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1 Introduction

Homotopical methods based on L∞-algebras and A∞-algebras have been playing an in-
creasingly significant role in our understanding of the algebraic and kinematic structures
inherent in scattering amplitudes and correlation functions of quantum field theory; for an
incomplete sample of recent works see e.g. [1–14] and references therein. At a given order
of perturbation theory, these can be calculated in a purely algebraic fashion without resort-
ing to canonical quantization or path integral techniques: the quantum Batalin-Vilkovisky
(BV) formalism gives an explicit homological construction of correlators which algebraically
generates Feynman diagrams. The diagrammatics of homological perturbation theory is
discussed in e.g. [8, 11, 13].
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In this paper we are interested in what these techniques can teach us about noncom-
mutative quantum field theory. Noncommutative field theories arise in many scenarios as
effective theories; see [15, 16] for early reviews of the subject as well as its relevance in
open string theory with B-fields. Their L∞-algebra formulation at the classical level was
discussed in [17]; see [18] for a recent exposition. There are two main problems that this
paper aims to address.

The standard noncommutative quantum field theories are famously plagued by the
notorious problem of ‘UV/IR mixing’, which is related to the appearance of non-planar
loop diagrams in perturbation theory [19]. The naive ultraviolet regulator θ provided by
the noncommutative deformation becomes effective at energies E with E

√
θ � 1. UV/IR

mixing occurs in a loop correlator when the regularisation entangles ultraviolet and infrared
regimes: an ultraviolet cutoff Λ induces an effective infrared cutoff Λ0 = 1/θΛ. While
non-planar graphs are generically well-defined, they can lead to uncontrollable divergences
when inserted as subgraphs into higher order graphs. These divergences increase with the
order of perturbation theory, and all correlation functions are affected and diverge. As a
consequence, the quantum field theory cannot be renormalized.

For noncommutative φ4-theory with the Moyal-Weyl star-product, the UV/IR mixing
problem can be cured by adding a background harmonic oscillator potential to the free
part of the classical action functional. The quantum field theory is then covariant under
Fourier transformation of the fields [20], which renders the interchange of ultraviolet and
infrared regimes a symmetry. This is the celebrated Grosse-Wulkenhaar model [21], which
is renormalizable to all orders in perturbation theory. But it is not understood how to
achieve this in gauge theories.

In this paper we explore a new approach to renormalizable noncommutative quantum
field theory by instead modifying the path integral directly, rather than the classical action
functional. Our approach is firmly rooted in the homological techniques developed by [11,
18, 22, 23]: by deforming the L∞-structure of a field theory to a braided L∞-algebra, one
constructs field theories which are covariant under the action of a triangular Hopf algebra of
symmetries, with braided noncommutative fields. Quantum correlation functions are then
computed via a braided deformation of the BV formalism and homological perturbation
theory: this is called braided quantum field theory. The renormalization properties of
braided quantum field theory turn out to be very different, and UV/IR mixing seems to
be less severe and maybe even absent. This is due in part to the absence of non-planar
diagrams, which we demonstrate explicitly in the example of noncommutative φ4-theory.

Our formulation of braided quantum field theory realises a special case of Oeckl’s ap-
proach [24, 25] (see also [26]), which formulates the path integral of ordinary quantum field
theory in a purely algebraic language and then generalizes it to ‘braided spaces’ of fields
which are objects in the braided monoidal representation category of a quasi-triangular
Hopf algebra. This algebraic approach is based on normalised Gaussian integration over
braided spaces, which leads to a braided generalization of Wick’s theorem. In this way
braided quantum field theory follows the traditional path integral approach, going from
Gaussian path integrals via perturbation theory to Feynman diagrams. The braided gen-
eralization of the quantum BV formalism [11] does exactly this, while also having the ad-
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vantage of going beyond the classes of theories immediately covered by Oeckl’s approach:
our formalism also naturally treats theories with gauge symmetries.

For Moyal-Weyl twists, our systematic treatment of noncommutative φ4-theory makes
precise some older claims from the literature, many of which were reached through some-
what ad hoc lines of reasoning and constructions. Based on Oeckl’s computation of de-
formed Green’s functions for scalar fields in terms of undeformed ones [25], braided de-
formations of free quantum field commutation and anti-commutation relations, i.e. of the
oscillator algebras of creation and annihilation operators, were suggested in several works,
see e.g. [27–31]. In particular, from this it was argued in [27] that noncommutative quan-
tum field theory with braided symmetry dispels with UV/IR mixing in S-matrix elements
of scalar field theories. These treatments employ braided tensor products, which also twist
the propagators of the field theory, in contrast to our approach. In fact, our more system-
atic calculations generally reach somewhat different conclusions: braided quantum field
theory is not the same as its undeformed counterpart [11].

The second main goal of this paper is to understand the homotopy algebraic approach
to quantization of braided field theories with gauge symmetries. As a first step towards
understanding the more elaborate non-abelian gauge theories, here we undertake a detailed
study of the simplest example of a U(1) gauge theory coupled to a Dirac fermion. We
call this theory braided quantum electrodynamics (QED); a preliminary investigation of
this model was announced in [32]. This theory is markedly different from that of the
standard noncommutative QED, whose photon field is self-interacting, contrary to the
photon of braided QED. We develop the classical braided field theory in detail, and in
particular demonstrate how the homotopy Noether identity associated to the U(1) gauge
symmetry naturally implies the electric charge conservation law. In the quantized theory
we demonstrate the absence of non-planar diagrams as well as UV/IR mixing in one-loop
two-point correlators. This is also in agreement with earlier calculations [30] which found
that no UV/IR mixing occurs in S-matrix elements of U(1) gauge theory coupled to matter.
The implications of this for the renormalizability of braided QED is left for future work.

Outline. A central purpose of this paper is to demonstrate how to compute correla-
tion functions for perturbative braided quantum field theory using braided quantum L∞-
algebras (equivalently the braided BV formalism), and in particular to present explicit
expressions for correlation functions obtained through these algebraic techniques. The
structure of this paper is as follows.

In section 2 we briefly review braided L∞-algebras and their application in developing
a novel particular class of examples of noncommutative field theories, called braided field
theory. We further describe their perturbative quantization by developing a braided version
of Wick’s theorem and applying the BV formalism. We treat the noncommutative φ4-theory
in some detail, demonstrating the absence of UV/IR mixing in the one-loop self-energy.

In section 3 we present the explicit example of braided electrodynamics. We first
construct the corresponding braided L∞-algebra, and then use it to formulate the action
functional and the equations of motion. Using the braided Noether identity we find the
associated conserved matter current and discuss the modifications to the electric charge
conservation law.
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In section 4 we explore the perturbative expansion of quantized braided electrody-
namics defined by the braided Wick’s theorem and homological perturbation theory. In
particular, we find that there are no non-planar Feynman diagrams as well as no UV/IR
mixing through explicit computations of the vacuum polarization and the fermion self-
energy at one-loop.

Two appendices at the end of the paper contain some technical details which are used
in the main text: appendix A briefly reviews the basics of twist deformations that are used
in our constructions of braided field theories, while appendix B summarises our conventions
for Dirac spinors.

2 L∞-algebras and braided quantum field theory

2.1 L∞-algebras and classical field theory

Let us begin by briefly recalling the definition of a classical L∞-algebra. An L∞-algebra
L is a Z-graded real vector space L = ⊕

k∈Z Lk equipped with graded antisymmetric
multilinear maps

`n : L⊗n −→ L , a1 ⊗ · · · ⊗ an 7−→ `n(a1, . . . , an)

for each n ≥ 1, which have degree |`n| = 2− n. The graded antisymmetry translates to

`n(. . . , a, a′, . . . ) = −(−1)|a| |a′| `n(. . . , a′, a, . . . ) , (2.1)

where |a| denotes the degree of a homogeneous element a ∈ L. We write ` := {`n}n≥1 for
the collection of all multilinear maps, which are also called multibrackets.

The n-brackets `n are required to fulfill infinitely many homotopy relations, for each
n ≥ 1. The first L∞-relation

`1
(
`1(a)

)
= 0

says that underlying any L∞-algebra L is a cochain complex (L, `1):

· · · `1−−−→ Lk
`1−−−→ Lk+1 `1−−−→ · · · .

The second relation

`1
(
`2(a1, a2)

)
= `2

(
`1(a1), a2

)
+ (−1)|a1| `2

(
a1, `1(a2)

)
says that the differential `1 is a graded derivation with respect to the 2-bracket `2, or in
other words that `2 is a cochain map. The third homotopy relation

`2
(
`2(a1,a2),a3

)
−(−1)|a2||a3|`2

(
`2(a1,a3),a2

)
+(−1)(|a2|+|a3|)|a1|`2

(
`2(a2,a3),a1

)
=−`3

(
`1(a1),a2,a3

)
−(−1)|a1|`3

(
a1,`1(a2),a3

)
−(−1)|a1|+|a2|`3

(
a1,a2,`1(a3)

)
−`1

(
`3(a1,a2,a3)

)
says that the graded Jacobi identity for `2 is violated by a cochain homotopy determined
by `3, and so on for n > 3.
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In applications to Lagrangian field theory, one additionally asks that an L∞-algebra
L is endowed with a graded symmetric non-degenerate bilinear pairing 〈−,−〉 : L⊗L→ R

which is cyclic in the sense that

〈a0, `n(a1, a2, . . . , an)〉 = ±〈an, `n(a0, a1, . . . , an−1)〉

for all n ≥ 1. Here and in the following we write ± for the sign factors determined by the
grading of the elements ai involved through the Koszul sign rule.

It was shown in [1, 3, 17, 33] (see [18] for a review) that any classical field theory
with irreducible gauge symmetries (that is, with independent gauge transformations) can
be completely encoded in 4-term L∞-algebras L with underlying graded vector space

L = L0 ⊕ L1 ⊕ L2 ⊕ L3 .

Given a gauge parameter c ∈ L0 and a dynamical field A ∈ L1, the gauge variations are
given by

δcA = `1(c) + `2(c, A)− 1
2 `3(c, A,A) + · · · , (2.2)

where the ellipses designate higher brackets involving tensor powers A⊗n for n ≥ 3, which
are not needed in the applications considered in this paper. The equations of motion
FA = 0 in L2 are encoded through homotopy Maurer-Cartan equations

FA = `1(A)− 1
2 `2(A,A)− 1

6 `3(A,A,A) + · · · . (2.3)

Under gauge transformations (2.2) the homotopy Maurer-Cartan equations transform co-
variantly

δcFA = `2(c, FA) + `3(c, FA, A) + · · · . (2.4)

For the purposes of this paper, we may assume for simplicity that the algebra of gauge
variations closes off-shell (that is, when FA 6= 0). We further assume that the brackets of
L satisfy

`n+2(c1, c2, A1, . . . , An) = 0 and `n+2(c1, c2, A
+, A1, . . . , An−1) = 0 (2.5)

for all n ≥ 1, c1, c2 ∈ L0, A1, . . . , An ∈ L1 and A+ ∈ L2. Then the homotopy relations
imply that the closure relation for the gauge algebra has the form

[δc1 , δc2 ]◦ = δ−`2(c1,c2) , (2.6)

where [δc1 , δc2 ]◦ := δc1 ◦ δc2 − δc2 ◦ δc1 is the commutator of gauge variations. The Noether
identities in L3 corresponding to the gauge symmetry are encoded by

dAFA := `1(FA) + `2(FA, A)− 1
2 `3(FA, A,A) + · · · = 0 , (2.7)

which vanishes identically as a consequence of the homotopy relations on A⊗n for all n ≥ 1.
The action functional of a Lagrangian field theory can be written via a symmetric

non-degenerate bilinear pairing 〈−,−〉 : L ⊗ L → R of degree −3 which makes L into a
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cyclic L∞-algebra. Then the equations of motion FA = 0 follow from varying the homotopy
Maurer-Cartan action functional

S(A) := 1
2 〈A, `1(A)〉 − 1

6 〈A, `2(A,A)〉 − 1
24 〈A, `3(A,A,A)〉+ · · · , (2.8)

since cyclicity implies δS(A) = 〈FA, δA〉. Cyclicity also implies

δcS(A) = 〈FA, δcA〉 = −〈dAFA, c〉 , (2.9)

so that gauge invariance of the action functional δcS(A) = 0 is then equivalent to the
Noether identities dAFA = 0.

Note that `1(A) is associated with the free equations of motion, whereas `n(A⊗n) for
n ≥ 2 correspond to interaction vertices in the Lagrangian. In this formalism, free fields
(that is, solutions to the linearised equations of motion) are in the cohomology H•(L) of
the underlying cochain complex (L, `1).

2.2 Braided L∞-algebras and braided field theory

Starting from a suitable classical L∞-algebra L , using Drinfel’d twist deformation tech-
niques one can construct a braided L∞-algebra L ? in the sense of [22, 23] (see [18] for
a review). A brief review of the Drinfel’d twist deformation formalism is presented in
appendix A, while more details can be found in [34, 35]. Let v := Γ(TM) be the Lie
algebra of vector fields on a manifold M , and let Uv be its enveloping algebra. For a twist
F ∈ Uv[[ν]]⊗Uv[[ν]], we write F = fα⊗fα and F−1 = f̄α⊗f̄α for its inverse. The correspond-
ing triangular R-matrix is R = F21F−1 =: Rα ⊗ Rα, with inverse R−1 = R21 = Rα ⊗ Rα.1

To apply the twist deformation formalism, we start from a classical L∞-algebra L

whose underlying graded vector space L = ⊕
k∈Z Lk is a Z-graded (left) Uv-module and

the n-brackets `n : L⊗n → L are equivariant maps, that is, they all commute with the
action of v = Γ(TM) on L via the trivial coproduct ∆. Given any Drinfel’d twist F ∈
Uv[[ν]] ⊗ Uv[[ν]], we deform the brackets `n to twisted brackets `?n which commute with
the action of Γ(TM) on L[[ν]] via the twisted coproduct ∆F . Following the standard
prescription (A.6), we set `?1 := `1 and

`?n(a1, . . . , an) := `n(a1 ⊗? · · · ⊗? an) (2.10)

for n ≥ 2, where a ⊗? a′ := F−1(a ⊗ a′) = f̄α(a) ⊗ f̄α(a′) for a, a′ ∈ L[[ν]]. These define
multilinear maps `?n : L[[ν]]⊗n → L[[ν]] which are braided graded antisymmetric:

`?n(. . . , a, a′, . . . ) = −(−1)|a| |a′| `?n
(
. . . ,Rα(a′),Rα(a), . . .

)
.

The first and second homotopy relations are unchanged with respect to the correspond-
ing classical homotopy relations; that is, the braided L∞-algebra L ? still has underlying
cochain complex (L[[ν]], `1) and `?2 is again a cochain map. The third homotopy relation

1Throughout this paper, repeated upper and lower indices are always implicitly summed over.
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is given by

`?2
(
`?2(a1, a2), a3

)
− (−1)|a2| |a3| `?2

(
`?2(a1,Rα(a3)),Rα(a2)

)
+ (−1)(|a2|+|a3|) |a1| `?2

(
`?2(Rα(a2),Rβ(a3)),Rβ Rα(a1)

)
= −`?3

(
`1(a1), a2, a3

)
− (−1)|a1| `?3

(
a1, `1(a2), a3

)
− (−1)|a1|+|a2| `?3

(
a1, a2, `1(a3)

)
− `1

(
`?3(a1, a2, a3)

)
. (2.11)

We observe that the non-trivial braiding now appears in this relation, which says that the
braided graded Jacobi identity for `?2 is violated by the cochain homotopy `?3.

If L is a cyclic L∞-algebra with a Uv-invariant inner product, then its cyclic structure
〈−,−〉 : L⊗L→ R is twist deformed to a new inner product 〈−,−〉? : L[[ν]]⊗L[[ν]]→ R[[ν]]
defined by

〈a1, a2〉? := 〈̄fα(a1), f̄α(a2)〉 . (2.12)

In general, graded symmetry of the cyclic pairing 〈−,−〉 implies that the twisted pairing
〈−,−〉? is naturally braided graded symmetric

〈a2, a1〉? = (−1)|a1| |a2| 〈Rα(a1),Rα(a2)〉? ,

and also braided cyclic

〈a0 , `
?
n(a1,a2, . . . ,an)〉? =±〈Rα0 Rα1 · · ·Rαn−1(an) , `?n(Rα0(a0),Rα1(a1), . . . ,Rαn−1(an−1))〉? .

However, for applications to field theory, we have to restrict to compatible Drinfel’d
twists [23] that result in a strictly graded symmetric pairing

〈a2, a1〉? = (−1)|a1| |a2| 〈a1, a2〉?

for all homogeneous a1, a2 ∈ L[[ν]]. In this case, L ? becomes a strictly cyclic braided
L∞-algebra.

Following the classical case, a braided field theory is built as a noncommutative de-
formation of a classical field theory which is completely defined in terms of its braided
L∞-algebra. Let L ? = (L[[ν]], `?) be a 4-term braided L∞-algebra, obtained by twist
deformation of an L∞-algebra L = (L, `) which organises the symmetries and dynamics
of a classical field theory. For a gauge parameter c ∈ L0[[ν]], we define the braided gauge
variation2 of a dynamical field A ∈ L1[[ν]] by

δ?cA = `1(c) + `?2(c, A)− 1
2 `

?
3(c, A,A) + · · · . (2.13)

Braided covariant dynamics is described by the equations of motion F ?A = 0, where the
braided homotopy Maurer-Cartan equations

F ?A = `1(A)− 1
2 `

?
2(A,A)− 1

6 `
?
3(A,A,A) + · · · (2.14)

2In general, one can define both left and right braided gauge transformations. In this paper we focus
only on left braided gauge transformations for simplicity. More details can be found in [23].
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transform covariantly as

δ?cF
?
A = `?2(c, F ?A) + 1

2
(
`?3(c, F ?A, A)− `?3(c, A, F ?A)

)
+ · · · , (2.15)

for all gauge parameters c ∈ L0[[ν]].
The braided gauge transformations obey the off-shell closure relation in terms of the

braided commutator:[
δ?c1 , δ

?
c2

]?
◦ := δ?c1 ◦ δ

?
c2 − δ

?
Rα(c2) ◦ δ

?
Rα(c1) = δ?−`?2(c1,c2) . (2.16)

Corresponding to the braided gauge symmetry, a suitable combination of the braided ho-
motopy relations leads to an identity

d?AF ?A := `1(F ?A) + 1
2
(
`?2(F ?A, A)− `?2(A,F ?A)

)
+ 1

6 `1
(
`?3(A,A,A)

)
+ · · ·

+ 1
8
(
`?2(`?2(A,A), A)− `?2(A, `?2(A,A))

)
+ 1

12
(
`?2(`?3(A,A,A), A)− `?2(A, `?3(A,A,A))

)
+ · · · = 0 .

(2.17)

Unlike the classical Noether identity (2.7), the braided Noether identity (2.17) is no longer
linear in the equations of motion F ?A and contains inhomogeneous terms involving brackets
of the fields A themselves. This is related to the violations of the Bianchi identities in
braided gauge theories [23]. In the classical limit ν = 0, where R = 1 ⊗ 1, the braided
homotopy formulas (2.13)–(2.17) all reduce to the classical formulas in (2.2)–(2.7).

For a Lagrangian field theory, using the (strictly) cyclic inner product one can define an
analogue of the homotopy Maurer-Cartan action functional for the braided field theory as

S?(A) := 1
2 〈A, `1(A)〉? −

1
6 〈A, `

?
2(A,A)〉? −

1
24 〈A, `

?
3(A,A,A)〉? + · · · , (2.18)

whose variational principle yields the braided equations of motion F ?A = 0. This action
functional is invariant under braided gauge transformations:

δ?cS?(A) = 0 , (2.19)

for all c ∈ L0[[ν]] and A ∈ L1[[ν]]. However, unlike the classical case, the braided Noether
identity for the braided gauge symmetry cannot be derived from the variational principle,
because braided gauge variations and Euler-Lagrange variations behave very differently,
see [23].

Note that the free fields of braided field theory are unchanged from the classical field
theory: they are still the degree 1 elements of the cohomology H•(L[[ν]]) of the underlying
cochain complex (L[[ν]], `1). Only the interaction vertices, corresponding to the higher
brackets `?n for n ≥ 2, are modified by the braided noncommutative deformation.

2.3 Braided Wick’s theorem

L∞-algebras are the natural algebraic structure underlying the Batalin-Vilkovisky (BV)
formalism [3], which may be used for the quantization of classical field theories. Similarly,
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we expect that braided L∞-algebras should be related to a braided generalization of BV
quantization. This was described explicitly in [11] for field theories with finitely many
degrees of freedom, and applied to an example of braided fuzzy scalar field theory; the
braided BV formalism is also discussed in [18]. One of the purposes of the present paper
is to formulate braided quantum field theory and study its features in a simple example of
a continuum field theory with gauge symmetry.

In order to set up and illustrate the general framework for this, we consider here the
simple example of scalar field theory on d-dimensional Minkowski spacetime R1,d−1. We
show how to recover, using heuristic field theory arguments, Oeckl’s approach to (sym-
metric) braided quantum field theory which relies upon a braided generalization of Wick’s
theorem based on purely algebraic arguments [24, 25]. This result will then be substanti-
ated in section 2.4, where we develop the braided BV quantization of scalar field theory.

The action functional for a free real scalar field φ on R1,d−1 with mass m is given by

S0(φ) =
∫
R1,d−1

ddx 1
2 φ

(
−�−m2)φ (2.20)

where
ddx = dx0 ∧ dx1 ∧ · · · ∧ dxd−1

is the standard volume form on Minkowski spacetime and � is the d’Alembertian operator.
The differential of the underlying abelian L∞-algebra L0 is given by the Klein-Gordon
operator as `1 = −(� + m2). Since there are no gauge symmetries, only L1 = L2 =
Ω0(R1,d−1) are non-trivial and given by two copies of the space of functions (regarded as
0-forms) on R1,d−1.

The L∞-algebra L0 is completely described by the 2-term cochain complex

Ω0(R1,d−1)[−1] −(�+m2)−−−−−−−→ Ω0(R1,d−1)[−2] (2.21)

concentrated in degrees 1 and 2, where the square brackets indicate shifts of the cohomo-
logical degree.3 Elements of the degree 1 cohomology of this complex H1(L) = ker(�+m2)
are the states φ(0) ∈ Ω0(R1,d−1) that solve the Klein-Gordon equation. Elements φ+ ∈ L2

correspond to the BV antifields of the physical fields φ ∈ L1.
The cyclic structure of degree −3 is given by the non-zero inner product

〈φ, φ+〉 =
∫
R1,d−1

ddx φ φ+ , (2.22)

for φ ∈ L1 and φ+ ∈ L2, which is cyclic because the Klein-Gordon operator is formally
self-adjoint with respect to this inner product. Interaction vertices are incorporated by
including the non-zero higher brackets [3, 18]

`n(φ1, . . . , φn) = λn φ1 · · ·φn , (2.23)

for n ≥ 2, λn ∈ R and φ1, . . . , φn ∈ L1, and writing the homotopy Maurer-Cartan ac-
tion functional (2.8). The homotopy relations follow trivially for degree reasons, while

3For any vector space W and integer p ∈ Z, elements of W [p] are of degree −p.

– 9 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
1

cyclicity of (2.22) with respect to `n is a trivial consequence of commutativity of pointwise
multiplication of functions.

The perturbative n-point functions of the free quantum field theory are defined by the
formal normalized functional integral

Gn(x1, . . . , xn)(0) := 〈0|T[φ(x1) · · ·φ(xn)]|0〉(0)

= 1
Z

∫
Ω0(R1,d−1)

Dφ φ(x1) · · ·φ(xn) e
i
~ S0(φ) ,

(2.24)

where T implements the time-ordered product of fields, and Z is a normalization factor
such that 〈0|0〉(0) = 1. This is non-zero only when n = 2k is even, and Wick’s theorem
expresses it as the Hafnian of the two-point correlation matrix:

G2k(x1, . . . , x2k)(0) = 1
k! 2k

∑
σ∈S2k

k∏
a=1
〈0|T[φ(xσ(2a−1))φ(xσ(2a))]|0〉(0) ,

where Sn denotes the symmetric group of all permutations of degree n. The free two-point
functions are related to the scalar Feynman propagator by

i
~
〈0|T[φ(x)φ(y)]|0〉(0) = − 1

� +m2 − i ε(x, y) =
∫

(R1,d−1)∗

ddk
(2π)d

e−i k·(x−y)

k2 −m2 + i ε , (2.25)

for ε ∈ R>0. In the following we will drop the i ε-prescription in the Feynman propagators,
and abbreviate momentum space integrals as∫

k1,...,kv
:=
∫

(R1,d−1)∗

ddk1
(2π)d · · ·

∫
(R1,d−1)∗

ddkv
(2π)d ,

in order to simplify the presentation.
The braided noncommutative deformation follows the twist formalism discussed in

section 2.2. The classical scalar field theory is Poincaré invariant (but not diffeomorphism
invariant), so its L∞-algebra L0 consists of modules and equivariant brackets for the uni-
versal enveloping algebra U iso(1, d−1) ⊂ Uv of the Poincaré algebra iso(1, d−1). Hence we
have to restrict to twists F ∈ U iso(1, d− 1)[[ν]]⊗U iso(1, d− 1)[[ν]]. For simplicity, we will
work with abelian twists, for which R = F21F−1 = F−2; the standard Moyal-Weyl twist
and also the angular twist of [36] are examples of such twists. We will further restrict to
abelian twists F ∈ U iso(d−1)[[ν]]⊗U iso(d−1)[[ν]] constructed from the spatial isometries
of Rd−1 ⊂ R1,d−1, as this simplifies some of the analysis in the quantum field theory, such
as the treatment of time-ordering, as well as avoiding potential issues with unitarity. For
definiteness, and for the sake of illustration, let us choose here the Moyal-Weyl twist

F = exp
(
− i ν

2 θij ∂i ⊗ ∂j
)
, (2.26)

where (θij) is a (d−1)×(d−1) antisymmetric real-valued matrix, and ∂i = ∂
∂xi
∈ Γ(TRd−1)

for i = 1, . . . , d− 1 are vector fields generating spatial translations in R1,d−1.
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Since L ?
0 = L0, and since the twist F is compatible with the cyclic inner prod-

uct (2.22), the free braided scalar field theory is unchanged from its commutative version.
In particular, because 〈−,−〉? = 〈−,−〉, the action functional (2.20) is unchanged:

S0?(φ) = 1
2 〈φ, `1(φ)〉? = S0(φ) .

Interaction vertices are included by twisting the brackets (2.23) to

`?n(φ1, . . . , φn) = λn φ1 ? · · · ? φn ,

for n ≥ 2, λn ∈ R and φ1, . . . , φn ∈ L1[[ν]], and writing the braided version of the homotopy
Maurer-Cartan action functional (2.18).

It follows that, at the classical level, even the standard noncommutative scalar field
theory is organised by a braided L∞-algebra [18]. However, the braided symmetry makes
a crucial difference in the quantum field theory, particularly in the application of a braided
Wick expansion, rather than the standard one, and in the different interaction vertices
arising from the braided symmetry. Correlation functions in the interacting quantum field
theory will be discussed in section 2.4 below.

Given this braided L∞-algebra structure, we would now like to define the free braided
n-point functions. While the traditional path integral and canonical quantization methods
are not readily available for braided quantum field theory, we can quantize the theory in a
purely algebraic fashion using modern techniques from homological algebra, as we explain
in section 2.4. Here we shall define them operationally by a heuristic noncommutative
deformation of the Feynman representation of (2.24) in the following way, which also leads
to a purely algebraic prescription, while at the same time elucidating the physical meaning
of the braiding.4

Firstly, whereas in conventional noncommutative field theory the functional integral
would still be taken over the commutative space of fields Ω0(R1,d−1), in braided quantum
field theory the domain of integration is a ‘braided space’ of fields Ω0

?(R1,d−1) [25], that is,
the algebra of fields with the star-product ? which can be thought of as endowing them
with ‘braided statistics’. The braided n-point function is thus denoted as

G?n(x1, . . . , xn)(0) = 〈0|T[φ(x1) ? · · · ? φ(xn)]|0〉(0)
? ,

with the star-product canonically extended to the tensor product φ⊗n ∈
Ω0((R1,d−1)×n

)
[[ν]] = Ω0(R1,d−1)[[ν]]⊗n as [16, 25]

φ(x1) ? · · · ? φ(xn) = exp
( i ν

2
∑
a<b

θij
∂

∂xia

∂

∂xjb

)
φ(x1) · · ·φ(xn) .

More generally, the twist (2.26) can be lifted to the space of functionals of the fields as [37]

F = exp
(
− i ν

2 θij
∫
Rd−1

dd−1x

(
∂iφ

δ

δφ(x) + ∂iΠ
δ

δΠ(x)

)
⊗
∫
Rd−1

dd−1y

(
∂jφ

δ

δφ(y) + ∂jΠ
δ

δΠ(y)

))
,

where Π is the conjugate momentum to the field φ.
4Since the free braided field theory is the same as its commutative counterpart, this can also be formu-

lated via the operator formalism in the Dyson representation of (2.24).
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Secondly, the integration measure D?φ is taken to be UF iso(d − 1)-invariant, so that
the operation 〈0|T[−]|0〉(0)

? defines a UF iso(d − 1)-equivariant map. This implies that the
twist can be factored out of the functional integration and taken to act on the n-point
function of the commutative scalar field theory, which may then be expanded using the
usual Wick theorem.

Altogether, for the non-vanishing correlation functions we prescribe the simple expres-
sion

G?2k(x1, . . . , x2k)(0) (2.27)

= 1
k! 2k

∑
σ∈S2k

exp
( i ν

2
∑
a<b

θij
∂

∂xia

∂

∂xjb

) k∏
c=1
〈0|T[φ(xσ(2c−1))φ(xσ(2c))]|0〉(0) .

This formula will be derived in a more precise way in section 2.4.
Unravelling the combinatorics of the formula (2.27) reveals the following general state-

ment of the braided Wick theorem:
• The braided n-point function is defined by replacing the pointwise products of fields in

the commutative n-point function with star-products.
• Only nearest neighbouring fields can contract. To contract we therefore have to first

permute fields, which introduces corresponding R-matrices.
• After the contractions we use simplifications to remove some R-matrices, such as the

identities from appendix A together with relativistic invariance of the commutative
two-point functions.

• The final result is the braided Wick theorem, which agrees with the results from [25].
Note that no star-products will appear between contractions, due to iso(d−1)-invariance of
the commutative two-point functions: noncommutativity enters only through the permuta-
tions of fields, which produce R-matrices. Let us give a few explicit examples to illustrate
how the theorem works.

Two-point function. The braided two-point function is defined as

G?2(x1, x2)(0) = 〈0|T[φ(x1) ? φ(x2)]|0〉(0)
? . (2.28)

Using (2.27) along with (2.25) we find

G?2(x1, x2)(0) = exp
( i ν

2 θij
∂

∂xi1

∂

∂xj2

)
〈0|T[φ(x1)φ(x2)]|0〉(0)

= −i ~
∫
k

e
i ν
2 θij ki kj

e−i k·(x1−x2)

k2 −m2

= −i ~
∫
k

e−i k·(x1−x2)

k2 −m2 = 〈0|T[φ(x1)φ(x2)]|0〉(0) ,

(2.29)

where the noncommutative phase factor vanishes due to the antisymmetry of θij . Thus the
two-point function remains unchanged, as expected. This same result is explained in [25].
In the following we will abbreviate Wick contractions as

φa φb := 〈0|T[φ(xa)φ(xb)]|0〉(0) ,

and denote ∂ai := ∂
∂xia

for brevity.

– 12 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
1

Four-point function. The braided four-point function is defined as

G?4(x1, x2, x3, x4)(0) = 〈0|T[φ(x1) ? φ(x2) ? φ(x3) ? φ(x4)]|0〉(0)
? . (2.30)

Applying the first biderivative operation from (2.27) results in

e
i ν
2 θij ∂1

i ∂
2
j
(
φ1 φ2 φ3 φ4 + φ1 φ3 φ2 φ4 + φ1 φ4 φ2 φ3

)
= φ1 φ2 φ3 φ4 + e

i ν
2 θij ∂1

i ∂
2
j
(
φ1 φ3 φ2 φ4 + φ1 φ4 φ2 φ3

)
,

where we used

∂1
i

(
φ1 φ2

)
= −∂2

i

(
φ1 φ2

)
,

which follows from (2.25). The remaining biderivative operations from (2.27) follow in a
similar way and the end result is

G?4(x1, x2, x3, x4)(0) = φ1 φ2 φ3 φ4 + e−i ν θij ∂3
i ∂

2
j
(
φ1 φ3 φ2 φ4 + φ1 φ4 φ2 φ3

)
. (2.31)

From (2.31) we recognise the appearance of the inverse R-matrix and we can finally
write

G?4(x1, x2, x3, x4)(0) = φ1 φ2 φ3 φ4 + φ1 Rα(φ3) Rα(φ2)φ4 + φ1 φ4 φ2 φ3 . (2.32)

In arriving at (2.32) we used

φ1 Rα Rβ(φ4) Rα(φ2) Rβ(φ3) = φ1 Rα(φ4) Rα¯(1)(φ2) Rα¯(2)(φ3)

= φ1 Rα(φ4) ε(Rα)φ2 φ3 = φ1 φ4 φ2 φ3 ,
(2.33)

where in the first equality we used the R-matrix identities (A.4), in the second equality
we used U iso(d− 1)-invariance of the two-point function, and in the last equality we used
the normalization (A.2) of the twist; this can also be checked by explicitly computing the
left-hand side of (2.33) using (2.25).

Six-point function. As a final illustration of our statement of the braided Wick theorem,
we look at the six-point function defined as

G?6(x1, x2, x3, x4, x5, x6)(0) = 〈0|T[φ(x1)?φ(x2)?φ(x3)?φ(x4)?φ(x5)?φ(x6)]|0〉(0)
? . (2.34)
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Applying (2.27), a calculation similar to that for the four-point function gives the slightly
cumbersome result

G?6(x1, . . . , x6)(0) = φ1 φ2 φ3 φ4 φ5 φ6 + φ1 φ2 φ3 Rα(φ5) Rα(φ4)φ6

+ φ1 φ2 φ3 φ6 φ4 φ5 + φ1 Rα(φ3) Rα(φ2)φ4 φ5 φ6

+ φ1 Rα(φ3) Rα(φ2) Rβ(φ5) Rβ(φ4)φ6 + φ1 φ6 φ2 φ5 φ3 φ4

+ φ1 Rα(φ3) Rα(φ2)φ6 φ4 φ5 + φ1 φ4 φ2 φ3 φ5 φ6

+ φ1 Rα Rβ(φ4) Rα(φ2) Rσ(φ5) Rσ Rβ(φ3)φ6

+ φ1 Rα(φ5)φ2 φ3 Rα(φ4)φ6 + φ1 Rα Rβ(φ4) Rα(φ2)φ6 Rβ(φ3)φ5

+ φ1 Rα(φ5)φ2 Rβ(φ4) Rβ Rα(φ3)φ6 + φ1 Rα(φ5) Rα(φ2)φ6 φ3 φ4

+ φ1 φ6 φ2 φ3 φ4 φ5 + φ1 φ6 φ2 Rα(φ4) Rα(φ3)φ5 . (2.35)

In the commutative limit, when the R-matrix reduces to the identity operator, our re-
sults (2.32) and (2.35) reduce to the well-known expressions for the four-point and the
six-point functions in standard free scalar field theory. The noncommutative deformation
enters through the permutations of fields before contracting them.

2.4 Braided homological perturbation theory

Following [2, 5, 11, 14] we now explain how to compute correlation functions of the in-
teracting braided scalar field theory via the technique of ‘homotopy transfer’. We start
from the cohomology H•(L ?

0 ) of the abelian L∞-algebra L ?
0 , which describes the classical

vacua of the free scalar field theory on R1,d−1. This is also an abelian L∞-algebra, and
from (2.21) it follows that it is also concentrated in degrees 1 and 2, given by the solution
space H1(L) = ker(`1) of the massive Klein-Gordon equation �φ+m2 φ = 0 and the space
H2(L) = coker(`1) of on-shell Maurer-Cartan expansions. The underlying 2-term cochain
complex of H•(L ?

0 ) is

ker
(
� +m2)[−1] 0−−→ coker

(
� +m2)[−2] .

To describe correlation functions in the path integral framework, we need to define a
U iso(d− 1)-equivariant projection p : L→ H•(L) of degree 0 and a U iso(d− 1)-invariant
contracting homotopy h : L → L of degree −1. For this, we denote the scalar Feynman
propagator G : Ω0(R1,d−1)→ Ω0(R1,d−1) by

G = − 1
� +m2 with G̃(k) = 1

k2 −m2 ,

where G̃(k) are the eigenvalues of the Green operator G when acting on plane wave eigen-
functions of the form e i k·x. It satisfies

`1 ◦ G = −
(
� +m2) ◦ G = idΩ0(R1,3) .

If we were to compute scattering amplitudes, then the first component of the projection
p(1) : L1 → H1(L) should be taken to be the projection idΩ0(R1,3) − G ◦ `1 to on-shell
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states. However, for the purposes of computing correlation functions, we should project
to the trivial vacuum φ = 0. This is a consequence of the fact that correlators can be
equivalently computed by Wick rotating to Euclidean signature, where the kernel and
cokernel of the kinetic operator `1 become trivial, and this was already used in section 2.3.
Similarly, whereas the second component p(2) : L2 → H2(L) could be taken to be the
natural projection induced by the quotient map to coker(`1), we use the trivial projection
to φ+ = 0. Hence we define

p(1) = 0 = p(2) ,

or more accurately we restrict the cochain complex of H•(L ?
0 ) to its trivial subspaces.

With these choices, the only non-vanishing component of the contracting homotopy
h(2) : L2 → L1 is given by the propagator h(2) = G. Explicitly

h(2)(φ+)(x) = − 1
� +m2 φ

+(x) =
∫
R1,d−1

ddy
∫
k

e−i k·(x−y)

k2 −m2 φ+(y) , (2.36)

for φ+ ∈ L2.
We apply the braided homological perturbation theory developed by [11]. For this, we

need to extend the maps p and h to the space of functionals on L; in this paper we will only
compute correlation functions of polynomial observables, hence we restrict to the braided
symmetric algebra SymRL[2] = ⊕

n≥0 Symn
RL[2] over R[[ν]]. The data above induce a

trivial projection P : SymRL[2]→ SymRH•(L[2]) by

P(1) = 1 and P(ϕ1 �? · · · �? ϕn) = 0 ,

along with a contracting homotopy H : SymRL[2]→ SymRL[2] through

H(1) = 0 ,

H(ϕ1 �? · · · �? ϕn) = 1
n

n∑
a=1
± ϕ1 �? · · · �? ϕa−1 �? h(ϕa)�? ϕa+1 �? · · · �? ϕn ,

(2.37)

for all ϕa ∈ L[2], with a = 1, . . . , n; we used U iso(d−1)-invariance of h in (2.37) which triv-
ializes the actions of R-matrices. Note that on generators the twisted symmetric product
�? is braided graded commutative:

ϕa �? ϕb = (−1)|ϕa| |ϕb| Rα(ϕb)�? Rα(ϕa) .

We perturb the free differential `1 to the ‘quantum’ differential

Qδ = `1 + δ

on L[2], where the formal U iso(d − 1)-invariant perturbation δ will be specified below.
The braided extension of the homological perturbation lemma [11] then constructs the
perturbed projection map P + Pδ, where Pδ : SymRL[2]→ SymRH•(L[2]) is given by

Pδ = P
(
idSymRL[1] − δH

)−1
δH ,

which in the classical case gives the path integral [2].
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We thus define the n-point correlation functions of the braided quantum field theory
by

G?n(x1, . . . , xn) = 〈0|T[φ(x1) ? · · · ? φ(xn)]|0〉? := Pδ(δx1 �? · · · �? δxn)

=
∞∑
p=1

P
(
(δH)p(δx1 �? · · · �? δxn)

)
,

(2.38)

where δxa(x) := δ(x − xa) are Dirac distributions supported at the insertion points xa
of the physical field φ ∈ L1. Because only P(1) = 1 is non-zero, this is a function in
Ω0((R1,d−1)×n

)
[[ν]].5 We are interested in two perturbations δ of `1.

Free theory. The free braided scalar field theory of section 2.3 is recovered from the
perturbation

δ = i ~∆BV ,

where ∆BV : SymRL[2]→ (SymRL[2])[1] is the braided BV Laplacian defined by

∆BV(1) = 0 , ∆BV(ϕ1) = 0 , ∆BV(ϕ1 �? ϕ2) = 〈ϕ1, ϕ2〉? ,

∆BV(ϕ1 �? · · · �? ϕn) =
∑
a<b

±〈ϕa,Rαa+1 · · ·Rαb−1(ϕb)〉? ϕ1 �? · · · �? ϕa−1 (2.39)

�? Rαa+1(ϕa+1)�? · · · �? Rαb−1(ϕb−1)�? ϕb+1 �? · · · �? ϕn ,

for all ϕ1, . . . , ϕn ∈ L[2]. The BV Laplacian satisfies the two key properties (∆BV)2 = 0 and
∆BV ◦ `1 = −`1 ◦∆BV which guarantee that Q0 = `1 + i ~∆BV is a differential, (Q0)2 = 0.

Since the braided BV Laplacian contracts fields pairwise and lowers the symmetric alge-
bra degree from n to n−2, it is clear that in this case the correlation functions (2.38) vanish
unless n = 2k is even, in which case the free braided 2k-point functions are then defined by

G?2k(x1, . . . , x2k)(0) = 〈0|T[φ(x1) ? · · · ? φ(x2k)]|0〉(0)
? := (i ~∆BV H)k(δx1 �? · · · �? δx2k) .

(2.40)
It is not difficult to check using (2.22), (2.36), (2.37) and (2.39) that (2.40) reproduces the
braided Wick expansion (2.27) by iterating the basic operation

i~∆BV H(δx1�? · · ·�? δx2k) = 1
2k
∑
a<b

φaRαa+1 · · ·Rαb−1(φb) δx1�? · · ·�? δxa−1

�?Rαa+1(δxa+1)�? · · ·�?Rαb−1(δxb−1)�? δxb+1�? · · ·�? δx2k ,

where we again use the notation

φa φb := 〈0|T[φ(xa)φ(xb)]|0〉(0) = −i ~G(xa − xb)

for the free propagator, and the Koszul sign factors are trivial for antifields ϕa = δxa ∈ L2[2];
we used the fact that the only non-zero pairings are 〈δxa ,G(δxb)〉? = G(xa − xb).

5As usual in quantum field theory, the amputated correlation functions are distributions in position
space, and so should be properly defined by smearing them with suitable test functions, as done in [11].
Here we follow the more conventional physics practice of defining ‘localized’ correlation functions.
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For the two-point function one finds immediately the free propagator

G?2(x1, x2)(0) = i ~∆BV H(δx1 �? δx2) = −i ~G(x1 − x2) = −i ~
∫
k

e−i k·(x1−x2)

k2 −m2 ,

in agreement with (2.29).
For the four-point function we start from

i ~∆BV H(δx1 �? · · · �? δx4) = 1
2
(
φ1 φ2 δx3 �? δx4 + φ1 Rα(φ3) Rα(δx2)�? δx4

+ φ1 Rα Rβ(φ4) Rα(δx2)�? Rβ(δx3) + φ2 φ3 δx1 �? δx4

+ φ2 Rα(φ4) δx1 �? Rα(δx3) + φ3 φ4 δx1 �? δx2

)
.

Using
i ~∆BV H(δxa �? δxb) = φa φb

we then find that the four-point function is given by

G?4(x1, x2, x3, x4)(0) = (i ~∆BV H)2 (δx1 �? δx2 �? δx3 �? δx4)

= 1
2
(
2φ1 φ2 φ3 φ4 + φ1 Rα(φ3) Rα(φ2)φ4 + φ1 Rα(φ3)φ2 Rα(φ4)

+ φ1 Rα Rβ(φ4) Rα(φ2) Rβ(φ3) + φ1 φ4 φ2 φ3
)
.

We now employ the same R-matrix manipulations as in section 2.3. Using

∂2
i

(
φ2 φ4

)
= −∂4

i

(
φ2 φ4

)
we conclude that the second and third terms are equal; this also follows abstractly from
the triangular Hopf algebra identity (SF ⊗ idU iso(d−1))R = R−1 = R21 and U iso(d − 1)-
invariance of the two-point functions. From the identity (2.33) we see that the last two
terms are also equal.

Altogether we arrive at

G?4(x1, x2, x3, x4)(0) = φ1 φ2 φ3 φ4 + φ1 Rα(φ3) Rα(φ2)φ4 + φ1 φ4 φ2 φ3 ,

which agrees with (2.32), and also with [11, Equation (5.40)]. It is straightforward, if
lengthy, to extend this calculation to compute the six-point function (2.35), and also to
higher order correlation functions. In this way we recover the braided Wick theorem of
section 2.3.

Interacting theory. An interacting scalar field theory on R1,d−1 is captured by the
perturbation

δ = i ~∆BV + {Sint,−}? ,

where the operator {Sint,−}? is constructed in the following way.
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For definiteness, we consider braided λφ4-theory in four dimensions, but the methods
easily extend to scalar field theories with arbitrary polynomial interactions in any dimen-
sion. This amounts to extending L ?

0 to a non-abelian braided L∞-algebra L ? with the
single non-vanishing higher bracket `?3 defined by

`?3(φ1, φ2, φ3) = −λφ1 ? φ2 ? φ3

for all φ1, φ2, φ3 ∈ L1. The braided version of the homotopy Maurer-Cartan action func-
tional (2.18) is then

S?(φ) = 1
2 〈φ, `1(φ)〉? −

1
24 〈φ, `

?
3(φ, φ, φ)〉? =: S0(φ) + Sint(φ)

=
∫
R1,3

d4x
1
2 φ

(
−�−m2)φ+ λ

4! φ ? φ ? φ ? φ ,
(2.41)

which is just the standard noncommutative scalar λφ4-theory [16]. We want to “transfer”
the bracket `?3 to give a new braided L∞-algebra on H•(L), called the minimal model of
the braided L∞-algebra L ?, and at the same time “quantize” it.

For the computation of interacting correlation functions, we extend the braided L∞-
algebra structure on L[[ν]] to (SymRL[2])⊗ L[[ν]] via the non-zero brackets [18]

`1(a1⊗φ1) =±a1⊗`1(φ1) ,
`?3(a1⊗φ1,a2⊗φ2,a3⊗φ3) =±

(
a1�?Rα(a2)�?Rβ Rσ(a3)

)
⊗`?3

(
Rβ Rα(φ1),Rσ(φ2),φ3

)
,

for a1, a2, a3 ∈ SymRL[2] and φ1, φ2, φ3 ∈ L1[[ν]]; again we write ± for the Koszul sign
factors determined by the gradings of the elements involved in all operations. Similarly,
the cyclic structure is extended via the non-zero SymRL[2]-valued pairing

〈〈a1 ⊗ φ, a2 ⊗ φ+〉〉? = ±
(
a1 �? Rα(a2)

)
〈Rα(φ), φ+〉? , (2.42)

for a1, a2 ∈ SymRL[2], φ ∈ L1[[ν]] and φ+ ∈ L2[[ν]].
The antibracket is the braided graded Poisson bracket {−,−}? : SymRL[2] ⊗

SymRL[2]→ (SymRL[2])[1] defined by setting

{ϕa, ϕb}? = 〈ϕa, ϕb〉? = ±{Rα(ϕb),Rα(ϕa)}?

for ϕa ∈ L[2], and extending this to all of SymRL[2] as a braided graded Lie bracket which
is a braided graded derivation on SymRL[2] in each of its slots. For example

{ϕ1, ϕ2 �? ϕ3}? = 〈ϕ1, ϕ2〉? �? ϕ3 ± Rα(ϕ2)�? 〈Rα(ϕ1), ϕ3〉? . (2.43)

The antibracket is compatible with the differential `1, extended as a graded derivation to
all of SymRL[2], as a consequence of cyclicity of the inner product 〈−,−〉?. It is also related
to the braided BV Laplacian through

∆BV(a1 �? a2) = ∆BV(a1)�? a2 + (−1)|a1| a1 �? ∆BV(a2) + {a1, a2}? , (2.44)

for all a1, a2 ∈ SymRL[2].

– 18 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
1

Via Fourier transformation, we introduce the basis of plane waves ek(x) = e−i k·x for
L1 and the basis

ek(x) = e∗k(x) = e−k(x) = e i k·x

for L2. These bases are dual with respect to the inner product (2.22), in the sense that

∫
p
〈ek, ep〉? ep = ek and

∫
k

ek 〈ek, ep〉? = ep ,

where throughout we use ∫
R1,3

d4x e± i k·x = (2π)4 δ(k) .

The star-products among basis fields are

ek ? ep = e−
i
2 k·θ p ek+p , (2.45)

where k · θ p := ν kµ θ
µλ pλ = −p · θ k, while the action of the inverse R-matrix on them is

given by

R−1(ek ⊗ ep) = Rα(ek)⊗ Rα(ep) = e i k·θ p ek ⊗ ep . (2.46)

Using this basis we now define the contracted coordinate functions ξ ∈ (SymRL[2])⊗
L[[ν]] in degree 1 by the formal U iso(3)-invariant expression

ξ =
∫
k

(
ek ⊗ ek + ek ⊗ ek

)
.

Using the braided Maurer-Cartan action functional (2.41), we define the interacting part
of the BV action functional Sint ∈ SymRL[2] in degree 0 by the U iso(3)-invariant element

Sint := − 1
24 〈〈ξ , `

?
3(ξ, ξ, ξ)〉〉? . (2.47)

As discussed in [11, 18], this satisfies the classical master equation

`1(Sint) + 1
2 {Sint,Sint}? = 0 ,

and it is annihilated by the braided BV Laplacian, ∆BV(Sint) = 0. As a consequence, the
operator

Qint = `1 + i ~∆BV + {Sint,−}?

is a differential, (Qint)2 = 0, which describes the correlation functions in terms of a braided
quantum L∞-algebra.
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Calculating (2.47) explicitly using (2.22), (2.45) and (2.46) we find

Sint =− 1
4!

∫
k1,...,k4

〈〈ek1⊗ek1 ,`
?
3(ek2⊗ek2 ,e

k3⊗ek3 ,e
k4⊗ek4)〉〉?

=− 1
4!

∫
k1,...,k4

〈〈ek1⊗ek1 ,
(
ek2�?Rα(ek3)�?RβRσ(ek4)

)
⊗`?3

(
RβRα(ek2),Rσ(ek3),ek4

)
〉〉?

=− 1
4!

∫
k1,...,k4

eik2·θk3+ik2·θk4+ik3·θk4 〈〈ek1⊗ek1 ,(ek2�?ek3�?ek4)⊗`?3(ek2 ,ek3 ,ek4)〉〉?

=− 1
4!

∫
k1,...,k4

eik2·θk3+ik2·θk4+ik3·θk4

×ek1�?Rα(ek2�?ek3�?ek4)〈Rα(ek1),`?3(ek2 ,ek3 ,ek4)〉?

= λ

4!

∫
k1,...,k4

e
i
∑
a<b

ka·θkb
ek1�?ek2�?ek3�?ek4 〈ek1 ,ek2?ek3?ek4〉?

=:
∫
k1,...,k4

V (k1,k2,k3,k4) ek1�?ek2�?ek3�?ek4 .

The interaction vertex

V (k1, k2, k3, k4) = λ

4! e
i
2
∑
a<b

ka·θ kb
(2π)4 δ(k1 + k2 + k3 + k4) (2.48)

coincides with the vertex of the standard noncommutative λφ?44 theory [16]. It has the
braided symmetry

V ( ka+1, ka ) = e−i ka·θ ka+1 V (k1, k2, k3, k4) (2.49)

under interchange of any pair of neighbouring momenta, and also the cyclic symmetry

V (k1, k2, k3, k4) = V (k4, k1, k2, k3) (2.50)

which follows from momentum conservation.
The interacting correlation functions of the braided quantum field theory are now

given by

G?n(x1, . . . , xn)int = 〈0|T[φ(x1) ? · · · ? φ(xn)]|0〉int

:=
∞∑
p=1

P
(
(i ~∆BV H + {Sint,−}? H)p(δx1 �? · · · �? δxn)

)
.

(2.51)

The interaction terms are computed by using the non-zero pairings

〈eka ,G(δxb)〉? = e i ka·xb G̃(ka) = 〈G(eka), δxb〉? , (2.52)

together with the braided derivation property (2.43) of the antibracket and the symmetry
properties (2.49)–(2.50) of the interaction vertex V (k1, k2, k3, k4) to get the basic operation

{Sint,H(δx1�? · · ·�? δxn)}? =− 4
n

n∑
a=1

∫
k1,...,k4

V (k1, . . . ,k4)e ik1·xa G̃(k1) δx1�? · · ·�? δxa−1

�?ek2�?ek3�?ek4�? δxa+1�? · · ·�? δxn .
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= G (k)
~k

= V (k1, k2, k3, k4)

k1k2

k3 k4

Figure 1. Diagrammatic representation of the propagator (left) and interaction vertex (right) for
braided λφ4

4-theory.

The operator {Sint,−}? inserts four legs ek1 , . . . , ek4 and contracts ek1 with an external
leg δxa , at each of the n insertion points x1, . . . , xn. Thus it changes the symmetric algebra
degree from n to n + 2, and so it follows again that only n-point correlation functions
with n = 2k even are non-vanishing, in which case the sum in (2.51) starts from p = k

because only P(1) = 1 is non-zero. The correlation function (2.51) is a formal power
series in the parameters ~ and λ. The order λ0 contribution is just the free 2k-point
function (i ~∆BV H)k(δx1 �? · · · �? δx2k) discussed earlier. A general order λl contribution
will involve a mixture of loop corrections and both connected as well as disconnected
parts; these require at least k + l braided Wick contractions i ~∆BV H in order to produce
a non-vanishing result. It follows that the loop expansion parameter is κ := ~λ: an l-loop
contribution to the 2k-point function is weighted by the factor ~k κl. We represent terms
in the perturbative expansion (2.51) using standard Feynman diagrammatic techniques;
the Feynman rules are depicted in figure 1.6

Two-point function at one-loop. As an explicit example, let us compute the first non-
trivial correction G?2(x1, x2)(1) (at order λ) to the free two-point function, which from (2.51)
is given by

G?2(x1, x2)(1) = (i ~∆BV H)2 {Sint,H(δx1 �? δx2)}? (2.53)

= −2
∫
k1,...,k4

V (k1, . . . , k4) G̃(k1)
(
e i k1·x1 (i ~∆BV H)2(ek2 �? ek3 �? ek4 �? δx2

)
+ e i k1·x2

(
i ~∆BV H)2(δx1 �? ek2 �? ek3 �? ek4

))
.

The free four-point functions in (2.53) are evaluated by using the braided Wick expan-
sion (2.32) and the pairing (2.52) together with

〈eka ,G(ekb)〉? = G̃(ka) (2π)4 δ(ka + kb) .

6See [11] for a detailed description of how to arrange the computation of (2.51) in terms of a diagrammatic
calculus.
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This gives

(i ~∆BV H)2(ek2 �? ek3 �? ek4 �? δx2

)
(2.54)

= −~2 (〈ek2 ,G(ek3)〉? 〈ek4 ,G(δx2)〉? + 〈ek2 ,Rα(G(ek4))〉? 〈Rα(ek3),G(δx2)〉?
+ 〈ek2 ,G(δx2)〉? 〈ek3 ,G(ek4)〉?

)
= −~2 (2π)4 G̃(k2)

(
δ(k2 + k3) G̃(k4) e i k4·x2 + δ(k2 + k4) G̃(k3) e i k3·x2 e−i k3·θ k4

+ δ(k3 + k4) G̃(k3) e i k2·x2
)
,

and similarly(
i ~∆BV H)2(δx1 �? ek2 �? ek3 �? ek4

)
(2.55)

= −~2 (2π)4 G̃(k4)
(
δ(k3 + k4) G̃(k2) e i k2·x1 + δ(k2 + k4) G̃(k3) e i k3·x1 e−i k2·θ k3

+ δ(k2 + k3) G̃(k2) e i k4·x1
)
.

We now substitute (2.54) and (2.55) into (2.53) using the braided symmetry (2.49)
of the interaction vertex, and resolve the delta-functions. After relabelling momenta, the
noncommutative phase factors in (2.48) are all unity for the relevant momentum combi-
nations (k1, k2, k3, k4) given by (k1, k2,−k2,−k1) and (k1,−k1, k2,−k2), and one finds that
all six contributions are the same. Altogether the one-loop contribution to the two-point
function is given by

G?2(x1, x2)(1) = ~2 λ

2

∫
k1,k2

e−i k1·(x1−x2)(
k2

1 −m2)2 (k2
2 −m2) . (2.56)

This result is independent of the deformation parameter and coincides with the classical
two-point function (at ν = 0), including the correct sign and overall combinatorial factor.

We can recognise the more traditional form by relating the exact two-point function,
including all loop corrections, to the dressed propagator in momentum space using the
usual Fourier transformation

G?2(x1, x2)int = −i ~
∫

(R1,3)∗

d4p

(2π)4
e−i p·(x1−x2)

p2 −m2 −Π?(p)
,

where Π?(p) is the self-energy which is given by a sum over all one-particle irreducible
(1PI) diagrams. At order λ, the result (2.56) gives

i
~

Π?1 = −λ2

∫
(R1,3)∗

d4k

(2π)4
1

k2 −m2 , (2.57)

which leads to the standard one-loop mass renormalization in λφ4
4-theory, represented by

the usual tadpole diagram in figure 2.
This result is analogous to the one obtained by [11] for braided scalar field theory

on the fuzzy torus. In particular, it shows that there is no UV/IR mixing in the two-
point function at one-loop order, in contrast to the standard noncommutative quantum
field theory [16], and it seemingly implies the absence of non-planar Feynman diagrams in

– 22 –



J
H
E
P
0
8
(
2
0
2
3
)
2
1
1

p p

k

Figure 2. In braided λφ4
4-theory, the one-loop self-energy receives a contribution only from a

planar tadpole diagram.

perturbation theory. This appears to be a consequence of the braided symmetries of the
interaction vertex due to the braided L∞-algebra structure, through its interplay with the
braided Wick theorem. It would be interesting to understand to what extent this surprising
feature of braided quantum field theory persists at higher loop orders and in higher point
correlation functions. However, having now introduced the main tools from homological
algebra, we instead move on to the main theory of interest in the present paper.

3 Braided electrodynamics

3.1 Classical electrodynamics

The field content of electrodynamics consists of a U(1) gauge field A = Aµ(x) dxµ ∈
Ω1(R1,3) coupled to a massless7 Dirac spinor ψ on four-dimensional Minkowski spacetime
R1,3. We use the shorthand notation for partial derivatives ∂µ = ∂

∂xµ , where xµ are
coordinates on R1,3 with t = x0 the time direction. The infinitesimal U(1) gauge variations
are given by

δcAµ = 1
e
∂µc , δcψ = i c ψ and δcψ̄ = −i ψ̄ c ,

where c ∈ Ω0(R1,3) is the infinitesimal gauge parameter, e is the electric charge of the
fermion, and ψ̄ = ψ† γ0 is the conjugate Dirac spinor with γµ the Dirac matrices in four
dimensions (see appendix B for conventions and identities).

The action functional invariant under these gauge transformations is

S
(
A,ψ, ψ̄

)
=
∫
R1,3

d4x

(
− 1

4 F
µν Fµν + ψ̄ i γµ

(
∂µψ − i eAµ ψ

))
, (3.1)

where we introduced the field strength tensor F = dA ∈ Ω2(R1,3) whose components are
given by F = 1

2 Fµν dxµ ∧ dxν = 1
2 (∂µAν − ∂νAµ) dxµ ∧ dxν . The corresponding equations

of motion are

∂νF
µν = −e ψ̄ γµ ψ , i γµ

(
∂µψ − i eAµ ψ

)
= 0 and

(
∂µψ̄ + i e ψ̄ Aµ

)
i γµ = 0 .

Corresponding to the U(1) gauge symmetry is the electric matter current J = Jµ dxµ ∈
Ω1(R1,3) associated with the Dirac spinor ψ given by

Jµ = e ψ̄ γµ ψ . (3.2)
7The zero mass restriction is done for simplicity only, in order to illustrate the general construction.

There is no problem with including a mass term for the Dirac spinor as well, and indeed we shall do so
later on in section 4.
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The gauge field A minimally couples to this current and the continuity equation8 ∂µJ
µ A≈ 0

follows from the equation of motion for A. It gives the conserved electric charge

QB =
∫
B

dB J0 = e

∫
B

dB ψ† ψ (3.3)

enclosed by any spatial volume B ⊆ R3 ⊂ R1,3 at fixed time with volume form dB. The
conservation law together with Gauss’ theorem imply that the time variation of QB is
cancelled by the net current through the spatial surface ∂B bounding the volume B.9

From the modern perspective of generalized global symmetries [38], the conserved
electric charge is a ‘zero-form symmetry’, which is implemented by codimension one defects
B in the field theory, whose natural charged objects are the quanta of the local fermion
field ψ. Electrodynamics also possesses a one-form magnetic symmetry, implemented by
codimension two defects Σ, with two-form current F̃ = 1

2 g εµνλσ F
λσ dxµ∧dxν ∈ Ω2(R1,3).

Its conservation law ∂µF̃
µν = 0 is equivalent to the Bianchi identity for the field strength F ,

or alternatively to the absence of magnetic monopoles. The natural objects that are charged
under this symmetry are the non-local ’t Hooft line defects, of magnetic charge g obeying
the Dirac-Zwanziger quantization condition e g ∈ 2πZ which ensures mutual locality of the
electric and magnetic charges. The corresponding conserved quantity is the magnetic flux

ΦΣ = g

∫
Σ
F (3.4)

through a spatial surface Σ ⊂ R3. For an open surface, by Stokes’ theorem this is
equivalently computed by the usual holonomy integral ΦΣ = g

∫
∂Σ A over the loop ∂Σ

bounding Σ. For a closed surface, the magnetic flux vanishes.
The global one-form symmetry can be gauged by minimally coupling the current F̃ to

a background two-form field b ∈ Ω2(R1,3) with the U(1) gauge transformation δλb = dλ
for λ ∈ Ω1(R1,3). This shifts (3.1) by the action functional of a BF -type topological field
theory:

Sb
(
A,ψ, ψ̄

)
= S

(
A,ψ, ψ̄

)
− g

∫
R1,3

b ∧ F .

Integrating the source term by parts, the shifted action becomes

Sb
(
A,ψ, ψ̄

)
= S

(
A,ψ, ψ̄

)
− g

∫
R1,3

A ∧ db .

This shows that the field strength H = db ∈ Ω3(R1,3) of the fixed external field b is elec-
trically charged under the gauged zero-form symmetry, thereby introducing a background
which modifies the matter current (3.2) to

Jµb = q ψ̄ γµ ψ + g εµνλσ ∂νbλσ .

By Gauss’ theorem, the electric charge (3.3) is then shifted to QB,b = QB + g
∫
∂B b by the

flux of the two-form b through the boundary of the spatial volume B.
8We use the notation

Φ
≈ to indicate an equality which holds on-shell when the equation of motion for a

field Φ is imposed. When currents are conserved in this sense, we refer to them as ‘weakly conserved’.
9A more general Lorentz invariant definition uses a codimension one hypersurface B ⊂ R1,3. The

corresponding charge QB is then conserved in the normal direction to B.
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It will prove useful later on, in our general twist deformation formalism, to rewrite
this well-known field theory in a basis independent form. Let d be the exterior differen-
tial, ∗H the Hodge star operator induced by the Minkowski metric, and δ = ∗H d ∗H the
corresponding codifferential. Let us introduce a background field V defined by

V = γµ γν γλ γ5 dxµ ∧ dxν ∧ dxλ = i εµνλσ γσ dxµ ∧ dxν ∧ dxλ , (3.5)

where in the second equality we used the Dirac matrix identity (B.1). This is a gauge
invariant closed three-form valued in the endomorphism algebra End(S ) of the complex
spinor representation S of Spin(1, 3) (see appendix B). It can be used to rewrite the spinor
action as

Sψ = −1
6

∫
R1,3

ψ̄ V ∧ (dψ − i eAψ) . (3.6)

Expanding all the forms, one arrives at the usual covariant Dirac action10

Sψ =
∫
R1,3

d4x ψ̄ i γµ (∂µψ − i q Aµ ψ) .

The full set of equations of motion can now be written in the form

FA = δ dA− i
6 e ψ̄ ∗H V ψ = 0 ,

Fψ̄ = −1
6 ∗H

(
V ∧ (dψ − i eAψ)

)
= 0 ,

Fψ = −1
6 ∗H

(
(dψ̄ + i e ψ̄ A) ∧ V

)
= 0 .

(3.7)

3.2 L∞-algebra of electrodynamics

The graded vector space L = L0 ⊕ L1 ⊕ L2 ⊕ L3 of the L∞-algebra underlying electrody-
namics is given by

L0 = L3 = Ω0(R1,3) ,
L1 = L2 = Ω1(R1,3) ⊕ Ω0(R1,3,S ) ⊕ Ω0(R1,3,S ) .

(3.8)

We arrange the physical fields A ∈ L1 and their duals A+ ∈ L2 as

A =

Aψ
ψ̄

 and A+ =

A
+

ψ̄+

ψ+

 . (3.9)

10The covariant action for a Dirac spinor in four dimensions in an arbitrary basis is usually written as

Sψ = −1
6

∫
R1,3

ψ̄ γ5 e ∧ e ∧ e ∧ (dψ − i eAψ) ,

where e = eaµ γa dxµ is a vierbein one-form valued in End(S ) [39]. This action can also describe a Dirac
spinor in curved spacetime, where the gauge field A is then the spin connection ω. Since we work in a fixed
background spacetime, we simply group the three flat vierbeins e ∧ e ∧ e and the chirality matrix γ5 into a
single background field V .
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The elements A+ correspond to antifields in the BV formalism containing the equations of
motion FA = 0, where

FA =

FAFψ
Fψ̄

 .

Elements c ∈ L0 correspond to ghosts in the BV-BRST formalism related to the gauge
parameters, while elements c+ ∈ L3 correspond to their antifields containing the Noether
identities dAFA = 0.

The differential `1 is given by

`1(c) =


1
e dc
0
0

 , `1(A) =

 δ dA
1
6 ∗H (dψ̄ ∧ V )
−1

6 ∗H (V ∧ dψ)

 and `1(A+) = 1
e
δA+ . (3.10)

The non-vanishing 2-brackets are

`2(c, A) =

 0
i c ψ
−i ψ̄ c

 , `2(c,A+) =

 0
−i ψ̄+ c

i c ψ+

 , (3.11)

`2(A1,A2) = 1
6 e ∗H

 i ψ̄1 V ψ2 + i ψ̄2 V ψ1
− i ψ̄1A2 ∧ V − i ψ̄2A1 ∧ V
− iV ∧A1 ψ2 − iV ∧A2 ψ1

 , `2(A,A+) = i ψ̄+ ψ + i ψ̄ ψ+ .

All higher brackets `n with n ≥ 3 vanish. We checked explicitly that these brackets satisfy
the homotopy relations, and thus define an L∞-algebra L (which is a differential graded
Lie algebra in this case).

The underlying cochain complex of the L∞-algebra L is

Ω0(R1,3) Ω1(R1,3)[−1] Ω1(R1,3)[−2] Ω0(R1,3)[−3]
⊕ ⊕

Ω0(R1,3,S )[−1]
⊕

Ω0(R1,3,S )[−1]

Ω0(R1,3,S )[−2]
⊕

Ω0(R1,3,S )[−2]

1
e

d δ d
1
e
δ

(
0i
←
/∂

i /∂ 0

)

(3.12)
where i

←
/∂ ψ̄ := 1

6 ∗H (dψ̄ ∧ V ) and i /∂ ψ := −1
6 ∗H (V ∧ dψ). The cohomology H•(L) of

this complex is given by the free fields in the kernel of `1. This defines the minimal model
for the L∞-algebra L [3, 9], which is an L∞-algebra H•(L ) quasi-isomorphic to L with
underlying cochain complex

(
H•(L), 0

)
. In particular, fields (A(0), ψ(0), ψ̄(0)) in the degree 1

cohomology

H1(L) = ker(δ d)
im(d) ⊕ ker

(
0 i

←
/∂

i /∂ 0

)
correspond to the usual photon states A(0) of free Maxwell theory on R1,3 and the conven-
tional description of free spinors as states (ψ(0), ψ̄(0)) satisfying the Dirac equation.
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One easily checks that the higher brackets of the L∞-algebra L reproduce the gauge
transformations, equations of motion and Noether identity for classical electrodynamics
according to the prescription of section 2.1:

δcA = `1(c) + `2(c,A) =


1
e dc
i c ψ
−i ψ̄ c

 ,

FA = `1(A)− 1
2 `2(A,A) =

 δ dA− i
6 e ψ̄ ∗H V ψ

1
6 ∗H

(
(dψ̄ + i e ψ̄ A) ∧ V

)
−1

6 ∗H
(
V ∧ (dψ − i eAψ)

)
 , (3.13)

dAFA = `1(FA)− `2(A, FA) = 1
e
δFA + i ψ̄ Fψ̄ − iFψ ψ .

The Noether identity dAFA = 0 can be understood in different ways. Following [40] we
interpret it as reproducing the weakly conserved matter current in basis independent form.
Indeed, when the equation of motion FA = 0 for the gauge field is inserted, it gives

− i
6 e ψ̄ ∗H

(
V ∧ (dψ − i eAψ)

)
− i

6 e ∗H
(
(dψ̄ + i e ψ̄ A) ∧ V

)
ψ = − i

6 e δ ∗H
(
ψ̄ V ψ

) A≈ 0 .

The L∞-algebra L is naturally endowed with a cyclic structure defined by the non-
vanishing inner products

〈c, c+〉 =
∫
R3,1

c∗H c
+ and 〈A,A+〉 =

∫
R1,3

A∧∗H A
+− ψ̄+ ∗Hψ+ ψ̄ ∗Hψ

+ . (3.14)

It is then straightforward to verify that the corresponding homotopy Maurer-Cartan action
functional for L coincides with the action functional of electrodynamics:

S(A) = 1
2 〈A, `1(A)〉 − 1

6 〈A, `2(A,A)〉

=
∫
R1,3

1
2 F ∧ ∗H F −

1
12 ψ̄ V ∧

(
dψ − i eAψ

)
− 1

12
(
dψ̄ + i e ψ̄ A

)
∧ V ψ

=
∫
R1,3

1
2 F ∧ ∗H F −

1
6 ψ̄ V ∧

(
dψ − i eAψ

)
,

(3.15)

where we integrated by parts.

3.3 Braided L∞-algebra of electrodynamics

Following the steps described in section 2.2, we now deform the classical L∞-algebra L of
electrodynamics to a braided L∞-algebra L ?. Like the scalar field theory of section 2.3,
electrodynamics is only relativistically invariant, so we will work with an abelian Killing
twist F ; that is, the vector fields entering the definition of F are commuting Killing vectors
for Minkowski spacetime R1,3. The vector spaces (3.8) are then modules for the universal
enveloping algebra of iso(1, 3) = R1,3 o so(1, 3). In our present basis independent formula-
tion, however, we need to further restrict to the isometries of R1,3 that preserve the closed
three-form V ∈ Ω3(R1,3,End(S )

)
, in order to ensure that the brackets (3.10) and (3.11)

are equivariant maps.
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Using the Dirac matrix identities from appendix B, it is a straightforward calculation
to show that the only Poincaré transformations which leave V invariant are translations
R1,3 ⊂ iso(1, 3). This forces us to work in a suitably chosen local frame where the abelian
twist reduces to the Moyal-Weyl twist (2.26) [41]; then the actions of the twist and of
the R-matrix on the background field V are trivial. The typical example, which we will
eventually restrict to later on, is the Moyal-Weyl twist itself, which acts trivially on basis
vector fields of the holonomic coordinate frame ∂µ and on basis one-forms of the dual
coframe dxµ; in particular, the star-products among basis one-forms, as well as between
functions and basis one-forms, are trivial in this case.

The underlying graded vector space of the braided L∞-algebra L ? is again given
by (3.8), with the same cochain complex (3.12). The non-trivial 2-brackets are modified to

`?2(c,A) =

 0
i c ? ψ

−i Rα(ψ̄) ? Rα(c)

 , `?2(c,A+) =

 0
−i Rα(ψ̄+) ? Rα(c)

i c ? ψ+

 ,

`?2(A1,A2) = 1
6 e ∗H

 i ψ̄1 ? V ? ψ2 + i Rα(ψ̄2) ? V ? Rα(ψ1)
− i ψ̄1 ? A2 ∧? V − i Rα(ψ̄2) ? Rα(A1) ∧? V
− iV ∧? A1 ? ψ2 − iV ∧? Rα(A2) ? Rα(ψ1)

 ,

`?2(A,A+) = i Rα(ψ̄+) ? Rα(ψ) + i ψ̄ ? ψ+ .

(3.16)

By construction, the braided homotopy relations (in this case the braided graded Jacobi
identities) are satisfied.

Finally, the cyclic inner product on L ? is defined by the non-trivial pairings

〈c, c+〉? =
∫
R1,3

c ∧? ∗H c
+ , 〈A,A+〉? =

∫
R1,3

A ∧? ∗H A
+ − ψ̄+ ∧? ∗H ψ + ψ̄ ∧? ∗H ψ

+ .

(3.17)

3.4 Braided electrodynamics

The braided L∞-algebra L ? defined by (3.12) and (3.16) defines a new noncommutative de-
formation of classical electrodynamics that we call ‘braided electrodynamics’. The braided
U(1) gauge transformations follow from

δ?cA = `1(c) + `?2(c,A)

and are given by

δ?cA = 1
e

dc , (3.18)

δ?cψ = i c ? ψ , δ?c ψ̄ = −i Rα(ψ̄) ? Rα(c) . (3.19)

Note that in the case of braided U(1) gauge symmetry, the braided Lie algebra brackets
also vanish. Therefore the braided U(1) gauge theory retains its abelian nature (3.18).
This is very different from the usual noncommutative deformation of U(1) gauge theory
with star-gauge symmetry (see e.g. [16, 42]), which becomes a non-abelian gauge theory
after deformation.
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The equations of motion F ?A = 0 of braided electrodynamics follow from braided ho-
motopy Maurer-Cartan equations

F ?A =


F ?A
F ?ψ
F ?
ψ̄

 = `1(A)− 1
2 `

?
2(A,A) ,

since all higher brackets vanish. Inserting the corresponding brackets given in (3.10)
and (3.16), these equations can be written as

F ?A = δ dA− i
12 e ∗H

(
ψ̄ ? V ? ψ + Rα(ψ̄) ? V ? Rα(ψ)

)
,

F ?ψ = 1
6 ∗H

[(
dψ̄ + i

2 e ψ̄ ? A+ i
2 eRα(ψ̄) ? Rα(A)

)
∧? V

]
= 1

12 ∗H
[(
DLψ̄ +DRψ̄

)
∧? V

]
,

F ?
ψ̄

= − 1
12 ∗H

[
V ∧?

(
DLψ +DRψ

)]
,

where we introduced left and right braided covariant derivatives

DLψ = dψ − i eA ? ψ and DRψ = dψ − i eRα(A) ? Rα(ψ) = dψ − i eψ ? A .

Using the braided Leibniz rule

δ?c (ψ̄ ? V ? ψ) = δ?c ψ̄ ? V ? ψ + Rα(ψ̄) ? V ? δ?Rα(c)ψ

one can easily check that the noncommutative fermion bilinear observable ψ̄ ? V ? ψ is
invariant under braided gauge transformations and that

δ?cD
L,Rψ = i c ? DL,Rψ .

Furthermore, one can explicitly show that all equations of motion transform covariantly,
as expected on general grounds from the braided L∞-algebra formulation, namely

δ?cF
?
A = 0 , δ?cF

?
ψ = −i Rα(F ?ψ) ? Rα(c) and δ?cF

?
ψ̄

= i c ? F ?
ψ̄
.

The action functional for braided electrodynamics follows from the braided homotopy
Maurer-Cartan action functional for L ? which is given by

S?(A) = 1
2 〈A, `1(A)〉? −

1
6 〈A, `

?
2(A,A)〉? =: S0(A) + Sint(A) . (3.20)

Inserting the corresponding brackets with the cyclic inner product (3.17) gives

S?(A) =
∫
R1,3

1
2 F ∧? ∗H F −

1
12 ψ̄ ? V ∧?

(
DLψ +DRψ

)
. (3.21)

Since F = dA and one star-product can be removed under the integral, the action functional
for the gauge field A is just the usual classical Maxwell action functional.
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It is easy to check that S?(A) is gauge invariant, and also real for a Hermitian twist.
Explicitly, using the braided Leibniz rule one can easily check that

δ?c (ψ̄ ? V ∧? DL,Rψ) = δ?c ψ̄ ? V ∧? DL,Rψ + Rα(ψ̄) ? V ∧? δ?Rα(c)D
L,Rψ

= −i Rα(ψ̄) ? Rα(c) ? V ∧? DL,Rψ

+ i Rα(ψ̄) ?
(
Rα(c) ? V − V ? Rα(c)

)
∧? DL,Rψ

+ i Rα(ψ̄) ? V ∧? Rα(c) ? DL,Rψ = 0 .

Compared to standard noncommutative electrodynamics with star-gauge symmetry, one
direct consequence of our model is the absence of photon self-interaction vertices. Another
is the curtailing of the problem of charge quantization [43].

Looking more closely at the equations of motion F ?A = 0, we immediately observe the
conservation law

1
2 e δ ∗H

(
ψ̄ ? V ? ψ + Rα(ψ̄) ? V ? Rα(ψ)

)
= ∂µJ

µ
?

A≈ 0

for the braided matter current

Jµ? = 1
2 e
(
ψ̄ ? γµ ψ + Rα(ψ̄) ? γµ Rα(ψ)

)
. (3.22)

The corresponding conserved charge is

Q?B =
∫
B

dB J0
? = e

2

∫
B

dB
(
ψ† ? ψ + Rα(ψ†) ? Rα(ψ)

)
(3.23)

for a spatial volume B ⊆ R3 at fixed time. From the current conservation ∂µJ
µ
?
A≈ 0 and

Gauss’ theorem it follows that

dQ?B
dt −

∫
Σ

d~Σ · ~J?
A≈ 0 ,

where Σ = ∂B with oriented area form d~Σ and ~J? = J i? ∂i is the spatial current; in
particular, if B is large enough to have no current flux through Σ, then the charge Q?B is
a constant of the motion.

Although our choice of twist is compatible with the cyclic inner product (3.17), the
second term in (3.23) has a non-trivial contribution to the conserved charge, because the
integration in (3.23) is only taken over the three-dimensional spatial volume B. Hence
Q?B generally differs from the electric charge not only in the classical theory but also in
the standard noncommutative theory. Only when B is closed or B = R3, and the time
component of the twist vanishes (e.g. θ0i = 0 as in section 2.3), do we recover the usual
electric charge.

The conserved matter current (3.22) also follows from the braided Noether identity
in the braided L∞-algebra description. Let us show this explicitly. The braided Noether
identity d?AF ?A = 0 in Ω0(R1,3)[[ν]] is given by

`1(F ?A) + 1
2
(
`?2(F ?A,A)− `?2(A, F ?A)

)
+ 1

4
(
`?2(`?2(A,A),A)− `?2(A, `?2(A,A))

)
= 0 .
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Inserting the corresponding brackets, we find that most of the terms cancel and we are left
with

1
e
δF ?A −

i
12 e δ ∗H

(
ψ̄ ? V ? ψ + Rα(ψ̄) ? V ? Rα(ψ)

)
= 0 .

As previously, we understand this as expressing the weak conservation of the electric matter
current, leading to the conserved charge (3.23).

The description of the one-form magnetic symmetry in braided electrodynamics evi-
dently follows the classical discussion from section 3.1 with no changes.

4 Braided quantum electrodynamics

4.1 Braided Batalin-Vilkovisky functional

Throughout this section we will work with the Moyal-Weyl twist (2.26) for definiteness.
Expanding the action functional (3.21) in the coordinate basis we find

S?(A) =
∫
R1,3

d4x

(
− 1

4 F
µν ? Fµν + ψ̄ ?

(
i /∂ −m

)
ψ

+ e

2
(
ψ̄ ? Aµ γ

µ ? ψ + ψ̄ ? Rα(Aµ) γµ ? Rα(ψ)
))
,

(4.1)

where we gave the fermion field ψ a massm in order to avoid spurious infrared divergences in
the following. This action functional follows from the action functional (3.21) by assigning
a non-zero mass term to the fermion field ψ.

In contrast to the scalar field theory of section 2.4, the BV action functional here differs
from the classical action functional (4.1) by terms involving ghosts and antifields, due to
the local U(1) gauge symmetry of the theory. It can be computed by promoting c ∈ L0

to a ghost field and inserting the ‘superfield’ c + A + A+ + c+, regarded as an element
of the shifted vector space L[1], into the braided Maurer-Cartan action functional (3.20).
Using the non-zero brackets from (3.10) and (3.16), together with the cyclic inner products
from (3.17), we get

SBV(c,A,A+) = S?(A) + 〈A+, `1(c)〉? −
1
2 〈c, `

?
2(A,A+) + `?2(A+,A)〉?

= S?(A) +
∫
R1,3

d4x

(1
e
∂µc ? A

+µ + i
2 c ?

(
ψ̄+ ? ψ + Rα(ψ̄+) ? Rα(ψ)

− ψ̄ ? ψ+ − Rα(ψ̄) ? Rα(ψ+)
))
.

Since the action functional (4.1) is invariant under the local (braided) U(1) gauge
symmetry, we have to perform gauge fixing before quantization. In the present case this
alters only the free part of the gauge sector, so we may follow the standard treatment. In the
BV formalism it is implemented by extending the field content of the braided L∞-algebra
L ? with the antighost c̄ ∈ Ω0(R1,3)[−2] of the ghost field c ∈ Ω0(R1,3), together with
its antifield c̄+ ∈ Ω0(R1,3)[−1], and a Nakanishi-Lautrup multiplier field b ∈ Ω0(R1,3)[−1]
along with its antifield b+ ∈ Ω0(R1,3)[−2].
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This extends the cochain complex (3.12) to

Ω0(R1,3) Ω1(R1,3)[−1] Ω1(R1,3)[−2] Ω0(R1,3)[−3]
⊕ ⊕

Ω0(R1,3,S )[−1]
⊕

Ω0(R1,3,S )[−1]

Ω0(R1,3,S )[−2]
⊕

Ω0(R1,3,S )[−2]
⊕ ⊕

Ω0(R1,3)[−1]
⊕

Ω0(R1,3)[−1]

Ω0(R1,3)[−2]
⊕

Ω0(R1,3)[−2]

1
e

d δ d
1
e
δ

( 0 i
←−−−
/∂+m

i /∂−m 0

)

1
2

(0−1
1 0
)

where the extended pairs are (b, c̄+) and (b+, c̄) in degrees 1 and 2, respectively. This
complex has the same cohomology H•(L) as (3.12). There are no further non-zero
higher brackets, while the additional non-trivial inner products are 〈(b, c̄+) , (b+, c̄)〉? =∫
R1,3 d4x b ? b+ − c̄+ ? c̄. The corresponding superfield Maurer-Cartan action functional
shifts the BV functional to SBV −

∫
R1,3 d4x b ? c̄+.

A general Rξ gauge, for some gauge parameter ξ ∈ R [46], is then implemented by
applying the isometry of L ? defined as (A+, b+, c̄+) 7→

(
A+ +dc̄, b+− ξ

2 c̄, c̄
+− δA− ξ

2 b
)
in

the shifted BV functional. This yields the one-parameter family of gauge fixed BV action
functionals

Sgf,ξ
BV (b, c, c̄, c̄+,A,A+) = SBV(c,A,A+)−

∫
R1,3

d4x
1
e
c̄?� c− ξ2 b?b−b?δA+b? c̄+ . (4.2)

Note that the ghost field c completely decouples from the gauge field A due to the abelian
nature of the gauge symmetry.

4.2 Braided homological perturbation theory

As in section 2.4, we quantize this theory by applying braided homological perturbation
theory to compute correlation functions, following [5, 9, 11].

Propagators. In order to transfer the homotopy algebra structure to the cohomology
H•(L ?) of the braided L∞-algebra L ? of electrodynamics from section 3.3, we need to
specify a UR3-equivariant projection p : L → H•(L) of degree 0 and a UR3-invariant
contracting homotopy h : L → L of degree −1. From (3.12) it follows that the cochain
complex underlying H•(L ?) is

ker(d) ker(δd)
im(d) [−1] ker(δd)

im(d) [−2] ker(d)[−3]

⊕ ⊕

ker
(

0 i
←−−−
/∂+m

i/∂−m 0

)
[−1] coker

(
0 i

←−−−
/∂+m

i/∂−m 0

)
[−2]

0 0 0

0

where we used the fact that the codifferential δ is the Hodge adjoint of the differential d.
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The same arguments that we gave in section 2.4 carry through to the present case to
show that, for the purposes of computing correlation functions of the physical fields, one
should take the trivial projections

p(1) = 0 = p(2)

to the vacua A = 0 = A+; that is, the kernel and cokernel of the Maxwell operator δ d
and of the massive Dirac operators i /∂ ±m become trivial on Wick rotation to Euclidean
signature. Of course, this is not true for the exterior differential d, and we take the
remaining components to be the natural projections p(0), p(3) : Ω0(R1,3)→ ker(d) to the
space of constant functions.

For the components of the contracting homotopy h(k) : Lk → Lk−1, which satisfy
`1 ◦ h(k) = idLk , we consider the massless Feynman propagator D : Ω0(R1,3) → Ω0(R1,3)
given by

D = 1
�

with D̃(k) = − 1
k2 ,

where we indicated the action of the Green operator on plane waves of the form e± i k·x. We
extend the massless propagator to a map D : Ω1(R1,3)→ Ω1(R1,3) by using the Ω0(R1,3)-
module structure of the space of one-forms Ω1(R1,3).

The massive spinor Feynman propagator S : Ω0(R1,3,S ⊕ S ) → Ω0(R1,3,S ⊕ S )
acts on fermion antifields as

S
(
ψ̄+

ψ+

)
(x) =− 1

�+m2

( 0 i /∂+m

i
←−−−
/∂−m 0

)(
ψ̄+

ψ+

)
(x) =

∫
R1,3

d4y

∫
k

e−ik·(x−y) S̃(k)
(
ψ̄+(y)
ψ+(y)

)

where

S̃(k) = 1
k2 −m2

( 0 /k +m
←−−−
/k −m 0

)
=:
( 0 S̃+(k)

S̃−(k) 0

)
,

with S̃−(−k) = −S̃+(k), and we defined
←−−−−−
(/k −m) ψ̄+ := ψ̄+ (/k −m).

Then the non-zero components of the contracting homotopy are

h(1) =
(
eD ◦ δ 0

)
: L1 −→ L0 ,

h(2) =
(D ◦ Π 0

0 S

)
: L2 −→ L1 ,

h(3) =
(
e d ◦ D

0

)
: L3 −→ L2 ,

(4.3)

where Π : Ω1(R1,3) → Ω1(R1,3) is the projector onto the image of the Maxwell operator
δ d with eigenvalues

Π̃µν(k) = ηµν −
kµ kν
k2
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when acting on plane waves of the form e i k·x dxµ. Explicitly

h(1)(A) = e
∂µ
�
Aµ , h(2)(A+) =



1
�

(
ηµν −

∂µ ∂ν
�

)
A+ν dxµ

− i /∂ +m

� +m2 ψ
+

−ψ̄+ i
←
/∂ −m

� +m2


,

h(3)(c+) =

e
∂µ
�
c+ dxµ

0
0


for A ∈ L1, A+ ∈ L2 and c+ ∈ L3.

The propagator D is the right inverse of the differential that appears in the ghost field
kinetic term of (4.2). Gauge fixing is implemented by setting h(1)(A) = 0. By our choice
of representatives of the cohomology in (4.3), this corresponds to imposing the Lorenz
gauge condition δA = ∂µA

µ = 0 on the gauge fields A ∈ Ω1(R1,3). Different gauge choices
correspond to different choices of contracting homotopy, or equivalently different choices of
propagators in the field theory. In particular, from (4.2) it follows that, after eliminating
the auxiliary field b through its equation of motion, a general Rξ gauge corresponds to the
choice of photon propagator with

Π̃µν(k) = ηµν − (1− ξ) kµ kν
k2 .

Only two choices are associated with projectors: the Landau gauge ξ = 0, which projects
onto the image of δ d as above, and the Feynman gauge ξ = 1, which projects onto the
kernel of δ d.

As in section 2.4, we extend the projection p and the contracting homotopy h to
maps P and H on the braided symmetric algebra SymRL[2] of polynomial observables
of electrodynamics. Again on observables involving solely physical fields A ∈ L1, only
P(1) = 1 is non-trivial. The role of H is to insert propagators in correlation functions of
the braided quantum field theory, which we depict diagrammatically as shown in figure 3.
On the other hand, the braided BV Laplacian ∆BV implements the braided Wick theorem
in braided homological perturbation theory.

Vertices. We now proceed to construct the interaction vertices that need to be inserted.
We start by introducing the basis of plane waves ek for L0 and its dual basis ek for L3 as in
section 2.4. To construct corresponding bases for L1 and L2, we first identify the space of
one-forms Ω1(R1,3) ⊂ L1 with (R1,3)∗ ⊗Ω0(R1,3). A gauge field A ∈ Ω1(R1,3) can then be
expanded as11 A =

∫
k aµ(k) vµ ek where vµ are covectors of the standard basis for (R1,3)∗,

and the Lorenz gauge fixing condition imposes the constraint kµ aµ(k) = 0 on the photon
polarization vectors. Similarly, we identify Ω1(R1,3) ⊂ L2 with R1,3⊗Ω0(R1,3) and expand

11Throughout we omit tensor products among basis elements from different vector spaces for simplicity,
e.g. we abbreviate vµ ⊗ ek by vµ ek, and so on.
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s s'

μ

= D (k)

= S (k)ss'
~

~k

k

= D (k) Πμν (k) 
~ ~

k
ν

Figure 3. From top to bottom: the ghost, spinor and photon propagators.

the antifields A+ ∈ Ω1(R1,3) as A+ =
∫
k a

+µ(k) vµ ek, where vµ are vectors of a dual basis
for R1,3 in the sense that

〈vµ ek, vν ep〉? = δµν 〈ek, ep〉? .

For the fermion fields (ψ, ψ̄), we identify the vector space Ω0(R1,3,S ⊕ S ) ⊂ L1

with the space
(
S ⊗ Ω0(R1,3)

)
⊕
(
S ⊗ Ω0(R1,3)

)
and basis (us, ūs), s = 1, 2, 3, 4 for

S ⊕ S . A Dirac spinor can then be expanded as ψ =
∫
k us(k) us ek, while a Dirac

adjoint spinor is expanded as ψ̄ =
∫
k v̄s(k) ūs ek. For the antifields (ψ̄+, ψ+), we identify

Ω0(R1,3,S ⊕S ) ⊂ L2 with the space
(
S ⊗ Ω0(R1,3)

)
⊕
(
S ⊗ Ω0(R1,3)

)
and dual basis

(ūs, us) for S ⊕S . The non-zero cyclic pairings among the spinor bases are given by

〈ūs ek, us′ ep〉? = δss′ 〈ek, ep〉? = 〈us ek, ūs′ ep〉? .

With these conventions we introduce the contracted coordinate functions ξ ∈
(SymRL[2])⊗ L[[ν]] as the degree 1 elements

ξ =
∫
k

(
ek ⊗ ek + ek ⊗ ek + vµ ek ⊗ vµ ek + vµ ek ⊗ vµ ek

+ us ek ⊗ ūs ek + ūs ek ⊗ us ek

+ ūs ek ⊗ us ek + us ek ⊗ ūs ek
)
.

(4.4)

Using the braided Maurer-Cartan action functional (3.20) and the extended cyclic braided
L∞-algebra structure on (SymRL[2])⊗L[[ν]], we introduce the interacting part of the BV
action functional Sint ∈ SymRL[2] as the degree 0 element

Sint := −1
6 〈〈ξ, `

?
2(ξ, ξ)〉〉? . (4.5)

In this paper we are solely interested in correlation functions of physical fields A ∈ L1,
so we can simplify the computation by keeping only those terms of (4.4) involving antifields
which will generate non-zero braided Wick contractions and antibrackets with elements of
L1. Likewise, from (4.2) it follows that we may drop all ghost terms from (4.4). In other
words, for our purposes it suffices to compute (4.5) when evaluated on the element

ξphys =
∫
k

(
vµ ek ⊗ vµ ek + ūs ek ⊗ us ek + us ek ⊗ ūs ek

)
.
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With this simplification in mind, we use the non-zero 2-brackets from (3.16) and cyclic
inner products from (3.17), together with braided cyclicity of the extended inner product,
and perform analogous calculations to those of section 2.4. Additionally, we keep in mind
that the contracted coordinate functions ξ are Uv-invariant elements of (SymRL[2])⊗L[[ν]]
and hence all appearances of R-matrices in the properties of the extended brackets `n and
of the extended pairing 〈〈, 〉〉? disappear when evaluated on tensor powers of the Uv-invariant
element ξ. This yields

Sint =−1
6

∫
k1,k2,k3

3〈〈vµek1⊗vµek1 ,`
?
2(ūsek2⊗usek2 ,us′e

k3⊗ūs
′
ek3)

+`?2(us′ek3⊗ūs
′
ek3 ,ūse

k2⊗usek2)〉〉?

= 1
2

∫
k1,k2,k3

2〈〈vµek1⊗vµek1 ,
(
ūsek2�?us′Rα(ek3)

)
⊗`?2

(
usRα(ek2),ūs′ek3

)
〉〉?

=
∫
k1,k2,k3

eik2·θk3 〈〈vµek1⊗vµek1 ,(ūsek2�?us′ek3)⊗`?2(usek2 ,ū
s′ek3)〉〉?

=
∫
k1,k2,k3

eik2·θk3 vµek1�?Rα(ūsek2�?us′ek3)〈vµRα(ek1),`?2(usek2 ,ū
s′ek3)〉?

=−e
∫
k1,k2,k3

e
i
∑
a<b

ka·θkb
vµek1�? ūsek2�?us′ek3 〈vµek1 ,vν (ūs′γνus)Rα(ek3)?Rα(ek2)〉?

=−e
∫
k1,k2,k3

e
i
∑
a<b

ka·θkb
(ūs′γµus) vµek1�? ūsek2�?us′ek3 〈ek1 ,ek2?ek3〉?

=:
∫
k1,k2,k3

V µ;s,s′(k1,k2,k3) vµek1�?usek2�? ūs′ek3 .

The photon-fermion vertex is given by

V µ;s,s′(k1, k2, k3) = −e (γµ)ss′ e
i
2
∑
a<b

ka·θ kb
(2π)4 δ(k1 + k2 + k3) , (4.6)

where (γµ)ss′ := ūs γµ us
′ are the Dirac matrix elements in our chosen basis for the complex

spinor representation S . Its diagrammatic representation is shown in figure 4. Surprisingly,
the result (4.6) is different from the vertex that follows from a naive application of standard
Feynman rules to the action (4.1), [32]. The naive application of standard Feynman rules
results in a vertex with a noncommutative contribution cos

(1
2 k2 · θ k3

)
. This vertex is

completely (strictly) symmetric under interchange of any pair of momenta, as well as under
reflection ka → −ka of all three momenta, while the vertex (4.6) has braided symmetry
similarly to (2.49) and (2.50).

Note that (4.6) is the same vertex as in the standard noncommutative QED with star-
gauge symmetry, where the noncommutative correction to the vertex also consists of solely
a phase factor in the momenta. Unlike the standard noncommutative QED, here there
are no three-photon or four-photon vertices and no photon-ghost vertex, as anticipated
from (4.2).
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k2

k3

s

s'

= Vμss' (k1, k2,k3)

Figure 4. Diagrammatic representation of the photon-fermion vertex.

Correlation functions. The correlation functions of braided QED are now defined and
computed analogously to section 2.4 by the formula

G?A1,...,An(x1, . . . , xn) = 〈0|T[A1(x1) ? · · · ?An(xn)]|0〉?

:=
∞∑
p=1

P
(
(i ~∆BV H + {Sint,−}? H)p(δA1

x1 �? · · · �? δ
An
xn )

)
,

(4.7)

where δAaxa ∈ L2[2] are again Dirac distributions supported at the insertion points xa ∈ R1,3

of the chosen physical fields Aa ∈ L1. With our conventions these distributions are given by

δAµaxa (x) := vµa δ(x− xa) , δψsaxa (x) := ūsa δ(x− xa) and δψ̄saxa (x) := usa δ(x− xa) ,

for the various species of photon field A ∈ Ω1(R1,3) and fermions (ψ, ψ̄ ) ∈ Ω0(R1,3,S ⊕S ).
Arguing similarly to section 2.4, the operator {Sint,−}? increases the symmetric alge-

bra degree n by 1. Thus if n = 2k is even, the series (4.7) starts at p = k and a non-vanishing
contribution requires an even number 2l of photon-fermion vertex insertions; in this case
k + l braided Wick contractions i ~∆BV H are needed. On the other hand, if n = 2k + 1
is odd then an odd number 2l + 1 of vertex insertions is required together with k + l + 1
applications of i ~∆BV H. In both instances the expansion parameter is κ := ~ e2: the
contribution to a 2k-point function is weighted by ~k κl and to a 2k+1-point function by
~k+1 e κl. Note that only correlation functions involving equal numbers of Dirac fields ψ
and ψ̄ are non-vanishing, as these are the only ones that will have non-trivial braided
Wick expansions under iterated applications of i ~∆BV H. This is the statement of charge
conjugation symmetry of braided quantum electrodynamics.

Using this formalism one can calculate various correlation functions and also check the
ultraviolet behaviour of the quantum field theory. We will analyse the photon and fermion
self-energies at one-loop order in sections 4.4 and 4.5, respectively.

4.3 Braided Wick’s theorem for Dirac spinors

We first consider the theory of a free Dirac field. In the classical case, Wick’s theorem
expresses the non-zero correlation functions as the Pfaffian of the two-point correlation
matrix:

〈0|T[ψ(1) · · ·ψ(2k)]|0〉(0) = 1
k! 2k

∑
σ∈S2k

sgn(σ)
k∏
a=1
〈0|T

[
ψ
(
σ(2a− 1)

)
ψ
(
σ(2a)

)]
|0〉(0) ,

(4.8)
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where for compactness we have written in the argument of ψ(a) the spacetime coordinate
xa, the spinor index sa, and a Z2-valued index which distinguishes ψ from ψ̄. The non-
vanishing two-point functions are determined by the free fermion propagator

i
~
〈0|T[ψs(x) ψ̄r(y)]|0〉(0) =

∫
k

e−i k·(x−y) S̃+
sr(k) .

In the following we abbreviate the non-zero Wick contractions as

ψa ψ̄b := 〈0|T[ψsa(xa) ψ̄sb(xb)]|0〉(0) = −ψ̄b ψa . (4.9)

Arguing similarly to section 2.3, in the free braided quantum field theory we expect the
correlation functions to be determined by a formula analogous to (2.27), with the Hafnian
replaced by the Pfaffian formula (4.8). For our later calculations we will need to carefully
understand how this braided Wick expansion is implemented in homological perturbation
theory, where the 2k-point functions are computed by applying the operator (i ~∆BV H)k
to braided symmetric products of k distributions of the form δ

ψsa
xa with k distributions of

the form δ
ψ̄sa
xa . To properly implement Fermi statistics, we need to carefully define both the

action of the extended contracting homotopy H and the braided BV Laplacian ∆BV when
acting on spinor fields.12 There are two important extra signs which arise in this case:
an extra weight (−1)a−1 in each term of the sum (2.37) defining the extended contracting
homotopy H, and an extra weight (−1)(a−1)+(b−1−a) = (−1)b in each term of the sum
in (2.39) defining the braided BV Laplacian ∆BV. The only non-trivial pairings (3.17)
are between ψ, ψ̄ and their corresponding antifields ψ̄+, ψ+. This definition also fixes the
antibrackets of spinor fields through the relation (2.44).

In the following we consider some illustrative examples of how these rules work.

Two-point functions. Consider the free braided two-point Green’s function defined by

G?
ψs1 ,ψ̄s2

(x1, x2)(0) = 〈0|T[ψs1(x1) ? ψ̄s2(x2)]|0〉(0)
? := i ~∆BV H

(
δ
ψs1
x1 �? δ

ψ̄s2
x2

)
.

Applying (2.37) and (2.39) we obtain

G?
ψs1 ,ψ̄s2

(x1, x2)(0) = i ~
2
(〈

S
(
δ
ψs1
x1

)
, δ
ψ̄s2
x2

〉
?
−
〈
δ
ψs1
x1 , S

(
δ
ψ̄s2
x2

)〉
?

)
, (4.10)

where the minus sign comes from the fermionic Koszul sign rules discussed above. The
first inner product gives〈

S
(
δ
ψs1
x1

)
, δ
ψ̄s2
x2

〉
?

=
∫
R1,3

d4x δ(x− x2)
∫
R1,3

d4y

∫
k

e−i k·(x−y) (ūs1 S̃−(k) us2
)
δ(y − x1)

=
∫
k

e−i k·(x2−x1) S̃−s1s2(k) = −
∫
k

e−i k·(x1−x2) S̃+
s1s2(k) ,

where in the last step we changed integration variable k → −k and used S̃±(−k) = −S̃∓(k).
Similarly, the second inner product gives〈

δ
ψs1
x1 , S

(
δ
ψ̄s2
x2

)〉
?

=
∫
k

e−i k·(x1−x2) S̃+
s1s2(k) .

12The inclusion of fermions into the L∞-algebra framework is discussed in e.g. [44, 45]. However, we
could not find a detailed treatment of fermions in homological perturbation theory in the literature.
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Finally, substituting into (4.10) yields the free braided two-point function

G?
ψs1 ,ψ̄s2

(x1, x2)(0) = −i ~
∫
k

e−i k·(x1−x2) S̃+
s1s2(k) = ψ1 ψ̄2 ,

which is exactly the Feynman propagator for the Dirac spinor field, as anticipated.
In our BV formalism, the anticommutation relation (4.9) follows from the calculation

ψ̄2 ψ1 = G?
ψ̄s2 ,ψs1

(x2, x1)(0) = i ~∆BV H
(
δ
ψ̄s2
x2 �? δ

ψs1
x1

)
= i ~

2
(〈

S
(
δ
ψ̄s2
x2

)
, δ
ψs1
x1

〉
?
−
〈
δ
ψ̄s2
x2 , S

(
δ
ψs1
x1

)〉
?

)
= i ~

2

∫
R1,3

d4x

∫
R1,3

d4y

∫
k

e−i k·(x−y)
((

ūs1 S̃+(k) us2
)
δ(y − x2) δ(x− x1)

−
(
ūs1 S̃−(k) us2

)
δ(y − x1) δ(x− x2)

)
= i ~

∫
k

e−i k·(x1−x2) S̃+
s1s2(k) = −ψ1 ψ̄2 .

Four-point functions. Consider the free four-point Green’s function defined by

G?
ψs1 ,ψ̄s2 ,ψs3 ,ψ̄s4

(x1, x2, x3, x4)(0) = 〈0|T[ψs1(x1) ? ψ̄s2(x2) ? ψs3(x3) ? ψ̄s4(x4)]|0〉(0)
?

:= (i ~∆BV H)2(δψs1x1 �? δ
ψ̄s2
x2 �? δ

ψs3
x3 �? δ

ψ̄s4
x4

)
.

This is evaluated using

i ~∆BV H
(
δψsaxa �? δ

ψsb
xb

)
= 0 = i ~∆BV H

(
δψ̄saxa �? δ

ψ̄sb
xb

)
and

i ~∆BV H
(
δψsaxa �? δ

ψ̄sb
xb

)
= ψa ψ̄b = −ψ̄b ψa = −i ~∆BV H

(
δ
ψ̄sb
xb �? δψsaxa

)
,

together with the fermionic Koszul sign rules discussed above.
We start from

i ~∆BV H
(
δ
ψs1
x1 �? δ

ψ̄s2
x2 �? δ

ψs3
x3 �? δ

ψ̄s4
x4

)
= 1

2
(
ψ1 ψ̄2 δ

ψs3
x3 �? δ

ψ̄s4
x4 + ψ1 Rα Rβ(ψ̄4) Rα(δψ̄s2x2 )�? Rβ(δψs3x3 )

+ ψ̄2 ψ3 δ
ψs1
x1 �? δ

ψ̄s4
x4 + ψ3 ψ̄4 δ

ψs1
x1 �? δ

ψ̄s2
x2

)
.

Applying i ~∆BV H to this expression gives the four-point function

G?
ψs1 ,ψ̄s2 ,ψs3 ,ψ̄s4

(x1,x2,x3,x4)(0) = 1
2
(
2ψ1 ψ̄2ψ3 ψ̄4+ψ1RαRβ(ψ̄4)Rα(ψ̄2)Rβ(ψ3)+ψ1 ψ̄4 ψ̄2ψ3

)
.

Employing the same R-matrix manipulations as in section 2.3 shows that the last two
terms are equal, and we arrive finally at

G?
ψs1 ,ψ̄s2 ,ψs3 ,ψ̄s4

(x1, x2, x3, x4)(0) = ψ1 ψ̄2 ψ3 ψ̄4 + ψ1 ψ̄4 ψ̄2 ψ3 . (4.11)

This also agrees with the classical free fermion four-point function.
The other non-zero four-point functions can be similarly obtained. For example

G?
ψs1 ,ψs2 ,ψ̄s3 ,ψ̄s4

(x1, x2, x3, x4)(0) = −ψ1 Rα(ψ̄3) Rα(ψ2) ψ̄4 + ψ1 ψ̄4 ψ2 ψ̄3 ,

where we simplified the last term by using the fact that the R-matrix acts trivially on the
two-point functions, analogously to (2.29).
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4.4 Photon self-energy at one-loop

The two-point photon correlation function is obtained from (4.7) by setting n = 2, A1 = Aµ
and A2 = Aν . It is easy to see that the only non-vanishing contributions at one-loop order
are given by

G?Aµ,Aν (x1, x2)(1) = 〈0|T[Aµ(x1) ? Aν(x2)]|0〉(1)
?

:= (i ~∆BV H)2 {Sint,H
{
Sint,H

(
δAµx1 �? δ

Aν
x2

)}
?

}
?

+ i ~∆BV H
{
Sint,H (i ~∆BV H)

{
Sint,H

(
δAµx1 �? δ

Aν
x2

)}
?

}
?

=: G1
µν(x1, x2) + G2

µν(x1, x2) .

(4.12)

We start from the non-zero inner products
〈
vµ eka ,D Π

(
δAνxb

)〉
?

= e i ka·xb D̃(ka) Π̃µν(ka) (4.13)

to compute the basic operation
{
Sint,H

(
δAµx1 �? δ

Aν
x2

)}
?

= 1
2

∫
k1,k2,k3

V λ;s,s′(k1, k2, k3)
(
e i k1·x1 D̃(k1) Π̃µλ(k1) us ek2 �? ūs′ ek3 �? δAνx2 (4.14)

+ e i k1·x2 D̃(k1) Π̃λν(k1) δAµx1 �? us ek2 �? ūs′ ek3
)
,

where we used momentum conservation to trivialize the phase factors arising from R-matrix
insertions in the braided derivation property of the antibracket. We will now evaluate each
contribution G1

µν(x1, x2) and G2
µν(x1, x2) to (4.12) separately in turn.

Evaluation of G1
µν(x1, x2). We start with another iteration of the expression (4.14) by

applying the operator {Sint,−}? ◦H again, which generates pairings involving both photon
propagators on the remaining external legs and fermion propagators for the internal loops.
In this case, momentum conservation does not always trivialize R-matrix factors arising
from the braided derivation property of the antibracket. In particular, we encounter the
basic braided symmetric product relations

δAµxa �? ekb = Rα(ekb)�? Rα(δAµxa ) = ekb �? δ
Aµ
xa+θ kb (4.15)

in two of the antibrackets with Sint coming from the second line after applying the extended
contracting homotopy H.

Since the only non-zero pairings occur between elements in complementary degrees 1
and 2, the only non-trivial antibrackets that survive are those which come from a dual pair-
ing generated by H, which lowers the degree from 2 to 1, and so always involve propagators.
For example, a non-zero pairing involving the spinor basis elements is

〈ūs eka , S(us′ ekb)〉? =
∫
R1,3

d4x e i ka·x
∫
R1,3

d4y

∫
p

e−i p·(x−y) (ūs S̃+(p) us′
)

e i kb·y

= (2π)4 δ(ka + kb) S̃+
ss′(−kb) = −(2π)4 δ(ka + kb) S̃−ss′(kb) ,

(4.16)
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where we used S̃±(−k) = −S̃∓(k). Similarly, the only other non-zero spinor pairing is given
by

〈S(ūs′ ekb), us eka〉? = −(2π)4 δ(ka + kb) S̃+
s′s(kb) . (4.17)

The first term that arises after applying H to (4.14) involves the non-zero antibracket

{
vσ ep1�?ur ep2�? ūr′ ep3 , S(usek2)�? ūs′ ek3�? δAνx2

}
?

=−vσ ep1�?ur ep2�?
〈
ūr′ ep3 , S(usek2)

〉
?
ūs′ ek3�? δAνx2

= (2π)4 δ(p3 +k2) S̃−r′s(k2)vσ ep1�?ur ep2�? ūs′ ek3�? δAνx2 ,

and similarly for the other five terms generated.
After some calculation using momentum conservation, as well as relabellings of spinor

momenta, one arrives at

{
Sint,H

{
Sint,H

(
δAµx1 �? δ

Aν
x2

)}
?

}
?

= 1
6

∫
p1,p2,p3

V σ;r,r′(p1, p2, p3)
∫
k1,k2,k3

V λ;s,s′(k1, k2, k3)

×
[
(2π)4 e i k1·x1 D̃(k1) Π̃λµ(k1)

(
δ(p3 + k2) S̃−r′s(k2) vσ ep1 �? ur ep2 �? ūs′ ek3

+ ei (p3+k2)·θ p2 δ(p2 + k3) S̃−s′r(p2) vσ ep1 �? ūr′ ep3 �? us ek2
)
�? δAνx2

+ (2π)4e i k1·x2D̃(k1) Π̃λν(k1) δAµx1

�?
(
δ(p3 + k2) S̃−r′s(k2)vσ ep1 �? ur ep2 �? ūs′ ek3

+ ei p3·θ p2 δ(p2 + k3) S̃−s′r(p2) us ek2 �? vσ ep1 �? ūr′ ep3
)

+ 2 e i p1·x1+i k1·x2 D̃(p1) Π̃µσ(p1) D̃(k1) Π̃λν(k1)

× ur ep2 �? ūr′ ep3 �? us ek2 �? ūs′ ek3
]
.

(4.18)

Finally, applying the operator (i ~∆BV H)2 to (4.18) generates free four-point functions,
which we evaluate using the braided Wick expansions (2.32) and (4.11). Many pairings
vanish in this case.

Let us start with the last line of (4.18), whose Wick expansion gives

(i ~∆BV H)2(ur ep2 �? ūr′ ep3 �? us ek2 �? ūs′ ek3
)

= −~2 (〈S(ūr′ ep3), ur ep2〉? 〈S(ūs′ ek3), us ek2〉?
+ 〈S(ūs′ ek3), ur ep2〉? 〈ūr′ ep3 , S(us ek2)〉?

)
= −~2 (2π)8 (S̃+

r′r(p3) S̃+
s′s(k3) δ(p2 + p3) δ(k2 + k3)

+ S̃−r′s(k2) S̃+
s′r(k3) δ(p2 + k3) δ(k2 + p3)

)
.

(4.19)
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Figure 5. The disconnected (left) and connected (right) contributions to the photon two-point
function at one-loop order. The photon one-point functions each vanish.

Substituting into (4.18) and relabelling momenta, it is straightforward to see that the
contribution of the first term in the last line of (4.19) can be written as

1
3

(
i ~ e

∫
k1,p1

(2π)4 δ(p1) e i p1·x1 D̃(p1) Π̃µσ(p1) Tr
(
γσ S̃+(k1)

))
×
(

i ~ e
∫
k2,p2

Tr
(
γλ S̃+(k2)

)
(2π)4 δ(p2) e i p2·x2 D̃(p2) Π̃λν(p2)

)
= 1

3
(
i ~∆BV H

{
Sint,H

(
δAµx1

)}
?

) (
i ~∆BV H

{
Sint,H

(
δAνx2

)}
?

)
,

(4.20)

where Tr is the trace over spinor indices (see appendix B), and the additional delta-
functions have set all θ-dependent quantities to unity, including the contributions from
the vertex (4.6). This is recognised as a disconnected contribution to the photon two-point
function from the fermion tadpoles at this order, as depicted diagrammatically in figure 5.
As in the standard noncommutative QED, the tadpole contributions coincide with their
commutative counterparts. Each one-point function is superficially divergent, but vanishes
after cutoff regularization using Tr(γµ) = 0 and

∫
|k|<Λ kµ/(k2 −m2) = 0; this is a special

case of Furry’s theorem in usual QED.
Similarly, the contribution to (4.18) from the second term in the last line of (4.19) can

be easily manipulated to the form

− ~2 e2

3

∫
k,p

e−i p·(x1−x2) D̃(p)2 Π̃µσ(p) Π̃λν(p) Tr
(
S̃−(p− k) γσ S̃+(k) γλ

)
. (4.21)

This is recognised as a contribution to the connected two-point function from the fermion
bubble at this order, as depicted diagrammatically in figure 5. We immediately realize that
there are no noncommutative contributions in this term.

For the first four terms in (4.18), we compute the braided Wick expansion

(i~∆BVH)2(vσep1�?urep2�?ūs′ek2�?δAνx2

)
=−~2〈vσep1 ,DΠ(δAνx2 )〉?〈S(urep2),ūs′ek2〉?
=−~2(2π)4δ(p2+k2)eip1·x2D̃(p1)Π̃σν(p1)S̃+

s′r(k2)

and similarly

(i ~∆BV H)2(vσ ep1 �? ūr′ ep2 �? us ek2 �? δAνx2

)
= −~2 (2π)4 δ(p2 + k2) e i p1·x2 D̃(p1) Π̃σν(p1) S̃−r′s(k2) ,
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along with the corresponding expressions for the remaining terms with δAµx1 . After substi-
tution into (4.18) and resolving the delta-functions, we find that all four terms contribute
equally and give

− 2 ~2 e2

3

∫
k,p

e−i p·(x1−x2) D̃(p)2 Π̃µσ(p) Π̃λν(p) Tr
(
S̃−(p− k) γσ S̃+(k) γλ

)
. (4.22)

Altogether, summing (4.21) and (4.22) we arrive at

G1
µν(x1,x2) =−~2 e2

∫
k,p

e−ip·(x1−x2)D̃(p)2 Π̃µσ(p) Π̃λν(p)Tr
(
S̃−(p−k)γσ S̃+(k)γλ

)
. (4.23)

As in (4.21), all noncommutative contributions vanish.

Evaluation of G2
µν(x1, x2). Now we start by applying the operator i ~∆BV H to (4.14)

using
i ~∆BV H

(
us ek2 �? ūs′ ek3 �? δAνx2

)
= 2

3 i ~ (2π)4 δ(k2 + k3) S̃+
s′s(k3) δAνx2

and the corresponding expression for the terms with δ
Aµ
x1 . Upon further application of

the operator i ~∆BV H ◦ {Sint,−}? ◦ H, it is easy to see that these expressions contribute
to (4.12) with the same momentum and spinor index structure as that which led to the
disconnected contribution (4.20). Hence

G2
µν(x1, x2) = 0 . (4.24)

Vacuum polarization. From (4.23) and (4.24) it follows that the one-loop photon two-
point function (4.12) is given by

G?Aµ,Aν (x1, x2)(1) = −~2 e2
∫
k,p

e−i p·(x1−x2)D̃(p)2 Π̃µσ(p) Π̃λν(p)

× Tr
(
S̃−(p− k) γσ S̃+(k) γλ

)
.

(4.25)

As before, we relate the all orders photon two-point function to the dressed photon prop-
agator through the self-energy Πµν

? (p) by

G?Aµ,Aν (x1, x2) = −i ~
∫

(R1,3)∗

d4p

(2π)4 e−i p·(x1−x2)
( 1
p2 (η − (1− ξ) p⊗ p

p2
)−1 −Π?(p)

)
µν

.

At order e2, the result (4.25) leads to

i
~

Πµν
?2 (p) = e2

∫
(R1,3)∗

d4k

(2π)4
Tr
(
(/p− /k −m) γµ (/k +m) γν

)(
(p− k)2 −m2) (k2 −m2) . (4.26)

The vacuum polarization tensor (4.26) is identical to the result of the photon self-
energy calculation in the standard commutative electrodynamics, with precisely the same
sign and overall combinatorial factor. As in the scalar field theory of section 2.4, the braided
Wick theorem contributes phase factors which cancel the noncommutative contributions
of the interaction vertex (4.6).
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This result is different from the result of [32], which was based on a naive application
of the conventional Feynman rules following from the action functional (4.1). There the
noncommutative contribution of the form cos2 (1

2 p ·θ k
)
appears and in this way introduces

the UV/IR mixing. The result (4.26) suggests that the algebraic quantization using the
braided BV formalism is the correct way to quantize braided field theories.

The result (4.26) further agrees from the corresponding contribution to the one-loop
vacuum polarization in standard noncommutative QED, which coincides with that found
in ordinary QED [43]: in that case each photon-fermion vertex contributes a phase factor
which cancel each other in the diagram. Non-trivial corrections in the standard approach
come from three more contributing diagrams due to the non-abelian nature of the star-
gauge symmetry: the photon bubble, the photon tadpole and the ghost bubble. These
involve non-planar diagrams which result in UV/IR mixing [43, 47].

4.5 Fermion self-energy at one-loop

The two-point fermion correlation function is obtained from (4.7) by setting n = 2,
A1 = ψs1 and A2 = ψ̄s2 . Again the only non-vanishing contributions at one-loop order
are given by

G?
ψs1 ,ψ̄s2

(x1, x2)(1) = 〈0|T[ψs1(x1) ? ψ̄s2(x2)]|0〉(1)
?

:= (i ~∆BV H)2 {Sint,H
{
Sint,H

(
δ
ψs1
x1 �? δ

ψ̄s2
x2

)}
?

}
?

+ i ~∆BV H
{
Sint,H (i ~∆BV H)

{
Sint,H

(
δ
ψs1
x1 �? δ

ψ̄s2
x2

)}
?

}
?

=: G1
s1s2(x1, x2) + G2

s1s2(x1, x2) .

(4.27)

The computation proceeds in a completely analogous way to that of section 4.4. We
start from the non-zero inner products

〈
S
(
δ
ψs1
x1

)
, ur eka

〉
?

= e i ka·x1 S̃−s1r(ka) and
〈
ūr eka , S

(
δ
ψ̄s2
x2

)〉
?

= e i ka·x2 S̃+
rs2(ka) ,

to get the basic operation

{
Sint,H

(
δ
ψs1
x1 �? δ

ψ̄s2
x2

)}
?

= 1
2

∫
k1,k2,k3

V ν;r,r′(k1, k2, k3)
(
− e i k3·x2 S̃+

r′s2
(k3) δψs1x1 �? vν ek1 �? ur ek2 (4.28)

+ e i k2·(x1−θ k3) S̃−s1r(k2) vν ek1 �? ūr′ ek3 �? δ
ψ̄s2
x2

)
.
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Figure 6. The fermion tadpole (left) and one-particle irreducible (right) contributions to the
fermion two-point function at one-loop order. The tadpole contribution vanishes.

Evaluation of G1
s1s2

(x1, x2). After some algebraic manipulations, the operator
{Sint,−}? ◦ H applied to (4.28) yields

{
Sint,H

{
Sint,H

(
δ
ψs1
x1 �? δ

ψ̄s2
x2

)}
?

}
?

= 1
6

∫
p1,p2,p3

V µ;t,t′(p1, p2, p3)
∫
k1,k2,k3

V ν;r,r′(k1, k2, k3)
[
(2π)4 δ(p1 + k1)

×
(

D̃(p1) Π̃µν(p1) ut ep2 �? ūt′ ep3 �?
(
− e i k3·x2 S̃+

r′s2
(k3) ur ek2 �? δ

ψs1
x1−θ k3

+ e i k2·x1 e− i k1·θ k2 S̃−s1r(k2) ūr′ ek3 �? δ
ψ̄s2
x2

)
+ vµ ep2 �? vν ek3 �?

(
e i k2·x1 e−i k3·θ p2 S̃−s1r(k2) S̃−r′t(p1) ūt′ ep3 �? δ

ψ̄s2
x2

− e i k2·x2 e−i k3·θ p2 S̃+
r′s2

(k2) S̃+
t′r(p1) ut ep3 �? δ

ψs1
x1−θ k2

))
− 2 e i k3·x2+i p2·x1 ei k2·θ (k1−p3) S̃+

r′s2
(k3) S̃−s1t(p2)

× ur ek2 �? ūt′ ep3 �? vµ ep1 �? vν ek1
]
. (4.29)

Next we apply the operator (i ~∆BV H)2 to each term, and use the braided Wick expan-
sions (2.32) and (4.11).

Looking at the first term of (4.29), we find two contributions

(i ~∆BV H)2(ut ep2 �? ūt′ ep3 �? ur ek2 �? δ
ψs1
x1−θ k2

)
(4.30)

= ~2 (2π)4 (e i k2·x1 δ(p2 + p3) S̃+
t′t(p3) S̃−s1r(k2) + e i p2·(x1−θ k2) δ(p3 + k2) S̃+

t′r(k2) S̃−s1t(p2)
)
.

Upon substitution into (4.29), the spinor index structure of the first term in (4.30) is easily
seen to give a factor

Tr
(
γµ S̃+(p3)

)
D̃(p1) Π̃µν(p1)

(
S̃−(k2) γν S̃+(k3)

)
s1s2

. (4.31)

This is recognised as a contribution to the spinor two-point function from the fermion
tadpole, which vanishes by an argument similar to that which led to the vanishing of the
photon one-point function in section 4.4. The second term in (4.30) instead contributes to
the 1PI two-point function. These are depicted diagrammatically in figure 6.

Similary, the second term of (4.29) splits into a tadpole contribution (which vanishes)
and a 1PI contribution. The remaining terms in (4.29) all yield spinor index structures
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that contribute only to the 1PI correlator. For example, the braided Wick expansion of
the third term is given by

(i ~∆BV H)2(vµ ep2 �? vν ek3 �? ūt′ ep3 �? δ
ψ̄s2
x2

)
= ~2 (2π)4 δ(p2 + k3) e i p3·x2 D̃(k3) Π̃µν(k3) S̃+

t′s2
(p3) ,

and similarly for the remaining terms.
After some tedious algebraic manipulations and resolution of all delta-functions, one

finds that all non-vanishing contributions are equal and result in

G1
s1s2(x1, x2) = −~2 e2

∫
k,p

e−i p·(x1−x2) D̃(k) Π̃µν(k)
(
S̃+(p) γµ S̃−(k − p) γν S̃+(p)

)
s1s2

.

(4.32)

Evaluation of G2
s1s2

(x1, x2). Now we start by applying i ~∆BV H to (4.28) using

i ~∆BV H
(
δ
ψs1
x1 �? vν ek1 �? ur ek2

)
= 2

3 i ~ e i k2·x1 e−i k1·θ k2 S̃−s1r(k2) vν ek1 ,

and similarly for the second term in (4.28). Applying the operator i ~∆BV H◦{Sint,−}? ◦H
to these expressions, it is easy to see that the momentum and spinor index structures of
their contributions to (4.28) are of the same form as that in (4.31), and so lead to vanishing
fermion tadpole contributions. It therefore follows as in section 4.4 that

G2
s1s2(x1, x2) = 0 . (4.33)

Self-energy. From (4.32) and (4.33) it follows that the fermion two-point function (4.27)
is given by

G?
ψs1 ,ψ̄s2

(x1, x2)(1) = −~2 e2
∫
k,p

e−i p·(x1−x2) D̃(k) Π̃µν(k)

×
(
S̃+(p) γµ S̃−(k − p) γν S̃+(p)

)
s1s2

.

(4.34)

The exact two-point function defines the dressed fermion propagator through the Fourier
transformation

G?
ψs1 ,ψ̄s2

(x1, x2) = −i ~
∫

(R1,3)∗

d4p

(2π)4 e−i p·(x1−x2)
( 1
/p−m− Σ?(p)

)
s1s2

,

where Σ?(p) is the fermion self-energy. At order e2, the result (4.34) in Feynman gauge
gives

i
~

Σ?2(p) = e2
∫

(R1,3)∗

d4k

(2π)4
γµ (/p− /k −m) γµ
k2 ((p− k)2 −m2) . (4.35)

As with the braided correction to the photon self-energy, the fermion self-energy (4.35)
agrees with the standard result in the commutative electrodynamics: it has no noncommu-
tative contributions and no UV/IR mixing. It also agrees with the calculation in standard
noncommutative QED, where the phases cancel between the two vertices and there is no
difference from the fermion self-energy in ordinary QED [43]. In fact, also in the standard
approach the fermion self-energy does not receive any noncommutative corrections and so
does not display UV/IR mixing.
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5 Conclusions and outlook

Braided noncommutative field theories are defined by deforming the L∞-structure of a field
theory to a braided L∞-algebra [23]. Given that in the standard noncommutative quantum
field theories the problem of UV/IR mixing arises, and that as a result these field theories
cannot be renormalized, in this paper we started looking at the quantum properties of
braided noncommutative field theories. Lacking any other currently available quantization
scheme for braided fields, we exploited a braided deformation of the BV formalism [11]
and homological perturbation theory to calculate quantum correlation functions. This
framework is what we call braided quantum field theory.

As a first example, in section 2.4 we discussed braided φ4 scalar field theory. In
the free field theory, correlation functions follow from the braided Wick theorem. In the
commutative limit they reduce to the free correlation functions for the undeformed theory.
The interaction vertex (2.48) is the same as in the standard noncommutative φ4-theory.
However, the combination of the noncommutative interaction vertex with the braided Wick
theorem conspire to render the interacting two-point function at one-loop order (2.57)
free of noncommutative corrections, and in that way also free of UV/IR mixing. We
also notice that, contrary to the standard noncommutative field theories, no non-planar
diagrams appear. In order to decide whether or not braided scalar quantum field theories
are renormalizable, one needs to extend our analysis beyond one-loop order and also to
include higher-point correlation functions. In future work we plan to investigate these
problems in more detail.

As a first step towards understanding gauge theories, in section 4 we studied an exam-
ple of a braided U(1) gauge theory coupled to a Dirac fermion. We call this model braided
QED. Unlike the standard noncommutative U(1) gauge theory [43, 47] where the photon is
self-interacting and non-planar diagrams appear, braided QED is an abelian gauge theory.
The photon does not interact with itself and the only interaction vertex is the photon-
fermion vertex. As a consequence, no non-planar diagrams appear and the noncommuta-
tive contributions come from the interaction vertex (4.6) and the braided Wick theorem.
Similarly to braided scalar field theory, the photon two-point function at one-loop (4.26)
has no noncommutative contribution and it is free of the UV/IR mixing. The fermion
two-point function at one-loop (4.35) also has no noncommutative contribution and shows
no UV/IR mixing. We discussed these two-point functions in detail in sections 4.4 and 4.5,
respectively. To gain some further insight into the ultraviolet behaviour of braided QED,
the 3-point function at one-loop (vertex correction) and the corresponding beta-function
at one-loop should be calculated. This is also slated into our future work plans.

The present paper clearly shows that braided noncommutative quantum field theories
have better ultraviolet behaviour than the corresponding standard noncommutative field
theories. We plan to extend our analysis to non-abelian gauge theories. Besides correlation
functions, we also plan to discuss scattering amplitudes, following the approach of [4,
5] but using the braided L∞-algebra structure of our theories and braided homological
perturbation theory.
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A Drinfel’d twist deformation theory

In this appendix we briefly summarise the basic theory of Drinfel’d twists as needed in this
paper, more details can be found in [34, 35].

We start from the Lie algebra of vector fields v := Γ(TM) on a manifold M , which
generate infinitesimal diffeomorphisms of M . The enveloping algebra Uv is naturally a
cocommutative Hopf algebra with coproduct ∆ : Uv → Uv ⊗ Uv, counit ε : Uv → C and
antipode S : Uv→ Uv defined on generators by

∆(ξ) = ξ ⊗ 1 + 1⊗ ξ and ∆(1) = 1⊗ 1 ,
ε(ξ) = 0 and ε(1) = 1 ,
S(ξ) = −ξ and S(1) = 1 ,

for all ξ ∈ v. The maps ∆ and ε are extended as algebra homomorphisms, and S as
an algebra antihomomorphism to all of Uv. We adopt the standard Sweedler notation
∆(X) =: X(1)⊗X(2) (with summations understood) to abbreviate the coproduct of X ∈ Uv.

A Drinfel’d twist is a normalized two-cocycle of the Hopf algebra Uv[[ν]], the formal
power series in a deformation parameter ν with coefficients valued in Uv. By this we mean
an invertible element F ∈ Uv[[ν]]⊗ Uv[[ν]] satisfying the cocycle condition

F12 (∆⊗ id)F = F23 (id⊗∆)F ,

where F12 = F ⊗ 1 and F23 = 1⊗F , together with the normalization condition

(ε⊗ id)F = 1 = (id⊗ ε)F .

We write the power series expansion of the twist as F =: fα ⊗ fα ∈ Uv[[ν]] ⊗ Uv[[ν]],
with the sum over α understood. Then the cocycle condition may be written in Sweedler
notation as

fα fβ(1) ⊗ fα fβ(2) ⊗ fβ = fβ ⊗ fα fβ (1) ⊗ fα fβ (2) , (A.1)

and the normalization condition as

ε(fα) fα = 1 = fα ε(fα) . (A.2)
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As a consequence, the inverse twist F−1 =: f̄α ⊗ f̄α ∈ Uv[[ν]] ⊗ Uv[[ν]] satisfies similar
conditions.

A Drinfel’d twist F defines a new Hopf algebra structure on the universal enveloping
algebra Uv[[ν]], which we denote by UFv. As algebras, UFv = Uv[[ν]] and also the counit
of UFv is the same as the counit ε of Uv[[ν]]. The new coproduct ∆F and antipode SF of
UFv are given by

∆F (X) := F ∆(X)F−1 and SF (X) := fα S(fα)S(X)S(̄fβ) f̄β ,

for all X ∈ Uv[[ν]]. For X ∈ UFv, we adopt the Sweedler notation ∆F (X) =: X ¯(1)⊗X ¯(2) to
distinguish the twisted and untwisted coproducts. The invertible R-matrix R ∈ Uv[[ν]]⊗
Uv[[ν]] is induced by the twist as

R = F21F−1 =: Rα ⊗ Rα , (A.3)

where F21 = τ(F) = fα ⊗ fα is the twist with its legs swapped. It is easy to see that the
R-matrix is triangular, that is

R21 = R−1 = Rα ⊗ Rα ,

and moreover that

(∆F ⊗ id)R = R13R23 and (id⊗∆F )R = R13R12 ,

where R13 = Rα ⊗ 1⊗ Rα, or in Sweedler notation

Rα¯(1)⊗Rα¯(2)⊗Rα = Rβ⊗Rα⊗Rβ Rα and Rα⊗Rα ¯(1)⊗Rα ¯(2) = Rβ Rα⊗Rα⊗Rβ . (A.4)

The R-matrix also satisfies the Yang-Baxter equation

R12R13R23 = R23R13R12 . (A.5)

Drinfel’d twist deformation quantization consists in twisting the enveloping Hopf alge-
bra Uv to a non-cocommutative Hopf algebra UFv, while simultaneously twisting all of its
modules [35]. A Uv-module algebra is an algebra (A, µ) with a Uv-action . : Uv⊗A → A
which is compatible with the algebra multiplication via the coproduct ∆, that is

Xµ(a⊗ b) = µ
(
∆(X)(a⊗ b)

)
for all X ∈ Uv and a, b ∈ A, where µ : A ⊗ A → A is the product on A. We will usually
drop the symbol . to simplify the notation. This condition means in particular that vector
fields ξ ∈ v act on (A, µ) as:

ξ
(
µ(a⊗ b)

)
= µ

(
ξ(a)⊗ b

)
+ µ

(
a⊗ ξ(b)

)
.

If (A, µ) is a (left) Uv-module algebra, then we can deform the product µ on A by
precomposing it with the inverse of the twist F to get a new product

µ?(a⊗ b) = µ ◦ F−1(a⊗ b) = µ
(
f̄α(a)⊗ f̄α(b)

)
, (A.6)
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for a, b ∈ A, where on the right-hand side we extend µ to A[[ν]] ⊗ A[[ν]] ∼= (A ⊗ A)[[ν]]
by applying it term by term to the coefficients of a formal power series. The cocycle
condition on F guarantees that this produces an associative star-product µ? on A[[ν]], and
it generally defines a noncommutative UFv-module algebra (A[[ν]], µ?):

X
(
µ?(a⊗ b)

)
= µ?

(
∆F (X)(a⊗ b)

)
,

for all X ∈ Uv and a, b ∈ A. We denote (A, µ) by A and (A[[ν]], µ?) by A? for brevity.
If the algebra A is commutative, then A? is braided commutative: the noncommuta-

tivity of A? is controlled by the R-matrix as

µ?(a⊗ b) = µ?
(
Rα(b)⊗ Rα(a)

)
,

which is easily proven by recalling that R = F21F−1.

B Dirac matrices in four dimensions

Let S denote the complex spinor representation of Spin(1, 3). The 16-dimensional C-
algebra End(S ) can be identified with the complex Clifford algebra Cl(R1,3)⊗C. For this,
we construct complex 4×4 matrices γµ with µ = 0, 1, 2, 3 which satisfy the anticommutation
relations

{γµ, γν} = 2 ηµν 14 .

Then a basis of the complex vector space End(S ) consists of the matrices 14, γµ, γµ γν
with µ < ν and γµ γν γλ with µ < ν < λ, together with the chirality matrix

γ5 = i γ0 γ1 γ2 γ3 = − i
4! εµνλρ γ

µ γν γλ γρ

which satisfies {γ5, γµ} = 0, where εµνλρ is the Levi-Civita symbol with the convention
ε0123 = +1.

For any covector k ∈ (R1,3)∗, we use the Feynman slash notation to write the cor-
responding element of End(S ) as /k := kµ γ

µ = ηµν k
µ γν . The Dirac operator can be

expressed as i /∂ := i γµ ∂µ.
The Dirac representation of End(S ) is defined by

γ0 =
(
12 0
0 −12

)
and γi =

( 0 σi

−σi 0

)
,

where σi for i = 1, 2, 3 are the standard 2×2 Pauli spin matrices

σ1 =
(0 1

1 0

)
, σ2 =

(0 −i
i 0

)
and σ3 =

(1 0
0 −1

)

satisfying σi σj = δij 12 + i ε0ijk σk. In this basis the Dirac matrices have the reality
properties

γ†µ = γ0 γµ γ
0 and γ†5 = γ5 = γ5 = γ−1

5 .
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One also easily derives the product formula

γµ γν γλ = (ηµν ηλρ − ηµλ ηνρ + ηµρ ηνλ) γρ + i εµνλρ γρ γ5 . (B.1)

Let Tr denote the trace in the Dirac representation. Then one easily derives the trace
identities

Tr(γµ) = 0 = Tr(γµ γν γλ) ,
Tr(γµ γν) = 4 ηµν ,

Tr(γµ γν γλ γρ) = 4
(
ηµν ηλρ − ηµλ ηνρ + ηµρ ηνλ

)
.

(B.2)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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