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1 Introduction

Gauge/gravity duality [1–3] relates certain strongly coupled quantum field theories to

weakly coupled theories of gravity, giving us perturbative access to the non-perturbative

regime of these field theories. It is believed that any quantum field theory will have a

stringy dual, but duality only has practical value if the string dual has a limit in which it

reduces to local classical gravity where we can do perturbative calculations. It was recog-

nized early on that a necessary condition for a field theory to have a local bulk dual like

this is that it have a large N limit as well as a hierarchy in the spectrum of anomalous

dimensions. In a previous paper [4], we conjectured that this is in fact sufficient. To be

precise,

Any CFT that has a planar expansion, and in which all single-trace operators

of spin greater than two have parametrically large dimensions, has a local bulk

dual.

For physical intuition and a discussion of the extent to which this had been tested in

previous work, we refer to the introduction of [4]. We provided evidence for this conjecture

by studying the four point correlator of a single single-trace primary for a CFT of the
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conjectured form. To O(1/N2), and by restricting the spin, we counted the number of

independent solutions to the crossing constraints for these correlators and showed that this

matches the counting of bulk interaction Lagrangians, thereby confirming the conjecture.

We did this in d = 2 and d = 4, making use of explicit expressions for conformal blocks.

Matching the counting ruled out the logical possibility that there exist CFTs within this

class corresponding to some smeared version of string theory on AdS or perhaps without

an AdS description at all. Because the boundary correlator has the interpretation of a bulk

S-matrix [5, 6], our result may also be seen as a proof in this setting of the lore that every

S-matrix can be obtained from a local Lagrangian quantum field theory.

In this paper we continue the previous work. We extend the CFT under consideration

to contain a finite but arbitrary number of single-trace scalar operators and study the

four-point correlator of four distinct operators. The counting changes in a non-trivial way,

but is again shown to match, providing further evidence for the conjecture. In section 2

we rederive the explicit expressions for the conformal blocks. We clarify the meaning of

certain variables in which they take a simple form and we include the previously discarded

possibility of parity odd conformal blocks in two dimensions. We explain the constraints

imposed by crossing and clarify the perturbative expansion of the case of distinct degenerate

operators where mixing occurs. In section 3 we count solutions to crossing in CFT as well as

bulk interactions and show that the numbers match. We discuss implications and possible

future directions in section 4.

2 Conformal blocks and crossing

2.1 Parity even and odd conformal blocks

The four-point correlator in conformal field theory is naturally decomposed into a sum over

conformal blocks; each block is the contribution of definite conformal Casimir, analogous

to the partial wave decomposition of flat space amplitudes. A nice explicit form for the

conformal blocks in d = 2, 4 was found by brute force in [7] and subsequently in a more

elegant way in [9]. In this subsection we repeat the latter derivation, clarifying the mean-

ing of the variables there introduced and including the omitted possibility of parity odd

conformal blocks in d = 2.

AdSd+1—whose isometry group is the conformal group O(d, 2)—can be represented

by the surface X2 = −1 in d + 2 dimensional flat space with signature − − + · · ·+. The

boundary is then given by the projective null cone X2 = 0 with XA ∼ λXA and conformal

fields of weight ∆ on the boundary are homogeneous functions O(λX) = λ−∆O(X). The

conformal generators are

LAB = XA
∂

∂XB
− XB

∂

∂XA
. (2.1)

Conformal invariance implies that the scalar four-point function on the boundary can be

written in the form

A ≡ 〈O1(X1)O2(X2)O3(X3)O4(X4)〉 =

(
X24

X14

)∆1−∆2
(

X14

X13

)∆3−∆4 As(u, v)

X∆1+∆2
12 X∆3+∆4

34

,

(2.2)

– 2 –



J
H
E
P
0
9
(
2
0
1
0
)
0
9
9

where As is the reduced amplitude which is a function of the conformally invariant cross

ratios

u =
X2

12X
2
34

X2
13X

2
24

, v =
X2

14X
2
23

X2
13X

2
24

, X2
ij = (Xi − Xj)

2 . (2.3)

We can break the amplitude up into contributions of fixed conformal Casimir in the 1-2

(s) channel A =
∑

CE,l
pE,lAE,l with

L2
sAE,l = −CE,lAE,l, CE,l =

1

2
(E(E − d) + l(l + d − 2)) , L2

s =
1

4
(L1AB+L2AB)2 ,

(2.4)

where the AE,l have to have the same form as the total amplitude

AE,l =

(
X24

X14

)∆1−∆2
(

X14

X13

)∆3−∆4 gE,l(u, v)

X∆1+∆2
12 X∆3+∆4

34

(2.5)

The gE,l(u, v) are referred to as conformal partial waves and they have to obey a differential

equation in u, v obtained from substituting (2.5) into (2.4).

In d = 2 the connected part of the conformal group factorizes SO(2, 2) = SL+(2,R)×

SL−(2,R). This becomes manifest after a change of basis

L±
x =

1

2
(L01 ± L23), L±

y =
1

2
(L02 ∓ L13), L±

z =
1

2
(J12 ± J03), (2.6)

and (dropping the label of the sub-algebra) we can subsequently change to a standard basis

for the global subgroup of the classical Virasora algebra by

L0 = −Ly, L∓1 = ±(Lx ± Lz) =⇒ [Lm, Ln] = (m − n)Lm+n, (2.7)

with Casimir

L2 =
1

2
(L1L−1 + L−1L1) − L2

0 . (2.8)

The Casimir of SO(2, 2) is now the sum of the two SL(2,R) Casimirs. AdS2+1 is invariant

under O(2, 2) and we see from (2.1) that the parity operation XA → −XA for any A

interchanges the SL(2,R).

Poincare coordinates on AdSd+1 are given by [11]

X0 =
r2 + 1 + ηµνyµyν

2r
, Xd = −

r2 − 1 + ηµνyµyν

2r
, Xµ =

yµ

r
(µ = 1 · · · d − 1)

(2.9)

with line element

ds2 =
dr2 + ηµνdyµdyν

r2
, ηµν = diag(−,+ · · ·+) . (2.10)

In d = 2 we change coordinates on the boundary to x = y + t, x = y − t and in terms of

those the generators (2.7) become

L0 = −
1

2
r∂r − x∂x, L−1 = −∂x, L1 = −xr∂r − x2∂x − r2∂x (2.11)
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and a similar set with x ↔ x. After a Wick rotation t → it to Euclidean AdS x and x

are complex conjugates and acting on r independent quantities at the surface r = 0 the

generators (2.11) reduce to the well known representation of the Virasora algebra on the

plane Ln = −xn+1∂. To know how the AdS isometries act on boundary conformal fields

of weight ∆ we need the AdS/CFT dictionary

(L2
s)

+〈O1(z1, z1) · · · O4(z4, z4)〉 = lim
ri→0

∏

i

r−∆i

i (L2
s)

+〈φ(x1, r1) · · · φ(x4, r4)〉 , (2.12)

which means that when acting on boundary correlators we replace r∂r by ∆ in (2.11) and

then take r → 0:

L0 = −
1

2
∆ − x∂x, L−1 = −∂x, L1 = −x∆ − x2∂x. (2.13)

The s-channel left Casimir becomes

(L2
s)

+ =
∆1 + ∆2

2

(
1 −

∆1 + ∆2

2

)
+∆1(x1−x2)∂2−∆2(x1−x2)∂1+(x1−x2)

2∂1∂2. (2.14)

In terms of x, x the conformal cross ratios on the boundary can be written

u = zz, v = (1 − z)(1 − z), z =
x12x34

x13x24
, xij = xi − xj . (2.15)

and the differential equation for the conformal partial waves obtained from substitut-

ing (2.5) in (2.4) separates into left and right moving parts

(D + D)gE,l(z, z) =
(
h(h − 1) + h(h − 1)

)
gE,l(z, z) = CE,lgE,l(z, z) (2.16)

where the left and right conformal weights are related to the spin and conformal dimension

of the partial wave by E = h + h, l = h − h and

D = z2∂ (1 − (1 + ∆34 − ∆12) z) ∂ + abz, ∆ij ≡
1

2
(∆i − ∆j) . (2.17)

The conformal partial waves therefore factorize gE,l(z, z) = gh(z)gh(z), with

Dgh = h(h − 1)gh =⇒ gh(z) = zh
2F1(h − ∆12, h + ∆34, 2h; z) , (2.18)

and we diagonalize parity by taking the linear combinations

g±E,l(z, z) = gh(z)gh(z) ± gh(z)gh(z) for d = 2 (2.19)

with the plus (minus) corresponding to parity even (odd) CPWs. Whenever we drop the

superscript in the rest of this paper we will be working with the parity even combination.

In d = 4 there are no parity odd conformal blocks because the conformal group doesn’t

factorize; parity simply interchanges different states within the same representation (we

can rotate out of the z, z plane). A simple expression for the d = 4 conformal blocks was

derived in [9], but we will not present explicit equations for d = 4 in this paper.

– 4 –
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2.2 Constraints from crossing

CFT correlators are constrained not only by conformal symmetry, but also by crossing

symmetry, which can be understood as associativity of the operator product. The operator

product expansion (OPE) of two scalar operators in a CFT has the general form

Oi(x)Oj(0) =
∑

x∆k−∆i−∆jck
ijOk(0) , (2.20)

and is convergent whenever the distance x between the two operators is less than distance

to another operator. By taking the OPE of two pairs of nearby operators the four-point

function reduces to a convergent expansion in a sum of two-point functions

〈OiOjOkOl〉 =
∑

m

x
∆m−∆i−∆j

ij cm
ij x∆m−∆k−∆l

kl cmkl〈OmOm〉 . (2.21)

There exist regions where this double OPE expansion is convergent for two different pairings

of operators; we then must have that the correlators found using either of the expansions

are equal:

∑

m

x
∆m−∆i−∆j

ij cm
ij x∆m−∆k−∆l

kl cm
kl〈OmOm〉 =

∑

p

x
∆p−∆i−∆k

ik cp
ik x

∆p−∆j−∆l

jl cp
jl〈OpOp〉 .

(2.22)

This necessary equality is the crossing constraint. Note that while we could sum over the

entire set of operators in the theory on either side, we generically expect that different

subsets of the operators will have non-vanishing coefficients on either side of the crossing

equation.

We can group the operators contributing to the OPE into representations of the con-

formal group consisting of primary operators OP and their descendents (from acting on OP

with derivatives). We can then write the four-point function in terms of these conformal

blocks

〈OiOjOkOl〉 =
∑

P

cP
ijcPkl〈(x

∆P −∆i−∆j

ij OP + . . .)(x∆P −∆k−∆l

kl OP + . . .)〉

=
∑

P

cP
ijcPklCBP (xij , xkl) . (2.23)

The conformal blocks transform in the same way as the full correlator and can therefore

be written as a prefactor times a conformally invariant reduced part that depends only on

the cross ratios z, z. The reduced conformal blocks are exactly the conformal partial waves

from the previous section. We can identify the coefficients of the CPWs and the coefficients

of the OPE expansion as

p(hP , hP ) = cP
ijc

P
kl . (2.24)

From the definition of z, z we see that the limit x1 → x2 corresponds to the limit

z → 0. Likewise, the limit x1 → x4 corresponds to 1 − z → 0, and x1 → x3 corresponds

to 1/z → 0. We identify these limits as the s, t and u channels respectively. Expanding

the correlation function (2.2) in appropriate CPWs to these limits corresponds to taking

a double-OPE and grouping into conformal blocks. Equating the expansions is just a

– 5 –
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restatement of associativity of the OPE. When we equate the expansion in two channels,

the prefactors must necessarily combine into a conformally invariant function of z, z. We

find, in particular,

[zz]
−∆1−∆2

2 As(z, z) = [(1 − z)(1 − z)]
−∆2−∆3

2 At(1 − z, 1 − z)

As(z, z) = [zz]
∆1+∆4

2 Au(1/z, 1/z) . (2.25)

The overlapping regions of convergence of the OPE mean that these expansions can be

directly compared.1

2.2.1 1/N expansion

We will solve the crossing relations in the 1/N expansion. We write this expansion in the

form

A(z, z) = A0(z, z) +
1

N2
A1(z, z) + . . . ,

p(h, h) = p0(h, h) +
1

N2
p1(h, h) + . . . ,

E(h, h) = h0 + h0 +
1

N2
γ1(h, h) + . . . . (2.26)

Thus at zeroth order in 1/N2 we have

A0(z, z) =
∑

h,h

p0(n, l) gh,h(z, z) , (2.27)

and at first order

A1(z, z) =
∑

h,h

p1(h, h) gh0,h0
(z, z) + p0(h, h)γ1(h, h)

∂

∂E
gh0,h0

(z, z) . (2.28)

Because some operators may have degenerate dimension at 0-th order, they will have the

same CPWs gh0,h0
at this order in the expansion. The separate contributions of these

operators will not be distinguishable in our analysis at this order. This is discussed in

more detail in the following section.

2.2.2 Degeneracy

One would expect from (2.28) that at O(1/N2) there are no contributions to the correlator

from anomalous dimensions of operators whose OPE coefficient is O(1/N2), or in other

words, from operators that have p0 = 0. However, as was explained in [8], operators with

degenerate bare dimension are mixed by interactions and therefore this naive expectation

is incorrect.

1Although the overlapping regions of convergence make this story clear, they will not be of primary

importance in our derivations. In fact, the identities of hypergeometric functions will allow us to analytically

continue from one channel completely over to the domain of convergence of another.
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Suppose we start with an orthonormal set of scalar primaries of bare dimension E
(0)
α ,

some of which may be degenerate

〈Oα(x)Oβ(0)〉 =
δαβ

|x|2E
(0)
α

. (2.29)

When we include interactions, this degeneracy is lifted and our original orthonormal basis

may not coincide with the non-degenerate eigenstates of the interacting dilation operator,

[D,Oα] = MαβOβ = (δαβE(0)
α + γαβ)Oβ . (2.30)

We therefore do a basis transformation γαβV α
AV β

B = diagonal and get

〈OA(x)OB(0)〉 = δAB〈OA(x)OA(0)〉 =⇒ 〈Oα(x)Oβ(0)〉 = V A
α V B

β

δAB

|x|2∆+2γA
. (2.31)

It is the OA that transform in representations of the conformal group at O(1/N2) and that

therefore correspond to the partial waves

A = 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑

A

c12OA
c34OA

CBA(xi) ≡
∑

A

pACBA(xi) (2.32)

=
∑

E(0),l

∑

i

(
p
(0)
i (E(0), l) + p

(1)
i (E(0), l) + p

(0)
i (E(0), l)γi(E

(0), l)
∂

∂E

)
CBE(0),l(xi)

where in the second line we have split the sum over A into one over subspaces of different

bare dimension and a sum within barely degenerate subspaces. Parenthesised superscripts

denote order in the perturbation expansion. It is the outer sum in the second line that

runs over distinct partial waves and so we identify

p(0)(E(0), l) ≡
∑

i

p
(0)
i (E(0), l), p(1)(E(0), l) ≡

∑

i

p
(1)
i (E(0), l) (2.33)

p(0)(E(0), l)γ(E(0), l) ≡
∑

i

p
(0)
i (E(0), l)γi(E

(0), l) .

p(0) is related to the zeroth order OPE coefficients in our original basis (2.29) (that we

used to express our external states in and which was a good basis at zeroth order) by

p(0)(E(0), l) =
∑

i

∑

α,β

c
(0)
12αc

(0)
34βV i

α V i
β . (2.34)

Now comes an important point. At zeroth order there will never be degenerate operators

appearing in the same OPE. For example, O1(0)O2(x) ∼ O1O2(0) + · · · with O1, O2

of dimension ∆ contains only one operator of bare dimension 2∆, namely O{12}(x) ≡

O1O2(x). Therefore the zeroth order OPE coefficients are like Kronecker deltas

c
(0)
αβ{γδ} ∼ δα

(γδβ
δ) (2.35)

– 7 –



J
H
E
P
0
9
(
2
0
1
0
)
0
9
9

and the sum over α, β can be dropped in p(0)(E(0), l). The sum over i then gives p(0)(E(0), l)=

0, as expected since the zeroth order contribution to the correlator must vanish, and we

see that

γ(E(0), l) =
∑

i

V i
{12}V

i
{34}γi(E

(0), l) = γ{12}{34}, p0(E
(0), l) = c

(0)
12{12}c

(0)
34{34} . (2.36)

Note that the anomalous dimension just becomes the off-diagonal component of the inter-

acting dilation operator. The first order part of the correlator is now

A(1) =
∑

E(0),l

(
p0(E

(0), l)γ(E(0), l)∂E(0) + p1(E
(0), l)

)
CBE(0),l(xj) . (2.37)

This is of the same form as (2.28), but we see that with our new definition of p0 and γ,

neither is necessarily vanishing.

2.2.3 The degenerate limit of a generic expansion

We consider now an expansion where there are no degenerate bare dimensions. We then

let two dimensions grow arbitratily close, or more generally, two sets of operators grow

pairwise close. We demonstrate how the anomalous dimensions in the degenerate case can

then be extracted from the coefficients of CPWs in the generic case (at first order in 1/N2).

Consider such a pair of operators, O{12} of dimension ∆ and O{34} of dimension ∆+ ǫ.

We have the interacting dilation operator

[D,Oα] = MαβOβ = (Diag(∆,∆ + ǫ)αβ +
1

N2
γαβ)Oβ . (2.38)

Analogously to non-degenerate quantum mechanical perturbation theory, it is easy to see

that the transformation that diagonalizes dilation is given to leading order in 1/N2 by

Vαβ = δαβ + ǫαβ

γαβ

ǫN2
(2.39)

Labeling the new eigenstates by their zeroth order state, we find their coefficient in the

correlation function is given by

p
(1)
{12} = c

(0)
12{12}c

(0)
34{34}

(γ{12} 34

ǫN2

)

p
(1)
{34} = c

(0)
12{12}c

(0)
34{34}

(
−

γ{34} {12}

ǫN2

)
. (2.40)

It is then immediate, comparing to (2.36), that we can extract the anomalous dimension

from the coupling as

p0(E
(0), l)γ(E(0), l) = lim

ǫ→0
±ǫp(1)

α (2.41)

where α denotes one of the two operators that becomes degenerate with the operator with

dimension E(0) and the plus or minus sign is chosen accordingly.

From this equality we can see that, for any generic correlator, the first order coefficients

give the anomalous dimensions of solutions in the degenerate limit of that correlator, and

every degenerate correlator can be found as the limit of a non-degenerate one. Thus the

generic case gives an upper-bound on allowed amplitudes for the degenerate correlator.

Nevertheless, we will see in the following section that it will be most instructive to consider

the degenerate case first.

– 8 –



J
H
E
P
0
9
(
2
0
1
0
)
0
9
9

3 Solving the general scalar model

A CFT is completely specified by its OPE. If we specify the allowed operators in the OPE,

crossing will give us a constraint on their OPE coefficients and the anomalous dimensions.

The set of solutions to these constraints is the set of all CFTs with the specified operator

content. In our previous paper [4] we counted solutions to crossing for the four point

function of a scalar single-trace operator O having in its OPE all the double-trace primaries

that could be constructed from it, as well as any number of single-trace operators such as

the stress tensor Tµν . The non-trivial part of the counting concerned itself solely with the

double-traces while every single-trace operator added to the theory gave only a single new

solution to crossing.

We now extend our story to consider the most general scalar four-point correlator,

which is of four different single trace operators. Further extensions would have to involve

either higher spin external states, for which explicit expressions for the conformal blocks

are currently unknown, or go to higher order in 1/N2, which is dual to loops in the bulk

so that it is not clear that there would be finite solutions at all.

The distinct external operators lead to new double-trace operators appearing in the

OPE and hence in the CPW expansion. Moreover, different double-trace operators will

be exchanged in each channel. This extension is therefore non-trivial. As we will see, the

number of solutions to crossing still matches the number of bulk interactions, providing

further evidence for the conjecture that the class of CFTs under consideration is in one-

to-one correspondence with local supergravity-type theories.

3.1 Crossing constraints: degenerate case

We begin by taking the external operators distinguishable, but with degenerate scaling

dimension. Conveniently, the crossing equations are much simpler in this case, but the

number of solutions remains the same as for the non-degenerate case. From the bulk

perspective this is obvious because the number of possible interactions in the Lagrangian

does not depend on the masses of the fields. In this case, the spectrum of double trace

operators is given by

Oi

↔
∂µ1 . . .

↔
∂µl

(↔
∂ν

↔
∂ν
)n
Oj − traces over µi , (3.1)

with bare dimension E = 2∆+2n+ l. In d = 2 these are reducible and the irreducible parts

are the components with all indices z or all indices z (other components vanish), which

are interchanged by parity. Therefore, it is not natural to work with the parity even or

odd combinations of these two representations (2.19), which may get different anomalous

dimensions in a parity violating theory. However, at least algebraically, we can always

split the correlator into even and odd parts under z ↔ z and these will be equal to the

respective even and odd parts on the other side of the crossing constraint. We can therefore

count solutions using (2.19). This is natural from the bulk perspective because at leading

order in O(1/N2) we expect a one-to-one correspondence between even (odd) solutions to

crossing and even (odd) interaction terms in the Lagrangian. From (2.25) and (2.28), the

– 9 –
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parity even crossing constraints are then

1

(zz)∆

∑

n

Ls∑

l=0

(
p
(s)
1 (n, l) + p

(s)
0 (n, l)

1

2
γ

(s)
n,l∂n

)
g2∆+2n+l,l(z, z) (3.2)

=
1

((1 − z)(1 − z))∆

∑

n

Lt∑

l=0

(
p
(t)
1 (n, l) + p

(t)
0 (n, l)

1

2
γ

(t)
n,l∂n

)
g2∆+2n+l,l(1 − z, 1 − z)

=
∑

n

Lu∑

l=0

(
p
(u)
1 (n, l) + p

(u)
0 (n, l)

1

2
γ

(u)
n,l ∂n

)
g2∆+2n+l,l(1/z, 1/z).

We have restricted the spin in all channels to get a finite number of solutions. Using

hypergeometric identities we can analytically continue all three of these to relations between

expansions around z = 0 and z = 1. For example, tu crossing becomes

1

(zz)∆

∑

n

Lt∑

l=0

(
p
(t)
1 (n, l) + p

(t)
0 (n, l)

1

2
γ

(t)
n,l∂n

)
(−1)lg2∆+2n+l,l (z, z) (3.3)

=
1

((1 − z)(1 − z))∆

∑

n

Lu∑

l=0

(
p
(u)
1 (n, l) + p

(u)
0 (n, l)

1

2
γ

(u)
n,l ∂n

)
g2∆+2n+l,l(1 − z, 1 − z) .

To obtain equations that involve only γ, and to remove dependence on ∂n and p1, we take

the part proportional to ln(1− z) ln z. We throw away no information by considering only

this part because the parts of the equation that are proportional to a log in just one of

the variables determine the p1 in terms of the γ. The ln z comes from the hypergeometric

identity

Fa(1 − z) = ln zF̃a(z) + holomorphic at z = 0 (3.4)

on one side, and from the ∂n on the other side. Here we have defined

Fa(z) ≡ 2F1(a, a; 2a; z), F̃a(z) ≡ 2F1(a, a; 1; z) . (3.5)

Then using the orthogonality relation

∮

C

dz

2πi
zm−m′−1F∆+m(z)F1−∆−m′(z) = δmm′ , (3.6)

with C a contour around the origin, we project out terms of fixed n around z = 0 and

z = 1 and obtain

Ls∑

l=0

[
γ

(s)
p,l J(p + l, q) + γ

(s)
p−l,lJ(p − l, q)

]
=

Lt∑

l=0

[
γ

(t)
q,l J(q + l, p) + γ

(t)
q−l,lJ(q − l, p)

]
(3.7)

Lt∑

l=0

(−1)l
[
γ

(t)
p,lJ(p + l, q) + γ

(t)
p−l,lJ(p − l, q)

]
=

Lu∑

l=0

[
γ

(u)
q,l J(q + l, p) + γ

(u)
q−l,lJ(q − l, p)

]

Ls∑

l=0

(−1)l
[
γ

(s)
p,l J(p + l, q) + γ

(s)
p−l,lJ(p − l, q)

]
=

Lu∑

l=0

(−1)l
[
γ

(u)
q,l J(q + l, p) + γ

(u)
q−l,lJ(q − l, p)

]
.
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Here we have absorbed p
(i)
0 into the definition of γ(i) and have defined a coefficient function

J(m,m′) ≡

∮

C

dz

2πi

(1 − z)m

zm′+1
F̃∆+m(z)F1−∆−m′(z). (3.8)

Equation (3.7) and every equation from here on refers to d = 2. For d = 4 things work out

in exactly the same way (we showed this for the simpler case in our previous paper) and it

is straightforward to obtain the analogous equations so we will not include them here.

Our goal is to count the number of solutions to (3.7). Without loss of generality we

can take Ls ≤ Lt ≤ Lu and we see immediately that we can have at most (Lt + 1)(Ls + 1)

solutions. This is because for fixed q there are Lt + 1 unknown γ(t) and if we specify the

γ(s)(p, l) for p ≤ Lt then we have Lt +1 equations to solve for the unknown γ(t). We expect

the actual number of solutions to be smaller because after having fixed the full correlator

with the p ≤ Lt equations, the p > Lt equations provide further constraints on the specified

block of γ(s). For example, if we take p = Lt + 1 the r.h.s. of the st-constraint involves the

Ls + 1 new variables γ
(s)
Lt+1,l but also the γ(s) with max(0, Lt + 1 − Ls) ≤ p ≤ Lt from the

second term and there is a constraint on these variables for every q. For p > Ls + Lt the

equations no longer contain γ(s) from the initially specified block so we need not consider

those. The number of solutions will thus be reduced from (Ls + 1)(Lt + 1) by the number

of independent constraints with Lt > p ≥ Lt + Ls, q arbitrary. A similar argument holds

for the other two constraints.

Because q is arbitrary we have an infinite number of constraints on a finite number

of variables so almost all of the constraints must be redundant if we are to have solutions

at all. This is challenging to show and, given the facts established above, we will simply

consider the st and tu equations with p, q ≤ 2Lu and let mathematica determine how many

of those are independent. We found experimentally that further increasing the limit on q

and p does not reduce the number of solutions and also that the su equation provides no

independent constraints2 so all the higher q equations do indeed seem to be redundant.

Nevertheless, we can keep open the possibility that the number of solutions does decrease

by including higher q and temporarily consider the number found this way an upper bound

on the number of solutions. We will soon show that this upper bound saturates a lower

bound derived from the bulk. The upper bound is given by

(Lt + 1)(Ls + 1) −
1

2
(Ls + Lt − Lu)(Ls + Lt − Lu + 1) + ⌊(Ls + Lt − Lu)2/4⌋ , (3.9)

where ⌊. . .⌋ denotes the floor operator.

For parity odd intermediate states in d = 2 we find the same expression with Li →

Li − 1. This is intuitive because the parity odd conformal blocks vanish for l = 0 which

makes all the counting start at l = 1. In d = 4 there are no parity odd four-point

correlators and therefore, as explained in section 2, there are no parity odd conformal

blocks. Bulk counting in the next section will provide a lower bound on the number of

solutions and we will find that this matches the upper bound (3.9), demonstrating a one

to one correspondence between local theories in the bulk and boundary CFTs.

2This is obvious when considering the full crossing equations but perhaps surprising for the equations

with cut-off p, q.
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3.2 Crossing constraints: generic general case

We now consider the generic general case where the scattered scalars have completely

generic scaling dimensions. In particular, we will assume that the scalars have incommen-

surate non-integer dimensions. As will be clear, this allows a particular analytic continu-

ation of the CPWs and allows a useful differentiation between branch cuts, which will be

used in solving the crossing constraints.

In the s-channel expansion, the contributing CPWs to the four-point function will be

exactly those corresponding to double-trace operators of O1O2 and O3O4 with bare scaling

dimensions E12(n, l) = ∆1 +∆2 +2n+ l and E34(n, l) = ∆3 +∆4 +2n+ l. Likewise, in the

t-channel, we expand in double-trace formed from O2O3 and O1O4 and in the u-channel

from O1O3 and O2O4.

Because the four scattered scalars are distinct, the disconnected contribution to the

correlation function will vanish and there will be no contribution at order N0. The crossing

constraints take the form

1

(zz)
∆1+∆2

2

∑

E = E12(n,l) ,
E34(n,l)

Ls∑

l=0

p
(s)
1 (E, l)gE,l(z, z) (3.10)

=
1

((1 − z)(1 − z))
∆2+∆3

2

∑

E = E23(n,l) ,
E14(n,l)

Lt∑

l=0

p
(t)
1 (E, l)gE,l(1 − z, 1 − z)

=
1

(zz)
∆2−∆4

2

∑

E =E13(n,l) ,
E24(n,l)

Lu∑

l=0

p
(u)
1 (E, l)gE,l(1/z, 1/z).

Note that despite the compressed notation, we sum over two distinct towers of conformal

partial waves in each channel (eg. E12(n, l) and E34(n, l) in the s-channel) and so in the

general case the coefficients p(Eij , l) are indexed by the specific double-trace operators as

well as by n and l. The crossing equation (3.10) also differs from the degenerate case (3.2)

in that there are no anomalous dimensions contributing to this order.

We solve the crossing constraints by comparing the st and su channel equations. The

ut channel is redundant as discussed above. First we analytically continue the hypergeo-

metric functions in z or z in each channel to the appropriate region of convergence in the

other channel. We do this using the identities for the analytic continuation of hypergeo-

metric functions with generic arguments, listed in appendix A. The analytic continuation

generates terms with two different branch cuts for each tower of double-trace operators. In

every case, the two branch cuts corresponding to a single double-trace tower in one channel

match exactly one of the two branch cuts for each tower in the opposite channel. Thus, by

looking at terms with a specific branch structure in the crossing equations we can constrain

all of the coefficients by specifying sufficient free coefficients for one tower. As an example,

the st branch cuts are listed in table 1; the other channels can be quickly computed to

show the same structure.
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p(s)(E12, l) (1 − z)(z) (1 − z)
∆1−∆2−∆3+∆4

2 (z)

p(s)(E34, l) (1 − z)(z)
−∆1−∆2+∆3+∆4

2 (1 − z)
∆1−∆2−∆3+∆4

2 (z)
−∆1−∆2+∆3+∆4

2

p(t)(E23, l) (1 − z)(z)
−∆1−∆2+∆3+∆4

2 (1 − z)(z)

p(t)(E14, l) (1 − z)
∆1−∆2−∆3+∆4

2 (z) (1 − z)
∆1−∆2−∆3+∆4

2 (z)
−∆1−∆2+∆3+∆4

2

Table 1. The types of branch cuts found for each tower of double-trace operators in the st-crossing

equations.

Once we have isolated the terms with a specific branch cut, analogously to the degener-

ate case, we can construct projection operators for the relevant hypergeometric functions.

The projection operators are constructed in appendix B and are straightforward, albeit

messy, generalizations of those used in the degenerate case.

We project onto terms with fixed energies and spin in each channel to obtain crossing

equations, exactly as in the degenerate case. We list below the st and su crossing equations

where we have isolated branch cuts to constrain the O1O2 and O2O3 towers in the st

relation and the O1O2 and the O1O3 towers in the su relation:

Ls∑

l=0

[
p
(12)
p,l J

(st)
1,2,3,4(p + l, q) + p

(12)
p−l,lJ

(st)
1,2,3,4(p − l, q)

]

=
Lt∑

l=0

[
p
(23)
q,l J

(st)
3,2,1,4(q + l, p) + p

(23)
q−l,lJ

(st)
3,2,1,4(q − l, p)

]
(3.11)

Ls∑

l=0

[
p
(12)
p,l J

(su)
1,2,3,4(p + l, q) + p

(12)
p−l,lJ

(su)
1,2,3,4(p − l, q)

]

=

Lu∑

l=0

[
p
(13)
q,l J

(su)
1,3,2,4(q + l, p) + p

(13)
q−l,lJ

(su)
1,3,2,4(q − l, p)

]
,

J
(st)
a,b,c,d(p, q) and J

(su)
a,b,c,d(p, q) are listed in appendix B. Solving these constraint equations

gives the same number of free solutions (3.9) as in the degenerate case.

3.3 Bulk interaction counting

With canonical normalization for the kinetic term the bulk Lagrangian should be of the

form

Lint =
√

GNλ3φ
3 + GN

∑

n,l,m

λlnmφ∂σ1···σn∂ρ1···ρmφ∂σ1···σn∂τ1···τl
φ∂ρ1···ρm∂τ1···τlφ + · · · ,

(3.12)

with the dimension of the λ given by some effective field theory scale (e.g. the string scale)

but not by lp. All three-point interactions with derivatives reduce to four-point interactions

to first order. We want to count the number of these interactions that are independent

to O(G2
N ) and this is equivalent to counting flat space S-matrices or monomials satbuc.
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For the purpose of counting we will bound the spin in the s, t, u channels by Ls, Lt, Lu

respectively, so our monomials are constrained by

a + b ≤ Lu, b + c ≤ Ls, a + c ≤ Lt . (3.13)

If we consider a + b + c = n the spin bounds require that

c ≥ max(0, n − Lu), b ≥ max(0, n − Lt), a ≥ max(0, n − Ls) . (3.14)

The number of independent monomials after imposing these contraints is then the number

of partitions

a + b + c = neff = max(0, n −
∑

i

max(0, n − Li)) . (3.15)

However, we still have to enforce the constraint s+ t+u = 4m2, which at the level of (3.12)

comes from integrating by parts and using the equation of motion. We can use it to set c

to zero, which reduces our counting to partitions a + b = neff . There are therefore neff + 1

independent interaction unless n > 0 and neff = 0. In the latter case we have 0 possibilities

or we would double count a = b = 0. We can simply encode this by moving the +1 inside

the max,

#parity even solutions =
∞∑

n=0

max(0, n + 1 −
∑

i

max(0, n − Li)) . (3.16)

For the parity odd solutions in AdS3 the general Lagrangian is

Lint = GN

∑

n,l,m

λlnmǫµνκφ∂µ∂σ1···σn∂ρ1···ρmφ∂ν∂σ1···σn∂τ1···τl
φ∂κ∂ρ1···ρm∂τ1···τlφ, (3.17)

and as expected the counting is obtained from the previous counting by shifting the spin

bounds by one in all channels,

#parity odd solutions =

∞∑

n=0

max

(
0, n + 1 −

∑

i

max(0, n − Li − 1)

)
(3.18)

These numbers provide lower bounds on solutions to crossing, because the boundary cor-

relators constructed from them by taking the limit are automatically conformally invariant

and satisfy crossing. To see this explicitly, we worked out the partial wave expansions of

several bulk amplitudes in [4] and showed that they solved the crossing equations in the

form (3.7). We have checked similar explicit solutions for the general case, but they are

not further enlightening.

Although it may not be obvious at first sight, (3.16) is exactly equal to (3.9) so the

lower bound in this section matches the upper bound in the previous section, demonstrating

that there is a local bulk theory for every boundary CFT. This is the main result of this

paper.
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4 Conclusion and discussion

We have found further evidence for the conjecture of [4] that every CFT that has a large-

N expansion and has parametrically large anomalous dimensions for single-trace operators

with spin greater than two must have a local bulk dual. In this class of CFTs we have

shown that, to order 1/N2, every scalar four-point function3 that is consistent with crossing

has a local bulk lagrangian description. Specifically we have shown that the lower-bound

for CFT four-point correlators found by counting local bulk interactions is saturated by an

upper bound found by the consistency constraints from crossing.

While it would be nice to find an explicit map between a given CFT solution and a

particular linear combination of interaction terms in the bulk, such a computation is more

involved than simply counting solutions. A number of solutions were matched in [4] for

low l, but in general explicit solutions are difficult to compute both in the bulk and on the

boundary.

It remains interesting to extend these methods to the scattering of gravitons, as well

as to conformal field theories in d = 3. In both cases, we lack explicit expressions for

the conformal partial waves, or other methods to use in their absence. The expansion in

conformal partial waves seems to obscure the correspondence in solutions beneath difficult

integral expressions. Finding a cleaner formalism that makes this matching transparent

would be welcomed, and work continues in this direction [12].

Acknowledgments

We wish to thank J. Penedones and J. Polchinski for invaluable guidance and discussions.

A Hypergeometric identities

We make use of the following identities for hypergeometric functions in analytically con-

tinuing the generic correlators:

2F1(a, b, c, z) =
Γ(c)Γ(a + b − c)

Γ(a)Γ(b)
(1 − z)c−a−b

2F1(c − a, c − b, c − a − b + 1, 1 − z)

+
Γ(c)Γ(c − a − b)

Γ(c − a)Γ(c − b)
2F1(a, b, a + b − c + 1, 1 − z)

2F1

(
a, b, c,

1

z

)
=

Γ(c)Γ(b − a)

Γ(b)Γ(c − a)
(−z)a 2F1(a, a − c + 1, a − b + 1, z)

+
Γ(c)Γ(a − b)

Γ(a)Γ(c − b)
(−z)b 2F1(b, b − c + 1, b − a + 1, z) . (A.1)

B Projection operators

Any degree two differential operator of the general form

D = G(Z)∂2
z + H(z)∂z (B.1)

3Having considered the case in [4] where the all the scalars were the same, and here where all the scalars

are distinct, we don’t believe that mixed cases will hold any surprises.
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can be rewritten in the form
1

h(z)
∂z(h(z)G(z)∂z ) . (B.2)

Such an operator is self-adjoint with respect to the inner product

(F1(z), F2(z)) =

∮
(F1(z) · F2(z))h(z)dz (B.3)

over an arbitrary closed contour. This inner-product defines a projection operator on

eigenfunctions of D provided we can choose a contour such that is non-vanishing on identical

eigenfunctions.

Using the hypergeometric equation

z(1 − z)∂2
z F (z) + (c − (a + b + 1)z)∂zF (z) = abF (z) (B.4)

with solution F (z) = 2F1(a, b, c; z), we can construct a corresponding differential equation

D = z2(1 − z)∂2
z + ((c − 2a)z − (b − a + 1)z2)∂z

= (z − 1)c−a−bz2a−c+2∂z

(
(z − 1)a+b−c+1zc−2a∂z

)
, (B.5)

which has eigenfunctions V (a, b, c; z) = za
2F1(a, b, c; z) with eigenvalues

DV = a(c − a − 1)V . (B.6)

These are eigenfunctions for the same differential operator for fixed c − a − b and fixed

c − 2a. This is the case relevant to this paper where we consider arguments of the form

a = a0 + f(n, l), b = b0 + f(n, l) and c = c0 + 2f(n, l).

The naive inner-proudct vanishes on identical eigenfunctions V for a contour about

z = 0. However, we have another set of solutions to the differential equation near z = 0

given by Ṽ (a, b, c; z) = z1+a−c
2F1 (1 + a − c, 1 + b − c, 2 − c; z) with identical eigenvalues:

DṼ = a(c − a − 1)Ṽ . (B.7)

These give a projection operator

Pn′V (a0 + n, b0 + n, c0 + 2n; z) =

=
1

2πi

∮
V (a0 + n, b0 + n, c0 + 2n; z)

· Ṽ (a0 + n′, b0 + n′, c0 + 2n′; z)(z − 1)a0+b0−c0zc0−2a0−2dz

= δn′,n . (B.8)
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The projection operators, when acting on the non-orthogonal hypergeometric functions

on the opposite side of the crossing equations generate coefficient functions given by:

J
(st)
a,b,c,d(p, q) =

Γ (∆a + ∆b + 2p) Γ
(

∆a−∆b−∆c+∆d

2

)

Γ (∆a + p) Γ
(

∆a+∆b−∆c+∆d

2 + p
) (B.9)

∮ [
1

2πiz
(−1)p+q+1 (1 − z)

∆a+∆b−∆c−∆d
2

+p

zq

2F1

(
∆b + p,

∆a + ∆b + ∆c − ∆d

2
+ p,

−∆a + ∆b + ∆c − ∆d

2
+ 1, z

)

2F1

(
1 − ∆c − q, 1 −

−∆a + ∆b + ∆c + ∆d

2
− q, 2 − ∆b − ∆c − 2q, z

)]

and

J
(su)
a,b,c,d(p, q) =

Γ (∆a + ∆b + 2p) Γ
(
−∆a−∆b+∆c+∆d

2

)

Γ (∆b + p) Γ
(

∆a+∆b−∆c+∆d

2 + p
) (B.10)

∮ [
1

2πiz
(−1)q+1 (1 − z)

−∆a+∆b+∆c−∆d
2

zq

2F1

(
∆a + ∆b + ∆c − ∆d

2
+ p, 1 − p

−
∆a + ∆b − ∆c + ∆d

2
,
∆a − ∆b + ∆c − ∆d

2
+ 1, z

)

2F1

(
1 − ∆a − q, 1 −

∆a + ∆b − ∆c + ∆d

2
− q, 2 − ∆a − ∆c − 2q, z

)]
.
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