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1 Introduction

From several theoretical points of view, the existence of moduli fields seems inevitable. For

instance, supersymmetry may be the mechanism responsible for stabilizing the scale of the

Standard Model. Supersymmetry requires supergravity, whose only (known) reasonable UV

completion seems to be String theory; and along with string theory come extra dimensions

and their moduli. In fact, since string/M theory contains no dimensionless parameters,

moduli appear necessary to explain the observed values of various couplings in nature.

From the bottom up, moduli appear in various theories with ”dynamical couplings” as well
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as in Inflation — the inflaton field is usually a neutral scalar field aka a modulus. For all

of these reasons and more, moduli physics and phenomena must be considered seriously.

In a series of papers, [1–4], a very detailed model of moduli physics coupled to matter

has been described. The G2-MSSM model, largely inspired by M theory compactifications

on manifolds of G2-holonomy, is a model in which strong gauge dynamics in the hidden

sector generates a potential which both stabilizes all the moduli fields and simultaneously

generates a hierarchically small scale — thus solving (most of) the hierarchy problem. The

model has an interesting spectrum: moduli have masses in the 50-100 TeV region, scalar

superpartners and higgsinos have masses in the 10’s of TeV region, whilst gauginos, which

are the lightest BSM particles have masses of order 100’s of GeV. Direct production of

gluinos and electroweak gauginos are the dominant new physics channels at the LHC. The

nature of the LSP is also very interesting as it is a neutral Wino. Moreover, its production

in the early universe is dominated by the decays of the moduli fields (ie non-thermal

production) and can naturally account for the observed fraction of dark matter today. The

moduli and gravitino problems are avoided due to the gravitino mass scale being one to

two orders of magnitude larger than the TeV scale. One drawback of the model is the fine

tuning between the 10’s of TeV scale and MZ and is the reason the model solves most of

the hierarchy problem and not all of it.

However, the G2-MSSM model, as defined in [3], is based on some specific assumptions

about the moduli and matter Kahler potentials, albeit with the claim that these are general

enough to incorporate all of the essential ingredients of more general Kahler potentials (and

hence G2-manifolds). Thus far, there has been no serious study of these assumptions and

it is the main aim of this paper to undertake this. The main result that we prove here

is that the mass spectrum of the theory depends very weakly on the specific form of the

moduli Kahler potential; in fact the spectrum depends on the Kahler potential for moduli

only through the fact that it is the Log of a homogeneous function (the volume of the

extra dimensions); the precise nature of this homogeneous function is fairly irrelevant as

we will see.

We also discuss the Kahler potential for charged matter fields. We give three consistent

arguments for calculating the moduli dependence of the matter kinetic terms in 4d Einstein

frame. Whilst non-trivial, these modifications do not change the results of [1–3] much.

More importantly, we also consider higher order terms in the matter Kahler potential, in

particular the terms which are usually considered troublesome for flavor physics in theories

of gravity mediated susy breaking. Whilst we expect that such operators will be suppressed,

if they enter with large coefficients they can affect the mass spectrum: 1) they can directly

alter the scalar and higgsino masses, which are typically large; 2) they can indirectly (via

threshold effects from the higgsinos) alter the nature of the LSP. In particular, we find

that the LSP can also be a Bino in some cases. This provides a connection between flavor

physics and the nature of the LSP in models of this sort.

The paper is organized as follows. The next section describes some simple properties

of the moduli space metric for general G2-manifolds which will be important for our later

considerations. Section 3 is devoted to the Kahler potential for charged matter fields.

Following this, we re-do the analysis of Moduli stabilization from [1, 2] in this much more
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general context. In section 5 we compute the mass spectrum and susy breaking couplings

in the minimum of the potential and demonstrate that it is almost identical to that of the

original G2-MSSM. In section 6 we present a further generalization of the construction.

In section 7 we renormalize the Lagrangian down to the Electroweak scale and give the

spectrum there.

2 General properties of moduli space metrics on G2 holonomy manifolds

In this section we describe some very general and simple properties of the moduli space

metric of G2-manifolds. It is these simple properties, which will allow us to draw very

general conclusions.

The metric g(X) on a G2 holonomy manifold X can be expressed in terms of the

associative three-form Φ as

gij = (dets)−
1
9 sij (2.1)

with

sij =
1

144
ΦiklΦjnmΦrstǫ̂

klnmrst , ǫ̂ 12...7 = +1. (2.2)

Expanding Φ in terms of basis harmonic three-forms φi ∈ H3(X,Z) (modulo torsion) we

obtain

Φ =

N∑

i=1

siφi , N = b3(X) = dim (M(X)) , (2.3)

where si are geometric moduli corresponding to the perturbations of the internal metric.

The complexified moduli space M(X) of a G2 holonomy compactification manifold X has

holomorphic coordinates zi given by

zi = ti + isi , (2.4)

where ti are the axions parameterizing the zero modes of the 11-dimensional supergrav-

ity three-form C3. The classical moduli space metric (not including possible quantum

corrections) can be derived from the following Kahler potential [5, 6]

K̂ = −3 ln 4π1/3VX , (2.5)

where the dimensionless volume VX ≡ V ol(X)/l7M is a homogeneous function of si of degree

7/3 and lM is the 11d Planck length. The homogeneity of VX is the key property that we

will utilize in what follows. In terms of the associative three-form Φ, the volume is given

by [5, 6]

VX =
1

7

∫

X
Φ ∧ ∗Φ . (2.6)

Define the following derivatives with respect to the moduli

K̂i ≡
∂K̂

∂si
and K̂ij ≡

∂2K̂

∂si∂sj
. (2.7)

– 3 –
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The matrix K̂ij , the Hessian of K̂ is related to the actual Kahler metric Ĝij̄ which

controls the kinetic terms as 4Ĝij̄ = K̂ij̄ , where in the Hessian we simply replace index j

with j̄. Since VX is a homogeneous function of degree 7/3, the first derivative of K̂ defined

above has the following property

N∑

i=1

siK̂i = −7 . (2.8)

Differentiating (2.8) with respect to sj we obtain an important property of the metric K̂ij

N∑

i=1

siK̂ij = −K̂j , and since K̂ij is symmetric
N∑

j=1

sjK̂ij = −K̂i . (2.9)

Let us now introduce a set of dual coordinates {τi} defined by

τi ≡
∂VX

∂si
. (2.10)

Note that the variables {τi} are homogeneous functions of {si} of degree 4/3 . Using the

homogeneity of the volume together with the definition (2.10) we can express the volume

VX as

7

3
VX =

N∑

i=1

si
∂VX

∂si
=

N∑

i=1

siτi , ⇒ VX =
3

7

N∑

i=1

siτi , (2.11)

and

K̂i =
∂K̂

∂si
= − 3

VX

∂VX

∂si
= −3τi

VX
. (2.12)

Combining (2.3), (2.6) and (2.11) we can reexpress the dual variables as

τi =
1

3

∫

X
φi ∧ ∗Φ =

1

3

∫

[τi]
∗Φ , (2.13)

where for each harmonic basis three-form φi ∈ H3(X,Z) we introduced a Poincare dual

four-cycle [τi] ∈ H4(X). We now use the above duality to make a particularly convenient

choice of the basis harmonic three-forms. In particular, we choose a basis {φi} ∈ H3(X)

such that the periods of the fundamental co-associative four-form ∗Φ over the Poincare

dual four-cycles are positive definite:

∫

[τi]
∗Φ > 0 . (2.14)

This choice of a basis becomes obvious when we recall that for a generic basis four-cycle

[τi] ∈ H4(X)

V ol([τi]) ≥
1

3

∫

[τi]
∗Φ = τi , (2.15)

where the above relation becomes an equality if and only if the corresponding four-cycle is

co-associative.
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All geometric moduli describing the fluctuations of the internal metric must be massive

in order to satisfy constraints from fifth force experiments and cosmology. At the same

time the vacuum expectation values of the moduli (coordinates si on the moduli space)

must be fixed in the region of the moduli space where the geometric description makes

sense. In section 4 we describe a way to stabilize the moduli, which ensures that we find

isolated minima that satisfy these conditions automatically.

It turns out that for our purposes it is convenient to introduce a set of ”angular”

variables ai defined by

ai ≡ −1

3
siK̂i =

siτi

VX
, no sum over i . (2.16)

We see that ai are scale-independent and satisfy

N∑

i=1

ai =
7

3
. (2.17)

Thus, we can also parameterize the moduli space M(X) by a subset of N − 1 variables ai

plus one volume, e.g. the volume of the manifold VX . Differentiating the ai allows us to

introduce the matrix

Pij ≡ −sj
∂ai

∂sj
, no sum over j . (2.18)

which has components

Pij =
1

3
δijsjK̂i + sisj

1

3
K̂ij , no sum over i, j . (2.19)

Pij has the following contraction properties, which follow from (2.17) and the fact that ai

are homogeneous of degree zero

N∑

i=1

Pij = 0 , and

N∑

j=1

Pij = 0 . (2.20)

We can then write

K̂ij =
3aj

sisj
∆ij , (2.21)

where the matrix ∆ij is defined as

∆ij ≡ δij +
Pij

aj
, (2.22)

and satisfies the following contraction properties

N∑

i=1

∆ij = 1 , and

N∑

j=1

∆ijaj = ai , (2.23)

where we used (2.20) to derive (2.23). Note that parameters ai defined in (2.16) are the

components of an eigenvector a of the non-Hermitian matrix ∆ with unit eigenvalue.
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We can compute the formal inverse of the Hessian metric, K̂ij. By definition of the

inverse it must satisfy
N∑

j=1

K̂ijK̂jk = δi
k , (2.24)

and using (2.21) it can be expressed as

K̂ij =
sisj

3ai
(∆−1)ij , (2.25)

where the inverse matrix (∆−1)ij satisfies

N∑

j=1

(∆−1)ij∆jk = δi
k . (2.26)

Symbolically we can express ∆−1 as

∆−1 =
1

1 + P
a

, (2.27)

which in terms of components translates into

(∆−1)ij = δij − Pij
1

aj
+ Pil

1

al
Plj

1

aj
− Pil

1

al
Plm

1

am
Pmj

1

aj
+ . . . . (2.28)

Using (2.20) and (2.28) we derive the following properties of the inverse matrix ∆−1

N∑

i=1

(∆−1)ij = 1 , and

N∑

j=1

(∆−1)ijaj = ai , (2.29)

which could have also been obtained directly from (2.23). Note that although we do

not have a closed form expression for the components (∆−1)ij , the contraction properties

in (2.29) are what will ultimately allow us to derive explicit expressions for the terms in

the soft breaking lagrangian — since such couplings depend only on the contractions and

not the precise details of the functional form of VX . Before going on to the details of these

calculations, we first must consider the Kahler potential for matter fields in M theory.

3 Kahler potential for charged chiral matter

In this section we re-visit the Kahler potential for charged matter fields in M theory. In

practice, the absence of a useful microscopic formulation makes it difficult to compute the

moduli dependence of the Kahler potential for these fields in general. Below we outline

three arguments for the structure of the Kahler potential - first from dimensional reduction,

second based on the scaling properties of physical Yukawa couplings and the third based

on the form of the threshold corrections to the physical gauge coupling. Happily, all three

methods agree.

– 6 –
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3.1 Kahler potential from dimensional reduction

In M theory, charged chiral matter is localized near conical singularities [7–10]. These are

literally points in the seven extra dimensions. Because of this, we expect that the kinetic

terms for the chiral matter fields should be ”largely independent of bulk moduli fields”

that the G2 manifold X has. The precise meaning of this statement will be clarified below

in terms of the scaling property of the kinetic term. They could, of course depend on local

moduli inherent to the conical singularity, but, since, in a supersymmetric theory, a single

chiral multiplet in a complex representation of the gauge group usually has no D or F -flat

directions [11], there are typically no such local moduli.

There is a subtlety in the above general arguments. Since, in four dimensions, a scalar

field kinetic term is not invariant under Weyl rescalings of the metric, one has to pick a

Weyl gauge. We will argue that the correct Weyl gauge for the statement above is NOT

the 4d Einstein frame. Therefore, the kinetic term for chiral matter will be non-trivial in

the 4d Einstein frame, which is the standard one in which to define the Kahler potential.

Since the physics of a conical singularity in M theory does not introduce any new

scale, asides from the 11d Planck scale, the only reasonable Weyl frame is the 11d Einstein

frame. Therefore the lagrangian density in the 11d frame is

L ∼ M9
11
√

g11R + δ7 ∧ ∂Mφ∂Nφ†gMNκ(si)
√

g11 + . . . , (3.1)

where δ7 is a delta function peaked at the position of the matter multiplet containing the

scalar field φ and has mass dimension seven. κ(si) is a homogeneous function of the moduli

of degree zero which will generally be of order one and vary adiabatically,1 i.e.

N∑

k=1

sk
∂κ(si)

∂sk
= 0 . (3.2)

The above property implies that κ(si) remains invariant when the moduli are rescaled

as si → λsi, thus explicitly implementing the idea that in the 11d frame the kinetic term

of a matter field localized at a point p ∈ X is ”largely independent of bulk moduli”. A

particularly simple example satisfying (3.2) is when κ(si) = const. Integrating this over X

leads to a 4d density

L4 ∼ VXM2
11

√
g4R4 + κ(si)g

µν
4 ∂µφ∂νφ

†√g4 , (3.3)

where VX is the volume of the extra dimensions in 11d units. This is the Lagrangian in

11d Einstein frame. If we now Weyl rescale into the 4d Einstein frame we find

L4 ∼ 1

2κ2
4

√
gERE +

κ(si)

VX
gµν
E ∂µφ∂νφ

†√gE , (3.4)

where the subscript E indicates that we are using the 4d Einstein frame metric.

We have only considered the Einstein-Hilbert and kinetic terms of the matter fields.

Including all the other terms would give the 4d supergravity Lagrangian in Einstein frame.

1In the toroidal Type IIA compactifications with intersectiong D6-branes, the analog of κ is a scale

invariant function that depends on the relative intersection angles θα
i [12].
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In particular, from this we would read off that the Kahler metric for the multiplet containing

φ is

K̃φφ̄ =
κ(si)

VX
. (3.5)

If we introduce dimensionless fields φ̂ as in φ = mplφ̂, the Kahler potential is

K̃ = κ(si)
φφ†

VX
= κ(si)

φ̂φ̂†

VX
m2

pl . (3.6)

As we will see, this is consistent with the arguments given in the next subsection.

3.2 Kahler metric from the properties of the physical Yukawa couplings

Here we will describe an alternative way of deducing the volume dependence of the Kahler

metric for charged chiral matter. This method is due to Conlon, Cremades and Quevedo [13]

and utilizes the relation between the physical (normalized) Yukawa couplings Yαβγ and the

unnormalized Yukawa couplings Y ′
αβγ that appear in the supergravity superpotential. Re-

call that in G2 compactifications of M theory, a superpotential Yukawa coupling Y ′
αβγ

between the multiplets α, β, γ that are localized at three co-dimension seven singularities

is induced by an M2-brane instanton wrapping a supersymmetric three-cycle connecting

the three singular points. The absolute value of the Yukawa coupling is given by

|Y ′
αβγ | ∼ e−2πVαβγ , (3.7)

where

Vαβγ =
∑

i

mαβγ
i si , (3.8)

is the volume of the supersymmeric three-cycle. After we diagonalize the Kahler met-

ric for the matter fields and go to the canonical basis, the relation between the abso-

lute values of the physical and unnormalized Yukawa couplings is simply a rescaling by

eK/2
(
K̃αK̃βK̃γ

)−1/2

|Yαβγ | = eK/2
∣∣Y ′

αβγ

∣∣
(
K̃αK̃βK̃γ

)−1/2
∼
∣∣Y ′

αβγ

∣∣
(
V 3

XK̃αK̃βK̃γ

)−1/2
. (3.9)

On the other hand, one can construct perfectly well-defined seven-dimensional local

models where the G2 manifold is non-compact, e.g. an ALE-fibration over a three-sphere

or a quotient thereof, in which case VX → ∞ ⇒ mpl/M11 → ∞ and gravity is effectively

decoupled. Such models can also contain charged chiral matter fields and since their

interactions are determined locally, the corresponding physical Yukawa couplings should

not vanish when gravity is decoupled. Local models of this type can be obtained via lifting

effective theories on intersecting D6-branes in Type IIA to M theory.

Therefore, locality implies that the physical Yukawa couplings should be independent

of the overall volume VX in the limit VX → ∞. For that to happen, the Kahler metrics

K̃α, K̃β, K̃γ in (3.9) must scale with the volume VX as

K̃α ∼ K̃β ∼ K̃γ ∼ 1

VX
, (3.10)

which is in perfect agreement with the form of the Kahler metric derived in the

previous subsection.
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3.3 Consistency check for the Kahler metric

In this section we confirm the form of the Kahler metric for charged chiral matter by

comparing the threshold corrections to the physical gauge couplings in G2 compactifications

of M theory with the general results in N = 1 D = 4 supergravity.

Let us first consider a hidden sector containing a pure glue SU(N) supersymmetric

Yang-Mills theory. Using the notation in [14, 15] we have the following relation for the

gauge coupling at one loop

16π2

g2(µ)
=

16π2

g2
M

− 3N ln

(
Λ2

µ2

)
+ S , (3.11)

where S are the one-loop threshold corrections, g(µ) is the physical gauge coupling and gM

is the tree-level Wilsonian gauge coupling. In our convention gM is related to the gauge

kinetic function f as
4π

g2
M

= Imf . (3.12)

Recall that the Wilsonian gauge coupling gets renormalized at one loop only. On the other

hand the physical coupling g(µ) is renormalized to all orders. The threshold corrections

come from massive states and are independent of the scale µ. Based on the topological

arguments [14, 15], the threshold corrections due to Kaluza Klein modes in G2 compact-

ifications of M theory are rather simple and can be calculated even without knowing the

G2 metric! Friedmann and Witten [14, 15] explicitly computed one-loop threshold cor-

rections due to the heavy Kaluza-Klein modes living on a supersymmetric cycle Q with

b1(Q) = b2(Q) = 0 and a non-trivial fundamental group. Such corrections come in a

form of linear combinations of Ray-Singer analytic torsions [16–18], which are topological

invariants of Q. For the case at hand, the threshold corrections are given by

S = 2N ln VQΛ3 + 2
∑

i

TiTrRi
Q2 , (3.13)

where VQ is the volume of the supersymetric cycle Q, Ti are the Ray-Singer torsions

corresponding to different irreducible representations of the fundamental group and Q are

the generators of SU(N). Here, the cutoff dependence appears as a correction due to the

zero mode contributions transforming in the trivial representation of π1(Q). Once the

threshold corrections are included explicitly, a somewhat unexpected cancellation of the

Λ-dependence occurs [14, 15] and the one-loop relation can be written as

16π2

g2(µ)
=

16π2

g2
M

− 3N ln

(
1

V
2/3
Q µ2

)
+ S ′ (3.14)

where

S ′ = 2
∑

i

TiTrRi
Q2 . (3.15)

In fact, the cancellation of the Λ-dependence occurs for any supersymmetric cycle Q with

b1(Q) = b2(Q) = 0 [14, 15].

– 9 –
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Now we would like to consider a more general case when the gauge theory is a super-

symmetric QCD with Nf flavors of chiral matter fields Qα transforming in N of SU(N)

plus Nf flavors of Q̃α transforming in N . Each chiral matter field transforming in a com-

plex representation arises from a separate co-dimension seven conical singularity on X

with each singular point Pi ∈ Q. It was argued in [14, 15] that the singularities producing

charged chiral matter fields have no effect on the KK harmonics of the seven-dimensional

vector multiplet. Moreover, since the conical singularities introduce no new scale below

the eleven-dimensional Planck scale M11, the effective cutoff scale for these multiplets is

naturally M11. Including such multiplets into the running is straightforward and results in

16π2

g2(µ)
=

16π2

g2
M

− 3N ln

(
1

V
2/3
Q µ2

)
+ Nf ln

(
M2

11

µ2

)
+ S ′ . (3.16)

In addition to the KK thresholds, there may be some unknown corrections due to possible

charged massive matter fields with masses of order M11. At this point we cannot say with

certainty whether such massive charged M theory modes are present in the spectrum but

we cannot exclude this possibility either. Just like the KK thresholds, these corrections

cannot be holomorphic functions of the chiral multiplets zi describing the moduli of X

since the axion partners of the geometric moduli decouple from the computations of the

threshold corrections. However, there may be some non-holomorphic as well as constant

contributions from such massive charged states. For now we will simply assume that they

are constant and result in a slight shift of the tree-level gauge coupling. On the other

hand, moduli dependent contributions may arise from non-perturbative corrections due to

membrane instantons but they will be exponentially suppressed and can be safely neglected.

Our next task is to independently verify that the Kahler metric for the charged chiral

matter fields matches the previously obtained result (3.5). Here we will use a strategy

similar to the one in [12, 19] and compare (3.16) with the corresponding one-loop expression

in N = 1 D = 4 supergravity given by [20, 21]

16π2

g2(µ)
=

16π2

g2
M

− (3N − Nf ) ln

(
m2

pl

µ2

)
− (N − Nf ) K̂ + 2N ln

(
1

g2
M

)
− 2Nf ln

(
K̃αᾱ

)
.

(3.17)

In the above expression, K̂ = −3 ln 4π1/3VX is the Kahler potential for the moduli and

K̃αᾱ is the Kahler metric for the charged chiral matter fields. We can use the definition

of the four-dimensional Newton’s constant κ4 =
√

8πGN = 1/mpl in terms of the eleven-

dimensional gravitational coupling κ11

κ2
4 ≡ κ2

11

VX l7M
, (3.18)

in combination with the common convention 2κ2
11 = (2π)8M−9

11 and M11 = 2π/lM to obtain

M2
11 =

πm2
pl

VX
. (3.19)
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Using the above relations together with 4π/g2
M = VQ/l3M we have from (3.17)

16π2

g2(µ)
=

16π2

g2

M

− (3N−Nf) ln

(
VXM2

11

πµ2

)
+ 3 (N−Nf) ln 4π1/3VX + 2N ln

(
VQ

4πl3M

)
−2Nf ln

(
K̃αᾱ

)

=
16π2

g2

M

− (3N − Nf ) ln

(
M2

11

4π4/3µ2

)
− 2Nf ln 4π1/3VX + 2N ln

(
VQ

4πl3M

)
− 2Nf ln

(
K̃αᾱ

)

=
16π2

g2

M

− 3N ln

(
1

V
2/3

Q
µ2

)
+ Nf ln

(
M2

11

µ2

)
− 2Nf ln

(
VXK̃αᾱ

)
− ln

(
(2π)4N (8π)2Nf

)
.

(3.20)

The appearance of the last term is most likely due to the convention used to define M11 in

terms of κ11 as well as the ambiguity in defining the relation between lM and M11. Thus, we

shall regard this term as an artifact and ignore it in further discussion. Comparing (3.20)

with the expression on the right hand side in (3.16) we conclude that up to a constant

multiplicative factor, Kahler metric for the charged chiral matter fields Qα is

K̃αᾱ ∼ 1

VX
, (3.21)

which precisely matches the result obtained in the previous subsections. On the other

hand, the constant term S ′ in (3.16) has no corresponding analog in (3.20) and represents

a genuine threshold correction to the Wilsonian gauge coupling gM .

In the framework of N = 1 D = 4 supergravity, the RG-invariant scale where super

QCD with N > Nf becomes strongly coupled is

Λ3N−Nf = m
3N−Nf

pl e
− 8π2

g2
M

−S′

2
e−(N−Nf ) K̂

2 , (3.22)

where the second exponential factor is due to the local SUSY. The Affleck-Dine-Seiberg

effective superpotential [22, 23] W should be identified with

eK̂/2W =
(N − Nf )Λ̃

3N−Nf
N−Nf

det(QQ̃)
1

N−Nf

, (3.23)

where the gauge coupling inside Λ̃ is complexified. Using (3.22), up to an overall numerical

constant we obtain

W ∼ (N − Nf )m

3N−Nf
N−Nf

pl det(QQ̃)
− 1

N−Nf e
i 2π

N−Nf
f
e
−

S′
a

2(N−Nf ) . (3.24)

In (3.24), the dimensionful chiral matter fields2 Q can be expressed in terms of dimension-

less fields Q̂ as

Q = mplQ̂ , and Q̃ = mpl
ˆ̃Q . (3.25)

Then, the superpotential becomes

W = C̃(N − Nf )m3
pldet(Q̂ ˆ̃Q)

− 1
N−Nf e

i 2π
N−Nf

f
e
−

S′
a

2(N−Nf ) , (3.26)

2Here we suppressed the flavor index.
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where C̃ is an overall numerical constant. In our further notation, we also define the

following constants

C ≡ C̃ e
−

S′
a

2(N−Nf ) , and A ≡ (N − Nf )C . (3.27)

Let us now consider the case of Nf = 1 flavors. Introducing an effective meson degree of

freedom

φ ≡
√

2Q̂ ˆ̃Q , (3.28)

we can rewrite the superpotential in terms of φ as

W = Am3
plφ

− 2
N−1 ei 2π

N−1
f , (3.29)

where we have absorbed the factor of 21/(N−1) into the normalization constant C. Along

the D-flat direction we have Q̂ = ˆ̃Q and the Kahler potential for the matter fields can be

rewritten in terms of the effective meson fields φ as

K̃ = κ(si)
Q̂†Q̂

VX
m2

pl + κ(si)
ˆ̃Q† ˆ̃Q

VX
m2

pl = κ(si)
φ̄φ

VX
m2

pl . (3.30)

3.4 Higher order terms

Based on three independent arguments we have been able to deduce the volume depen-

dence of the Kahler metric for charged chiral matter fields localized at co-dimension seven

singularities. Denoting the visible sector charged chiral matter fields by Qα their Kahler

potential is then given by

K̃ =
καβ̄(si)Q

αQ†β̄

VX
. (3.31)

In the regime where the size of the supersymmetric cycle supporting the visible sector is

large (this assumption is justified in the context of the MSSM where the corresponding

volume is α−1
GUT ≈ 25 ) we can perform a systematic expansion of καβ̄(si) in the inverse

volume of the cycle (weak coupling) so that in the leading order καβ̄(si) is a homogeneous

function of si of degree λ, satisfying

N∑

i=1

si

∂καβ̄(si)

∂si
= λκαβ̄(si) . (3.32)

Based on the property that a given charged chiral matter multiplet is localized at a

point p ∈ X we expect that λ = 0, i.e. καβ̄(si) is scale invariant in the leading order.

Therefore, when the moduli are simultaneously scaled up by an overall positive constant,

the ratio καβ̄(si)/VX ≪ 1. Nevertheless, for the sake of generality we will keep λ as a

free parameter for the time being. In our derivation of the Kahler potential we so far

neglected possible higher order contributions to the visible sector matter Kahler potential

of the form3

δK̃ = cαβ̄(si)Q
α
c Q†β̄

c φcφ̄c + . . . = cαβ̄(si)
QαQ†β̄

VX

φφ̄

VX
+ . . . , (3.33)

3Here we set mpl = 1 and treat all matter fields as dimensionless in units of mpl.
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which gravitationally couple the hidden sector meson to the visible sector fields Qα. In

the above expression, the subscript c denotes canonically normalized matter fields in the

4-dimensional Einstein frame. Such couplings can create problems if the meson F -term

is quite large (which is true in the G2-MSSM) because they can induce flavor changing

neutral currents. This is the flavor problem of gravity mediated susy breaking models.4

These terms were neglected in our previous work [3].

Technically, computing the unknown coefficients cαβ̄(si) from the underlying theory

is difficult, goes well beyond the scope of this work and our aim here is not to explain

the flavor structure of the supersymmetry breaking Lagrangian. Rather, we would like to

understand the effect that the presence of such terms might have on other sectors of the

theory, e.g. their effect on superpartner masses and couplings. For these purposes it is

sufficient to assume that the flavor structure of the Kahler metric is completely determined

by the matrix καβ̄(si), so that

cαβ̄(si) = καβ̄(si)
c(si)

3
, (3.34)

where we introduced the factor of 1/3 for future convenience. As we will see in the later

sections, whilst this does not introduce any flavor violation, the point will be that the effect

of such terms on the mass spectrum will be similar even if we introduced flavor violating

terms, as should become clear eventually.5

Actually, such a form might arise from an expansion of the Kahler potential if the

visible and hidden sectors were completely sequestered. Though we do not expect M

theory to be sequestered, it can be useful to think of the sequestering as an extreme limit

in a more general model.

A sequestered Kahler potential has the form

Kseq = −3 ln

(
4π1/3VX − 1

3
φφ̄ − 1

3
καβ̄QαQ†β̄

)
, (3.35)

and the Kahler metric for the visible sector is given by

Kseq
αβ̄

=
καβ̄

4π1/3VX − 1
3φφ̄

. (3.36)

Absorbing the factor of 4π1/3 into the definition of the fields and expanding the above

expression in powers of φ2/VX we obtain

Kseq
αβ̄

=
καβ̄

VX

(
1 +

φφ̄

3VX

)
+ . . . . (3.37)

4Note that the Kahler metric derived from (3.31) introduces no flavor problems since, as we will see

from explicit computations, the mass matrix for the scalars will be proportional to καβ̄(si) and there-

fore diagonalization and canonical normalization of the kinetic terms automatically results in universal

scalar masses.
5Generically, the absence of flavor changing neutral currents implies that the off-diagonal entries in

the mass matrix for the canonically normalized squarks and sleptons are suppressed, though in particular

models even stronger constraints are necessary, e.g. the requirement that the diagonal entries are nearly

degenerate, depending on the spectrum and the A-terms [24].
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Comparing the above expression with (3.33) we can read off the coefficients

cseq

αβ̄
=

1

3
καβ̄ , (3.38)

which corresponds to (3.34) when c(si) = 1. Hence, function c(si) in (3.34) is the measure of

deviation of the matter Kahler potential from the exactly sequestered form. As was pointed

out in [25, 26], sequestering is not at all generic in string/M theory and presumably G2

compactifications of M theory are no exception. We thus will regard the value of c(si) in

a given vacuum as a parameter and consider the theory for various values of c(si).

Combining all of the previous considerations, the visible sector matter Kahler metric

and its inverse take the form

K̃αβ̄ =
καβ̄(si)

VX

(
1 + c(si)

φφ̄

3VX

)
, (3.39)

K̃αβ̄ = καβ̄(si)
VX(

1 + c(si)
φφ̄

3VX

) ≈ καβ̄(si)VX

(
1 − c(si)

φφ̄

3VX

)
,

where καβ̄(si) satisfies

καβ̄(si)κβ̄γ(si) = δα
γ . (3.40)

Combining (3.32) with the above we conclude that καβ̄(si) is a homogeneous function of

the moduli of degree −λ. Function c(si) will be typically assumed to take values in the

range

0 ≤ c(si) ≤ 1 . (3.41)

However, as long as the Kahler metric is positive-definite, one may also consider the regime

when c(si) < 0. Diagonalizing the Kahler metric of the visible sector we obtain

K̃αδαβ̄ = U†
αγK̃γρ̄Uρ̄β̄ , (3.42)

where the eigenvalues K̃α are given by

K̃α =
κα(si)

VX

(
1 + c(si)

φφ̄

3VX

)
, (3.43)

and κα(si) are homogeneous functions of degree λ that satisfy (3.32). In computing the

anomaly mediated contribution to the gaugino masses, it will be necessary to compute

various derivatives of ln K̃α. For this purpose, it turns out that it is very convenient to

express ln K̃α as

ln K̃α = ln κα(si)− ln VX +ln

(
1 + c(si)

φφ̄

3VX

)
≈ 1

3
K +ln κα(si)+(c(si) − 1)

φφ̄

3VX
+const ,

(3.44)

where K is the Kahler potential in (4.5).
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4 Moduli stabilization

In this section we reconsider the problem of moduli stabilization with the much more

general moduli and matter Kahler potentials introduced in the previous section. We will

be working in the framework of N = 1 D = 4 effective supergravity and will demonstrate

that all the moduli can be stabilized self-consistently in the regime where the supergravity

approximation is valid. Recall that in the compactifications we study here, non-Abelian

gauge fields arise from co-dimension four singularities [7, 27–30]. In other words, there

exist three-dimensional submanifolds Q inside the G2-manifold X, along which there is an

orbifold singularity of A-D-E type.

The basic idea is that strong dynamics in the hidden sector breaks supersymmetry,

stabilizes the moduli and generates a small scale. In this context we would like to highlight

some important properties that distinguish G2 compactifications from other known corners

of the string landscape. First, unlike four-dimensional Calabi-Yau compactifications, where

one typically has to deal with several different types of moduli, e.g. complex structure,

Kahler moduli, the dilaton, vector bundle moduli, etc., which are typically stabilized via

different mechanisms, in G2 compactifications of M theory all deformations of the internal

metric of the manifold X are completely captured by the periods si of the associative three-

form Φ. Since all si are on an equal footing the task of moduli stabilization is dramatically

simplified as one can use a single mechanism to stabilize all geometric moduli.6 Second,

all the complexified moduli zi = ti + isi enjoy a Peccei-Quinn-type shift symmetry, which

is inherited from the gauge symmetry associated with the three-form C3 of the eleven-

dimensional supergravity. In the absence of tree-level flux contributions this symmetry is

exact at the perturbative level but it can be broken by non-perturbative effects. Therefore,

in the fluxless sector of the theory, the entire superpotential is purely non-perturbative and

depends upon all the moduli si. Therefore, one naturally expects exponential hierarchies

to be generated, once the moduli are stabilized.7

The simplest possibility consistent with the supergravity approximation is a hidden

sector with two gauge groups SU(P + Nf ) and SU(Q) where the first is super QCD with

Nf = 1 flavor of quarks Q and Q̃ transforming in a complex (conjugate) representation

of SU(P + 1) (the corresponding associative cycle Q contains two isolated singularities of

co-dimension seven) and the second hidden sector with the gauge group SU(Q) is a “pure

glue” super Yang-Mills theory. One can easily consider more general gauge groups without

much qualitative difference. One can also consider a setup with charged matter in both

hidden sectors. However, as was demonstrated in [1, 2], in such cases, one of the two

F -terms coming from the matter fields in the hidden sectors is always suppressed relative

6For those G2 compactifications of M theory that are dual to the four-dimensional vacua of the Heterotic

string, the dilaton and the vector bundle moduli on the Heterotic side are mapped to some of the geometric

moduli si on the M theory side.
7To contrast this, recall that in Type IIB orientifold compactifications, because the complex struc-

ture moduli do not possess a shift symmetry, the superpotential generically receives unsuppressed per-

turbative contributions. Furthermore, with the exception of some toroidal examples, the precise depen-

dence of the non-perturbative contributions in Type IIB orientifolds on the complex structure moduli is

currently unknown.
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to the other and thus does not contribute to the quantities relevant for phenomenology. A

single hidden sector gauge theory is also enough to stabilise the moduli, though the vacuum

is not in a place where supergravity is trustable!

Therefore, the non-perturbative effective superpotential generated by the strong gauge

dynamics in the hidden sectors is given by

W = A1φ
aeib1f + A2e

ib2f . (4.1)

The matter field φ represents an effective meson degree of freedom defined in (3.28) in

terms of the chiral matter fields Q̂ and
˜̂
Q. The coefficients b1, b2 and a are

b1 =
2π

P
, b1 =

2π

Q
, a = − 2

P
. (4.2)

In [1, 2] it was explained that if one uses a superpotential of the form (4.1), de Sitter

vacua arise only when Q > P (if we include matter in both hidden sectors dS vacua exist

without such condition). Hence, we will keep this in mind from now on.

In (4.1) we explicitly assumed that the associative cycles supporting both hidden sec-

tors are in proportional homology classes which results in the gauge kinetic function being

given by essentially the same integer combination of the moduli zi for both hidden sectors

f =

N∑

i=1

Nizi , (4.3)

were

Im(f) = VQ ≡
∫

Q

Φ =
N∑

i=1

Nisi (4.4)

is the volume of the corresponding associative cycle with the integers Ni specifying the ho-

mology class. This possibility may naturally arise when the three-cycle Q has a non-trivial

fundamental group, e.g. Q = S3/Zq, so it can support discrete Wilson lines. Then, just like

the visible sector GUT is broken to the Standard Model, the unified hidden sector gauge

group can be broken to a product subgroup SU(N + M) → SU(N)× SU(M)×U(1) while

N+M and N + M matter multiplets, localized at two distinct co-dimension seven singular-

ities, give rise to (N, 1)+(1,M) plus the conjugate.8 Unless the singularities are extremely

close, the supersymmetric mass terms of the vector-like pairs are exponentially suppressed

by the corresponding membrane instanton. Thus, one obtains two hidden supersymmetric

QCD gauge theories with light vector-like matter supported along the same three-cycle Q.

As mentioned above, since one of the two matter F-terms is always suppressed relative to

the other [1, 2], one obtains virtually the same results in the simplified scenario where one

of the hidden sectors is a ”pure glue” supersymmetic Yang-Mills gauge theory.

While one can certainly consider possibilities where the gauge kinetic functions f1

and f2 are not proportional, the results in [1, 2] taught us that unless f1 ∝ f2 it is more

difficult to stabilize all the moduli in the regime where the supergravity approximation is

8Alternatively, one may also consider a hidden SO(2(N + M)) → SU(N) × SU(M) × U(1) × U(1) with

charged chiral matter in 2(N + M) giving rise to (N, 1) + (N̄ , 1) + (1, M) + (1, M̄).
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valid. Thus, obtaining solutions which we can trust is the main reason for choosing to

consider the case where f1 = f2 = f . Obviously, progress in the more general cases would

be welcome.

Typical examples for three-cycles supporting non-Abelian gauge fields in G2-manifolds

are spheres and their quotients such as Lens spaces S3/Zq considered in [14, 15]. The

expression in (4.1) can in principle contain many additional non-perturbative contributions

if X contains other rigid associative cycles. In that respect, the two terms included in (4.1)

should be regarded as the leading order exponentials. As long as Q and P are large

enough compared to the Casimirs from the other gauge groups, the remaining terms will be

exponentially suppressed in general. This is particularly true for the membrane instanton

corrections to (4.1) which come with exponentials containing bi = 2π. On the other hand,

some such instantons induce Yukawa interactions among the visible sector matter fields

and are therefore implicitly assumed to be part of the full superpotential.

The total Kahler potential - moduli plus hidden sector matter, is given by

K = −3 ln 4π1/3VX + κ(si)
φ̄φ

VX
. (4.5)

In what follows we first consider a simplified case where the function κ(si) is a pure constant,

i.e.

κ(si) = 1 . (4.6)

However, in section 6 we will generalize our results to the case where κ(si) is a homogeneous

function satisfying (3.2). The important point is that even then the functional form of the

soft breaking terms remains virtually unchanged compared to the simplified case, thus

validating our approach. In general, (4.5) must include the contributions to the Kahler

potential from all matter sectors including the visible sector as described in the previous

section. However, since the visible sector fields will obtain zero vacuum expectation values

(vevs), they can be dropped for the purposes of stabilizing moduli.

The standard N = 1 D = 4 supergravity scalar potential is given by

V = eK
(
Knm̄FnF̄m̄ − 3|W |2

)
, (4.7)

where the F -terms are

Fi = ∂iW + W∂iK = iNie
ib2 ~N ·~t

(
−b1A1φ

a
0e

−b1 ~N ·~s + b2A2e
−b2 ~N ·~s

)
(4.8)

+ i
3ai

2si

(
1 +

φ2

3VX

)
eib2 ~N ·~t

(
−A1φ

ae−b1 ~N ·~s + A2e
−b2 ~N ·~s

)

Fφ = ∂φW + W∂φK = − eib2 ~N ·~t−iθaA1φ
a−1
0 e−b1 ~N ·~s (4.9)

+
φ0

VX
eib2 ~N ·~t−iθ

(
−A1φ

ae−b1 ~N ·~s + A2e
−b2 ~N ·~s

)
.

In the above we used
∂K

∂zi
=

1

2i

∂K

∂si
, (4.10)
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together with the definition of ai in (2.16) in combination with

∂

∂si

1

VX
=

K̂i

3VX
. (4.11)

We also parameterized the meson field φ as

φ = φ0e
iθ , (4.12)

and fixed one combination of the axions and the meson phase θ

cos((b1 − b2) ~N · ~t + aθ) = −1 . (4.13)

Before we proceed to constructing de Sitter vacua it is instructive to take a step back

and consider a simpler case where the first non-perturbative term in the superpotential

is also a pure gaugino condensate arising from a ”pure glue” supersymmetric Yang-Mills

theory. In this case one possible solution corresponds to a supersymmetric AdS extremum

described by the following set of equations

Fi = 0 , ⇒ Ni

(
−b1A1e

−b1 ~N ·~s + b2A2e
−b2 ~N ·~s

)
+

3ai

2si

(
−A1e

−b1 ~N ·~s + A2e
−b2 ~N ·~s

)
= 0 ,

(4.14)

which is equivalent to

si = − 3ai

2Ni

(
−A1e

−b1 ~N ·~s + A2e
−b2 ~N ·~s

)

(
−b1A1e−b1 ~N ·~s + b2A2e−b2 ~N ·~s

) . (4.15)

Using the contraction property (2.17) we can find from (4.15) that the volume ~N · ~s of

the hidden sector three-cycle can be determined by solving the following transcendental

equation

~N · ~s = −7

2

(
−A1e

−b1 ~N ·~s + A2e
−b2 ~N ·~s

)

(
−b1A1e−b1 ~N ·~s + b2A2e−b2 ~N ·~s

) . (4.16)

In the limit when ~N · ~s ≫ 1, the approximate solution is given by

VQ = ~N · ~s ≈ 1

b1 − b2
ln

(
A1b1

A2b2

)
> 0 ,

when b1 > b2 & A1b1 > A2b2 , or b1 < b2 & A1b1 < A2b2 . (4.17)

The moduli vevs can then be found from

si =
3ai

7Ni
VQ , ⇒ τi = Ni

7VX

3VQ
, (4.18)

where the seven-dimensional volume is stabilized at

VX = V
7/3
Q

(
3

7

)7/3

VX(sk)
∣∣∣
sk=

ak
Nk

. (4.19)
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Note from (4.18) that at the extremum, the periods of the co-associative four-form τi ∼ Ni

up to a positive constant. Recall that here, Ni are the integers representing the homology

class of Q:

Ni =

∫

[Q]
φi , φi ∈ H3(X, Z) , (4.20)

where the harmonic three-form φi is Poincare dual to a four-cycle [τi]. Therefore,

from (4.18) we see that extremization of the supergravity scalar potential dynamically

stabilizes the co-associative four-form ∗Φ to be proportional to the integral homology class

of the associative three-cycle Q:

Fi = 0 ⇒ ∗Φ = α · PDX(Q) , 0 < α ∈ R . (4.21)

Therefore, in the basis specified by (2.14) the integers Ni must be positive definite

Ni > 0 , ∀i = 1, . . . N . (4.22)

In order to determine the values of ai at the minimum we substitute our expressions for

si (4.18) into the definition of ai in (2.16) to get a system of N transcendental equations,

which then completely determine ai in principle

K̂i

∣∣∣
si=

ai
Ni

+ 3Ni = 0 . (4.23)

Note that the dependence on VQ in (4.23) is gone due to the scaling property of the volume

VX . Hence, we have recast the problem of determining the moduli vevs at the minimum into

a problem of determining the values of ai. Obviously, obtaining general analytic solutions

for ai from (4.23) is impossible in practice, since VX has not been specified. However,

precisely because the moduli vevs at the minimum are given by (4.18), it turns out that in

order to compute the quantities relevant for particle physics, one does not need to know the

values of ai explicitly. All one actually needs to know are the contraction properties (2.17)

and (2.29).

Therefore, the results we derive will be valid for any singular manifold of G2 holonomy

containing an associative three-cycle Q that contributes to the non-perturbative superpo-

tential in a form of at least two gaugino condensates, whose integral homology class in the

basis (2.14) is specified by positive integers. By explicitly checking in explicit toy examples,

both numerically and analytically it seems that, for a given form of VX , an isolated solution

indeed exists.

In principle, there exists an alternative way of determinimg ai more directly, although

in the long run it may be more practical to solve the system (4.23). Namely, suppose one

can reexpress the volume VX in terms of the dual variables τi defined in (2.10).9 With

respect to τi the volume VX is a homogeneous function of degree 7/4. Then, we find

∂VX

∂τi
=

N∑

j=1

∂VX

∂sj

∂sj

∂τi
=

N∑

j=1

∂VX

∂sj

∂si

∂τj
=

N∑

j=1

τj
∂si

∂τj
=

3

4
si , (4.24)

9One needs to ensure that in the new basis the signature of the Hessian ∂2VX

∂τi∂τj
remains Lorentzian.
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where we used the property that si are homogeneous functions of τi of degree 3/4 and the

symmetry of the Jacobi matrix

∂τi

∂sj
=

∂2VX

∂sj∂si
=

∂τj

∂si
. (4.25)

Then, using (2.16), (4.24) and (4.18) we obtain

ai =
siτi

VX
=

4τi

3VX

∂VX

∂τi
=

4

3
Ni

∂ ln VX

∂τi

∣∣∣
τi=Ni

, (4.26)

where in the final step we used the property that the ”angular” variables ai do not scale.

Then we can re-express the moduli vevs (4.18) as

si =
4

7
VQ

∂ ln VX

∂τi

∣∣∣
τi=Ni

. (4.27)

Recall that all the integers Ni that describe the homology of the hidden sector as-

sociative cycle Q are fixed for a given manifold X. Therefore, according to (4.27) once

we specify the microscopic details such as VX and Ni, the vevs of all the moduli si are

automatically determined in terms of a single parameter - the volume VQ of the three-cycle

Q. Therefore, all masses and couplings, being functions of si, are also fixed in terms of VQ,

including α−1
GUT =

∑
Nvis

i si = const × VQ.10

In an explicit realistic compactification, one could automatically determine the propor-

tionality constant between α−1
GUT and VQ from the integers Nvis

i specifying the homology

of the visible sector GUT three-cycle. Then, using the bottom-up MSSM value α−1
GUT ≈ 25

one would be able to fix the volume VQ ≈ 25/const as well as all remaining couplings,

including the visible sector Yukawa couplings and masses! Thus, given a realistic G2 com-

pactification one could in principle make genuine predictions and quickly rule out models

that do not satisfy experimental constraints.11 This extreme rigidity of fluxless G2 vacua

is quite remarkable and runs in stark contrast to the flexibility found for flux compactifica-

tions, where for a given manifold one can perform a very large scan over the integer fluxes

and generate distributions of masses and couplings [31–33].

In order to illustrate how the system (4.23) is realized in practice we give a couple

of explicit examples, though we stress that we have checked many more general examples

than just those given here. Let us first consider a particularly simple N -parameter family

of Kahler potentials consistent with G2 holonomy where the volume VX is given by

VX =
N∏

i=1

sni

i , where
N∑

i=1

ni =
7

3
. (4.28)

10In our discussion we are neglecting all the subleading effects, e.g. the threshold corrections to αGUT due

to the Kaluza-Klein modes [14, 15] as well as possible Coleman-Weinberg-type loop corrections to (4.27).
11The current lack of explicit realistic G2 examples presents a great challenge in implementing these ideas.

However, we shall demonstrate here that one can nevertheless make significant progress in computing several

quantities relevant for particle physics, e.g. soft terms in the supersymmetry breaking lagrangian, without

relying on either a specific functional form of VX or the microscopic details of the MSSM embedding.
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In this case the solutions to (4.23) are simply constants given by

ai = ni . (4.29)

In fact, this example represents the class of Kahler potentials considered in the previous

work [1, 2] and the solutions are discussed in detail there.

One may consider more complicated examples such as

VX =
∑

k

Vk , where Vk ≡ ck

N∏

i=1

s
nk

i

i , such that ∀k

N∑

i=1

nk
i =

7

3
. (4.30)

In this case system (4.23) translates into

∑

k

(
nk

i − ai

)
ck

N∏

j=1

(
aj

Nj

)nk
j

= 0 . (4.31)

In these cases one can check numerically that, for very generic sets of parameters
{nk

i , ck, Ni}, the system of equations (4.31) yields positive solutions for ai, where the
Hessian matrix H(VX)ij has Lorentzian signature.12 For example, choosing N1 = 1, N2 =
1, N3 = 1, N4 = 1 we numerically compute ai for the following toy examples with four
moduli

VX =s
7

9

1
s

7

9

2
s

7

18

3
s

7

18

4
− 1

3
s1

1s
2

3

2
s

1

3

3
s

1

3

4
− 1

2
s

1

3

1
s1

2s
1

2

3
s

1

2

4
⇒ a1 ≈ 1.038 , a2 ≈ 0.648 , a3 ≈ 0.324 , a4 ≈ 0.324 ,

VX =s
14

9

2
s

7

18

3
s

7

18

4
+

1

3
s1

1
s

2

3

2
s

2

3

4
+

1

2
s

1

3

1
s1

2
s1

3
⇒ a1 ≈ 0.051 , a2 ≈ 1.478 , a3 ≈ 0.459 , a3 ≈ 0.344 ,

(4.32)

where for both examples

sign

(
∂2VX

∂si∂sj

) ∣∣∣
si=

ai
Ni

= (+, −, −, −) , (4.33)

which explicitly demonstrates that having positive solutions for ai is fairly generic and more

importantly is guaranteed when VX is not just a randomly picked homogeneous function

of degree 7/3 but represents an actual volume of a G2 manifold X.

We now go on to consider de Sitter vacua by including the charged chiral matter fields

Q and Q̃ into the hidden sector. The superpotential and the Kahler potential are given

by (4.1) and (4.5). In order to compute the scalar potential we need to compute the

inverse Kahler metric. Using the Kahler potential (4.5) together with (2.16), (2.21), (4.10)

and (4.11) we first obtain the following components for the Kahler metric

Kij̄ =
3aj̄

4sisj̄

(
1 +

φ2
0

3VX

)
∆ij̄ +

aiaj̄

4sisj̄

φ2
0

VX
, (4.34)

Kiφ̄ = i
ai

2si

φ

VX
, Kφj̄ = −i

aj̄

2sj̄

φ̄

VX
, Kφφ̄ =

1

VX
.

12This is necessary if the homogeneous function VX is the volume of a genuine G2-manifold. This also

guarantees positive kinetic terms for the moduli fields.
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Note that on the right hand side of the above expressions aj̄ and ∆ij̄ are the same real

quantities defined previously with index j replaced by j̄.

The inverse Kahler metric must satisfy the following set of equations

Kij̄ Kj̄ k + Kiφ̄Kφ̄k = δi
k , (4.35)

Kij̄ Kj̄ φ + Kiφ̄Kφ̄φ = 0 ,

Kφj̄ Kj̄ φ + Kφφ̄Kφ̄φ = 1 .

After a little bit of work we obtain the following components for the inverse Kahler metric

Kij̄ =
4sisj̄

3ai

(∆−1)ij̄

1 +
φ2

0
3VX

, Kiφ̄ = i
2

3

siφ̄

1 +
φ2

0
3VX

, Kφj̄ = −i
2

3

sj̄φ

1 +
φ2

0
3VX

, (4.36)

Kφφ̄ = VX


1 +

7

3

1

1 +
φ2

0
3VX

φ2
0

3VX


 .

Note that despite the fact that the matter part of the Kahler potential in (4.5) is only

given up to the quadratic order in
φ2

0
VX

, we decided to keep all the higher order terms inside

the inverse Kahler metric. This is self-consistent as long as the combination
φ2

0
3VX

appearing

in the inverse Kahler metric is stabilized at a value sufficiently smaller than one such that

the quartic and higher order terms are suppressed.

Now, putting all the pieces together we obtain the scalar potential

V =
eφ2

0/VX

64πV 3
X

[
4

3

N∑

i=1

N∑

j̄ =1

sisj̄ NiNj̄

ai

(∆−1)ij̄

1 +
φ2

0
3VX

(
b1A1φ

a
0e

−b1 ~N ·~s − b2A2e
−b2 ~N ·~s

)2
(4.37)

+ 4 ~N · ~s
(
b1A1φ

a
0e

−b1 ~N ·~s − b2A2e
−b2 ~N ·~s

)(
A1φ

a
0e

−b1 ~N ·~s − A2e
−b2 ~N ·~s

)

+ 7
(
A1φ

a
0e

−b1 ~N ·~s − A2e
−b2 ~N ·~s

)2
(

1 +
φ2

0

3VX

)

− 4

3


b1A1φ

a
0e

−b1 ~N ·~s − b2A2e
−b2 ~N ·~s

1 +
φ2

0
3VX

~N · ~s +
7

2

(
A1φ

a
0e

−b1 ~N ·~s − A2e
−b2 ~N ·~s

)



×
(

aA1φ
a
0e

−b1 ~N ·~s +
φ2

0

VX

(
A1φ

a
0e

−b1 ~N ·~s − A2e
−b2 ~N ·~s

))
+

VX

φ2
0


1 +

7

3

1

1 +
φ2

0
3VX

φ2
0

3VX




×
(

aA1φ
a
0e

−b1 ~N ·~s +
φ2

0

VX

(
A1φ

a
0e

−b1 ~N ·~s − A2e
−b2 ~N ·~s

))2

−3
(
A1φ

a
0e

−b1 ~N ·~s − A2e
−b2 ~N ·~s

)2
]

.

To understand the minima of the potential we will use the techniques developed earlier

in [1, 2]. Namely, we will work in the regime when the volume of the hidden sector

associative cycle VQ = ~N · ~s is large and expand our solutions in the inverse powers of this
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volume. This is equivalent to an expansion in the UV weak hidden sector gauge coupling.

In this long a tedious procedure we utilize the methods developed in [1, 2], yet with some

important modifications.

Since we are considering the simplified case by setting κ(si) = 1 in the Kahler potential

for the effective meson field, the supersymmetry breaking F -term contributions are func-

tions of VX and ~N · ~s only and therefore the scale invariant ”angular” coordinates ai will

remain the same as in the supersymmetric case. On the other hand, the ”radial” coordinate

parameterized by VQ (or VX) will be shifted. Reintroducing the notation of [1, 2]

α ≡ A1φ
a
0

A2
e−(b1−b2) ~N ·~s , x ≡ α − 1 , y ≡ b1α − b2 , z ≡ b2

1α − b2
2 , (4.38)

we therefore make the following ansatz for the moduli vevs at the minimum

si =
ai

Ni

x

y
L . (4.39)

In this notation, the volume of the associative cycles supporting the hidden sector gauge

groups is given by

VQ = ~N · ~s =
x

y
L

N∑

i=1

ai =
7

3

x

y
L , (4.40)

in which case the moduli ansatz (4.39) can be rewritten as

si =
ai

Ni

3

7
VQ . (4.41)

Let us first assume that L is non-zero and finite when y → 0. This assumption will be

verified in this section by determining L explicitly. Then, we get from (4.40) and the

definitions above

VQ → ∞ ⇒ y → 0 ⇒ α =
b1

b2
+ O

(
1

VQ

)
(4.42)

⇒ VQ = ~N · ~s =
1

b1 − b2
ln

(
b1A1φ

a
0

b2A2

)
=

1

2π

PQ

Q − P
ln

(
QA1φ

a
0

PA2

)
.

This fixes the value of the volume VQ of the hidden sector three-cycle.

We now go on to demonstrate that the ansatz for the moduli vevs (4.39) indeed rep-
resents the correct solution at the minimum of the scalar potential. In particular, we must
verify our assumption that L is non-zero and finite in the limit y → 0 by determining L
self-consistently in this limit. Hence, we will now derive the equation for L and demonstrate
explicitly that one of the possible solutions is indeed non-zero and finite in this limit. After
minimizing the potential with respect to the moduli si and using the definitions (4.38) we
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obtain the following system of equations

∂V

∂sk
= − 3ak

sk

(
1+

φ2

3VX

)
V +

eφ2/VX

64πV 3

X


4

3

∂

∂sk



∑

ij

sisjNiNj(∆
−1)ij

ai


 y2

1+ φ2

3VX

(4.43)

−8

3

∑

ij

sisjNiNj(∆
−1)ij

ai

Nkzy

1+ φ2

3VX

+
4

3

∑

ij

sisjNiNj(∆
−1)ij

ai

y2

(
1+ φ2

3VX

)2

φ2

3VX

ak

sk

−4Nkxy − 4Nk( ~N · ~s)y2−4Nk( ~N · ~s)xz−7x2
φ2

3VX

ak

sk

−2Nk




2

3

y

1+ φ2

3VX

− 2

3
( ~N · ~s) z

1+ φ2

3VX

+
2

3
( ~N · ~s) y

(
1+ φ2

3VX

)2

φ2

3VX

ak

skNk
− 7

3
y



(

aα+
φ2

VX
x

)

+2Nk

(
2

3
( ~N · ~s) y

1+ φ2

3VX

+
7

3
x

)(
b1aα+

φ2

VX
y

)

+
ak

sk

VX

φ2

(
1+

7

3

1

1+ φ2

3VX

φ2

3VX

)(
aα+

φ2

VX
x

)2

− 7

9

ak

sk

1
(
1+ φ2

3VX

)2

(
aα+

φ2

VX
x

)2

−2Nk
VX

φ2

(
1 +

7

3

1

1+ φ2

3VX

φ2

3VX

)(
aα+

φ2

VX
x

)(
ab1α+

φ2

VX

ak

skNk
x +

φ2

VX
y

)]
A2e

−b2 ~N ·s = 0 ,

where in one of the intermediate steps we simplified

VX

φ2




7

3

1
(
1 + φ2

3VX

)2

(
φ2

3VX

)2
ak

sk
− 7

3

1

1 + φ2

3VX

φ2

3VX

ak

sk


 = −7

9

1
(
1 + φ2

3VX

)2

ak

sk
. (4.44)

Multiplying (4.43) by sk

akx2 and using the explicit expression for the potential (4.37) in

terms of the quantities (4.38) we obtain

− 3

(
1+

φ2

3VX

)
4

3

∑

ij

sisjNiNj(∆
−1)ij

ai

y2

x2

1

1+ φ2

3VX

+4( ~N · ~s)y

x
+7

(
1+

φ2

3VX

)
(4.45)

−2

(
2

3
( ~N · ~s) y/x

1+ φ2

3VX

+
7

3

)(
aα

x
+

φ2

VX

)
+

VX

φ2

(
1+

7

3

1

1+ φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)2

−3

]

+
4

3

sk

ak

∂

∂sk



∑

ij

sisjNiNj(∆
−1)ij

ai


 1

1+ φ2

3VX

y2

x2

− 8

3

∑

ij

sisjNiNj(∆
−1)ij

ai

zy

x2

1

1+ φ2

3VX

Nksk

ak
+

4

3

∑

ij

sisjNiNj(∆
−1)ij

ai

y2

x2

1
(
1+ φ2

3VX

)2

φ2

3VX

− 4
Nksk

ak

y

x
−4

Nksk

ak
( ~N · ~s)y2

x2
−4

Nksk

ak
( ~N · ~s)z

x
−7

φ2

3VX

− 2
Nksk

ak




2

3

y/x

1+ φ2

3VX

− 2

3
( ~N · ~s) z/x

1+ φ2

3VX

+
2

3
( ~N · ~s) y/x

(
1+ φ2

3VX

)2

φ2

3VX

ak

skNk
− 7

3

y

x



(

aα

x
+

φ2

VX

)
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+ 2
Nksk

ak

(
2

3
( ~N · ~s) y/x

1+ φ2

3VX

+
7

3

)(
b1aα

x
+

φ2

VX

y

x

)

+
VX

φ2

(
1+

7

3

1

1+ φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)2

− 7

9

1
(
1+ φ2

3VX

)2

(
aα

x
+

φ2

VX

)2

− 2
Nksk

ak

VX

φ2

(
1+

7

3

1

1+ φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)(
ab1α

x
+

φ2

VX

ak

skNk
+

φ2

VX

y

x

)
=0 .

At first sight it appears that finding an analytic expression for L from (4.45) is hopeless

since a closed form for (∆−1)ij̄ is unknown and ai have not been determined explic-

itly. However, upon further examination we notice that in order to find L from (4.45) we

only need to know the contraction rules (2.17), (2.20) and (2.29). Indeed, using the the

ansatz (4.39) together with the definition (2.18) and applying (2.17), (2.20) and (2.29) we

first evaluate the terms

sk

ak

∂

∂sk



∑

ij

sisjNiNj(∆
−1)ij

ai


 =

x2

y2
L2 1

ak

∑

j

(∆−1)kjaj +
x2

y2
L2
∑

i

(∆−1)ik (4.46)

+
x2

y2
L2 1

ak

∑

i


Pik

ai

∑

j

(∆−1)ijaj


+

x2

y2
L2
∑

j

(
aj

∑

i

∂(∆−1)ij

∂sk

)

= 2
x2

y2
L2 +

x2

y2
L2 1

ak

∑

i

Pik +
x2

y2
L2
∑

j

(
aj

∂

∂sk

∑

i

(∆−1)ij

)
= 2

x2

y2
L2 ,

∑

ij

sisjNiNj(∆
−1)ij

ai
=

x2

y2
L2
∑

i

∑

j

(∆−1)ijaj =
x2

y2
L2
∑

i

ai =
7

3

x2

y2
L2 , (4.47)

and then use the same ansatz (4.39) and contraction identities for the rest of the terms

in (4.45) to obtain the following equation for L

−3

(
1 +

φ2

3VX

)[
28

9
L2 1

1 + φ2

3VX

+
28

3
L + 7

(
1 +

φ2

3VX

)
(4.48)

−2

(
14

9

L

1 + φ2

3VX

+
7

3

)(
aα

x
+

φ2

VX

)
+

VX

φ2

(
1 +

7

3

1

1 + φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)2

− 3

]

+
8

3

L2

1 + φ2

3VX

− 56

9

zx

y2

L3

1 + φ2

3VX

+
28

9

L2

(
1 + φ2

3VX

)2

φ2

3VX

−4L − 28

3
L2 − 28

3

zx

y2
L2 − 7

φ2

3VX

−2L




2

3

1

1 + φ2

3VX

− 14

9

L

1 + φ2

3VX

zx

y2
+

14

9

L
(
1 + φ2

3VX

)2

φ2

3VX
− 7

3



(

aα

x
+

φ2

VX

)

+2L

(
14

9

L

1 + φ2

3VX

+
7

3

)(
b1aα

y
+

φ2

VX

)

– 25 –



J
H
E
P
0
9
(
2
0
1
0
)
0
0
1

+
VX

φ2

(
1 +

7

3

1

1 + φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)2

− 7

9

1
(
1 + φ2

3VX

)2

(
aα

x
+

φ2

VX

)2

−2L
VX

φ2

(
1 +

7

3

1

1 + φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)(
ab1α

y
+

φ2

VX

)

−2

(
1 +

7

3

1

1 + φ2

3VX

φ2

3VX

)(
aα

x
+

φ2

VX

)
= 0 ,

Multiplying the above equation by 3
28 (1 + φ2

3VX
) y2

zx and taking the limit y → 0 we obtain

2

3
L3+L2

(
1− aα

3x

)
−L2 b1aαy

3xz
−L

b1aαy

2xz

(
1+

φ2
0

3VX

)
+L

3b1aαy

14xz

(
1+

10

9

φ2
0

VX

)(
aαVX

φ2
0x

+1

)
=0 ,

where we dropped terms of O(y2) and higher. A non-trivial solution can be obtained by

solving the corresponding quadratic equation

2

3
L2+L

(
1 − aα

3x

)
−L

b1aαy

3xz
−b1aαy

2xz

(
1 +

φ2
0

3VX

)
+

3b1aαy

14xz

(
1 +

10

9

φ2
0

VX

)(
aαVX

φ2
0x

+ 1

)
= 0

(4.49)

which is analogous to the equation in the second line in (126) of [1, 2].

Solving (4.49) to the first subleading order in y results in

L = −3

2

(
1 − aα

3x

)
+ y

3b1aα

14xz

1 + aαVX

φ2
0x

1 − aα
3x

(
1 +

φ2
0

3VX

)
. (4.50)

Hence, we see that this solution is non-zero and finite when y → 0 and therefore is self-

consistent. This is the solution describing the minimum of the potential. We must note

that there is another possible solution of (4.49) for which L ∼ y → 0. In fact this other

solution corresponds to the extremum at the top of the potential barrier and we will not

discuss it further. Using (4.50) we can now compute the first subleading order correction

to α to obtain

α =
P

Q
+

7P (3(Q − P ) − 2)

12πQ

1

VQ
(4.51)

=
P

Q
+

7(Q − P )2

2Q2

(
1 − 2

3(Q − P )

)
P

Peff
,

where we have introduced

Peff ≡ P ln

(
QA1φ

a
0

PA2

)
. (4.52)

Using (4.51) we can express the solution for L from (4.50) as

L = −3

2

(
1 − 2

3(Q − P )

)
+

7

2Peff

(
1 − 2

3(Q − P )

)
(4.53)

+
3

2Peff

(
1 +

2VX

(Q − P )φ2
0

)(
1 +

φ2
0

3VX

)
.
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In the leading order, the moduli vevs are given by

si =
ai

Ni

3QPeff

14π(Q − P )
. (4.54)

We note that since ai, Ni are positive, we need Peff > 0 if Q > P , so that there exists a

local minimum with si > 0.

The next step is to determine the vev of the effective meson field by minimizing the

potential with respect to φ0. Let us first compute the potential at the minimum as a

function of the meson. The result is given in equation (4.67) and the reader not interested

in its derivation may proceed directly there. It turns out that since the moduli vevs at

the minimum are proportional to ai/Ni as in (4.41), explicit computation of the F -terms

at the minimum and various contractions thereof while using the rules (2.17) and (2.29)

becomes possible. Let us demonstrate some of these computations in detail. First we need

to identify the gravitino mass in terms of our notation in (4.38). Using the usual definition

in combination with (4.38) we have

m3/2 = eK/2|W | = eK/2|x|A2e
−b2 ~N ·~s . (4.55)

Because the existence of de Sitter vacua requires Q−P > 0 (see [1, 2] for details) we obtain

using (4.51) that

x ≈ P

Q
− 1 < 0 . (4.56)

On the other hand, since m3/2 > 0 we can express the following combination in terms of

the gravitino mass

eK/2xA2e
−b2 ~N ·~s = −m3/2 . (4.57)

We now multiply Fi in (4.8) by eK/2 and using (4.38) and (4.57) express

eK/2Fi = iNie
iγW

(
−y − x

3ai

2siNi

(
1 +

φ2
0

3VX

))
eK/2A2e

−b2 ~N ·~s (4.58)

= iNie
iγW

(
y

x
+

3ai

2siNi

(
1 +

φ2
0

3VX

))
m3/2 ,

where γW denotes the overall phase of the superpotential. Using the ansatz (4.39) for si

we obtain from (4.58)

eK/2Fi = iNie
iγW

(
y

x
+

3y

2xL

(
1 +

φ2
0

3VX

))
m3/2 (4.59)

= iNie
iγW

7

3VQ

(
L +

3

2

(
1 +

φ2
0

3VX

))
m3/2 ,

where in the second line we used
x

y
L =

3

7
VQ , (4.60)

obtained from (4.40). Similarly, we find from (4.8) using (4.38) together with (4.57)

eK/2Fφ = ei(γW −θ)

(
aα

φ0x
+

φ0

VX

)
m3/2 . (4.61)
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Before computing eK/2F i we would like to express the Kij̄ components of the inverse

Kahler metric at the minimum using the ansatz (4.39) for sj̄ as follows

Kij̄ =
4sisj̄

3ai

(∆−1)ij̄

1 +
φ2

0
3VX

=
xL

y

4siaj̄

3aiNj̄

(∆−1)ij̄

1 +
φ2

0
3VX

= VQ

4siaj̄

7aiNj̄

(∆−1)ij̄

1 +
φ2

0
3VX

. (4.62)

Contracting (4.59) and (4.61) with the inverse Kahler metric and using the solution for L

from (4.50) we then obtain

eK/2F i =eK/2Kij̄ F̄j̄ + eK/2Kiφ̄F̄φ̄ (4.63)

=−ie−iγW
4si

3ai

N∑

j̄=1

aj̄(∆
−1)ij̄


 L

1+
φ2

0
3VX

+
3

2


m3/2+ie−iγW

2

3

si

1+
φ2

0
3VX

(
aα

x
+

φ2
0

VX

)
m3/2

=−isie
−iγW

2yb1aα

7xz

1 + aαVX

φ2
0x

1 − aα
3x

m3/2 ≈ −ie−iγW
2si

Peff

(
1 +

aαVX

φ2
0x

)
m3/2 ,

where in the last line we used (4.51) to plug into x, y, and z defined by (4.38) except for

the combination
(
1 + aαVX

φ2
0x

)
and kept the leading term in 1/Peff . Note that in order to get

from the second to third line in (5.18) we used the second contraction property in (2.29).

Similarly, contracting (4.59) and (4.61) with the corresponding components of the inverse

Kahler metric (4.36) we obtain

eK/2Fφ = e−iγW φ

(
1 − 7

3Peff

)(
1 +

aαVX

φ2
0x

)
m3/2 . (4.64)

Using the results (4.59), (4.61), (4.63) and (4.64) together with (4.50) and (4.51) we

can compute the following contributions

eKF iFi =
7

Peff

(
aα

x
+

φ2
0

VX

)2(
VX

φ2
0

)2 [ φ2
0

3VX
+

1

Peff

(
1 +

φ2
0

3VX

)]
m2

3/2 (4.65)

eKFφFφ =

(
aα

x
+

φ2
0

VX

)2
VX

φ2
0

(
1 − 7

3Peff

)
m2

3/2 ,

where we also used ~N ·~s = VQ while performing the computations in the first line of (4.65).

Then, the potential at the minimum is given by

V0 = eK(F iFi + FφFφ − 3|W |2) (4.66)

=

(
aα

x
+

φ2
0

VX

)2
VX

φ2
0

m2
3/2 +

7

P 2
eff

(
aα

x
+

φ2
0

VX

)2(
1 +

φ2
0

3VX

)(
VX

φ2
0

)2

m2
3/2 − 3m2

3/2 .

Using (4.51) and dropping the terms of order O(1/P 2
eff ) we obtain the following expression

for the leading contribution to the vacuum energy as a function of the meson field

V0 =

[(
2

Q − P
+

φ2
0

VX

)2

+
14

Peff

(
1 − 2

3(Q − P )

)(
2

Q − P
+

φ2
0

VX

)
− 3

φ2
0

VX

]
VX

φ2
0

m2
3/2 .

(4.67)
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The polynomial in the square brackets in (4.67) is quadratic with respect to the canonically

normalized meson vev squared φ2
c ≡ φ2

0/VX with the coefficient of the (φ2
0/VX)2 monomial

being positive (+1) and therefore, the minimum V0 is positive when the corresponding

discriminant is negative. Tuning the cosmological constant to zero is then equivalent to

setting the discriminant of the above polynomial to zero, which boils down to a simple

condition

Peff =
14(3(Q − P ) − 2)

3(3(Q − P ) − 2
√

6(Q − P ))
. (4.68)

Note that Peff defined in (4.52) is actually dependent on φ but because of the smallness

of a and the Log dependence, it was safe to use the approximation Peff ≈ const. This

approximation turned out to be self-consistent since Peff is fairly large. From (4.68) we see

immediately that

Peff > 0 ⇒ Q − P ≥ 3 . (4.69)

Minimizing (4.67) with respect to φ2
c and imposing the condition that the expression in the

square brackets in (4.67) is tuned to zero, we obtain the meson vev at the minimum in the

leading order

φ2
c =

φ2
0

VX
≈ 2

Q − P
+

7

Peff

(
1 − 2

3(Q − P )

)
. (4.70)

If we tune the leading contribution to the vacuum energy and set Q − P = 3 we obtain

Peff ≈ 63.5 ,
φ2

0

VX
≈ 0.75 . (4.71)

Recalling the factor of two in the definition of the meson field (3.28) we note that along

the D-flat direction, the bilinears of the canonically normalized charged matter fields that

appear in the original Kahler potential have a somewhat smaller vev

< QcQ
†
c >=< Q̃cQ̃

†
c >=< QcQ̃c >≈ 0.37m2

pl , (4.72)

which makes it a bit easier to justify the truncation of the higher order terms in the Kahler

potential for hidden sector matter.

We find numerically that for the minimum value Q− P = 3, the tuning of the cosmo-

logical constant by varying the constants A1 and A2 inside the superpotential results in

fixing the value of Peff at

Peff ≈ 61.648 , (4.73)

while the canonically normalized meson vev squared is stabilized at

φ2
c =

φ2
0

VX
≈ 0.746 , (4.74)

thus confirming the analytical results above. For example, we obtain the values in (4.73)

and (4.74) by minimizing the scalar potential numerically for the following toy example

with two moduli

P = 27 , Q = 30 , A1 = 27 , A2 = 2.1544 , N1 = N2 = 1 , VX = s
7
6
1 s

7
6
2 +

1

3
s1
1s

4
3
2 +

1

2
s

1
3
1 s2

2

⇒ s1 ≈ 34.52 , s2 ≈ 63.13 .
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It is instructive to compare the moduli vevs obtained above numerically with the values

obtained by using the analytic expression (4.54). However, before we can apply (4.54) we

need to determine the values of ai at the minimum. This can be done by plugging the

values of Ni, nk
i and ck into the system (4.31) and solving it numerically. To compute si

from (4.54) we use Peff from (4.73) in order to get a better accuracy. As a result, we obtain:

a1 ≈ 0.825 , a2 ≈ 1.51 , s1 ≈ 34.7 , s2 ≈ 63.4 ,

which confirms explicitly that the analytic expression (4.54) for the moduli vevs at the

minimum is indeed very accurate and reliable. Here we also verified that the Hessian of

the volume has Lorentzian signature.

Although the value in (4.74) is not much smaller than one, the combination
φ2

0
3VX

inside

the inverse Kahler metric (4.36) has a value

φ2
0

3VX
≈ 0.25 , (4.75)

which is small enough to make the quartic and higher order terms which we kept inside

the inverse Kahler metric much smaller.

As we will see in the computations that follow, the value of Peff will enter into many

quantities relevant for particle physics, such as tree-level gaugino masses, etc. Here we note

that small changes in Peff do not affect the supersymmetry breaking masses much, but do

change the cosmological constant significantly. For instance, while changing the value of

Peff in the range 61 ≤ Peff ≤ 62 hardly affects the values of the soft breaking terms, as will

be evident from the corresponding explicit formulas, such small changes in Peff result in

vastly different values of the vacuum energy:

61 ≤ Peff ≤ 62 ⇒ −
(
m3/2mpl

)2 × 10−3 . V0 . +
(
m3/2mpl

)2 × 10−3 . (4.76)

Therefore, once we coarsely tune Peff to its approximate value, the cosmological constant

problem becomes completely decoupled from the rest of particle physics. Even though this

should be the case, it is satisfying to see it explicitly in a complete example of moduli

coupled to matter.

Note also that in the original paper [1, 2] we obtained Peff ≈ 83. This is due to

the different matter Kahler potential considered there. As we will see, this numerical

difference will result in slightly different values for the soft breaking terms if compared to

those obtained in [1–3].

Recall that for a stable minimum to exist it is necessary that Q − P ≥ 3. We have

seen that when Q − P = 3 and the minimum of the potential is approximately tuned to

zero, the value of Peff ≈ 60 which ensures that the moduli (4.54) can be reliably fixed at

values large enough to satisfy the supergravity approximation. On the other hand, when

Q − P = 4, from (4.68) we get Peff ≈ 20, in which case if Q is fixed, the moduli vevs

become smaller by about a factor of four. Thus, unless the ranks of hidden sector gauge

groups are incredibly large, situations when Q− P > 3 may put our solutions well outside

of the supergravity approximation. Therefore, from now on we will only consider the case

when Q − P = 3 to ensure the validity of the regime where our construction is reliable.
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5 Masses and soft supersymmetry breaking terms

5.1 Gravitino mass

In supergravity the bare gravitino mass is defined as

m3/2 = mple
K/2|W | = eK/2|x|A2e

−b2VQ , (5.1)

and can now be computed since we stabilized VQ explicitly. It is given by

m3/2 = mpl
e

φ2
0

2VX

8
√

πV
3/2
X

|P − Q|A2

Q
e−

Peff
Q−P . (5.2)

When the cosmological constant is tuned such that (4.73) is satisfied, for Q − P = 3

we obtain

m3/2 ≈ 9 × 105(TeV)
C2

V
3/2
X

, (5.3)

where C2 ≡ A2/Q was defined in (3.27). Calculating C2 goes beyond the scope of this

paper. Here we will treat C2 as a phenomenological parameter with values C2 ∼ O(0.1−1)

since it may experience a mild exponential suppression as in (3.27).

On the other hand, the actual value at which the volume VX must be stabilized can

be almost uniquely determined from the scale of Grand Unification. In particular, we can

use equation (4.12) in [14, 15] to express

GN =
1

8πm2
p

=
α3

GUT V
7/3
Q L(Q)2/3

32π2M2
GUT VX

, (5.4)

where the factor L(Q) is due to the threshold corrections from the Kaluza-Klein modes

and is given by

L(Q) = 4q sin2 (5πw/q) , (5.5)

such that 5w is not divisible by q. For typical values

αGUT =
1

VQ

=
1

25
, MGUT = 2 × 1016 GeV , (5.6)

we obtain

VX = 137.4 × L(Q)2/3 . (5.7)

In table 1 we list a few typical benchmark values for the volume and the resulting

gravitino mass up to the overall factor C2.

Interestingly, the gravitino mass scale naturally turns out to be constrained to m3/2 ∼
O(10)TeV. While this is presumably large enough to alleviate the gravitino problem, it is

also small enough to give some of the superpartners masses which can be easily accessible

at the LHC energies. As we will see below, this is possible because of the significant

suppression of the tree-level gaugino masses relative to m3/2.
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Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

q 2 3 4 4 6 6 6

w 1 1, 2 1, 3 2 1, 5 2, 4 3

VX 549.6 594.5 549.6 872.4 453.7 943.7 1143.2

m3/2/C2 70 TeV 62 TeV 70 TeV 35 TeV 93.0 TeV 31 TeV 23 TeV

Table 1. Typical values of VX and m3/2 divided by C2 for different values of q and w.

In addition to the gravitino mass it is instructive to compute the scale of gaugino

condensation. Using (4.73) the volume of the hidden sector associative cycle for Q−P = 3

is given by

VQ =
QPeff

2π(Q − P )
≈ 10Q

π
, (5.8)

From (3.22) the scale of gaugino condensation in the second hidden sector is

Λ ∼ mpl
e−

2π
3Q

VQ

2π1/6V
1/2
X

≈ mpl
e−20/3

2π1/6V
1/2
X

≈ 1.1 × 1014GeV

L(Q)1/3
. (5.9)

5.2 Moduli masses

In order to compute the masses of the moduli we first need to evaluate the matrix Vmn

with m,n = 1, N + 1, with components given by

Vij =
∂2V

∂si∂sj
, Vi N+1 =

∂2V

∂si∂φ0
, VN+1 N+1 =

∂2V

∂φ0∂φ0
, (5.10)

at the minimum of the potential. However, because the Kahler metric in (4.34) is not

diagonal, we also need to find a unitary transformation U which diagonalizes the Kahler

metric. We denote all the components of the Kahler metric as Kmn̄. Then, by diagonalizing

Kmn̄ we obtain

Kkδkl̄ = U †
kmKmn̄Un̄l̄ . (5.11)

After that, we need to rescale the fluctuations of the moduli around the minimum by

the corresponding 1/
√

2Kk factors so that the new real scalar fields have canonical kinetic

terms. At the end, finding the moduli mass squared eigenvalues boils down to diagonalizing

the following matrix

M2
kl =

1

2

1√
KkKl

U †
kmVmnUnl . (5.12)

Unlike most of the other masses, the detailed form of the moduli mass matrix does depend

upon the detailed form of VX . Therefore we have resorted to numerical analyses in this

case and found that there is one heavy modulus whose mass mainly depends on Q and for

Q = 30

M ∼ O(200 − 300) × m3/2 , (5.13)

and N lighter moduli with masses

mi ∼ O(1) × m3/2 , i = 1, N . (5.14)

– 32 –



J
H
E
P
0
9
(
2
0
1
0
)
0
0
1

The heavy modulus arises from the fluctuation which deforms the volume of the three-cycle

VQ, while N -1 light moduli originate from the fluctuations approximately preserving the

volume and tangential to the hyperplane defined by

~N · ~s − VQ = 0 . (5.15)

The remaining light modulus represents the fluctuations of the hidden sector meson φ

mixed with the geometric moduli.

5.3 Gaugino masses

The universal tree-level contribution to the gaugino masses can be computed from the

standard supergravity formula [35, 36]

mtree
1/2 =

eK/2F i∂ifvis

2iImfvis
, (5.16)

where the visible sector gauge kinetic function is another integer combination of the moduli

fvis =
N∑

i=1

Nvis
i zi . (5.17)

Note that, since the dominant F -term is that of the meson field, the gaugino masses at

tree level will be suppressed wrt the gravitino mass. Since the scalar masses typically get

contributions of order m3/2 the expectation is to have light gauginos and heavier scalars,

as we will indeed verify shortly.

Plugging the solution for α (4.51) into (4.63) while using the definitions (4.38) we

obtain

eK/2F i ≈ −i
2si

Peff

(
1 +

2VX

(Q − P )φ2
0

)
m3/2 , (5.18)

where we dropped the overall phase factor e−iγW . It is now straightforward to compute

the tree-level gaugino mass

mtree
1/2 ≈ − 1

Peff

(
1 +

2VX

(Q − P )φ2
0

+ O
(

1

Peff

))
m3/2 . (5.19)

It is interesting to note that this formula is identical to the leading order expression pre-

viously obtained in [1, 2] when one replaces the combination φ2
0/VX by the canonically

normalized meson field. Here, again the suppression coefficient is completely independent

of the number of moduli N as well as the integers Ni (Nvis
i ) appearing inside either the

hidden sector (4.3) or the visible sector (5.17) gauge kinetic functions. Moreover, all the

detailed dependence on the individual moduli is completely buried inside the volume VX

and the gravitino mass m3/2 (which also depends on VX) and therefore expression (5.19) is

universally valid for any G2 manifold that yields positive solutions of the system of equa-

tions in (4.23). Hence, despite the presence of a huge number of unknown microscopic

parameters, the tree-level gaugino masses in (5.19) depend on very few of them. Moreover,
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when the cosmological constant is tuned to a small value and Q − P = 3, the gaugino

mass suppression coefficient becomes completely fixed! Indeed, using (4.73) and (4.74) for

Q − P = 3 we obtain

mtree
1/2 ≈ −0.0307 × m3/2 . (5.20)

This result gets slightly corrected by the threshold corrections to the gauge kinetic function

from the Kaluza-Klein modes computed in [14, 15]

α−1
GUT = fvis +

5

2π
Tω . (5.21)

In the above formula, Tω is a topological invariant (Ray-Singer torsion)

Tω = ln
(
4 sin2(5πw/q)

)
, (5.22)

where w and q are integers such that 5w is not divisible by q. In this case, the tree-level

gaugino mass is given by

mtree
1/2 ≈ −0.0307 η × m3/2 , (5.23)

where

η = 1 − 5 g2
GUT

8π2
Tω . (5.24)

5.4 Anomaly mediated contribution to the gaugino masses

Because of the substantial suppression of the universal tree-level gaugino mass, it makes

sense to take into account the anomaly mediated contributions which appear at one-loop.

The anomaly mediated contributions are given by the following general expression [37, 38]

mAM
a = − g2

a

16π2

[
−
(

3Ca −
∑

α

C α
a

)
eK/2W

+

(
Ca −

∑

α

Cα
a

)
eK/2FnKn + 2

∑

α

(
C α

a eK/2Fn∂n ln K̃α

)]
, (5.25)

where Ca and
∑

α C α
a are the quadratic Casimirs of the a-th gauge group and K̃α are

eigenvalues of the Kahler metric for the visible sector fields (3.43). Assuming the MSSM

particle content, we have the following values for the Casimirs

U(1) : Ca = 0
∑

α

C α
a =

33

5
(5.26)

SU(2) : Ca = 2
∑

α

C α
a = 7

SU(3) : Ca = 3
∑

α

C α
a = 6 .

Plugging the solution for α (4.51) into (4.64) while using the definitions (4.38) we

obtain

eK/2Fφ ≈ φ

(
1 − 7

3Peff

)(
1 +

2VX

(Q − P )φ2
0

)
m3/2 , (5.27)
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where we dropped the overall phase factor e−iγW . Combining (5.18), (5.27) and us-

ing (4.5), (3.43), (3.44) and (3.32) we now compute the contributions

eK/2FnKn = eK/2F iKi + eK/2FφKφ =

(
φ2

0

VX
+

7

Peff

)(
1 +

2VX

(Q − P )φ2
0

)
m3/2

eK/2Fn∂n ln K̃α =
1

3

(
1 +

2VX

(Q − P )φ2
0

)(
c(si)

φ2
0

VX
+

7 − 3λ

Peff

)
m3/2 . (5.28)

In the above we also used (4.10) and (4.11) together with the definition of ai in (2.16) as

well as its contraction property (2.17). We also dropped unknown subleading contributions

proportional to eK/2F i∂ic(si) ∼ mtree
1/2 si∂ic(si).

Using the definition (5.25) we then obtain the following expression for the anomaly

mediated contributions to the gaugino masses

mAM
a ≈ αGUT

4π

[(
3Ca −

∑

α

C α
a

)(
1 − 1

3

(
1 +

2VX

(Q − P )φ2
0

)(
φ2

0

VX
+

7

Peff

))
(5.29)

+
2

3

(
1 +

2VX

(Q − P )φ2
0

)[
(1 − c(si))

φ2
0

VX
+

3λ

Peff

]∑

α

C α
a

]
× m3/2 ,

where we have explicitly separated the conformal anomaly contribution from the Konishi

anomaly term using (3.44).

Notice the appearance of the function c(si) which controls the size of the higher order

corrections to the matter Kahler potential. As expected, when λ = 0 the Konishi anomaly

vanishes in the exactly sequestered case [39], i.e. when c(si) = 1. Again, in the leading

order in 1/Peff , when c(si) = 0 the result obtained above is almost the same as the one

in [1, 2]. Just like in the case with tree-level gaugino masses, the above result is com-

pletely independent of the detailed moduli dependence of the volume VX and therefore is

completely general. In what follows, we will regard the value of the function c(si) at the

minimum of the scalar potential as a phenomenological parameter

c ≡ c(si) . (5.30)

When we set λ = 0 and Q − P = 3, tune the leading contribution to the vacuum

energy by imposing the constraint (4.73), use (4.74) and combine the above formula with

the tree-level contribution (5.23), we obtain the following expression for the total gaugino

masses

Ma ≈
[
−0.0307 η + αGUT

(
0.0364

(
3Ca −

∑

α

C α
a

)
+ 0.0749 (1 − c)

∑

α

C α
a

)]
× m3/2 .

(5.31)

Note that as was previously pointed out in [39], in the limit when c → 1 we obtain a

particular type of a mirage pattern for gaugino masses [40–44]. However, as we will see

below, in this limit the scalars become tachyonic and therefore, the exact mirage pattern

is disfavored. An exact numerical computation confirms the above result giving

Ma ≈
[
−0.03156 η+αGUT

(
0.034086

(
3Ca−

∑

α

C α
a

)
+ 0.07926 (1 − c)

∑

α

C α
a

)]
×m3/2 .

(5.32)
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Substituting the MSSM Casimirs (5.26) into (5.32) we then obtain

M1 ≈ (−0.03156 η + αGUT (−0.22497 + 0.52313 (1 − c))) × m3/2 (5.33)

M2 ≈ (−0.03156 η + αGUT (−0.03409 + 0.55483 (1 − c))) × m3/2

M3 ≈ (−0.03156 η + αGUT (0.10226 + 0.47557 (1 − c))) × m3/2 .

The form of (5.33) allows us to see explicitly that for c = 0 the Konishi anomaly contri-

bution is larger than the contribution from the conformal anomaly by a factor of a few,

which is what made the gaugino mass spectrum in [3] very different from other known

patterns. However, as we will see below, suppressing the scalar masses relative to the

gravitino mass by tuning the coefficient c will automatically result in a large suppression

of the Konishi anomaly.

5.5 Scalars

The masses of the unnormalized scalars can be computed from the following general ex-

pression [35, 36]

m′2
αβ̄ =

(
m2

3/2 + V0

)
K̃αβ̄ − eKFnF̄ m̄

(
∂m̄∂nK̃αβ̄ − ∂m̄K̃αγ̄K̃ γ̄δ∂nK̃δβ̄

)
. (5.34)

Since the vacuum energy is tuned to zero we set V0 = 0 in the above. Us-

ing (3.39), (4.5), (4.10), (4.11), the contraction properties (2.8), (2.9), (3.32) and the F-

terms (5.18), (5.27) we obtain from (5.34) in the leading order

m′2
αβ̄ ≈ (1 − c(si))

(
m2

3/2 −
7

3

(
mtree

1/2

)2
)

K̃αβ̄ + λ
(
mtree

1/2

)2
K̃αβ̄ , (5.35)

where for consistency reasons we only kept contributions linear in c(si) and dropped

unknown subleading terms proportional to the derivatives of c(si), such as e.g.

eKF iF̄ j̄∂i∂j̄c(si) ∼
(
mtree

1/2

)2
sisj∂i∂jc(si) . In the above derivation we also used the fol-

lowing properties

eKF iF̄ j̄∂i∂j̄K̂ = 7
(
mtree

1/2

)2
⇒ eKFnF̄ m̄∂n∂m̄

φφ̄

3VX
= m2

3/2 −
7

3

(
mtree

1/2

)2
. (5.36)

Notice that despite the presence of the derivatives of the Kahler metric K̃αβ̄ in the

definition (5.34), the final expression (5.35) contains K̃αβ̄ only as an overall multiplicative

factor. This happened because the moduli F-terms (5.18) up to a phase are essentially given

by eK/2F i = 2si×mtree
1/2 and the matrix καβ̄(si) is a homogeneous function satisfying (3.32).

Therefore, diagonalization and canonical normalization of the corresponding kinetic terms

automatically results in universal masses for the canonically normalized scalars

m2
α ≈ (1 − c(si))

(
m2

3/2 −
7

3

(
mtree

1/2

)2
)

+ λ
(
mtree

1/2

)2
. (5.37)

After setting λ = 0, we tune the leading contribution to the vacuum energy by imposing

the constraint (4.73) and use (5.20) to obtain from (5.37)

mα ≈ (1 − c)1/20.999m3/2 , (5.38)
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where we again treat the value of the function c(si) for a given vacuum as a phenomeno-

logical parameter (5.30). A numerical computation in this case gives excellent agreement

mα ≈ (1 − c)1/20.998m3/2 ≈ (1 − c)1/2 m3/2 . (5.39)

Again, for c = 0 we recover the old result in [1, 2] where all the scalars have a flavor-

universal mass equal to the gravitino mass.

Furthermore, the anomaly contributions to the scalar mass squareds are suppressed

relative to the gravitino mass and since we wish to consider generic O(1) values of (1 − c)

we will neglect such contributions. Concretely we are going to consider only those values

of 0 < c < 1 which give
1

16π2
≪ mα

m3/2
, (5.40)

such that the anomaly mediated contributions to the scalar masses can be safely neglected.

However, one can certainly extend our model and include such contributions. Once again,

the result above is completely independent of the details of VX and therefore holds for any

G2 manifold that solves the system (4.23) with ai > 0 such that the Kahler metric at the

minimum is positive definite.

5.6 Trilinear couplings

The unnormalized trilinear couplings for the visible sector fields can be computed from the

following general expression [35, 36]

A′
αβγ =

W

|W |e
K/2Fm

[
KmY ′

αβγ + ∂mY ′
αβγ −

(
K̃δρ̄∂mK̃ρ̄αY ′

δβγ + (α ↔ β) + (α ↔ γ)
)]

,

(5.41)

where {α , β , γ} label visible sector matter fields and Y ′
αβγ are the unnormalized

Yukawas that appear in the superpotential. Recall that the Yukawa couplings Y ′
αβγ arise

from the membrane instantons wrapping associative cycles Qαβγ , which connect isolated

singularities supporting the corresponding matter multiplets. They are given by

Y ′
αβγ = Cαβγei2π

P

i mαβγ
i zi . (5.42)

The integer combination of the moduli VQαβγ =
∑

i m
αβγ
i si gives the volume of the asso-

ciative cycle Qαβγ connecting co-dimension seven singularities α, β and γ where the chiral

multiplets are localized. The coefficients Cαβγ are constants. The relation between the

physical and unnormalized Yukawa couplings is given by

Yαβγ =
W

|W |e
K/2Y ′

αβγ

(
K̃αK̃βK̃γ

)−1/2
. (5.43)

Using (5.18) and (5.42) we can compute the contribution

eK/2Fm∂mY ′
αβγ = Y ′

αβγ

4π

Peff

(
1 +

2VX

(Q − P )φ2
0

)
VQαβγm3/2 . (5.44)
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Similarly, using (3.39), (4.5), (4.10), (4.11), the contraction properties (2.8), (2.9), (3.32)

and the F-terms (5.18), (5.27) we find

eK/2FmK̃δρ̄∂mK̃ρ̄α =
δδ
α

3

(
1 +

2VX

(Q − P )φ2
0

)(
c(si)

φ2
0

VX
+

7 − 3λ

Peff

)
m3/2 , (5.45)

where for consistency reasons we only retained contributions linear in c(si) and dropped

unknown subleading terms proportional to eK/2F i∂ic(si) ∼ mtree
1/2 si∂ic(si). Again, in the

above expressions we did not display the overall phase factor e−iγW . Using the defini-

tion (5.41) along with (5.28), (5.44) and (5.45) we obtain the following expression for the

physical (normalized) trilinear couplings at tree-level

Aαβγ = Yαβγ

(
1 +

2VX

(Q − P )φ2
0

)(
(1 − c(si))

φ2
0

VX
+

3λ + 4πVQαβγ

Peff

)
m3/2 , (5.46)

which gets reduced to the result in [1, 2] when c = 0 and λ = 0. Once again, the detailed

structure of the volume VX played absolutely no role in our ability to obtain the above

expression for the tree-level trilinear couplings. The actual volumes of three-cycles VQαβγ

do depend on the microscopic properties of G2 manifolds and in our general framework

these parameters remain undetermined. However, below we will present a good argument

for dropping such volume contributions completely when the third generation trilinear

couplings are computed.

Setting λ = 0 and Q − P = 3, when the leading contribution to the vacuum energy is

tuned we obtain for the reduced trilinears (the physical trilinears divided by the physical

Yukawa couplings)

Ãαβγ ≡ Aαβγ

Yαβγ
=
(
1.41(1 − c) + 0.386 × VQαβγ

)
m3/2 . (5.47)

From the corresponding numerical calculation we obtain the following result

Ãαβγ =
(
1.494(1 − c) + 0.3966 × VQαβγ

)
m3/2 . (5.48)

Since the physical Yukawa couplings for the third generation fermions are much larger

than the first two generation Yukawas, one can typically neglect the trilinears for the first

and second generations. Moreover, the large size of the third generation Yukawas implies

that the volumes of the three-cycles of the corresponding membrane instantons are very

small. In fact, because the top Yukawa is of order one, one can assume that the point

p1 supporting the up-type Higgs 5 of SU(5) coincides with the point p2 supporting the

third generation 10, so that the coupling Hu103103 has no exponential suppression [7, 14,

15]. At the same time the point p3 supporting the down-type 5̄ Higgs and the point p4

supporting the third generation matter 5̄ are distinct but still close to p2 , p1 so that the

coupling of Hd5̄3103 which accounts for the bottom(tau) Yukawa is slightly smaller than

the top Yukawa at the GUT scale. These considerations completely justify dropping the

corresponding VQαβγ terms for the third generation trilinears which then become simplified

Ãt = Ãb = Ãτ ≈ 1.494(1 − c)m3/2 . (5.49)

– 38 –



J
H
E
P
0
9
(
2
0
1
0
)
0
0
1

For generic values of c the trilinears are of the same order as the gravitino mass. In

the limit c → 1, the reduced trilinear couplings at tree-level become suppressed relative

to the gravitino mass. Note that as c approaches one, the suppression of the trilinear

couplings above is much stronger than that of the scalars. In this case, the anomaly-

mediated contributions may become comparable to the tree-level ones and therefore must

be taken into account. General expressions given in [45, 46] can be simplified in the nearly

sequestered limit as

ÃAM
a = − 1

16π2
γa

(
eK/2W − 1

3
eK/2FnKn

)
+

(1 − c)

16π2
Xa m3/2 , (5.50)

where the last term denotes the unknown contributions vanishing in the sequestered limit.

Note that such terms are suppressed compared to the tree-level piece (5.49) due to the loop

factor. As long as (1 − c) is small enough, they become subleading and we will drop them

in further analysis. Using (5.28) and substituting the corresponding MSSM expressions

for γas, where we set g1 = g2 = g3 = gGUT , we obtain the following expressions for the

anomaly mediated contributions to the reduced trilinear couplings

ÃAM
t ≈ − 1

16π2

(
−46

5
g2
GUT +6Y 2

t +Y 2
b

)(
1− 1

3

(
1+

2VX

(Q−P )φ2
0

)(
φ2

0

VX
+

7

Peff

))
m3/2

ÃAM
b ≈ − 1

16π2

(
−44

5
g2
GUT +Y 2

t +6Y 2
b + Y 2

τ

)(
1− 1

3

(
1+

2VX

(Q−P )φ2
0

)(
φ2

0

VX
+

7

Peff

))
m3/2

ÃAM
τ ≈ − 1

16π2

(
−24

5
g2
GUT +3Y 2

b +4Y 2
τ

)(
1− 1

3

(
1+

2VX

(Q−P )φ2
0

)(
φ2

0

VX
+

7

Peff

))
m3/2 .

(5.51)

When we set Q − P = 3, tune the tree-level vacuum energy by imposing the con-

straint (4.73), use (4.74) and combine the above formula with the tree-level contribu-

tion (5.48), we obtain

Ãt ≈ 1.41(1 − c)m3/2 − 0.0029

(
−46

5
g2
GUT + 6Y 2

t + Y 2
b

)
m3/2 (5.52)

Ãb ≈ 1.41(1 − c)m3/2 − 0.0029

(
−44

5
g2
GUT + Y 2

t + 6Y 2
b + Y 2

τ

)
m3/2

Ãτ ≈ 1.41(1 − c)m3/2 − 0.0029

(
−24

5
g2
GUT + 3Y 2

b + 4Y 2
τ

)
m3/2 .

Numerical computations give the following expressions for the total reduced trilinears

Ãt ≈ 1.494(1 − c)m3/2 − 0.0027

(
−46

5
g2
GUT + 6Y 2

t + Y 2
b

)
m3/2 (5.53)

Ãb ≈ 1.494(1 − c)m3/2 − 0.0027

(
−44

5
g2
GUT + Y 2

t + 6Y 2
b + Y 2

τ

)
m3/2

Ãτ ≈ 1.494(1 − c)m3/2 − 0.0027

(
−24

5
g2
GUT + 3Y 2

b + 4Y 2
τ

)
m3/2 ,

which demonstrate a fairly high accuracy of the analytically derived result in (5.52).
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5.7 µ and Bµ -terms

The full hidden sector plus visible sector Kahler potential and superpotential can be written

in the following general form

Ktotal = K
(
si, φ, φ̄

)
+ K̃αβ̄(si, φ, φ̄)QαQ†β̄ + Zαβ(si, φ, φ̄)QαQβ + h. c. (5.54)

Ŵ = Wnp + µ′QαQβ + Y ′
αβγQαQβQγ + . . . .

Here, φ denote the hidden sector matter fields while Qα are visible sector chiral matter

fields where K̃αβ̄(si, φ, φ̄) is the visible sector Kahler metric and Y ′
αβγ are the corresponding

unnormalized Yukawa couplings. It can be shown that the supersymmetric mass parameter

µ′ can be forbidden by requiring certain discrete symmetries which are also used in order

to solve the problem of doublet-triplet splitting [47]. Hence, in our analysis we will rely

on the Giudice-Masiero mechanism [48] in generating effective µ and Bµ terms where the

bilinear coefficient Zαβ(si, φ, φ̄) in (5.54) plays a key role. The general expressions for the

normalized µ and Bµ are given by [35, 36]

µ =

(
W np

|Wnp|
eK/2µ′ + m3/2Z − eK/2F m̄∂m̄Z

)
(K̃HuK̃Hd

)−1/2 (5.55)

Bµ =

[
W np

|Wnp|
eK/2µ′(eK/2Fm [Km + ∂m ln µ′ − ∂m ln(K̃HuK̃Hd

)] − m3/2)

+(2m2
3/2 + V0)Z − m3/2e

K/2F m̄∂m̄Z + m3/2e
K/2Fm(∂mZ − Z∂m ln(K̃HuK̃Hd

))

−eKF m̄Fn(∂m̄∂n Z − ∂m̄Z∂n ln(K̃HuK̃Hd
))

]
(K̃HuK̃Hd

)−1/2 .

where we can set µ′ = 0. Unfortunately, at this point we do not have a reliable way

to compute the Higgs bilinear Zαβ(si, φ, φ̄) for G2 compactifications. Therefore, in our

analysis we will parameterize the µ and Bµ terms as follows

µ = Z 1
eff m3/2 (5.56)

Bµ = Z 2
eff m2

3/2 ,

and treat Z 1
eff and Z 2

eff as phenomenological parameters. Naturally, we expect that Z 1, 2
eff ∼

O(1) and, as we will see in the next section, tuning µ parameter in order to get the correct

value of the Z - boson mass boils down to tuning the values of Z 1, 2
eff .

6 Generalization to the case when κ(si) is a non-trivial homogeneous

function

Recall that the above results have been obtained assuming that the factor κ(si) appearing

in the Kahler potential (4.5) of the hidden sector matter is a pure constant. In this

section we briefly outline the main results for the case when κ(si) is a general homogeneous

function of the moduli of degree zero, satisfying the property (3.2). Here we will not give

any explicit analytic derivations (these are quite tedious and would mostly resemble the

computations in the preceding sections) and instead present numerical evidence that most
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of results obtained for the simplified case κ(si) = 1 can be directly extended to the more

general scenario.

The main difference from the previous case is in the form of the moduli vevs at the

minimum of the scalar potential. These are now given by

si ≈
1

Ni

(
ai + ci

φ2
c

3
r

)
3QPeff

14π(Q − P )
, (6.1)

where r ≈ 3/2 when Q − P = 3. Note that the vev φ2
c of the canonically normalized

effective meson field at the minimum is given by the same expression as in the case when

κ(si) = 1:

φ2
c ≡ κ(si)

φ2
0

VX
≈ 2

Q − P
+

7

Peff

(
1 − 2

3(Q − P )

)
, (6.2)

where Peff is exactly the same as in (4.68). Keep in mind that the analytic expression (6.2) is

only valid when the leading contribution to the vacuum energy is tuned to zero. Parameters

ci are defined as

ci ≡ si
∂ ln κ(si)

∂si
, no sum over i , (6.3)

and satisfy
N∑

i=1

ci = 0 , (6.4)

because κ(si) is a homogeneous function of degree zero. At the minimum of the potential

parameters ai and ci can be determined by solving a system of 2N coupled transcendental

equations

si
∂K̂

∂si

∣∣∣
si=

1
Ni

 

ai+ci
φ2

c
3 r

!

+ 3ai = 0 , (6.5)

si
∂ ln κ(si)

∂si

∣∣∣
si=

1
Ni

 

ai+ci
φ2

c
3 r

!

− ci = 0 .

Once again, the structure of the soft supersymmetry breaking terms remains virtually

unchanged in the leading order in 1/Peff expansion and does not depend on the precise

details of the function κ(si). In fact, the only modification compared to the previously

derived expressions is the replacement of the following combination

φ2
0

VX
→ κ(si)

φ2
0

VX
, (6.6)

whose vev at the minimum is given by (6.2) and is exactly the same as before! However,

it turns out that the soft supersymmetry breaking terms now become slightly sensitive to

the compactification details via the subleading corrections. The most sensitive parameter

is the tree-level gaugino mass. Up to an overall phase it is given by

mtree
1/2 ≈ −

m3/2

Peff

(
1+

2VX

(Q−P )κ(si)φ2
0

+O
(

1

Peff

))
= −

m3/2

Peff

(
1+

2

(Q − P )φ2
c

+
δ

Peff

)
,

(6.7)
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where we introduced a phenomenological quantity δ ∼ O(1 − 10) in order to parameterize

the additional correction. In the numerical toy examples we studied, we obtain a O(1−10)%

variation in the value of the tree-level gaugino mass, while the other soft terms vary by less

than 1%. For the sake of completeness we shall list the expressions for the remaining soft

breaking terms

mAM
a ≈ αGUT

4π

((
3Ca −

∑

α

C α
a

)
K1 +

2

3
K2

∑

α

C α
a

)
× m3/2 , (6.8)

Ãtree
αβγ ≈

(
K2 +

4π

Peff

(
1 +

2VX

(Q − P )κ(si)φ2
0

)
VQαβγ

)
× m3/2 ,

ÃAM
a ≈ − 1

16π2
γaK1 × m3/2 ,

m2
α ≈ (1 − c(si))

(
m2

3/2 −
7

3

(
mtree

1/2

)2
)

+ λ
(
mtree

1/2

)2
,

where we defined

K1 ≡ 1 − 1

3

(
1 +

2VX

(Q − P )κ(si)φ2
0

)(
κ(si)

φ2
0

VX
+

7

Peff

)
, (6.9)

K2 ≡
(

1 +
2VX

(Q − P )κ(si)φ
2
0

)(
(1 − c(si)) κ(si)

φ2
0

VX
+

3λ

Peff

)
.

To illustrate the high accuracy of the analytical results presented here we present a simple

toy example with two moduli.

VX = s1s
4/3
2 , κ(si) = 1 +

s2
1

s2
2

. (6.10)

For the following choice of the parameters in the superpotential

A1 = 27 , A2 ≈ 2.638 , P = 27 , Q = 30 , N1 = 1 , N2 = 2 , (6.11)

where A2 was tuned to cancel the leading contribution to the vacuum energy, we obtain

numerically

s1 ≈ 71.67 , s2 ≈ 13.02 , φ0 ≈ 7.24 , ⇒ φ2
c ≈ 0.746 , Peff ≈ 61.68 . (6.12)

Notice that the above values of φ2
c and Peff are extremely close to those in (4.74) and (4.73),

obtained numerically for the case when κ(si) = 1. These values are also in very good

agreement with the corresponding analytical results. By solving the system (6.5) for the

above example we obtain

a1 = 1 , a2 =
4

3
, c1 = −c2 ≈ 1.939 , (6.13)

and using the above values in the analytic expression (6.1) with Peff ≈ 61.68 we find

s1 ≈ 72.5 , s2 ≈ 12.8 , (6.14)
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which agree well with the numerically obtained values in (6.12). To verify the tree-level

gaugino mass formula numerically we need to know the integers Nvis
1 and Nvis

2 for the

visible sector gauge kinetic function. Here we list three representative examples where we

varied Nvis
1 and Nvis

2 , while keeping everything else fixed

Nvis
1 = 1 , Nvis

2 = 0 , ⇒ mtree
1/2 ≈ −0.029 × m3/2 , (6.15)

Nvis
1 = 1 , Nvis

2 = 3 , ⇒ mtree
1/2 ≈ −0.032 × m3/2 ,

Nvis
1 = 0 , Nvis

2 = 1 , ⇒ mtree
1/2 ≈ −0.037 × m3/2 ,

which demonstrate a mild dependence of the tree-level gaugino mass on the

compactification-specific details. Using φ2
c ≈ 0.746 together with Peff ≈ 61.68 in the

analytic formula (6.7) for Q − P = 3 we obtain

mtree
1/2 ≈ − (0.031 + 0.00026 × δ) × m3/2 , (6.16)

which is in fairly good agreement with the numerical results. The numerical results for the

remaining soft terms are given by the following expressions

mAM
a ≈ αGUT

(
0.0337

(
3Ca −

∑

α

C α
a

)
+ 0.0792 (1 − c)

∑

α

C α
a

)
× m3/2 , (6.17)

Ãa ≈ 1.49(1 − c)m3/2 − γa × 0.0027 × m3/2

mα ≈ (1 − c)1/2 m3/2 ,

K1 ≈ 0.424 , K2 ≈ 1.494 (1 − c) ,

and are virtually unchanged compared to the numerical results in (5.32), (5.53) and (5.39),

computed for the case when κ(si) = 1. The values obtained from the corresponding analytic

expressions are in good agreement with the numerical values above and give essentially

the same results as in the case when κ(si) = 1 because the values of Peff and φ2
c barely

changed. Thus, the effect of including a non-trivial function κ(si) in the Kahler potential

for the hidden sector matter fields can be reliably described by a single parameter δ that

appears in the subleading contributions to the tree-level gaugino mass, while the remaining

soft terms stay essentially unaffected.

7 Electroweak scale spectrum

In order to obtain the corresponding MSSM spectrum at the electroweak scale we need

to RG-evolve all the masses and couplings from the GUT scale down to the electroweak

scale. This procedure was described in great detail in [3]. Here we will only highlight a

few important points and give the final results.

As we have seen in the previous section, at the GUT scale, the gaugino masses are

non-universal and highly suppressed relative to the gravitino mass. On the other hand,

unless c is very close to one, the scalars, trilinear couplings and the µ-term are all of order

m3/2. Hence, we can define a scale ms at which all the heavy states decouple and the
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effective theory below that scale is the Standard Model plus gauginos. More specifically,

we can choose the decoupling scale ms to be the geometric mean of the stop masses

ms =
√

mt̃1
mt̃2

. (7.1)

This is okay as long as the mass differences between the lightest stop and the other heavy

states is not too large. Then, the running can be done at one loop in two stages with

tree-level matching at the scale ms. This method, however, does not capture the two-

loop effects, which may give significant contributions to the running. Thus, in what fol-

lows we will utilize the SOFTSUSY package [49] and perform the running at two-loops

with the full the MSSM spectrum and account for the effects from the heavy scalars via

threshold corrections.

7.1 Gauginos

As one notices from (6.17), due to the anomaly mediated contribution, the gaugino masses

are sensitive to the value of αGUT . However, the value of αGUT is only determined once we

know the exact spectrum and run the gauge coupling up to the GUT scale. Therefore, there

is a feedback mechanism, which allows us to completely fix the gaugino masses by imposing

the gauge coupling unification. In practice, we first pick an initial value of αGUT ∼ 1/25,

compute the gaugino masses, scalar masses, trilinears, etc. at the GUT scale and run them

down to the electroweak scale where we compute the spectrum. We then run the gauge

couplings up using two-loop RGEs to check if they unify at the same value of αGUT as

we chose to compute the gaugino masses. If there is disagreement, we change the value

of αGUT by a small increment and repeat the steps until there is a match. In addition,

parameter η which appears inside the gaugino masses and was defined in (5.24) can be

safely set to one. This is because as one varies the integers w and q inside (5.22) over a

reasoble range, the torsion, unless specifically tuned, is so small that that the KK threshold

corrections can be neglected.

Since MHiggsino ∼ µ ∼ O(m3/2), there is a substantial threshold contribution from the

Higgs-Higgsino loops which has to be taken into account when computing bino (M1) and

wino (M2) masses [3, 50, 50–52]:

∆M1 ,2 ≈ −α1 ,2

4π

µ sin(2β)(
1 − µ2

m2
A

) ln
µ2

m2
A

≈ α1 ,2

4π
µ =

α1 ,2

4π
Z1

effm3/2 . (7.2)

In the above expression we expanded the logarithm using µ2

m2
A

∼ 1 and used tan β ∼
O(1). The latter is especially true when 2Z1

eff ≈ Z2
eff . We also relied on the fact that the

supersymmetric µ-term almost does not change with the RG evolution so one can use (5.56).

Since m3/2 ∼ O(10)TeV, the above correction to M2 can be as large as a few hundred GeV.

It turns out that this contribution is intimately related to the value of parameter c that

directly affects the scalar masses and indirectly forces the value of µ to get smaller, as the

scalars get lighter. For 0 ≤ c . 0.05 and 0.8 . µ/m3/2 the contribution (7.2) is actually

large enough to completely alter the nature of the LSP depending on the sign of µ. In this
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Figure 1. Left panel: Gaugino mass parameters at the electroweak scale as functions of δ. In

the above computation, we used SOFTSUSY with the high scale input m3/2 = 30 TeV, µ < 0,

tan β = 2.5, c = 0. We have verified by examining the neutralino mixing matrix that at δ ≈ −12

the LSP type changes from Wino to Bino as δ is increased. Right panel: Gaugino mass parameters

at the electroweak scale as functions of m3/2. For each data point we checked the neutralino mixing

matrix to confirm that the LSP is Wino-like. The plot was generated using SOFTSUSY with

µ < 0, c = 0, δ = −15, tanβ = 2.5. The KK threshold correction to the visible sector gauge kinetic

function was neglected in both plots.

respect, the sign of δ that parameterizes the subleading corrections to the tree-level gaugino

mass (6.16) also plays an important role. In particular, from the left plot in figure 1 where

we picked c = 0 there is a region where δ . −12 such that the LSP is Wino-like, while for

δ & −12 the LSP becomes mostly Bino. Furthermore, as one can see from the plot, there

exists a small range of values where M1 and M2 become nearly degenerate. This is certainly

an intriguing possibility, which may provide for a well-tempered neutralino candidate [51].

Note that in the Wino-like LSP case, the lightest chargino and neutralino are degenerate

at tree-level, i.e. χ̃0
1 = χ̃±

1 = M2. However as we take into account the 1-loop contribution

from the gauge bosons [52], this degeneracy is removed, as is seen from the corresponding

entries in table 2. Such splitting was discussed in detail for the pure anomaly mediation

scenario in [53, 54] and is given by

∆M1−loop =
α2M2

4π

(
f

(
mW

M2

)
− c2

W f

(
mZ

M2

)
− s2

W f (0)

)
, (7.3)

where f(a) ≡
∫ 1
0 dx(2+2x) ln[x2 +(1+x)a2]. Typically we obtain 160MeV < ∆M1−loop <

200MeV. Because of this, the lightest charginos are quasi-stable and decay into LSP plus

soft pions or soft leptons. In the collider context such decays would take place well inside

the detector leaving short charged tracks.

In addition to (7.2), the EW threshold corrections from gaugino-gauge-boson loops

must also be included, especially for the gluino

∆M rad
3 =

3α3

4π

(
3 ln

(
M2

EW

M2
3

)
+ 5

)
M3 . (7.4)

Unfortunately, we have no technical handle on the size of the parameter c, though we

expect it to be small and hence a Wino LSP is quite generic when c ≈ 0. As we increase the
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value of parameter c, the LSP quickly becomes Bino-like. There are two reasons for this

effect. First, the ratio M2/M1 at the GUT scale grows as c is increased from zero to one.

At the same time, the scalars and higgsinos become lighter relative to the gravitino mass.

In particular, for a fixed m3/2 the lower bound on the Higgs mass forces us to consider

somewhat larger values of tan β which in turn leads to smaller values of µ thus significantly

reducing the contributions (7.2) from higgsinos. Recall that it was primarily due to this

contribution from heavy higgsinos for µ < 0 that the LSP could become Wino-like. Thus,

due to the increase of M2/M1 at the GUT scale and the decrease in the higgsino mass, the

Wino-like LSP case becomes rapidly excluded as we increase the value of c. Benchmarks 4

and 5 in table 2 demonstrate that for generic values of c > 0 the LSP is always Bino-like.

Of course, pure Bino LSP is almost certainly excluded by the standard cosmological

considerations [51]. Namely, because binos do not annihilate efficiently, the dark matter

relic density becomes unacceptably large. However, this problem can be avoided when

the higgsinos, which annihilate efficiently, are light enough to mix with gauginos. If the

higgsino component of the LSP is significant, it can easily reduce the relic density to

acceptable levels by increasing the annihilation crossection of the LSPs. It turns out that

for generic values of c, 0 ≤ c < 1, the higgsinos are always much heavier than the gauginos.

This is because at the decoupling scale ms, the µ2-term must be of the same order of

magnitude as m2
Hu

to give a correct value of the Z-boson mass, and since for typical values

of c we get |m2
Hu

| ≫ M2
1, 2, the higgsinos do not mix with gauginos.
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parameter Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7

m3/2 20000 20000 20000 20000 30000 50000 30000

δ -15 -12 0 -15 15 -15 -15

c 0 0 0 0.1 0.5 0 0

tan β 3 2.65 2.65 3 3 2.5 3

µ -11943 -13377 -13537 -10969 -10490 -34019 +17486

LSP type Wino Wino Bino Bino Bino Wino Bino

M1 165 173 203 181 484 434 252

M2 158 173 225 189 662 421 242

M3 262 297 423 328 1328 673 395

mg̃ 401 449 622 492 1784 1001 596.8

m
eχ0
1

145.1 155.6 189 170 473 373.4 271

m
eχ0
2

153 159 214.3 181.5 702.4 397 334.2

m
eχ0
3

11905 13321 13479 10938 10486 33886 17441

m
eχ0
4

11906 13322 13479 10939 10487 33886 17442

m
eχ±
1

145.2 155.8 214.5 181.7 702.6 373.6 334.2

m
eχ±
2

11970 13383 13540 11001 10560 34044 17540

md̃L
,ms̃L

19799 19803 19809 18785 21052 49524 29727

mũL
, mc̃L

19801 19812 19818 18784 21034 49600 29725

mb̃1
15342 15250 15224 14635 16783 38473 23236

mt̃1
9130 8779 8662 8928 11151 22887 14264

mẽL
, mµ̃L

19948 19948 19951 18926 21164 49889 29930

mν̃eL
, mν̃µL

19950 19954 19952 18927 21168 49903 29934

mτ̃1 19934 19941 19940 18914 21156 49874 29909

mν̃τL
19936 19944 19942 18916 21158 49876 29913

md̃R
19848 19851 19845 18832 21096 49694 29794

mũR
, mc̃R

19850 19853 19858 18832 21094 49700 29792

ms̃R
19849 19851 19856 18832 21096 49695 29767

mb̃2
19829 19833 19838 18810 21075 49669 29758

mt̃2
15342 15251 15224 14635 16783 38470 23235

mẽR
, mµ̃R

19978 19977 19977 18953 21196 49948 29966

mτ̃2 19948 19957 19955 18930 21174 49904 29928

mh0 116.4 114.3 114.6 116.0 115.9 115.1 114.6

mH0 ,mA0 ,mH± 24614 25846 25943 23158 25029 65690 36623

Ãt 12159 11539 11445 10898 9626 30139 18812

Ãb 27381 27321 27427 24744 21850 68441 41148

Ãτ 30068 30092 30124 27109 23022 75221 45099

Table 2. Low scale spectra for seven benchmark G2-MSSM models generated by SOFTSUSY

package. All masses are in GeV. The top mass was taken to be mt = 171.3 GeV. Here we only give

absolute values of the gaugino masses and suppress the relative phases. The spectra are largely

determined by four parameters m3/2, δ, c and tanβ. The Kaluza-Klein threshold corrections to the

gaugino masses have been neglected. For the above spectra, the gauge couplings unify at the value

of α−1

GUT ≈ 26 at the scale MGUT ≈ 2 × 1016 GeV.
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7.2 Squarks and sleptons

Recall that at the GUT scale all the squarks and sleptons have a universal mass (5.39),

which for generic values of c (0 ≤ c < 1) is smaller but nevertheless typically of the

same order of magnitude as the gravitino mass. However, as we evolve these down to

the electroweak scale, the third generation scalars become significantly lighter whereas the

first and second generation scalars experience a very mild change in their masses. Indeed,

because the third generation Yukawa couplings are large, the stops, sbottoms, and staus

are affected through the corresponding trilinear couplings (5.53), which are of O(m3/2). As

one can see from table 2, this effect is especially dramatic for the lightest stop t̃1. Yet, it

is still much heavier than the gauginos and is effectively decoupled from the spectrum at

the electroweak scale.

However, since gluinos can be pair produced at the LHC via gluon fusion, the gluinos

(which have to decay via a quark-squark pair) have a sizeable branching fraction into top-

stop — precisely because the stop is the lightest squark. This leads to events containing

up to four top quarks at the LHC [55].

7.3 Radiative electroweak symmetry breaking

The existence of the electroweak symmetry breaking (EWSB) in the effective theory below

the decoupling scale ms is determined by whether there exists a negative eigenvalue in the

Higgs mass matrix

(
m2

Hu
+ µ2 −Bµ

−Bµ m2
Hd

+ µ2

)
(7.5)

at the scale where the scalars decouple [56]. Recall that at the GUT scale, m2
Hu

= m2
Hd

=

(1 − c)m2
3/2 whereas µ = Z 1

effm3/2 and Bµ = Z 2
effm2

3/2. It is well known that the positive

contribution into the running of the up Higgs mass parameter squared from the stop is

crucial for radiative EWSB as it drives m2
Hu

negative. It turns out that for a fixed value

of the gravitino mass m3/2, as we vary parameter c there exists a narrow range of values

Z 1, 2
eff for which the matrix (7.5) has a negative eigenvalue above the decoupling scale ms

defined in (7.1).

However, unless we force Z 2
eff ≪ 2Z 1

eff , all the entries in the above matrix are O(m2
3/2).

Therefore, both the lightest Higgs mass and the Z-boson mass naturally come out to be of

O(m3/2). For the same reason, there is little mixing between the two Higgs doublets and

naturally tan β ∼ O(1) is predicted in our framework. In practice, parameters Z 1, 2
eff must be

tuned in such a way that the corresponding eigenvalue turns negative right at the decoupling

scale [56] so that mZ ≈ 91GeV. This fine tuning is a manifestation of the so-called little

hierarchy problem - the hierarchy between the electroweak scale MEW ∼ O(100)GeV and

the scale where the scalars decouple ms ∼ O(10)TeV. Once MZ is tuned, the Standard

Model Higgs mass turns out to be mh < 130GeV.
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