory (DFT) introduces doubled coordinates transforming in the funda-
mental representation of O(d, d) together with an O(d, d) valued ‘generalized metric’. The
extra coordinates are well-motivated from string theory, where they are dual to winding
modes and, in fact, the cubic approximation to DFT has initially been derived from closed
string field theory [2, 9]. DFT provides, in particular, a strikingly simple formulation
of the usual (super)gravity actions, including the heterotic theory [1, 10], massless and



massive type II theories [11-14], and their supersymmetric extensions [1, 15-18], and also
leads to a compelling generalization of Riemannian geometry [1, 19-24], which in turn is
closely related to (and an extension of) results in the ‘generalized geometry’ of Hitchin and
Gualtieri [25-27] (see [28-34] for other applications and [35-38] for reviews).

Given the close relation between 10-dimensional string theory and 11-dimensional M-
theory it is natural to suspect that there should be similar extensions or reformulations
of M-theory or, in its 2-derivative approximation, of D = 11 supergravity, that renders
U-duality symmetries manifest by introducing extra coordinates that transform under the
U-duality group. Upon torus compactification, D = 11 supergravity gives rise to excep-
tional symmetry groups such as Ey7) in D = 4 and Egg) in D = 3 [39]. Already in the
1980’s this spurred interest in the question to what extent these structures are present in
eleven dimensions. The work of de Wit and Nicolai presents a reformulation of D = 11
supergravity that abandons manifest 11-dimensional covariance, using a Kaluza-Klein in-
spired 4 + 7 or 3 4 8 splitting of the coordinates, but which exhibits an enhanced local
Lorentz symmetry in accordance with the (composite) gauge symmetries appearing in the
D =4 or D = 3 coset models [40, 41]. However, it did not manifest the exceptional groups,
and further work in [42] suggested that additional coordinates should be introduced in order
to achieve this, an idea that also features prominently in the proposal of [43]. Later work
in [44] gave a manifestly Er(7) covariant formulation for a certain 7-dimensional truncation
of D = 11 supergravity by introducing coordinates in the 56 of Ey (7).

The purpose of this paper is to show that it is possible to reformulate complete gravity
theories in a U-duality covariant manner. We will follow a strategy similar to the one
employed by de Wit-Nicolai: we decompose the fields and coordinates a la Kaluza-Klein
without truncation and then reorganize them, however, now in a way that is fully U-duality
covariant by virtue of the extra coordinates. In addition, we will have to introduce extra
fields and constraints, but the extra fields can be eliminated once the constraints are solved.
After the advent of DFT, there have already been quite a number of papers extending the
techniques developed here to various U-duality groups [45-51] (see also [52, 53| for earlier
results). The actions given in this context exhibit manifest E,,) symmetry for n < 7
and describe truncations of D = 11 supergravity. More precisely, D = 11 supergravity is
truncated by setting to zero the off-diagonal components of the metric and of the 3-form,
assuming that all fields depend only on ‘internal’ coordinates, and freezing the external
metric to be the flat Minkowski metric (sometimes up to a warp factor). In terms of the
more general gravity actions to be introduced here this truncation amounts to eliminating
all but one term, the ‘potential’ term. However, the detailed relation of our results to those
of [45-49] is not entirely transparent, as we briefly discuss below.

Trying to write a complete U-duality covariant gravity theory one encounters two
(related) obstacles:

(i) The off-diagonal field components (as the Kaluza-Klein vector originating from the
metric) do not naturally fit into the generalized metric that is used in DFT to write
the action.

(ii) In order to manifest the duality symmetries in lower dimensions it is typically nec-
essary to dualize some of the off-diagonal field components into forms of lower rank.



Such transformations are specific to a given dimension, and so it is not clear how to
employ the required dual fields in, say, the full D = 11 supergravity.

For definiteness we consider in this paper a 3 + n decomposition, which is appropriate for
the case of D = 3 duality symmetries. For n = 8 the duality group is Fg(), the case
relevant for 11-dimensional supergravity, while here we restrict ourselves to the simplest
toy model, n = 1, relevant for D = 4 Einstein gravity, for which the duality group is the
Ehlers group SL(2,R). The D = 3 case is particularly interesting for various reasons. In
D = 3 the Kaluza-Klein vector needs to be dualized into a scalar, which together with
the Kaluza-Klein dilaton then parametrizes the SL(2,R)/SO(2) coset space [54]. Since
the Kaluza-Klein vector originates from the metric, from a D = 4 perspective this is like
dualizing (part of) the graviton, something that due to the no-go results of [55] is usually
considered to be impossible. Indeed, previous papers on the subject have unanimously
concluded that, presumably for this reason, the D = 3 case cannot be incorporated into
a U-duality covariant framework [48, 49, 56]. However, it turns out that the techniques
to deal with dual fields in gauged supergravity developed in [57, 58] are quite sufficient
to address this problem, a fact that has already been employed a while ago in [59, 60],
which will be crucial for our construction. This resolution of the ‘dual graviton problem’
(which can also be employed in a fully covariant framework [61-63]) may appear somewhat
trivial, but as we will see is exactly what is needed in order to achieve a duality covariant
formulation. While in this paper we will restrict ourselves to the 3 + n decomposition,
we expect that along similar lines, using the techniques of gauged supergravity in generic
dimensions, there will be formulations of the complete 11-dimensional supergravity that
are covariant with respect to various U-duality groups.

The SL(2,R) covariant formulation of D = 4 Einstein gravity to be developed in this
paper introduces coordinates Y™ in the 3 of SL(2,R), M = 1,2,3, which is the adjoint
representation or, equivalently, the fundamental representation of the isomorphic group
SO(1,2).! As in DFT we have to subject the theory to a (covariant) ‘section constraint’
that effectively implies that among the three coordinates Y™ only one is physical, which
then completes the remaining 2 + 1 coordinates to those of D = 4 gravity. The constraints
take the form

MNoy ooy =0,  fMNEoy@ax =0, (1.1)

where we introduced the Cartan-Killing form 7/ n of SL(2, R) (or, equivalently, the SO(1,2)
invariant metric) and its structure constants fMN%. Here, the notation ® indicates that
the differential operator annihilates all fields, but also all of their products. The first
constraint in (1.1) takes the same form as the ‘strong constraint’ in DFT, but with the
O(d, d) metric replaced by the SO(1,2) metric. The second constraint has appeared in
an analogous form in other U-duality covariant formulations [49]. Its addition in (1.1)
actually does not make the first constraint any stronger, for the first one implies already

IThis choice is motivated by the observation that the gauge vectors, which naturally couple to the
extended derivatives, typically live in the adjoint representation of the duality group in D = 3 gauged
supergravity.



that all fields depend only on one of the Y™ coordinates, which then automatically solves
the second constraint.

Asin DFT we introduce a generalized metric M,y that, in a D = 3 language, encodes
the scalar fields. Alternatively, we can introduce a frame field Vy;4, with inverse V4™,
subject to local SO(2) transformations from the right, and define M = VVT. These fields
transform under gauge transformations with a parameter AM that is the SL(2, R) covariant
extension of the 4th diffeomorphism parameter. It acts on the fields via the generalized
Lie derivative

oaVaM = [AVa]p = ANONVAM + (0M Ay — OnAM) VAN (1.2)

where we introduced the analogue of the ‘D-bracket’ in DFT (again with O(d, d) replaced
by SO(1,2)), which in turn reduces to the Dorfman bracket of generalized geometry when
the dependence on the extra coordinates is dropped. The D-bracket is not antisymmetric.
Its antisymmetrization is the C-bracket that governs the gauge algebra of generalized Lie
derivatives, and which in the O(d,d) case reduces to the Courant bracket of generalized
geometry when there is no dependence on extra coordinates. It does not define a Lie
algebra, because it does not satisfy the Jacobi identity; however, its ‘Jacobiator’ is of a
particular exact form.

In our formulation, all fields depend on the Y™, but also on the ‘external’ spacetime
coordinates z#, e.g., V = V(z,Y). The transformations (1.2) are gauge transformations
from the (2+41)-dimensional perspective in that the parameter A* depends on x. Therefore
we also need to introduce a gauge vector 4, that gauges (1.2) and which is the SL(2, R)
covariant version of the Kaluza-Klein vector. It transforms as

IAAM = 8,AM (A, AL (1.3)

Formally, this is the usual Yang-Mills gauge transformation, but the bracket does not define
a Lie algebra, so this is not a conventional gauge connection. This gauge field can still be
used, however, to define covariant derivatives, so that, e.g., DHVAM transforms covariantly
under (1.2). Due to the failure of the C-bracket to satisfy the Jacobi identity, the naive
field strength

Fu™ =9, A4M — 8,4, — [AL AL (1.4)

does not transform covariantly. However, its failure to transform covariantly is such that
by the section constraint (1.1) it is covariant when contracted with Jyy,

OaFu™ @ 0r = [N, Fu] ) © O - (1.5)

Due to the lack of covariance of FWM we cannot write an invariant action for ANM
alone. For this and other reasons it turns out to be necessary to introduce a second gauge
vector By, which can be viewed as a gauge connection for SL(2,R). Naively this appears
to introduce too much gauge symmetry because we would then seem to be able to gauge
M N to the unit matrix. However, B and its gauge parameter will actually have to satisfy
some (covariant) constraints inherited from (1.1), which effectively reduces the number of



components of B,y and the amount of gauge symmetry. We will discuss this in detail
below. The additional constraints can be motivated from the observation that, on-shell
and to lowest order, B,y is determined to be dual to a Noether current of the coset
space sigma model, schematically xdBM ~ oM M~1 M. Contracting this relation with
O it is only consistent with the section constraint (1.1) if we also require B#M oy = 0.
Given this constraint, we can now write a gauge invariant action, the Chern-Simons 3-form
By A FM. This coupling is also needed in order to guarantee the on-shell equivalence
with conventional Einstein gravity: after solving the section constraints B,y becomes an
auxiliary field whose field equation implies the duality relation between Fj,,, and the dual
scalar (being the only remnant of the ‘dual graviton’).
The complete U-duality covariant gravity action is given by

S = /d% ¥y <e T "B Fyp™ + iegWDuMMND,,MMN —eV(M, g)> :
2v/2 16

(1.6)
c.f. (4.1) below. Here, all fields depend on the D = 3 spacetime coordinates z* and the yM,
The first term is the usual D = 3 Einstein-Hilbert term, but with all partial derivatives
replaced by covariant derivatives with respect to A and an additional improvement of the
Riemann tensor that is necessary in order to render the D = 3 local Lorentz transformations
a symmetry in presence of 0y derivatives. The potential V' reads

V(M. g)=— % (MKLaKMMNaLMMN . 4MKL8KMMN8N.MML)

1 1 1
- ig_laMg ONMMY ZMMNg_laMQ g 'ong — ZMMNaMgW ONGu -
(1.7)

The terms in the first line agree precisely with the corresponding terms in the DFT action,
particularly the relative coefficient. The terms in the second line resemble the dilaton
couplings in DFT, with g = |det g| playing the role of the dilaton. There is one novelty,
however, in that the full (241)-dimensional metric g,,, enters the last term. The action (1.6)
takes the form of (2 4+ 1)-dimensional gravity coupled to a Chern-Simons-matter theory.
However, if we solve the section constraint by setting dy = (9y,0,0), the action (1.6) will
be shown to be exactly equivalent to the D = 4 Einstein-Hilbert action. All symmetries
are manifest, except for the (2 + 1)-dimensional diffeomorphisms that are generated by a
parameter £#(x,Y) that depends also on Y. In fact, it is this symmetry that uniquely fixes
all relative coefficients in (1.6).

This paper is organized as follows. In section 2 we introduce the required background
material from DFT, including the generalized Lie derivative and the D- and C-bracket.
Based on this we present a generalization of Yang-Mills theory, with gauge connections
based on the D- and C-bracket algebra rather than a Lie algebra, leading to a struc-
ture that resembles the tensor hierarchy in gauged supergravity. Then we introduce the
SL(2,R) gauge field B, and discuss its constraints. In section 3 we define the (3 + 3)-
dimensional theory, systematically introducing the Chern-Simons term, the scalar kinetic
term and potential and the covariantized Einstein-Hilbert term. In section 4 we discuss



the (2 4+ 1)-dimensional diffeomorphisms parametrized by £*(x,Y"), which tie together the
various terms. Finally, in section 5 we prove that upon solving the section constraint the
theory is precisely equivalent to D = 4 Einstein gravity. We conclude with an outlook in
section 6, discussing possible generalizations such as to the Fg(g) covariant formulation of
11-dimensional supergravity.

2 Algebraic structures

2.1 Generalities

We start by recalling some central concepts inspired by DFT. Instead of the T-duality
group we consider the group SL(2,R) = SO(1,2), whose invariant Cartan-Killing form we
choose to be of signature (— + +),

001
nun= 10101, (2.1)
100

where M, N = 1,2,3 label the 3 representation. The structure constants of SL(2,R) can
be written in terms of the Levi-Civita symbol,

fMNK = €mMNK , (2.2)
which implies standard identities like fM&Lf MPQ = —20 “; (5%.
We introduce coordinates Y in the 3 representation, with dual derivatives dp;. As
in DFT, the theory is subject to the ‘strong constraint’

MNoyonA=0,  MNoyAdNB =0, (2.3)

for arbitrary A, B. In fact, with 9/ in the adjoint representation of SL(2, R), this constraint
turns out to imply another seemingly stronger constraint

fEMNGy AONB =0, (2.4)

with the antisymmetric structure constants of the SL(2,R) algebra. It will sometimes be
convenient to encode (2.3) and (2.4) into a single equation of the type

PrMN oy @0y =0, (2.5)

with a projector of the form

1
2

MN

Pkr, = — MV frrp MNP (2.6)

W =

Next we introduce the generalized Lie derivative L that governs gauge transformations
with respect to a vector parameter AM. On a vector VM it reads

S\ VM = LM = ANy VM 4 (9M Ay — OnAM) VY (2.7)



where here and in the following all indices are raised and lowered with ny/n. The terms
on the right-hand side are also denoted as the ‘D-bracket’ so that we also write

aAVM = [A V] (2.8)

The generalized Lie derivative acts similarly on higher tensors, with each index rotated as
in the second term in (2.7). We note that due to the constraint (2.3), parameters of the
form AM = oMy do not generate gauge transformations, and we will refer to such gauge
parameters as ‘trivial’.
The gauge transformations governed by generalized Lie derivatives (2.7) close according
to the ‘C-bracket’,
[EAI’ZM] - E[Al,l\ﬂc ) (2.9)

where
1
(A1, A) 2 = ANy AN — FANOMAY — (1 2). (2.10)

The C-bracket is the antisymmetrization of the D-bracket in that the D-bracket differs
from the antisymmetric C-bracket by a symmetric term,

v,wd = [viw])y - %GM(VNWN) . (2.11)

Crucially, the C-bracket does not satisfy the Jacobi identity. Rather, there is a non-trivial
Jacobiator,

[0, V] o W] + cyel. = éaM ([0 V]aWn +eyel.) . (2.12)

Note that, although non-zero, the Jacobiator is of a trivial form and therefore does not
generate gauge transformations, in agreement with the fact that the symmetry variations
o of fields always satisfy the Jacobi identity.

We now discuss various objects that are tensorial in the generalized sense of (2.7).
First, the scalar fields are encoded by an SL(2,R) vector transforming according to (2.7)
under gauge transformations. More precisely, they are given by a coset representative V4
of SL(2,R)/SO(2), which is subject to global and local transformations

VY) = VY)=4¢g" V) h(Y), h(Y) € SO(2), g¢e8S0(1,2), (2.13)

where Y/ = ¢gY. In the following we will mainly work with the generalized metric My =
(v VT) MN, so that all expressions are manifestly invariant under local SO(2) transforma-
tions. As in DFT, we have a second metric, nysn, of different signature. Since this metric
is used in the generalized Lie derivative (2.7) to raise and lower indices, it is easy to see
that acting on sy itself the generalized Lie derivative is zero,

EA"?MN =0. (2.14)

In the SL(2, R) invariant formulation to be developed here there is another invariant tensor,
given by the structure constants (2.2) or the epsilon symbol. To see that this is indeed an
invariant tensor under generalized Lie derivatives, we compute first

EAgMNK :AP6P5MNK+3(6[MAP—8PA[M)ENKMD . (2.15)



With the Schouten identity 8[MAP6PNK] = 0 we have
oA epni + ONAY enpi + Ok A eprnp = OpA  eini (2.16)
and similarly with —9% Apepnk) = 0 we find
— 0P Ayrepni — 0P Anvenpr — O Ak eninvp = —0pAY eprnk - (2.17)
Thus, the terms in the generalized Lie derivative of ej;ni cancel and we conclude
LAeMNE = [y fMNE — | (2.18)

Therefore, both the SL(2, R) metric 7y/x and the structure constants fMNX are gauge in-
variant. Note that the cancellation between (2.16) and (2.17) was due to the antisymmetric
combination of QA entering the Lie derivative. In contrast, in conventional geometry there
is no such cancellation, so that the epsilon tensor is a tensor density rather than a strictly
invariant tensor.

2.2 Covariant derivatives for the D- and C-bracket

As explained in the introduction, in our formulation all fields depend not only on Y™ but
also the (2 4 1)-dimensional spacetime coordinates x*. In particular, a gauge parameter
such as AM depends on z*, and so from the perspective of the external space the transfor-
mations (2.7) are gauge transformations. A spacetime derivative such as 0,V then does not
transform covariantly with the generalized Lie derivative and therefore we have to intro-
duce a gauge connection A#M and covariant derivatives, as we will do in this section. The
structure is completely analogous to that in DFT, which we recently investigated in [64].
Here we summarize the main results and refer to [64] for detailed derivations.

We start with the gauge transformations of AMM , which in analogy to ordinary Yang-
Mills theory we define to be

oaAM = MM 1 [N, ALY = 0, AM — [A, Al + M (AN AL) - (2.19)

Since the D-bracket is not antisymmetric, we had to employ (2.11) in order to reverse the
arguments. We see that the two ‘natural’ ways to write the gauge transformations a la
Yang-Mills differ by a total 0™ derivative. As we will explain below, this difference is
irrelevant due to an extra shift gauge symmetry on AMM . Similarly, we could have also
written the transformation with the C-bracket. Explicitly, the gauge transformations can
be written as

oA AM = 0, AM + ANoyAM + (0MAN — OnAM) AN (2.20)

which shows that this is the covariant transformation plus the inhomogeneous term 9, A.
With the gauge field AuM we can next define a covariant z#-derivative, which reads

~

Dy =08,—La (2.21)

W



Here, the generalized Lie derivative acts in the representation of the object on which D,
acts. Despite the slightly non-standard form of the gauge transformations of the gauge
fields, these derivatives are fully covariant under local AM transformations. Let us fi-
nally specialize (2.21) to the covariant derivative for the scalars encoded by M/, which
reads explicitly

DyMuyn = 0uMyn — A 0 Murn — 2 (0 A = 0% Ayar) M - (2.22)
We now turn to the field strength of ANM , which like in Yang-Mills theory we define as
M M M M
Fu " = 0,4 0,4, — [Au, AJ] - (2.23)
As usual, the field strength emerges through the commutator of covariant derivatives,
[D,.,D,] = —Lp,, - (2.24)

Since the C-bracket does not satisfy the Jacobi identity, FWM does not transform fully
covariantly. An explicit computation shows

5AF,u1/M = EAF,uVM + aM (a[uANAV]N) : (225)

Thus, while F, WM is not fully gauge covariant, by the section condition it is gauge invari-
ant in terms with FW,M Op- This will be sufficient for all its appearances in this paper.
Similarly, one verifies that the general variation of the field strength F,,* takes the form

6F;LVM = DM((SAVM) - DV<5AHM) + 8M(A[/LN5AV]N) ) (226)

while its Bianchi identity is given by
1 N
M M N
Dy Fyp" = -0 (A[u D ApN — §A[MN [A,,,Ap]]c) : (2.27)

I.e. also all these relations are covariant up to terms that vanish under contraction with
Opr due to the section constraint. In the spirit of the tensor hierarchies of gauged super-
gravity [65, 66], this suggests to introduce a 2-form potential B,,, as

fuuM = FMVM - aMBMu ) (228)

with proper transformation behavior, to compensate for the non-covariance, cf. [64]. For
the actions discussed in this paper this extension will not be relevant, as the field strength
always appears under contractions such that the non-covariant terms vanish.

2.3 Gauge connection for SL(2,R)

We now introduce the second gauge connection, B,,)s, that formally plays the role of an
SL(2,R) gauge field. As such, we will introduce covariant derivatives both with respect to
A and B, which read on a general vector,

DVt = 0,V — A, 0k Vi — (0 AL — 0% Apnr) Vi + B fen™ Vi (2.29)



This is a fully covariant derivative, with respect to A gauge transformations and local
SL(2,R) transformations with parameter ¥,, provided B transforms as

8Bunt = Dy + LBy (2.30)
where L. A acts on By)s as a vector, see (2.7). Writing this out explicitly, we have
(5Bp,M = GMEM —A“KGKZM — (OMA#K —8KA“M)ZK — EKfKMNBuN—I—EABHM . (2.31)

It is non-trivial that simultaneous SL(2, R) and AM gauge transformations are consistent, in
particular that they close. Closure can, however, be easily established using the result (2.18)
that the structure constants are A gauge invariant:

[0, 05] VM = 65 (fMNES N Vi) — 85 (LAVM)
= fMNKENEAVK — EA (fMNKENVK) (2.32)
= —fMNE(Z\ SN Vg = o VM,

with the effective parameter ¥/, = —EAE M- Although we have closure, we will see that
in the following there are not really two completely independent gauge symmetries with
parameters Ay; and Y. Rather, gauge invariance of the theory requires an extension of
the section constraint (1.1) involving field components of A and B (and correspondingly
of their gauge parameters).

In order to state these constraints it will be convenient to introduce the following
combinations of A and B (and their parameters)

- 2.33

The reason is that in terms of these variables the complete version of the section con-
dition (1.1) can be written most concisely (while the action and gauge transformations
are more naturally written in terms of B). The full set of constraints for the following
construction is given by the requirement that

P MNCOy @ Cy =0, YO,C € {9,B,%}, (2.34)

with the projector from (2.6), and where C' and C’ denotes any elements of the list above.
For instance, taking C}, = By and Oy = 0y, the constraint states that BMdy; = 0 in
arbitrary combinations, in particular 8, BM = 0 (sometimes we leave out ® when there is

no possible confusion). Another special case is
fINEgy @ X =0. (2.35)
From this we can immediately derive some further constraints. Consider

0=BM®dy = (BM — fMNEgyAr) @ 0y = BM @ 0y (2.36)

,10,



using in the last step fMVK9y ® 0k = 0, which is implied by the constraint in (2.34). The
analogous conclusion follows for the gauge parameter ;. Thus, in addition to BM8,, =
YM9y; = 0 the constraints also imply

BMoy =0, =My =0. (2.37)

Another curious consequence follows by multiplying fMVX0y ® 0k = 0 with fypg and
using standard identities for the structure constants (2.2):

8p®8Q—aQ®8p=0. (2.38)

In other words, here the section constraints imply that the order of partial derivatives can
be changed in arbitrary products. Similarly, taking Cys = Oy and C; = By we obtain

8M®BN—8N®BM:0. (2.39)

The analogous relation holds also for ¥. We stress that this relation does not hold for B.

Finally, we present an alternative form of the gauge transformations of B,);. The
conventional form (2.30) is fixed by the requirement that covariant derivatives transform
covariantly. In particular, B, transforms as a vector under A transformations. On
the other hand, in the next section we will introduce a Chern-Simons action of the form
[ By A FM | whose invariance requires B to be a A density of weight one rather than a
vector. Surprisingly, it turns out that as a consequence of the section constraints (2.34),
the variation of B can be rewritten so that a density term OnAY appears. Specifically, we
show that 0 B can equivalently be written as

6Bun = 0,Em — A0Sy — (OmALS — 08 A ) Sk — Ok A Sy

~ . (2.40)
+ LaByun + ONAT By -

This again takes the form of (2.30), but now with B and ¥ being A densities (of weight
one) not transforming under the local SL(2,R) and with D, and La acting accordingly.
Therefore, in presence of a separate SL(2,R) gauge symmetry, and with the section con-
straints (2.34), there is no invariant distinction between a A vector and a vector-density,
which is crucial for the following construction. For this to happen, it is essential that we
impose the section constraints (2.34) for the combination Bu um from (2.33), and not for
the SL(2,R) connection By, s -
Let us now prove the equivalence of (2.31) and (2.40), which requires

— S8 fren By = —0x A S + ONAY B (2.41)
We start by computing for the left-hand side

(Lhs.) = =2X frenV By = — (EK + fKPQapAQ) fren™ (BMN + fNRgﬁRAHS>
=— fEPC fe N opAoBun — S5 fen™ frs0t AL (2.42)
— fEPQ fren™N fnrs0R A, S 0pAg
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Here we set to zero the term of the form fXB, as it vanishes by the constraints (2.34).
Next, we simplify the various contractions of structure constants, using the identity stated
after (2.2),

(Lhs.) = O AY By — 500 A + fnrs0f A, (0 AN — 0N Ay)

. . (2.43)
= ONAY Buar — S0 Ak + fnrsdRALS (O AN — 9N Ay)

We omitted terms with ©5 0, etc., and we used (2.39), together with its analogue for 3,
in the second equation. Using (2.39) once more and translating everything back in B, %
basis we obtain
(lhs) = 8NAN(BMM - fMpQ8PAHQ) - 8KAMK(EM - fManPAQ)
+ fnrsOTALS (O AN — 9N A )
= ONAY By — Ok A K S (2.44)

— faur@ONANOT AL + farpgdP AN AN

+ fnp@OmAN O ALQ — fnpodN A0 ALC
The first line on the right-hand side of the final equality coincides with the required right-
hand side of (2.41). Thus, it remains to show that the last four terms are zero. Using the
Schouten identity 0 = flarpq BN]AN and the section constraint dp O = 0 one can check
that among these four terms the first and third combine into one, so that we obtain for
them in total

FunpOgAN P ALC + frpodT ARONALYN — fnpod™ ApdF A

(2.45)
= funpd"AN0QALY + fupgdT ARONAN =0,

where in the final step we used (2.38) in the first term and the section constraint in
the last term. We therefore proved (2.41) and thus the alternative form (2.40) of the
gauge transformations. Let us note that along similar lines one may verify that the gauge
variation (2.31) is compatible with the constraints (2.34).

Finally, we introduce the field strength associated to this gauge connection as

G/u/M = DH,BVM - DVB,uM - fMNKB;LNBVK ) (246)
with A,-covariantized derivatives from (2.21), such that
[Du, Dy |V = *ZFWVM + G fren™ Ve, (2.47)

extending (2.24). Upon using the Schouten identity and the constraints similar to the
computation of (2.41), this field strength may be recast in the form

G,LLI/M = DMBI/M - DVB,LLM -2 (aNA[pN) Bl/]M . (248)

Again, this shows that as a consequence of the particular form of the section con-
straints (2.34), the field B, simultaneously plays the role of an SL(2,R) connection and of
an SL(2,R) singlet with non-trivial A-weight.
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3 (3 + 3)-dimensional theory

Using the techniques developed above, we introduce the (3 + 3)-dimensional formulation
of D = 4 Einstein gravity. The action consists of three main ingredients: a (general-
ized) Chern-Simons-matter Lagrangian, a covariantized Einstein-Hilbert term and a scalar
potential. In the following three subsections we introduce these actions and prove their
gauge invariance.

3.1 Chern-Simons term and scalar kinetic term

The Chern-Simons action is defined by
Scg = / d*x d*Y e"P B F,,M (3.1)

up to a pre-factor that we shall neglect in this subsection. We will now show that this action
is invariant under local A transformations in that the Lagrangian transforms into a total
derivative. First note that the field strength transforms according to (2.25), which implies
that upon contraction with By, as in the Chern-Simons term, it transforms covariantly
thanks to the constraint (2.37). Then the full A invariance follows with the form of the
gauge variation in (2.40) that treats B as a A density:

daScs = / &z Y 77 (AN On (B Fup™) + OnAY Bl Fr ™)
(3.2)
= / &z d*Y P oy (AN B F,p,M) =0,

where we used in the first line that the covariant terms in the variation of B and F' combine
into the Lie derivative of a scalar.

Next, we turn to the invariance under local SL(2, R) transformations parametrized by
3. The gauge field A and thus its field strength F' are inert under these transformations,
while dxB,n = DXy Here we take again the form of the gauge variation in (2.40), so
that the covariant derivative D, acts on X7 as a A density. Consequently, we can integrate
by parts with this covariant derivative and obtain for the gauge variation of the action

65Scs = / Brd®Y P DSy Fy,M =~ / Brd®Y e"? Sy D, F,,M =0,  (3.3)

using the Bianchi identity (2.27) and the constraint (2.37) in the last step. In total we
have shown that the Chern-Simons term is invariant under all local symmetries except the
(2 + 1)-dimensional diffeomorphisms parameterized by £#(x,Y"), which will be discussed in
the next section.

Finally let us turn to the scalar kinetic term involving M ;n, which transforms under
the local symmetries as

IMuyn = EAMMN — QZpr(MQMN)Q . (3.4)
Thus, the fully covariant derivative of My reads

DuMun = DpMun + 2B." fpo® My (3.5)
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with the covariant derivative D,, with respect to A defined in (2.22). This derivative is
manifestly covariant under local A and ¥ transformations. For covariance under the latter
symmetries we have to employ the original form (2.31) of the gauge transformations that
treats B, as a conventional SL(2,R) gauge field.

Summarizing, we can define the total action consisting of scalar-kinetic term and
Chern-Simons term,

SCS—matter = /dgw d3Y< - LEWJPBMMFVP]M + 1€guVIDMMMN,DVMMN) ) (36)
2V/2 16
where we inserted the proper coefficient of the Chern-Simons term. This action is manifestly
invariant under A and ¥ gauge transformations. Curiously, however, in order to make the
Y invariance manifest we had to employ two different but equivalent forms of § B for the
scalar kinetic term and the Chern-Simons term.

3.2 Covariantized Einstein-Hilbert term

¢ and spin

We next discuss the Einstein-Hilbert term in the ‘dreibein’ formalism with e,
connection w,®, which we can treat as a Lorentz vector. Under local A transformations

they transform as

onen® = ANone,” +onANe,®

3.7
oaw,® = ANoyw,® (37)
and so their covariant derivatives with respect to A read
Due,* = 9ue," — AN oye,* — onANe,® (35)
Dyw,” = 0w, — A#Nanl,a . '
We can now write an ‘A covariantization’ of the D = 3 Einstein-Hilbert term,
Sgn = / Prd’Y eR = — / B d®Y " e, Rypa
(3.9)

_ 3. 13 b
=— /d xd’Y e'Pe,” (Dl,wpa — Dywiq + Eabewr wpc) ,

where we defined the covariantized D = 3 Riemann tensor and the corresponding Ricci
scalar. This action is manifestly invariant under local A transformations, because e,*
transforms as a A density so that the full Lagrangian transforms into a total derivative.

a

In the action (3.9) we may treat the spin connection w,” as an independent field or

as determined by means of its field equations in terms of (derivatives of) the dreibein e,®.
More precisely, as in standard gravity the field equation for w,* implies vanishing torsion,

T = Due,* — Dye,” + 6abceub Wye — %, Wue = 0. (3.10)

This can be solved in the standard fashion, giving w = w(e, A), the only difference being
that all occuring derivatives are covariant with respect to A. Specifically, the Lorentz
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vector spin connection is related to the usual one via wuab = —e“bcwuc, which in turn is
given by
1
Wabe = 5 (Qabc - cha + Qcab) ) Qa,bc = *Qbac = (ea'ueby - ebueaV)Dueuc ) (311)

where all indices haven been flattened. For definiteness we view w as determined in this way.
We now turn to the local Lorentz transformations with parameter A,

ey = Eabceub)\c , hwu” = Dy(w)A* = DyA* + gabe Wb A (3.12)

where we indicated by D, (w) the covariant derivative with respect to both w and A. It
turns out that due to the A covariantization of the Riemann tensor it no longer transforms
fully covariantly under local Lorentz transformations. In order to see this we compute

6 Rupa = 2D}, 0w,y = [Dy, Dpl A - (3.13)

Since the covariant derivative denotes the full covariant derivative with respect to both the
spin connection and with respect to A,, the commutator does not only give the Riemann
tensor, which represents the covariant term, but also the curvature F' of A. Therefore,
denoting the non-covariant variation by A" we find

AYR, 0 = —F,,M0u - (3.14)
The Einstein-Hilbert term then transforms as
ox(— e e, Rypa) = ", Fyp™ Oni N - (3.15)

This non-invariance can be cured by introducing an improved Riemann tensor

~ 1
RMV& = Ruya + iegpa[p,Fpo.MaMeu]a ’ (316)

which leads to the following modification of the Einstein-Hilbert term,
eR = —6“”%”“]%,,)@ =eR — ee““eb”FWMebpﬁMepa . (3.17)

The new term induces a non-covariant variation under the local Lorentz transforma-
tions (3.12) due to the dj; derivative:
5>\( - ee““eb”FWMebpﬁMepa) = — ee““eb”FWMeb%aCdepC@M)\d
= — eea“eb”aabdFWMﬁM)\d (3.18)
= —e"Pe,"F, Mo -
This cancels exactly (3.15) and so the improved Einstein-Hilbert term is invariant under

local Lorentz transformations. Moreover, it is still invariant under A transformations,
although this is not totally trivial due the dpse term. From (3.7) we find, however,

oA (ebpaMepa) = EA (ebpaMepa) + ebpepaaMﬁNAN , (3.19)

so that the second, non-covariant term is symmetric in a, b and hence drops out from (3.17),
where this is contracted with the antisymmetric F*°. Summarizing, the improved Einstein-
Hilbert term (3.17) is invariant under local Lorentz and A transformations.
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3.3 Scalar potential

In this subsection we prove that the potential term (1.7),
3
eV(M,g) = — Ee(/\4KL8KMMN3L/\4MN . 4MMNaMMPQaQMpN)

1 1 _ _
— ieg 18M98NMMN— ZeMMNg Loreg g tong (3.20)

1
— ZeMM Nom g™ Onguw

is gauge invariant under A and X transformations. At first sight one would suspect that
the proof of A invariance proceeds more or less precisely as in DF'T, with the dreibein e,®
and its determinant e = det (e,*) = /|det g,.,| = /g playing the role of the dilaton density
in string theory. From (3.7) we infer that e,® indeed transforms as a A density of weight
one. However, this implies that e transforms as a density of weight 3, which is puzzling
because with Mj;n being a tensor and not a tensor density, invariance of (3.20) seems
to require e to have weight one. A related puzzle is that we require the separate local
SL(2,R) symmetry, and due to the partial derivatives in (3.20) it appears challenging to
make the action invariant. The resolution of both obstacles is related and again hinges on
the particular form of the constraints (2.34), which imply a relation between the A and ¥
parameters. These will lead to additional density-type terms Oy AY in the variation, which
in turn complete the weight of the Lagrangian to the ‘correct’ one. We then establish full
invariance of the potential term.

We now turn to a detailed computation of the gauge variation of (3.20), starting with
the local SL(2,R) symmetry. We first recall that the scalars transform under ¥ as

SsMun = =58 fprr®Mon = SF fpnO Mg - (3.21)
Let us first compute the gauge variation of the partial derivative Ox Mpsn, which contains
covariant and non-covariant terms. The covariant terms automatically cancel out in the

variation of the potential, the latter being an SL(2,R) singlet. Thus, we collect only the
non-covariant terms, denoting the corresponding variation by A™C,

AY (O Mun) = 2P fpr?0oMun — 20k 2" fp® Mg
= fPRS0pAs fP 9 0gMun — 20k 27 frur® Mg (3.22)
= — OpAY O Mun — 20k 37 fru@Mpg -
In the first line we used that the non-covariant terms are those where Jx acts on the gauge
parameter, while the first term compensates for dg being inert under SL(2,R). In the first
term of the second line we expressed ¥ in terms of % and used the constraint (2.35). The
first term in the last line then shows that OM receives a weight —1. This is precisely the
weight needed for invariance: since the terms in the first line of (3.20) have two OM, each
of weight —1, they combine with the e of weight 3 to a total weight of 1. Rewriting the
second term in the last line of (3.22) in terms of 3 we get

=20k 2" fpu Mg = — 20Kk (SF + FPR90RAS) friu® Mg

= — 203" fpu Mg + 20K (O A? — 99A) Mg -
(3.23)
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Interestingly, the second term coincides with the non-covariant variation of dx M ;N under
A transformations. More precisely, defining the non-covariant variation A}® = ) — La
one finds

AR (O Mun) = 20k (0 A° — 09N () Mg - (3.24)

We have therefore shown
A¥ (OxMun) = =207 fpr®Muyg — OpAY Ok My + AR (Ox M) . (3.25)

It is this form that we will use below to verify invariance of the full potential.

In order to compute the full variation of the potential (3.20) we need the variation of g,
and g = |det g, |. Since gy, is inert under local ¥ transformations, the only non-covariant
variation of Oyrg,, originates by the partial derivative not rotating under SL(2,R). Thus,

A (Onmgu) = S frr®00guw = —0p A" Orngu (3.26)

where the last step follows by precisely the same argument as in (3.22). Thus, as for OM,
this gives a weight —1 to Jjrg, so that with the determinant e having weight +3 this
completes the weight of the terms in the second and third line of (3.20) to the desired +1.
Note that there is no ¥ term left in (3.26).

We have written the variations of the various terms with A and . Our strategy is now
to check cancellation of terms with A and ¥ separately, starting with the ¥ invariance. We
first note from (3.25)

AL (ONMMN) = —on 9 foMP MY (3.27)

where we used that by the section constraint (2.35) one term is zero. Again by the section
constraint this vanishes when contracted with dy7g. Thus, for the non-covariant ¥ terms
it remains to verify cancellation in the first line of (3.20). Denoting these two terms in the
potential as —= (V) + V() + ... we compute with (3.25)

SV = AMELYE 3R foME MpN O Mary (3.28)

and for the second term

5V =4 MMN (9 S frPS M@ + 0n Sl R MsT)dgMpy

) ) (3.29)
+ AMMN 9 MPQ (9B frp® Mgn + 002 frn® Msp)

Distributing the terms this reads
(5§:V(2) = 4MMN8MSRfRPSM5Q3QMPN + 4MMN6MinRQSMSP8QMPN
+ 40y MPROGEE frp™ 4+ AMMN 9y MPROGEE frvS Mgp  (3.30)
= AMMN 9y SR fRPIMR0gMpn + AMMN Oy MPQOGSE frn® Msp
Here we used that the second and third term in the first equation are zero by the constraint.

Next we use a Schouten identity in the second term of the last line, with a total antisym-
metrization in @, R, N, S in the 0Xf term. One term vanishes by the section constraint
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and we obtain
55V ® = 4AMMN 9y SE 12PS M0 Mpy + AMYMN 03 MPQONER froS Masp
+AMMN G MPROISE fpnoMsp
= AMMN oy S [P M@ Mpn + AMMN Oy MPCONSE fro® Mgp  (3.31)
+ AMPSIGMNPOM SR frop Moy
= AMMN 9y MPLONEE fro® Msp
Here we relabeled indices in the second equation in order to make it manifest that the first
and third term cancel. The remaining term cancels against (3.28), completing the proof

that the potential is ¥ invariant.
Let us now turn to the A invariance. Recall from (3.7) that

5Aguu = ANaNg/w + 28NANg,u1/ ) (3.32)

which yields for the non-covariant A variations?

g AN (Org) = 690 ONAY
Aﬁc(aMguu) = 28M8NANQ;W .

We can now use a result from DFT since the first line in the potential (3.20) precisely

(3.33)

agrees, up to the overall factor, with the corresponding terms in the DF'T scalar curvature.
We have to remember, however, not only to collect the non-covariant A variations of O M
terms, but also the same terms that originated from the 3 variation above, see (3.25). In
other words, each of the A}® terms gets doubled. Taking this factor of 2 into account we
can read off the variation of the first line from eq. (4.47) in [5]

Sa (eMBLOR MMN O My — 4eMMN 9y MPR0gMpy) = —16e0y O AT Op MMY
(3.34)
From (3.33) we find for the variation of the second line

1 1 1
5A< - 569718]\49 ONMMN — ZeMMNgflaMg 9 'ong — fMMNaMgW 8N9;w)

= —3edpOp AT ONMNM g7 001 g OpIgAM MPP — e MMN 671019 OnOPAT
(3.35)

The total variation of the potential is then given by

Sa(eV) = 3edy On AT op MMN — 3¢0y,0p AT Oy MMV

3.36
+ 201 DpdgAM MPQ — 2 MMN e OyOp AT . (3.36)

Next, we integrate by parts in the second line in order to remove Jjre terms. The generated
O2A terms cancel each other, while the remaining terms combine with those in the first
line, so that

Sa(eV) = edpOn AT Op MMYN — ey 0p AT Oy MM (3.37)

#We note that the non-covariant variation of the last two terms in (3.20) are equal. Therefore, A gauge
invariance does not determine their relative coefficients.
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Finally, using the section constraint in the form (2.38) to exchange dx and dp we see that
the remaining two terms cancel. We have thus proved the complete gauge invariance of
the potential.

4 (2 + 1)-dimensional diffeomorphisms

The full (3 + 3)-dimensional action that we have been putting together in the last section
takes the form

~ 1 1
S:/d3:z; d3Y<e R(e,w, A)—%—@ 5“”pB#MFl,pM+Eeg“”DuMMND,,MMN—e V(M, g)) .
(4.1)

The first term is the covariantized Einstein-Hilbert term from (3.17), the last term is the
potential (3.20), and the kinetic term carries the full covariant derivatives D, from (3.5).
In the last section, we have shown that separately all terms are invariant under A and X
gauge transformations.

Invariance of (4.1) under standard z-dependent (2 + 1)-dimensional diffeomorphisms
is manifest. In this section, we will discuss invariance of the action under those (2 + 1)-
dimensional diffeomorphisms whose parameter £ also depends on the extra coordinates
Y, which turns out to be much more involved. This requires the interplay and various
conspiracies among the variations of the four terms in (4.1), none of which is separately
invariant. In particular, this generalised diffeomorphism invariance uniquely fixes all the
relative coefficients in the action above. For transparency of the presentation, we shall in
the following discussion of invariance suppress a class of terms that cancel independently.
These are of the form MMN9,; ® O with no other scalar field dependence than the single
matrix MMYN_ These terms cancel separately among themselves, and with the explicit
parametrization (5.20) adopted in the next section, it is straightforward to verify that their
cancellation is completely parallel to the calculation that ensures standard diffeomorphism
invariance in four-dimensional Einstein gravity. In particular, these terms do not interfere
with the non-trivial checks of generalized diffeomorphism invariance that we present in the
following, giving rise to the cancellations of all the remaining structures. Similarly, in the
following we will also neglect all terms in the variation that carry explicit gauge fields. Such
terms e.g. arise from the connection part upon partial integration from the fact that the
integrand is not of A-weight one. Their vanishing can be shown by a separate calculation
similar to establishing the A-invariance of the action in the last section.

The action of the gauge covariant diffeomorphisms on the scalars and the vielbein is
expected to take the standard form

5§MMN = f”DuMMN , 5§€ua = §pre'ua + Duépepa , (4.2)
of a combined diffeomorphism and (A, ¥) gauge transformation. Accordingly, the covariant

derivatives carry the connections from (3.5), (3.8). In contrast, their action on the vector
fields AHM , B,,m turns out to carry explicitly non-covariant terms. For their transformation
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laws, we start from the following ansatz
00 AM = ¢ F M+ MMV g, onE” (4.3)
5é0)BﬂM = &Gyum + fun™ Fu~ox&” + funxo™ (M5 g,,006") (4.4)
+ % (MonouMPN) FOR ok g, — V2 gun e e Dy (00E7 gpo)

which combines the covariant part of the transformation expressed in terms of the field
strengths from (2.23), (2.46) with explicitly non-covariant terms that are required for in-
variance of the action. Their presence is already observed in the corresponding (3 + 1)-
dimensional reformulation of four-dimensional Einstein gravity, that we review in the next
section, cf. (5.15), (5.18) below. As we will witness in the course of the calculation, both
transformation laws will acquire yet further (on-shell vanishing) contributions. We note,
that the transformation law (4.4) is compatible with the constraints (2.34) imposed on the
vector field By, yr, as can be verified by a quick explicit computation.

Since the variation of the vector fields (4.3), (4.4) plays the crucial role in showing
invariance of the action under generalized diffeomorphisms, let us first spell out the general
variation of the Lagrangian under variation of the vector fields, which up to total derivatives
takes the form

1
6L = — s e (50 0Bar + € 04M) (4.5)
with the combinations
1
g,L(Lf)MEFMVM — o /5 CEup FMEDPMEN My (4.6)

2v2

1 1
gngz\/IEGwM + 2 Epvp <6K (eMarL DP M) — 1 eOMir DPMKL> + Qo

exhibiting the duality equations relating vector and scalar fields, typical in three dimen-
sions.® The term Q,, m comprises all contributions that descend from variation of the
improved Einstein-Hilbert term, whose explicit form will not be needed in the following.
Note though that all these terms carry an explicit da; and thus vanish when contracted
with another oM.

Let us now study the variation of the action (4.1) under the generalized diffeomor-
phisms (4.2)—(4.4). First, we consider the covariantized Einstein-Hilbert term. In addition
to the above listed fields, this term depends on the spin connection that transforms exactly
like e,* together with non-covariant terms descending from (4.3)

5§0)w#ab = Le(w,®) = 39 MMY e®dye,? One” (4.7)

which may be verified with (3.11). However, the non-covariant term in this variation
is of the type MMN9y; @ Oy that cancel separately. We note that the antisymmetric
et satisfies

0ee!P =0 = LeeP + Dy& ehp (4.8)

3Strictly speaking, not all components of £ li’;DM are independent equations of motion, since the vector

field By, as is subject to the constraints (2.34), but this does not affect the proof of gauge invariance here.
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where now

D& = 0,8 — ANy . (4.9)

Thus, as for standard diffeomorphisms, this object is a density and the Einstein-Hilbert
term is invariant except for terms that originate from the non-commutativity of D, and
the non-covariant contributions from (4.3). Projected with e#*? we have

0 (Dywpa) = Dy (0wpa) — 8¢ AN Oyt
(4.10)

1 0
= Le(Dytpa) + EMDu, Dalpa + Gwral Dy, DylE* = 02 AN Ot -
The commutator is generally given by (2.24). Thus, using this for the A scalars w and &,
1 0
¢ (Duwpa) = Le(Dutopa) = € FoaNOntpa — 5 Fup On waa - 08" AN Onwpe . (410)
As usual for gauge covariant diffeomorphisms, the first F),,-term cancels against the same
term from 6¢A, c.f. (4.3). In contrast, the second F),-term survives in the variation,
such that
08 Lin = —26"78¢ (e, Dywpa) = "€, Fryy N OnEwaq (4.12)
Again, we have suppressed all terms of type MMN9,; ® Oy induced by the non-covariant

transformation of (4.3). For the improved Einstein-Hilbert term, we further need the non-
covariant variation of dyse,q, which is given by

A?C (8M6pa) = 8M5AD)\6pa — §*8M8NA,\Nepa + Dp<8M§)‘) €\a - (4.13)
Putting everything together, the total variation of the improved Einstein-Hilbert term reads

(520) (eﬁ) = b¢(e"e, " Rypa + ee““eb”FWMebpﬁMepa)
— 5NVPeHaFVpNaN§)\wAa _ €€a'u€bVFMVM€bpaM§)\D)\€pa (414)

— eea“eb”FWMeprp(aMﬁ)‘)eAa ,
up to total derivatives. Notice that the second term from (4.13) actually drops out in
here by the antisymmetry of F. After some algebra for the spin connection, employing its
determined form (3.11), we find that
eer” el Fyp™Mon e wy, = eF,,M 0y (gV“QPUDugo/\ - (D,\eal’)eap> : (4.15)
such that the variation (4.14) reduces to

0 (eR) = eF*ND,(0nE gp) , (4.16)

up to extra O(A,) terms from replacing D, by D,,.
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Next, we consider the variation of the Chern-Simons term in (4.1), given by

0 1 v
5é )'CCS B —ﬁgu 3 ((5€BMM)FVPM + (0 AL™M) Gupm)

1
= ———¢hr (JVIMNgu,\aNfA Gupnt + fun™ EpNoxe* F,,M

2v/2
1
T3 (MonOuMPNY fOK Lokt gy, Fyp™ (4.17)

+ fMNKaN(MKLg,u)\aLgA) Fl/pM> - 6F“VNDM(8N£png) s

and we recognize a first conspiracy between the last term and (4.16).

The kinetic term in (4.1) is not invariant under the full diffeomorphisms either, due
to anomalous terms of similar origin as in (4.10). Specifially, with (4.3), (4.4), the scalar
current transforms as

5?) (DuMun) = Le(DpMurn) + AFu " MpOny€” — AF,, oy My " 0pg”
_MKQ(aK MMN)anyguu - 4/\/lK(MaN) (MKQanyguu)
+40%(09€" g Mo ) Mk
+(Mosdr M) R p OrE* gau Fre M
=2 freor” My gur e e¥P Dy (k€7 gps) - (4.18)

Up to total derivatives, the kinetic term thus varies into
0 Ly = e D MMN F,, P Mpprone”
1 1
— e'DuMMN <MKM 8NMKQ + é MKQ Ok MuynN — 5 GMMNQ> an“
1 v L MN
— msﬂ P fem” My DM Y Dy (k€% gpo) - (4.19)
After partial integration, the last term takes the form

1
———= P [Dy, DIMMY frent” Mpy 052 gy,

42
+ 2\1@ P D MMND, Mpy fren” 05 gy, (4.20)
of which the commutator term reduces to
2\1/5 P MMN Gy ONE g, (4.21)
+ 2% P FM (;wQNaMMPN)fQKPaK@gAp + fMNKaN(MKLaL@gAp)) :

up to total derivatives, and entirely cancels against the corresponding terms in the varia-
tion (4.17) of the Chern-Simons term.
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Finally, we consider the anomalous variation of the potential V' (M, g). This is due to
the transformations

55(8KMMN) = g”Dﬂ((‘)KMMN) + O &H DHMMN — 48K(8(MA“P — 6PAM(M)MN)p
+ & OLALS) Ok Mun) + 2810k Bu" froun” Myyp

55(8Mg;w) = ‘Cﬁ(aMg;u/) + (8M§p)ng;w + 2gp(,uDzz) (8M§p)
- 2§pg,uz/ (aMaNApN)"i‘gp(aNApN) (aMguu)+2(8NA(uN) (aMgp) 9uv)p »

S¢(Ong) = Le(Orrg) + (00&")Dpg + 29D, (00s") — 6 & g OnOn AL
+ EM(ONAN) Onrg + 29(On ALY) Onré (4.22)

Again, we suppress in the following all terms with explicit appearance of the gauge fields,
as these cancel separately. The variation of the potential then gives rise to

Se(—eV (M, g)) = % e 0" DMy O MM MBE —g e8! DMy O MY g MEE

(4.23)

Collecting all the terms that we have encountered in (4.16), (4.17), (4.19)—(4.21),
and (4.23), we are left with

1
6OL = 7 eDMMN (O Mary = 208 Micas +2 M, oM™ ) M9 ¢
1
— —=P fMNKaKf)\ (F}U/M Fp)\N - DMMML DVMLN g)\p)

22
+e D! MMN ELE Mppone” (4.24)

Some algebra (e.g., using an explicit parametrization as in (5.20) below) shows that the
first line in this expression is actually vanishing, while the remaining terms can be recast
into the compact form

1
005 = ——
13 2\/§

in terms of the duality equation (4.5). L.e. the anomalous variation of the action comes

dx dPY e frnX ope €00 MG (4.25)

out to be proportional to the duality equations (4.5) obtained by varying the Lagrangian
w.r.t. to the vector fields. We conclude that invariance of the action can be achieved
by properly modifying the transformation law (4.4) for the vector field B, ;. However,
naively modifying the transformation law (4.4) induces a variation of the vector field,
that is no longer compatible with the constraints (2.34), rendering the diffeomorphism
symmetry inconsistent. Fortunately, this can be remedied by modifying the transformation
laws (4.3), (4.4) by another trivial (formal ‘equations-of-motion’-)symmetry. The resulting
full diffeomorphism transformations of the vector fields take the form

b, = o 4N — el M
0¢Byns = 00 Buns + frar™ One” ELK —¢v el (4.26)
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The second term in the variation of B, s is precisely necessary in order to cancel the
anomalous variation of (4.25), such that the action becomes invariant. The last terms in
the variation of AHM and B, 7, respectively, constitute an ‘equations-of-motion’-symmetry
of the Lagrangian, as follows immediately from (4.5) and (4.26), and thus do not corrupt
the invariance of the action. Their presence however is crucial in order to maintain com-
patibility of the transformation laws (4.26) with the constraints (2.34) imposed on the
combination of vector fields Bu - To show this, we calculate from (4.26)

6¢ (Bum — femNONALS) = ¢ (GWM - fKMNaNFz/,uK> - (5,553\4 — fKMNaNg,Ei)K>

where by O, we collect all terms that are separately compatible with the con-
straints (2.34), i.e.

PKLMNOMM(@CN:O, VCMI(OM,BM,SM). (4.28)

Specifically, in (4.27) all terms collected in O, s carry an explicit derivative dps, such
that (4.28) is manifest. Using the explicit form of (4.6), a quick calculation shows that the
first two terms on the r.h.s. of (4.27) mutually cancel, leaving only the O, term. Thus
we conclude that

PKLMN5§BMM®CN=0, VCM:(aM,BM,iM) R (4.29)

as required for consisteny.

Summarizing, we have shown that the action (4.1) is invariant under generalized dif-
feomorphisms with parameters £(z,Y’), provided the fields transform as (4.2), (4.26). It
is remarkable, that in the final transformation law for the vector fields, all terms carrying
explicit field strengths drop out, e.g.

1
5§AMM = MMNgW@Nﬁ" - — = €up foMKL DPMLNMNK . (4.30)

2V/2

This reflects the fact that the vector fields in this three-dimensional formulation do not
carry propagating degrees of freedom, but are related to the scalar fields by means of the
duality equations (4.6). Indeed, similar structures arise in three-dimensional supergravity,
where the supersymmetry algebra closes into transformations of the type (4.30) rather than
into the standard covariant form [66].

5 Reduction to D = 4 Einstein gravity

In this section we verify that by explicitly solving the constraint (2.34) and reducing to
fields that depend only on four coordinates, we recover precisely D = 4 Einstein gravity.
To this end we rewrite in the first subsection Einstein gravity a la Kaluza-Klein via a
(3 + 1) splitting of the coordinates, reviewing the results of [59, 60]. We stress that this
does not involve any truncation, as we keep the dependence on all four coordinates. In the
second subsection we show that the (3 4 3)-dimensional theory reduces to Einstein gravity
in this formulation.
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5.1 (34 1) splitting of D = 4 Einstein gravity

In this section, we recast four-dimensional Einstein gravity into the form of a three-
dimensional gravitational theory by rearranging the fields in Kaluza-Klein form but keeping
the full dependence on the fourth coordinate y. We follow [59, 60], see also [67, 68]. We
start from the D = 4 Einstein-Hilbert action (with mostly plus signature),

Sk = /d4xeR = /d4xeedﬂegﬂRﬂ,;di), (5.1)

where D = 4 world and Lorentz indices are denoted by fi, 7, ... and a, b,.. ., respectively.
Next, we perform a splitting of coordinates, z* = (z*,y), and indices, 1 = (i, 3), etc., and
reduce the Lorentz gauge symmetry to SO(1,2) by choosing an upper-triangular gauge,

A —1/2, a 41/2 4
eﬂa: <¢ Oeu ¢¢1/2H) ) (5'2)

In the following it will be convenient to have the action of the full four-dimensional diffeo-
morphisms (parameterized by &* = (£#, A)) at our disposal. Applying

to (5.2) we have to add a compensating local Lorentz transformation, with parameter
A3 = ¢_18y§”eya, in order to preserve the gauge choice. Under ¢ diffeomorphisms, the
fields thus transform as

dee = £P0pe," 4 0ule," + 0yEP Ape”
Se Ay = EPO,A, + 08P A, — ALOyEP Ay + ¢ 20,8  gup (5.4)
Scp = EPDpd + 200, A, .

Under dimensional reduction, i.e. 9, = 0 this reduces to the standard D = 3 diffeomorphism
transformations. The action of the four-dimensional A diffeomorphisms takes the form

one,” = Aoye,* + 0yAe,”
InNAL = 0N+ AOyA, — A, OyA (5.5)
Ing = Aoy + 200 A |

of an infinite-dimensional non-abelian gauge structure in three dimensions. Accordingly,
we can define covariant derivatives and field strengths for the A transformations, as

Dpe,® = 0pe,® — Audye,® — e, "0y A,
Fuy = 0,A, — 0,A, — A0,A, + A,0,A, | (5.6)
D¢ = 0,0 — A0yt — 200, A,, .

The complete action (5.1) can then be expressed in terms of manifestly A-covariant
objects as

1 1
Spy = / drdye [R(?’)’COV — quzF’“’FW — §¢_2g“l’Duq§DV¢ — Ll (5.7)
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where R(3):V denotes the generalized Ricci scalar with respect to the covariantized con-
nection (5.6). The last term reads

1 _
L, = Zq& 2g‘“’g’)"(Dyg,ﬁprgua — DyguvDygps) + ea“eb”FW ey’ Oyepa - (5.8)

with Dygu, = 09 — g ¢_18y¢. Upon some rearrangement, the D = 4 Lagrangian takes
the form

~ 1 1
L= e(R - O A 5 ¢ %g" Dy Dyop
(5.9)

w

~ - - 1 I
+50 Y0yp)? — g 10y9 ¢ 38y¢+1¢ *(g 13y9)2+1¢ 29y g" 8yg,w>,

with the ‘improved’ Einstein-Hilbert term given by the Lorentz invariant combination

eR = —s“”peM“R,(/?;)fov — ee™ e Fendye p - (5.10)

5.2 (34 1) Chern-Simons form of D = 4 Einstein gravity

We have rewritten four-dimensional Einstein gravity in the form (5.9) reminiscent of the
three-dimensional Kaluza-Klein form. Indeed, upon dimensional reduction 9, = 0, this
action reduces to the standard form of a Maxwell and a scalar field coupled to three-
dimensional gravity. In that case, the three-dimensional duality symmetry SL(2,R) is made
manifest by dualizing the Maxwell field into another scalar giving rise to a SL(2,R)/SO(2)
target space [54]. A similar construction is possible for the full four-dimensional the-
ory [59]. Since due to the y-dependence the modes of the Kaluza-Klein vector carry a
non-abelian gauge structure, their dualization necessitates the introduction of additional
non-propagating vector fields [57]. The resulting theory takes the form of a scalar sigma-
model coupled to Chern-Simons vectors.

To this end, we introduce the dual scalar ¢ by means of the duality equation together
with a vector field B,

—_

Due = Oup — Apdyp — 200y A, + By = 5 Cnvp P FP (5.11)

such that the Bianchi identity and the Yang-Mills field equation for F),, give rise to the
field and duality equations for ¢ and B,,, respectively. On the level of the action (5.9), this
corresponds to replacing

1 1o 1,
-3 ¢*FM F, — -5 29" Dy Dyip + 5" BuFyy (5.12)

The Yang-Mills form of the action is then recovered by integrating out B. The Lagrangian
of four-dimensional Einstein gravity in this formulation thus is given by

1 1

L=ce (R —5 d g (Dup Dy +Dup Dyp) + isu”pB“F,,p
(5.13)

3 - - 1 1 o

+50 H0y8)? — g ' 0yg 0y + 10 2(g7'0y9)* + 19 29, " 8yg,w> :
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with the ‘improved’ Ricci scalar from (5.10). Under dimensional reduction 9, = 0, it
reduces to the form of the three-dimensional theory in which (modulo integrating out the
vector fields) the global duality symmetry SL(2,R) is manifest.
We deduce from (5.11), that the action of A-transformations (5.5) on the new fields is
given by
dnp = AOyp + 200, | onB, = AO,B, +2B,0,A . (5.14)

It is slightly more involved to derive the transformation law for B, under covariantized
diffeomorphisms with the remaining fields transforming as

5§¢ = quud) > 5590 = {“DMQO )
SeAy = &' Fpp+ 6720, gy = E'Fou+ AFA, (5.15)
under a proper combination of (5.4) and (5.5). The transformation of B, then is fixed

from requiring that the total variation of the action remains unchanged under the replace-
ment (5.12). With the variation of the Yang-Mills term given by

5§< — eingF“”FW) = —e¢’F" D, (AF°A,) (5.16)

it is straightforward to derive that invariance of the action under the replacement (5.12)
requires that

¢ (Dup) = Le (D) + € g1 " ¢* Dy (620,67 gop) - (5.17)
With the explicit covariant derivative defined in (5.11), we deduce that

¢ By = & Gyp — 20F,0,0," + D AL 0y0 + 20 0y (AL AL) + e ' g €72 DA (AR A,)
(5.18)
under covariant diffeomorphisms, where we defined the field strength of B,

G, =D,B, — D,B, (5.19)

using A covariant derivatives. Under dimensional reduction 9, = 0, this reduces to the
standard transformation law of three-dimensional vector fields.

5.3 Reduction of the (3 + 3)-dimensional theory

In this section, we consider the (3+3)-dimensional action (4.1) and show that after explicitly
solving the section condition (2.34) this action reduces to (5.13) which we have obtained
as an equivalent reformulation of four-dimensional Einstein gravity.

To start with, we choose an explicit parametrisation of the matrix V from (2.13) in
triangular gauge. Denoting the basis of the Lie algebra sl(2,R) by {e, h, f} we write

o V2 —pPo7!
V=exp(V2pf)exp(—Ingh)=| 0 1 —v2p¢ '] . (5.20)
0 0 ot
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In this basis, we normalise the antisymmetric structure constants fysnx by frer = 1, and
take the metric nyn of the form (2.1), i.e. mpp, = nep = 1. Next, we choose an explicit
solution to the section constraints (2.3), (2.4) by restricting the Y™ dependence of all fields
to a single coordinate y = Y¢, such that derivatives 0j; reduce to

Op =07 = 0. (5.21)
Similarly, we solve (2.34) by setting B“h = Bue = 0, implying that
B, +9,A,° =0 = B, (5.22)

for the components of the vector field BMM . With this choice, a short calculation reveals
that the kinetic and the Chern-Simons term of the action (4.1) reduce to

1 1
D DHMMN ‘ — ——(Du$D" + DD
16 pMun DM (5.20)-(5.22) 202 (D¢ D76 + DD )
1 1
—— e p, MF,,,,M‘ — _c™ B,F,,, (5.23)

2v2

reproducing the corresponding terms in the Lagrangian (5.13), with covariant derivatives

(5.20)(5.22) 2

and field strength from (5.6), upon the identification
1
V2

In particular, with this solution of the section constraint, the Lagrangian depends only on

A, = AS, B, = (B, +0,4,") . (5.24)

the two remaining combinations (5.24) of the original vector fields AMM and B, s, which
take the role of the vector fields of the Lagrangian (5.13).

It remains to calculate the form of the scalar potential (3.20) in this parametrisation
and after plugging in (5.21). A straightforward calculation confirms that

_ 3. 2, 1 -3
V(./Vl,g) (5.20)(5.22) = 2¢ (ay¢) +9 ayQ‘b 8y¢
1
- Z ¢_2 ((g_layg)2 + ayg'uy ayg,uu) ) (5'25)

which is in agreement with (5.13). In particular, there is no dependence left on ¢. This fin-
ishes our demonstration that the action (4.1) reduces to four-dimensional Einstein gravity
(in the form (5.13)) upon explicitly solving the section condition (2.34).

To complete this section, it is instructive to consider the action induced by the
(3 4+ 3)-dimensional diffeomorphisms (4.26) on the vector fields that survive in the (34 1)-
dimensional action. Evaluating these transformations for the specific vector compo-
nents (5.24) upon imposing (5.21), (5.22), leads to

O Ay = ¢ (910 0y€” + €ep D)
0By = 9y (2¢_2‘P Guv aygy) —¢? Ay Guv Oy€" + gpu e '’ D, (0y€% gpor)
+ 2p (20, (e6” 672 (6076 + D)) — 672 e€” (9,6D°6 + 0,9D") )

1 v
5 Qe (5.26)
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Modifying these transformation laws by a standard equations-of-motion-symmetry

v 0L , 0L

614# — 514# + esu,,pﬁ TBP s 5BH — 5B/,L + esu,,pf (9714;) s (527)

which separately leaves the action (5.13) invariant, the transformation laws take the more
familiar form

0RA, = EFy+ 6290,
5énOdBu = gyGuu + @ 8y (2¢_29w/ 8ygu) + ¢_2 8yS0 Guv 8y£V + Gux e~ teMve D, (aygagpcr)
+2e € 0" 672 ($DP Y + 9D p) (5.28)

Finally, we may apply yet another modification to the transformation law of B,

5By, — 6B, — 20 e, 0,E" <¢2ngo — %gfm FM> : (5.29)
by a term proportional to % which constitutes a separate invariance of the Lagrangian.
The resulting expressions (5.28), (5.29) precisely reproduce the transformation behavior of
the vector fields (5.15), (5.18). We have thus shown that the (3+3)-dimensional generalized
diffeomorphisms that we have defined in the previous section, consistently reduce to the
action of the standard (3 4+ 1)-dimensional diffeomorphisms, once the explicit solution of
the section constraints is evaluated. This agreement holds up to transformations of the
‘equations-of motion-symmetry’ type, that separately leave the (3 + 1)-dimensional action
invariant. We recall, that in (3 + 3) dimensions similar contributions (4.26) proportional
to the duality equations have appeared in the derivation of the vector field transformation
law. However, unlike (5.27), (5.29), the transformation law in (3 4+ 3) dimensions in fact
has no ambiguity, with the form of (4.26) uniquely determined by gauge invariance and
compatibility of the transformation with the constraints (2.34) on the vector fields.

6 Conclusions and outlook

In this paper we have presented a duality-covariantization of D = 4 Einstein gravity that is
manifestly covariant with respect to the Ehlers group SL(2,RR). To this end we performed
a Kaluza-Klein inspired 3 + 1 split of fields and coordinates in the Einstein-Hilbert action
(without any truncation or assumption on the topology of spacetime) and then enhanced
the ‘internal’ coordinate to Y™ in the 3 of SL(2,R). The theory is subject to a number
of SL(2,R) covariant ‘section constraints’, which implies that only one coordinate among
the Y™ is physical, but also that among the components of the SL(2,R) gauge field B“M
only one survives. Solving the constraints accordingly and eliminating auxiliary fields, we
recover D = 4 Einstein gravity. We may also reduce to D = 3, directly starting from our
formulation, by setting dys = 0, after which we recover the usual SL(2,R) invariant action.
In this sense, our formulation explains the emergence of the hidden symmetry group found
by Ehlers in general relativity (with one isometry) more than 50 years ago [54].

As mentioned in the introduction, the truncation assumed in previous papers in our
language amounts to keeping only the potential term, i.e. the last term in (4.1). The
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explicit comparison with these approaches is less straightforward, as our construction relies
on the proper normalisation of the group valued matrix M;n. In particular, the specific
actions of [45-47] carry terms that are zero when det M = 1 and cannot show up in
our construction.

The approach introduced here should be straightforwardly extendable to higher-
dimensional gravity theories, in particular to 11-dimensional supergravity, in which case
SL(2,R) is enhanced to Ejgg). Previous papers have found problems in the formulation of
Eg(g) covariant structures and ascribed these obstacles to the dual graviton problem. In
contrast, our construction naturally incorporates all dual fields and we are confident that
it may be extended to the full 11-dimensional supergravity and yield an Fg(g) covariant
formulation of the type (4.1).

There are various possible directions of extending the present theory. One problem, as
in DFT, is the question whether there is any way to relax the section constraints. Although
there is a growing body of work fearlessly going ahead and abandoning the constraints,
we believe that a proper understanding of how to do this consistently (that is, in a gauge
invariant manner) is lacking. A related issue in our present theory is that we need to impose
additional (yet covariant) ‘section constraints’ involving the field BMM . This is perhaps the
least satisfactory feature of our formulation, and one may hope that eventually it can be
relaxed so that, e.g., the conditions on BuM are recovered as on-shell equations. E.g. the
first-order duality equations (4.6) obtained as field equations by variation of the Lagrangian
w.r.t. A“M imply that only one component of the field strength associated with the gauge
field Bu u 1s actually non-vanishing and thus is compatible with the constraints (2.34). It
is tempting to contemplate the idea that this field equation is not only compatible with
but may in fact imply (part of) the constraints (2.34).

Another feature that is different from DFT is that the invariance under (2 + 1)-
dimensional diffeomorphisms parametrized by £#(x,Y") is highly non-manifest and can only
be checked by a quite tedious computation. It would be desirable to have a formulation
that makes also this symmetry manifest. In this regard comparison with DFT is quite illu-
minating in that we may also here perform a Kaluza-Klein-like D = n 4+ d decomposition,
where D is the total number of spacetime dimensions, and we showed in an accompanying
paper that the resulting formulation looks very similar to the one presented here, carrying
O(d,d) instead of SL(2,R) covariance [64]. In the case of DFT we can recover the fully
covariant theory by simply reverse engineering and enhancing the group as

On-1,1)x0(d,d) — On+dn+d) =0(D,D), (6.1)

doubling also the non-compact coordinates, thus realizing the O(d, d) invariant theory as a
reduced and Lorentz gauge fixed form of a fully covariant theory with O(D, D) symmetry.
The analogous step in the SL(2,R) invariant theory would be to introduce an enlarged
vielbein, say, (3 4+ 3)-dimensional,

N a A MV A
o S (6.2)
0 Vi
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Such an ansatz indeed has the potential to generate, e.g., the M-dependent term in 5§AMM,
see (4.3), through compensating Lorentz gauge transformations, exactly as happens in
DFT [64]. However, it is evident that the story cannot quite be as simple, for there is no
room for the extra field B,™ and it is also not clear what kind of generalized diffeomor-
phisms should be postulated in the (3 + 3) (or higher-)dimensional theory. The structure
of O(D, D) seems to be rather special, and it appears as if in the case of U-duality groups
one cannot enhance the symmetry as simply. In fact, the case of Fg) makes it evident
that there is no simple (finite-dimensional) group that could incorporate all fields. One
may be inclined to resort to one of the proposals such as E1; or Ejg [69, 70], but then of
course one would have to explain the fate of the infinite number of extra fields.

Another improved formulation or extension of our theory might be obtained starting
from the observation in [59, 60] that in the (3 + 1)-dimensional theory the gravity fields
e and w and the gauge fields A and B fit, remarkably, into a Chern-Simons theory for
an enhanced gauge group. While it has been known for quite a while that pure gravity
in 2 4+ 1 dimensions can be written as a Chern-Simons gauge theory, based on either the
(anti-)de Sitter or the Poincaré group [71, 72|, the results of [59, 60] showed that this group
can be extended by generators () and E, so that all the gauge fields fit into an enlarged
gauge connection

Ay=eS " Po+w,"Jo+A,Q+ B, E . (6.3)

The Poincaré algebra of translation generators P and Lorentz generators J is then extended
to a semi-direct-like product with (@, E') such that the Poincaré subalgebra receives a non-
central extension by E. Schematically,

[J,P] ~P+E. (6.4)

Thanks to this non-central extension there is now an invariant inner product, containing
the pairing (@, F) ~ 1, that can be used to define a Chern-Simons action for the full
algebra. This action precisely reproduces not only the (covariantized) Einstein-Hilbert
term but also the needed B A F' term. So if this construction could be extended to the
SL(2,R) covariant fields the full action could be written as

5= / B Y <s””P<Au, 0y + 5 [ A ) + 2ceg™ DUMYVD, Mgy — Ve, M)> .

(6.5)
In this form, D = 4 gravity would take the form of a true Chern-Simons-matter theory. It
is clear, however, that it is not quite as simple to make complete sense of the form (6.5).
For instance, the ‘Lie algebra’ part corresponding to A is given by the C-bracket, which
does not define an actual Lie algebra, thus requiring a suitable extension of Chern-Simons
theory. Moreover, B satisfies constraints that the other fields do not need to satisfy and
therefore these constraint first would need to be made more democratic among the fields.
Finally, we had to replace the Einstein-Hilbert term by an improved version in order to
keep local Lorentz symmetry, and it is not obvious how to incorporate this into a Chern-
Simons formulation. Despite these obstacles one feels that the existence of an algebraic
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structure such as (6.4) cannot be a mere coincidence and should be a glimpse of some
deeper structure.

Finally, let us mention that recently it has been shown that DFT can be generalized
so that it also encodes higher-derivative o/ corrections [73]. Remarkably, in the context of
such an o/-geometry the theory is almost uniquely determined by its gauge structure, thus
giving a new approach to determine the higher-derivative corrections. It is reasonable to
expect that a similar extension exists for theories of the type discussed here, in particular
for an Fjg(g) covariant form of 11-dimensional supergravity. If so this would allow us to
compute the higher-derivative M-theory corrections in a manifestly Fgg) covariant fashion.
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