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1 Introduction

Supersymmetric Yang-Mills theory (SYM) describes interacting gluons and their super-

symmetric partners, the gluinos. As it is a gauge theory containing fermionic degrees of

freedom, it is in this respect similar to QCD. An essential difference, however, is that gluinos

are Majorana fermions in the adjoint representation of the gauge group. In Minkowski space

the (on-shell) Lagrangian of SYM is composed out of the gluon fields Aµ and the gluino

field λ, and reads

L = tr

[

−1

4
FµνF

µν +
i

2
λ̄γµDµλ−

mg

2
λ̄λ

]

, (1.1)

where Fµν is the usual non-Abelian field strength and Dµ denotes the gauge covariant

derivative in the adjoint representation. The fields λ and Aµ are transformed into each other

by the supersymmetry transformation. The gluino mass term breaks supersymmetry softly.

Some properties of SYM are expected to be similar to QCD [1]. It is asymptotically

free and is assumed to show confinement. The determination of its low-energy properties,

including the spectrum of particles, is a non-perturbative problem. The “physical” particles

are bound states of gluons and gluinos, and if supersymmetry is unbroken, they would

form supermultiplets.

There are several motivations for the numerical investigation of SYM on the lattice.

One of them is to understand the non-perturbative interaction of the gluinos in supersym-

metric extensions of the standard model. There exist theoretical predictions for the low

energy effective theory [2, 3] that can be compared to the lattice results. Another motiva-

tion for the numerical investigations of SYM on the lattice is related to possible connections

to ordinary QCD, as provided by the orientifold planar equivalence [4]. Results of previous

investigations of SYM on the lattice by our collaboration can be found in [5, 6].

In recent years, SYM on the lattice has also been investigated with Ginsparg-Wilson

fermions, in the domain wall [7–9] as well as in the overlap formulation [10]. For large lattice
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volumes and small lattice spacings these formulations require, however, a significantly larger

amount of computing resources than the Wilson formulation. The gain of no need for tuning

the position of the zero gluino mass point does not compensate by far the advantage of

Wilson fermions.

Our current studies of SYM are focussed on the bound states of gluons and gluinos, in

particular on an exotic particle state in the spectrum that arises due to the fermions being

in the adjoint representation. This particle is a spin 1/2 Majorana fermion and is called

gluino-glue. It can be created by operators combining the field strength and the gluino

field, the simplest example being

Õgg̃ =
∑

µν

σµνtr [F
µνλ] , (1.2)

with σµν = 1
2 [γµ, γν ]. Such a bound state containing a single fermion does not occur in

QCD, but analogous particles exist in models similar to QCD with an arbitrary number of

quark flavours in the adjoint representation.

Since supersymmetry is generically broken in any non-trivial theory on the lattice [11]

it has to be ensured that it is restored in the continuum limit. A necessary condition

for unbroken supersymmetry is the degeneracy of fermionic and bosonic masses. In a

supersymmetric theory the fermionic gluino-glue state must therefore be part of a multiplet

containing also bosonic particles with the same mass. The behaviour of the gluino-glue

particle provides an important signal for the supersymmetric limit of the theory.

It is expected that in SYM a fine-tuning of the bare gluino mass parameter in the

continuum limit is enough to approach the symmetries of the continuum theory [12]. These

symmetries include chiral symmetry and supersymmetry. The theoretical prediction of

the existence of a supersymmetric chiral continuum limit needs to be confronted with

the numerical lattice simulations. The chiral limit, the continuum limit, and the infinite

volume limit can only be extrapolated from the results of these simulations. In QCD

there are good estimates about the scales and parameters that are necessary to get reliable

results, together with systematic estimates of the induced errors. In SYM the influence

of parameters like the finite volume and non-zero lattice spacing may be different. It is

therefore important to have a detailed understanding of their effects in order to be able to

approach the supersymmetric limit.

The previous results of our simulations have not yet shown the expected degeneracy

of the fermionic and bosonic masses [5, 6]. The obtained mass of the gluino-glue has been

larger than the other masses of its lightest possible superpartners. However, the masses

were obtained at a fixed lattice spacing and without a detailed analysis of the finite size

effects. Our most recent investigations indicate that the influence of the finite lattice

spacing is larger than expected. This provides a possible source of the supersymmetry

breaking in the simulation.

In this work we want to scrutinize the influence of the finite volume. If it is large, it

provides another possible explanation for the gap between fermionic and bosonic masses.

If it is smaller than expected then the lattice artifacts have to be reduced by performing

simulations at smaller lattice spacings.

– 2 –



J
H
E
P
0
9
(
2
0
1
2
)
1
0
8

In our studies the mass of the gluino-glue particle has typically been the one determined

with the best accuracy. Therefore it is well suited to estimate the effects of the finite lattice

size. In order to estimate the influence on supersymmetry breaking, the mass of the adjoint

version of the η′ meson (a–η′, a pseudoscalar bound state of gluinos) is also considered.

2 Supersymmetric Yang-Mills theory on the lattice

In our investigations we have employed the lattice formulation of SYM proposed by Curci

and Veneziano [12]. The gauge field is represented by link variables Uµ(x) in the gauge

group SU(Nc). The corresponding gauge action is the Wilson action built from the plaque-

tte variables Up. The gluinos are described byWilson fermions in the adjoint representation.

In its basic form the complete lattice action reads

SL = β
∑

p

(

1− 1

Nc
Re trUp

)

+
1

2

∑

xy

λ̄x(Dw)xyλy , (2.1)

where Dw is the Wilson-Dirac operator

(Dw)x,a,α;y,b,β = δxyδa,bδα,β (2.2)

−κ
4

∑

µ=1

[

(1− γµ)α,β(Vµ(x))abδx+µ,y + (1 + γµ)α,β(V
†
µ (x− µ))abδx−µ,y

]

.

The hopping parameter κ is related to the bare gluino mass via κ = 1/(2mg + 8).

While the link variables Uµ(x) are in the fundamental representation of the gauge

group, the variables Vµ(x) in the Wilson-Dirac operator are the corresponding elements

in the adjoint representation. In our present investigations the gauge group is SU(2),

the fundamental representation is a doublet and the adjoint one a triplet. In this case

the adjoint gauge field is given by [Vµ(x)]
ab = 2 tr[U †

µ(x)T aUµ(x)T
b], where T a are the

generators of the gauge group, normalised such that 2 tr[T aT b] = δab.

In our simulations the basic form of the lattice action has been modified with the

following improvements: in order to reduce the lattice artifacts a tree-level Symanzik im-

proved gauge action has been used instead of the simple Wilson gauge action. One level of

stout smearing has been applied to the link fields in the Wilson-Dirac operator to reduce

lattice artifacts also in the fermionic part of the action.

The lattice action explicitly breaks supersymmetry and in addition the chiral U(1)R
symmetry. However, to recover the continuum symmetries the necessary fine-tuning of

supersymmetry and the U(1)R symmetry can be achieved through the same parameter,

the bare gluino mass (i.e. κ) [12]. The supersymmetric continuum limit coincides with the

chiral continuum limit of the theory.

An important similarity of SYM to Yang-Mills theory is confinement. The static po-

tential between quark sources in the fundamental representation of the gauge group shows

no signal of a string breaking. The low energy effective action is built out of bound states of

the elementary fields. The glueballs of Yang-Mills theory are completed with the mesonic

states (gluino-balls) and the fermionic gluino-glue particle. The proposed supersymmetric

low energy effective actions are constructed from two multiplets of particles [2, 3]. The
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lighter multiplet consists of glueballs and a gluino-glue state. The heavier multiplet is built

from the mesons and a gluino-glue state. As required by supersymmetry, each multiplet

consists of a scalar, a pseudoscalar, and a fermionic spin 1/2 particle.

On the lattice the 0++ and the 0−+ glueball operators are constructed from the link

variables. The mesonic particles are the a–f0 represented by the operator λ̄λ and the a–η′ by

λ̄γ5λ. Since the model contains only one species (“flavour”) of gluinos, all possible mesons

are “flavour diagonal”. Consequently, their correlation functions contain disconnected parts

in addition to the connected ones, as it is the case in QCD for flavour diagonal mesons.

In addition to the above mesons, we consider the adjoint pion (a–π), which is the pion

in the corresponding theory with two Majorana fermions in the adjoint representation. The

correlator of this particle is the connected contribution of the a–η′ correlator. The a–π is

not a physical particle in SYM, which only contains one Majorana fermion. However, it

can be defined in a partially quenched setup, in which the model is supplemented by a

second species of gluinos and the corresponding bosonic ghost gluinos, in the same way as

for one-flavour QCD [13].

The reason for considering the a–π is the following. In the limit of a vanishing gluino

mass, the bare parameter κ has to be tuned to the critical value κc (chiral limit) that

corresponds to the chiral theory in the continuum limit. The value of κc is most easily

obtained from the dependence of the a–π-mass on κ. On the basis of arguments involving

the OZI-approximation of SYM [2], the adjoint pion mass is expected to vanish for a mass-

less gluino. The a–π yields a more precise signal for the tuning than the supersymmetric

Ward identities. However, in previous studies we have checked that both signals lead to a

consistent value of κc [5].

For both the a–f0 and a–η′ mesons the correlators contain a significant contribution

from disconnected diagrams (see section 3), especially on larger lattices and small adjoint

pion masses. As in comparable cases in lattice QCD, this contribution leads to a bad signal

to noise ratio in the correlators. Using the techniques detailed in section 3, the gluino-glue

mass can be obtained with an accuracy significantly better compared to the other particles

of the spectrum (apart from the unphysical adjoint pion).

In previous investigations the predicted multiplet structure of the particles has not been

found in the mass spectrum [5]. The mass of the gluino-glue particle appeared to be heavier

than the masses of the scalar and pseudoscalar states. A breaking of supersymmetry in the

theory on the lattice is induced by the finite lattice spacing and the finite lattice extent.

The former is an unavoidable consequence of the discretisation; the latter is due to the

anti-periodic (thermal) boundary conditions implemented for the gluinos. It is important

to have an estimate of these effects. If they had an opposite sign, they could compensate

each other and suggest a wrong supersymmetric point. Alternatively, they could sum up

to the total supersymmetry breaking and it would be necessary to investigate both of them

in order to disentangle their effects.

In our numerical simulations we have applied a polynomial hybrid Monte Carlo (PHMC)

algorithm. In a two step procedure, in the Metropolis step a better polynomial approxi-

mation is used than in the integrator of the molecular trajectory. The remaining error is

compensated by a reweighting. Further details of the simulations algorithm can be found

in [5, 14].
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Figure 1. The mass of the adjoint pion (a–π) at different lattice volumes for a fixed value of

κ = 0.1490. The fit (fit) is done using the ansatz eq. (4.2), and the reduced fit (red. fit) discards

the smallest lattice volume. r0 is the Sommer scale parameter.

The simulation at the smallest lattice spacings requires a large number of configurations

to get a reasonable statistical error of the correlation functions. A further problem arises

from the dependence of the adjoint pion mass on the lattice volume. This dependence is

shown in figure 1 for a fixed value of κ = 0.1490. The deviation of the smallest lattice from

the infinite volume limit is most likely due to a larger influence of the excited states in the

determination of the mass.

The adjoint pion mass gets smaller on the smaller lattices. Hence, for a fixed value of κ

the simulations are shifted towards the chiral limit when the lattice volume is reduced. In

the vicinity of the chiral limit low eigenvalues of the Hermitian Wilson-Dirac operator oc-

cur. The polynomial approximation in the PHMC algorithm has a larger error in this case

and a compensation with correction factors is necessary. To obtain these factors we have

calculated an approximation of the lowest eigenvalue on each of the configurations. When-

ever this value has been below the threshold determined by the polynomial approximation,

the correct fermionic contribution of the 100 lowest eigenvalues has been calculated. From

this contribution the correction factors of the reweighting step have been obtained. This

reweighting leads to an additional increase of the statistical error on the smaller lattice

volumes. A complete summary of the simulations is shown in table 3.

3 Determination of masses

The operator for the gluino-glue particle is represented by the lattice version of eq. (1.2)

Oα
gg̃ =

∑

i<j,β

σαβ
ij tr

[

Pijλ
β
]

, (3.1)
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where the indices i and j stand for the spatial directions. In order to have the same

properties with respect to parity transformation and time reversal, Fµν is represented by

the anti-Hermitian part of the clover plaquette U (c) [15],

Pij =
1

8ig0
(U (c)

µν − (U (c)
µν )

†) . (3.2)

The clover plaquette is a combination of links in the fundamental representation,

U (c)
µν = Uµ(x)Uν(x+ µ)U †

µ(x+ ν)U †
ν (x)

+U †
ν (x− ν)Uµ(x− ν)Uν(x− ν + µ)U †

µ(x)

+U †
µ(x− µ)U †

ν (x− µ− ν)Uµ(x− µ− ν)Uν(x− ν)

+Uν(x)U
†
µ(x+ ν − µ)U †

ν (x− µ)Uµ(x− µ) .

The best signal is obtained from the contribution to the correlator that is proportional

to the identity in Dirac space. The corresponding correlator is

Cgg̃(x0 − y0) = −1

4

∑

i,j,k,l

∑

~x,~y

∑

α,β,ρ

∑

ab

〈σαβ
ij tr[Pij(x)T

a](Dw
−1)x,a,β,y,b,ρtr[Pkl(y)T

b]σαρ
kl 〉 .

(3.3)

At large distances the correlator has the functional form

Cgg̃(t) ≈ C sinh(m(t− T/2)) , (3.4)

where T is the temporal extent of the lattice. The mass m of the particle can be obtained

by fitting the correlator to this function. The appropriate t-range for the fit, where t is

large enough but still much smaller than T , can be found by plotting the effective mass

meff(t). meff(t) is the parameter m obtained from the correlator at t and t + 1 assuming

eq. (3.4) to be valid. In the t-range, where the influence of the excited states is small

enough, meff(t) shows a plateau. In a more refined approach the correlated chi-square of

the fit provides an indication that the assumption of the eq. (3.4) is a good approximation

in the considered region. We have applied a method that combines fit values of several

fitting intervals and their correlated chi-square to get an estimation of the mass and the

statistical and systematic error [16, 17].

The gluino-glue correlator has been obtained using different smearing techniques. The

link fields are smeared using APE smearing, the fermionic fields using Jacobi smearing.

Without any smearing the links U in Pµν should be the same fundamental links as in

the gauge part of the action. The Wilson-Dirac operator Dw, on the other hand, should

contain the one-level stout smeared links in the adjoint representation, that are used in the

fermionic part of the action. In addition to this approach, the one-level stout smearing has

also been applied to the U fields. It has been checked that the smearing in the time-like

direction included in this step has no influence on the correlation function at distances

relevant for the mass determination.

The effect of the smearing on the effective masses is shown in figure 2. The same

Jacobi smearing is applied on the source and sink side of the correlator. The APE and

– 6 –



J
H
E
P
0
9
(
2
0
1
2
)
1
0
8

0

0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5 6 7 8

m
eff

t

no smearing

NJacobi = 4, κJacobi = 0.2
NJacobi = 8, κJacobi = 0.2

NAPE = 4, ǫAPE = 0.5
NAPE = 8, ǫAPE = 0.5

NAPE = 8, ǫAPE = 0.5, NJacobi = 4, κJacobi = 0.2

Figure 2. The effective mass of the gluino-glue on a 163 × 36 lattice and κ = 0.1492. The impact

of different smearing parameters are compared. APE smearing is used on the the link fields in P ,

Jacobi smearing is applied on the fermionic source and sink.

the Jacobi smearing have a similar impact on the correlator. The excited states at small

distances are considerably reduced by the smearing procedure.

The correlator for the a–η′ boson contains a connected and a disconnected contribution,

Ca-η′ = Ca-π − Ca-η′ disc (3.5)

=
1

L3

∑

~x

〈tr
[

γ5(Dw)
−1
x,yγ5(Dw)

−1
y,x

]

〉 − 1

2L3

∑

~x

〈tr
[

γ5(Dw)
−1
x,x

]

tr
[

γ5(Dw)
−1
y,y

]

〉 .

Its connected part is the correlator of the adjoint pion (Ca-π). The disconnected part has

been calculated using the stochastic estimator method [18]. The statistical fluctuations in

this part are usually larger than in the connected contribution.

It is instructive to compare the masses of the a–η′ and the a–π, since their difference

shows the influence of the disconnected part. In figure 3 the dependence of these masses

on the lattice volume is shown. On the smallest lattice both masses deviate from the

behaviour expected from the fits. This is presumably due to the larger contribution of

excited states to the correlator, since only smaller values of t enter. A second observation

is that at smaller lattice volumes both masses appear to approach each other. Thus at

smaller volumes the influence of the disconnected part of the a–η′ correlator is relatively

smaller compared to the connected one.

At small t the contribution of the connected part is much larger than the disconnected

part, whereas at intermediate distances and close to the chiral limit the disconnected part

yields a significant contribution. The larger statistical error of the a–η′ on the largest
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Figure 3. The masses of the a–η′ and the adjoint pion (a–π) at different lattice volumes for a fixed

value of κ = 0.1490. The fit (fit) is done using the ansatz eq. (4.2), and the reduced fit (red. fit)

discards the smallest lattice volume.

lattices is due to the larger statistical fluctuations of the disconnected part. The total

error on a small lattice seems to be underestimated for the a–η′ particle due to these

systematic uncertainties. Smearing techniques or a larger temporal extent of the lattice

could lead to better results. Because of these systematic uncertainties of the a–η′ mass and

the larger statistical error, the best signal for the finite size effects is obtained from the

gluino-glue mass.

4 Finite size effects

In quantum field theory in a finite volume the propagation and interactions of particles are

different from those in an infinite volume. This can be understood as the modification of the

polarized vacuum within a Compton wavelength around a particle due to the deformation

by the finite boundaries of the box. The infinite volume mass m0 of the particle is shifted

due to the influence of the finite box size L,

m(L) = m0 +∆m(L) . (4.1)

The mass shift ∆m(L) has been studied to all orders in perturbation theory in massive

field theories in the continuum in [19]. A similar investigation in the framework of field

theory on the lattice has been made in [20]. The asymptotic behaviour was found to be

∆m(L) ≈ CL−1 exp (−αm0L) , (4.2)
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Figure 4. The masses of the gluino-glue and the a–η′ meson at different lattice volumes for a fixed

value of κ = 0.1490. The fit (fit) is done using the ansatz eq. (4.2), and the reduced fit (red. fit)

discards the smallest lattice volume.

with parameters C and 1 ≤ α ≤
√
3/2. This behaviour is quite generic, since it does not

depend on the specific form of the interactions. It also applies to the masses of stable bound

states in a confining theory. For glueballs in lattice gauge theory the constants are [20]

C = − 3

16π

λ2

m2
0

, α =

√
3

2
, (4.3)

where λ is the three-glueball coupling constant. We fitted the dependence of the masses

on the finite box size L by the general asymptotic relation eq. (4.2) and obtained in this

way an extrapolation to the infinite volume limit. To get more stable results, we have used

a numerical fit to obtain the constants m0, C, and α.

We have carried out simulations at several box sizes L, see table 3. The temporal extent

T of the lattice has been chosen to be about twice the spatial extent L. This combination

has been chosen since it is the usual setup in all our simulations.

The first estimation of finite size effects is done at a fixed value of the bare gluino

mass defined by the hopping parameter κ = 0.1490. To visualize the influence on the

mass gap between bosonic and fermionic states, the gluino-glue mass is shown in figure 4

together with the mass of the bosonic a–η′ meson. Our ansatz eq. (4.2) for the functional

dependence of the mass on the lattice volume is valid only in the asymptotic region of large

L and might fail for the smallest lattice sizes. To check its validity we have done a second

fit (red. fit) that excludes the smallest lattice volume. The dimensionless scale 0.5L/r0
corresponds to the length in femtometers if the Sommer parameter r0 is set to r0 = 0.5 fm

– 9 –



J
H
E
P
0
9
(
2
0
1
2
)
1
0
8

(r0ma-π)
2 m0r (fit) C (fit) α (fit) m0r (red. fit) C (red. fit) α (red. fit)

1 2.85(13) 33.6(71) 0.68(11) 2.74(19) 10.8(84) 0.39(26)

2 3.010(81) 30.0(43) 0.627(65) 2.94(11) 12.4(72) 0.41(17)

3 3.165(48) 25.0(28) 0.555(46) 3.108(60) 14.0(47) 0.426(92)

4 3.362(28) 22.7(16) 0.516(26) 3.345(41) 18.9(52) 0.481(66)

5 3.543(56) 22.3(33) 0.510(54) 3.578(70) 35(23) 0.60(15)

Table 1. Fit parameters for the fits of the finite size effects shown in figure 6.

as in QCD. Note that we have always taken the value of r0 obtained by an extrapolation

to the chiral limit of the data obtained on the 243 × 48 and 323 × 64 lattices.

The gluino-glue gets a positive mass shift at smaller volumes, whereas the a–η′ gets a

negative one. This clearly shows that the finite lattice size enhances the supersymmetry

breaking induced by lattice discretisation and nonvanishing gluino mass in our model: at

smaller lattices an additional splitting of the bosonic and fermionic masses is introduced.

In our previous simulations at larger box sizes the gluino-glue particle has been the

heaviest of the measured low energy states. Since finite size effects are small in this case,

this indicates that the mass shift induced by the discretisation artifacts is also positive. So,

both finite size and finite lattice spacing effects add up to a total mass splitting between

bosonic and fermionic states indicating the breaking of supersymmetry.

In case of the gluino-glue, eq. (4.2) seems to describe the volume dependence of the

mass better than for the a–η′. Also, the fit for the a–η′ fails for the smallest lattice

volume. One possible reason for the different behaviour is the smearing of the gluino-glue

that reduces the contribution of the excited states. This reduction becomes important

for the smallest lattice sizes, where the masses are obtained from fits of the correlation

function at smaller distances. Another reason are the systematic uncertainties in the mass

determination of the a–η′ at smaller lattice sizes (see section 3). Nevertheless, neglecting

the smallest lattice size, the fit seems to reproduce the general behaviour of the mass gap

at different lattice volumes.

Above a box size of about L = 1.2 r0/0.5 (corresponding to 1.2 fm in QCD units) the

statistical errors and the systematic errors of the finite size effects are of the same order

and hence the finite size effects can be neglected at present. This is an important estimate

for the minimal lattice size required for the simulations.

In the following we focus our discussion on the gluino-glue since the signal of the finite

size effects is much clearer for this particle. Final results for masses in SYM should be

obtained as extrapolations towards the infinite volume limit, the continuum limit, and the

chiral limit. The continuum limit will be the subject of future investigations. The closer

one gets to the chiral limit, the smaller are the masses of the particles and the ratio of the

box size to the Compton wavelength. In other words, the finite size effects are expected

to get larger in the vicinity of the chiral limit. Therefore, the proper procedure is an

extrapolation to the infinite volume limit before the extrapolation of the chiral limit.
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Figure 5. The mass of the gluino-glue at different lattice volumes and different values of κ as a

function of the square of the adjoint pion mass in units of the Sommer scale. The lines are obtained

from a linear regression of the points for each lattice volume. They are used as a linear interpolation.

2

3

4

5

6

7

8

9

10

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r 0
M

0.5L/r0

(r0mπ)
2=1

(r0mπ)
2=2

(r0mπ)
2=3

(r0mπ)
2=4

(r0mπ)
2=5

2

3

4

5

6

7

8

9

10

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

r 0
M

0.5L/r0

(r0mπ)
2=1

(r0mπ)
2=2

(r0mπ)
2=3

(r0mπ)
2=4

(r0mπ)
2=5

Figure 6. A fit of the finite size effects at several fixed values of (r0ma-π)
2. The fit is done using

the ansatz eq. (4.2). The right panel shows the fits neglecting the smallest lattice volume.

In the first step we have extrapolated the values of the masses to the infinite volume

limit but away from the chiral limit. Instead of a fixed value of the bare parameter κ, we

have fixed the squared mass of the adjoint pion, (r0ma-π)
2, to five different values. The

masses of the gluino-glue at these values have been obtained from a linear interpolation of

the simulation results at each box size. These interpolations are shown in figure 5. The

masses at the three largest box sizes are almost indistinguishable in view of the current

statistical errors.
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the largest lattice volume and different values of κ.

8× 16 12× 24 16× 36 20× 40 24× 48 32× 64 fit red. fit

9.65(46) 4.51(20) 3.72(34) 2.82(47) 2.48(42) 2.69(23) 2.644(91) 2.47(12)

Table 2. The lower entries of this table are the results of chiral extrapolations of the gluino-glue

mass at fixed lattice sizes. The last two entries are obtained by first performing the extrapolation

to the infinite volume limit and then to the chiral limit. In the reduced fit (red. fit) the smallest

lattice volume is ignored. All masses are in units of the Sommer scale.

The results of the interpolation are shown in figure 6. The lines correspond to the fit

of the dependence on the finite box size according to eq. (4.2). The parameter m0 of the

fit is the extrapolated infinite volume limit of the masses. The different parameters of the

fits are summarised in table 1.

The masses extrapolated to the infinite volume are shown in figure 7 as a function of

(r0ma-π)
2. For comparison, the results of the largest lattice have been added to this plot.

From the masses at different values of (r0ma-π)
2 the chiral extrapolation can be ob-

tained assuming a linear dependence. The linear regression of this dependence can be seen

in figure 7. The values obtained from linear extrapolations to the chiral limit are displayed

in table 2. The table contains the values at fixed lattice sizes as well as the results from

the infinite volume extrapolations. The results at the largest two lattices appear to be

consistent with those from the infinite volume limit.
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5 Conclusions

In this work we have investigated the implications of the finite lattice extent in the sim-

ulations of SYM on a lattice. An exotic particle of SYM, the gluino-glue, turned out to

provide the best signal for the finite volume dependence of the masses. A comparison with

the bosonic a–η′ meson shows that the finite size effects on the masses have opposite signs

for both particles: the gluino-glue gets a larger mass at smaller box size, whereas the mass

of the a–η′ is reduced. This indicates that finite size effects enhance the supersymmetry

breaking induced by lattice discretisation and nonvanishing gluino mass, and increase the

unexpected gap between the bosonic and fermionic states seen in previous lattice results.

The influence of the finite box size decreases, however, quite rapidly. The differences be-

tween the three largest lattices in our simulations are nearly negligible. The physical reason

for this effect is the large mass of the lightest particle in this theory. The adjoint pion,

which is light and becomes massless in the chiral limit, is not a physical particle and is

only defined in a partially quenched framework. The lightest physical particles have sig-

nificantly larger masses, even in the chiral limit. Therefore their Compton wavelengths are

small compared to the sizes of our largest lattices.

The aim of these investigations was to obtain estimates of the finite size effects and their

implications on the setup for future simulations of SYM. Another item would be to consider

the effect of changing the fermionic temporal boundary conditions from antiperiodic to

periodic. This could help to disentangle the effects of the finite spatial volume and the

finite temporal extent. In our present work we have chosen a ration of L over T similar to

our final simulations for the determination of the complete spectrum on larger lattices.

The findings have implications for our further investigations of SYM. We have found

that finite size effects are small for L ≥ 1.2 r0/0.5 (corresponding to 1.2 fm in QCD units),

and that the simulations can be efficiently done at present lattice spacings on medium lattice

sizes, for instance, 243 × 48. In order to obtain reliable results relevant to the continuum

limit a sufficiently large statistics and a small lattice spacing appear to be crucial.
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A Summary of the simulations and results

L× T 0.5L/r0 κ ama-π (r0ma-π)
2 amgg̃ ama-η′ Nconf Ncorr

8× 16 0.4499(51) 0.1475 0.2469(22) 4.82(19) 0.993(44) 0.2388(29) 12573 —

8× 16 0.4499(51) 0.1478 0.2223(23) 3.91(17) 0.963(23) 0.2140(30) 12890 2

8× 16 0.4499(51) 0.1482 0.1802(25) 2.56(13) 0.988(42) 0.1760(41) 5062 3

8× 16 0.4499(51) 0.1487 0.158(18) 1.98(50) 1.008(58) 0.159(16) 9900 2

8× 16 0.4499(51) 0.1490 0.145(16) 1.66(40) 1.036(37) 0.140(27) 59789 47

8× 16 0.4499(51) 0.1491 0.117(26) 1.07(50) 1.104(48) 0.108(20) 59972 40

12× 24 0.6749(76) 0.1485 0.2402(30) 4.56(22) 0.572(23) 0.233(13) 9316 1

12× 24 0.6749(76) 0.1487 0.1967(36) 3.06(18) 0.542(21) 0.2050(43) 9096 11

12× 24 0.6749(76) 0.1488 0.1778(53) 2.50(21) 0.513(18) 0.1711(74) 8774 16

12× 24 0.6749(76) 0.1489 0.1696(39) 2.27(15) 0.534(45) 0.1636(49) 8073 20

12× 24 0.6749(76) 0.1490 0.1470(39) 1.71(13) 0.554(21) 0.1867(35) 8083 225

12× 24 0.6749(76) 0.1491 0.1433(62) 1.62(18) 0.541(12) 0.1604(87) 8238 158

12× 24 0.6749(76) 0.1492 0.1322(64) 1.38(16) 0.511(12) 0.147(12) 8033 173

16× 36 0.900(10) 0.1487 0.2508(31) 4.97(24) 0.449(11) 0.349(22) 4699 —

16× 36 0.900(10) 0.1488 0.2490(56) 4.90(33) 0.486(52) 0.281(14) 1101 9

16× 36 0.900(10) 0.1489 0.2111(31) 3.52(18) 0.448(22) 0.228(32) 4796 10

16× 36 0.900(10) 0.1490 0.2099(18) 3.48(14) 0.419(19) 0.262(17) 9909 24

16× 36 0.900(10) 0.1492 0.1544(80) 1.89(24) 0.438(21) 0.263(17) 7550 177

20× 40 1.125(13) 0.1488 0.26723(96) 5.64(17) 0.428(16) 0.323(19) 3700 —

20× 40 1.125(13) 0.1490 0.2297(17) 4.17(15) 0.407(17) 0.319(17) 3698 5

20× 40 1.125(13) 0.1492 0.1997(66) 3.15(28) 0.377(17) 0.37(11) 3799 72

24× 48 1.350(15) 0.1490 0.2418(16) 4.62(16) 0.396(15) 0.382(20) 6899 11

24× 48 1.350(15) 0.1492 0.20321(89) 3.26(10) 0.3773(71) 0.301(14) 3228 81

24× 48 1.350(15) 0.1492 0.20381(80) 3.283(99) 0.3740(75) 0.299(28) 8869 —

24× 48 1.350(15) 0.1493 0.1783(15) 2.513(98) 0.309(23) 0.289(19) 10203 18

32× 64 1.800(20) 0.1490 0.23847(41) 4.49(12) 0.381(20) 0.335(10) 5039 —

32× 64 1.800(20) 0.1492 0.20346(54) 3.272(91) 0.360(14) 0.292(13) 6348 —

32× 64 1.800(20) 0.1494 0.1604(15) 2.034(83) 0.351(14) 0.269(25) 5485 156

32× 64 1.800(20) 0.1495 0.1294(24) 1.323(79) 0.316(17) 0.253(45) 2147 80

Table 3. Summary of our simulations at β = 1.75. The value of r0/a obtained from the extrap-

olation of the 243 × 48 and 323 × 64 lattice data to the chiral limit is r0/a = 8.89(10). Nconf is

the number of configurations in the gluino-glue mass measurement. Ncorr is the total number of

configurations with a reweighting factor different from one.
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