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1 Introduction

In the decompactification limit, both the light-cone gauge fixed AdS5 × S5 superstring
and its AdS/CFT dual [1] N = 4 super Yang-Mills theory have a description through an
asymptotic Bethe ansatz.1 This description does not apply to either theory at finite size,
where the only current non-perturbative description is through a set of equations known
as the mirror thermodynamic Bethe ansatz (TBA) equations for the superstring.

The idea of applying methods from integrable relativistic models at finite size [4] to
the AdS/CFT correspondence was initiated in [5] and explored in detail in [6]. The main
step in deriving the mirror TBA equations is the formulation of the string hypothesis [7],
which was done for the present model in [8] by using the mirror version of the Bethe-
Yang equations [9] for the AdS5 × S5 superstring. This was followed by a derivation of
the canonical [10–12] and simplified [13] TBA equations that describe the ground state of
the theory.2 These equations have been used to analyze the vanishing of the ground state
energy of the theory at finite size [15]. Importantly, these ground state equations can be
used to obtain equations for the excited states, through a contour deformation trick [16]

1For a review of integrability in the AdS/CFT correspondence see [2, 3].
2The associated Y-system was conjectured in [14].
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inspired by the analytic continuation procedure of [17]. Using the contour deformation
trick, the mirror TBA equations have been used to reproduce perturbative results found
through Lüscher’s approach3 [19–21], and to study certain states in the sl(2) sector in
considerable detail [22–24], specifically at intermediate coupling in [25, 26]. The analytic
properties of the Y-functions [23, 27–29] are essential in determining these equations, and
have proved useful for further understanding of the mirror TBA equations. Following these
developments, discontinuity relations can now be used to find the excited state equations
directly in the sl(2) subsector [30], giving results in complete equivalence with the contour
deformation trick where applicable. Moreover, the simplified TBA equations have recently
been brought to a quasi-local form [31], another step in the direction of obtaining a so-
called non-linear integral equation (NLIE) description of the spectral problem at finite size.
Additional steps in this direction had already been taken in [32, 33].

It is well known that the asymptotic Bethe ansatz (ABA) captures the leading 1/J
corrections to the asymptotic energy spectrum, while it misses the exponential corrections
due to the finite system size. Therefore the ABA misses quantitative information on the
spectrum, as is for example clearly illustrated by wrapping corrections to scaling dimensions
in the gauge theory. Following an observation of [16], in this paper we will show that for
the AdS5× S5 superstring finite size effects are not only quantitative in nature. In fact we
will demonstrate that the ABA also misses qualitative information on the spectrum, owing
to a discrete symmetry enhancement of the model in the asymptotic limit, so that certain
states become degenerate asymptotically.

This paper is organized as follows. In the next section we start by discussing the
symmetries and degeneracies of the asymptotic Bethe ansatz and explain the asymptotic
symmetry enhancement alluded to just above. Next, we will indicate how finite size effects
should lift this degeneracy. After painting the general picture we illustrate these ideas by
considering two concrete states with degenerate energies in the asymptotic limit. We will
show that these states have manifestly different TBA equations and explicitly compute the
different finite size corrections they receive, in line with the general discussion.

2 Extra degeneracy in the asymptotic limit

In general the energy spectrum of string states is expected to have degeneracies, owing to
the superconformal symmetry of the model. Because of this symmetry, string states arrange
themselves in superconformal multiplets which each share a common energy. At the level of
the (asymptotic) Bethe ansatz these degeneracies are reflected by the fact that solutions to
the Bethe-Yang equations only give the highest weight states of the underlying symmetry
algebra, familiar from e.g. the Heisenberg [34] and Hubbard model [35]. Completeness of
the Bethe ansatz then follows by adding the states which lie in the same multiplet, which
then by construction have the same energy. In the case of the asymptotic Bethe ansatz
for the AdS5 × S5 superstring however, there is additional degeneracy, degeneracy which
arises in the decompactification limit and should not be present in the complete model.
This degeneracy occurs in the asymptotic Bethe ansatz due to enhanced symmetry in the

3The use of Lüscher’s approach [18] in the AdS/CFT correspondence was first advocated in [5].
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asymptotic limit, indicating qualitative features of the model that are not captured by the
asymptotic solution.

In the light-cone gauge the superstring has manifest suL(2|2) ⊕ suR(2|2) symmetry,
where the subscript L and R distinguish the two su(2|2) factors, conventionally called left
and right. By construction, the model possesses a Z2 symmetry, which we call left-right
symmetry, interchanging the sets of left and right su(2|2) charges. This means that for
every state with a given set of suL(2|2)⊕ suR(2|2) charges, there exists a state with equal
energy, with left-right interchanged su(2|2) charges. It is this left-right symmetry which is
enhanced in the asymptotic limit to a larger discrete group, at the level of highest weight
states. At the level of the Bethe-Yang equations this enhancement is manifested by the fact
that they allow more than just an interchange of complete sets of left and right charges,
actually allowing free redistribution of roots between the left and right sectors in certain
cases. In the finite size model on the contrary, there is no reason to assume states related
by such a redistribution should have the same energy, so we expect that finite size effects
lift this asymptotic degeneracy. We will now consider these ideas in more detail.

2.1 The Bethe-Yang equations

The Bethe-Yang equation for the AdS5 × S5 superstring in the light-cone gauge is given
by [9]

1 = eipkJ
KI∏
l=1
l 6=k

Ssl(2)(pk, pl)
∏

α=L,R

KII
(α)∏
l=1

x−k − y
(α)
l

x+
k − y

(α)
l

√
x+
k

x−k
, k = 1, . . .KI . (2.1)

In addition to the rapidities of fundamental particles, this equation contains y(α) roots.
Together with the w(α) roots (α = L,R) which enter in the auxiliary Bethe equations just
below, these correspond to the suL(2|2)⊕ suR(2|2) symmetry of the model. The auxiliary
Bethe equations consist of two independent sets of two coupled equations for the y and w

roots, given by

1 =
KI∏
l=1

y
(α)
k − x−l
y

(α)
k − x+

l

√
x+
l

x−l

KIII
(α)∏
l=1

ν
(α)
k − w(α)

l + i
g

ν
(α)
k − w(α)

l − i
g

, k = 1, . . . ,KII
(α), α = L,R , (2.2)

1 =

KII
(α)∏
l=1

w
(α)
k − ν(α)

l + i
g

w
(α)
k − ν(α)

l − i
g

KIII
(α)∏
l=1
l 6=k

w
(α)
k − w(α)

l − 2i
g

w
(α)
k − w(α)

l + 2i
g

, k = 1, . . . ,KIII
(α), α = L,R , (2.3)

where ν(α)
k = y

(α)
k + 1/y(α)

k . The fact that we have two sets of identical left-right decoupled
equations corresponds directly to the left-right symmetry mentioned earlier. At the level
of the transfer matrix this is reflected by the fact that we have a transfer matrix for
each sector, T (L) and T (R); both are su(2|2)-invariant transfer matrices with eigenvalues
parametrized by the auxiliary roots, and these eigenvalues are therefore arranged in su(2|2)
multiplets. As mentioned, solutions of the auxiliary equations (2.2)–(2.3) identify highest
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weight states of the su(2) subalgebras of this symmetry algebra, labeled by the Dynkin
labels (s(α), q(α)). The weights are encoded in the excitations numbers as

s(α) = KI −KII
(α) , q(α) = KII

(α) − 2KIII
(α) , (2.4)

where the excitation numbers satisfy

KI ≥ KII
(α) ≥ 2KIII

(α) , α = L,R . (2.5)

2.2 Extra degeneracy

As indicated, the discrete left-right symmetry of the light-cone gauge fixed model can be
enhanced in the asymptotic limit, giving a higher amount of degeneracy in the spectrum.
This is the case when KIII

(α) = 0, for states with a given total number of y roots;
∑

αK
II
(α) =

KII
Tot > 1. For any such state, the auxiliary Bethe equations reduce to

KI∏
l=1

y
(α)
k − x−l
y

(α)
k − x+

l

√
x+
l

x−l
= 1 , k = 1, . . . ,KII

(α) , α = L,R , (2.6)

showing that we have one and the same equation for each of the y
(α)
k [16]. The number

of solutions we can pick for each y depends on the main excitation number KI, and in
general we must take care to only allow for regular configurations of roots. Nonetheless,
the consequence of this degeneration is immediately clear: provided there is more than one
allowed solution for y(α)

k we can freely redistribute any number of different y roots between
the left and right sectors without changing the main Bethe-Yang equation, because it itself
contains a product over the left and right roots. This is the enhancement of the left-
right symmetry of the finite size model in the asymptotic limit. Let us note that the
corresponding symmetry group acts on regular highest weight states only, and that this
action cannot be extended to the other states.

Two states differing by such a redistribution will have the same asymptotic momentum,
hence energy, while there is no reason to assume their energies should be identical outside
the asymptotic regime. Rather, it would actually be a surprising coincidence if their
energies agreed. Stated more strongly, looking at the description of the finite size model
through the mirror TBA it should be conceptually clear that this symmetry is only present
asymptotically; the presence of w roots generically spoils this symmetry, and while an
individual state might have no w roots, in the mirror TBA such a state is described in
interaction with a thermal background containing all possible excitations. Note also that
two such asymptotically equivalent states have manifestly different Dynkin labels, while
they are not in the same superconformal multiplet. Indeed, such states correspond to
potentially wildly different operators in N = 4 SYM.

2.3 Lifting degeneracies through finite size effects

As just stated, we expect finite size corrections to lift this degeneracy of the asymp-
totic spectrum, whether it be through the thermodynamic Bethe ansatz, or perturbatively
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through Lüscher corrections. How this happens is perhaps most immediately seen through
the complete formula for the energy of a string state in the mirror TBA approach [10]

E =
KI∑
k=1

Ek −
1

2π

∞∑
Q=1

∫
dv

dp̃Q

dv
log(1 + YQ) , (2.7)

where Ek = ip̃(u∗k) gives the asymptotic contribution to the energy, while the second term
arises from the finite size of the system. In this formula, the YQ-functions are determined
through the mirror TBA equations, which intricately couple the auxiliary left and right
Y -functions. Now in general there is no reason to expect that the TBA equations for two
of these asymptotically degenerate states should be the same, meaning they should receive
different finite size corrections, lifting the degeneracy of the asymptotic spectrum.

Alternately, expanding the energy formula (2.7) to leading order around the asymptotic
solution (small YQ-functions) gives a formula in direct agreement with Lüscher’s approach

ELO = − 1
2π

∞∑
Q=1

∫
dv
dp̃

dv
Y ◦Q(v). (2.8)

Here Y ◦Q, in the above expanded to leading order in the coupling constant, is given by the
generalized Lüscher’s formula [36]

Y ◦Q(v) = e−J ẼQ(v) T (L)(v|~u) T (R)(v|~u)
∏
k

SQ1∗
sl(2)(v, uk). (2.9)

In this formula ẼQ(v) is the energy of a mirror Q-particle, SQ1∗
sl(2)(v, uk) denotes the sl(2)

S-matrix with arguments in the mirror (v) and string regions (uk) and finally T (L,R) are the
left and right transfer matrices, given in appendix A. Clearly these corrections couple the
left and right sectors through the product of transfer matrices. Such transfer matrices, and
more importantly their products T (L)T (R), will generically be different for two asymptoti-
cally degenerate states, giving different perturbative finite size corrections, showing again
that the denegeracy of the asymptotic spectrum is lifted in the finite size theory.

In what follows we will illustrate these ideas concretely for two different four-particle
states, both parametrized by two y roots. We will show how the full sets of mirror TBA
equations describing these states are manifestly different (though naturally in an elegant
symmetric way), and explicitly compute different leading-order corrections to the energy,
which hence lift the asymptotic degeneracy. Let us first introduce our states.

3 Two explicit states

We consider two states that have the same value for KI and
∑

αK
II
(α), but different values

for the individual KII
(α). When KI = 2 there are no non-trivial level-matched solutions

of the auxiliary equations, therefore we consider the states Θ and Ψ, as presented below
in table 1.
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State KI KII
(L) KII

(R) KIII
(α) Weights

Θ 4 2 0 0 [2, J − 1, 0](2,4)

Ψ 4 1 1 0 [1, J − 1, 1](3,3)

Table 1. The two asymptotically degenerate states we consider. Note the manifestly different
excitation numbers. For the readers’ convenience we have also presented the Dynkin labels of the
states, denoted by [qL, p, qR](sL,sR).

For either state we have four rapidities ui, level-matched, and two auxiliary roots y(α)
i ,

either both left or one left and one right. In both cases we take the four rapidities to come
in pairs: u1 = −u2 > 0 and u3 = −u4 > 0.

As discussed above, for both states the auxiliary equation for any y
(α)
i is the same.

From (2.2), and imposing the rapidities to come in pairs, we find

1 =
4∏
i=1

y − x−i
y − x+

i

, with x±1 = −x∓2 , x±3 = −x∓4 . (3.1)

This admits two regular roots (in addition to y = 0,∞) that are opposite to each other,
y = ±yo, where

yo =

√
x−1 x

+
1 (x−3 − x

+
3 ) + x+

3 x
−
3 (x−1 − x

+
1 )

x−1 − x
+
1 + x−3 − x

+
3

. (3.2)

Therefore we take y(L)
1,2 = ±yo for state Θ, and y(L)

1 = +yo and y(R)
1 = −yo for state Ψ. We

can now solve the two Bethe-Yang equations (2.1) for u1 and u3 at a given value of J , by
plugging in the auxiliary roots, recalling that the sl(2) S-matrix is given by

Ssl(2)(u1, u2) = σ−2 x
+
1 − x

−
2

x−1 − x
+
2

1− 1
x−1 x

+
2

1− 1
x+
1 x
−
2

, (3.3)

where σ is the dressing factor.
Solving the resulting equation analytically is not feasible. Therefore, we first consider

the limit g → 0, rescaling the rapidities such that they remain finite, ui → 1
gu

o
i . Then the

equations for uo1 and uo3 decouple, and both take the simple form

1 =
(
uok + i

uok − i

)J+2

=⇒ uok = cot
nk π

J + 2
, nk = 1, . . . J + 1 , (3.4)

where the sum of positive nk giving the string level of the state [37]. In order to have a
generic root configuration we focus on the case J = 4 at string level three, where we can
solve (2.1) numerically for arbitrary values of g, requiring that at small coupling

uo1 = −uo2 =
√

3 , uo3 = −uo4 =
1√
3
. (3.5)

In figure 1 the numerical solutions u1(g) and u3(g) are shown. Note again that these
solutions are the same for both states. In solving (2.1) numerically, the representation of

– 6 –
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Figure 1. The rapidities u1 and u3 obtained from Bethe-Yang equation at different values of g.
Note that they asymptote to two as the coupling is increased.

the dressing phase as presented in [26] is most convenient. It is worth remarking that at
finite values of g, no simple relation between u1 and u3 holds, despite what we see at weak
coupling in (3.5).

Through the AdS/CFT duality, the Θ state corresponds to an operator schematically
of the form Tr(D2ψ̄ψ̄Z3). The correspondent operator of the Ψ state is actually a linear
combination of two types of operators, namely Tr(D2ψ̄ψZ3) and Tr(D3WZ4). In these
expressions, all excitations have the highest allowed charges.

3.1 TBA equations

In order to obtain TBA equations for an excited state we use the contour deformation
trick, following [23]. A clear overview of this whole approach can be found in [16]. In
short we assume that the ground state and excited state TBA equations differ only by
the choice of the integration contours. Upon deforming the integration contours of the
excited state TBA equations to the ground state ones, we pick up additional contributions
whenever there is a singularity in the physical strip of the rapidity plane. This leads to the
appearance of new driving terms in the excited state TBA equations.

In the present case, we do this for the left and right sectors, for both states. We denote
the Y -functions Y (L)

M |w, Y
(L)
± , Y

(L)
M |vw and Y

(R)
M |w, Y

(R)
± , Y

(R)
M |vw for a given state in the left and

right sectors respectively; the sectors are coupled by the YQ functions. Below we discuss
the analytic properties and related integration contours for both states in detail, followed
by the resulting TBA equations.

3.1.1 Analytic properties

As discussed in [16], we will use the (left and right) asymptotic Y -functions to study
the analytic properties of the TBA equations. Their asymptotic construction is given in
appendix A. Let us stress that all the Y -functions but YQ are defined in a given sector, i.e.

– 7 –
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1 + Y
(L)
M |w 1 + Y

(R)
M |w 1− Y (L)

− 1− Y (R)
− 1 + Y

(L)
M |vw 1 + Y

(R)
M |vw

Roots Θ ±%M − i/g – ±%0 − i/g – – ±rM − i/g
Roots Ψ ρM − i/g −ρM − i/g −ρ0 − i/g ρ0 − i/g −rM − i/g rM − i/g

Table 2. Roots for Y -functions in the left and right sectors for states Θ and Ψ at small coupling.
By definition we consider %M , ρM , rM , rM > 0. Asymptotically, one observes that %M 6= ρM and
rM 6= rM .

YM |w ≡ Y
(α)
M |w etc. Only YQ couples the left and right sectors, and indeed asymptotically

YQ contains the product of left and right transfer matrices, as in (2.9).
As shown in detail for the Konishi state in [23], the precise analytic structure of

asymptotic Y -function will depend on the coupling g. In general, when we increase g

we can expect to encounter an asymptotic critical value [23] where some roots enter the
physical strip, so that we must include appropriate driving terms. This would make the
discussion more technically involved, but is of little relevance to understanding the lifting
of degeneracies. We will therefore restrict our analysis to the small coupling region, below
the first critical value of g.

For both states, it turns out that roots of 1+YM |w, 1+YM |vw and 1−Y−, and poles of
Y+ play an important role. In order to discuss this, let us fix some notation. Roots related
to state Θ are described by script letters: %M for YM |w, %0 for Y− and rM for YM |vw. They
are fixed by the conditions

YM |w(%M − i/g) = −1, Y−(%0 − i/g) = 1, YM |w(rM − i/g) = −1 . (3.6)

Similarly, we will use sans-serif letters to denote roots for state Ψ: ρM for YM |w, ρ0 for Y−
and rM for YM |vw, fixed by

YM |w(ρM − i/g) = −1, Y−(ρ0 − i/g) = 1, YM |w(rM − i/g) = −1 . (3.7)

In addition, for both states in both sectors Y+ asymptotically has poles at the rapidities
shifted by i/g, Y+(ui − i/g) = ∞, as in the Konishi case [23]. The relevant roots are
summarized in table 2.

We expect that the roots, and hence the driving terms, distribute differently between
the left and right sectors for Θ and Ψ. This is indeed the case, as can be seen in table 2.

On the real mirror line, the asymptotic Y -functions for state Θ are even, while for
state Ψ the Y -functions do not have a definite parity but satisfy Y (L)(v) = Y (R)(−v).

3.1.2 The simplified TBA equations

We now apply the contour deformation trick to the simplified TBA equations of [10, 13]. In
order for the asymptotic solution to be a solution, we take the ground state TBA equations
and define the integration contour such that it goes slightly below the line −i/g, i.e. such
that it encloses the poles of Y+ at ui − i/g as well as the roots of table 2 between itself
and the real line. By taking the integration contour back to the real line, we find the

– 8 –
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appropriate driving terms, denoted D , and obtain the TBA equations. Below we list the
driving terms that appear for each state. The integration kernels and S-matrices which
enter in the equations below have been defined and are completely listed in [23]. As usual,
for any kernel or S-matrix we define S±(v) := S(v ± i/g).

• M |w-strings; M ≥ 1 , Y0|w = 0. The equation has the general form

log Y (α)
M |w = log(1+Y

(α)
M−1|w)(1+Y

(α)
M+1|w)?s+δM1 log

1− 1

Y
(α)
−

1− 1

Y
(α)
+

?̂ s+D
(α)
M |w, (3.8)

where D
(α)
M |w are the driving terms that differ in the left and right sector for each

given state and α = L,R. For state Θ we have

D
(L)
M |w(v) = − logS−(±%M−1 − v)− logS−(±%M+1 − v) , (3.9)

D
(R)
M |w(v) = 0 ,

where the terms containing ±% indicate the sum of two driving terms for opposite
roots. For Ψ we have, instead,

D
(L)
M |w(v) = − logS−(ρM−1 − v)− logS−(ρM+1 − v) , (3.10)

D
(R)
M |w(v) = − logS−(−ρM−1 − v)− logS−(−ρM+1 − v) .

• M |vw-strings; M ≥ 1 , Y0|vw = 0

log Y (α)
M |vw(v) =− log(1 + YM+1) ? s+ log(1 + Y

(α)
M−1|vw)(1 + Y

(α)
M+1|vw) ? s (3.11)

+ δM1 log
1− Y (α)

−

1− Y (α)
+

?̂ s+ D
(0)
M |vw + D

(α)
M |vw .

When M = 1, we find a driving term that is independent of state and sector, arising
from the poles of Y+, that is

D
(0)
M |vw = −δM1

4∑
i=1

logS−(ui − v) . (3.12)

In addition to that, for state Θ we have

D
(L)
M |vw(v) = 0 , (3.13)

D
(R)
M |vw(v) = − logS−(±rM−1 − v)− logS−(±rM+1 − v) ,

whereas for Ψ we have

D
(L)
M |vw(v) = − logS−(−rM−1 − v)− logS−(−rM+1 − v), (3.14)

D
(R)
M |vw(v) = − logS−(rM−1 − v)− logS−(rM+1 − v) .

– 9 –
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• y-particles

log
Y

(α)
+

Y
(α)
−

= log(1 + YQ) ? KQy + D
(0)
ratio , (3.15)

log Y (α)
− Y

(α)
+ = 2 log

1 + Y
(α)

1|vw

1 + Y
(α)

1|w

? s− log (1 + YQ) ? KQ (3.16)

+ 2 log(1 + YQ) ? KQ1
xv ? s+ D

(0)
prod + D

(α)
prod .

We expect both of these equations to pick up contributions from the exact Bethe
equation4 Y1(u∗i) = −1, which will yield driving terms that do not depend on the
state or sector. These are

D
(0)
ratio(v) = −

4∑
i=1

logS1∗y(ui, v) , (3.17)

D
(0)
prod(v) = −

4∑
i=1

log

(
S1∗1
xv

)2
S2

? s(ui, v) .

where

log

(
S1∗1
xv

)2
S2

? s(u, v) ≡
∫ ∞
−∞

dt log
S1∗1
xv (u, t)2

S2(u− t)
s(t− v) .

The contribution follows from the identity

logS1(ui − v)− 2 logS1∗1
xv ? s(ui, v) = − log

(S1∗1
xv )2

S2
? s(ui, v), (3.18)

valid for real ui. In addition to the above driving terms, we have state-specific
contributions in equation (3.15); for Θ we have

D
(L)
prod(v) = 2 logS−(±%1 − v) , (3.19)

D
(R)
prod(v) = −2 logS−(±r1 − v) ,

and for Ψ we have

D
(L)
prod(v) = 2 log

S−(ρ1 − v)
S−(−r1 − v)

, (3.20)

D
(R)
prod(v) = −2 log

S−(r1 − v)
S−(−ρ1 − v)

.

4Here and afterwards, ∗ indicates analytic continuation to the string region. Also, S1∗y(uj , v) ≡
S1y(u∗j , v) is shorthand notation for the S-matrix with the first and second arguments in the string and

mirror regions, respectively. The same convention is used for other kernels and S-matrices.
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• Q-particles

log YQ(v) =− LTBA ẼQ + log
(
1 + YQ′

)
?
(
KQ′Q

sl(2) + 2s ? KQ′−1,Q
vwx

)
+ D

(0)
Q (3.21)

+
∑

α∈{L,R}

(
log
(

1 + Y
(α)

1|vw

)
? s ?̂KyQ + log

(
1 + Y

(α)
Q−1|vw

)
? s

− log
1− Y (α)

−

1− Y (α)
+

?̂ s ? K1Q
vwx +

1
2

log
1− 1

Y
(α)
−

1− 1

Y
(α)
+

?̂ KQ

+
1
2

log
(
1− 1

Y
(α)
−

)(
1− 1

Y
(α)

+

)
?̂ KyQ + D

(α)
Q

 .

These are the TBA equations for Q-particles in the hybrid form of [23]. Summation
over repeated indices is understood. As before, we split the driving terms in a part
independent of the specific state, that is D

(0)
Q , and sector dependent parts D

(α)
Q which

will differ between Θ to Ψ. We then have

D
(0)
Q (v) =

4∑
i=1

(
− logS1∗Q

sl(2)(ui, v) + 2 logS ? K1Q
vwx(ui, v)− logS1Q

vwx(ui, v)
)
, (3.22)

where for any kernel K we define

logS ? K(u, v) = lim
ε→0+

∫
dt logS (u− i/g − iε− t) K(t+ iε, v) , (3.23)

which is the same type of contribution as for the Konishi state. The left and right
driving terms for Θ are

D
(L)
Q (v) = logS ? K1Q

vwx(±%0, v)− 1
2

logS−Q(±%0 − v)− 1
2

logSyQ(±%0 − i/g, v),

D
(R)
Q (v) = − logS ?̂KyQ(±r1, v)− logS−(±rQ−1 − v), (3.24)

while for Ψ we have

D
(L)
Q (v) = logS ? K1Q

vwx(ρ0, v)− 1
2

logS−Q(ρ0 − v)− 1
2

logSyQ(ρ0 − i/g, v)

− logS ?̂KyQ(−r1, v)− logS−(−rQ−1 − v), (3.25)

D
(R)
Q (v) = logS ? K1Q

vwx(−ρ0, v)− 1
2

logS−Q(ρ0 − v)− 1
2

logSyQ(−ρ0 − i/g, v)

− logS ?̂KyQ(r1, v)− logS−(rQ−1 − v).

In the above, K0,Q
vwx = 0, Y0|vw = 0, meaning that the driving logS+(v − r0) is not

present.

Let us stress that in order to check (3.21) on the asymptotic solution, LTBA needs to
be specified. We find that

LTBA = J + 2 , (3.26)
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for both Θ and Ψ, just as for Konishi [23]. As discussed in [16], LTBA is the maximal
J charge occurring in the conformal supermultiplet described by the TBA equations,
and for a generic state that has full supersymmetry one indeed expects LTBA = J +
2. Nonetheless, there are examples of deformations of the superstring that break
supersymmetry where different relations hold [38, 39].

3.1.3 The exact Bethe equations

As discussed, the finite-size energies of states Θ and Ψ depend on the allowed momenta. In
the mirror TBA approach, these are found by analytically continuing the Q-particle TBA
equations to the string region and imposing the exact Bethe equation Y1(u∗i) = −1, which
is the finite size quantization condition.

The (logarithm of the) exact Bethe equation for a string rapidity uk is given by

(2n+ 1)πi = iLTBA pk + log
(
1 + YQ′

)
?
(
KQ′1∗

sl(2) + 2s ? KQ′−1,1∗
vwx

)
+ D

(0)
1∗

(3.27)

+
∑

α∈{L,R}

(
log
(

1 + Y
(α)

1|vw

)
?
(
s ?̂Ky1∗ + s−

)
− log

1− Y (α)
−

1− Y (α)
+

?̂ s ? K11∗
vwx

+
1
2

log
1− 1

Y
(α)
−

1− 1

Y
(α)
+

?̂ K1 +
1
2

log
(

1− 1

Y
(α)
−

)(
1− 1

Y
(α)

+

)
?̂ Ky1∗ + D

(α)
1∗

 ,

where the kernels have been analytically continued appropriately.5 As for the driving terms,
we get the state independent contribution

D
(0)
1∗

(uk) =
4∑
i=1

(
− logS1∗1∗

sl(2) (ui, uk) + 2 log Res(S) ? K11∗
vwx(ui, uk) (3.28)

− 2 log (ui − uk − 2i
g )
x−j −

1
x−k

x−j − x
+
k

)
.

Coming to the state-dependent terms, for Θ we have

D
(L)
Q (uk) = logS ? K11∗

vwx(±%0, uk)−
1
2

logS−1 (±%0 − uk)−
1
2

logSy1∗(±%0 − i/g, uk),

D
(R)
Q (uk) = − logS ?̂Ky1∗(±r1, uk)− logS(±r1 − v), (3.29)

while for Ψ we have

D
(L)
Q (uk) = logS ? K11∗

vwx(ρ0, uk)−
1
2

logS−1 (ρ0 − uk)−
1
2

logSy1∗(ρ0 − i/g, uk),

− logS ?̂Ky1∗(−r1, uk)− logS(−r1 − v), (3.30)

D
(R)
Q (uk) = logS ? K11∗

vwx(−ρ0, uk)−
1
2

logS−1 (−ρ0 − uk)−
1
2

logSy1∗(−ρ0 − i/g, uk),

− logS ?̂Ky1∗(r1, uk)− logS(r1 − v).

5See the appendix of [23] for details.
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We used the short-hand

log Res(S) ? K11∗
vwx(u, v) =

∫ +∞

−∞
dt log

[
S(u− i/g − t)(t− u)

]
K11∗
vwx(t, v) , (3.31)

and note that the momentum of the magnon is given by p = iẼQ(z∗) = −i log
xs(u+ i

g
)

xs(u− i
g

)
.

Expanding the exact Bethe equation about the asymptotic Y -functions, we find, mod-
ulo 2πi,

Rk ≡ 2i pk +
4∑
i=1

2 log Res(S) ? K11∗
vwx(ui, uk) − 2 log (ui − uk − 2i

g )
x−j −

1
x−k

x−j − x
+
k

 (3.32)

+
∑

α∈{L,R}

(
− log N

(α)
∗ + log

(
1 + Y

(α)
1|vw

)
?
(
s ?̂Ky1∗ + s−

)
− log

1− Y (α)
−

1− Y (α)
+

?̂ s ? K11∗
vwx

+
1
2

log
1− 1

Y
(α)
−

1− 1

Y
(α)
+

?̂ K1 +
1
2

log
(
1− 1

Y
(α)
−

)(
1− 1

Y
(α)

+

)
?̂ Ky1∗ + D

(α)
1∗

= 0 ,

where the expression is evaluated at uk.6 The terms log N
(α)
∗ arise from the analytic

continuation of

N (α)(v) =

KII
(α)∏
i=1

y
(α)
i − x−(v)

y
(α)
i − x+(v)

√
x+(v)
x−(v)

, (3.33)

that comes from the Bethe-Yang equations (2.1), appearing whenever KII
α > 0. Equa-

tion (3.32) can be verified numerically to ensure that the analytic continuation has been
performed correctly.

Since (3.21) contains a sum over the left and right sectors, the form of the resulting
exact Bethe equation is the same for Θ and Ψ. We might wonder whether this gives same
momenta for both states, but this is of course not the case because the set of auxiliary
Y -functions for the two states will be completely different. Indeed, even in the asymptotic
case, the numerical value of the two set of roots is different: %M 6= ρM and rM 6= rM .

Finally, recall that the energy of each state is given by (2.7). Since we have seen that
the two set of TBA equations of Θ and Ψ differ, we expect the energies EΘ and EΨ to be
different as well. We will now show this explicitly by evaluating the first order wrapping
corrections to the energy in both cases.

3.2 Wrapping corrections

As shown above, the TBA equations for the two states we consider are not equivalent.
Therefore, the resulting YQ functions and hence the energies should be different, thus lifting
the degeneracy of the asymptotic Bethe ansatz. We will directly compute the leading order
wrapping corrections to the energy to see this explicitly, naturally finding different results
for the two states.

6As in the Konishi case [20], this equation still holds for small perturbations around the solution of the

Bethe-Yang equation, {uk}.
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The leading order wrapping correction to the energy can be conceptually seen to arise
from Lüscher corrections [18], or equivalently by perturbatively expanding the free energy
of the mirror model [10], depending on your point of view.

Using the asymptotic expression for the YQ-functions, (2.9), we can compute the lead-
ing order wrapping correction. To do so we evaluate our YQ-functions to lowest order in g,
which give leading order wrapping interactions at seven loops. As expected the resulting
YQ-functions are manifestly different. The expanded YQ-functions for either state are given
in appendix B. Recall that the leading order wrapping correction to the energy is given by

ELO = − 1
2π

∞∑
Q=1

∫
dv
dp̃

dv
Y ◦Q(v).

Integrating and summing the Y-functions for J = 4 yields the following explicit wrapping
correction for our states,

EΘ
LO = −

(
231
32 ζ(11) + 21

32 ζ(9)− 259
32 ζ(7)− 113

16 ζ(5) + 161
32 ζ(3) + 1887

1024

)
g14 (3.34)

≈ −0.2761 g14,

EΨ
LO = −

(
231
32 ζ(11) + 105

64 ζ(9)− 553
64 ζ(7)− 589

64 ζ(5) + 49
8 ζ(3) + 2269

1024

)
g14 (3.35)

≈ −0.1889 g14.

This shows explicitly how the degeneracy present in the asymptotic Bethe ansatz is lifted
by finite size (wrapping) corrections, with Θ being the lighter state.

4 Conclusion

In this paper we have described a symmetry enhancement taking place for the AdS5 × S5

superstring in the asymptotic limit. Due to this enhancement certain states degenerate in
the asymptotic limit, as described through the asymptotic Bethe ansatz. This symmetry
is not present in the finite size model, indicating a qualitative feature of the model that
is not captured by the asymptotic solution. We illustrated these ideas on a set of two
asymptotically degenerate states, by showing that they have manifestly different TBA
equations, as well as explicitly computing their leading order wrapping corrections, clearly
showing lifting of the asymptotic degeneracy. It would be interesting to verify these result
on the gauge theory side, where two unrelated sets of operators should have identical scaling
dimensions exactly and only up to wrapping order.
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A Transfer matrices and asymptotic Y -functions

The eigenvalues of the transfer matrix T
(α)
Q,1 in the sl(2)-grading are known from [40, 41].

The index α = L,R labels the sector; for clarity we suppress it from TQ,1 as well as from
the auxiliary roots y, w that parametrize the eigenvalues. We have

TQ,1(v) =
KII∏
i=1

yi−x−
yi−x+

√
x+

x−

1 +
KII∏
i=1

v−νi+ i
g
Q

v−νi− i
g
Q

KI∏
i=1

[
(x−−x−i )(1−x−x+

i )

(x+−x−i )(1−x+x+
i )

x+

x−

]
(A.1)

+
Q−1∑
k=1

KII∏
i=1

v−νi+ i
g
Q

v−νi+ i
g

(Q−2k)

[ KI∏
i=1

x(v+(Q−2k) i
g

)−x−i
x(v+(Q−2k) i

g
)−x+

i

+
KI∏
i=1

1−x(v+(Q−2k) i
g

)x−i

1−x(v+(Q−2k) i
g

)x+
i

] KI∏
i=1

x+−x+
i

x+−x−i

v−vi−(2k+1−Q) i
g

v−vi+(Q−1) i
g

−
Q−1∑
k=0

KII∏
i=1

v−νi+ i
g
Q

v−νi+ i
g

(Q−2k)

KI∏
i=1

x+−x+
i

x+−x−i

√
x−i
x+
i

v−vi−(2k+1−Q) i
g

v−vi+(Q−1) i
g

KIII∏
i=1

wi−v+
i(2k−1−Q)

g

wi−v+
i(2k+1−Q)

g

−
Q−1∑
k=0

KII∏
i=1

v−νi+ i
g
Q

v−νi+ i
g

(Q−2k−2)

KI∏
i=1

x+−x+
i

x+−x−i

√
x−i
x+
i

v−vi−(2k+1−Q) i
g

v−vi+(Q−1) i
g

KIII∏
i=1

wi−v+ i
g

(2k+3−Q)

wi−v+ i
g

(2k+1−Q)

 .
The variable

v = x+ +
1
x+
− i

g
a = x− +

1
x−

+
i

g
a (A.2)

takes values in the mirror theory rapidity plane, so that x± = x(v ± i
ga) where x(v) is

the mirror theory x-function. Similarly, x±j = xs(uj ± i
g ), where xs is the string theory

x-function. Recall that

x(u) =
1
2
(
u− i

√
4− u2

)
, xs(u) =

u

2
(
1 +

√
1− 4/u2

)
. (A.3)

Notice that the transfer matrix comes with a prefactor of N =
∏KII

i=1
yi−x−
yi−x+

√
x+

x− encoun-
tered already in the Bethe-Yang equations (2.1) and in (3.33). As discussed in [16], this is
consistent with the requirement that Y1∗(uk) = −1 on a solution of Bethe-Yang equations.

From the transfer matrix one can construct asymptotic Y -functions7 as follows

Y
(α)
M |w =

T
(α)
1,MT

(α)
1,M+2

T
(α)
2,M+1

, Y
(α)
− = −

T
(α)
2,1

T
(α)
1,2

, Y
(α)

+ = −
T

(α)
2,3 T

(α)
2,1

T
(α)
1,2 T

(α)
3,2

, Y
(α)
M |vw =

T
(α)
M,1T

(α)
M+2,1

T
(α)
M+1,2

, (A.4)

in each sector, α = L,R. Recall that the YQ functions are given asymptotically by (2.9).

7The general construction of the Y-functions in terms of transfer matrices is based on the underlying

symmetry group of the model [42, 43]. For the string sigma model asymptotic Y-functions were presented

in [14]. In fact, this solution can be directly derived from the Bajnok-Janik formula [36] and the AdS/CFT

Y-system, see [16].
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B Expansions for Y ◦
Q functions

Taking the transfer matrix (A.1) and expanding in the coupling constant yields the follow-
ing expressions for the left and right transfer matrices of state Θ

T
(L)
Q,1(~u|v) =AQ[6Q6+Q4(5u2

1+5u2
3+18v2+2)+Q2(u4

1−2v2(u2
1+u2

3+10)−2(u2
1+u2

3+3)+u4
3+18v4) (B.1)

−v4(7u2
1+7u2

3+22)−(u2
1+1)(u2

3+1)(u2
1+u2

3+2)+v2(u4
1+u2

1(8u2
3+6)+u4

3+6u2
3+2)+6v6]

T
(R)
Q,1 (~u|v) = AQ

3
[(u2

1+u2
3+2)(Q4+Q2(3u2

1+3u2
3−2v2+2)+v2(3u2

1+3u2
3+2)−3(u2

1+1)(u2
3+1)−3v4)] (B.2)

where
AQ = 8Q

(u2
1+1)(u2

3+1)(Q2+v2)2(u2
1+(Q−iv−1)2)(u2

3+(Q−iv−1)2) .

The expansion of the individual transfer matrices is rather convoluted for the Ψ state, so
we present only the result for the product, given by

T
(L)
Q,1T

(R)
Q,1 (~u|v) =A2

Q(Q2+v2)(u2
1+u2

3+2)
[
Q8(9(u2

1+u2
3+2)−8v2) (B.3)

+Q6
“

28v2(u2
1+u2

3+2)+6
“
(u2

1+u2
3)

2−4
”
−32v4

”
+Q4

(
46v4(u2

1+u2
3+2)+2v2(u4

1−6u2
1(u2

3+4)+u4
3−24u2

3−44)

+(u2
1+u2

3+2)(u4
1−2u2

1(2u2
3+5)+u4

3−10u2
3−2)−48v6

)
+2Q2

(
22v6(u2

1+u2
3+2)−(u2

1+1)(u2
3+1)

“
(u2

1+u2
3)

2−4
”

−v4(7u4
1+6u2

1(5u2
3+8)+7u4

3+48u2
3+52)

+v2(u2
1+u2

3+2)(u4
1+u2

1(8u2
3+2)+u4

3+2u2
3+10)−16v8

)
+17v8(u2

1+u2
3+2)+(u2

1+1)2(u2
3+1)2(u2

1+u2
3+2)

−2v6(5u4
1+6u2

1(3u2
3+4)+5u4

3+24u2
3+20)

+v4(u2
1+u2

3+2)(u4
1+2u2

1(10u2
3+7)+u4

3+14u2
3+22)

−2(u2
1+1)(u2

3+1)v2(u4
1+u2

1(6u2
3+4)+u4

3+4u2
3)−8v10

]
The S-matrix in the string-mirror region S1∗Q

sl(2) is found in [44] (see also [19]) and has the
following leading behavior in g

S1∗Q
sl(2)(u, v) = −

[
(v−u)2+(Q+1)2

][
Q−1+i(v−u)

]
(u−i)2

[
Q−1−i(v−u)

] +O(g2) . (B.4)

These expressions are enough to build up the leading term in the weak-coupling expansion
of the asymptotic function Y o

Q, which is given by

Y ◦Q(v) =
g2J

Q2 + v2

T (L)(~u|v)T (R)(~u|v)∏
i S0(v, ui)

, (B.5)

where for our specific states we take either the product of (B.2) and (B.1), or (B.3).
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