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Abstract: We investigate infinite families of 3d N = 2 superconformal Chern-Simons

quivers with an arbitrarily large number of gauge groups arising on M2-branes over toric

CY4’s. These theories have the same matter content and superpotential of those on D3-

branes probing cones over La,b,a Sasaki-Einstein manifolds. For all these infinite families,

we explicitly show the correspondence between the free energy F on S3 and the volume

of the 7-dimensional base of the associated CY4, even before extremization. Symmetries

of the toric diagram are exploited for reducing the dimensionality of the space over which

the volume of the Sasaki-Einstein manifold is extremized. Similarly, the space of trial R-

charges of the gauge theory is constrained using symmetries of the quiver. Our results add

to those existing in the literature, providing further support for the correspondence. We

develop a lifting algorithm, based on the Type IIB realization of these theories, that takes

from CY3’s to CY4’s and we use it to efficiently generate the models studied in the paper.

Finally, we show that in all the infinite families we consider F 2 can be expressed, even off-

shell, as a quartic function in R-charges associated to certain 5-cycles. This suggests that a

quartic formula on R-charges, analogous to a similar cubic function for the central charge a

in 4d, exists for all toric toric CY4’s and we present some ideas regarding its general form.
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1 Introduction

In recent years we have witnessed remarkable progress in the study of 3d superconformal

field theories (SCFTs) on two tightly interconnected fronts. Progress in any of the two

directions has fueled new advances in the other one.

The first front involves the determination of SCFTs describing the low energy dynamics

of M2-branes. Following the seminal ideas of [1–4], which culminated with the construction

of a 3d superconformal Chern-Simons (CS) theory with maximal N = 8 supersymmetry

(SUSY), a theory describing N M2-branes over C4/Zk was proposed by Aharony, Bergman,

Jafferis and Maldacena (ABJM) [5]. The ABJM theory is an U(N)×U(N) CS gauge the-

ory with levels k and −k and a matter content and superpotential equal to the ones for N

D3-branes on the conifold [6]. Soon after the appearance of this model, a lot of activity was

devoted to extending these results to cases with reduced SUSY, resulting in the proposal of

several gauge theories as candidates for M2-branes over various geometries [7]–[12]. Several

works focused on M2-branes over toric Calabi-Yau 4-folds (CY4) [13]–[25].

A remarkable feature of the SCFT on a large number N of M2-branes, which was

originally identified in [26] from a gravity dual viewpoint, is that its free energy scales

as N3/2. The attempt to reproduce this scaling from the field theory has been a major

driving force for the second front of progress, which concerns the development of methods

for counting degrees of freedom in 3d SCFTs (SCFT3). Using localization [27], it has been

possible to match the free energy of the field theory with the dual gravity result for the-

ories with N ≥ 3 SUSY [28–32]. The problem becomes more involved for N = 2 theories.

After appropriate regularization, a general expression for the free energy in theories with

reduced SUSY was proposed in [33, 34]. In these cases, the free energy becomes a function

of the scaling dimensions (which in 3d are equal to the superconformal R-charges) of fields.

Moreover, [33] showed that the exact superconformal R-charge is obtained by extremizing

the free energy, in the same spirit of a-maximization in 4d [35]. This proposal has been

tested both at the perturbative [36–40] and non-perturbative levels [41–43]. Actually, in

all examples the free energy has been found not only to be extremized but to be maxi-

mized. This observation has led [43] to conjecture the existence of an F -theorem in three

dimensions. Several checks of this conjecture have appeared in [39, 44–47].

Borrowing from the 4d nomenclature, it is useful to distinguish between chiral-like and

non-chiral-like theories. As the name indicates, non-chiral-like quivers are those in which

every bifundamental field is accompanied by another bifundamental with opposite charges.

These techniques have allowed non-trivial checks of the AdS4/CFT3 for non-chiral-like

theories [41–43, 48]. The N3/2 scaling of the free energy has not been observed in chiral-

like theories yet. This fact might indicate some problem in taking the large-N limit or,

more drastically, it can mean that these theories do not describe SCFTs on M2-branes. The

answer is still inconclusive, even though some partial results pointing in the first direction

have appeared in the literature [31, 48–50]. One of the main purposes of this paper is,

in the spirit of similar calculations for 4d SCFTs (SCFT4) [51–54], to explicitly show the

agreement between the field theoretic and gravity determinations of the free energy in

infinite classes of models with an arbitrarily large number of gauge groups. In doing so, we

– 2 –
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accumulate evidence that not only supports the application of the localization ideas to the

determination of the free energy in theories with reduced SUSY, but also validates the gauge

theories we consider as the correct theories on M2-brane over the corresponding CY4’s.

This paper is organized as follows. In section 2, we review the computation of the

volume of Sasaki-Einstein 7-manifolds at the base of toric CY4 cones, the calculation of the

free energy of SCFT3’s, and the correspondence between gauge theory, geometry and dimer

models. Section 3 discusses the La,b,a
~k

infinite family of gauge theories, which are the main

focus of the paper. These theories have the same quiver and superpotential of La,b,a models

in 4d [52–54] and, in addition, CS couplings encoded in ~k. Section 4 is devoted to the Type

IIB realization of these theories and introduces an algorithm that lifts the cone over La,b,a

to the toric CY4 that corresponds to the mesonic moduli space of the CS quiver. The lifting

algorithm is used in section 5 to generate infinite classes of models, for which the agreement

between the geometric and field theoretic determinations of the free energy is established.

In section 6 we show that, in all the infinite classes of models considered in the paper, it

is possible to express the free energy as a quartic function of the R-charges of extremal

perfect matchings, even before extremization. We present some thoughts about a general

expression for such a quartic function. In section 7, we show that the free energy is invariant

for certain toric duals obtained by permuting 5-branes in the Type IIB construction of the

La,b,a
~k

models. We conclude in section 8. We also include two appendices, which discuss the

symmetries of the toric diagrams under consideration, and investigate the applicability of

the proposed quartic formulas on R-charges for the free energy for some non-La,b,a
~k

theories.

2 Some background

In this section we review some topics we will later use throughout the paper.

2.1 Sasaki-Einstein volumes

We are interested in the quiver gauge theory on the worldvolume of M2-branes probing a

CY4 that is real cone over a 7-dimensional Sasaki-Einstein (SE) manifold Y7. The volume

of Y7 is expected to control the number of degrees of freedom of the gauge theory. For toric

CY4’s, this volume can be computed from the toric diagram in terms of the Reeb vector

b = (b1, b2, b3, b4) [56], which is a constant norm Killing vector field commuting with all

the isometries of the SE manifold.

There is a one-to-one correspondence between extremal perfect matchings, i.e. corners,

of the toric diagram and a basis of 5-cycles Σi in the base over which M5-branes can be

wrapped.1 The R-charge of a single M5-brane wrapped over Σi is given by

∆i =
π

6

Vol(Σi)

Vol(Y7)
. (2.1)

1The concept of perfect matching becomes important when realizing these theories in terms of brane

tilings. This is discussed in section 2.3. For the purpose of this section, it is sufficient to regard perfect

matchings as points in the toric diagram.

– 3 –



J
H
E
P
0
9
(
2
0
1
2
)
0
3
4

This is a function of the Reeb vector b, and the exact superconformal R-charge is obtained

by extremizing the function ZMSY defined as

ZMSY =
d∑

i=1

Vol(Σi), (2.2)

where d is the number of corners of the toric diagram. In terms of ZMSY, the volume of Y7
and the R-charges of extremal perfect matchings are

Vol(Y7) =
π4

12
ZMSY, ∆i =

2Vol(Σi)

ZMSY
. (2.3)

The volumes Vol(Σi) can be calculated from the toric diagram thanks to the algorithm

introduced in [56], extended to CY4’s in [17]. Every point in the toric diagram is given

by a 4-vector that, due to the Calabi-Yau condition, can be taken to the form vi = (ṽi, 1),

with ṽi a 3-vector. Considering the counterclockwise sequence wk, k = 1, . . . , ni of vectors

adjacent to a given vector vi one has

Vol(Σi) =

ni−1∑

k=2

〈vi, wk−1, wk, wk+1〉〈vi, wk, w1, wni〉
〈vi, b, wk, wk+1〉〈vi, b, wk−1, wk〉〈vi, b, w1, wni〉

, (2.4)

where · indicate column 4-vectors and 〈·, ·, ·, ·〉 is the determinant of the resulting 4 × 4

matrix.

2.2 Free energy

We now briefly review the calculation of the free energy in 3d, vector-like, CS quivers in

the large-N limit. The free energy is computed in terms of the partition function on a

3-sphere ZS3 as

F = − log |ZS3 | . (2.5)

The partition function has been calculated in [33, 34] by exploiting the localization tech-

nique [27], which reduces it to a matrix integral. For a gauge group G, with CS level k, and

matter (by which we mean chiral multiplets) in the representation R of the gauge group

with quantum scaling dimension ∆, one has

ZS3 =

∫
d

[
λ

2π

]
e

ikTrλ2

4π
−∆mTrλ detAdj

(
2 sinh

λ

2

)
detRe

l(1−∆+i λ
2π ). (2.6)

The integral is performed over the Cartan subgroup of the gauge group. The first exponen-

tial corresponds to the CS and monopole contributions. The determinants come from the

1-loop contributions of the vector multiplet and the matter fields. For N = 2, the 1-loop

determinant of matter fields is expressed in terms of the function l(z), which is defined

through its derivative as follows

l′(z) = −πz cotπz, (2.7)

and fixing the integration constant such that l(0) = 0.
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In this paper, we are interested in computing (2.6) in the large-N limit of vector-like

quiver gauge theories with gauge group G =
∏

aU(N)ka and
∑

a ka = 0. The integral is

dominated by the minimum of the free energy. One can distinguish two contributions to

the equations of motion, so called long and short range forces. Long range forces cancel in

this class of models and only the short range ones contribute [30, 41, 43]. The eigenvalue

λi(a) of the a-th gauge group scales as

λ
(a)
i = N1/2xi + iy

(a)
i , (2.8)

where x and y are real [43]. The real part of (2.8) becomes dense, with density ρ(x), while

the imaginary part becomes a continuous function of x, y
(a)
i → ya(x).

The free energy follows from the saddle point equations ∂λF = 0 [43]. The relevant

contributions for the case of vector-like theories with bifundamental and adjoint matter

and
∑

a ka = 0 are

FCS =
N3/2

2π

∫
ρ(x)x

|G|∑

a=1

kayadx

Fbifab = −N3/2 2−∆+
ab

2

∫
ρ2dx

((
δyab + π∆−

ab

)2 − π2

3
π2∆+

ab(4−∆+
ab)

)

Fadj =
8N3/2

3
π2∆(1−∆)(2−∆)

∫
ρ2dx (2.9)

where the first equation is the CS contribution, the second one is the contribution of a

bifundamental-antibifundamental pair connecting the a-th and the b-th nodes, and the last

one is the contribution of an adjoint field. We have defined ∆
(±)
ab = ∆ab ± ∆ba. In the

partition function one should take into account the diagonal monopole charge, which is

given by ∆m = ∆(T )−∆(T̃ ), where T and T̃ are the diagonal monopole and antimonopole

operators. Since vector-like models are charge conjugation invariant, ∆(T ) = ∆(T̃ ), and

we can set ∆m = 0. The bifundamental contribution is only valid when δyab = ya − yb is

in the regime |δyab + π∆−
ab| ≤ π∆+

ab. The leading contribution to the free energy in the

large-N limit is then obtained by extremizing the free energy functional over ρ and ya while

imposing the normalization of ρ.

As shown in [29, 43], building on results from [28], the supergravity scaling N3/2 [5]

is recovered and the free energy matches the volume computation from AdS/CFT for the-

ories with N > 2 SUSY. The N = 2 case is more involved, because R-charges of matter

fields usually differ from the classical value ∆ = 1/2. Indeed, the exact superconformal

R-charges is obtained by extremizing the free energy itself [33].

Some examples of the agreement between the field theory computation of the free

energy and the geometric calculation of volumes have been presented in [41–43, 48, 49].

One of the main goals of this paper is to extend this matching to infinite classes of theories

with arbitrarily large number of gauge groups, in the spirit of similar tests performed in

the context of the AdS5/CFT4 correspondence [51–54]. Some infinite families of models,

consisting of flavored quivers with one or two gauge groups and necklace quivers with

N ≥ 2 SUSY, have already been considered in the literature [30, 31, 43, 55].

– 5 –
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The general conjecture is that the free energy of the gauge theory on S3 is related to

Vol(Y7) via

F = N3/2

√
2π6

27Vol(Y7)
. (2.10)

We will later see that, in an infinite number of examples, the previous expression holds

even off-shell, i.e. even before maximizing the free energy or minimizing the volume.

2.3 Geometry, dimer models and R-charges

In this paper we will focus, as we will discuss in greater detail in section 3, on theories

with the same quivers of 4d parents and with additional CS couplings for gauge groups.

This class of theories can be encoded in terms of brane tilings [53, 67], as originally studied

in [14]. Their mesonic moduli space is most efficiently described in terms of perfect match-

ings of the tiling, which are in one-to-one correspondence with the gauged linear sigma

model (GLSM) fields in the toric construction of the moduli space, i.e. they map to points

in the toric diagram.2 The mapping between chiral fields in the quiver Xi and perfect

matchings pα is given by

Xi =
c∏

α=1

pPiα
α , (2.11)

where c is the total number of perfect matchings, and Piα is equal to 1 if the edge in the

brane tiling associated to the chiral field Xi is contained in pα and zero otherwise.

Piα =

{
1 if Xi ∈ pα
0 if Xi /∈ pα

(2.12)

A prominent role is played by the subset of extremal perfect matchings, i.e. those

corresponding to corners of the toric diagram, which we call p̃µ, µ = 1, . . . , d. The gauge

theory contains a U(1)R×U(1)3F ×U(1)nB
B global symmetry group, where F and B indicate

flavor and baryonic symmetries, and nB is a positive integer that depends on the underly-

ing geometry. Extremal perfect matchings are the only ones with non-trivial charges under

these symmetries [58]. In other words, the global U(1) symmetries of all chiral fields in the

quiver are determined by their p̃µ content. It is then useful to construct a reduced ma-

trix P̃ , which is simply a restriction of P to the columns associated with extremal perfect

matchings. Its entries are given by

P̃iµ =

{
1 if Xi ∈ p̃µ
0 if Xi /∈ p̃µ

(2.13)

Consider any of the global U(1) symmetries, under which p̃u has charge aµ. The charge of

a chiral field is then given by

Q(Xi) =
d∑

µ=1

P̃iµaµ. (2.14)

2When constructing a toric Calabi-Yau as the moduli space of a gauge theory, more than one perfect

matching might correspond to the same point in the toric diagram.
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In the case of the R-symmetry, the charges of the extremal perfect matchings are con-

strained by
∑d

µ=1 aµ = 2. For other U(1) symmetries, the constraint is
∑d

µ=1 aµ = 0.

In most of the theories considered in this paper, we will use the symmetries of the quiv-

ers under consideration, which will be discussed in section 3, to simplify the computation

of the free energy. Having said that, we would like to emphasize that the ideas presented

in this section provide an alternative way of organizing this calculation according to the

following two steps:

• Use (2.14) to parametrize R-charges of matter fields in terms of those of extremal per-

fect matchings. A corollary of this parametrization is that symmetries of the toric dia-

gram that reduce the number of independent R-charges of extremal perfect matchings

also result in a lower dimensional space of R-charges for the chiral fields in the quiver.

• Maximize the free energy over the resulting lower dimensional space.

Let us explain in more detail what we mean by using symmetries of the toric diagram

to restrict a field theory computation. We do not have in mind a top-down perspective,

which indeed is logically incorrect for our goal, in which we start from a toric CY 4-fold

with some symmetries and assume they survive at the level of the quiver. This reasoning

has a potential drawback: additional elements, such as torsion fluxes (see e.g. [62–64]),

might be present in the M-theory construction such that the full symmetry of the original

geometry does not subsist in the resulting gauge theory. On the contrary, in all the theories

we consider, we have explicitly checked that we recover the corresponding toric geometry

via a purely field theoretic computation: the calculation of the moduli space. We can

then make the rather simple and natural assumption that the field theory exhibits the

symmetries of its moduli space. We have verified in all our models that the two step

procedure based on perfect matchings and symmetries of the toric diagram outlined above

reproduces the free energy computation using quiver symmetries we present in section 5.

3 L
a,b,a

~k
theories

In section 1, we reviewed the extent to which quiver CS theories have been tested as theories

on M2-branes and mentioned the difficulties encountered when trying to do so. In order to

remain on the conservative side, we will focus in this paper in theories with toric, non-chiral,

4d parents. These parents can be fully classified using toric geometry. They correspond to

all toric Calabi-Yau 3-folds (CY3) without compact 4-cycles, i.e. those with toric diagrams

without internal points. All geometries satisfying this condition are C
3/(Z2 × Z2) and the

infinite La,b,a family. Figure 1 shows the toric diagram for the cones over La,b,a manifolds,

consisting of two parallel lines of (a+ 1) and (b+ 1) points, respectively.

The corresponding gauge theory can be taken to the form given in figure 2 [52–54].

The superpotential is given by

W =
b−a∑

i=1

Xi,i (Xi,i+1Xi+1,i−Xi,i−1Xi−1,i)+
b+a∑

i=b−a+1

(−1)b+a+iXi,i−1Xi−1,iXi,1+1Xi+1,i, (3.1)

where Xi,j indicates a bifundamental field connecting nodes i and j and Xi,i corresponds

to an adjoint of node i. The nodes in the quiver are identified according to a+ b+ 1 ≡ 1.

– 7 –
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1

aa−110

bb−1b−220

Figure 1. Toric diagram for the real cones over La,b,a manifolds.

2a

∆

∆∆

∆ 1−∆

1−∆1−∆

1−∆

1−∆

1−∆ 1−∆

1−∆1−∆

1−∆1−∆

1−∆

2∆2∆2∆

b−a

Figure 2. Quiver diagram for La,b,a theories and a one parameter parametrization of the R-charges.

Marginality of the superpotential, which is necessary for conformal invariance, re-

quires that all superpotential terms have R-charge equal to 2, restricting the space of trial

R-charges entering the extremization of the free energy. This space can be reduced even

further by exploiting the symmetries of the gauge theory. Since both the quiver and the

superpotential for this class of theories are symmetric under the exchange Xi,i+1 ↔ Xi+1,i,

it is natural to assume that the saddle point has ∆(Xi,i+1) = ∆(Xi+1,i). With this further

constraint, the space of trial R-charges becomes one dimensional and can be parametrized

as shown in figure 2. This parametrization will be used in section 5 to deal with some of

the more involved examples. The previous symmetry argument is the same one originally

introduced in [43] for N = 2 and N = 3 necklace quivers and has been also implicitly used

for some examples in [41].3

We will add to these models CS couplings for the gauge groups, which can be arranged

in a vector ~k = (k1, . . . , ka+b). We will often use the notation

~k = (k1, . . . , kb−a||kb−a+1, . . . , ka+b), (3.2)

where we use a double line to separate nodes with and without an adjoint field. We denote

the resulting theories La,b,a
~k

. In section 4, we introduce an algorithm that determines how

the inclusion of ~k lifts the CY3 given by the real cone over La,b,a to a CY4.

The N = 3 necklace quivers of [30, 31, 55] have the same matter content of our models

for a = b, but additional quartic superpotential interactions. N = 2 deformations of these

3There is a small subtlety regarding this argument, which applies to both the theories considered in this

paper and the ones in [41, 43]. One might worry that the Xi,i+1 ↔ Xi+1,i symmetry is spoiled by generic

choices of CS levels, which distinguish between going around the quiver from left to right and from right to

left. We consider the agreement between the geometric and field theoretic determinations of the free energy

in [41, 43] and our paper should be regarded as evidence supporting this symmetry.

– 8 –
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3 3

2

Projec
t

(a)

(b)

Figure 3. A pictorial representation depicting the projection of a toric diagram of a CY4 onto that

of a CY3: a) 3d toric diagram of a CY4 and b) its projection onto the La,b,a geometry.

theories, obtained by integrating-in adjoint fields and adding polynomial superpotential

interactions for them, have also been considered [43].

4 Lifting Calabi-Yau 3-folds to Calabi-Yau 4-folds

By now, it is well-known that candidates for 3d theories on M2-branes over toric CY4’s can

be constructed by starting from theories with the same quivers and superpotentials of 4d

theories on D3-branes over toric CY3’s, to which we refer as “parents”, and adding CS terms

for the gauge groups. This strategy was exploited soon after the introduction of the ABJM

model for generating potential M2-brane theories with reduced SUSY [8, 14, 15, 18, 20].

The 3d toric diagram of the “uplifted” CY4 is such that it reduces to the 2d one of the parent

CY3 when projected along a direction determined by the CS levels. From the perspective

of the computation of moduli spaces, this additional projection arises from an extra D-term

constraint that is imposed in the 4d theories. Models in which such a projection is not pos-

sible, and hence do not descend from a 4d parent, have also been proposed [17–19, 21, 22].

In what follows, we will focus our discussion on La,b,a
~k

theories. The most general uplift

of figure 1 into a 3d toric diagram corresponds to the two lines turning into convex polygons

living on parallel planes, as sketched in figure 3.

4.1 A lifting algorithm

In this section we introduce a general algorithm for lifting cones over La,b,a to CY4’s by ap-

propriate choices of CS levels in the corresponding quivers. We will exploit this procedure

in section 5 for generating interesting classes of models. The method is a specialization of

the ideas in [15] to La,b,a theories.

A useful starting point is the Type IIB brane realization of La,b,a
~k

theories. They can

be engineered in terms of an elliptic model consisting of a stack of N D3-branes with one

of their worldvolume directions compactified on a circle, suspended between a set of (b+a)

(1, pi) 5-branes. An (1, pi) 5-brane is a bound state of one NS5-brane and pi D5-branes.
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Figure 4. Tybe IIB brane system engineering the La,b,a
~k

theories.

bbP 2Q Qa1Q b−a+1PPb−ab−a−1PP1 P

Figure 5. Quiver diagram for La,b,a theories showing the Pβ and Qα charges.

The pi integers determine the CS levels in the quiver according to the following expression

ki = pi−1 − pi. (4.1)

We split the 5-branes, i.e. the integers pi, into two sets: Qα, α = 1, . . . , a, and Pβ ,

β = 1, . . . , b. The branes in the configuration are extended as follows

Brane 0 1 2 3 4 5 6 7 8 9

D3 × × × ×
NS5α × × × × × ×
D5α × × × × × ×
NS5β × × × × × ×
D5β × × × × × ×

The SCFT lives in the (0, 1, 2) directions common to all the branes. The D3-branes are,

in addition, extended along x6, which is compactified on a circle. The (1, Qα) 5-brane

is a bound state of the NS5α and Qα D5α branes and extends along (0, 1, 2, [37]θα , 4, 5).

Similarly, the (1, Pβ) 5-brane is a bound state of the NS5β and Pβ D5β branes and extends

along (0, 1, 2, [37]θβ , 8, 9). The final configuration is shown in figure 4. In order to reproduce

the quiver in figure 2, we distribute the 5-branes on the circle as follows. First we put (b−a)

(1, Pβ) 5-branes and then we alternate the remaining a (1, Pβ) and a (1, Qα) branes. It is

possible to reorder the 5-branes along the x6 circle, which results in dual gauge theories.

The D3-branes stretched between each pair of 5-branes give rise to a gauge group in

the quiver. Each 5-brane is associated to a pair of bifundamental chiral fields as shown in

figure 5. In addition, we have an adjoint chiral field for each consecutive pair of 5-branes

of the same type.

Every point in a 2d toric diagram corresponds to a perfect matching in the associated

brane tiling, or a collection of them. In order to connect geometry to perfect matchings,
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we recall that the 2d (3d) toric diagram describes the moduli space of the 4d (3d) gauge

theory. For 4d theories defined by brane tilings, the correspondence between points in the

toric diagram and sets of perfect matchings was proved in [65], to where we refer the reader

for details of the proof, which involves interesting ideas such as a connection between the

4d theory and an auxiliary gauge theory living on the nodes of the bipartite graph. The

computation of the moduli space for the class of 3d theories we focus on in this paper only

differs from the 4d case by the fact that one linear combination of the D-term equations, de-

termined by the CS levels, is not imposed [13, 14]. The CS couplings of all infinite families

considered in section 5 will be chosen in such a way that the identification between points

and perfect matchings extends without changes to the 3d toric diagrams. We continue our

discussion under this assumption.

The toric diagram for La,b,a theories was given in figure 1. As we will now explain, the

Pβ ’s control how the top line of the toric diagram is lifted to a plane. Similarly, the Qα’s

determine the lift of the bottom line. The degeneracies of perfect matchings associated to

points in the toric diagram are
(
b
µ

)
and

(
a
ν

)
, where µ = 0, . . . , b and ν = 0, . . . , a run over

the points on the bottom and top row respectively.

Perfect matchings correspond to certain collections of edges in the associated brane

tilings, which map to sets of chiral fields in the quiver. Indeed, thinking in terms of the

quiver provides a clear visualization of these multiplicities. Let us first consider the (b+1)

points in the lowest line of the toric diagram. The perfect matching for µ = 0 consists of all

the fields in the quiver with the arrows pointing from right to left. The perfect matchings

for the µ-th point correspond to reversing the orientation of µ of the fields, giving rise to

the multiplicity described by the binomial coefficients. Repeating this procedure, we reach

the µ = b point in which all the fields are arrows in the quiver point from left to right. The

line with (a+1) is constructed in the same way, by using the fields labeled by Qα, but also

including the adjoint fields.

The new mesonic direction in the CY4 is determined by the Pβ or Qα charges. In

order to see this, it is useful to define a new integer quantity QCS associated to every chiral

multiplet. QCS is defined such that it is equal to pi (i.e. equal to Pβ or Qα) for every

bifundamental field pointing from left to right in the quiver and zero otherwise.

QCS =

{
1 left to right arrow

0 otherwise
(4.2)

The value of QCS associated to a perfect matching is obtained by summing the contri-

butions of all chiral fields it contains. The new mesonic direction in the CY4 is then

determined following a simple prescription:

Every perfect matching in the 2d toric diagram gets a shift into the third

dimension equal to its QCS value.

Let us first consider the effect of this rule on the lowest line. The first point, µ = 0, has

QCS = 0 and hence does not move. The other endpoint of the line, µ = b, gets the maximum

possible shift, equal
∑b

β=1 Pβ . The intermediate points are not only shifted but they can

also be split, depending on the total QCS of each of the perfect matchings associated to a
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given point. The expansion of the top line of the toric diagram into the third dimension

follows the same prescription, with the values of QCS determined by Qα. Positivity of the

Pβ and Qα charges guarantees the convexity of the resulting 3d toric diagram.

It is possible to take the theory to a conventional form in which the Pβ are arranged

in increasing order

P1 ≤ P2 ≤ · · · ≤ Pb−1 ≤ Pb , (4.3)

and similarly for the Qα. In order for all perfect matchings to get different shifts, they must

have different values of QCS . Then, a necessary condition for fully lifting the degeneracy

of points in the bottom and top lines of the toric diagram is that all Pβ and ll Qα are

different, respectively.

The algorithm we have just described leads to a broad range of results. For example, in

the simple case in which Pβ ≡ P for all β and Qα = Q (with Q 6= P ) for all α, the two lines

are lifted to lines, giving rise to the toric diagram for C2/Za×C
2/Zb. This is the situation

considered in [8]. On the other end of the spectrum, we have cases in which every internal

point of the lines is expanded and generates two new corners. Together with the four exter-

nal points of the original 2d toric diagram, they lead to a toric diagram with 2(a+b) corners.

A necessary condition for this to happen is that all the inequalities in (4.3) are strict.

Let us now discuss in further detail the lift of internal points inside the two lines in

the La,b,a toric diagram. We discuss the bottom line, the top line behaves in a similar

way. The µ = 1 point expands into a segment in which, if we sort the Pβ ’s as in (4.3), the

bottom and top endpoints are shifted by P1 and Pb units, respectively. I.e., this point turns

into segment of length (Pb − P1).
4 The µ = b− 1 point also expands into a segment, with

its endpoints shifted by
∑b−1

β=1 Pβ and
∑b

β=2 Pβ . Once again, the length of the resulting

segment is (Pb−P1). The same phenomenon occurs for all other internal point, i.e. the µ-th

and (b− µ)-th points turn into segments of equal length. The maximal length is attained

for the (b− 1)/2-th and the (b+ 1)/2-th points for odd b, and for the b-th point for odd b.

An example. Let us illustrate the previous ideas with an explicit example. Consider the

L2,5,2 theory and take

Pβ = {1, 2, 3, 1, 2}
Qα = {2, 1} (4.4)

which, following (4.1), generates the following CS levels for the quiver

ki = {1,−1,−1, 1, 1, 0,−1}. (4.5)

Figure 6 shows the result of applying the lifting algorithm. We see the, in this case partial,

lift of degeneracies of points in the toric diagram and the appearance of new corners.

5 Infinite families

In this section we present various infinite families of gauge theories and the associated

CY4’s obtained from La,b,a models by the lifting algorithm introduced in section 4. In all

4Clearly, if all Pβ are equal, the segment degenerates into a point.
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Figure 6. Lift of the toric diagram of L2,5,2 for Pβ = {1, 2, 3, 1, 2} and Qα = {2, 1}. We indicate

the multiplicity of internal points and identify the corners of the 3d toric diagram with black circles.

these cases we show the volume computation and the gauge theory calculation of the free

energy agree. Interestingly, this agreement holds even off-shell.

We present geometries whose toric diagrams have 4, 6 and 8 extremal perfect match-

ings. The models presented towards the end are interesting because they give rise to

non-trivial R-charges.

5.1 Four extremal points: La,b,a
(0,...,0||k,−k,...,k,−k)

We start our investigation of infinite classes of models by considering geometries whose

toric diagrams, shown in figure 7, have four corners given by the vectors

G =




v1 v2 v3 v4
0 0 0 a

0 b 0 0

0 0 1 1

1 1 1 1




(5.1)

These geometries are C
2/Za × C

2/Zb orbifolds and their dual gauge theories were

introduced and investigated in [8]. They are obtained via the lifting algorithm by setting,

for example,

Pβ = k, Qα = 0. (5.2)
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(0,1,0)

(a,0,1)
(0,b,0)

Figure 7. Toric diagram for the La,b,a
(0,...,0||k,−k,...,k,−k) family with k = 1.

The resulting CS couplings are

~k = (0, . . . , 0||k,−k, . . . , k,−k). (5.3)

Geometric computation. The ZMSY function is obtained by summing over the volumes

of the 5-cycles corresponding to the extremal points in the toric diagram. They are func-

tions of the Reeb vector b and ZMSY, which corresponds to the sum of these contribution,

becomes

ZMSY =
4ab

b1b2 (b2 + b (b3 − 4)) (b1 − ab3)
, (5.4)

where we have set, as in all the examples that follow, b4 = 4. Assigning an R-charge ∆i to

each of the four extremal points vi, these R-charges, corresponding to the charges of the

extremal perfect matchings, can be expressed in terms of the Reeb vector as

∆1 = −b2 + b (b3 − 4)

2b
, ∆2 =

b2
2b

, ∆3 = −b1 − ab3
2a

, ∆4 =
b1
2a

. (5.5)

without loss of generality we consider ∆1 < ∆4 and ∆3 < ∆2. The volume function becomes

Vol(Y7) =
π4

48abk∆1∆2∆3∆4
. (5.6)

Under the constraint
∑

i∆i = 2, the volume is minimized for ∆i = 1/2. We have included

an extra k factor with respect to (2.3) in the denominator of the volume due to an addi-

tional Zk orbifold action on the moduli space, where k = gcd({ka}) [5]. This factor will

also be present in the volumes of all the examples that follow.

Free energy computation. Let us now compute the free energy of this class of models.

Recall that a perfect matching is a subset of edges such that every vertex in the brane tiling

is an endpoint of precisely one edge in the set. Using the dictionary between brane tilings

and gauge theories [67], a perfect matching can be interpreted as a subset of the chiral

fields in the quiver such that it contains exactly one field for each superpotential term.

The four extremal perfect matchings can be simply represented in terms of the quiver as

shown in figure 8.

It is then straightforward to determine the matrix P̃iµ and the R-charges of chiral fields

in terms of those of the extremal perfect matchings. We show the result in figure 9.
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Figure 8. Perfect matchings associated to the four corners of the toric diagram given in (5.1). Red

arrows indicate the chiral fields associated with edges in the perfect matching.

22∆∆ 22∆∆ 22∆∆ 2

1∆∆ 11∆∆ 11∆∆ 11∆ 3∆∆ 33∆∆ 3

4∆∆ 44∆ ∆ 4

∆3434∆∆34

∆

Figure 9. R-charges of chiral fields in terms of the R-charges of extremal perfect matchings. We

have defined ∆34 ≡ ∆3 +∆4.

The free energy is given by the sum of the CS and the matter field (bifundamentals

and adjoints) contributions. As we already anticipated we are setting the monopole charge

to zero even off-shell. The CS contribution to the large-N free energy is

FCS

N3/2
=

a∑

i=1

k

2π

∫
ρ δyb−a+2i−1,b−a+2i x dx. (5.7)

The matter contribution is

Fmatter

N3/2
= −

∑

i∈e(B)

2−∆
(+)
i,i+1

2

∫
ρ2
((

δyi,i+1 + π∆
(−)
i,i+1

)2
− π2

3
∆

(+)
i,i+1

(
4−∆

(+)
i,i+1

))
dx

−
∑

i∈e(W )

2−∆
(+)
i,i+1

2

∫
ρ2
((

δyi,i+1 + π∆
(−)
i,i+1

)2
− π2

3
∆

(+)
i,i+1

(
4−∆

(+)
i,i+1

))
dx

+
2π2

3

∑

i∈e(B)′

∆
(+)
i,i+1

(
1−∆

(+)
i,i+1

)(
2−∆

(+)
i,i+1

)∫
ρ2dx, (5.8)

where e(B) and e(W ) refer to the black and white nodes in the quiver as shown in figure 9.

We moreover denote e(B)′ the subset of the black nodes containing adjoint fields. We have

defined ∆
(±)
i,j = ∆i,j + ∆j,i. We solve the Euler-Lagrange equations with the δy variables

subject to the following constraint

δyb+a,1 =
b+a−1∑

i=1

δyi,i+1. (5.9)
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R-charges are parametrized as in figure 9. In the sum over black nodes, we can rewrite

∆
(+)
i,i+1 = ∆1 +∆2 = ∆12 and ∆

(−)
i,i+1 = ∆1 −∆2. Similarly, in the sum over white nodes we

can rewrite ∆
(+)
i,i+1 = ∆3 +∆4 = ∆34 and ∆

(−)
i,i+1 = ∆3 −∆4. The eigenvalue distribution is

reduced to a piecewise function over three connected domains as follows





δyW = − b
aδyB = −4bkπ2x(b∆4∆3∆12+a∆1∆2∆34)+2bπµ(∆2∆3−∆1∆4+∆2∆4)

2abkπx(∆2∆3−∆1∆4+∆3∆4)−µ(a∆12+b∆34)

− µ
2bkπ∆4

< x < µ
2bkπ∆3

δρ = µ(a∆12+b∆34)−2abkπx(∆2∆3−∆1∆4+∆2∆4)
8π3∆12∆34(a∆1+b∆3)(a∆2+b∆4)

(5.10)

Out of this region, we have





δyW = − b
aδyB = −2π∆1 − µ

2bkπ∆1
< x < − µ

2bkπ∆4

ρ = − b(µ+2akπx∆1)
8π3∆12(a∆1+b∆3)(a∆1−b∆4)

(5.11)

and





δyW = − b
aδyB = 2π∆3

µ
2bkπ∆3

< x < µ
2akπ∆2

ρ = − b(µ−2akπx∆2)
8π3∆12(a∆2−b∆3)(a∆2+b∆4)

(5.12)

Integrating over the piecewise domain and imposing the normalization on ρ we obtain

F 2

N3
=

32

9
abkπ2∆1∆2∆3∆4, (5.13)

in perfect agreement with (5.6) via (2.10).

5.2 Six extremal points

5.2.1 Family 1: La,b,a
(k,0,...,0||−k,0,...,0)

We consider a family with the toric diagram shown in figure 5.14, whose corners are given

by the following vectors

G =




v1 v2 v3 v4 v5 v6
0 0 a a 0 a

0 0 0 0 1 1

0 b− a 0 b− a 0 0

1 1 1 1 1 1




. (5.14)

The charges associated to the lifting algorithm are

Type Multiplicity Value

P b− a 0

P a k

Q a k

(5.15)
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(a,1,0)

(0,1,0)(0,0,0)

(a,0,0)

Figure 10. Toric diagram for the La,b,a
(k,0,...,0||−k,0,...,0) family with k = 1.

which results in the following CS levels

~k = (k, 0, . . . , 0|| − k, 0, . . . , 0). (5.16)

This family contains and generalizes the D3 model considered in [17, 18], which corresponds

to L1,2,1
(k||−k,0).

The symmetries of the toric diagram are useful for constraining the space over which

Vol(Y7) is extremized. The toric diagram in figure 10 has a Z2 symmetry that maps

p1 ↔ p3, p2 ↔ p4, p5 ↔ p6, (5.17)

where we have denoted pi the perfect matching associated to the vector vi. This is not

the full symmetry of the geometry. In fact, we can make its symmetry more manifest by

acting with an appropriate SL(4,Z) transformation. This approach will be also exploited

in the examples that follow, for which the symmetric versions of the toric diagrams and

the necessary SL(4,Z) transformations are summarized in appendix A. For simplicity, let

us first assume (b− a) is even and consider the following SL(4,Z) matrix

M =




1 0 0 0

0 1 0 0

0 (b−a)
2 1 0

0 0 0 1


 . (5.18)

The new matrix G′ = M ·G becomes

G′ =




v1 v2 v3 v4 v5 v6
0 0 a a 0 a

0 0 0 0 1 1

0 b− a 0 b− a (b−a)
2

(b−a)
2

1 1 1 1 1 1




, (5.19)

whose corresponding toric diagram is shown in figure 11. We conclude that there is an

additional Z2 symmetry mapping

p1 ↔ p2, p3 ↔ p4. (5.20)

It is also straightforward to find an SL(4,Z) transformation that makes these additional

symmetries manifest for odd (b− a).
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(0,0,b−a)

(0,1,(b−a)/2)

(a,1,(b−a)/2)

(a,0,b−a)

(a,0,0)

(0,0,0)

Figure 11. Symmetric version of the toric diagram for the La,b,a
(k,0,...,0||−k,0,...,0) family for the case

of even (b− a), with k = 1.

Geometric computation. For the original toric data in (5.14), ZMSY can be written as

ZMSY =
16a(b− a)

(4a− b1) ((b− a) (4− b2) + b3) b1b2b3
. (5.21)

As a result of the symmetries in (5.17) and (5.20), the R-charges of perfect matchings are

identified as follows

∆1 = ∆2 = ∆3 = ∆4, ∆5 = ∆6, (5.22)

which implies we can parametrize the components of the Reeb vector as

b1 = 2a, b2 = 4∆, b3 = 2(b− a)(1−∆), (5.23)

and the volume becomes

Vol(Y7) =
π4

48k a(b− a)(1−∆)2∆
. (5.24)

The volume is minimized for ∆ = 1/3.

Free energy computation. Before computing the free energy, we specify the perfect

matchings as collections of chiral fields in the quiver. The six extremal perfect matchings

for this class of models are represented in terms of the quiver as shown in figure 12.

The CS contribution to the free energy in this case is

FCS

N3/2
=

b−a∑

i=1

k

2π

∫
ρδyi,i+1xdx. (5.25)

The sum over matter fields can be organized as follows. First, we distinguish three differ-
ent kinds of δy’s: “red”, “green” and “blue” as in figure 13. Notice that we have enforced
the constraint

∑
δy = 0 by drawing δyb+a,1 in black. Moreover one can check that the

equations of motion give the same value to the δy’s with the same color. Using the ansatz
discussed section 3, we parametrize the R-charges in terms of a single parameter ∆. Then,
the matter contribution to the free energy becomes

Fmatter

N3/2
= −∆

∫
ρ2
(
((b− a)δyb + (a− 1)δyr + aδyg)

2 − 4

3
π2
(
1−∆2

))
dx (5.26)
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Figure 12. Perfect matchings associated to the six corners of the toric diagram given in (5.14).

Red arrows indicate the chiral fields associated with edges in the perfect matching.

Figure 13. Different sets of the imaginary parts of the eigenvalues.

−(b− a)∆

∫
ρ2
(
δyb −

4

3
π2
(
1−∆2

))
dx− (a− 1)∆

∫
ρ2
(
δyr −

4

3
π2
(
1−∆2

))
dx

−a(1−∆)

∫
ρ2
(
δyg −

4

3
π2∆(2−∆)

)
dx+

8

3
(b− a)π2(1−∆)∆(1− 2∆)

∫
ρ2dx

The Euler-Lagrange equations give




ρ = a(2(b−a)kπx(1−∆)+µ)
16π3(1−∆)∆(a(2−∆)−b(1−∆))(b(1−∆)+a∆)

− µ
2(b−a)kπ(1−∆) < x < − µ

2akπ

ρ = µ
16π3(1−∆)∆(b(1−∆)+a∆)

− µ
2akπ < x < µ

2akπ

ρ = a(2(b−a)kπx(1−∆)−µ)
16π3(1−∆)∆(b(1−∆)−a(2−∆))(b+a∆−b∆)

µ
2akπ < x < µ

2(b−a)kπ(1−∆)

(5.27)

Integrating this distribution, we have

F 2

N3
=

32

9
π2k a(b− a)(1−∆)2∆, (5.28)

in agreement with the geometric computation (5.24). As can be easily observed in (5.15) b

has to be greater than a otherwise all the CS levels vanish and the model is not associated

to a SCFT in 3d.

5.2.2 Family 2: La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k)

We now consider models with toric diagram given in figure 14. The six corners of the toric

diagram have coordinates given by the matrix

G =




v1 v2 v3 v4 v5 v6
0 −1 −1 0 0 0

2a a 0 a a 0

0 0 0 a −a 0

1 1 1 1 1 1




(5.29)
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(−1,a,0)
(−1,0,0)

Figure 14. Toric diagram for the La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) family with k = 1.

These models are constructed by setting b = 2a and applying the lifting algorithm with

Type Multiplicity Value

P a 0

P a 2k

Q a k

(5.30)

The CS levels are

~k = (0, . . . , 0,−2k||k, k,−k, k,−k, . . . , k,−k, k). (5.31)

This class of theories contains and generalizes the modified SPP model studied in [17],

which corresponds in this notation to L1,2,1
(−2||1,1), for which the agreement between the free

energy and the volume has been shown in [41].

From figure 14, we see there is a symmetry that exchanges

p4 ↔ p5. (5.32)

As in the previous example, we can apply an SL(4,Z) transformation to the toric diagram,

that makes the additional symmetry under the interchange of

p1 ↔ p6, p2 ↔ p3, (5.33)

manifest, as explained in appendix A.

Geometric computation. The volumes are written in terms of the components of the

Reeb vector and we have

ZMSY =
8a2

(
256a2 − 16b23 + b1

(
128a2 + a2b1 (20 + b1)− a (8 + b1) b2 + b22 − 3b23

))

b1
(
a2 (4 + b1) 2 − b23

) (
b22 − b23

) (
(−a (8 + b1) + b2) 2 − b23

) .

(5.34)

Using the symmetries in (5.32) and (5.33), we have

∆1 = ∆6, ∆2 = ∆3, ∆4 = ∆5. (5.35)
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Figure 15. Perfect matchings associated to the six corners of the toric diagram given in (5.29).

Red arrows indicate the chiral fields associated with edges in the perfect matching.

This implies that the components of the Reeb vector become b3 = 0 and

b2 =
a

2
(b1 + 8) . (5.36)

For ∆2 = ∆ the R-charges of the extremal perfect matchings can be parametrized as

∆1 = ∆6 =
2(∆− 1)2

4− 3∆
, ∆2 = ∆3 = ∆, ∆4 = ∆5 =

(∆− 2)(∆− 1)

4− 3∆
(5.37)

and the volume with this parametrization becomes

Vol(Y7) =
π4(4− 3∆)

96a2k∆(∆− 1)2(∆− 2)2
, (5.38)

which is minimized for

∆ =
1

18

(
19− 37

(
431− 18

√
417
)1/3 −

(
431− 18

√
417
)1/3

)
. (5.39)

We see that this infinite family of theories already generates rather non-trivial R-charges.

This is also the case for the families with eight corners in the toric diagram discussed in

the next section.

Free energy computation. On the field theory side the six extremal perfect matchings

are associated to chiral fields as in figure 15.

Parametrizing R-charges as in figure 2, we can now calculate the large-N free energy

and compare it to the volume. The large-N free energy has the following contribution from

the CS term

FCS

N3/2
=

a∑

i=1

k

2π

∫
ρ (2δya+2i−1,a+2i−2 + δya+2i,a+2i−1)x dx, (5.40)

while matter fields give

Fmatter

N3/2
= (∆− 1)

∑

i∈e(B)

∫

ρ
2

(

δy2
i −

4

3
π
2(2−∆)∆

)

dx−∆
∑

i∈e(W )

∫

ρ
2

(

δy2
i −

4

3
π
2 (1−∆2)

)

dx

+
8π2(a− b) ∆(∆− 1)(2∆− 1)

3

∫

ρ
2
dx, (5.41)
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where e(B) and e(W ) refer to white and black nodes as in figure 9. Then we impose the

constraint
∑

i∈e(B) δyi +
∑

i∈e(W ) δyi = 0 and we compute the Euler-Lagrange equations

for ρ and δy . We find





δyW = 0

δyB = 4akπ2x(2−∆)(1−∆)
µ − µ

2akπ(2−∆) < x < µ
2akπ(2−∆)

ρ = µ
16aπ3∆(2−∆)(1−∆)

(5.42)

Out of this region we have





δyW = 0

δyB = −2π(1−∆) − µ
4akπ(1−∆) < x < − µ

2akπ(2−∆)

ρ = 4akπx(1−∆)+µ
16Aπ3(1−∆)∆2

(5.43)

and 



δyW = 0

δyB = 2π(1−∆) µ
2akπ(2−∆) < x < µ

4akπ(1−∆)

ρ = −4akπx(1−∆)−µ
16aπ3(1−∆)∆2

(5.44)

By integrating the piecewise function ρ over the domain where it is non-vanishing we obtain

F 2

N3
=

64a2kπ2∆(1−∆)2(2−∆)2

9(4− 3∆)
, (5.45)

which agrees with the result we got from the geometry.

5.3 Eight extremal points

5.3.1 Family 1: La,b,a
(0,...,0,k,−2k||k,0,...,0)

We continue our exploration considering a more involved family of geometries with toric

diagrams with eight extremal points. The 4-vectors giving the corners of the toric diagram

are given in matrix form in (5.46). The corresponding toric diagram is given in figure 16.

G =




v1 v2 v3 v4 v5 v6 v7 v8
0 1 1 b− 1 b− 1 b 0 a

0 −1 1 −1 1 0 0 0

0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1




(5.46)

This class of models is generated by the lifting algorithm by choosing the P (β) and

the Q(α) as

Type Multiplicity Value

P 1 0

P b− 2 k

P 1 2k

Q a k

(5.47)

– 22 –



J
H
E
P
0
9
(
2
0
1
2
)
0
3
4

(b−1,1,0)

(a,0,1)
(1,−1,0)

(0,0,0)

(1,1,0)

(0,0,1)

(b,0,0)

(b−1,−1,0)

Figure 16. Toric diagram for the Laba
(0,...,0,k,−2k||k,0,...,0) family with k = 1.

The resulting CS levels are

~k = (0, . . . , 0, k,−2k||k, 0, . . . , 0). (5.48)

From the discussion in appendix A, we see that this model has symmetries that map

p1 ↔ p6, p2 ↔ p3 ↔ p4 ↔ p5, p7 ↔ p8. (5.49)

Geometric computation. The ZMSY function in terms of the Reeb vector is

ZMSY =
8

b3
(
b21 − b22

) (
b22 − (b3 − 4) 2

) (
(b1 + b (b3 − 4)− ab3) 2 − b22

)

×(8b22−b2(b1−b3+4)(b3−4)2+b1(b1−ab3)((a+2)b3−8)+b3((a−2)b22+a2(b3−4)b3)

−b(b3 − 4)(b21 + b22 + 2a(b3 − 4)b3 − 2b1((a+ a)b3 − 4))). (5.50)

By exploiting the symmetries of toric diagram (5.49), we can set

∆1 = ∆6, ∆2 = ∆3 = ∆4 = ∆5, ∆7 = ∆8, (5.51)

and parametrize the components of the Reeb vector as

b1 = 2(b(1−∆) + a∆), b2 = 0, b3 = 4∆, (5.52)

where ∆ has a simple relation to the R-charges of fields in the quiver as it will be shown

below. The volume function then becomes

Vol(Y7) =
π4(b+ 2)(1−∆) + a∆

96k(1−∆)2 (b(1−∆) + a∆)2∆
. (5.53)

Extremizing it, we obtain

∆ =
1

12

(
9 +

2a

b− a
+

5a

b− a+ 2

)
+

1

12f1/3

(
9b(b+ 2) + 2a

(
a

(
2 +

4

b− a
− 25

b− a+ 2

)
− 9

))

+
f1/3

12(a(a+ 2) + (b− 2a)(b+ 2))
, (5.54)
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Figure 17. Perfect matchings associated to the eight corners of the toric diagram given in (16).

Red arrows indicate the chiral fields associated with edges in the perfect matching.

where we have defined

f = 8a6 − 24a5(−2 + b) + 81ab2(2 + b)3 + 24a4
(
−32− 22b+ b2

)
− 27a2b

(
24 + 68b+ 34b2 + 3b3

)

+a3
(
280 + 1956b+ 1074b2 + 19b3

)
+ 3

(
−72b3 − 108b4 − 54b5 − 9b6 + 2

√
3g
)
, (5.55)

and

g = a2(b− a)2(b+ 2)(b− a+ 2)2(12a3(b− 6)(b+ 10)− 4a4(b+ 18)− 9b2(b+ 2)(4 + (b− 28)b)

+2a(b− 14)b(b(11b+ 52)− 4)− 3a2(b(b(2 + 7b)− 524) + 24)). (5.56)

As in the previous family of theories, these models exhibit highly non-trivial values of the

R-charges.

Free energy computation. We will now recover this complicated structure from the

field theory computation of the free energy at large-N . The eight extremal perfect match-

ings are associated to chiral fields as in figure 17. Following the R-charge parametrization

of figure 2, the CS contribution to the free energy is

FCS

N3/2
=

k

2π

∫
ρ (δyb−a−1,b−a − δyb−a,b−a+1)xdx, (5.57)

and the matter contribution is given by the general expression (5.41). After enforcing the

constraint
∑b+1

i=1 δyi,i+2 = 0, we solve the Euler-Lagrange equations to obtain




ρ = 4kπx(1−∆)+µ
16π3(1−∆)∆((b+2)(1−∆)+a ∆)

− µ
4kπ(1−∆) < x < − µ

2kπ(b(1−∆)+a∆)

ρ = µ
16π3(1−∆)∆(b(1−∆)+a∆)

− µ
2kπ(b(1−∆)+a∆) < x < µ

2kπ(b(1−∆)+a∆)

ρ = − 4kπx(1−∆)−µ
16π3(1−∆)∆((b+2)(1−∆)+a ∆)

µ
2kπ(b(1−∆)+a∆) < x < µ

4kπ(1−∆)

(5.58)

The free energy is then

F

N3/2
=

64kπ2(1−∆)2∆(b(1−∆) + a∆)2

9((b+ 2)(1−∆) + a∆)
, (5.59)

in agreement with the geometric computation (5.53).
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(0,0,0)

(0,a−Y,1)

(Y,a−Y,1)

(Y,0,1)

(0,0,1)

(0,b−X,0)

(X,b−x,0)

(X,0,0)

Figure 18. Toric diagram for the La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

family with

k = 1.

5.3.2 Family 2: La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

In this section we study a second family with 8 extremal points. This family generates

the toric diagram in figure 18. We can arrange the 4d vectors generating the diagram in

matrix form as follows

G =




v1 v2 v3 v4 v5 v6 v7 v8
0 X X 0 0 Y Y 0

0 0 b−X b−X 0 0 a− Y a− Y

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1




. (5.60)

This geometry follows from La,b,a by using the lifting algorithm with

Type Multiplicity Value

P X 0

P b−X k

Q Y 0

Q a− Y k

(5.61)

The resulting CS levels are

~k = (−k1, 0, . . . , 0, ka+b−2X , 0, . . . , 0,−ka+b−2Y , ka+b−2Y+1, 0, . . . , 0), (5.62)

where the subindices indicate the position of the non-zero entries in the vector ~k, which

only take values ±k. We will focus on the case in which b > a and X > Y . In the notation

of (3.2), we can thus distinguish two possibilities

• b > X > a > Y → La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0||0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

,

• b > a > X > Y → La,b,a
(−k1,0,...,0||0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

.

(5.63)

The case b > a > Y > X can be studied in a completely analogous way.

The symmetries of this theory, as explained in appendix A, map

p1 ↔ p2 ↔ p3 ↔ p4, p5 ↔ p6 ↔ p7 ↔ p8. (5.64)
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Geometric computation. For this class of models, ZMSY takes the form

ZMSY=
4 (X (4− b3) + Y b3) ((b−X) (b3 − 4)− ab3 + Y b3)

b1b2 (b3−4) b3 (b1+X (b3−4)−Y b3) (b2+(b−X) (b3−4)−ab3+Y b3)
. (5.65)

The symmetries in (5.64) imply that

∆1 = ∆2 = ∆3 = ∆4, ∆5 = ∆6 = ∆7 = ∆8, (5.66)

which implies
b1 = 1

2(4X − 4X∆+ 4Y∆)

b2 = 1
2(4b− 4X + 4a∆− 4b∆+ 4X∆− 4Y∆)

b3 = 4∆

(5.67)

and the volume becomes

Vol(Y7) =
π4

48k(1−∆)∆((b−X)(1−∆) + (a− Y )∆)(X(1−∆) + Y∆)
. (5.68)

As in previous examples, it is straightforward to find the value of ∆ that minimizes the

volume analytically. The resulting expression is not terribly illuminating, so we do not

quote it here.

Free energy computation. The eight extremal perfect matchings are associated to

chiral fields as in figure 19.5 Given the parametrization in figure 2, the free energy for the

gauge theory can be written by distinguishing two different δy’s as

FCS =
k

2π

∫
ρx ((b−X)δy1 + (a− x)δy2) dx, (5.69)

and

Fmatter = (b−X)Fbif(1−∆, δy1)+(a−Y)Fbif(∆, δy2)+(X−1)Fbif(1−∆, δy3)+Y Fbif(∆, δy4)

+Fbif(1−∆, (b−X)δy1+(a−Y )δy2+(X−1)δy3+Y δy4)+(b−a)Fadj(2∆), (5.70)

where Fbif and Fadj are the contributions to the free energy of a couple of bifundamental

anti-bifundamental and of an adjoint field. By computing the saddle point equations we find

F

N3/2
=

32

9
kπ2(1−∆)∆((b−X)(1−∆) + (a− Y )∆)(X(1−∆) + Y∆), (5.71)

which matches the volume computation.

6 Free energy as a quartic function in R-charges

In this section we would like to discuss the existence of a geometrical formula capable of

reproducing the free energy in terms of the charges of the perfect matchings similar to the

one derived in [58] for SCFT4’s.

5The specific values X = Y = 1 used in figure 19 have been chosen for illustration purposes only. In

this case, the two CS contributions ka+b−2X and ka+b−2Y correspond to the same entry in ~k and cancel

each other, reducing the theories to L
a,b,a
(−k,0,...,0||0,...,0,ka+b−1,0)

. Determining the perfect matchings for the

X > Y regime considered in this section is straightforward.
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Figure 19. Perfect matchings associated to the eight corners of the toric diagram given in (18),

withX = Y = 1. Red arrows indicate the chiral fields associated with edges in the perfect matching.

6.1 4d preliminaries

Before continuing our study of the free energy of SCFT3’s, it is useful discuss related ques-

tions in 4d. The number of degrees of freedom of an N = 1 SCFT in 4d is counted by the

central charge a, which can be determined in terms of superconformal R-charges [35, 66]

as follows

a =
3

32
(3TrR3 − TrR). (6.1)

Furthermore, for SCFTs on D3-branes, TrR = 0 in the large-N limit, i.e. to order N2,

and (6.1) becomes purely cubic. In [56, 58, 59, 61], it has been shown that a also admits

a similar cubic expression based on the underlying geometry, which takes the form

ageom =
9

32

∑

i,j,k

|〈vi, vj , vk〉|RiRjRk, (6.2)

where the vi are the 3-dimensional vectors defining the extremal points of the two dimen-

sional toric diagram and the Ri are the R-charges of the perfect matchings associated to vi.

While (6.2) is written in terms of quantities that allow a direct contact with geometry,

it is important to keep in mind that perfect matchings are indeed identified with GLSM

fields which, in turn, can be found in purely field theoretic terms starting from the gauge

theory and computing its moduli space. Equation (6.2) can also be obtained by rewriting

the inverse of the volume of the 5d Sasaki-Einstein base of the corresponding toric CY3,

which takes the form

Vol(Y5) =
∑

i

〈vi−1, vi, vi+1〉
〈b, vi−1, vi〉〈b, vi, vi+1〉

, (6.3)

where the vi vectors are the 3-vectors with the coordinates of extremal points in the toric

diagram and b = (b1, b2, 3) is the Reeb vector. Due to the Calabi-Yau condition, we can

take vi = (ṽi, 1), with ṽi a 2-vector. 〈·, ·, ·〉 is the determinant of the resulting 3× 3 matrix.
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6.2 Free energy in 3d

In section 2.2, we have explained how to compute the free energy of SCFT3’s. Further-

more, we have shown that its value agrees with the geometric computation in various

infinite classes of theories. It is natural to wonder whether a simple expression for the free

energy, similar in spirit to (6.1) exist in 3d. The main obstacle for going into this direction

is the absence of anomalies associated to continuous symmetries in 3d. Having said this,

the similarity between the volume formulas (2.4), (2.3) and (6.3) suggest that an expression

in terms of R-charges of perfect matchings, i.e. of GLSM fields, analogous to (6.2) might

exist. The most naive generalization of (6.2) to 3d takes the form

F 2
geom =

1

6

∑

i,j,k,l

|〈vi, vj , vk, vl〉|∆i∆j∆k∆l, (6.4)

where we have used ∆i instead of Ri to match the notation we have been using for SCFT3’s.

Remarkably, it has been observed in [48] that this formula reproduces the free energy of

several theories. Even in specific models for which (6.4) does not give the correct result, it

has been possible to introduce additional terms such that the free energy is still given by

a quartic formula in the R-charges of extremal perfect matchings. Interestingly, in all the

theories considered in [48] the corrections to (6.4) seem to be connected to the existence

of internal lines in the toric diagram, i.e. lines connecting extremal points that do not live

on edges or faces.

6.3 Quartic formulas for La,b,a
~k

theories

We now go over all the classes of models considered in section 5 and show that, in all of

them, the free energy can be written as a quartic function of the R-charges of extremal

perfect matchings. It is important to emphasize that this agreement holds off-shell, i.e.

even before extremizing the free energy.

For the first two families of La,b,a
(0,...,0||k,−k,...,k,−k) and La,b,a

(k,0,...,0||−k,0,...,0) theories, discussed

in sections 5.1 and 5.2.1, the free energy is exactly reproduced by (6.4). Geometrically,

these two families distinguish themselves from the others in that their toric diagrams do

not contain internal lines, i.e. all lines connecting corners of the toric diagram live on edges

or external faces.
The remaining families require corrections to (6.4), but can still be recast in quartic

form. We reproduce the toric diagrams in figure 20 for quick reference. Contrary to the
first two families of geometries, these models contain internal lines connecting extremal
perfect matchings in the toric diagram. The corrections are given by

• La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) : ∆F 2 = −2a2(∆2

1∆
2
6 +∆2

4∆
2
5) + 4a2∆1∆6∆4∆5

• La,b,a
(0,...,0,k,−2k||k,0,...,0) : ∆F 2 = −2a(∆2

1∆
2
8 +∆2

6∆
2
7) + a∆1∆6∆7∆8

• La,b,a
(−k1,0,...,ka+b−2X ,0,...,−ka+b−2Y ,ka+b−2Y +1,0,...)

: ∆F 2 = −4X(a− Y )
(
∆2

3∆
2
5 +∆2

4∆
2
6 +∆2

1∆
2
7

+∆2
2∆

2
8−4∆2∆4∆6∆8−4∆1∆3∆5∆7

)

(6.5)

For the last family we have restricted to the case aX = bY because it exhibits additional

symmetries that simplify the computation.
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(−1,0,0)

(0,a,−a)

(0,a,a)

(−1,a,0)
(0,0,0)

(0,a−Y,1)

(Y,a−Y,1)

(Y,0,1)

(0,0,1)

(0,b−X,0)

(X,b−x,0)

(X,0,0)

(0,0,0)

(0,0,1)

(1,1,0)

(0,0,0)
(1,−1,0)

(a,0,1)

(b−1,1,0)

(b−1,−1,0)

(b,0,0)

(c)(b)(a)

(0,2a,0)

Figure 20. Toric diagrams for: a) La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k), b) L

a,b,a
(0,...,0,k,−2k||k,0,...,0) and c)

La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

.

All these models contain terms of the form ∆2
i∆

2
j . Their coefficients seem to

admit some simple expression in terms of the toric diagram. For example, for the

La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) models we have

∆2
1∆

2
6 → −2a2 = −4

|〈v2, v3, v1, v6〉||〈v3, v5, v1, v6〉||〈v5, v2, v1, v6〉|
|〈v2, v3, v5, v1〉||〈v2, v3, v5, v6〉|

,

∆2
1∆

2
6 → −2a2 = −4

|〈v2, v3, v4, v5〉||〈v3, v6, v4, v5〉||〈v6, v2, v4, v5〉|
|〈v2, v3, v6, v4〉||〈v2, v3, v6, v5〉|

. (6.6)

Identical expressions, even including the same (−4) numerical factor, apply for the ∆2
i∆

2
j

terms for the La,b,a
(0,...,0,k,−2k||k,0,...,0) family.

6.4 Towards a general quartic formula

The previous examples lead us to some conjectures regarding the possible structure of a

general quartic formula. It appears that there are two possible types of corrections to (6.4),

which arise in the presence of internal lines in the toric diagram:

1) A correction proportional to ∆2
i∆

2
j , whenever the line connecting extremal points i

and j of the toric diagram is internal.

2) A correction proportional to ∆i∆j∆k∆l, whenever the lines connecting the extremal

points i and j, and k and l are both internal.

Furthermore, based on the examples, it is possible to conjecture an explicit expression

for the numerical coefficient multiplying the corrections of type (1). If a line connecting

extremal point intersects an internal triangle, then one takes the product of the volumes

of the three possible tetrahedra (V1, V2 and V3) whose vertices are the two endpoints of

the line and a pair of vertices of the triangle, and divide it by the product of the volumes

of two tetrahedra (V4 and V5) given by the triangle and each of the endpoints of the line.

The corresponding correction to the free energy is of the form

∆F 2
g = −4

V1V2V3

V4V5
∆2

i∆
2
j . (6.7)
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Figure 21. Graphical representation for the numerical coefficient of the ∆2
i∆

2
j term in the free

energy as given by (6.7).

The (−4) prefactor is universal whenever an internal line intersects a triangle. This

prescription admits a nice graphical representation as shown in figure 21

More complicated situations can be obtained by triangulation. For example, if a

line line (i → j) crosses a polygon formed by four extremal points of the toric diagram

({v1, v2, v3, v4}) we generate four tetrahedra with vertices being i and j and the other

two on the polygon, whose volumes are: V1 = |〈v1, v2, vi, vj〉|, V2 = |〈v2, v3, vi, vj〉|, V3 =

|〈v3, v4, vi, vj〉| and V4 = |〈v4, v1, vi, vj〉|. On the other hand, we construct two other volumes

made out of tetrahedra with a single vertex being i or j: V5 = |〈v1v2, v3, vi〉|+ |〈v2v3, v4, vi〉|
and V6 = |〈v1v2, v3, vj〉|+ |〈v2v3, v4, vj〉|. The resulting correction is

∆F 2
g = −V1V2V3 + V2V3V4 + V3V4V1 + V4V1V2

V5V6
∆2

i∆
2
j . (6.8)

In appendix B, we present additional examples beyond the La,b,a
~k

theories, providing

further support for the general ideas advocated in this section. Eventually, we expect a

geometric identity that systematically re-expresses the volume function (2.4) as a quartic

function in the volumes Vol(Σi) of elements in the basis of 5-cycles.

7 Toric duality and the free energy

A corollary of the lifting algorithm of section 4 is that individual permutations of the

Pβ and Qα subsets of 5-branes lead to gauge theories with different CS couplings but

the same CY4 manifold as their mesonic moduli space. This invariance suggests that the

corresponding gauge theories are dual. Theories that share the same toric moduli space,

in any dimensions, go under the general denomination of toric duals [68]. In fact, some

of these permutations, those that exchange a pair of adjacent Pβ and Qα branes, indeed

correspond to the 3d version of Seiberg duality discussed in [18, 20–22, 69, 70]. It was then

shown in [30, 48, 55, 71] that the large-N free energy is preserved under this duality.

We now show that, as expected for dual theories, the free energy is invariant under

permutations of Pβ and Qα branes. Let us start from the CS contribution which,

following (2.9), is proportional to
∑

kiyi =
∑

(pi−1 − pi)yi =
∑

piδyi. (7.1)

– 30 –



J
H
E
P
0
9
(
2
0
1
2
)
0
3
4

Following the separation of the pi into two sets {pi} = {Pβ , Qα} we also divide the δyi
as {δyi} = {δyβ , δyα}. The CS contribution then becomes

FCS =
N3/2

2π

∫
ρ x



∑

{α}

Qαδyα +
∑

{β}

Pβδyβ


 dx. (7.2)

Defining

Fbif(∆, δy) = −(1−∆)

∫
ρ2
(
δy2 − 4

3
π2∆(2−∆)

)
dx

Fadj(∆) =
2

3
π2(1−∆)(2−∆)∆

∫
ρ2dx (7.3)

the matter contribution is given by

Fmatter =
∑

{α}

Fbif (1−∆, δyα) +
∑

{β}

Fbif (∆, δyβ) + (b− a)Fadj(2∆). (7.4)

Next, we consider the action of two arbitrary elements Sa and Sb of the symmetric

group acting on Qα and Pβ , respectively. We see that both (7.2) and (7.4) are preserved

if we simultaneously act with the same permutation actions Sa and Sb on δyα’s and δyβ’s.

This shows that, as expected from the invariance of the moduli space, the large-N free

energy is preserved.

8 Conclusions

Remarkable progress in understanding SCFT3’s on M2-branes and in the field theoretic

calculation of the number of degrees of freedom in these SCFTs has taken place in recent

years. One of the main goals of this paper has been to accumulate a large body of evidence,

in the form of infinite classes of theories, explicitly showing the expected agreement [41, 43]

between the volume of the Sasaki-Einstein horizon of the probed CY4 cone and the free

energy of the dual field theory computed on a round S3. The infinite families of models we

investigated in section 5 belong to the La,b,a
~k

class, and their corresponding gauge theories

have generically N = 2 SUSY and the same vector-like quivers and superpotentials of

D3-branes on real cones over La,b,a manifolds. These theories also include CS couplings,

encoded in the vector ~k, which dictate how the parent CY3 manifold is lifted to a CY4.

Our results provide non-trivial checks of the AdS4/CFT3 correspondence for infinite

families of gauge theories and it is a step towards a general proof of the equivalence

between the ZMSY-minimization and the F -maximization.

The infinite families we studied were generated with the aid of a lifting algorithm we

introduced in section 4, which is based on the Type IIB realization of these theories and

allows us to efficiently generate the CY4 geometries for La,b,a
~k

theories.

Our results are similar to the equivalence between ZMSY-minimization and a-

maximization in 4d [56]–[61], whose proof for toric theories relies on the existence of a

geometric formula for the central charge, ageom, that is cubic in the R-charges of extremal
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perfect matchings [56, 58]. This fact follows crucially from the relation between the geom-

etry of extremal perfect matchings and triangle anomalies in field theory [72]. Despite the

absence of anomalies in 3d, the similarity of the geometric expression for the horizon vol-

umes between the 3d and 4d cases makes it natural to expect that a geometric expression for

the free energy F 2
geom, quartic in the R-charges of extremal perfect matchings, exists in 3d.

In section 6, we have shown that this expression exists for all the infinite families of theories

we studied. Furthermore, the correspondence is valid even before extremization. Counting

with an infinite catalogue of examples has allowed us to make various conjectures regarding

the general form of the quartic formula. These ideas were tested in additional, non-La,b,a
~k

models in appendix B, verifying that they indeed agree with the volume. We find all these

results are encouraging and make us expect that it is possible to rewrite the volume formula

as a quartic expression in volumes of 5-cycles. It would be very interesting to show that such

a formula exists and to give a systematic prescription for writing it based on the toric data.

In the future, it is certainly desirable to prove the equivalence between ZMSY-

minimization and F -maximization for general toric geometries. A more modest objective

is to prove the equivalence within some sub-class of theories, such as the Laba
~k

models.

Our results go a long way in this direction, but we had to be specific about the choice of

CS levels in order to perform the calculations. It would be interesting to find an efficient

procedure for dealing with a generic choice of CS levels. First, one should manage to find

the volume of Y7 for an arbitrary choice gauge theory data: a, b and ~k. Hilbert Series

techniques [22, 24] seem to be a promising direction for achieving this goal. On the field

theory, one should compute the free energy, i.e. solve the corresponding Euler-Lagrange

equations, for a generic distribution of CS levels. Computing the free energy from a Fermi

gas, as proposed in [32] for N ≥ 3 theories, is perhaps a more promising approach, since

no matrix model techniques are needed.

We conclude with some comments on toric duality. In section 7, we have shown that

toric duals generated by permuting 5-branes in the type IIB realization of La,b,a
~k

theories

preserve the large-N free energy without fractional branes, i.e. for all the ranks of the

gauge group being equal. It is natural to expect that at finite N the precise ranks of the

gauge groups might become important for the duality. This issue can be investigated by

rewriting the free energy as in [73], using the formalism of [74]. It should be possible to

determine the number of fractional branes required by duality by using the equivalences

among the integrals discussed in [74].
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A Symmetric toric diagrams

In this appendix we complete the presentation of the symmetric versions of the toric

diagrams discussed in section 5, provide the SL(4,Z) transformations necessary to achieve

them and discuss the resulting symmetries.

A.1 Six extremal points

A.1.1 Family 2: La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k)

The explicit forms of the SL(4,Z) transformation and the resulting toric diagram depend

on the parity of a. For even a, we can consider the SL(4,Z) matrix

M =




1 0 0 0

−a
2 1 0 0

0 0 1 0

0 0 0 1


 . (A.1)

Applying this transformation to (5.29), we obtain

G′ =




v1 v2 v3 v4 v5 v6
0 −1 −1 0 0 0

2a 3a
2

a
2 a a 0

0 0 0 a −a 0

1 1 1 1 1 1




. (A.2)

The corresponding toric diagram is shown in figure 22, which makes the Z2 symmetries

exchanging

p4 ↔ p5 (A.3)

and

p1 ↔ p6, p2 ↔ p3, (A.4)

manifest. It is straightforward to repeat the analysis for odd a, recovering the same

symmetries.

A.2 Eight extremal points

A.2.1 Family 1: La,b,a
(0,...,0,k,−2k||k,0,...,0)

There are two distinct situations for this class of theories, depending on parity of (b− a).

Here we present the answer for even (b − a). The case of odd (b − a) is completely

analogous and results in the same symmetries.

Applying the following SL(4,Z) transformation

M =




1 0 b−a
2 0

0 1 0 0

0 0 1 0

0 0 0 1


 (A.5)
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(0,2a,0)

(−1,3a/2,0)(−1,a/2,0)
(0,0,0)

(0,a,a)

(0,a,−a)

Figure 22. Symmetric version of the toric diagram for the La,2a,a
(0,...,0,−2k||k,k,−k,k,−k,...,k,−k,k) family

for the case of even a, with k = 1.

(1,−1,0)

(b−1,1,0)

(b−1,−1,0)

(b,0,0)

((b+a)/2,0,1)

((b−a)/2,0,1)

(1,1,0)

(0,0,0)

Figure 23. Symmetric version of the toric diagram for the Laba
(0,...,0,k,−2k||k,0,...,0) family for the case

of even (b− a), with k = 1.

to (5.46), we obtain

G′ =




v1 v2 v3 v4 v5 v6 v7 v8
0 1 1 b− 1 b− 1 b b−a

2
b+a
2

0 −1 1 −1 1 0 0 0

0 0 0 0 0 0 1 1

1 1 1 1 1 1 1 1




. (A.6)

We show the corresponding toric diagram in figure 23

This diagram has two manifest Z2 symmetries that act as reflections. One of them

interchanges

p2 ↔ p3, p4 ↔ p5, (A.7)

and the other one corresponds to the exchange

p1 ↔ p6, p2 ↔ p4, p3 ↔ p5, p7 ↔ p8. (A.8)
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((X−Y)/2,(b−X−Y+a)/2,1)

(0,b−X,0)

(X,b−x,0)

(X,0,0)

(0,0,0)

((X−Y)/2,(b−X+Y−a)/2,1)

((X+Y)/2,(b−X+Y−a)/2,1)

((X+Y)/2,(b−X−Y+a)/2,1)

Figure 24. Symmetric version of the toric diagram for the

La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

family for the case of even (X − Y ) and

(b− a), with k = 1.

A.2.2 Family 2: La,b,a
(−k1,0,...,0,ka+b−2X ,0,...,0,−ka+b−2Y ,ka+b−2Y +1,0,...,0)

The analysis of this family depends on the parities of (X − Y ) and (b− a). The discussion

below applies to the case in which both of them are even. Other combinations of parities

follow analogously and yield the same symmetries.

Starting from (5.60), we apply the following SL(4,Z) transformation

M =




1 0 X−Y
2 0

0 1 b−X−a+Y
2 0

0 0 1 0

0 0 0 1


 , (A.9)

and obtain

G′ =




v1 v2 v3 v4 v5 v6 v7 v8
0 X X 0 X−Y

2
X+Y

2
X+Y

2
X−Y

2

0 0 b−X b−X b−X+Y−a
2

b−X+Y−a
2

b−X−Y+a
2

b−X−Y+a
2

0 0 0 0 1 1 1 1

1 1 1 1 1 1 1 1




. (A.10)

The associated toric diagram is given in figure 24. It has two manifest Z2 symmetries.

One of them exchanges

p1 ↔ p2, p3 ↔ p4, p5 ↔ p6, p7 ↔ p8, (A.11)

and the other one exchanges

p1 ↔ p4, p2 ↔ p3, p5 ↔ p8, p6 ↔ p7. (A.12)

B Non-L
a,b,a

~k
theories and quartic formulas

In this appendix, we provide additional evidence supporting our proposals of section 6.4.

To do so, we consider two families of theories that do not fit within the La,b,a
~k

classification.
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In the first class of geometries, the toric diagram is given by

G =




v1 v2 v3 v4 v5
1 −1 0 0 0

0 −1 1 0 0

0 0 0 X1 −X2

1 1 1 1 1




(B.1)

where Xi > 0. These theories have already been studied in [48], where it has been shown

that the geometrical free energy is given by (6.4) plus the following correction

∆F 2
geom = −4

(X1 +X2)
3

9X1X2
∆2

4∆
2
5. (B.2)

This correction is associated to an internal line connecting v4 and v5 in the toric diagram.

The numerical coefficient of this correction is in perfect agreement with our proposal (6.7).

Using it, we obtain

∆2
4∆

2
5 → −4

|〈v1v2v4v5〉||〈v2v3v4v5〉||〈v3v1v4v5〉|
|〈v1v2v3v4〉||〈v1v2v3v5〉|

= −4
(X1 +X2)

3

9X1X2
. (B.3)

The final set of models we would like to consider has a toric diagram given by

G =




v1 v2 v3 v4 v5 v6
X1 −X2 0 0 0 0

0 0 Y1 −Y2 0 0

0 0 0 0 Z1 −Z2

1 1 1 1 1 1




(B.4)

with Xi, Yi, Zi > 0. In this case, a quartic expression for the free energy also exists, and
it is given by (6.4) plus the rather non-trivial correction

∆F 2
geom = −

2 (X1+X2)
3 Y1Y2Z1Z2

X1X2 (Y1+Y2) (Z1+Z2)
∆2

1∆
2
2−

2X1X2 (Y1+Y2)
3 Z1Z2

(X1+X2)Y1Y2 (Z1+Z2)
∆2

3∆
2
4−

2X1X2Y1Y2 (Z1+Z2)
3

(X1+X2) (Y1+Y2)Z1Z2
∆2

5∆
2
6

+
4 (X1 +X2) (Y1 + Y2)Z1Z2

Z1 + Z2
∆1∆2∆3∆4 +

4 (X1 +X2)Y1Y2 (Z1 + Z2)

Y1 + Y2
∆1∆2∆5∆6

+
4X1X2 (Y1 + Y2) (Z1 + Z2)

X1 +X2
∆3∆4∆5∆6. (B.5)

It is possible to check that the ∆2
1∆

2
2, ∆

2
3∆

2
4 and ∆2

5∆
2
6 terms are indeed in agreement

with (6.8), including its (−1) prefactor.
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