
J
H
E
P
0
9
(
2
0
1
3
)
0
0
7

Published for SISSA by Springer

Received: July 3, 2013

Accepted: July 31, 2013

Published: September 2, 2013

Isolating prompt photons with narrow cones

S. Catani,a M. Fontannaz,b J.Ph. Guilletc and E. Pilonc

aINFN — Sezione di Firenze and Dipartimento di Fisica e Astronomia,
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1 Introduction

The measurements of hard prompt photons by TeV collider experiments, such as those

that were performed at the Fermilab Tevatron [1–6], RHIC [7], and those currently carried

out at the CERN LHC [8–13], have long been recognized as important test of QCD quite

sensitive to the gluon content inside the proton (see refs. [14, 15] for the recent revival

of interest in prompt photon data to determine the gluon distribution function inside the

proton). Prompt photons also provide Standard Model (SM) benchmarks useful to back up

the understanding of the LHC detectors at the begining of the LHC era. Moreover, photon

production and, especially, photon pair production1 [16–21] provide large SM backgrounds

to signatures of various potential effects of new physics [22–26]. In this respect, one should

distinguish the so-called prompt photons from what could be named secondary photons.

Prompt photons directly take part in the hard partonic subprocess. Secondary photons

instead originate from the decays of hadrons (e.g., π0 and η mesons) that are produced in

the final (subsequent to the hard-scattering process) parton-to-hadron fragmentation stage

of the hadronic collision. The huge yield of secondary photons at colliders overwhelms

the production of prompt photons. This is even more true for signals of new physics

involving photons with moderately large transverse momenta (pT ), such as, for example,

the search for the Higgs boson at LHC in the two-photon decay channel in the mass range

120-130 GeV [27–30].

To reduce the background of secondary photons, collider experiments impose isolation

cuts. The isolation cuts, which are optimized to the experimental setup, act on calorimetric

deposits, tracks, discriminating shape observables and so forth, in a quite sophisticated

1References [1–13] and [16–21] include some of the most recent experimental results on isolated photons

in hadron collisions and further references to previous experimental results.
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way. Such criteria can be taken into account in full-fledged event simulations but not in

calculations performed at the parton level only. A customary basic requirement that can be

implemented in parton level calculations is transverse-energy isolation. One considers the

photon candidate and the direction of its momentum pγ , as specified by the rapidity and

azimuthal-angle variables yγ and φγ (rapidities, azimuthal angles and transverse energies

are defined in a reference frame where the momenta of the two colliding hadrons are

back-to-back). Around the direction of the photon candidate, one draws a cone Cγ(R) of

aperture R in {y, φ} space and considers the hadrons (each hadron with momentum pk and

corresponding transverse energy E
(k)
T ) inside the cone:

hadron k ∈ Cγ(R) ⇔
√

(yk − yγ)2 + (φk − φγ)2 ≤ R . (1.1)

Then one requires that the total amount of hadronic transverse energy inside this cone is

smaller than a maximum amount Eiso
T :∑

k∈Cγ(R)

E
(k)
T < Eiso

T . (1.2)

Recent improvements of this isolation criterion recommend to first subtract the contribu-

tion coming from the underlying event and from pile-up, before the criterion is applied;

the contribution to be subtracted is assessed from the mini-jet activity away from the di-

rection of the photon candidate [31, 32]. Other criteria at variance with that of eqs. (1.1)

and (1.2) have also been proposed [33–37]. All these isolation criteria have impact on the

selected sample of prompt photons. As described for instance in refs. [38, 39], prompt

photons may be schematically viewed as produced by two mechanisms: the “direct” (D)

mechanism, in which the photon is produced directly at high pT by hard scattering, and

the “fragmentation” (F) mechanism, in which the photon originates from the (essentially

collinear) fragmentation of a high-pT coloured parton primarily produced by hard scat-

tering. The isolation criteria have impact on both “direct” and “fragmentation” photons.

In particular, the production rate through the fragmentation mechanism is strongly re-

duced by the isolation, since the “fragmentation” photon is generally produced inside a

large-pT jet of hadrons (unless the photon carries a major fraction of its parent parton’s

transverse momentum).

QCD radiative corrections for isolated prompt-photon production at hadron colliders

have been computed in the literature. The next-to-leading order (NLO) QCD corrections to

single-inclusive photon production were computed in ref. [40] (using cone isolation in the

small-R approximation) and ref. [38] (for any infrared-safe isolation criteria). Diphoton

production has been computed at the NLO [39, 41], including NLO corrections [42] to

the gluon fusion channel, and at the next-to-next-to-leading order (NNLO) [43] (using

the isolation criterion of ref. [35]). The NLO calculation of ‘photon plus one jet’ was

performed in ref. [44]. Diphoton production in association with one jet [45] and two jets [46]

has been computed at the NLO by using the isolation criterion of ref. [35]. The NLO

calculation of ‘diphoton plus one jet’ for general isolation criteria has been performed

recently [47]. Higher-order QCD contributions due to soft gluons [48–50], high-energy

logarithmic corrections [51–53], and parton shower effects [54–56] have also been studied.

– 2 –



J
H
E
P
0
9
(
2
0
1
3
)
0
0
7

In the present article we will focus on the “standard cone criterion” defined by eqs. (1.1)

and (1.2), and on its implementation in QCD calculations at partonic level. We will also

discuss some implications for the implementation of a ‘two cone’ criterion that aims at sim-

ulating a poorer isolation around the electromagnetic cluster of photon candidates in some

experimental configurations. In ref. [38] we studied the standard cone criterion, and we

presented the calculation of isolated-photon cross sections at the NLO of the perturbative

expansion in powers of the QCD coupling αs. In particular, we studied the dependence of

the cross section on the size R of the isolation cone. Considering small values of R (typically

R<∼ 0.1), we noticed [38] a violation of unitarity of the NLO result, since the NLO isolated

cross section becomes larger than the NLO inclusive (i.e., without isolation) cross section.

Therefore, at small values of R, the NLO result is certainly unphysical. Moreover, this

finding shed doubts on the reliability of the NLO QCD prediction also at moderately-small

values of R (R ∼ 0.4-0.3) that are actually used in experiments. The purpose of this article

is to trace back this misbehaviour of the NLO result and to cure it.

The paper is organized as follows. We detail how the R dependence, which is domi-

nantly logarithmic at small R order by order in perturbation theory, appears in both the

NLO calculation (section 2) and at higher-order levels (section 3). We point out how the

isolation constraint on transverse energy causes a mismatch in the R dependence produced

by parton radiation inside and outside the isolation cone. This mismatch produces the

observed violation of unitarity in the NLO calculation at small values of R, and it makes

an all-order resummation of the ensuing lnR terms mandatory. In section 4 we discuss the

implementation of resummation to leading logarithmic (LL) accuracy for the standard cone

isolation criterion. Then, in section 5, we present numerical results at Tevatron and LHC

energies, and we explicitly show how LL resummation removes the unphysical behaviour of

the NLO calculation at small values of R. In section 6 we discuss some implications of these

results for the implementation of a criterion based on a hollow cone, which (very crudely)

mimics the difficulty to experimentally implement isolation in the solid angle filled by the

electromagnetic cluster of a hard photon in a detector. A brief summary is presented in

section 7.

2 Origin of the logarithmic dependence on the cone size at the NLO

We consider the isolation criterion in eqs. (1.1) and (1.2) and the ensuing small-R behaviour

of the isolated-photon cross section at the NLO. To identify the origin of the logarithmic

dependence on R, we briefly recall the results obtained in refs. [38, 40] on the calculation

of the higher-order (HO) contribution to the Born level cross section.

We start with the contribution where the photon is accompanied by collinear parton

radiation inside a cone of radius R (see figure 1). This part of the HO correction to

the Born level direct (D) cross section leads to the NLO fragmentation (F) contribution.

Using dimensional regularization in d = 4−2ε space-time dimensions, the differential cross

section with respect to the transverse momentum ~p γT and the rapidity (or, equivalently,

pseudorapidity) ηγ of the photon is (we refer the reader to ref. [38] for more details about

– 3 –
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Figure 1. A pictorial representation of the NLO contribution from final-state collinear radiation

inside the isolation cone.

the notation)

dσ

d~p γT dη
γ

∣∣∣∣(HO)

coll inside cone

=

(
αs
π

)2 ∫ 1

zmin

dσBorn

d~paT dη
a dηb

(A+B → a+ b) dηb
dz

z2
e2a

α

2π
(2.1){

Pqγ(z)

[
−(4π)ε

ε

Γ(1−ε)
Γ(1−2ε)

+ln

(
M2
F

µ2reg

)
+ln

(
R2(pγT )2

M2
F

)
+ln

(
(1−z)2

)]
+ z

}
.

The factor
dσBorn

d~paT dη
a dηb

(A+B → a+ b)

is the Born level cross section (the overall power of αs is not included in dσBorn and it is

explicitly denoted in eq. (2.1)) of the reaction hadron A + hadron B → parton a + parton

b. In the NLO contribution of eq. (2.1), the fragmenting parton a and the collinear parton

c are either quarks or antiquarks.

To obtain the expression on the right-hand side of eq. (2.1), the integration over the

angular phase space of parton c has been restricted to lie inside the cone and, moreover,

we have used the small-cone approximation, thus neglecting terms of O(R2). The inte-

gration over the momentum fraction z = pγT /p
a
T is bounded by zmin, which is fixed by the

photon kinematics and the centre-of-mass energy
√
S of the two colliding hadrons. The

dimensional regularization scale is denoted by µreg, and for later convenience we have in-

troduced the auxiliary factorization scale MF (the right-hand side of eq. (2.1) is actually

independent of MF ).

The first two terms in the curly bracket of eq. (2.1) correspond to (the ε-expansion of)

the bare photon fragmentation function Dγ bare
a in the customary MS factorization scheme,

Dγ bare
a (z,MF , ε) = −1

ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2reg
M2
F

)ε
K(0)
a (z) , (2.2)

– 4 –
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with

K(0)
a (z) =

α

2π
e2a

1 + (1− z)2

z
≡ α

2π
e2a Pqγ(z) (2.3)

and where α is the fine structure constant and ea is the electric charge of the parton a

(K
(0)
g (z) = 0 since eg = 0). Within the MS factorization scheme, the other terms in the

curly bracket of eq. (2.1) are considered as HO corrections to the direct cross section coming

from parton radiation inside the cone. The proper treatment of the collinear 1/ε singularity

to all orders (as discussed in details, e.g., in refs. [57, 58]) leads to the introduction of

the all-order fragmentation functions Dγ
a(z,MF ). These fragmentation functions obey the

following inhomogeneous evolution equations:

M2
F

∂Dγ
a

∂M2
F

= Ka +
∑
b

Pba ⊗Dγ
b , (2.4)

where the symbol ⊗ denotes the following convolution:

(f ⊗ g)(z) =

∫ 1

0
du

∫ 1

0
dv f(u) g(v) δ(uv − z) .

The all-order functions Ka(z) are the inhomogeneous kernels for the collinear splitting

‘parton a to photon’,

Ka(z) = K(0)
a (z) +

αs
2π
K(1)
a (z) + · · · ,

where the leading order (LO) term K
(0)
a (z) is given in eq. (2.3). The all-order functions

Pab(z) are the usual Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) time-like split-

ting kernels,

Pba(z) =
αs
2π

P
(0)
ba (z) +

(
αs
2π

)2

P
(1)
ba (z) + · · · ,

where P
(0)
ba (z) is the LO term, P

(1)
ba (z) is the NLO term and so forth. A thorough discussion

of the evolution equation (2.4) and its solutions with appropriate boundary conditions can

be found in ref. [57].

The contribution coming from the integration over the phase space region where parton

c is outside the cone contains a term proportional to ln(1/R). When no isolation is imposed

on the collinear debris that accompanies the photon, the ln(1/R) dependence from outside

the cone completely cancels against the lnR term of eq. (2.1). On the contrary, in the case

of the isolated cross section, when the parton c lies inside the cone the isolation requirement

of eq. (1.2) leads to the constraint pcT ≤ Eiso
T (pcT = (1−z)paT = (1−z)pγT /z), which restricts

the integration range over z in eq. (2.1) to the following region:

z ≥ zcut ≡
1

1 + ε
, ε ≡

Eiso
T

pγT
(2.5)

This restriction produces a mismatch of the lnR dependences from inside vs. outside the

cone, and this leads to a net lnR dependence in the isolated cross section. At the NLO

this lnR dependence is given by the term

−
(αs
π

)2 ∫ zcut

zmin

dσBorn

d~paTdη
adηb

dηb
dz

z2
K(0)
a (z) ln(R2) (2.6)

– 5 –
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Figure 2. A HO correction to the fragmentation contribution.

that blows up towards +∞ when R → 0. This unbounded increase of the NLO isolated

cross section leads to the violation of unitarity that was observed in ref. [38]. As pointed

out in ref. [38], this unphysical effect is an artefact of the fixed-order truncation of the

QCD perturbative series: an all-order summation in αs of the lnR terms should cure the

pathological behaviour induced at the NLO by the contribution in eq. (2.6).

We have so far discussed the HO correction to the Born level direct cross section.

An analogous discussion applies to the HO correction to the Born level fragmentation

component of the cross section (figure 2). In this case the photon production process

proceeds through the fragmentation function Dγ
d (which contains a perturbative and a

non-perturbative component) of a parton d. The effects of collinear parton radiation inside

and outside the cone around the parton d, and the ensuing mismatch of the lnR dependence

in the NLO isolated cross section produce a contribution that is analogous to the term in

eq. (2.6). The main difference with respect to eq. (2.6) is that the factor K
(0)
a (z) ln(R2) is

replaced by the factor
αs
2π

P
(0)
da (z/x) ln(R2) (2.7)

that is then convoluted with the fragmentation function Dγ
d (x,MF ). At fixed values of MF ,

this lnR contribution to the fragmentation component of the NLO isolated cross section

also blows up towards +∞ when R→ 0. Therefore, the violation of unitarity produced by

the NLO direct contribution is not removed by the NLO fragmentation contribution. The

all-order summation of the lnR terms should cure the pathological behaviour observed at

the NLO in both the direct and fragmentation components of the isolated cross section.

3 Multiparton collinear radiation and lnR dependence

The collinear-radiation spectrum of a single parton that is emitted inside a small cone and

just outside of it produces a lnR contribution to the NLO cross section. This effect has

been briefly recalled in section 2. In the present section, we consider the effect of multiple

collinear radiation, and we illustrate how the lnR contributions arise at all orders in QCD

– 6 –
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perturbation theory. The discussion of this section sets the stage for the resummation of

the lnR dependence of the isolated cross section, which is considered in section 4.

The discussion is more conveniently formulated by taking Mellin moments of the rele-

vant expressions. In the following we use a shorthand notation. For instance, the n-moment

σ(n) of the differential cross section dσ
dpγT dη

γ is defined as follows:

σ(n) =

∫ 1

0
dxγT

(
xγT
)n−1 dσ

dpγTdη
γ
, xγT ≡

2pγT√
S
, (3.1)

and eq. (2.1) can be written as

σ(HO)(n) =

(
αs
π

)2

σBorn
a (n)

[
Dγ bare
a (n,MF , ε) +K(0)

a (n) ln

(
R2(pγT )2

M2
F

)
+ ta(n)

]
, (3.2)

with

Dγ bare
a (n,MF , ε) =

∫ 1

0
dz zn−1Dγ bare

a (z,MF , ε)

= −1

ε

Γ(1− ε)
Γ(1− 2ε)

(
4πµ2reg
M2
F

)ε
K(0)
a (n) , (3.3)

and where we have introduced

K(0)
a (n) =

α

2π
e2a

∫ 1

0
dz zn−1 Pqγ(z) , (3.4)

ta(n) =
α

2π
e2a

∫ 1

0
dz zn−1

[
1 + (1− z)2

z
ln
(
(1− z)2

)
+ z

]
. (3.5)

The all-order evolution equation (2.4) written in Mellin moments leads to a solution in

closed form. We write it here explicitly for the flavour non-singlet (NS) component2 (and

we drop all flavour indices, for the sake of simplicity):

D(n,MF ) =

∫ M2
F

M2
0

dk2

k2
K(n) e

∫M2
F

k2
dk′2

k′2
P (n)

+ e

∫M2
F

M2
0

dk′2

k′2
P (n)

D(n,M0) , (3.6)

where the splitting kernels K(n) and P (n) are those of the NS case. Considering the

first term in the right-hand side of eq. (3.6) and taking the lower bound of the k2-integral

equal to zero leads to collinear divergences, whose dimensional regularization produces 1/ε

poles as in eqs. (2.2) and (3.3). Following the procedure described in refs. [57, 58], in the

expression (3.6) dimensional regularization has been replaced by the cut-off M0, which

corresponds to the boundary between the perturbative and non-perturbative domains. Ex-

panding the first term in the right-hand side of eq. (3.6), we indeed recover the perturbative

expression of zeroth order in αs of the NS fragmentation function,

D(LO)(n,MF ) = 2
(
e2a −

〈
e2a
〉) α

2π
Pγq(n) ln

(
M2
F

M2
0

)
. (3.7)

2In the NS component the factor e2a in K
(0)
q has to be replaced by 2(e2a−

〈
e2a
〉
), where

〈
e2a
〉
= 1

Nf

∑Nf

b=1 e
2
b .

– 7 –
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The second term in the right-hand side of eq. (3.6) is thus proportional to D(n,M0), which

is the non-perturbative contribution to the fragmentation function at the cut-off scale M0.

The all-order perturbative structure of the cross section in eq. (3.1) follows from the

QCD factorization theorem of collinear singularities. Considering the NS contribution to

the cross section, the factorization theorem allows us to write

σ(n) = σF (n,MF ) D(n,MF ) + σD(n,MF ) , (3.8)

where the first term on the right-hand side is the fragmentation component, and the second

term is the direct component (this separation in two components depends on the factor-

ization scale MF ). The partonic subprocess cross sections σF (n,MF ) and σD(n,MF ) have

an expansion in αs of the form

σF (n,MF ) =

(
αs
π

)2

σBorn
F (n) + σ

(1)
F (n,MF ) + · · · , (3.9)

σD(n,MF ) =
αs
π

σBorn
D (n) + σ

(1)
D (n,MF ) + · · · , (3.10)

with σ
(k)
F ∼ O(α2+k

s ) and σ
(k)
D ∼ O(α1+k

s ).

We are interested in computing and resumming the lnR-enhanced perturbative terms

that arise in the presence of an isolation cone of small size R. Before studying the effect

of isolation, we first consider the non-isolated cross section to all orders. We partition the

available phase space by introducing a cone of size R around the photon, and we consider

the effect of QCD radiation inside and outside this cone. This partition artificially splits the

cross section into terms that separately and explicitly depend on R, although the complete

cross section is independent of R. To compute the all-order lnR-dependence produced by

this splitting, we exploit the basic physical picture that underlies the factorization structure

of eq. (3.8). Indeed, the photon fragmentation function originates from the resummation

of multiparton collinear radiation that is produced around the photon direction. Roughly

speaking, the fragmentation function D(n,MF ) embodies parton radiation inside a cone

whose radius is of the order of MF /p
γ
T . Moreover, the all-order evolution equation (2.4)

follows from the angular ordered structure of multiple QCD radiation around the photon

direction. Thus, the solution in eq. (3.6) of the evolution equation corresponds to the

resummation of QCD radiation from small angles (of the order of M0/p
γ
T ) up to large

angles (of the order of MF /p
γ
T ) with respect to the photon direction.

Owing to the physical picture that we have just described, we can easily evaluate the

lnR terms that are produced by partitioning the phase space through the introduction

of a cone of small size R. We consider the fragmentation function D(n,M) where the

scale M, which is of the order of pγT (the precise value of M does not affect the following

discussion at the level of the LL approximation), corresponds to the phase space region

in which the collinear approximation neglecting the virtuality p2a of parton a, cf. figure

2, in the cross section of the 2 → 2 subprocess holds. The choice M ∼ pγT implies that

D(n,M) embodies collinear radiation up to very large angles with the respect to the photon

direction. Therefore we can introduce the effect of the small-size cone by splitting D(n,M)

– 8 –
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in two parts (see eq. (3.12)). To perform the splitting, we consider the expression (3.6)

with MF =M and we rewrite its right-hand side as follows:

D(n,M) =

∫ (RpγT )
2

M2
0

dk2

k2
K(n) e

∫ (Rp
γ
T
)2

k2
dk′2

k′2
P (n) · e

∫M2

(Rp
γ
T
)2

dk′2

k′2
P (n)

+

∫ M2

(RpγT )
2

dk2

k2
K(n) e

∫M2

k2
dk′2

k′2
P (n)

+ e

∫M2

(Rp
γ
T
)2

dk′2

k′2
P (n)
· e

∫ (Rp
γ
T
)2

M2
0

dk′2

k′2
P (n)

D(n,M0) . (3.11)

In the LL approximation the splitting on the right-hand side of eq. (3.11) acquires a geo-

metrical meaning. We denote this approximation by introducing superscripts “(0)” and we

rewrite eq. (3.11) as follows:

D(0)(n,M) = E(0)(n,M, RpγT ) D(0)(n,RpγT ) +D(0)(n,M, RpγT ) . (3.12)

The first term on the right-hand side of eq. (3.12) corresponds to the configurations in

which there are partons inside the cone of radius R. This term has two factors. The factor

D(0)(n,RpγT ) is the fragmentation function at the factorization scale RpγT (see eq. (3.6)),

D(0)(n,RpγT ) =

∫ (RpγT )
2

M2
0

dk2

k2
K(0)(n) e

∫ (Rp
γ
T
)2

k2
dk′ 2
k′ 2

αs(k
′ 2)

2π
P (0)(n)

+e

∫ (Rp
γ
T
)2

M2
0

dk′ 2
k′ 2

αs(k
′ 2)

2π
P (0)(n)

D(0)(n,M0) , (3.13)

and it corresponds to the contribution of all emitted partons that are contained in the cone

of radius R. The accompanying factor E(0)(n,M, RpγT ) is the following exponential factor

E(0)(n,M, RpγT ) = e

∫M2

(Rp
γ
T
)2

dk′ 2
k′ 2

αs(k
′ 2)

2π
P (0)(n)

, (3.14)

and it sums the effect of the partons emitted outside the cone. The second term on the

right-hand side of eq. (3.12) is

D(0)(n,M, R pγT ) =

∫ M2

(RpγT )
2

dk2

k2
K(0)(n) e

∫M2

k2
dk′ 2
k′ 2

αs(k
′ 2)

2π
P (0)(n) , (3.15)

and it corresponds to the configurations with no partons inside the cone of radius R.

We then consider eq. (3.8) with MF =M. Since M∼ pγT , the higher-order contribu-

tions σ
(k)
F and σ

(k)
D (see eqs. (3.9) and (3.10)) to σF (n,M) and σD(n,M) cannot produce

a LL dependence on lnR (roughly speaking, these higher-order contributions are due to

parton radiation at very large angles with respect to the photon). Therefore, we can re-

place σF (n,M) and σD(n,M) with their Born level contribution and, inserting eq. (3.12)

in eq. (3.8) (with MF = M), we finally obtain the expression of the cross section that

explicitly shows the structure of all the LL terms produced by the introduction of the

– 9 –
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auxiliary cone of radius R. This final expression is

σ(n) =
αs
π
σBorn
D (n) +

(
αs
π

)2

σBorn
F (n) D(0)(n,M, RpγT )

+

(
αs
π

)2

σBorn
F (n) E(0)(n,M, RpγT ) D(0)(n,RpγT ) + . . . , (3.16)

where the dots on the right-hand side denote contributions beyond the leading logarithmic

approximation.

The first-order perturbative expansion of the expression (3.16) can directly be com-

pared with the discussion of section 2. Expanding eqs. (3.13)–(3.15) up to the first order,

we obtain

D(0)(n,RpγT ) = D(0)(n,M0) + K(0)(n) ln

(
(RpγT )2

M2
0

)
+
αs
2π

P (0)(n) ln

(
(RpγT )2

M2
0

)
D(0)(n,M0) + · · · , (3.17)

E(0)(n,M, RpγT ) = 1 +
αs
2π

P (0)(n) ln

(
M2

(RpγT )2

)
+ · · · , (3.18)

D(0)(n,M, RpγT ) = K(0)(n) ln

(
M2

(RpγT )2

)
+ · · · . (3.19)

Note that the contribution from single-parton radiation inside the cone depends logarithmi-

cally on the ratio (RpγT )2/M2
0 (see eq. (3.17)), while the analogous contribution from ouside

the cone depends logarithmically on the ratioM2/(RpγT )2 (see eqs. (3.18) and (3.19)). Note

also that, in eqs. (3.17)–(3.19), the terms that are proportional to K(0) derive from the

HO correction to the Born level direct cross section (see figure 1), while those that are

proportional to P (0) derive from the HO correction to the Born level fragmentation cross

section (see figure 2). Inserting eqs. (3.17)–(3.19) in the expression (3.16), we obtain the

HO contributions to the Born level cross sections. The HO contribution to the Born level

direct cross section is(
αs
π

)2

σBorn
F (n)

[
K(0)(n) ln

(
(RpγT )2

M2
0

)
+K(0)(n) ln

(
M2

(RpγT )2

)]
, (3.20)

where the first term reproduces the result of eq. (2.1) (regularized by M2
0 ) and the second

term reproduces the logarithmic dependence on R coming from the phase space part outside

the cone (see section 2). Analogously, the HO contribution to the Born level fragmentation

component (figure 2) is(
αs
π

)2

σBorn
F (n)

αs
2π

[
P (0)(n) ln

(
(RpγT )2

M2
0

)
+ P (0)(n) ln

(
M2

(RpγT )2

)]
D(0)(n,M0) ,

(3.21)

where the two terms reproduce the logarithmic contributions discussed in the final part of

section 2.
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Until now, we have explicitly considered the inclusive cross section and no isolation

criterion has been imposed on the partonic (hadronic) transverse energy inside the small-

size cone. Therefore, the LL dependence on R actually cancels on the right-hand side of

eq. (3.16) (the addition of the last two terms in the right-hand side indeed reconstructs

the fragmentation function D(0)(n,M), which is independent of R order-by-order in the

perturbative expansion). The discussion of the present section aimed at paving the way

for the isolated case. Indeed, the resummation of the lnR dependence in the isolated

cross section can straightforwardly be carried out on the basis of the decomposition in the

right-hand side of eq. (3.16).

4 Isolated cross section and resummation of the lnR dependence

To study the isolated cross section we use a more refined notation. We explicitly reintroduce

the parton indices, and we return (from Mellin space) to the configuration space, since the

isolation constraint on transverse energies is directly applied to momentum fractions (see,

e.g., the constraint on z in eqs. (2.5) and (2.6)).

The isolated cross section dσis/dpγTdη
γ with the cone isolation criterion of eqs. (1.1)

and (1.2) is simply denoted by σis(pγ ; zcut, R), with (see eq. (2.5))

zcut =
pγT

Eiso
T + pγT

. (4.1)

The corresponding QCD factorization formula (analogous to eq. (3.8)) is written as in

eq. (4.14) of ref. [38]:

σis(pγ ; zcut, R) =
∑
a

∫ 1

0

dz

z
σ̂a,is

(
pγ

z
;
zcut
z
,R;µ,M,MF

)
Dγ
a(z;MF ) Θ(z − zcut)

+σ̂γ,is(pγ ; zcut, R;µ,M,MF ) . (4.2)

The subprocess cross sections σ̂a,is and σ̂γ,is are obtained by convolutions of partonic cross

sections with the parton distribution functions of the two colliding hadrons. These convo-

lutions are not explicitly denoted throughout the paper. The scale M is the factorizaion

scale of the parton distribution functions, and µ is the renormalization scale of the QCD

coupling αs.

The QCD perturbative expansion of the partonic cross sections leads to a correspond-

ing expansion of the subprocess cross sections. We write the expansion as follows (see

eqs. (4.18) and (4.19) in ref. [38]):

σ̂γ,is(p; zc, R;µ,M,MF ) =

(
αs(µ)

π

)
σBorn
γ (p;M)

+

(
αs(µ)

π

)2
σγ,isHO(p; zc, R;µ,M,MF ) +O(α3

s) , (4.3)

σ̂a,is(p; zc, R;µ,M,MF ) =

(
αs(µ)

π

)2
σBorn
a (p;M)

+

(
αs(µ)

π

)3
σa,isHO(p; zc, R;µ,M,MF ) +O(α4

s) . (4.4)
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The evaluation of the isolated cross section σis up to the NLO requires the computation of

the first two terms on the right-hand side of eqs. (4.3) and (4.4). This NLO computation,

with the exact dependence on R (i.e., without any small-R approximations) is performed

in ref. [38] and it is implemented in the programme Jetphox.

As discussed in the previous sections, at small values of R, the HO terms σγ,isHO and

σa,isHO in eqs. (4.3) and (4.4) contain a contribution that is proportional to lnR. Additional

powers of lnR appear at still higher orders in the αs expansion. The direct component σ̂γ,is

in eq. (4.3) contains logarithmic terms of the type αm+1
s (αs lnR)k, and the fragmentation

component σ̂a,is in eq. (4.4) contains logarithmic terms of the type αm+2
s (αs lnR)k. The

LL terms are those with m = 0 (and k = 1, 2, 3, . . . ).

The resummation of the LL terms (the subscript notation [ ]LL denotes the LL

accuracy) leads to the following result[
σis(pγ ; zcut, R)

]
LL

=
αs(µ)

π
σBorn
γ (pγ ;M) +

(
αs(µ)

π

)2∑
a

∫ 1

0

dz

z
σBorn
a

(
pγ

z
;M

)
D(0)
a (z;M, R pγT )

+

(
αs(µ)

π

)2∑
a,b

∫ 1

0

dz

z
σBorn
a

(
pγ

z
;M

)
×

×
∫ 1

z

dx

x
E

(0)
ab

(
z

x
;M, R pγT

)
D
γ(0)
b (x;RpγT ) Θ(x− zcut) , (4.5)

where σBorn
γ and σBorn

a are the Born level subprocess cross sections in eqs. (4.3) and (4.4),

and E
(0)
ab and D

(0)
a are the customary QCD evolution operators at the LL order. The

expression of the parton evolution operator E
(0)
ab (z;M, R pγT ) is obtained from eq. (3.14) by

reinserting the explicit dependence on the parton indices; the n-moments with respect to the

momentum fraction z are given by the exponentiated formula (3.14) by replacing the flavour

NS kernel P (0)(n) with the DGLAP matrix kernel P
(0)
ab (n). A corresponding replacement is

applied to eq. (3.15) to obtain the photon evolution operator D
(0)
a (z;M, R pγT ); the explicit

expression of this operator is

D(0)
a (z;M, R pγT ) =

∑
b

∫ M2

(RpγT )
2

dk2

k2

∫ 1

z

dx

x
E

(0)
ab

(
z

x
;M, k

)
K

(0)
b (x) . (4.6)

The LL resummation formula (4.5) is directly derived by supplementing the right-hand

side of eq. (3.16) with the isolation constraint on the partonic transverse energy. Each of

the three terms in the right-hand side of eq. (4.5) is in direct correspondence with the

analogous term in eq. (3.16). The first term in the right-hand side of eq. (3.16) is the Born

level direct contribution, and the second term corresponds to kinematical configurations

with no partons inside the isolation cone. Since in these two cases the photon is evidently

isolated, these terms give the same contribution to the inclusive cross section of eq. (3.16)

and to the isolated cross section of eq. (4.5). In the third term on the right-hand side of

eq. (3.16), the operator E(0) embodies parton radiation outside the isolation cone, while

the photon fragmentation function D(0)(n,R pγT ) embodies parton radiation inside the cone.
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Therefore, only the fragmentation function must be isolated by applying the transverse-

energy isolation constraint of eq. (1.2). This isolation constraint leads to the momentum

fraction cut x > zcut that is explicitly implemented in eq. (4.5).

In the LL resummed expression (4.5), the fragmentation function D
γ(0)
b is evaluated

at the evolution scale RpγT . Therefore, it is interesting to make a comparison of eq. (4.5)

with the NLO cross section by choosing MF = RpγT in the NLO expression. Setting

MF = RpγT in eqs. (4.2)–(4.4), the NLO result effectively resums the lnR terms produced

by parton radiation inside the isolation cone. However, the corresponding HO subprocess

cross sections σγ,isHO(MF = RpγT ) and σa,isHO(MF = RpγT ) of eqs. (4.3) and (4.4) still contain a

residual lnR term (which is due to partons radiated outside the isolation cone) that is not

resummed by the NLO result. In the resummation formula (4.5), this residual lnR term

at NLO is produced by the first-order expansion of D
(0)
a (z;M, R pγT ) (which contributes to

σγ,isHO(MF = RpγT )) and E
(0)
ab (z/x;M, R pγT ) (which contributes to σa,isHO(MF = RpγT )).

Using eq. (4.6) and the exponentiated form (see eq. (3.14)) of the evolution operator

E(0)(M, R pγT ), the expression (4.5) can be used to explicitly resums the LL contributions

to the isolated cross section at small values of R. Note, however, that the scale RpγT must be

sufficiently larger than the typical scale of the non-perturbative domain (e.g., RpγT ≥ M0

where M0 is the cut-off scale in eq. (3.6)). At very small values of R (and RpγT ), the

photon fragmentation function Dγ
b (x;RpγT ) in eq. (4.5) and, more generally, the isolated

cross section become sensitive to sizeable non-perturbative effects that are not taken into

account by the perturbative QCD factorization formula (4.2).

The resummation of the lnR terms can be generalized beyond the LL level of eq. (4.5).

We have worked out the formal generalization to arbitrary logarithmic accuracy. The all-

order generalization and the explicit treatment of next-to-leading logarithmic (NLL) terms

will be presented in a forthcoming paper. The extension of resummation to other isolation

criteria (e.g., the criterion in section 6) is in progress. In the next section, we explicitly

apply the LL resummation formula of eq. (4.5), and we present ensuing quantitative results

for Tevatron and LHC kinematical configurations.

5 Quantitative results

We have implemented the LL resummation of the lnR terms in the programme Jetphox.

This implementation supplements the complete NLO result [38] (which has the exact de-

pendence on R) with the resummation of all the LL terms beyond the NLO. The complete

NLO result is added to a ‘subtracted version’ of the LL resummation formula (4.5). This

subtracted version avoids double counting of perturbative terms. It is obtained by consid-

ering the LL formula (4.5) and by explicitly subtracting from it the terms that are obtained

by expanding the same formula up to the NLO.

We add some comments about our actual implementation of resummation in Jetphox.

We want results with consistent NLO accuracy (and exact dependence on R) for both the

direct and fragmentation contributions and, therefore, we have to use NLO fragmentation

functions (and parton distribution functions). To this purpose, in the LL resummation

formula (4.5), the LO fragmentation function D(0) can be replaced by the NLO one: this
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replacement is permitted, since it produces corrections beyond the LL approximation.

Then we note that, due to the isolation cut x > zcut, the contribution of the fragmentation

function Dγ
b (x;RpγT ) is small, so that the impact of the resummed factor E(0)(M, RpγT , )

in the third term on the right-hand side of eq. (4.5) is not significant. For the sake of

numerical simplicity, this resummed factor is replaced by its truncation at O(αs):

E(0)(z/x;M, RpγT )→ δ(1− z/x) +
αs
2π

P (0)(z/x) ln

(
M2

(RpγT )2

)
. (5.1)

We observe that the replacement in eq. (5.1) implies that the third term on the right-

hand side of eq. (4.5) does not produce any LL terms beyond the NLO, provided the NLO

perturbative expansion is carried out at the factorization scale MF = RpγT (this observation

is equivalent to that made in the final part of section 4, where we pointed out that the

NLO result with MF = RpγT effectively resums the LL terms produced by parton radiation

inside the isolation cone). Therefore, we can consider the NLO result of Jetphox with

MF = RpγT and supplement it with the LL terms produced by the sole direct component

of the cross section in eq. (4.5). In practical terms, the resummation part to be added to

the NLO cross section σis(pγ ; zcut, R) of eqs. (4.2)–(4.4) is the following contribution:

+

(
αs(µ)

π

)2∑
a

∫ 1

0

dz

z
σBorn
a

(
pγ

z
;M

){
D(0)
a (z;M, R pγT )−K(0)

a (z) ln
M2

(RpγT )2

}
. (5.2)

This contribution corresponds to the first two terms in the right-hand side of eq. (4.5),

after subtraction of their NLO expansion which is already contained in the O(α2
s(µ)) term

of the expression (4.5) (the second term in the curly bracket of eq. (5.2) is exactly the

first-order expansion of D
(0)
a (z;M, R pγT ), which is the first term in the curly bracket).

In this section we compare the outputs of Jetphox obtained without and

with resummation.

We start our presentation with kinematics relevant to Tevatron experiments that we

already studied in ref. [38]. We consider proton-antiproton collisions at the centre-of-mass

energy
√
s = 1.8 TeV, and we use pγT = 15 GeV, −0.9 ≤ ηγ ≤ 0.9 and ε = Eiso

T /pγT = 0.1333

(i.e., zcut = 0.88235 and Eiso
T = 2 GeV). The calculations are done with Nf = 5 flavours

of massless quarks. The renormalization scale (µ) and the factorization scale (M) of the

parton distribution functions are set to be equal to pγT /2 . As for the factorization scale

of the photon fragmentation function, we study the cases with MF = pγT /2 (conventional

scale) and MF = RpγT (“cone scale”). We use the CTEQ6M parton distribution func-

tions [59]. The fragmentation functions are those of the BFG set II [57]. As we have

already discussed, we use NLO fragmentation functions and parton distribution functions.

The resummed contribution of eq. (5.2) is calculated with M = pγT .

Our results are summarized in tables 1 and 2. Table 1 gives the details of the direct

and fragmentation contributions to the isolated cross sections calculated with the “conven-

tional” and “cone” scales, with or without resummation. We also give the results of the

non-isolated cross sections. In table 2 one can find the behavior with R of the total cross

sections. The numerical values that we obtain at the Born level and at the NLO are not
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DIRECT FRAGMENTATION

R Born NLO NLO NLO Born Born NLO NLO

pγT /2 RpγT RpγT pγT /2 RpγT pγT /2 RpγT
-resummed

.9 1972 3737 3586 3592 291 348 516 700

.7 1972 3951 3864 3851 291 324 555 662

.5 1972 4197 4197 4171 291 291 597 597

.3 1972 4532 4663 4593 291 245 654 496

.1 1972 5203 5616 5294 291 165 764 318

No isol 1972 3655 1875 2044

Table 1. Variation with R of the various contributions to the cross sections (the values are expressed

in pb/GeV) at
√
s = 1.8 TeV.

R NLO NLO NLO

pγT /2 RpγT RpγT
-resummed

.9 4253 4286 4292

.7 4506 4526 4513

.5 4794 4794 4768

.3 5186 5159 5089

.1 5967 5934 5612

No isol 5699

Table 2. Variation with R of the total cross sections (in pb/GeV) at
√
s = 1.8 TeV.

identical to those of ref. [38], since a different set (the MRST-99 set) of parton distribution

functions was used in ref. [38].

The first point to note in table 1 is the strong effect of isolation on the fragmenta-

tion component. Another noticeable point is the increase of the NLO direct contribution

when R decreases; this increase is in agreement with the lnR enhancement shown in

the expression (2.6). In particular, the isolated contribution can be larger than the non-

isolated contribution (we report the non-isolated reference values at the factorization scale

MF = pγT /2). No resummation is involved in the calculation of the non-isolated cross-

section. The resummed direct cross section is smaller (by about 5% at R = 0.1) than the

cross section without resummation. The fragmentation component is quite sensitive to R

already at the Born level through the MF dependence on R (this is because the typical

behaviour of the fragmentation function is D(RpγT ) ∼ ln(RpγT /M0)).

The NLO cross sections are given in table 2. In the first column, at the value R = 0.1

we notice a violation of unitarity since the non-isolated cross section at the reference scale

MF = pγT /2 is smaller than the isolated one for both the scale choices MF = pγT /2 and

MF = RpγT . When R becomes small, the lnR terms has to be resummed: this is performed

in the rightmost column of table 2, and we notice that resummation does restore unitarity.
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R NLO NLO NLO

pγT /2 RpγT RpγT
-resummed

.5 3.59 3.59 3.57

.3 3.86 3.85 3.81

.1 4.35 4.34 4.19

.06 4.56 4.55 4.24

No isol 4.29

Table 3. Variation with R of the total cross sections (in pb/GeV) at
√
s = 7 TeV.

Notwithstanding we also notice that at R = 0.1 the resummed cross section is about

5% smaller than the NLO cross section. Therefore the effect of resummation is not very

large at R = 0.1, although it is qualitatively and conceptually important regarding the

restoration of unitarty. We cannot explore lower values of R because the scale at which

the fragmentation function is calculated becomes too small.

To study smaller values of R we turn to the LHC kinematics and we consider higher

values of pγT . We consider proton-proton collisions at
√
s = 7 TeV, pγT = 100 GeV and

|ηγ | < 0.6. The energy isolation parameter is ε = 0.04 (i.e., zcut = 0.9615 and Eiso
T = 4 GeV)

and the radius of the isolation cone is varied in the range 0.06 ≤ R ≤ 0.5. The parton

distributions functions, the fragmentation functions and the scale choices are the same as

in the Tevatron study reported in tables 1 and 2. Our LHC results are summarized in

table 3.

The first two columns of table 3 show that the NLO cross section is very stable with

respect to changes of the factorization scale MF when the photon is isolated. Here we

also note a violation of unitarity for small values of R (R ≤ 0.1). The rightmost column

displays the effect of resummation. It is small, and it is of the order of 7% at R = 0.06.

Unitarity is no more violated down to the very small value R = 0.06. This very small value

of R is however extreme; the experimental isolation cones typically have a radius bigger

than 0.3 for which the effect of resummation is even smaller (≤ 1%).

The issue of the violation of unitarity in the NLO calculation of the isolated cross

section with narrow cones is quantified, throughout this section, by the numerical com-

parison with the non-isolated photon cross section at the reference fragmentation scale

MF = pγT /2. Obviously the choice of reference scale has some degree of arbitrariness, and

any other commonly used choice, such as MF = pγT or 2 pγT would affect the numerical

results somewhat (we have explicitly checked that the use of these scales does not signif-

icantly change the values of the non-isolated cross section). However the main trends of

the results presented in this section are evident, and are summarized as follows. 1) The

violation of unitarity observed in NLO cross sections for photons isolated with narrow

cones (with aperture R � 1) is due to the inappropriate truncation, to fixed order, of

an expansion that involves terms logarithmically enhanced in lnR. The violation cannot

be cured by simply adjusting the scales. Instead the resummation of these logarithmically

enhanced terms, as we have performed, cures this unitarity puzzle down to values of R that
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are much lower than the ones physically used in colliders experiments. 2) Notwithstanding,

down to at least R = 0.3, which is already smaller than the value 0.4 commonly used in

colliders experiments, this resummation amounts to a small, few % correction with respect

to the NLO calculation using a standard choice of MF , and this correction is smaller than

the usual scale uncertainty of the NLO prediction. The unitarity puzzle is therefore not

an issue in NLO predictions with the cones sizes that are commonly used in colliders ex-

periments. Moreover, resummation can be regarded and used as a complementary and

additional theoretical tool that is available to asses the reliability of the QCD predictions

and to quantify their uncertainties in studies with moderately-small values of R.

6 Implications for a hollow-cone criterion

Using the standard cone criterion or an alternative one, such as the Frixione criterion [35]

or one of its discretized versions [36, 37], it may be experimentaly difficult to apply a

cut on the accompanying energy in the region where the electromagnetic shower develops

in the detector, since it may be difficult to disentangle the accompanying energy from the

photon energy inside that region. The shape and size of this region are detector dependent.

To first approximation, the electromagnetic shower roughly fills a cone of radius r ∼ 0.1:

considering the standard cone criterion, this would correspond to an inner narrow cone

of inefficient isolation inside the usual cone of radius R. For a ‘hollow’ cone with an

inner (empty) cone of such a small size (r ∼ 0.1), the issue of the resummation of ln r

contributions can matter. In this section, we perform a first explorative investigation of

this issue.

We consider a hollow-cone variant of the standard cone isolation criterion in eqs. (1.1)

and (1.2). A cone of radius R around the photon direction is still considered, but the upper

limit Eiso
T is enforced on the hadronic transverse energy inside an annular region Choll.γ (R, r)

of width R− r, rather than on the hadronic transverse energy inside the whole cone. The

constraint in eq. (1.2) is thus replaced by∑
k∈Choll.γ (R,r)

E
(k)
T < Eiso

T . (6.1)

Therefore, no isolation is applied inside the innermost region delimited by the small cone

of radius r (thus coined ‘hollow’, in the sense of free of any isolation constraint, in what

follows). The usual isolation is instead implemented outside the innermost cone of radius r.

Note that the hollow-cone criterion selects photons that are less isolated than those

selected by the standard cone criterion. Therefore, at fixed values of Eiso
T for both criteria,

the corresponding cross sections fulfil the physical requirement

σ(pγ) ≥ σholl(pγ ;R, r) ≥ σis(pγ ;R) , (6.2)

where σ(pγ) is the inclusive cross section with no isolation, σis(pγ ;R) is the cone isolation

cross section (i.e., the cross section considered in sects. 4 and 5)) and σholl(pγ ;R, r) is the

cross section for the hollow-cone criterion.
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cone direct fragmentation total

type Born NLO Born NLO NLO

standard 2.08 3.56 .077 .165 3.73

hollow 2.08 3.09 .91 .43 3.52

Table 4. NLO cross sections (in pb/GeV) at
√
s = 7 TeV, with ε = 0.04 and MF = r pγT .

Comparison of the isolated cross sections for the standard cone (R = 0.4) vs. the hollow-cone

(R = 0.4, r = 0.1) criteria.

The factorization structure of the perturbative QCD calculation of the hollow-cone

cross section is discussed in the final part of section 4 of ref. [38]. Here we briefly comment

on the expected behaviour of the NLO cross section in the case of a very small innermost

cone (r → 0). As discussed in section 2, the presence of the boundary of a cone of small

radius R0 (we use a generic R0 to allow us to make a following distinction between R and

r) around the photon direction produces lnR0-terms in the NLO calculation. Typically,

single-parton radiation inside the cone leads to negative lnR0-terms, while parton radiation

just outside the cone leads to analogous positive terms. Within the standard cone criterion

(R0 = R), energy isolation is applied inside the cone thus suppressing the negative lnR-

terms, and the NLO cross section receives a total positive contribution from the lnR-terms.

In the hollow-cone case (R0 = r), the situation is reversed with respect to the standard

cone criterion: energy isolation is now imposed outside the cone r instead of inside it. This

suppresses the positive ln r-terms, and the NLO cross section σholl(pγ ;R, r) receives a total

negative contribution from the ln r-terms. Eventually, in the limit r → 0 (at fixed R), we

can expect a violation of unitarity of the NLO result since σholl(pγ ;R, r) can become smaller

than σis(pγ ;R), thus violating the lower bound of the physical requirement in eq. (6.2).

We use Jetphox to compute the NLO cross section for the hollow-cone criterion, and

we present quantitative results by considering the LHC kinematical configuration already

discussed in section 5. We consider a hollow-cone criterion with the inner cone of radius

r = 0.1 and the outer cone of radius R = 0.4. The results for the NLO cross sections are

given in table 4, where they are also compared with the corresponding standard-cone cross

section (with R = 0.4).

The NLO hollow-cone cross section in table 4 is computed by using the fragmentation-

scale choice MF = r pγT . This choice is motivated by analogy with the discussion in the

previous sections: setting MF = r pγT , we effectively resum part of the higher-order ln r

terms (the part from parton radiation inside the inner cone). For the sake of direct com-

parison, the NLO standard-cone cross section reported in table 4 is computed by using the

same numerical value, MF = 0.1 pγT , that is used in the hollow-cone cross section. The

results of the standard-cone cross section that are obtained with different choices of MF

(MF = pγT /2, MF = RpγT ) at the NLO and with LL resummation were reported in table 3.

All these values of the standard-cone cross section at R = 0.4 (the value in table 4, and

the values that can be inferred from table 3) are numerically very similar. Therefore, in

the context of the discussion in this section, we can state that we have a reliable estimate

of the standard-cone cross section at R = 0.4.
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The results in table 4 show that the total (i.e. direct + fragmentation) NLO predictions

for the standard cone criterion and the hollow-cone criterion do not differ much, despite the

drastic absence of isolation in the inner cone. The two NLO results depart from each other

by about 6%, and they would differ even less if some loose isolation were implemented inside

the inner cone. Indeed, our hollow-cone criterion with no isolation inside the inner cone

is an extreme simplification for modelling the experimental region of inefficient isolation

(for instance, CMS analyses impose a veto on charged tracks in the close vicinity of the

photon candidates).

Nonetheless, the quantitative results in table 4 also show that the hollow-cone

cross section is smaller than the standard cone cross section, thus violating the bound

σholl(pγ ;R, r) ≥ σis(pγ ;R) that is set by the physical requirement in eq. (6.2). This vi-

olation is an artifact of the NLO truncation of the perturbative QCD calculation. The

misbehaviour of the NLO cross section for the hollow-cone criterion is due to the presence

of large and negative ln r terms, as discussed at the beginning of this section. We have

quantitatively checked that this misbehaviour of the NLO calculation persists and it is

enhanced by decreasing further the values of r. In particular, at very small values of r,

the NLO corrections are found to be very large especially for the fragmentation compo-

nent of the cross section, which eventually becomes (increasingly) negative. The different

relative importance of the fragmentation component compared with the direct component

comes from the absence of isolation inside the inner cone. Without the resummation of

ln r terms, we cannot expect a sound theoretical result for the hollow-cone criterion at very

small values of r. We postpone the study of resummation of ln r terms for the hollow-cone

criterion to future work, which is in progress. In particular, in the hollow-cone case, very

small values of r and, consequently, very large values of ln(1/r) are considered. A reliable

quantitative treatment of resummation effects may thus requires the LL contributions and

the inclusion of terms at the NLL level, which may have a not negligible quantitative role.

7 Conclusions

We have considered the standard cone isolation criterion that is used to measure prompt-

photon cross sections at TeV colliders. We have performed a detailed study of the depen-

dence of the QCD theoretical predictions on size R of the isolation cone. The dependence

arises from the mismatch of parton radiation in the region inside the cone, which is sub-

mitted to isolation, vs. the region outside the cone, where no isolation is imposed. The

dependence on the cone size R is dominantly logarithmic at small R, and the NLO pre-

dictions become unreliable when R becomes too small. We restored the reliability of the

theoretical estimates by performing the resummation of this logarithmic dependence to

LL accuracy in R. The resummation eventually amounts to the following procedure: the

fragmentation scale is set to the value MF ∼ RpγT (as simply suggested from physical

insight) to take into account the lnR dependence from parton radiation inside the cone,

and an additional explicit resummation is performed to control the lnR dependence that

arises from the region outside the cone, which is not submitted to isolation. We have im-

plemented this resummation in the partonic Monte Carlo programme Jetphox, which also
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includes the non logarithmic R dependence that is not negligible at the moderate value

R ∼ 0.4 that is used experimentally at the LHC. We have presented ensuing quantitative

results that show how the resummation cures the instabilities of the NLO calculation down

to very small values of R. At the typical values of R (R>∼ 0.3) that are currently used in

collider experiments, the resummation effects are small, and they are not larger than the

size of the usual theoretical uncertainties of the NLO predictions.

We also explored the case of “hollow cone” isolation. The isolation is imposed in an

annulus between two cones of radii r and R, with r < R, whereas the regions outside the

annulus, including the one inside the inner cone, is free from any isolation constraints. The

cone with small radius r aims at simulating the size of the electromagnetic shower that

develops in the calorimeter. Considering the values r = 0.1 and R = 0.4, the corresponding

NLO cross section does not differ much from the cross section with the standard cone

isolation, and the difference would be even smaller by using some loose isolation inside

the inner cone, rather than none as we did. However, we also noticed that the strict

implementation of the hollow-cone criterion (with the extreme situation of absolutely no

isolation inside the inner cone of radius r) can produce NLO inconsistencies, leading to

quantitative values of the hollow-cone cross section that are smaller than those of the

more-isolated cross section of the standard cone isolation. A proper resummation of ln r

terms would be necessary to cure these NLO inconsistencies and to safely use the hollow-

cone criterion for perturbative QCD calculations at small values of r.
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