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1 Introduction

In order to discover and distinguish the possible production of new particles at the Tevatron
and LHC, a thorough understanding of the backgrounds is fundamental. In this respect vec-
tor boson production is an all too common obstacle in searches for physics beyond the stan-
dard model. Furthermore, given the high energies afforded by these colliders, in particular
the LHC, and the high-pT regions of phase space to which new physics searches are sensitive,
the emission of associated QCD radiation, manifest as hard and soft jets, is ubiquitous.

The role played by W and Z boson production at hadron colliders is of course not
simply negative. Production of these particles in such large quantities facilitates preci-
sion measurements of e.g. the W boson mass, compensating their obscuring of direct new
physics signals by probing indirect ones. W and Z production are also an important tool
in furthering our knowledge of other fundamentals such as parton distributions, their un-
certainties and also detector / jet energy calibration. From a purely practical point of view
there is therefore a clear need for accurate and detailed simulations of these processes.

Of course vector boson production is not the only standard model process for which
precision event generators are well motivated and so it comes as little surprise, that in
recent years the nearing of LHC data-taking has fueled a resurgence in the research and
development of Monte Carlo simulations. Ground-breaking work carried out by various
groups in 2000-2004 demolished significant long standing problems, radically improving
the fully exclusive, hadron-level, description of parton shower simulations to consistently
include multi-leg tree-order matrix elements [1–5] and, separately, exact next-to-leading
order corrections [6–8]; these are referred to as Meps and Nlops simulations respectively.
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In the following years many simulation programs have been constructed, implementing
these new methods and techniques, for a wide variety of collider physics processes, and
their worth proven in various experimental applications. Progress in this direction has
rapidly evolved to the point where there presently exist three public computer packages
automating, or partially automating, the construction of Nlops programs, such that little
or no expert knowledge is required on the part of the user to produce a simulation for a
given process [9–12]. Moreover, these packages and the methods underlying them can now
be considered to have withstood the test of complexity, with the recent arrival of public
Nlops programs for processes involving rich colour structures and infrared divergences at
leading order [13–15], as well as high multiplicity processes [11, 12, 16, 17].

Having reached this degree of maturity, with systematic differences of Nlops schemes
now well understood and code production reaching industrial scales, it becomes relevant
to discuss whether further improvements are possible and how the output of the new auto-
mated Nlops packages may be best used to best effect. In refs. [18–23] a number of novel
and sophisticated methods for matching parton shower simulations to multiple higher order
one-loop and tree level matrix elements have already been put forward. Applications of
these techniques to hadron collider processes are eagerly anticipated.

More recently, two somewhat less ambitious Menlops methods have been introduced,
in refs. [24] and [25], for simple processes, combining a single Nlops event generator with a
Meps simulation, enhancing the description of multi-jet events in the former. What these
methods lack in accuracy with respect to their forerunners appears to be offset by their
relative simplicity, making use of, and requiring little modification to, existing Nlops and
Meps programs, with a number of applications to hadron collider processes having been
performed in the referenced articles.

We take the view that there is still more to be gained by a continued bottom-up ap-
proach to improving on the established crop of Nlops and Meps simulations, as found in
the case of Menlops simulations, building on existing programs rather than starting from
scratch.

Our first aim in this work has been to see if we can improve on the Menlops im-
plementations in refs. [24] and [25], to realize the method exactly, simply and without
approximation. In other words, we seek to implement the Menlops method for vector
boson production without the introduction of an unphysical merging scale, in a way which
manifestly respects the unitarity of the Powheg method and thus NLO accuracy.

Our second objective has been to extend the Menlops method to the case of processes
involving a final-state jet at the leading order. Since the leading order matrix elements
in such cases typically contain infrared divergences, these simulations require unphysical
transverse momentum cut-offs to make event generation possible. This has two important
practical consequences. Firstly, the description of the region in which the vector boson
has low transverse momentum, where the great bulk of vector bosons are produced, is also
unphysical, being highly sensitive to the cut and lacking all-orders resummation of large
logarithms in that region. Secondly, when studying jet-associated production as a signal
process, the users of these programs must always check that the predictions from the pro-
gram do not depend on the cut. Typically this mandates using a generation cut far below
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those defining all observables, resulting in a very substantial fraction of events that never
make it into any part of the analysis. Thus, here, by extending the Menlops method, we
mean effectively including the relevant lower order, sub-leading matrix element, and the
all-orders resummation required for a physical description of the low pT region. Note that
the methodology here borrows much from the Sudakov reweighting / vetoing procedures
in Meps merging schemes.

Lastly, we have considered merging event samples from the two Menlops simula-
tions, to give one NLO accurate in the description of both fully inclusive and inclusive
vector boson plus jet production observables. To this end we apply similar reasoning to
ref. [24], populating the region in which the vector boson has a low transverse momen-
tum with events generated by the single vector boson Menlops simulation and elsewhere
with events from the vector boson plus jet Menlops program. While requiring that both
classes of observables be described with NLO accuracy puts constraints on the values that
the unphysical merging scale can take, in all other respects the merging scale dependence
is never worse than in the CKKW(-L) / MLM approaches. However, discounting the fact
that renormalization and factorization scales are perhaps not always chosen optimally in
fixed order calculations, concerns about the scale dependence may be more a matter of
theoretical correctness, rather than practical importance. To minimize the dependence
on the merging scale beyond that here, in particular, to retain NLO accuracy for both
classes of observable independently of the merging scale, is to our understanding, tanta-
mount to achieving genuine NNLO-parton shower matching; a goal far in advance of this
simple study, beyond our humbler aims of systematically getting the most from existing
and forthcoming simulations by minimal and modular interventions.

In section 2 we describe the extension of the Powheg Nlops simulations to Menlops

ones, as well as the business of merging the resulting event samples. Here, when possible, we
shall aim to be conceptual, proving that all relevant technical details have been sufficiently
understood and controlled by reference to Monte Carlo validation plots. We kindly ask
the reader to bear in mind that the Powheg formalism has been derived in considerable
detail [7–9, 26], so a fully self-contained presentation here is not feasible. In section 3 we
demonstrate the improvements to be gained through comparisons to relevant Tevatron and
LHC measurements. Our findings and conclusions are summarized in section 4.

2 Method

In this section we elaborate on the steps involved in formulating event samples NLO accu-
rate in their description of fully inclusive and single-jet inclusive vector boson production
observables. As we have described in the introduction, this proceeds by merging the output
of two Menlops simulations. Thus, our presentation is organized here as follows. First,
in section 2.1, we introduce some basic ideas and notation for Powheg Nlops matching,
we then go on to describe how these simulations of W and Z production may be enhanced
to produce genuine Menlops simulations in section 2.2, this is followed by the case of the
associated production channel in section 2.3. Finally, the combination of the Menlops

samples is described in section 2.4.
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Since we will already show in this section results from the programs we have used
and created, for illustrative and validation purposes, we first declare some of the main
technical parameters used to run them. All Powheg and Menlops events in this paper
have been generated using the CTEQ6M [27] parton distribution functions, interfaced via
Lhapdf [28], with the corresponding value of ΛQCD. In the case of vector boson production,
the renormalization and factorization scales assumed in evaluating the B̄ functions, dis-
tributing the underlying Born kinematics (section 2.1), are given by the vector boson invari-
ant mass, while for associated production the transverse momentum of the initial hh→ V j

state is used. The Powheg Box defaults for the W and Z boson masses and widths are:
mW = 80.398 GeV, ΓW = 2.141 GeV, mZ = 91.188 GeV, ΓZ = 2.486 GeV. The value of the
QED coupling used is given by α (mZ) = 1/128.93. Throughout the article we have used
the Rivet analysis framework [29], including the FastJet package [30], to study our event
samples. The Monte Carlo validation analyses in this section then include a set of minimal
cuts on the pseudorapidities and transverse momenta of the charged leptons emanating
from the boson decays, |η| < 3.5, pT > 25 GeV and, in the case of W production, a missing
transverse energy cut, /ET ≥ 25 GeV. Lastly, in order to develop the bare Powheg and
Menlops events to include effects of parton showering, hadronization and multiple interac-
tions we have used the Pythia 8.150 [31–33] program with its default tune and PDF set.

2.1 Preliminaries

At the heart of the Powheg Box simulation of vector boson production, as with all
Powheg simulations, is the so-called hardest emission cross section [7] i.e. the differential
cross section governing the distribution of the hardest (highest pT ) parton branching in
each event:

dσV = B̄ (ΦV ) dΦV

[
∆
(
ΦV , p

min
T

)
+
R (ΦV j)
B (ΦV )

δ (kT (ΦV j)− pT) ∆ (ΦV , pT) dΦj1
dpT

]
(2.1)

In eq. (2.1) B(ΦV ) stands for the leading order cross section, dependent on the underlying
Born kinematics ΦV . Analogously, R(ΦV j) is the real emission cross section depending on
the real kinematics, ΦV j. The real kinematics are defined by a mapping which takes as
arguments the leading order kinematics, ΦV , and the radiative phase space variables, Φj1

,
parametrizing the hardest parton branching with respect to the configuration ΦV ,

ΦV j ≡ ΦV j

(
ΦV ,Φj1

)
; (2.2)

the R(ΦV j) term can be understood to have absorbed the Jacobian associated to the fac-
torisation dΦV j = dΦV dΦj1

. For the Powheg Box programs used in this study such
mappings are explicitly given in ref. [8].1 B̄(ΦV ) is the next-to-leading order distribution
of the same (infrared-safe) underlying Born kinematics

B̄ (ΦV ) = B (ΦV ) +
[
V (ΦV ) +

∫
dΦj1

R (ΦV j)
]
, (2.3)

1As we will discuss in the next paragraphs, more generally the real emission cross section needs to be

separated according to the number of counterterms required to make it finite on numerical integration, each

one having its own unique phase space parametrization.
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where the virtual contribution V (ΦV ) here implicitly includes soft and collinear diver-
gences, canceling those present in the real term; to avoid digressing we simply state that in
general some regularization / subtraction scheme is adopted rendering the square bracket
term in eq. (2.3) finite and regular. Lastly, the Powheg Sudakov form factor is defined as

∆ (ΦV , pT) = exp
[
−
∫
dΦj1

R (ΦV j)
B (ΦV )

θ (kT (ΦV j)− pT)
]
, (2.4)

where kT(ΦV j) tends to the transverse momentum of the radiated parton in the collinear
and soft limits. As in conventional parton shower simulations kT always has an implicit
lower cut-off, pmin

T
, of order ΛQCD .

Note that from the point of view of the next-to-leading order corrections, the details
concerning the internal parametrization of the Born kinematics are completely irrelevant,
the key point there being the mappings defining the relationship between them and the real
kinematics. As an heuristic aid, neglecting, for a moment, the leptonic decay products, ΦV ,
could be taken to comprise of the vector boson mass and rapidity, while the radiation phase
space in the Powheg Box is mapped by the polar and azimuthal angles of the emitted
parton with respect to the singular direction (here the beam axis) together with its energy.

We now quickly remind the reader of the two main properties of the hardest emission
cross section, eq. (2.1), through which it gives rise to NLO predictions. Firstly, as the
transverse momentum of the hardest branching increases beyond the Sudakov peak region,
the form factor, ∆, tends to one and, neglecting higher order terms of relative order α2

S,
the kinematics are distributed according to the real emission cross section R(ΦV j):

lim
p
T
→O(mV )

dσV =
B̄ (ΦV )
B (ΦV )

R (ΦV j) dΦV dΦj1
(2.5)

= R (ΦV j) dΦV j +O (α2
S

)
.

More subtly and, from the point of view of this study, more significantly, the second key
feature of eq. (2.1) through which NLO accuracy attained is its unitarity with respect to
the Born kinematics, specifically, in the present context, that the term in square brackets
integrates to one for any ΦV . This can be readily deduced by making use of the identity

d∆ (pT)
dpT

= ∆ (pT)
∫
dΦj1

R (ΦV j)
B (ΦV )

δ (kT (ΦV j)− pT) , (2.6)

where the full kinematic dependence of ∆ has been suppressed for ease of notation.
For the case of jet-associated vector boson production the basic form of the hardest

emission cross section is unchanged. The principal difference is in the treatment of the
real phase space and real cross section. In general the real cross section is separated into
pieces, R =

∑
αR

α, one for each infrared counterterm required to render the cross section
regular and numerically integrable, moreover, for each contribution the real phase space is
parametrized differently, such that the counterterms lend themselves to being integrated
analytically over the radiative phase space i.e.

ΦV jj → Φα
V jj ≡ ΦV jj

(
ΦV j,Φj2

; α
)
. (2.7)
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Thus, the Powheg hardest emission cross section in the case of vector boson plus jet
production has the form

dσV j = B̄ (ΦV j) dΦV j

[
∆
(
ΦV j, p

min
T

)
+ ∆ (ΦV j , pT)

∑
α

Rα
(
Φα

V jj

)
B (ΦV j)

δ
(
kα

T

(
Φα

V jj

)− pT

)
dΦj2

dpT

]
(2.8)

where

B̄ (ΦV j) = B (ΦV j) +

[
V (ΦV j) +

∑
α

∫
dΦj2

Rα
(
Φα

V jj

)]
, (2.9)

and

∆ (ΦV j, pT) = exp

[
−
∑
α

∫
dΦj2

Rα
(
Φα

V jj

)
B (ΦV j)

θ
(
kα

T

(
Φα

V jj

)− pT

)]
. (2.10)

Note that in order to ease the proliferation of indices, the functions B, V , R, ∆ and
B̄, for the direct and jet-associated vector boson production processes, are implicitly dis-
tinguished by their phase space arguments. Also, although such details are somewhat
tangential to our course, the α-dependent Jacobians associated with the phase space fac-
torisation dΦα

V jj → dΦV jdΦj2
can be understood to have been absorbed in the Rα terms,

unless otherwise stated.
What is important to realize is that, fundamentally, the arguments concerning how

NLO accuracy manifests in this more general case are unchanged with respect to that of
vector boson production. In the high pT regime the Sudakov form factor tends to one and
combines with the the B̄ prefactor to adjust the real cross section by genuinely NNLO terms
only. Likewise, as with eq. (2.1), by virtue of the fact that the exponent of the Sudakov
form factor, eq. (2.10), is precisely equal to the coefficient multiplying it in eq. (2.8),
integration over the radiative phase space reduces the square bracket term to one, leaving
a next-to-leading order distribution of the leading order vector boson plus jet kinematics.
Of course, the fact that the integral over the radiative phase space returns just B̄, does not
prove that NLO accuracy is obtained for general inclusive and semi-inclusive observables
but hopefully it is sufficiently conducive that we can proceed here and refer the interested
reader to section. 4.3 of ref. [8], where a rigorous proof based on this property can be
found. For the purposes of our discussion it is sufficient to appreciate that this unitarity is
a necessary condition for the Powheg method to yield NLO predictions, deviations from
unitarity amount to deviations from NLO accuracy in equal measure.

With preliminary concepts and notation in hand we now go on to discuss how we
augment the Powheg simulations of vector boson production and vector boson plus jet
production.

2.2 Menlops improved simulation of vector boson production

In ref. [24] it was described how one could instill NLO accuracy in Meps-type simulations
for simple processes. In that case the key consideration was that the effective hardest
emission cross section of Meps simulations are not in general unitary. The square bracket
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terms in the formulae analogous to eq. (2.1) do not contain precisely the real emission cross
section R(ΦV j) but something equivalent to it up to relative corrections O (αS); the modifi-
cations being due to several factors, the presence of higher order tree-level matrix elements
in the simulation being one of the more obvious ones. Furthermore, the Sudakov form
factor multiplying the approximate real cross section aims to be that of the parton shower
simulation rather than one based on exponentiating R(ΦV j) or its Meps approximate ver-
sion. In the Meps, therefore, the integral over the radiative phase space then rather gives
a function N(ΦV ) ≈ 1 + O(αS). Based on these assertions it was noted in ref. [24] that
Meps event samples could be made to respect unitarity and reproduce NLO predictions
in the same way as Powheg by reweighting their events according to B̄(ΦV )/N(ΦV ).

Here we take a simpler different approach, albeit one adhering to the same principles,
viewing the Powheg program for the jet-associated vector boson production channel as a
‘perfect’ (unitary) Meps apparatus, merging vector boson plus jet and vector boson plus
dijet final states.

To explain how we formulate our Menlops simulation in this section first note that,
in practice, the hardest emission cross section in a Powheg simulation is implemented by
initially generating an unweighted set of leading order kinematics according to the next-to-
leading order B̄ function, then, with this configuration in hand, the radiative variables are
generated with respect to it, according to the distribution in square brackets in eq. (2.1)
/ (2.8). This latter radiation generation mechanism is implemented in essentially the same
way as the long established matrix element corrections technique used in parton shower
simulations [34–37], with the relevant distributions, ∼ ∆R/B, being sampled according
to the same veto algorithm. Thus, here we proceed by first generating a parton level con-
figuration according to the hardest emission cross section in the vector boson production
Powheg code, eq. (2.1), with no alterations, saving the events in the Les Houches format.
These events are then passed as input to a slightly modified version of the vector boson
plus jet simulation, which overrides the generation of leading order configurations accord-
ing to B̄(ΦV j), taking the kinematics and flavour structure instead from the Les Houches
event file input. By propagating the bare Powheg events output from the vector boson
production program to the radiation generating apparatus of the associated production
simulation we obtain doubly radiative events distributed according to

dσ∞=B̄ (ΦV )dΦV

[
∆
(
ΦV , p

min
T

)
+
R (ΦV j)
B (ΦV )

δ (kT (ΦV j)−pT,1) ∆ (ΦV , pT,1) dΦj1
dpT,1

×
{

∆
(
ΦV j, p

min
T

)
+ ∆ (ΦV j , pT,2)

∑
α

Rα
(
Φα

V jj

)
B (ΦV j)

δ
(
kα

T

(
Φα

V jj

)−pT,2

)
dΦj2

dpT,2

}]
;

(2.11)

this follows straightforwardly from the modular form of the hardest emission cross sections
and Monte Carlo implementation.

In this way we exploit the unitarity of the radiation machinery in the vector boson
plus jet program to best effect. As described in section. 2.1, the final term in braces is
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an exact differential with the integral over the radiative phase space Φj2
being identically

equal to one for all ΦV j, thus the distributions of Born and real kinematics of the vector
boson production Nlops should be completely untouched in this way. At a technical level,
that this is true for the real kinematics is trivial, since those events are fed directly to the
radiation generation routines of the vector boson plus jet simulations, on the other hand
a much more subtle and, in fact, obligatory, verification of this procedure is to check that
the predictions for fully inclusive quantities are completely unchanged by the generation
of the secondary radiation in this way.

Before proceeding to the validation let us also discuss the resummation properties of
eq. (2.11). Since the Powheg Box programs implement the hardest emission cross sec-
tions using the FKS subtraction formalism, the real cross section R is separated into pieces
singular in only one collinear direction. Moreover, the damping factors giving rise to the
separation are such that each Rα is relatively suppressed by a factor 1/p2

T as the direction
of the emitted parton deviates from the collinear one associated to α, regardless of the
positioning of other partons in the event. In fact, as other collinear singular regions are
approached Rα is defined to vanish [8].

At least from the point of view of FKS subtraction, the hardest emission generation in
the Powheg programs and eq. (2.11) is not greatly different from a conventional parton
shower simulation: each leg (α) effectively having associated to it its own Sudakov form
factor, with Rα/B in the exponent (equal to an Altarelli-Parisi splitting function in the
collinear limit), and its own local definition of pT.2 For each emission the radiating leg is,
with high probability, the one with the smallest relative transverse momentum separation
and the distribution carries essentially the same Sudakov suppression as in a parton shower.
Furthermore, the separation of the real cross section into unique collinear singular regions,
Rα, and the associated damping factors, effectively produce a strong pT ordering pT,1 > pT,2

in eq. (2.11).3 We stress, however, that while Rα is heavily damped away from the collinear
region associated to α, and vanishes when other collinear configurations are approached,
there is no hard cut-off, pT,1 > pT,2, as in a parton shower, so disordered configurations
can occur, albeit at a reduced rate — indeed they must occur if one is to reproduce the
radiation pattern of the double emission matrix element.

While in our opinion these points, and the formulae they are based on, are very com-
pelling evidence that the logarithmic accuracy of the Menlops simulation, defined by
eq. (2.11), should be no worse than a conventional parton shower simulation — in particu-
lar, here, we mean that the Sudakov form factor is NLL accurate — we make no allusions
about the fact that we have not presented a rigorous proof of this. Hence, in what follows,
we must check that this is the case and that the quality of the vector boson production
Sudakov form factor is not degraded.

Since we shall introduce a second, different, Menlops simulation in the next section,
and in section 2.4 a merging of the two, we distinguish the one in this section with a suffix
∞, referring to it throughout as Menlops∞, with the double-hard emission cross section

2See e.g. section 4.4.2 of ref. [8] for more details.
3This issue has also been addressed in the technical formulation of the Powheg method in ref. [8] and

again in the case of Dijet production in ref. [13].
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Figure 1. Here we display Powheg (red line) and Menlops∞ (cyan triangles) predictions for
inclusive observables. In the upper pair of plots we show the Z boson mass spectrum and the
resulting lepton pseudorapidity spectrum assuming a Tevatron collider configuration with a centre-
of-mass energy

√
s = 1.96 TeV, on the left and on the right respectively. The lower plots show the W

boson rapidity distribution (left) and the charge asymmetry (right), given pp beams at
√
s = 7 TeV.

The yellow band corresponds to the projection of the Monte Carlo statistical errors on the reference
data (the first entry in the legend) onto the ratio plot.

dσ∞. The ∞ labeling is indicative of the fact that the merged samples, to be discussed in
section 2.4, are exclusively comprised of events from this simulation in the limit that the
pT scale associated with the phase space partitioning there tends to infinity.

In figure 1 we present a comparison of predictions for some inclusive observables ob-
tained with the idealized Menlops∞ simulation described above and also the standard
single emission Powheg Box vector boson production simulation, at the level of the Les
Houches file events i.e. the level at which events are input to shower Monte Carlo programs.
All of the distributions show a remarkable level of agreement between the Menlops∞ pre-
dictions (cyan triangles) and those obtained with the regular Powheg Box vector produc-
tion programs underlying them (red lines). This is strong evidence that the double-hard
emission cross section, eq. (2.11), has been realized in practice, substantiating our earlier
claim that, by unitarity, the fully inclusive Menlops∞ predictions, eq. (2.11), should be
basically identical to those of the underlying Powheg program.

Figure 2 shows distributions of the Z and W boson pT spectra at Tevatron and LHC
energies respectively. In both cases we have focused on the low pT Sudakov region, with
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Figure 2. Powheg (red line) and Menlops∞ (cyan triangles) predictions for the low pT, Sudakov
peak region of the vector boson transverse momentum spectrum. On the left the distributions have
been obtained for the case of Z boson production in

√
s = 1.96 TeV pp̄ collisions, while on the right

they correspond to W production in
√
s = 7 TeV pp reactions.

a mind to testing our earlier assertions regarding the quality of the resummation in the
Menlops∞ prescription (eq. (2.11)). Here, since the distribution is sensitive to multiple
emission effects, and because the Powheg vector boson production cross section contains
just one emission, while eq. (2.11) contains two, to facilitate a meaningful comparison we
have evolved all events with Pythia 8 to include parton shower effects (but not hadroniza-
tion or multiple interactions). Again, the predictions here vindicate our claims in regards
to how the Menlops∞ procedure should preserve the quality of the NLL resummation in
the underlying Powheg vector boson simulation, with the differences in the peak region
being . 10 %.

From a purely technical point of view, considering how the Powheg Box program
distributes radiation and constructs events [8, 9], one expects some shuffling of the trans-
verse momentum spectrum associated with the single emission Powheg-V events by the
secondary emission which this Menlops∞ procedure dresses on them.4 More to the point
it is natural that this agitation acts to smear out the peak rather than sharpen it, as is
seen to be the case here.

Note that the same trend is seen to basically the same extent (a depression of the peak
region of . 10 %) when the basic cuts on the leptons in the final state in the Rivet anal-
ysis are removed. We also note a very similar sized downward shift in the Sudakov peak
is seen in the matched NNLL+NLO pT spectra of ref. [38] with respect to the NLL+LO
one (again, with no cuts applied). Although a great deal more study would be required
before drawing firm conclusions in this regard, and although we in no way claim to have
approached a similar level of accuracy, the changes seen in that case are intriguingly similar
to those shown here in going from the pure Powheg description to this Menlops one. In
fact, we believe the explanation for the effects given there applies here too. In ref. [38] it
is stated that additive higher order corrections in the intermediate- and high-pT regions,

4We will hence use Powheg-V and Powheg-Vj to generically refer to Powheg vector boson and vector

boson plus jet simulations respectively.
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coupled with the fact that the NNLO total cross section is only 3% greater than the NLO
one, serves to redistribute radiation such that the Sudakov peak decreases.5 In our case,
by unitarity, the total cross section is in fact completely unchanged by the Menlops∞

addition, while the same higher order real corrections enter as in ref. [38], thus one finds a
similar redistribution of radiation.

From our point of view, however, the most significant point to take away from ref. [38]
is that the theoretical uncertainties due to scale variations alone, for the NNLL+NLO
calculation, already bracket the 10 % effect we see here, while for the NLL+LO calculation
(which we would expect to have equivalent accuracy to [8, 26]) they can change the peak
height by ±25 %. We also remark that when the full range of non-perturbative effects
are activated in the simulation the Sudakov peak is eroded further, with the differences
between the Powheg and Menlops∞ predictions becoming negligible.

Lastly, to end the discussion on the pT spectrum, we draw attention to figure 3, dis-
playing a related but more inclusive observable with which to expect agreement, namely,
the integrated 0-jet rate, as a function of the kT-jet clustering scale. This quantity is closely
related to the integral of the vector boson pT spectrum. Here one can see very small dif-
ferences at the low end of the distribution, in keeping with those seen in the pT spectrum,
however, unlike that case, the more inclusive nature of the observable (the fact that it is
cumulative) allows for an averaging effect, and sure enough, the two distributions rapidly
become indistinguishable like those in figure 1. Again, this is a strong check of the unitarity
and NLO accuracy of the double-hard emission cross section and its implementation.

Turning our attention to slightly less inclusive observables in figure 4 we show the
leading jet transverse momentum and rapidity spectra. Somewhat reassuringly the rapid-
ity spectrum exhibits no discernible differences between the two different simulations; since
it is still a rather inclusive observable and the distributions governing its generation are
essentially the same in either case, the good agreement seen in that case is to be expected.
The predictions for the leading jet pT spectrum also agree very well in the region where one
expects them to i.e. the low- / intermediate-pT region. On the contrary, the distributions
come apart at high transverse momentum, the Menlops simulation proving to be harder
there, due to the inclusion of the doubly radiative events there [39].

In figure 5 we shift focus to quantities directly sensitive to the emission of two or more
jets. Since the Powheg vector boson program only generates single radiation events while
the Menlops∞ enhancement generates a further emission, in order to have a comparison
here we have evolved the events with Pythia to include parton shower effects (only). As
with figure 4 the plots shown here lend themselves to a fairly intuitive understanding. In
particular, we see that since both Powheg-V and Menlops simulations include the first
order real emission corrections to vector boson production, the distributions of the 0-jet to
1-jet transition rate (top left plot) given by the two approaches are in good agreement, as are
their predictions for the 0- and 1-jet cross sections (bottom left plot). On the other hand,
once the presence of a second hard jet is probed, as in the 1-jet to 2-jet transition rate, in

5Note that the resummed computation of ref. [38] employs, in some sense, a sort of unitarity condition

like that in Powheg.
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Figure 3. Powheg (red line) and Menlops∞ (cyan triangles) predictions for the integrated 0-jet
cross section as a function of the kT-jet clustering scale. As in figure 2 the left plot depicts results
for Z boson production in

√
s = 1.96 TeV pp̄ collisions, while those in the right-hand plot correspond

to W production in
√
s = 7 TeV pp reactions.
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Figure 4. Powheg (red line) and Menlops∞ (cyan triangles) predictions for the leading jet
transverse momentum (left) and rapidity spectrum (right) in W boson production events, assuming
current LHC pp beam energies.

the upper-right corner of the figure, and the next-to-leading jet pT spectrum, in the lower-
right corner, the softer spectrum of the Powheg-V simulation becomes apparent, with the
Menlops result tending to that of the Powheg-Vj programs at high pT. The deficit of
hard radiation from the Powheg-Z and Powheg-W simulations in these distributions is
simply due to the fact that they are reliant on the soft-collinear parton shower approxima-
tion to generate the second jet, whereas the Menlops simulation defers this dependency to
the next-to-next-to-leading jet. The Menlops generator distributes the second jet accord-
ing to the vector boson plus dijet tree-level matrix element, in much the same way as the
Powheg-Vj programs. As we shall now go on to discuss, and as is clear from these plots,
while the Powheg-Vj simulations describe multi-jet events well, they lack the resumma-
tion of Sudakov-logs required to describe the low-pT region and hence inclusive observables.6

6One can also see the full set of NLO corrections to vector boson plus jet production manifesting as a

small enhancement over the Menlops prediction.
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Figure 5. In this figure we show predictions for observables sensitive to the emission of at least one
hard jet in Z production at the Tevatron and W production at the LHC. The colouring is as in the
preceding plots in this section, up to the addition of the blue lines, which correspond to predictions
made with the vector boson plus jet Powheg simulations.

Note that the Menlops simulation arrived at here is ideal in the sense that no unphys-
ical scales have been introduced in its formulation, in keeping with the theoretical proposal
of ref. [24], improving on the approximate implementations carried out there and in ref. [25].

Finally, before leaving this section, we wish to comment on the assignment of the colour
structure and interfacing to the parton shower. While the flavour structure and ΦV j are
read in from the Les Houches event file, the colour flow is assigned to the event in the same
way as in the unmodified Powheg-Vj program. This is a two stage process. Firstly, the
large-NC planar cross sections associated to the hh → V j state are evaluated at ΦV j and
a flow assigned with a probability proportional to its cross section. Secondly, the colour
structure for the subsequently emitted radiation, parametrized by Φj2 and α, is added as if
it were a 1→ 2 parton branching from the leg of the hh→ V j state associated to α. This
is also the method of colour assignment used in section 2.3, the only technical difference
there being that the flavour structure and ΦV j kinematics are generated by the program
itself, as opposed to being read in from a Les Houches file.

Note that a more careful treatment of the colour structure would include truncated
showering effects, the absence of which has been suggested as a potential cause of spuri-
ous high-mass clusters in hadronization [5]. While we have not investigated such effects
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here, we have checked that at the hadron level we do not observe any of the distortions in
differential jet rates seen in ref. [5]. We suggest that this may be due to the fact that, as
well as being a very much suppressed effect, the matrix element-parton shower interface
occurs at a fixed scale in Meps merging schemes like that studied in ref. [5], whereas in
Powheg the analogous scale is variable, being set by the transverse momentum of the
emitted radiation. We stress that the issue of truncated showers does not arise through
any of the Menlops themes in this article but stems from the Powheg method in general,
moreover, all studies to date in this context suggest that its effects are negligible [40–42].
In any case we note that such effects could be included for the processes studied here by
modest extensions of the methods in refs. [40, 43].

2.3 Menlops improved simulation of vector boson plus jet production

In this section we aim to promote the Powheg simulation of vector boson plus jet pro-
duction to a Menlops one. Whereas, up to now in the literature, the Menlops acronym
has stood for Nlops simulations enhanced by higher multiplicity tree level matrix ele-
ments, now we extend it to cover also the inclusion of lower multiplicity ones; in this case
by resummation and soft-collinear factorisation. By way of distinguishing the simulation
here from that of section 2.2 we append the suffix 0, referring to it as Menlops0 with a
double-hard emission cross section denoted dσ0. The naming derives from the fact that
the distributions resulting from this simulation correspond to the limit where the merging
scale to be introduced in section 2.4 is set to zero.

The cross section for vector boson production develops large logarithms, ∼ log Q2/p2
T,

at all orders in perturbation theory, as the boson’s transverse momentum becomes small,
Q being the off-shell boson mass. In this region fixed order perturbation theory then be-
comes unstable, with leading order and next-to-leading order predictions for the vector
boson pT spectrum diverging to plus and minus infinity respectively, as pT → 0. While
the Powheg-Vj programs exhibit precisely the latter unphysical behavior, the same large
logarithms are summed to all orders in αS in the Powheg-V programs, leading to a stable
and physical description of the Sudakov region and, hence, also inclusive observables.

Thus, here we begin by clarifying the differences between the Powheg-V and
Powheg-Vj programs in the low transverse momentum region, in order to better un-
derstand when the NLO computation of vector boson plus jet production can be expected
to begin to break down and with a view to ‘mapping’ the behavior of the former onto that
of the latter when this occurs. We point out that while the role of the renormalization
and factorization scales may appear prosaic, it is central to the discussion here, hence, it
is often referred to in the following.

In ref. [26] the authors established the equivalence of the resummed vector boson
transverse momentum spectrum of Ellis and Veseli [44] (based on the DDT formalism [45])
and the Powheg hardest emission cross section eq. (2.1). Specifically, it was shown how
the Powheg Sudakov form factor for divector boson production relates to the next-to-
leading log transverse momentum space Sudakov form factor in ref. [44]. The same proof
trivially holds here for vector boson production since the final-state is still colorless. In
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particular, neglecting terms beyond NLL accuracy it was proven that

∆ (ΦV , pT) ' fq/h⊕ (x̄⊕, pT)
fq/h⊕ (x̄⊕, Q)

fq̄/h	 (x̄	, pT)
fq̄/h	 (x̄	, Q)

exp [TNLL (pT, Q)] , (2.12)

where x̄© and Q are evaluated in terms of the underlying Born kinematics, ΦV , and TNLL

is the exponent of the next-to-leading log DDT Sudakov form factor

TNLL (pT, Q) = −
∫ Q2

p2T

dk2
T

k2
T

A (αS (kT))
2π

2CF

(
ln
Q2

k2
T

− 3
2

)
, (2.13)

with CF and CA the usual Casimir factors. The function A (αS) is defined as

A (αS) = αS

(
1 +

αS

2π
K
)
, K =

(
67
18
− π2

6

)
CA − 10

9
nfTR. (2.14)

Substituting the expression for the Sudakov form factor in eq. (2.12) into the
Powheg-V hardest emission cross section, eq. (2.1), and noting that the factorization
scale there in B̄ is Q, while in R/B it is pT, all PDF factors in the combination B̄/B ×∆
cancel. Hence, to NLL accuracy one has

dσV = R (ΦV j) exp [TNLL (pT, Q)] dΦV dΦj1
, (2.15)

where we-reiterate that the renormalization and factorization scales in R here are set
to the pT of the W / Z boson.7 We also remark that in order to achieve NLL accuracy
in the Powheg Sudakov form factors αS is replaced by A (αS) in the real cross section
therein and, hence, in eq. (2.15) [8, 26]. Lastly, we note that in writing eq. (2.15) we have
taken the ratio B̄/B as being equal to that of the associated PDFs, which is a legitimate
replacement at this level of approximation [26].

Using unitarity to integrate out the Φj2 phase space, the analogous expression to
eq. (2.15) in the vector boson plus jet Nlops is simply

dσV j = B̄ (ΦV j) dΦV dΦj1
. (2.16)

While B̄(ΦV j) may be just the fixed order, NLO, generalization of R(ΦV j), since the
renormalization and factorization scales in it are also set to the pT of the vector boson, it
bears a much closer resemblance to the DDT / Ellis-Veseli resummed cross section (and
hence eq. (2.15)) than it would if, say, the vector boson mass was used to set these scales.
Thus, some significant portion of the DDT resummation of large logarithms, associated to
PDF and coupling constant evolution, is present in the Powheg-Vj programs (eq. (2.16))
by virtue of this scale choice. Moreover, given the correspondence in the scale choices, the
NLO corrections in (2.16) must also reproduce, at least at the leading log level, the first
order expansion of exp[TNLL] in the resummed cross section in eq. (2.15).

Hence, provided that the higher order terms in the DDT Sudakov form factor (not
the Powheg Sudakov form factor) are genuinely O(α2

S), i.e. provided exp[TNLL] & 1− αS,
7For brevity we have omitted the unresolved emission term ∆

`
ΦV , p

min
T

´
from eq. (2.1) here, the effects

of which are negligible, giving rise to a fraction < 1 % of the events, in the non-perturbative region pT < pmin
T .
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the fixed order cross section in eq. (2.16) will not be invalidated by the effects of large
logs at higher orders. This inequality translates directly, albeit roughly, into a lower
bound on the underlying Born transverse momentum: p̃T & 14 GeV. The plots of the
vector boson pT spectra following this discussion are consistent with this estimate. Let
us make clear that this bound is lower than that which would be obtained were different
renormalization / factorization scale choices made in eq. (2.16) (see e.g. figure 1 of ref. [38])
i.e. logarithmically enhanced corrections are already in effect to some extent above this
threshold but they are offset by the resummation implicit in the scale choices.

Explicitly, we have taken p̃T = 14 GeV in Z production and p̃T = 12.5 GeV in W
production throughout. While the values inferred from the aforementioned inequality should
give a conservative estimate for p̃T, to put things on a more solid footing, one should ideally
check that p̃T is chosen above, yet close to, the point where the fixed order and resummed
spectra just start to diverge. The values quoted here fulfill the latter criterion (see figure 7);
in practice they should be adequate for all vector boson production applications.

Below p̃T missing logarithmically enhanced terms in the DDT Sudakov form factor
begin to render the NLO corrections to vector boson plus jet production invalid by them-
selves. Just above p̃T the combination of the NLO corrections and renormalization and
factorization scale choices serve to well model the onset of large logarithmic Sudakov ef-
fects — we take the fact that the Powheg-V and Powheg-Vj transverse momentum
spectra in figure 7 agree to within 5% in this region to be good evidence of that.

Having noted the various scale dependencies and the projected domain of validity of
the vector boson plus jet NLO computation, our Menlops strategy for enhancing the
Powheg-Vj simulations reduces to cutting off the NLO contributions to B̄(ΦV j) where
they start to become compromised by the neglect of large logarithms at higher orders,
pT,1 . p̃T, and instead resumming those same Sudakov logs, in precisely the same way as is
done in the Powheg-V programs. Thus, we write the modified Menlops0 cross section as

dσ0 = P(pT,1) dσNLL
V j + (1− P(pT,1)) dσV j ; (2.17)

where P(pT,1) is the following switching function,8

P(pT,1) =


1 pT,1 < p̃T − ε
1
2 sin

(
π
2ε (p̃T − pT,1)

)
+ 1

2 p̃T − ε < pT,1 < p̃T + ε

0 pT,1 > p̃T + ε ;
(2.18)

dσV j is the unmodified NLO hardest emission cross section of the Powheg-Vj programs
(eq. (2.8)) and dσNLL

V j a reweighting of dσV j, at leading order (B̄(ΦV j)→ R(ΦV j)), intended
to replicate the ΦV j dependence of the Powheg-V programs:

dσNLL
V j = KB (ΦV )|µF =mV

dΦV

[
R (ΦV j)
B (ΦV )

δ (kT (ΦV j)− pT,1) ∆ (ΦV , pT,1) dΦj1
dpT,1

8The width of the switching threshold is determined by ε, which we have taken to be 2.5 GeV throughout

— the fact that the switching threshold has a finite width allows for small O (1%) differences between dσNLL
V j

and dσV j , in the vicinity of pmerge
T , to be smoothed out.

– 16 –



J
H
E
P
0
9
(
2
0
1
1
)
1
0
4

×
{

∆
(
ΦV j, p

min
T

)
(2.19)

+ ∆ (ΦV j , pT,2)
∑
α

Rα
(
Φα

V jj

)
B (ΦV j)

δ
(
kα

T

(
Φα

V jj

)− pT,2

)
dΦj2

dpT,2

}]
.

This being so, when evaluating the leading order single emission cross section, R(ΦV j), in
eq. (2.19), we replace αS → A (αS), as when generating radiation in the Powheg-V pro-
grams. Furthermore, as in that case, R(ΦV j) is multiplied by a ratio of PDFs, in the form

B (ΦV )|µF =mV
/ B (ΦV )|µF =pT,1

. (2.20)

Note that the latter ratio comprises a tower of large logarithms, the same large logarithmic
content as the ratio B̄/B in the conventional Powheg-W / -Z cross section formulae.
While we do not claim that the description of fully inclusive observables is better than
leading order here, given the guiding principle amounts to trying to match, as far as
practically possible, the ΦV j dependence of dσV , we can at least correct the overall
normalization using a K -factor, K = ¯〈B 〉/ 〈B〉, for the vector boson production process
(determined with µR = µF = mV throughout). Lastly, we include the Powheg Sudakov
form factor ∆(ΦV , pT,1) leading to a double-hard emission cross section much like that of
the Menlops∞ simulation (eq. (2.11)), with the vector boson production hardest emission
cross section recovered up to the replacement B̄ → KB on integrating out Φj2 .

All of the modifications and reweightings above are carried out by straightforward
modifications to the B̄(ΦV j) function, except for the addition of the Sudakov form factor.
With the Monte Carlo generation cut on pT,1 set to that defining unresolvable radiation
in the Powheg Box programs (pmin

T = 0.8 GeV), the modified event generation process
including Sudakov form factor suppression proceeds as follows:

1. A vector boson plus jet configuration, ΦV j, is generated according to eq. (2.17) but
with the term ∆ (ΦV , pT,1) in dσNLL

V j replaced by one.

2. A random number R is generated and if R > P(pT,1) the event generation continues
as in the unmodified Powheg-Vj program at step 7.

3. The inverse mapping ΦV j → {ΦV ,Φj1
} is performed exactly and unambiguously.

4. Kinematics for vector boson production are assembled from ΦV .

5. The Powheg-V radiation generating code is used to generate a ‘ghost’ emission,
Φ′j1 , with respect to ΦV .

6. If p′T > pT,1 , where p′T = kT

(
ΦV , Φ′j1

)
and pT,1 = kT

(
ΦV , Φj1

)
, the vector boson

plus jet configuration, ΦV j, is rejected and the event generation is restarted at step 1.9

9Given the interpretation of the Sudakov form factor as a no-emission probability, events with kinematics

ΦV , pT,1 then pass this veto with probability ∆ (ΦV , pT,1), thus generating the Sudakov suppression term

that was set to one in the ‘crude’ distribution in step 1.
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7. Radiation is generated from the ΦV j state exactly as in the Powheg-Vj program,
completing the Powheg event.

Although generating the vector boson plus jet configurations at such low values of pT

and then vetoing them in large numbers may seem computationally expensive, the actual
efficiency associated with the rejection procedure above (with the generation cut set to
0.8 GeV) is not so costly, the acceptance rate being a little under 20%.

When all modifications are considered together, the full event generation procedure
actually proceeds much faster than normal. The switching off of the NLO corrections, when
the pT of the underlying Born configuration dips below ∼ 14 GeV, means one only needs to
evaluate relatively simple matrix elements there, moreover, the fact that the distribution
is then manifestly positive in this region, greatly reduces the number of negative weight
events and hence the number of folded-integrations [14, 46] required to remove them. We
have used a single folding of the real emission phase space Φj1 and Φj2 (a so-called 2-1-1
folding in the notation of ref. [14]), simply out of a desire to test the programming apparatus
under general conditions, rather than any inclination to remove negative weights. In the
event samples created with the unmodified Powheg-Vj programs used in this study, the
fraction of negative weight events was found to be ∼ 20 %, while in all other Powheg-

V and Menlops samples it was below ∼ 0.5%. Although the computational speed here
proved to be more than adequate for the purposes of this study, it is clear that the efficiency
of the Sudakov suppression procedure can be improved without too much effort.

We remark that once the p̃T threshold is crossed and the NLO corrections in B̄(ΦV j)
are turned off, the basic idea behind the procedure here is really no different to the
Sudakov suppression applied to matrix elements in the CKKW(-L) and MLM tree-level
merging methods. On a basic level, the whole approach here is a direct application of
those same principles.

Unlike the general tree-level merging techniques, the Powheg formalism, since it
aims at NLO accuracy, is defined and realized with a high degree of technical precision,
affording more control over the implementation here. Note, in particular, that the inverse
mapping of the phase space, ΦV j → {ΦV ,Φj1

} , is clearly and unambiguously defined; this
follows from the fact that the mapping covers the full single emission phase space, without
dead zones, without the need for any kind of emitter-spectator assignment, and because it
is, in this case, uniquely attributable to initial-state radiation. The clear specification of
the formalism, combined with this phase space inversion, underpins all of the modifications
described here, ultimately allowing us to reconstruct, up to the replacement B̄ → KB,
exactly the same distribution for ΦV and Φj1 as in the Powheg-W and Powheg-Z

programs. This exactness of the implementation should reveal itself in a number of ways,
as in the case of section 2.2. In particular, predictions for inclusive W / Z production
should closely trace their genuine NLO Powheg-V counterparts, the only source of
differences being B̄ → KB, also the large-log resummation in regions sensitive to Sudakov
effects should maintain its quality.

For completeness we note that in the Powheg-V simulations some events occur with
non-radiative kinematics, ΦV only, being physically interpreted as ones in which the emitted
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radiation is unresolvable and in a region dominated by non-perturbative dynamics. These
events are neglected in eq. (2.19), comprising just a fraction ∆(pmin

T ) < 1 % of the total
sample in the Powheg-V programs — a negligible contribution given that the accuracy
aimed at for fully inclusive observables in this section is just leading order.

As in section 2.2, here we begin to demonstrate that the Menlops0 method has been
faithfully implemented according to eq. (2.19) by first considering fully inclusive observables
in figure 6. Immediately one can see, as expected, that the vector boson plus jet production
programs give markedly different predictions to the Powheg-V and Menlops0 simula-
tions. This should not come as any surprise, since the behavior of the NLO calculation
underlying the former becomes unphysical when the observables include contributions from
the Sudakov region. Recall that the vector boson plus jet programs include an unphysical
cut-off on the pT of the underlying Born kinematics, to screen the associated collinear sin-
gularity, without which event generation is not possible. We have taken this Monte Carlo
generation cut to be 5 GeV here. Although we have not shown it explicitly, taking a dif-
ferent value of the cut for this type of observable will produce significant variations in the
results here, in fact by making the cut sufficiently small (2− 3 GeV) all of the predictions
become negative [14]. On the contrary, since the large logarithms associated with the same
Sudakov region are resummed in eq. (2.19), the Menlops0 formulation exhibits no such
unphysical behavior. In fact, in this case, the technical cut has been taken down to that
used in generating radiation in the vector boson production programs, 0.9 GeV, moreover,
the dependence of the predictions upon the cut is physical. Pleasingly, we see that the
level of agreement in the predictions of the Powheg vector boson production and the
Menlops0 simulations is by-and-large very good, with the two rarely deviating by more
than 10%; recall that the overall normalization is to a large extent fixed to the NLO total
cross section by the constant factor, K, in the low-pT region.

Continuing as in section 2.2, we next look to check the implementation of resummation
in the Sudakov region, where the transverse momentum of the vector boson becomes
small in eq. (2.19). As noted earlier, the similarities of eq. (2.19) with the double-hard
emission cross section in eq. (2.11) of section (2.1) are apparent, moreover, the surrounding
discussion on resummation there applies here too, without modification. Here again, in
figure 7, one can see good agreement between the Menlops0 and Powheg-V predictions,
with deviations being limited to about 10%, which we take as confirmation that the
accuracy of the Sudakov resummation in either case is the same.

The Powheg-Vj prediction is shown in blue in figure 7, the fact that it fails to describe
the low pT end of spectrum is no surprise, as we have already cited it as a motivating
factor for the modifications proposed here. We have chosen to show it since we believe it
substantiates our earlier statements regarding when the NLO calculation can be expected
to diverge from the resummed predictions, ∼ 14 GeV. Note that this value for when one
can expect the resummed and fixed order predictions to exhibit deviations is noticeably
lower than that which one might have inferred from figure 1 of ref. [38]. Note, however, that
in the case of ref. [38] the renormalization and factorization scales are set to the Z boson
mass, whereas the Powheg-Vj program uses the pT of the Z boson in the underlying Born
configuration and is thus in closer correspondence with the DDT formalism.

– 19 –



J
H
E
P
0
9
(
2
0
1
1
)
1
0
4

r

r

r

r

r

r
r
r
r r r r r r r r r r r r r r r r r r

r
r
r

r

r

r
r

r

Powheg-Z

Powheg-Zj
Menlops0r

10−2

10−1

1

10 1

Z rapidity
d

σ
/

d
y

Z
[p

b
]

r r r r

r

r

r
r r r r r r r r r r r r r r r r r r r r r r r r r r r

r

r

r r r r

-3 -2 -1 0 1 2 3
0.6
0.8

1
1.2
1.4

yZ

R
a

ti
o

r

r r
r r r

r r r r
r r r r

r r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r
r r
r r
r r
r r
r r r r

r r
r r
r

r
r
r

r r r
r

r

Powheg-Z

Powheg-Zj
Menlops0r

10−3

10−2

10−1

1

10 1

Lepton p⊥

d
σ

/
d

p
l ⊥

[p
b

/
G

eV
]

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
r r r r r r r r r r r

r
r r

r r
r

r

r

r

r

r r r
r

r

r

r
r
r

r

r

r

r

r

r

r r

r

r

r r r r r r r r r r r r

10 2
0.6
0.8

1
1.2
1.4

pl
⊥ [GeV]

R
a

ti
o

r

r
r r

r r
r r

r
r
r
r
r
r
r
r
r

r

r

r

r

r

r

r

r

r
r
r
r
r
r
r
r
r r r r r

r r r

Powheg-W

Powheg-Wj
Menlops0r

10 1

10 2

10 3

W mass

d
σ

/
d

m
W

[p
b

/
G

eV
]

r r r r r r r r
r
r r

r r r r r r r r r r r r r r r r r r r r r r r r r r r r r
r r

r
r r

r r r r r

60 65 70 75 80 85 90 95 100
0.6
0.8

1
1.2
1.4

mW [GeV]

R
a

ti
o

r
r r r

r
r

r
r

r

r

r r
r

r
r

r

r

r

Powheg-W

Powheg-Wj
Menlops0r

0

0.05

0.1

0.15

0.2

0.25

Charge asymmetry vs. η(ℓ)

(d
σ
(ℓ

+
)−

d
σ
(ℓ
− )

)
/

(d
σ
(ℓ

+
)+

d
σ
(ℓ
− )

)
r

r
r r r

r r
r r r

r r r r r r

r

r

r r

0 0.5 1 1.5 2 2.5 3 3.5 4
0.6
0.8

1
1.2
1.4

η(ℓ) [GeV]

R
a

ti
o

Figure 6. In this figure we compare predictions for inclusive observables obtained using the
Powheg simulations of vector boson production (red) and jet-associated vector boson production
(blue), to those of the Menlops0 vector boson production simulation (magenta squares). Plots in
the upper half of the figure correspond to Z production in

√
s = 1.96 TeV pp̄ collisions, while those

in the lower half are for W production in
√
s = 7 TeV pp reactions.
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Figure 7. Here we show Powheg vector boson (red) vector boson plus jet (blue) and Menlops0

(magenta squares) predictions for the Sudakov peak region of the vector boson transverse momen-
tum spectrum, in Z production at the Tevatron (left) and W production at the LHC (right). The
results shown here have been obtained by showering the initial bare events, stored in Les Houches
event files, with Pythia 8.150; hadronization and multiple parton interactions are not simulated.
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Figure 8. Menlops0 (magenta) and Menlops∞ (cyan triangles) predictions for the low transverse
momentum region in Z production at the Tevatron (left) and W production at the LHC (right).
The results shown here include the effects of multiple emissions through parton showering; the
simulation of hadronization and multiple parton interactions has been omitted. These plots serve
to prove that the non-trivial implementation of Sudakov suppression effects has been carried out
properly in the Menlops0 case.
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Figure 9. Powheg-W (red), Powheg-Wj (blue) and Menlops0 (magenta squares) predictions
for the leading jet transverse momentum and rapidity spectra for current LHC pp beam energies.

In order to prevent the distributions obscuring one another and due to its importance
in the context of the modifications being discussed in this section, in figure 8 we show
the same plots again but this time comparing the Menlops0 and Menlops∞ output.
If the hardest emission cross section formulae have been implemented precisely according
to eqs. (2.11) and (2.19) the two sets of predictions should be essentially identical in the
peak region, as is seen to be the case.

In figure 9 we compare the predictions of the leading jet transverse momentum and
rapidity distributions among the Powheg-W, Powheg-Wj and Menlops∞ approaches.
As expected, since these distributions are inclusive with respect to the jet-associated vec-
tor boson production process and since they do not receive contributions from regions of
phase space in which the W boson has a low pT, the Powheg-Wj and Menlops0 are
indistinguishable from one another. In the latter two simulations a small 10 − 20 % NLO
enhancement of the total vector boson plus jet cross section is discernible from the low-
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pT end of the transverse momentum spectrum and again, more clearly, in the rapidity
spectrum. The jet transverse momentum spectrum clearly shows the NLO enhancement
increasing with the pT [39]. Recall that a similar but slightly less robust, enhancement
was visible in the leading jet transverse momentum spectrum in the Menlops∞ case (fig-
ure 4). This is not unexpected since in that case the simulation should offer the same
leading order description of two-jet events (whose rate is underestimated by the single
emission Powheg-V programs) which serve to harden the leading jet pT spectrum.

Figure 10 focuses more on observables sensitive to the emission of multiple hard jets.
The trends shown here are readily understandable in terms of the basic features and
frailties of the various generators. In the upper right-hand plot the differential 0 → 1-jet
rate is presented, physically representing the exclusive kT-jet clustering scale at which a
0-jet event becomes resolved as a 1-jet one. Here one can see good agreement among all
three approaches except in the low transverse momentum / Sudakov region where the
Monte Carlo generation cut and the lack of any large-log resummation in the Powheg-Zj

program becomes evident with respect to the other two resummed predictions. The same
feature is apparent in the differential 1 → 2-jet rate, for the same reason. In this case,
however, at the high pT end of the spectrum, the NLO and partial NLO corrections to
the jet-associated vector boson production cross section reveal themselves, leading to an
excess of the Powheg-Zj and Menlops0 results over, what is for this observable, in this
region of phase space, only a LO prediction from the Powheg-Z program. The lower
plots, displaying the exclusive jet multiplicities and transverse momentum spectrum of
the next-to-leading jet, show the now-familiar picture of the Powheg-Vj and Menlops0

simulations predicting more radiation in the high transverse momentum regions of phase
space, where, by construction, they agree exactly with one another. Before moving on
though we draw attention to the one place where these two predictions do not agree in
the lower two plots viz the 0-jet multiplicity bin; there the Menlops0 prediction correctly
interpolates to that of the vector boson production Nlops.

2.4 Merging Menlops samples

The Menlops enhancement described in section 2.2 augments the Powheg Nlops

simulation of vector boson production freely with next-to-leading order real emission
matrix elements, while that of section 2.3 includes, through the factorisation theorem
and Sudakov resummation, lower order matrix elements in the vector boson plus jet
simulation. Neither simulation therefore includes a full set of NLO corrections to both
vector boson production or jet-associated vector boson production.

A practical, if seemingly crude, way to improve on the predictions of either Menlops

simulation, is to simply combine the event samples they produce appropriately, such that
results for both fully inclusive observables and also observables inclusive with respect to
the vector boson plus jet final-state, are accurate at the NLO level. To this end we follow
a similar line of reasoning to ref. [24], in particular, the discussion in section 3.

In ref. [24] an approximation to the exact Menlops method is implemented where
events from Nlops and Meps samples are filtered according to their jet multiplicity, using
the exclusive kT-jet clustering algorithm, at the so-called Menlops merging scale, and
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Figure 10. Observables sensitive to the emission of at least one hard jet. Powheg-V, Powheg-Vj

and Menlops0 results are shown in red, blue and magenta respectively. As in all earlier plots, the
sub-plot displays the ratio of the various predictions with respect to that given by the first entry
in the legend; the inset yellow band corresponds to the statistical errors on the reference data.

arranged in 0-jet, 1-jet and >2-jet sub-samples. The Nlops sub-samples are generally
considered to offer a better description of the 0-jet and 1-jet events than their Meps

counterparts since both simulations possess the same tree-level matrix elements, yet,
at least for the 0-jet class, the Powheg simulation also includes virtual corrections.
Conversely, the Meps simulations contain higher multiplicity matrix elements that the
Nlops simulations do not, so the >2-jet sample is regarded as having a better description
there. Thus, in the pragmatic implementation of ref. [24], the final Menlops samples are
constructed by complementing events from the 0- and 1-jet Powheg sub-samples with
those in the >2-jet Meps one, in carefully specified proportions; the key consideration
being that the unitary violating Meps component should be restricted so as not to
diminish the NLO accuracy of inclusive observables.

Here the situation is somewhat analogous. Rather than implement a multi-particle
phase space partition according to a conventional jet measure, we use the transverse
momentum of the vector boson plus jet kinematics, at the level of the bare (pre-shower)
events. As noted in ref. [13], in principle one can assemble an infrared safe jet algorithm
from the radiation phase space mappings underlying the Powheg Box implementation [9],
hence the partitioning here is in effect much like that of a Durham-type jet algorithm.
From a theoretical point of view though, it is more appealing to base the partition on the
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underlying Born kinematics, since these are more directly interpretable in terms of the
hardest emission cross section formulae, eqs. (2.11)), (2.19). To create the doubly NLO
accurate event sample we then populate the region pT,1 < pmerge

T using the Menlops∞

program and the region above pmerge
T using the Menlops0 simulation — we adjust the

number of events taken from either sample appropriately, to relieve (small) differences in
their event weights, giving uniform ±1 weighted events in the final sample.

Plainly, with no modifications to the component Nlops programs, the dependence on
the unphysical phase space partition is such that as it tends to high values one recovers
the single vector boson Nlops results, having, we note, only a leading-log, soft-collinear,
approximation for the next-to-leading jet. Conversely, as the pT defining the merging scale
tends to low values, the associated vector boson production Nlops is recovered, for which
the description of fully inclusive observables is (negatively) divergent and unphysical.
Hence by merging instead the output of the Menlops simulations we mitigate the
unwanted scale dependence to the same extent as in the CKKW method.

In order to preserve the NLO accuracy of inclusive observables in ref. [24] it was
important that the merging scale be bounded from below, to prevent too much of the
tree level Meps component entering and spoiling it, specifically, it was stipulated that the
Meps events form no more than a fraction O(αS) of the total. Equally, in the present case,
while the merging scale dependence is lessened by combining Menlops improved samples,
if we require the sample to be doubly NLO accurate, in the sense indicated by the second
paragraph in this section, it must be subject to restrictions. Here, as the merging scale
is decreased towards zero, the Menlops0 sample is recovered, which is strictly only LO
accurate in the description of fully inclusive observables (modulo the NLO normalization
K-factor), hence, the key point is again to bound the merging scale from below. Following
the same logic as ref. [24], it is clear that NLO accuracy for inclusive observables will
be preserved, up to fluctuations of NNLO significance, if one restricts the fraction of
Menlops0 events in the sample to be less than O(αS).

In practice, it is almost certainly the case that very much bolder merging scale choices,
taking in a much greater Menlops0 fraction would in fact not cause deviations in the
predictions for inclusive observables. This point is clearly made in figure 6, where there
is a remarkable level of agreement between the latter and the genuinely NLO Powheg-

V predictions. This is not something to be deceived by though. Whereas the Menlops0

kinematics, ΦV , there are distributed according to a K-factor enhanced leading order distri-
bution, B(ΦV ), the Powheg-V predictions include full NLO correlations through B̄(ΦV ).
Therefore, while it may be the case that the combination of the K-factor and B(ΦV ) work
well, a more complete study than this ought to expose the leading order sensitivity to
changes in the renormalization and factorization scales. In order to have a truly doubly
NLO accurate sample the lower bound on the merging scale should be respected.

We have enforced this criterion in building our merged samples: in the case of W pro-
duction at the LHC, merging the two Menlops samples at a scale pmerge

T = 35 GeV, leads
to a fraction of 11−12 % of Menlops0 events in the final sample10 and in the case of Z pro-

10Setting pmerge
T = 20 GeV in LHC W boson production yields a sample 25 % of which is Menlops0 events;
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duction at the Tevatron pmerge
T = 25 GeV leads to the same amount. Note that in combining

the samples, obviously the Menlops∞ and Menlops0 cross sections are preserved in the
regions either side of the cut, thus the final total cross section can differ from the NLO fully
inclusive Powheg-V / Menlops∞ results. In all cases we find the difference between the
Menlops∞ result and those of the merged samples — which we refer to as Menlops25

and Menlops35 on account of the merging scales used — is not greater than 1 %. This
latter observation is unremarkable given the fraction of Menlops∞ events allowed and the
agreement shown in figure 6 for inclusive quantities, we merely note it for technical reasons.

Furthermore, in practical applications, provided that the vector boson pT is used as the
renormalization and factorization scale in the fixed order components, the latter constraint
renders the added resummation in the Menlops0 simulations pointless; so long as the merg-
ing scale is not too small one can obviously use the jet-associated vector boson production
program, unmodified, in the high pT region. We therefore employ the Menlops0 simulation
in merging more as a matter of theoretical correctness. In this regard, when considering the
dependency of the predictions on the unphysical merging scale, the Sudakov suppression
factors take on their practical as well as theoretical significance, in the same way as in
the CKKW method. Actually the merging scale dependence here is substantially reduced
with respect to the CKKW case since, as we shall see, the two component sub-samples
are exactly unitary, moreover, they both include precisely all the same tree-level matrix
elements and exact same resummation. In particular, from the point of view of the region
below pmerge

T , we expect that using the Powheg-V simulation instead of its Menlops en-
hanced version would be notable as a marked dependence on the merging scale in multi-jet
observables. As noted in the introduction, to lessen the dependence on the merging scale
beyond this, would seem to be equivalent to the task of achieving genuine NNLO-parton
shower matching, something which is beyond the more modest, practical, aims of this work.

A final, related, technical point concerns the presence of discontinuities in the differ-
ential jet rates and pT spectra. We claim a level of matching at least as good as in the
CKKW method, in particular, that all logarithms pertaining to pT,1 and hence pmerge

T are
resummed. On the other hand, as is by now clear, the same is not true for the finite,
non-logarithmic, NLO (virtual) corrections. This alone defines the level of ambiguity in
the present merging. Below pmerge

T we have full NLO corrections to vector boson production
observables only, while above it there are only full NLO corrections to vector boson plus
jet production. Of course, one expects and finds that the NLO corrections to the latter
enhance jet rates and pT spectra with respect to the former by O(αS) at intermediate /
high pmerge

T — these are, after all, the differences we hope to take into account by merging
— leading to the possibility that small discontinuities may occur around pmerge

T on merging
the two samples. Note, however, that the exact value of the merging scale should not be
taken too seriously, it is wrong, for instance, to imagine that the quality of either compo-
nent sample instantly degrades either side of pmerge

T ; there is certainly some blurring in that
regard. This being the case, to smoothen any small NLO differences occurring between

note that the figures in section 3 indicate that inclusive predictions are rather insensitive to maximal merging

scale variations (as does figure 6).
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Figure 11. The 0- to 1-jet differential jet rate (left) and leading jet transverse momentum
spectrum (right), in W boson production at the LHC. In each figure we show, as green crosses,
the prediction from the merging of the component Menlops0 and Menlops∞ samples, with the
merging scale set to pmerge

T = 35 GeV. The magenta lines and cyan triangles, respectively, show the
corresponding predictions from the component Menlops0 and Menlops∞ samples. This collider
setup and these distributions were selected on the basis that they show the matching ambiguity
between the two samples in its worst light, specifically, the difference between the magenta and
cyan distributions at pmerge

T .

the different jet rates in the vicinity of the merging partition, we do not implement an
immediate step-function cut-off at pmerge

T , but rather a smooth sinusoidal damping function
of the form eq. (2.18), interpolating between 0 and 1 in the region ±5 GeV about pmerge

T .

By way of showing the worst that can be expected in terms of such discontinuities at
the merging scale, we show in figure 11 the 0- to 1-jet differential jet rate and the leading
jet pT spectrum, which we found to be most sensitive. Here one can see the Menlops0 and
Menlops∞ predictions disagree at the level of ∼ 5 % in the vicinity of the 35 GeV merging
scale, with the Menlops35 merged prediction interpolating between them. Due to the size
of the differences probed here the Monte Carlo statistical errors make the interpolation dif-
ficult to see, we suffice to say that in this regard we have used here event samples comprising
of well over one million events. Other distributions such as the vector boson pT spectrum
exhibit less sensitivity / ambiguity in the region of the cut, moreover, the magnitude of the
NLO corrections at the Tevatron is smaller, hence, there Menlops0 and Menlops∞ results
are more-or-less indistinguishable in the low pT region near pmerge

T . Many other distributions
from all of the Menlops samples will now be studied in comparison to data in section 3.

3 Tevatron and LHC predictions

Here we confront the native Powheg Box programs, their Menlops enhancements and
the merged Menlops samples, with Tevatron and early LHC data. The analyses presented
in this section are therefore carried out having developed the events output by the Powheg

and Menlops simulations to the hadron level and included multiple interaction effects. To
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this end we have used the Pythia 8.150 program, following closely the recommendations
set out in ref. [31] but otherwise maintaining the default settings.11 We have interfaced
Pythia to the HepMC package [47] and hence on to the Rivet framework [29] to perform
the experimental analyses. The selection of results is intended to be representative.

We have endeavored to keep the colouring of the predictions the same here as in earlier
plots in the article. As in all preceding histograms, each sub-plot shows the ratio of each
type of prediction to that placed first in the legend, here the experimental data. Also,
as before, in each case the shaded yellow band depicts the projection of the errors on the
reference data into the same ratio distribution.

3.1 Comparison to Tevatron data

In figure 12 we show the Z boson rapidity spectrum as measured by the CDF collaboration
at the Tevatron [48]. On the left Powheg-Z, Powheg-Zj and merged Menlops predic-
tions are compared to data, while on the right the Menlops0 and Menlops∞ component
samples are shown along with the same merged Menlops25 sample (pmerge

T = 25 GeV).
Given the inclusivity of the measurement here (figure 12) the Powheg-Zj prediction

unsurprisingly fails to describe the data; we present it for completeness and to illustrate
the improvement rendered to it by the Menlops0 enhancement described in section 2.3,
as shown in magenta on the right-hand plot. The Powheg-Z and merged Menlops

sample predictions (red line and green crosses) offer a good description of the shape of the
distribution while their overall normalization is negatively offset from the data by about
10 %, an acceptable disagreement for an NLO computation and one echoed by the other,
independent, theoretical predictions given in ref. [48].

From the point of view of validating the Menlops procedure, we draw attention to the
fact that the result of merging the Menlops samples is in complete agreement with the
Powheg-Z one for this fully inclusive observable. From the same perspective, the stability
of the predictions against extremal variations in the merging scale, in the right-hand plot, is
remarkable. While the level of agreement between the three Menlops predictions is strik-
ing we do not wish to over emphasize it; by virtue of the rules applied to the composition
of the merged sample, the Menlops∞ and Menlops25 results should be in near perfect
agreement, whereas, in principle, one could have expected some marginal deformations
of the shape of the Menlops0 result with respect to them, similar in size to those seen
between NLO and K-factor adjusted LO predictions. We cannot claim that the excellent
level of agreement between the Menlops0 results and the other two Menlops ones is not,
to some extent, coincidental — as noted in section 2.3, the true leading order nature of
the shape of fully inclusive Menlops0 predictions would reveal itself as a sensitivity to
renormalization and factorization scale variations, while the genuine NLO quality of the
other two Menlops samples would show them to be suitably insensitive.

The two key points to take away here are: firstly, that the Menlops0 enhancement of
the Powheg-Zj program means that it now gives a physical prediction for this inclusive

11In particular we used the so-called Pythia power -shower option which is understood to reduce the

presence of radiation gaps.
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Figure 12. On the left-hand side we show the inclusive Z boson rapidity spectrum as measured
by the CDF collaboration at the Tevatron [48], superimposed on the data are Powheg predictions
from the vector boson production and jet-associated production programs, in red and blue lines
respectively, as well as our Menlops prediction obtained by merging Menlops0 and Menlops∞

samples at a merging scale of 25 GeV (section 2.4). On the right we show the effects of varying
the same merging scale between logical extremes (0 ↔ ∞) displaying the pure Menlops0 and
Menlops∞ predictions alongside that shown in the left-hand plot. As throughout the article, the
yellow band signifies the projection of the errors on the reference data (always the first entry in the
legend) into the MC / data ratio.

observable where it did not before, moreover, one that has an uncanny resemblance to the
fully NLO predictions; the second important point is that the Menlops∞ and Menlops25

results are in complete agreement with that of the NLO Powheg-Z program, from which
they should have inherited this prediction.

Figure 13 shows the same set of comparisons with respect to a recent DØ measure-
ment [49] of an inclusive quantity, φ∗η , said to be closely related to the Z boson transverse
momentum: φ∗η = tan (φacop/2) sin

(
θ∗η
)

, with φacop defined as π minus the azimuthal sepa-
ration of the muonic decay products and θ∗η a measure of the scattering angle of the dimuons
with respect to the proton beam in their rest frame. From the definition one can see that
when the final-state leptons are back-to-back in azimuth, as would be the case if there were
no additional radiation in the final state, φ∗η tends to zero. Hence the region φ∗η = 0 is
highly correlated with the Sudakov region in the Z boson transverse momentum spectrum.

It follows that, despite the plots being normalized to unit area, the Powheg-Zj

prediction undershoots the data for φ∗η → 0, while the others offer reasonable agreement
there. The fact that this area of the plots is associated with the Sudakov peak region
also accounts for the small experimental errors there. By-and-large all of the conclusions
drawn in regard to the Z boson rapidity spectrum, in particular the Menlops predictions,
apply here unchanged. What is worth noting in addition, is the binning of the prediction
according to the rapidity of the Z boson. The Sudakov form factor, amongst others
resumming large-logs in the Menlops0 improved Powheg-Zj simulation, depends on
this, hence, it is interesting and reassuring to see that the low φ∗η region is described
equally well by this program in the |yZ| < 1 bin as in the 1 < |yZ| < 2 one.
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Figure 13. Powheg and Menlops predictions overlaid on DØ measurements of the variable
φ∗η = tan (φacop/2) sin

(
θ∗η
)

[49], with φacop defined as π minus the azimuthal separation of the Z
decay products and θ∗η a measure of the scattering angle of the leptons with respect to the proton
beam in the dimuon rest frame. Specifically, cos θ∗η = tanh [(η− − η+) /2], where η+/− denotes the
pseudorapidity of µ+/−. In ref. [49] it is noted that the angular nature of φ∗acop and φ∗η means they
can be measured more precisely than quantities more dependent on the lepton momenta as a whole.
All histograms here are normalized to unity.

In figures 14 and 15 we show the transverse momentum spectra of W and Z bosons as
measured by the Tevatron DØ collaboration in refs. [50] and [51] respectively. In all cases
the agreement of the various Monte Carlo predictions is quite pleasing, the only exception
being the Powheg-Wj and Powheg-Zj programs’ failure to describe the low pT region.
As can be seen on the left-hand side of each of the figures, this problem is remedied well
in the Menlops0 enhanced versions, which include the appropriate resummation of large
Sudakov logarithms there (magenta lines). Once again the agreement between the merged
Menlops prediction (green crosses) and those of its two component samples is very good.

As with the case of the Menlops0 result for the Z boson rapidity spectrum, the fact
that the Menlops∞ simulation replicates the high-pT behavior of the Powheg-Vj and
other Menlops predictions in this region is noteworthy, since its description there is only
partially next-to-leading order — through the inclusion of the double real emission matrix
elements and associated Sudakov suppression — the others include full NLO corrections
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Figure 14. The data here correspond to a DØ measurement of the W boson pT spectrum, in the
electron channel [50]. Superimposed on the left are results from Powheg Nlops simulations of W
production and W plus jet production, as well as a Menlops prediction. The Menlops25 event
sample was formed by merging Menlops0 and Menlops∞ simulations at an underlying Born pT

of 25 GeV. On the right we show the maximum variation induced in the Menlops predictions by
changing the merging scale.
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Figure 15. On the left we compare Powheg simulations of vector boson production and vector
boson plus jet production, as well as a Menlops prediction, to a recent DØ measurement of the
Z boson pT spectrum, in the dimuon channel [51]. The Menlops event sample was formed by
merging Menlops0 and Menlops∞ samples at an underlying Born pT of 25 GeV. The right-hand
plot shows the maximum variation in Menlops predictions associated to changing the merging
scale. The yellow band signifies the projection of the errors on the reference data — the first entry
in the legend — into the ratio MC / data.

to this observable throughout the high pT region. While it is the case that the high-pT

description of the Menlops∞ program appears in good agreement with its fully NLO
counterparts, one expects that it exhibits a little more renormalization and factorization
scale sensitivity there.

Here the first main point is that the Menlops results give an improved description
over the full pT range with respect to their unenhanced versions, in particular the
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description of the low-pT region is always physical and the predictions exhibit no more
variation among the improved programs than in the originals (which, for this observable,
was already quite mild). The second important point is that the merged Menlops25

sample can be considered to give a genuine NLO+NLL accurate prediction all through
the spectrum and that here the sensitivity of the prediction to the exact choice of merging
scale in a ‘real-life’ application should be practically negligible.

Figure 16 displays CDF measurements of the 1-, 2- and 3-jet cross sections, as well
as inclusive jet pT spectra underneath. The various Monte Carlo simulation predictions
are relatively straightforward to understand in terms of their constituent matrix elements.
Since all of the observables demand the presence of at least one jet, the Powheg-Z

predictions obviously suffer with respect to all of the others, since it includes only a
tree-level single emission matrix element for Z production, with additional radiation being
generated according to the parton shower approximation. In particular, the Powheg-Z

predictions have a characteristically softer radiation pattern associated with them,
manifested here as diminished multi-jet cross sections and inclusive jet pT spectra. It is
then pleasing to see that the Menlops∞ improvement (section 2.2), which generates
a secondary emission, according to the exact double emission matrix element, from the
Powheg-Z single emission configurations, gives a set of predictions in better agreement
with experimental data and the other approaches. On a related note, one can also see
the general trend persisting from the previous figures, whereby the Menlops-improved
results are in closer agreement with one another than the underlying Powheg programs.

While the general agreement of the improved approaches with the data in figure 16 is
good, clearly, in regards to the analysis carried out there, all of the Menlops approaches
offer no practical improvements over the description afforded by the Powheg-Zj program;
the low pT region is excluded by the nature of the observables, hence, there is no need
for Sudakov resummation (provided optimal scale choices are made) or NLO corrections
to the underlying inclusive Z production process. Thus, with this unique application in
mind, the advantages of Menlops event samples are rendered moot, only becoming useful
when viewed as a tool to perform many different analyses.Alternatively, more importantly,
when Z production is being considered as a background rather than a signal process, the
distinction between the inclusive and associated Z plus jet production processes is not often
clear and generally applicable tools are required. It follows that the ultimate practical
significance of these plots (and in fact all plots in this section) is in verifying the ability
of the Menlops approach to capture the best description from the Nlops simulations
throughout phase space and to show that the sensitivity of merged Menlops predictions
to the merging scale, pmerge

T , is remarkably mild. In particular, comparing the left- and
right-hand columns, that the merging scale sensitivity is minimized when the component
sub-samples are made from Menlops improved programs as opposed to unimproved ones.

Displayed at the top of figure 17 are distributions of the azimuthal separation of the
Z boson and leading jet (above) in the muonic decay channel at the Tevatron [53], as
well as the corresponding rapidity separation (below). Here the description of the data
is by-and-large fair in all of the approaches, the most prominent source of discrepancy
being in the region corresponding to a large azimuthal separation of the leading jet and
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Figure 16. In the left-hand column we compare Powheg-Z, Powheg-Zj and Menlops predic-
tions to CDF measurements of jet multiplicities and pT spectra in the dielectron decay channel [52].
On the right we repeat the exercise showing the full range obtained by varying the Menlops

merging scale described in section 2.4 from zero to infinity.

the Z boson in the Powheg-Z case. Again, as in the discussion surrounding figure 16,
this is somewhat expected due to the fact that this simulation resorts to a soft-collinear
parton shower approximation to generate events there, while the other methods make
use of the tree-level double emission matrix element. In connection with this, one can
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Figure 17. Here we compare Powheg-Z, Powheg-Zj and Menlops25 predictions to Tevatron
DØ collaboration measurements [53] of angular observables in the muonic decay channel. In the
upper pair of plots we show the azimuthal separation of the Z boson and leading jet, while the
lower plots show their rapidity separation. The colouring of the various predictions is as in the
previous figures.

again see a tendency for the Menlops predictions (right) to be in closer correspondence
with one another than the unimproved Powheg ones (left), re-asserting that the pmerge

T

dependence is minimized by building the merged sample from Menlops improved
Powheg simulations rather than unimproved ones.

3.2 Comparison with LHC data

In figures 18 and 19 we compare Powheg-W, Powheg-Wj and Menlops predictions
to Atlas collaboration measurements of the > N -jet cross sections (0 6 N 6 4), as well
as the leading and next-to-leading jet transverse momentum spectra, in the electron and
muon decay channels respectively [54].

Regarding the leading and next-to-leading jet pT spectra, all of the approaches, cor-
rected and uncorrected, offer a reasonable description of the data. The soft-collinear parton
shower approximation for the second jet in the Powheg-W simulation does not reveal it-
self to the same extent as in figure 16 — this should be exposed by greater statistics in
future experimental data sets — nevertheless, one can see a systematic tendency for the
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Powheg-W program to undershoot the experimental measurements in the higher pT bins.
On the other hand, the relative softness of the radiation pattern in the Powheg-W pro-
gram is much more in evidence in the > N -jet cross sections where it can be seen to greatly
underestimate that of higher multiplicity events. As in figures 16, 17 this deficiency of the
Powheg-W simulation is cured in the Menlops0 enhanced version (magenta lines).

From the point of view of the advantages to be had by the Menlops approaches
here, considering just the jet pT spectra, there is not much to be gained in practical terms
with respect to the Powheg-Wj simulation; the discussion given earlier surrounding
figure 16 largely applying here too. On the other hand, looking also to the > N -jet cross
sections one can see, as expected, the Powheg-Wj program fails due to its unphysical
description in the region where the vector boson pT is small, thus here the Menlops

approach can start to pay dividends. The same advantage will of course be present again
in other measurements also covering both the low- and high-pT domains, most obviously,
the vector boson pT spectrum, as seen already in figures 14 and 15.

Having said that, let us re-emphasize the point made earlier in regards to the jet
pT spectra in figure 16, namely that we foresee the main advantage in the Menlops

method being in the modeling of W and Z production as background processes, where the
significance of the various jet multiplicity bins is not generally clear. Hence, again, the
real practical value of these plots is to demonstrate that the Menlops approach always
embodies the best of the Nlops simulations and to show that the sensitivity of merged
Menlops predictions to the merging scale is marginalized (as illustrated by the plots on
the right-hand side of the figures).

4 Conclusions

Firstly in this article, we set out to investigate whether Powheg simulations of simple
processes could be promoted to Menlops ones without approximation [24]. This was
described and demonstrated in section 2.2, where only a fairly modest effort was required;
effectively recycling much of the radiation generating machinery of Powheg vector boson
plus jet simulations so as to generate next-to-next-to-leading order emissions according to
double emission matrix elements, instead of the parton shower approximation. The method
was shown to preserve the NLO accuracy of inclusive observables and the logarithmic accu-
racy of those sensitive to Sudakov effects. In all cases the Menlops enhancement, labeled
Menlops∞, provided a much improved description of Tevatron and LHC data with re-
spect to that of the underlying Powheg-V program, specifically, for observables sensitive
to the emission of more than one jet. Given the relative ease of the implementation and
the findings of the validation exercise, we believe that the same technique can be readily
and successfully applied to other processes, in particular, that it would be straightforward
to include the vector boson plus three partons matrix elements in the same way.

Our second goal was to seek improvement and similarly extend the reach of vector bo-
son plus jet simulations (the Powheg-Vj programs). Here we have again worked in such
a way as to minimize the interference with existing programming, directly utilizing the ra-
diation generating apparatus of the Powheg-V programs to induce Sudakov suppression
effects when the vector boson has low transverse momentum. The method was shown to
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Figure 18. Atlas collaboration measurements [54] of jet cross sections and jet pT spectra in
the electron decay channel. On the left-hand side we compare Powheg-W, Powheg-Wj and
merged Menlops35 predictions. On the right-hand side the merged Menlops35 predictions are
shown alongside those obtained using the component samples it derives from. The colouring of the
different contributions is as in previous figures in sections 2 and 3.

preserve the NLO accuracy of vector boson plus jet observables and the all-orders resumma-
tion of Sudakov logarithms, while at the same time giving predictions for fully inclusive ob-
servables in remarkably good agreement with genuine NLO ones (better than one has right
to expect). The Menlops0 enhancements lead to a much improved description of Tevatron
and LHC data with respect to that of the underlying Powheg-Vj program, for the case
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Figure 19. Here, on the left, we confront Powheg-W (red), Powheg-Wj (blue) and Menlops35

(green crosses) predictions with Atlas collaboration measurements [54] of jet multiplicity and jet
pT spectra in the muon decay channel. On the right-hand side we show the results from the
corresponding Menlops0 (magenta) and Menlops∞ (cyan dashes) improved versions of these
simulations, along with that obtained by merging their output ( Menlops35 ).

where the definition of the observables had some overlap with the Sudakov region, e.g. vec-
tor boson pT and rapidity distributions, as well as the 0-jet cross section (for which the latter
program exhibits unphysical behavior). We also remark that the benefits here were not
restricted to the program’s output but also extended to its run-time, which was found to be
greatly reduced due to it evaluating less complex NLO cross sections in the Sudakov region.
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Following these modifications we have considered the combination of the resulting event
samples in such a way as to yield a merged sample improving on both of the components:
inheriting both the NLO accuracy of the enhanced vector boson production simulation
Menlops∞ and that of the corresponding vector boson plus jet simulation Menlops0.

We have discussed in section 2.4 how the merging scale must be bounded from below, to
enforce that the fraction of Menlops0 events in the final sample not exceed O (αS) of the
total, to maintain the NLO accuracy of inclusive observables.

As noted in section 2.4, if optimal renormalization and factorization scale choices are
used, the latter constraint should effectively render the resummation in the vector boson
plus jet simulations null in the context of merging samples, with the Menlops0 sub-sample
being open to replacement by one from the normal Powheg-Vj program. We therefore
use the Menlops improved vector boson plus jet simulation in merging out of theoretical
correctness. On the contrary, the same is not true for the Menlops∞ simulation, which if
replaced by its unenhanced Powheg-V program would lead to two- and three-jet events
being underestimated by the parton-shower soft collinear approximation (exactly how much
depends on the value of the merging scale). In any case, by merging Menlops samples
rather than Nlops ones we minimize the merging scale dependence: even for the most
extreme variations we seldom find the Menlops0, Menlops∞ and merged Menlops

predictions out of agreement by more than 10% (typically this occurs in regions were the
predictions are all no better than leading order anyway). The same cannot be said of the
unimproved Powheg results. With this last point duly noted, it seems likely that a true
matching of the Nlops simulations, without any merging scale dependence, would offer
little in the way of practical improvements beyond this pragmatic approach.

Good while this may sound, in regards to actually describing W and Z (plus jet)
production as well defined signal processes, none of these enhancements seem to offer an
improved description over what could be done before, by taking care to use the right tool
for the right job (in the right way). Inclusive vector boson production measurements are
described as well by Powheg-V programs as by any Menlops ones and the same is true
in regards to the Powheg-Vj programs and vector boson plus jet measurements. In real
terms, the main potential improvement with regard to testing QCD is one of convenience,
through being able to perform inclusive and exclusive analyses with the one simulation /
event sample. On the other hand, when viewed as less well defined background processes,
one does not in general make any clear distinction between vector boson and vector boson
plus jet production. It is in these applications that we believe the approach taken here
can be expected to offer real gains. Also, it is from this perspective that the trouble
taken to minimize the merging scale dependence, the validation exercises and the favorable
comparisons with real data, take on their true significance.

While the latter simple approach (section 2.4) is not an exact theoretical solution to
the Nlops-Nlops matching problem, based on the comparison with data in section 3, it
would appear to be an effective, convenient and extensible one. Comparisons with a truly
scale-free method will be interesting when one is realized in the near future.

In conclusion we wish to recommend the Menlops procedures documented here, in
particular the merging of Menlops-improved Powheg simulation output, as an efficient
and clear means to get the most from existing and future Nlops simulations.
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[36] G. Miu and T. Sjöstrand, W production in an improved parton shower approach, Phys. Lett.
B 449 (1999) 313 [hep-ph/9812455] [SPIRES].

[37] G. Corcella and M.H. Seymour, Initial state radiation in simulations of vector boson
production at hadron colliders, Nucl. Phys. B 565 (2000) 227 [hep-ph/9908388] [SPIRES].

[38] G. Bozzi, S. Catani, G. Ferrera, D. de Florian and M. Grazzini, Production of Drell-Yan
lepton pairs in hadron collisions: transverse-momentum resummation at next-to-
next-to-leading logarithmic accuracy, Phys. Lett. B 696 (2011) 207 [arXiv:1007.2351]
[SPIRES].

[39] M. Rubin, G.P. Salam and S. Sapeta, Giant QCD K-factors beyond NLO, JHEP 09 (2010)
084 [arXiv:1006.2144] [SPIRES].

[40] K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte
Carlo simulation of Drell-Yan vector boson production, JHEP 10 (2008) 015
[arXiv:0806.0290] [SPIRES].

[41] K. Hamilton, P. Richardson and J. Tully, A positive-weight next-to-leading order Monte Carlo
simulation for Higgs boson production, JHEP 04 (2009) 116 [arXiv:0903.4345] [SPIRES].

[42] K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair
production, JHEP 01 (2011) 009 [arXiv:1009.5391] [SPIRES].

[43] K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging
approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072]
[SPIRES].

[44] R.K. Ellis and S. Veseli, W and Z transverse momentum distributions: resummation in qT
space, Nucl. Phys. B 511 (1998) 649 [hep-ph/9706526] [SPIRES].

[45] Y.L. Dokshitzer, D. Diakonov and S.I. Troian, Hard processes in quantum chromodynamics,
Phys. Rept. 58 (1980) 269 [SPIRES].

[46] P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation
of unweighted distributions, arXiv:0709.2085 [SPIRES].

[47] M. Dobbs and J.B. Hansen, The HepMC C++ Monte Carlo event record for high energy
physics, Comput. Phys. Commun. 134 (2001) 41 [SPIRES].

[48] CDF collaboration, T.A. Aaltonen et al., Measurement of dσ/dy of Drell-Yan e+e− pairs in
the Z mass region from pp̄ collisions at

√
s = 1.96 TeV, Phys. Lett. B 692 (2010) 232

[arXiv:0908.3914] [SPIRES].

[49] DØ collaboration, V.M. Abazov et al., Precise study of the Z/γ∗ boson transverse
momentum distribution in ppbar collisions using a novel technique, Phys. Rev. Lett. 106
(2011) 122001 [arXiv:1010.0262] [SPIRES].

– 40 –

http://dx.doi.org/10.1007/JHEP05(2011)009
http://dx.doi.org/10.1007/JHEP05(2011)009
http://arxiv.org/abs/1101.5953
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1101.5953
http://dx.doi.org/10.1016/0550-3213(94)00554-R
http://arxiv.org/abs/hep-ph/9410244
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9410244
http://dx.doi.org/10.1016/0010-4655(95)00064-M
http://dx.doi.org/10.1016/0010-4655(95)00064-M
http://arxiv.org/abs/hep-ph/9410414
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9410414
http://dx.doi.org/10.1016/S0370-2693(99)00068-4
http://dx.doi.org/10.1016/S0370-2693(99)00068-4
http://arxiv.org/abs/hep-ph/9812455
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9812455
http://dx.doi.org/10.1016/S0550-3213(99)00672-0
http://arxiv.org/abs/hep-ph/9908388
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9908388
http://dx.doi.org/10.1016/j.physletb.2010.12.024
http://arxiv.org/abs/1007.2351
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1007.2351
http://dx.doi.org/10.1007/JHEP09(2010)084
http://dx.doi.org/10.1007/JHEP09(2010)084
http://arxiv.org/abs/1006.2144
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.2144
http://dx.doi.org/10.1088/1126-6708/2008/10/015
http://arxiv.org/abs/0806.0290
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.0290
http://dx.doi.org/10.1088/1126-6708/2009/04/116
http://arxiv.org/abs/0903.4345
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.4345
http://dx.doi.org/10.1007/JHEP01(2011)009
http://arxiv.org/abs/1009.5391
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1009.5391
http://dx.doi.org/10.1088/1126-6708/2009/11/038
http://arxiv.org/abs/0905.3072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0905.3072
http://dx.doi.org/10.1016/S0550-3213(97)00655-X
http://arxiv.org/abs/hep-ph/9706526
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9706526
http://dx.doi.org/10.1016/0370-1573(80)90043-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRPLC,58,269
http://arxiv.org/abs/0709.2085
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.2085
http://dx.doi.org/10.1016/S0010-4655(00)00189-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CPHCB,134,41
http://dx.doi.org/10.1016/j.physletb.2010.06.043
http://arxiv.org/abs/0908.3914
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0908.3914
http://dx.doi.org/10.1103/PhysRevLett.106.122001
http://dx.doi.org/10.1103/PhysRevLett.106.122001
http://arxiv.org/abs/1010.0262
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1010.0262


J
H
E
P
0
9
(
2
0
1
1
)
1
0
4

[50] DØ collaboration, B. Abbott et al., Differential cross-section for W boson production as a
function of transverse momentum in pp̄ collisions at

√
s = 1.8 TeV, Phys. Lett. B 513 (2001)

292 [hep-ex/0010026] [SPIRES].

[51] DØ collaboration, V.M. Abazov et al., Measurement of the normalized Z/γ∗ → µ+µ−

transverse momentum distribution in pp̄ collisions at
√
s = 1.96 TeV, Phys. Lett. B 693

(2010) 522 [arXiv:1006.0618] [SPIRES].

[52] CDF — Run II collaboration, T. Aaltonen et al., Measurement of inclusive jet
cross-sections in Z/γ∗(→ e+e−) + jets production in pp̄ collisions at

√
s = 1.96 TeV, Phys.

Rev. Lett. 100 (2008) 102001 [arXiv:0711.3717] [SPIRES].

[53] DØ collaboration, V.M. Abazov et al., Measurement of Z/γ∗ + jet+X angular distributions
in pp̄ collisions at

√
s = 1.96 TeV, Phys. Lett. B 682 (2010) 370 [arXiv:0907.4286]

[SPIRES].

[54] ATLAS collaboration, G. Aad et al., Measurement of the production cross section for
W -bosons in association with jets in pp collisions at sqrts = 7 TeV with the ATLAS detector,
Phys. Lett. B 698 (2011) 325 [arXiv:1012.5382] [SPIRES].

– 41 –

http://dx.doi.org/10.1016/S0370-2693(01)00628-1
http://dx.doi.org/10.1016/S0370-2693(01)00628-1
http://arxiv.org/abs/hep-ex/0010026
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0010026
http://dx.doi.org/10.1016/j.physletb.2010.09.012
http://dx.doi.org/10.1016/j.physletb.2010.09.012
http://arxiv.org/abs/1006.0618
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.0618
http://dx.doi.org/10.1103/PhysRevLett.100.102001
http://dx.doi.org/10.1103/PhysRevLett.100.102001
http://arxiv.org/abs/0711.3717
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0711.3717
http://dx.doi.org/10.1016/j.physletb.2009.11.012
http://arxiv.org/abs/0907.4286
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.4286
http://dx.doi.org/10.1016/j.physletb.2011.03.012
http://arxiv.org/abs/1012.5382
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1012.5382

	Introduction
	Method
	Preliminaries
	Menlops improved simulation of vector boson production
	Menlops improved simulation of vector boson plus jet production
	Merging Menlops samples

	Tevatron and LHC predictions
	Comparison to Tevatron data
	Comparison with LHC data

	Conclusions

