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1 Introduction

The gauge/gravity correspondence [1–5] states that a (d + 1)-dimensional gravitational
theory is equivalent to a d-dimensional conformal field theory (CFT), which provides a
computational holographic realization. One of the central concerns in the duality is to
extract the bulk geometry, kinematics and even dynamics, from the CFT quantities. Since
Ryu and Takayanagi identified the holographic entanglement entropy (EE) of CFTs with
the lengths of the geodesics anchored on the conformal boundary of the bulk geometry
in [6, 7], it is believed that EE should play a major role in constructing the bulk geometry.

However, recent work has suggested that the traditional spacelike EE does not fully
capture the entangling properties of CFTs. In ref. [8], we observed that there exists a
severe inconsistency in the corrected EE of the T T̄ deformed version of the AdS3/CFT2
correspondence. To resolve the inconsistency, we proposed that, in addition to the traditional
spacelike EE, a timelike EE must be introduced. Remarkably, such a timelike EE has
been explicitly addressed in the AdS/CFT context [9–14] recently. Unlike the traditional
spacelike EE, which measures entangling between spacelike subsystems, the timelike EE
reflects the entangling between timelike intervals. Since the 2d conformal boundary of AdS3
is Minkovski, it looks natural that both spacelike and timelike EEs exist in the AdS3/CFT2.

The timelike EE in the context of the dS3/CFT2 correspondence [4, 15–17] is perhaps
more intriguing. Naively, it appears that dS3/CFT2 leaves no room for a timelike EE. To
see this clearly, let us consider the dS3 in the planar coordinate,

ds2
dS = −dt2 + e2t/`dS

(
dx2 + dy2

)
, (1.1)

where t ∈ (−∞,∞) and `dS is the dS radius. The future (or equivalently the past) boundary
I+ as t → +∞, where the dual CFT2 lives, is obviously a Euclidean plane that has two
spatial directions. On the other hand, the AdS3 in the planar coordinate reads,

ds2
AdS = dξ2 + e2ξ/`AdS

(
−dt2 + dx2

)
, (1.2)
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Figure 1. Penrose diagram of de Sitter spacetime. I± is the global past and future spheres. The
two vertical boundaries θ = 0, π are the north pole and south pole respectively. Each point in the
interior represents an S1. A horizontal slice is an S2. The planar coordinate (1.1) covers the shadow
region O+, comprising the causal future of the south pole. The green dashed lines are constant
r =

√
x2 + y2. Orange lines of constant t are shown. The violet line I+ denotes the future boundary

t→∞. The red line indicates the past horizon t→ −∞.

which is related to the familiar Poincare coordinate with ξ/`AdS → − log[z/`AdS]. It is then
easy to see that, the double Wick rotation,

ξ → it, t→ iy `AdS → i`dS, x→ x, (1.3)

a usual operation from AdS3 to dS3, transforms both the spacelike and timelike EEs in
AdS3/CFT2 to spacelike EEs along the two directions in dS3/CFT2.

Remarkably, the above double Wick rotation already gives some hints about the
existence of a timelike EE in dS3/CFT2. The purpose of this paper is to introduce
a nontrivial timelike EE in the dS3/CFT2 context, which might be interpreted as the
entanglement between the future and the past. To this end, it is of help to draw the Penrose
diagram of dS3 in figure (1) by using the conformal coordinate,

ds2
dS = 1

cos2 T
(−dT 2 + dθ2 + sin2 θdφ2), (1.4)

with −π/2 < T < π/2. In the figure, I± are the global past and future spheres. The two
vertical boundaries θ = 0, π are the north pole and south pole respectively. Each point in
the interior represents an S1. A horizontal slice is an S2. The planar coordinate (1.1) covers
the shadow region O+, comprising the causal future of the south pole. The green dashed
lines are constant r =

√
x2 + y2. Orange lines of constant t are shown. The violet line I+

denotes the future boundary t→∞. The red line indicates the past horizon t→ −∞.
In dS3/CFT2, it is sufficient to consider the inflation patch O+, which consists of a

collection of flat spacelike slices. Ref. [4] suggested that time evolution along these slices in
dS3 is equivalent to scale transformations of the dual CFT2. In other words, time evolution
is the inverse renormalization group (RG) flow [18], and the temporal dimension in the bulk
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can be interpreted as the renormalization scale µ of the CFT, where the future boundary I+

corresponds to the ultraviolet (UV) region of the CFT and the past horizon (red line with
t→ −∞) corresponds to the infrared (IR) region of the CFT. Guided by these facts, we
will show that in dS3/CFT2, a timelike EE can be defined through the RG flow equation,
which turns out to be SA = − i cdS

6 log ξ
ε , where cdS is the central charge, ε is the UV cutoff

and ξ is an IR-like cutoff (correlation length). Since this RG flow induced EE involves both
IR and UV cutoffs, it is convenient to refer to it as IR EE. The usual EE involving only
UV cutoff is then called UV EE to distinguish between the two. Based on the hypothesis
that the RG flow of the non-unitary CFT is dual to cosmological time evolution in dS, we
will demonstrate that the IR EE is dual to a timelike geodesic connecting spacelike surfaces
at different times in the bulk of dS3. Our derivations do not require unitarity of the CFT,
which is consistent with non-unitary CFT duals of de Sitter space [4, 15–17].

In the dS/CFT correspondence, we further clarify that timelike and spacelike EEs are
intrinsically different. It is not surprising to find that, via an analytical continuation, the
timelike IR EE in dS/CFT rotates to a spacelike IR EE in AdS/CFT, which obviously is
associated with the emergent radial direction of AdS!

It is then illuminating to note that, in both dS3/CFT2 and AdS3/CFT2, there are
exactly three EEs, which fits precisely to reconstruct the three-dimensional bulk geometry.
This is just what has been studied in refs. [8, 19, 20].

The remainder of this paper is outlined as follows. In section 2, we derive the IR EE
by using the Callan-Symanzik equation in CFT. In section 3, we calculate the length of a
timelike geodesic which connects two distinct spacelike boundaries and find it matches the
IR EE perfectly. Section 4 is for conclusion and discussions.

2 RG flow induced entanglement entropy in QFT

In this section, using the Callan-Symanzik equation, we present a universal derivation of
the RG flow induced EE, which we refer to as the IR EE, for a generic CFT. When applied
to the context of dS/CFT, the IR EE is timelike.

The dS/CFT correspondence is not as well understood as the AdS/CFT correspondence.
There are only limited examples of CFTs that are dual to dS. In addition to a four
dimensional higher spin gravity example [21], a recent remarkable construction has been
given for the dS3/CFT2 correspondence [16, 17].

In the canonical formalism for gravity, the quantum state residing on a static compact
slice Σt can be described by the Hartle-Hawking wavefunction ΨdS [γ], where γ is the metric
on Σt. The dS/CFT could be defined through the dictionary [15],

ΨdS [γ] = ZCFT [γ] , t→∞ (2.1)

where ZCFT is the partition function of the CFT2 living on Σ∞. Since the CFTs dual
to dS are non-unitary [4, 15–17], another universal quantity is needed to measure the
entanglement. To this end, parallel to the EE in unitary CFT, a complex-valued quantity
known as the pseudoentropy is introduced in refs. [9, 22–29]. Dividing the total system
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into two subsystems A and B, the pseudoentropy is defined by the von Neumann entropy,

SA = −Tr [τA log τA] , (2.2)

of the reduced transition matrix

τA = TrB
[ |ψ〉 〈ϕ|
〈ϕ | ψ〉

]
. (2.3)

Here, |ψ〉 and |ϕ〉 are two different quantum states in the total Hilbert space that is
factorized as H = HA ⊗HB. It should be emphasized that the pseudoentropy defined by
eq. (2.2) is generic and does not depend on the details of a particular non-unitary CFT. As
the usual EE, the pseudoentropy could also be captured by the replica method [30, 31] in
path integral formalism. Denoting the manifold corresponding to 〈ϕ | ψ〉 asM1 and the
manifold corresponding to TrA (τA)n asMn, the n-th pseudo Rényi entropy reads

S
(n)
A = 1

1− n log
[
ZMn

(ZM1)n
]
, (2.4)

where ZM is the partition function over the manifoldM. The n-sheeted Riemann surfaces
Mn in dS is constructed in the same way as in AdS. Taking the limit n → 1 yields the
pseudoentropy

SA = lim
n→1

1
1− n log

[
ZMn

(ZM1)n
]
, (2.5)

which can be regarded as a well-defined EE in the dS3/CFT2 context.
Since the definitions (2.4) and (2.5) are identical for both usual EE and pseudoentropy,

the following derivations of IR EE are applicable to both unitary and non-unitary CFTs.
Consider a 2d generic CFT2 living on a curved surfaceM with the metric ds2 = γabdx

adxb.
It is known that [32], for a classically scale-invariant theory where only dimensionless
couplings are present, the Callan-Symanzik equation is[

µ
∂

∂µ
+ 2

∫
d2x γab

δ

δγab

]
logZCFT = 0, (2.6)

with the renormalization scale µ. The n-th Rényi entropy (2.4) of the subsystem A

thus satisfies [
µ
∂

∂µ
+ 2

∫
d2x γab

δ

δγab

]
S

(n)
A = 0. (2.7)

Note that the expectation value of the stress tensor is given by

〈T aa 〉 = −2γ
ab

√
γ

δ

δγab
logZCFT. (2.8)

So the Callan-Symanzik equation of the n-th Rényi entropy can be rewritten as

µ
∂

∂µ
S

(n)
A = −

∫
Mn
〈T aa 〉Mn

− n
∫
M1
〈T aa 〉M1

1− n . (2.9)

The central charge c of the 2d CFT has a clear definition due to the presence of the
Weyl anomaly

〈T aa 〉 = + 1
2π

c

12R, (2.10)
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with R the scalar curvature, and one has

µ
∂

∂µ
S

(n)
A = −

c
(∫
Mn
R(n) − n

∫
M1
R
)

24π (1− n) . (2.11)

For the n-sheeted Riemannian surface in the presence of conical singularities, ref. [33] has
shown that ∫

Mn

R(n) = n

∫
M1
R+ 4π (1− n)

∫
Σ

1, (2.12)

where Σ is the entangling surface. In our case here, (
∫

Σ=∂A 1) = A, which is the number of
the boundary points of the subsystem A. Therefore, the Callan-Symanzik equation of the
n-th Rényi entropy could be simplified as

µ
∂

∂µ
S

(n)
A = −A · c6 . (2.13)

It is quite interesting to note that this RG flow induced n-th Rényi entropy S
(n)
A is

independent of n and therefore simply equals the RG flow induced IR EE! After replacing
µ−1

UV/µ
−1
IR by the UV/IR cutoff ε/ξ, the RG flow induced IR EE is given by

SIR
A = S

(n)
A = −

∫ µIR

µUV
A · c6

dµ

µ
= A · c6 log ξ

ε
, (2.14)

which is independent of the metric γ.
Two other field theoretic approaches to derive this IR EE (2.14) were given in ref. [30].

The first one parallels the proof of c-theorem. The second argument calculates a scalar
field theory perturbed by a mass term. None of them requires unitarity. However, both
approaches have to take the limit n → 1 to get the IR EE from the n-th Rényi entropy,
and the number of the boundary points A cannot be easily derived.

The IR EE (2.14) is universal and determined only by the central charge and the
intrinsic correlation length of a specific CFT. In the dS/CFT context, it is known that the
central charge of CFT2 dual to dS3 is imaginary-valued [15], and from the Brown-Henneaux’s
formula [34], we have

c = −i cdS = −i 3`dS

2G(3)
N

. (2.15)

Thus, the IR EE in the dS3/CFT2 correspondence is

SIR
A = − i cdS

6 log ξ
ε

= −i `dS

4G(3)
N

log ξ
ε
, (2.16)

where A = 1 is assumed.
It is crucial to understand that the IR EE should not be confused with the UV EE,

SUV
A = − i cdS

3 log L
ε

+ πcdS
6 . (2.17)
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The differences are quite distinct from the above expressions, since the IR EE does not
have a real part but the UV EE does.1 Additionally, the IR cutoff ξ used in the IR EE has
a clear different interpretation from the entangling interval length L = ∆x used in the UV
EE. The UV EE only holds as L� ξ.

As explained in the Introduction, in the dS/CFT context, the RG flow in the CFT
corresponds the temporal direction of dS, thus the RG flow induced IR EE is nothing but a
timelike EE in dS/CFT.

3 Holographic timelike entanglement entropy in dS3/CFT2

To exhibit the timelike feature of the IR EE explicitly, it is illuminating to study its
corresponding dS bulk dual. For any two points (t1, x1, y1) and (t2, x2, y2) in the planar
coordinate of dS3 (1.1), the geodesic distance L is

cos
(
L

`dS

)
= 1 +

[exp (−t1/`dS)− exp (−t2/`dS)]2 − 1
`2dS

[
(x1 − x2)2 + (y1 − y2)2

]
2 exp (−t1/`dS) exp (−t2/`dS) . (3.1)

The length of a timelike geodesic between two points (t+∞ = `dS log(`dS/ε), x, y) and
(t−∞ = `dS log(`dS/ξ), x, y) is exactly

L (t+∞, t−∞) = `dS arccos
[
ξ2 + ε2

2ξε

]
= −i `dS log

(
ξ

ε

)
.

where the principal branch of the complex inverse cosine function is chosen. Assuming
the Ryu-Takayanagi formula [6] also holds in dS/CFT, applying eq. (2.15), this timelike
geodesic length gives the corresponding entropy

SA = L

4G(3)
N

= − i `dS

4G(3)
N

log ξ
ε

= − i cdS
6 log ξ

ε
, (3.2)

which is precisely equal to the IR EE in eq. (2.16). So, we do find perfectly matched
quantities in dS3 and CFT2. One is a timelike geodesic, another is the IR EE. Intriguingly,
the match is exact and there is no need to take the UV or IR limits.

It is particularly evident that, under the double Wick rotation (1.3), the timelike IR
EE in dS/CFT is transformed to a spacelike IR EE in AdS/CFT. In both dS and AdS, the
geodesics that are dual to the IR EE extend all the way into the bulk, in sharp contrast to
the UV EE whose endpoints are both attached to the boundary. As a result, the IR EE
must provide indispensable information for the reconstruction of spacetime.

The various EEs in dS and AdS are connected via analytic continuations. In the planar
or Poincare coordinates, they are transformed to each other through the double Wick
rotation (1.3). However, this procedure is far from clear beyond the semiclassical limit and
some more nontrivial calculation may be needed. We summarize the classifications of all
the EEs in table 1.

1This is not the case in the AdS/CFT context, where both the IR EE and the traditional spacelike UV
EE are real. Perhaps this is why IR EE is frequently overlooked as an independent EE, but mistakenly
considered as only one half of the UV EE.
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dS/CFT AdS/CFT

UV Spacelike: SA = − i cdS
3 log

(
X
ε

)
+ πcdS

6 Spacelike: SA = cAdS
3 log X

ε

Spacelike: SA = − i cdS
3 log

(
Y
ε

)
+ πcdS

6 Timelike: SA = cAdS
3 log T

ε + iπcAdS
6

IR Timelike: SA = − i cdS
6 A log ξ

ε Spacelike: SA = cAdS
6 A log ξ

ε

Table 1. Spacelike, timelike EEs and UV, IR EEs in dS/CFT and AdS/CFT. Two elements in
each row are transformed to each other via an analytic continuation. Evidently, the IR EE and UV
EE are completely distinct, especially from the perspective of dS/CFT. A is the number of the
boundary points of the subsystem A.

4 Conclusions

In this paper, we introduced a timelike EE, in the context of dS/CFT correspondence. Since
this RG flow induced EE is expressed by both IR and UV cutoffs, we called it as IR EE to
distinguish it from the usual UV EE, which involves UV cutoff only. We demonstrated that
this IR EE does perfectly match the length of a timelike geodesic connecting two distinct
spacelike surfaces in dS3. In AdS3, the counterpart of this IR EE is spacelike. Our results
reveal that there are three independent EEs in whether dS3/CFT2 or AdS3/CFT2, which
provides just enough information to reconstruct the bulk geometry.

It is quite intriguing that, the match of this IR EE with the dual geodesic length is
exact, working for any cutoffs, not restricted to the UV or IR limits.

While we considered the simplest pure dS in this paper, our findings could be extended
to generic asymptotic dS(AdS) spacetimes whose time(radial) evolution corresponds to a
nontrivial inverse RG flow.

It is difficult to ignore the potential role of the de Sitter cosmological event horizon as
a natural entangling surface. It is very interesting that there is one candidate, namely the
T T̄ deformation, could realize this idea.

Refer to figure (1), the UV and the IR are connected at r = ∞, which leads us to
speculate that the timelike EE, represented by the green dashed lines, may serve as a
holographic screen for the inflation patch of de Sitter spacetime. This suggests that the
inflation patch is in a mixed state and is entangled with another universe, or possibly even
multiple universes.
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