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Abstract: Isospin-breaking (IB) effects are required for an evaluation of hadronic vacuum
polarization at subpercent precision. While the dominant contributions arise from the
e+e− → π+π− channel, also IB in the subleading channels can become relevant for a detailed
understanding, e.g., of the comparison to lattice QCD. Here, we provide such an analysis
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to capture the leading infrared-enhanced effects in terms of a correction factor η3π that
generalizes the analog treatment of virtual and final-state photons in the 2π case. The
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provide updated values for the vacuum-polarization-subtracted vector-meson parameters
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1 Introduction

A detailed understanding of hadronic vacuum polarization (HVP) is critical for the inter-
pretation of the anomalous magnetic moment of the muon aµ = (g − 2)µ/2 [1–5],

aexp
µ = 116 592 061(41)× 10−11, (1.1)

given that the uncertainty in the Standard-Model (SM) prediction [6–33],

aSM
µ [e+e−] = 116 591 810(43)× 10−11, (1.2)

is dominated by the uncertainties propagated from e+e− → hadrons cross sections. Moreover,
while for the second-most-important hadronic contribution, hadronic light-by-light scattering,
subsequent studies in lattice QCD [34–38] and using data-driven methods [39–50] point
towards a consistent picture in line with the evaluation from ref. [6] and on track to meet
the precision requirements of the Fermilab experiment [51, 52], various tensions persist for
the case of HVP.1

First, the global HVP integral from the lattice-QCD evaluation of ref. [55] differs from
e+e− data [6] by 2.1σ. Confirmation by other lattice-QCD collaborations for the entire
integral is still pending, but the stronger tension in a partial quantity, the intermediate
window [56], has been established by several independent calculations [57–61]. Second, new
e+e− → hadrons data have become available since ref. [6], including the crucial e+e− → 2π

1Higher-order hadronic corrections [18, 33, 53, 54] are already under sufficient control.
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channel. Here, the measurement by SND20 [62] comports with previous experiments, but
the result by CMD-3 [63] differs from CMD-2 [64], SND05 [65], BaBar [66], KLOE [67], and
BESIII [68], at a combined level of 5σ.

Neither of these tensions are currently understood, and the patterns in which the
deviations occur do not point to a simple solution.2 That is, the relative size of the
deviations in the intermediate window and the total HVP integral, together with the
consequences for the hadronic running of the fine-structure constant [73–78], indicates that
the changes in the cross section cannot be contained to the 2π channel alone, but that
some component at intermediate energies beyond 1GeV in center-of-mass energy is required.
Besides further scrutiny of e+e− → π+π− [79–81], this motivates the consideration of
subleading channels such as e+e− → 3π [14] and e+e− → K̄K [82], which, in combination
with more calculations of window observables or related quantities [83], could help locate
the origin of the tensions.

In addition, the detailed comparison to lattice QCD requires the calculation of isospin-
breaking (IB) effects and other subleading corrections to the isosymmetric, quark-connected
correlators. The sum of the dominant IB effects from 2π, K̄K, and the radiative channels
π0γ, ηγ [84] agrees reasonably well with ref. [55], but in the context of strong IB a larger
result was observed, more in line with an inclusive estimate from chiral perturbation theory
(ChPT) [85]. Albeit consistent within uncertainties, it thus seems prudent to extend the
analysis to IB in e+e− → 3π, especially, since the BaBar analysis [86] reports a signal for
ρ–ω mixing, an effect dominated by strong IB. Apart from the direct comparison to lattice
QCD, such IB corrections are also of interest for an indirect, data-driven determination of
quark-disconnected contributions [87–89].

In this work, we address the two main IB effects in e+e− → 3π. First, we study the
role of radiative corrections, with the aim to provide a correction factor analogous to η2π(s)
in e+e− → 2π [90–93] that quantifies the combined correction due to virtual photons and
final-state radiation (FSR) as a function of the center-of-mass energy of the process. Given
that already the leading order in ChPT is determined by the Wess-Zumino-Witten (WZW)
anomaly [94, 95], whose derivative structure mandates the inclusion of contact terms to
render loop corrections UV finite [96–98], a complete treatment that captures all low-energy
terms at O(α) while, at the same time, accounting for the resonance physics of the process
becomes a formidable challenge. Instead, we make use of the observation from ref. [99] in
the context of e+e− → ππ(γ), i.e., that by far the most relevant numerical effect arises
from the infrared (IR) enhanced contributions that survive after the cancellation of IR
singularities between virtual and bremsstrahlung diagrams. We set up a framework that
allows us to evaluate these corrections using as input basis function for a Khuri-Treiman
(KT) treatment of γ∗ → 3π [100], and extrapolate the resulting correction factor η3π(s)
to the 3π threshold by means of a non-relativistic (NR) expansion. After a review of
our dispersive representation for e+e− → 3π in section 2, this formalism is presented in
section 3.

2Explanations in terms of physics beyond the SM have been considered [69–72], but rather elaborate
constructions would be required to evade other constraints on the parameter space.
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The second major IB effect is generated by ρ–ω mixing. On the one hand, this effect
is expected to be enhanced compared to e+e− → 2π since the ω couples more weakly to
the electromagnetic current than the ρ — in a vector-meson-dominance (VMD) picture
by a relative factor 3, which thus translates to almost an order of magnitude in the ρ–ω
mixing contribution. On the other hand, the large width of the ρ makes the effect much
less localized than in the 2π system, in such a way that the resulting integral becomes more
sensitive to the assumed line shape, and care is required to differentiate an IB effect from
background contributions to the cross section. To parameterize the line shape in a way
consistent with the definition of the mixing parameter ϵω as a residue in e+e− → 2π, we
follow the coupled-channel formalism from ref. [46], with the main features summarized
in section 4. Updated fits to the e+e− → 3π data base are presented in section 5, the
consequences for aµ in section 6. We summarize our results in section 7.

2 Dispersive parameterization of e+e− → 3π

As starting point for the study of IB effects, we use the dispersive representation of the
e+e− → 3π cross section from ref. [14], first derived in the context of the pion transition
form factor [26, 27, 101]. The key idea amounts to combining the normalization from
the WZW anomaly in terms of the pion decay constant Fπ [102–104] with a calculation
of the ππ rescattering corrections in the KT formalism, generalizing work on ω, ϕ → 3π
decays [105–110] to arbitrary photon virtualities γ∗ → 3π.

The general expression of the matrix element for γ∗(q) → π+(p+)π−(p−)π0(p0) is given
by

⟨0|jµ(0)|π+(p+)π−(p−)π0(p0)⟩ = −ϵµναβp
ν
+p

α
−p

β
0F(s, t, u; q2), (2.1)

with q = p++p−+p0, s = (p++p−)2, t = (p−+p0)2, u = (p++p0)2, and s+t+u = 3M2
π+q2.

We further decompose the invariant function F as

F(s, t, u; q2) = F(s, q2) + F(t, q2) + F(u, q2), (2.2)

and perform a partial-wave expansion, where due to Bose symmetry only odd partial waves
contribute [111]

F(s, t, u; q2) =
∑
ℓ odd

fℓ(s, q2)P ′
ℓ(zs). (2.3)

The kinematic quantities are

zs = cos θs = t− u

κ(s, q2) , κ(s, q2) = σπ(s)λ1/2(q2,M2
π , s),

λ(x, y, z) = x2 + y2 + z2 − 2(xy + yz + xz), σπ(s) =

√
1− 4M2

π

s
, (2.4)

and P ′
ℓ(z) denotes the derivatives of the Legendre polynomials. The decomposition (2.2)

strictly applies as long as the discontinuities of F - and higher partial waves are negligible,
as well justified below the onset of the ρ3(1690) resonance [14, 106, 112]. The resulting
cross section is expressed as the integral

σe+e−→3π(q2) = α2
∫ smax

smin
ds
∫ tmax

tmin
dt s[κ(s, q

2)]2(1− z2
s )

768π q6 |F(s, t, u; q2)|2, (2.5)
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with integration boundaries

smin = 4M2
π , smax =

(√
q2 −Mπ

)2
,

tmin/max = (E∗
− + E∗

0)2 −
(√

E∗2
− −M2

π ±
√
E∗2

0 −M2
π

)2
, (2.6)

and

E∗
− =

√
s

2 , E∗
0 = q2 − s−M2

π

2
√
s

. (2.7)

The momentum dependence of the partial wave f1(s, q2) is then predicted from the KT
formalism up to an overall normalization a(q2), which we parameterize following the same
ansatz as in ref. [14]

a(q2) = αA + q2

π

∫ ∞

sthr
ds′ ImA(s′)

s′(s′ − q2) + Cp(q2). (2.8)

The three terms correspond to the WZW normalization, resonance contributions (most
notably ω and ϕ, but also ω′(1420), ω′′(1650) to be able to describe the data up to 1.8GeV),
and a conformal polynomial to parameterize non-resonant contributions. For the WZW
normalization, the best estimate is still given by [108, 113]

αA = F3π

3 × 1.066(10), F3π = 1
4π2F 3

π

, (2.9)

a low-energy theorem that could be tested with future lattice-QCD calculations [114–116].
The resonant contributions are described by taking the imaginary part from

A(q2) =
∑
V

cV

M2
V − q2 − i

√
q2 ΓV (q2)

. (2.10)

The energy-dependent widths ΓV (q2) for V = ω, ϕ include the main decay channels, in
particular, ω → π0γ sets the integration threshold to sthr = M2

π0 . For the 3π channel, the
partial width accounts for the 3π rescattering as well, and the remaining tiny effects from
the neglected channels ω → 2π and ϕ → ηγ are corrected by a rescaling of the partial
widths. ω′ and ω′′ are assumed to exclusively decay to 3π for simplicity. As before, we fix
the ω′′ parameters to the PDG values [117], but for ω′ we observe that our fits do become
sensitive to the assumption for the mass parameter, and thus introduce Mω′ as an additional
degree of freedom in our representation. The conformal polynomial,

Cp(q2) =
p∑

i=1
ci
(
z(q2)i − z(0)i), z(q2) =

√
sinel − s1 −

√
sinel − q2

√
sinel − s1 +

√
sinel − q2 , (2.11)

is unchanged compared to ref. [14]: sinel = 1GeV2, s1 = −1GeV2, and the absence of an
S-wave cusp as well as the sum rule for αA are imposed as additional constraints on Cp(q2).
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3 Electromagnetic corrections to e+e− → 3π

In the 2π channel, the effect of radiative corrections on the total cross section is often
estimated using “FsQED,” i.e., scalar QED dressed with the pion form factor F V

π . In a
dispersive picture, this approach amounts to isolating pion-pole contributions and replacing
the constant ππγ coupling as predicted in scalar QED by the full matrix element. This
procedure captures the IR-enhanced contributions, which provide the dominant effect
compared to non-pion-pole ππγ states [99], leading to a universal correction factor

σe+e−→2π(γ)(q2) = σ
(0)
e+e−→2π(q

2)
(
1 + α

π
η2π(q2)

)
, σ

(0)
e+e−→2π(q

2) = πα2

3q2 σ3
π(q2)

∣∣F V
π (q2)

∣∣2,
(3.1)

with [90–93]

η2π(s) =
3(1 + σ2

π(s))
2σ2

π(s)
− 4 log σπ(s) + 6 log 1 + σπ(s)

2 + 1 + σ2
π(s)

σπ(s)
F (σπ(s))

−
(1− σπ(s))

(
3 + 3σπ(s)− 7σ2

π(s) + 5σ3
π(s)

)
4σ3

π(s)
log 1 + σπ(s)

1− σπ(s)
,

F (x) = −4Li2(x) + 4Li2(−x) + 2 log x log 1 + x

1− x
+ 3Li2

(1 + x

2

)
− 3Li2

(1− x

2

)
+ π2

2 ,

Li2(x) = −
∫ x

0
dt
log(1− t)

t
. (3.2)

For the 2π channel, the role of radiative corrections beyond the FsQED approximation is an
active subject of discussion [79, 118–121], especially in view of the CMD-3 measurement [63],
but for e+e− → 3π so far no robust estimates of radiative corrections are available at all,
which strongly motivates the focus on the IR-enhanced effects as the numerically dominant
contribution.

To isolate these effects, we proceed as follows: even when neglecting the discontinuities
of ℓ ≥ 3 partial waves, the full amplitude receives contributions beyond P -waves from the
projection of the crossed-channel amplitudes, i.e.,

f1(s, q2) = F(s, q2) + F̂(s, q2), (3.3)

where

F̂(s, q2) = 3
2

∫ 1

−1
dzs
(
1− z2

s

)
F
(
t(s, q2, zs), q2). (3.4)

For the pure P -wave subsystem, the combination of the IR-enhanced virtual-photon and
bremsstrahlung diagrams reproduces the functional form of η2π as given in eq. (3.2), with
the momentum not determined by the e+e− invariant mass q2, but by the invariant mass
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of the π+π− subsystem. Accordingly, we can capture this effect by writing

σe+e−→3π(γ)(q2) ∝
∫ smax

smin
ds
∫ tmax

tmin
dt s

[
κ(s, q2)

]2(1− z2
s )

×
∣∣∣∣(F(s, q2) + F̂(s, q2)︸ ︷︷ ︸

f1(s,q2)

)√
1 + α

π
η2π(s)

+
(
F(t, q2) + F(u, q2)− F̂(s, q2)︸ ︷︷ ︸

f3(s,q2)+···

)√
1 + α

π
η2π(sPT)

∣∣∣∣2, (3.5)

where all factors that drop out in

1 + α

π
η3π(q2) =

σe+e−→3π(γ)(q2)

σ
(0)
e+e−→3π(q2)

(3.6)

have been ignored and sPT = (
√
q2 −Mπ)2 denotes the position of the pseudothreshold.

This kinematic point is critical, since F̂(s, q2) diverges at sPT, in such a way that the
crossed-channel contribution starting at ℓ = 3 needs to be multiplied by a function that
ensures that the cancellation at sPT is maintained in the presence of radiative corrections.
The choice of this kinematic function is not unique, in eq. (3.5) we show the minimal variant
in which a constant correction is assumed. However, the ambiguity in this correction only
affects higher partial waves, and by definition cannot contribute to the IR-enhanced effects
in the P -wave subsystem. For this reason, we may choose to evaluate this correction factor
at s instead of sPT, which simplifies the result to

σe+e−→3π(γ)(q2) ∝
∫ smax

smin
ds
∫ tmax

tmin
dt s

[
κ(s, q2)

]2(1− z2
s )

×
∣∣∣F(s, q2) + F(t, q2) + F(u, q2)

∣∣∣2(1 + α

π
η2π(s)

)
. (3.7)

We checked that both variants indeed lead to minor differences, and will continue to work
with eq. (3.7) in the following. For the numerical evaluation of eq. (3.6) we use the KT
basis functions from ref. [122].

In analogy to η2π, the correction factor η3π(q2) involves a Coulomb divergence at
threshold ∝ (q2 − 9M2

π)−1/2,3 so that for the application in fits to e+e− → 3π cross-section
data it is convenient to provide numerical results for

η̄3π(q2) = η3π(q2)
√
1− 9M2

π

q2 . (3.8)

Moreover, the numerical solution of the KT equations becomes unstable close to threshold,
making the determination of the coefficient of the Coulomb divergence by other means
valuable to be able to interpolate to the range starting at

√
q2 ≈ 3.3Mπ where a numerical

solution is feasible. This can be achieved by a NR expansion. Starting from

η2π(s) =
π2

2σπ(s)
− 2 +O(σπ), (3.9)

3We emphasize that the Coulomb divergence ∝ (s−4M2
π)−1/2 is present in eq. (3.7) for every q2. However,

after integration over s and t, this translates into a divergence in q2 only at the three-pion threshold.
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22.5

25.0

η
(q

2
)

Numerical results

η3π(q2) NR approximation

η2π((
√
q2 −Mπ)2)

Figure 1. Comparison of the numerical result for η3π (red solid), its NR approximation (red
dashed), and η2π shifted to the 3π threshold (blue solid).

we perform the substitution s = 4M2
π(1−x)+ (

√
q2 −Mπ)2x and expand

√
q2 = 3Mπ(1+ ϵ)

around threshold. The t integration and F(s, q2) + F(t, q2) + F(u, q2) can be ignored as
they cancel in the ratio, while the remaining kinematic dependence leads to

η3π(ϵ) =
256π

105
√
3ϵ

− 2 +O(
√
ϵ), (3.10)

and therefore
η̄3π(9M2

π) =
256π
105

√
2
3 . (3.11)

The numerical result for η3π is shown in figure 1, in comparison to the NR approximation
and η2π shifted to the 3π threshold. From this comparison it follows that η3π is really
distinctly different from η2π, reflected by the increase that is observed in addition to the
change of threshold. In figure 2, we also show the result for η̄3π, as we will use in the
implementation together with the threshold factor in eq. (3.8).

4 ρ–ω mixing in e+e− → 3π

ρ–ω mixing in e+e− → 2π can be implemented via a correction factor [81]

Gω(s) = 1 + s

π

∫ ∞

9M2
π

ds′ Re ϵω

s′(s′ − s) Im
[

s′

(Mω − i
2Γω)2 − s′

]1− 9M2
π

s′

1− 9M2
π

M2
ω

4

+ s

π

∫ ∞

M2
π0

ds′ Im ϵω

s′(s′ − s)Re
[

s′

(Mω − i
2Γω)2 − s′

]1−
M2

π0
s′

1−
M2

π0
M2

ω


3

, (4.1)
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NR expansion
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Figure 2. 3π FSR factor η̄3π, with the threshold divergence removed according to eq. (3.8) (the
result is available as text file in the supplementary material attached to this paper).

which amounts to a dispersively improved variant of a Breit-Wigner ansatz

gω(s) = 1 + ϵωs

M2
ω − s− iMωΓω

(4.2)

that, besides removing the unphysical imaginary part below the 3π threshold, also allows
for the π0γ cut and thus an IB phase in ϵω. In particular, eq. (4.1) shows that ρ–ω mixing
in e+e− → 2π is intimately related to the residue at the ω pole, since the small width of
the ω, together with the threshold and asymptotic constraints on the line shape, leaves
little freedom in the construction of Gω(s).

In contrast, ρ–ω mixing in e+e− → 3π is far less localized, and due to the large width
of the ρ a significant sensitivity to the assumed line shape off the resonance is expected. In
particular, the absence of sharp interference features in the cross section could potentially
lead one to misidentify a non-resonant background as an IB contribution. To mitigate
such effects, we use the line shape as predicted by the coupled-channel formalism from
ref. [46] for e+e−, π+π−, and 3π, constructed for a consistent implementation of ρ–ω mixing
in e+e− → 2π, η′ → π+π−γ, and the η′ transition form factor. The main idea follows
ref. [123] (see also refs. [124, 125]): the full multichannel scattering amplitude arises from
iterating a scattering potential via self energies, combined with elastic ππ rescattering as
described by the Omnès function [126] in a way that is consistent with analyticity and
unitarity. Including the photon and ω poles in the resonance potential, the formalism then
predicts the shape of the amplitudes in the various channels that follows from a dispersive
representation of the self energies together with the multichannel dynamics.

– 8 –
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As a first step, the formalism reproduces the vacuum polarization (VP) function

Π(s) = Πe(s) + Ππ(s)
(
1 + 2sϵω

M2
ω − s− iMωΓω

)
+Πω(s) +O(ϵ2

ω), (4.3)

where the ω contribution is represented in a narrow-width approximation

Πω(s) =
1
g2

ωγ

e2s

s−M2
ω + iMωΓω

, (4.4)

while the ρ remains resolved as a 2π resonance

Ππ(s) = − e2s

48π2

∫ ∞

4M2
π

ds′σ
3
π(s′)|F V

π (s′)|2

s′(s′ − s− iϵ) . (4.5)

Πe(s) in eq. (4.3) gives the leptonic VP, and ρ–ω mixing is represented by a product of
Ππ(s) with the narrow-width ω propagator. For Γρ → 0, Ππ(s) collapses to

Ππ(s) → Πρ(s) =
1
g2

ργ

e2s

s−M2
ρ + iMρΓρ

. (4.6)

The couplings introduced in eqs. (4.4) and (4.6) are related to the dilepton decay V → e+e−

via ΓV →e+e− = 4πα2MV /(3|gV γ |2); numerically, we will use |gωγ | = 16.2(8) [46] and
|gργ | = 4.9(1) [112], where the latter determination invokes an analytic continuation
to the ρ pole instead of a narrow-resonance estimate on the real axis. The deviation
of |gωγ |/|gργ | = 3.3(2) from 3 quantifies the deviation from the VMD expectation in
these couplings.

Most importantly, the same formalism also reproduces eq. (4.2) for ρ–ω mixing in
e+e− → 2π, and predicts the analog correction for e+e− → 3π [46]

gπ(s) = 1−
g2

ωγϵω

e2 Ππ(s). (4.7)

In the narrow-width limit (4.6) one thus finds the exact same form apart from ϵω →
ϵωg

2
ωγ/g

2
ργ , and thus the VMD enhancement factor expected from the smaller photon

coupling of the ω.4 However, instead of having to rely on a narrow-width approximation for
the ρ, we can use the full result (4.7), which ensures that the mixing parameter ϵω is defined
in a way consistent with e+e− → 2π, and that the line shape correctly implements the
dispersion relation for the two-pion self energy. In practice, we will use eq. (4.5) with ρ–ω
mixing in F V

π (s) switched off, given that such higher-order IB effects cannot be described
in a consistent manner.

From similar arguments, we can glean some intuition about the size of IB to be expected
in the different channels when inserted into the HVP integral. To this end, we write the
HVP master formula as [129, 130]

aHVP
µ =

(αmµ

3π
)2 ∫ ∞

sthr
dsK̂(s)

s2 Rhad(s) = −
(αmµ

3π
)2 ∫ ∞

sthr
dsK̂(s)

s2
12π
e2 ImΠ(s), (4.8)

4In the typical conventions [127, 128], the coupling strength is proportional to 1/gV γ .
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with

K̂(s) = 3s
m2

µ

[
x2

2 (2− x2) + (1 + x2)(1 + x)2

x2

(
log(1 + x)− x+ x2

2

)
+ 1 + x

1− x
x2 log x

]
,

x = 1− σµ(s)
1 + σµ(s)

, σµ(s) =

√
1−

4m2
µ

s
. (4.9)

In the narrow-width limit, one thus finds

aρ
µ =

(αmµ

3π
)2 K̂(M2

ρ )
M2

ρ

12π2

|gργ |2
≃ 482× 10−10,

aω
µ =

(αmµ

3π
)2 K̂(M2

ω)
M2

ω

12π2

|gωγ |2
≃ 43.6× 10−10, (4.10)

both within a few percent of the expected contribution when integrating around the ρ and
ω resonances in the 2π and 3π cross sections, respectively. Based on eq. (4.3), the ρ–ω
mixing contribution becomes

aρ–ω
µ =

(αmµ

3π
)2 ∫ ∞

sthr
ds K̂(s)24πϵω

|gργ |2
Im
[ 1
s−M2

ρ + iMρΓρ

1
s−M2

ω + iMωΓω

]
. (4.11)

This expression is of course rather sensitive to integration range and line shape, clearly, for
such a subtle interference a narrow-width approximation for the ρ is not adequate. Still, it
is striking that the numerical evaluation of eq. (4.11) produces |aρ–ω

µ | ≲ 0.5× 10−10, while
even a simple narrow-width formula such as eq. (4.6) for F V

π (s) multiplied with eq. (4.2)
gives results for the ρ–ω contribution in the 2π channel much closer to the detailed analysis
of ref. [81]. Ultimately, this behavior seems to arise because the entire ρ–ω mixing effect
from eq. (4.3) should not be attributed to the 2π channel alone, instead, a partial-fraction
decomposition

1
s−M2

ρ + iMρΓρ

1
s−M2

ω + iMωΓω
= 1

M2
ρ −M2

ω − iMρΓρ+ iMωΓω

×
( 1
s−M2

ρ + iMρΓρ
− 1
s−M2

ω + iMωΓω

)
(4.12)

suggests that a ρ–ω mixing contribution should arise in both the 2π and 3π channel, and
while the detailed phenomenology will again crucially depend on the line shape, evaluating
both terms in eq. (4.12) separately in the integral (4.11) does produce sizable cancellations.
From this perspective, at least a partial cancellation of the ρ–ω mixing contributions in the
actual e+e− → 2π and e+e− → 3π cross sections would not appear surprising.

5 Fits to e+e− → 3π data

5.1 Fits to data base prior to BaBar 2021

As a first step, we update the combined fit presented in ref. [14], to reflect several recent
developments and provide a first demonstration of the consequences of the IB corrections
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included in the new fit function. Regarding the data base, the SND data set [131] has been
superseded by the update from ref. [132], and likewise ref. [133] has been superseded by
ref. [86], which we will consider in section 5.2. All other data sets from SND [134–136] and
CMD-2 [137–140] are treated as described in ref. [14], while the old data from DM1 [141],
DM2 [142], and ND [143] are no longer included. The motivation for this cut is given by
inconsistencies that exist especially in the energy range between the ω and ϕ resonances
compared to the modern data sets. Previously, these tensions in the data base essentially
resulted in a slightly worse χ2/dof, but, as expected, the size of the ρ–ω mixing contribution
depends more strongly on the line shape between the resonances, in such a way that such
inconsistencies can no longer be tolerated without distorting the ρ–ω mixing signal. We
also update the resonance parameters of the excited ω states [117]

Mω′ = 1410(60)MeV, Γω′ = 290(190)MeV,

Mω′′ = 1670(30)MeV, Γω′′ = 315(35)MeV. (5.1)

However, given that the ω′ parameters are rather uncertain, we also considered variants in
which Mω′ , Γω′ are allowed to vary, revealing in some cases a relevant sensitivity to Mω′ ,
which will therefore be added as a free parameter. A D’Agostini bias [144] from correlated
systematic errors is avoided by an iterative procedure [145], see ref. [14] for more details.

The new fit function decomposes as follows: the normalization a(q2) is parameterized as
in eq. (2.8), with the ω contribution multiplied by gπ(q2) defined as in eq. (4.7). Furthermore,
all data sets are assumed to contain FSR corrections, which we remove using η3π(q2) prior
to the fit. Only in the final step, the calculation of the HVP loop integral (4.8), are the FSR
corrections added back. This procedure follows the same approach as for e+e− → π+π−,
since the dispersive representation, strictly speaking, only applies for the amplitudes from
which virtual-photon corrections have been removed.

The results for this updated fit are shown in table 1. First of all, we observe a clear
improvement of the χ2/dof when including ρ–ω mixing, from about 1.4 to 1.2, which is
reflected by the fact that all fits prefer a non-zero value of Re ϵω at high significance (about
5σ in terms of the fit uncertainty). Remarkably, the resulting value of Re ϵω comes out
largely consistent with the extraction from e+e− → π+π−, Re ϵω = 1.97(3) × 10−3 [81].
Moreover, since the fits are still not perfect, suggesting residual systematic tensions in the
data base, we will inflate the final errors by a scale factor S =

√
χ2/dof. Table 1 also

includes the entire HVP integral a3π
µ , the FSR contribution aFSR

µ , and the ρ–ω mixing
contribution aρ–ω

µ , all integrated up to 1.8GeV. To isolate first-order IB effects, we follow
ref. [81] and define aFSR

µ for ϵω = 0 and aρ–ω
µ with FSR corrections switched off. A more

detailed account of the consequences for IB effects in aµ will be given in section 6, but
one can already anticipate that aρ–ω

µ comes out large and negative, leading to a significant
cancellation with aρ–ω

µ [2π] = 3.68(17)× 10−10 [81].
To understand how robust this cancellation is, it is critical to study the systematic

uncertainties in aρ–ω
µ [3π]. As argued in section 4, the main effect is expected from the

assumptions on the line shape, which we determined in such a way that analyticity and
unitarity constraints from the coupled-channel system are incorporated, in order to ensure
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nconf = 0 nconf = 1

pconf 2 3 4 2 3 4

χ2/dof 274.4/228 271.2/227 270.4/226 287.5/228 284.5/227 271.6/226

= 1.21 = 1.19 = 1.20 = 1.26 = 1.25 = 1.20

p-value 0.02 0.02 0.02 0.005 0.006 0.02

Mω [MeV] 782.70(3) 782.69(3) 782.70(3) 782.70(3) 782.70(3) 782.69(3)

Γω [MeV] 8.73(3) 8.74(3) 8.74(4) 8.73(3) 8.73(3) 8.71(4)

Mϕ [MeV] 1019.20(1) 1019.19(1) 1019.19(1) 1019.20(1) 1019.20(1) 1019.21(1)

Γϕ [MeV] 4.25(3) 4.24(3) 4.24(3) 4.25(3) 4.25(3) 4.26(3)

Mω′ [GeV] 1.433(17) 1.416(24) 1.408(22) 1.383(11) 1.392(10) 1.425(29)

cω [GeV−1] 2.91(2) 2.92(2) 2.93(3) 2.93(2) 2.92(2) 2.88(3)

cϕ [GeV−1] −0.388(3) −0.388(3) −0.387(3) −0.388(3) −0.388(3) −0.390(3)

cω′ [GeV−1] −0.22(4) −0.12(6) −0.15(7) −0.23(5) −0.29(7) 0.13(7)

cω′′ [GeV−1] −1.64(7) −1.54(8) −1.51(10) −0.89(6) −0.93(7) 3.37(7)

c1 [GeV−3] −0.34(8) −0.25(9) −0.16(14) −1.31(9) −1.30(9) −2.14(6)

c2 [GeV−3] −1.26(5) −1.34(7) −1.40(10) −0.29(10) −0.32(10) −1.81(5)

c3 [GeV−3] — −0.53(7) −0.50(8) — −0.23(8) −0.62(6)

c4 [GeV−3] — — 1.38(9) — — 2.80(12)

104 × ξCMD-2 1.3(5) 1.2(5) 1.2(5) 1.3(5) 1.3(5) 1.3(5)

103 × Re ϵω 1.48(28) 1.42(28) 1.46(28) 1.62(28) 1.61(29) 1.39(30)

1010 × a3π
µ |≤1.8 GeV 45.68(48) 45.84(49) 46.01(54) 45.83(51) 45.77(51) 45.18(51)

1010 × aFSR
µ [3π] 0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.50(1)

1010 × aρ–ω
µ [3π] −2.62(49) −2.54(49) −2.61(49) −2.95(50) −2.91(51) −2.32(49)

Table 1. Fits to the combination of SND [132, 134–136] and CMD-2′ [137–140] (the prime indicates
the data selection as detailed in ref. [14], including the energy calibration ξCMD-2). pconf denotes the
number of degrees of freedom in the conformal polynomial Cp(q2), nconf refers to the asymptotic
behavior ImCp(q2) ∼ q−(2nconf+1). All couplings are given in units of 1/e = 1/

√
4πα, in accordance

with ref. [14]. The uncertainties refer to fit errors only, they are not yet rescaled by S =
√
χ2/dof.

consistency with the 2π contribution. Beyond such considerations, the analysis from ref. [81]
demonstrates that in the 2π case the biggest impact on the line shape arises from the small
IB phase δϵ in ϵω, generated by π0γ and other radiative channels. To quantify its impact,
we consider three scenarios: (i) δϵ = 0 (as assumed in table 1), (ii) δϵ = 3.5◦ (as expected
from narrow-resonance arguments [81]), and (iii) a free phase δϵ as additional fit parameter.
To avoid unphysical imaginary parts below threshold, we implement this phase via

ϵω → Re ϵω + iIm ϵω

(
1−

M2
π0

q2

)3

(
1−

M2
π0

M2
ω

)3 θ
(
q2 −M2

π0
)
, (5.2)
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δϵ = 3.5◦ δϵ free

pconf 2 3 4 2 3 4

χ2/dof 276.4/228 271.4/227 269.9/226 275.0/227 271.2/226 269.8/225

= 1.21 = 1.20 = 1.19 = 1.21 = 1.20 = 1.20

p-value 0.02 0.02 0.02 0.02 0.02 0.02

Mω [MeV] 782.69(3) 782.69(3) 782.70(3) 782.70(3) 782.69(3) 782.70(3)

Γω [MeV] 8.71(3) 8.73(3) 8.74(4) 8.74(4) 8.74(4) 8.73(3)

Mϕ [MeV] 1019.20(1) 1019.19(1) 1019.20(1) 1019.20(1) 1019.19(1) 1019.20(2)

Γϕ [MeV] 4.25(3) 4.24(3) 4.24(3) 4.25(3) 4.24(3) 4.24(3)

Mω′ [GeV] 1.432(16) 1.415(24) 1.405(19) 1.433(17) 1.416(24) 1.403(19)

cω [GeV−1] 2.92(2) 2.93(2) 2.95(3) 2.90(3) 2.92(3) 2.95(4)

cϕ [GeV−1] −0.389(3) −0.388(3) −0.387(3) −0.388(3) −0.388(3) −0.387(3)

cω′ [GeV−1] −0.22(4) −0.12(6) −0.16(7) −0.22(4) −0.12(6) −0.16(7)

cω′′ [GeV−1] −1.65(6) −1.55(8) −1.51(9) −1.63(7) −1.54(8) −1.50(9)

c1 [GeV−3] −0.33(8) −0.24(9) −0.12(15) −0.34(8) −0.25(10) −0.09(18)

c2 [GeV−3] −1.26(5) −1.34(7) −1.43(10) −1.26(5) −1.34(7) −1.45(12)

c3 [GeV−3] — −0.54(7) −0.50(8) — −0.53(7) −0.49(8)

c4 [GeV−3] — — 1.40(9) — — 1.42(10)

104 × ξCMD-2 1.3(5) 1.2(5) 1.3(5) 1.3(5) 1.2(5) 1.3(5)

103 × Re ϵω 1.49(29) 1.45(29) 1.51(29) 1.43(29) 1.43(29) 1.54(30)

δϵ [◦] 3.5 3.5 3.5 −4.2(7.1) 0.5(7.2) 5.4(7.5)

1010 × a3π
µ |≤1.8 GeV 45.56(48) 45.73(49) 45.95(53) 45.82(49) 45.82(50) 45.94(57)

1010 × aFSR
µ [3π] 0.51(1) 0.51(1) 0.51(1) 0.50(1) 0.51(1) 0.52(1)

1010 × aρ–ω
µ [3π] −2.99(58) −2.92(58) −3.08(58) −2.13(93) −2.59(95) −3.33(1.17)

Table 2. Same as table 1 (nconf = 0), with δϵ = 3.5◦ (left) and a free fit parameter (right).

motivated by the main decay channel ρ → π0γ → ω that can generate such a phase. The
results for (ii) and (iii) collected in table 2 show that the data are not sensitive to δϵ, but the
variation in aρ–ω

µ provides some indication for the uncertainty associated with the assumed
line shape.

5.2 Fits to BaBar 2021

Next, we perform the same fits as in section 5.1 to the BaBar data [86]. This data set is
split into two parts, above and below

√
q2 = 1.1GeV. For the data set below 1.1GeV, we

use the statistical and systematic covariance matrices as provided in ref. [86], for the data
set above 1.1GeV we assume the systematic errors to be 100% correlated. In either case we
use the bare cross sections as provided, again interpreted as including soft FSR effects.

In addition to the iterative procedure required to obtain unbiased fit results, another
complication for data taken using initial-state radiation (ISR) concerns the energy calibration.
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nconf = 0 nconf = 1

pconf 2 3 4 2 3 4

χ2/dof 183.7/130 183.7/129 181.7/128 219.7/130 216.7/129 214.7/128

= 1.41 = 1.42 = 1.42 = 1.69 = 1.68 = 1.68

p-value 0.001 0.001 0.001 1× 10−6 2× 10−6 2× 10−6

Mω [MeV] 782.54(1) 782.54(1) 782.54(1) 782.54(1) 782.54(1) 782.54(1)

Γω [MeV] 8.72(2) 8.72(2) 8.72(2) 8.70(2) 8.69(2) 8.69(2)

Mϕ [MeV] 1019.28(1) 1019.28(1) 1019.28(1) 1019.28(1) 1019.28(1) 1019.28(1)

Γϕ [MeV] 4.29(1) 4.29(1) 4.29(1) 4.29(1) 4.29(1) 4.29(1)

Mω′ [GeV] 1.457(8) 1.456(9) 1.471(9) 1.394(5) 1.400(6) 1.411(9)

cω [GeV−1] 2.96(2) 2.96(2) 2.95(2) 2.94(2) 2.94(2) 2.93(3)

cϕ [GeV−1] −0.380(2) −0.380(3) −0.379(2) −0.378(2) −0.378(2) −0.378(2)

cω′ [GeV−1] −0.37(5) −0.37(8) −0.48(10) −0.46(6) −0.51(7) −0.53(7)

cω′′ [GeV−1] −2.04(7) −2.03(14) −2.44(26) −1.11(5) −1.16(5) −1.25(8)

c1 [GeV−3] 0.24(11) 0.23(13) 0.29(11) −1.11(6) −1.06(6) −1.07(6)

c2 [GeV−3] −1.15(4) −1.16(7) −0.76(25) −0.16(7) −0.14(6) −0.09(8)

c3 [GeV−3] — −1.01(15) −1.45(27) — −0.33(7) −0.31(7)

c4 [GeV−3] — — 1.17(12) — — −0.09(8)

103 × Re ϵω 1.73(22) 1.73(22) 1.70(22) 1.85(23) 1.83(23) 1.79(24)

1010 × a3π
µ |≤1.8 GeV 45.98(44) 45.99(44) 45.84(46) 45.78(44) 45.81(42) 45.74(44)

1010 × aFSR
µ [3π] 0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.51(1) 0.50(1)

1010 × aρ–ω
µ [3π] −3.09(38) −3.09(38) −3.02(38) −3.33(41) −3.31(41) −3.24(42)

Table 3. Same as table 1, but for the BaBar 2021 data set [86].

In contrast to the energy-scan experiments SND or CMD-2, the cross-section data do not
correspond to a set beam energy, but are provided in bins, with events distributed in
accordance with the underlying cross section. Accordingly, the actual observable for a bin[
q2

i,min, q
2
i,max

]
is given by

f(xi) =
1

q2
i,max − q2

i,min

∫ q2
i,max

q2
i,min

dq2 σe+e−→3π(γ)(q2), (5.3)

or, equivalently, the actual q2
i , replacing the center of the bin, can be obtained by solving

f(xi) = σe+e−→3π(γ)(q2
i ). The results of the fits are summarized in tables 3 and 4. In general,

the conclusions regarding ρ–ω mixing are similar as for the previous fits in section 5.1. While
there is some indication that a positive phase is favored, the gain in the χ2 is marginal, and we
conclude that also in this case the data are hardly sensitive to δϵ. The real part Re ϵω comes
out slightly larger, but, within uncertainties, in agreement with the direct-scan experiments.
More problematic is the discrepancy in the pole parameters of ω and ϕ, with Mω significantly
below the values extracted from the direct-scan experiments, and Mϕ significantly above.
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δϵ = 3.5◦ δϵ free

pconf 2 3 4 2 3 4

χ2/dof 179.7/130 179.6/129 178.1/128 176.3/129 174.3/128 174.1/127

= 1.38 = 1.39 = 1.39 = 1.37 = 1.36 = 1.37

p-value 0.003 0.002 0.002 0.004 0.004 0.004

Mω [MeV] 782.54(1) 782.54(1) 782.54(1) 782.54(1) 782.54(1) 782.54(1)

Γω [MeV] 8.71(2) 8.71(2) 8.71(2) 8.71(2) 8.70(2) 8.70(2)

Mϕ [MeV] 1019.28(1) 1019.28(1) 1019.28(1) 1019.28(1) 1019.28(1) 1019.28(1)

Γϕ [MeV] 4.29(1) 4.29(1) 4.29(1) 4.29(1) 4.29(1) 4.29(1)

Mω′ [GeV] 1.457(2) 1.454(12) 1.466(10) 1.454(9) 1.443(9) 1.448(17)

cω [GeV−1] 2.98(2) 2.98(2) 2.97(2) 3.01(3) 3.03(3) 3.02(3)

cϕ [GeV−1] −0.380(2) −0.380(2) −0.379(2) −0.379(2) −0.379(2) −0.379(2)

cω′ [GeV−1] −0.40(4) −0.37(8) −0.45(10) −0.44(6) −0.37(7) −0.38(8)

cω′′ [GeV−1] −2.14(7) −2.08(14) −2.40(24) −2.30(10) −2.18(13) −2.27(21)

c1 [GeV−3] 0.36(10) 0.32(13) 0.35(11) 0.57(14) 0.55(14) 0.53(14)

c2 [GeV−3] −1.13(3) −1.15(7) −0.84(23) −1.08(5) −1.15(7) −1.06(21)

c3 [GeV−3] — −1.06(16) −1.39(25) — −1.13(13) −1.21(23)

c4 [GeV−3] — — 1.25(11) — — 1.45(11)

103 × Re ϵω 1.84(22) 1.84(22) 1.81(23) 1.93(23) 1.96(22) 1.95(23)

δϵ [◦] 3.5 3.5 3.5 9.8(3.1) 12.2(3.2) 11.9(3.5)

1010 × a3π
µ |≤1.8 GeV 45.92(43) 45.95(45) 45.82(45) 45.77(44) 45.82(45) 45.79(49)

1010 × aFSR
µ [3π] 0.52(1) 0.52(1) 0.52(1) 0.53(1) 0.54(1) 0.54(1)

1010 × aρ–ω
µ [3π] −3.75(45) −3.75(45) −3.67(45) −4.83(72) −5.31(72) −5.20(82)

Table 4. Same as table 2, but for the BaBar 2021 data set [86].

5.3 Global fit

From the fits presented in sections 5.1 and 5.2 it is clear that some tensions in the data base
are present that will prevent a global fit of acceptable fit quality, in fact, already the fits to the
BaBar data [86] alone display rather low p-values. In the end, we will attempt to remedy this
shortcoming by introducing scale factors S =

√
χ2/dof to try and include unaccounted-for

systematic effects. More critical than the overall fit quality is the mismatch in Mω and Mϕ

into opposite directions, which cannot be resolved via a linear shift in the energy calibration,
as was included in ref. [14] for part of the CMD-2 data [140] and vital for a global analysis of
e+e− → π+π− [13, 81]. However, a consistent energy calibration of ISR data covering both
the ω and ϕ resonances is challenging, as reflected by the additional uncertainties ∆Mω =
0.06MeV and ∆Mϕ = 0.08MeV quoted in ref. [86].5 We emphasize that the agreement
with PDG parameters found in ref. [86] is accidental, relying on including the ω mass

5We thank M. Davier and V. Druzhinin for their assessment of the expected accuracy of the energy
calibration in the ISR data.
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nconf = 0 nconf = 1

pconf 2 3 4 2 3 4

χ2/dof 504.9/368 494.7/367 481.9/366 545.9/368 537.8/367 537.3/366

= 1.37 = 1.35 = 1.32 = 1.48 = 1.47 = 1.47

p-value 3× 10−6 1× 10−5 4× 10−5 4× 10−9 1× 10−8 1× 10−8

Mω [MeV] 782.70(3) 782.70(3) 782.70(3) 782.71(3) 782.70(3) 782.70(3)

Γω [MeV] 8.70(2) 8.71(2) 8.72(2) 8.71(2) 8.70(2) 8.70(2)

Mϕ [MeV] 1019.21(1) 1019.21(1) 1019.21(1) 1019.22(1) 1019.22(1) 1019.22(1)

Γϕ [MeV] 4.27(1) 4.27(1) 4.27(1) 4.27(1) 4.27(1) 4.27(1)

Mω′ [GeV] 1.445(10) 1.436(23) 1.418(11) 1.395(6) 1.403(6) 1.408(9)

cω [GeV−1] 2.93(1) 2.93(1) 2.96(2) 2.95(1) 2.94(1) 2.94(2)

cϕ [GeV−1] −0.380(1) −0.380(1) −0.381(2) −0.381(1) −0.381(1) −0.381(1)

cω′ [GeV−1] −0.24(3) −0.15(4) −0.23(5) −0.29(3) −0.38(4) −0.37(5)

cω′′ [GeV−1] −1.77(4) −1.67(5) −1.59(6) −1.02(4) −1.09(4) −1.13(7)

c1 [GeV−3] −0.18(5) −0.13(6) 0.03(8) −1.16(5) −1.11(5) −1.11(5)

c2 [GeV−3] −1.21(3) −1.29(4) −1.43(6) −0.16(5) −0.16(4) −0.15(5)

c3 [GeV−3] — −0.65(5) −0.57(6) — −0.41(5) −0.40(5)

c4 [GeV−3] — — 1.35(5) — — −0.03(5)

104 × ξCMD-2 1.4(5) 1.3(5) 1.3(5) 1.4(5) 1.4(5) 1.4(5)

103 × ξBaBar 1.3(2) 1.3(2) 1.3(2) 1.3(2) 1.3(2) 1.3(2)

103 × ξ′
BaBar [GeV−1] −2.3(3) −2.3(4) −2.3(3) −2.3(4) −2.3(4) −2.3(4)

103 × Re ϵω 1.51(18) 1.49(18) 1.60(17) 1.71(18) 1.68(17) 1.65(19)

1010 × a3π
µ |≤1.8 GeV 45.74(31) 45.91(32) 46.26(33) 45.96(31) 45.92(31) 45.86(32)

1010 × aFSR
µ [3π] 0.51(0) 0.51(0) 0.52(0) 0.51(0) 0.51(0) 0.51(0)

1010 × aρ–ω
µ [3π] −2.70(31) −2.68(31) −2.91(30) −3.14(31) −3.08(30) −3.03(33)

Table 5. Same as table 1, but for the global fit to SND [132, 134–136], CMD-2′ [137–140], and
BaBar [86].

determination from p̄p → ωπ0π0 [146] in the average despite being in conflict with e+e− →
3π, but acknowledge that the associated uncertainties make it appear likely that the energy
calibration in the direct-scan data should be considered more robust. To account for the
tensions in Mω and Mϕ in a minimal fashion, we thus allow for a quadratic energy rescaling

√
s →

√
s+ ξ

(√
s− 3Mπ

)
+ ξ′

(√
s− 3Mπ

)2 (5.4)

in the fit to ref. [86].6 The results of this global fit are summarized in tables 5 and 6. In
particular, the comparison of the fits with δϵ = 0, δϵ = 3.5◦, and a free δϵ again shows that
the sensitivity to this parameter is small, with marginal changes in the fit quality. In contrast,
fits with improved asymptotic behavior, nconf = 1, do display a significantly worse χ2/dof.

6We apply this rescaling only to the data set below 1.1GeV, since no tensions arise in the fit of the
data above.
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δϵ = 3.5◦ δϵ free

pconf 2 3 4 2 3 4

χ2/dof 512.7/368 497.2/367 479.4/366 498.4/367 494.1/366 478.3/365

= 1.39 = 1.35 = 1.31 = 1.36 = 1.35 = 1.31

p-value 8× 10−7 7× 10−6 6× 10−5 6× 10−6 9× 10−6 6× 10−5

Mω [MeV] 782.69(2) 782.70(3) 782.70(2) 782.70(3) 782.70(2) 782.70(2)

Γω [MeV] 8.69(2) 8.70(2) 8.72(2) 8.72(2) 8.71(2) 8.71(2)

Mϕ [MeV] 1019.22(1) 1019.21(1) 1019.21(1) 1019.21(1) 1019.21(1) 1019.22(1)

Γϕ [MeV] 4.27(1) 4.27(1) 4.27(1) 4.27(1) 4.27(1) 4.27(1)

Mω′ [GeV] 1.444(9) 1.432(5) 1.412(10) 1.445(10) 1.437(3) 1.407(6)

cω [GeV−1] 2.93(1) 2.94(2) 2.97(2) 2.91(2) 2.93(2) 2.99(1)

cϕ [GeV−1] −0.380(1) −0.380(1) −0.382(1) −0.381(1) −0.380(1) −0.381(1)

cω′ [GeV−1] −0.25(3) −0.13(4) −0.23(5) −0.23(3) −0.16(4) −0.24(2)

cω′′ [GeV−1] −1.79(4) −1.68(5) −1.59(6) −1.72(5) −1.67(5) −1.58(1)

c1 [GeV−3] −0.15(5) −0.10(5) 0.11(8) −0.22(6) −0.15(6) 0.19(4)

c2 [GeV−3] −1.20(3) −1.30(4) −1.48(5) −1.22(3) −1.28(4) −1.51(3)

c3 [GeV−3] — −0.65(4) −0.56(5) — −0.65(5) −0.55(1)

c4 [GeV−3] — — 1.40(5) — — 1.44(2)

104 × ξCMD-2 1.4(5) 1.3(5) 1.3(5) 1.3(5) 1.2(5) 1.3(5)

103 × ξBaBar 1.3(2) 1.3(2) 1.3(2) 1.3(2) 1.3(2) 1.3(2)

103 × ξ′
BaBar [GeV−1] −2.3(3) −2.3(4) −2.3(3) −2.3(3) −2.3(3) −2.3(3)

103 × Re ϵω 1.45(18) 1.49(18) 1.68(17) 1.44(18) 1.47(17) 1.72(10)

δϵ [◦] 3.5 3.5 3.5 −7.2(3.3) −2.2(3.6) 6.8(1.8)

1010 × a3π
µ |≤1.8 GeV 45.61(30) 45.81(31) 46.22(32) 46.00(31) 45.97(32) 46.17(26)

1010 × aFSR
µ [3π] 0.51(0) 0.51(0) 0.52(0) 0.50(0) 0.51(0) 0.53(0)

1010 × aρ–ω
µ [3π] −2.93(36) −3.04(37) −3.47(34) −1.87(46) −2.42(51) −3.97(34)

Table 6. Same as table 2, but for the global fit to SND [132, 134–136], CMD-2′ [137–140], and
BaBar [86].

To assign uncertainties to our results we thus proceed as follows. First, the statistical
errors are inflated by the scale factor S =

√
χ2/dof. Following ref. [14], we take the

fits with pconf = 3 to define the central values, as several fits with pconf = 4 already
display signs of overfitting. The systematic error from the truncation of the conformal
polynomial is then estimated as the maximum difference compared to the fit variants with
pconf = 2, 4. In addition, in ref. [14] we included the variation to fits with nconf = 1, but
given the observations above this recipe no longer appears appropriate with our improved
dispersive formalism. The remaining uncertainties are better represented by scanning over
the sensitivity to δϵ, given that these fits are not distinguished by the χ2 criterion. In view
of the narrow-width arguments in favor of a small phase δϵ = 3.5(1.0)◦ [81], combined with
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Figure 3. Fit to the bare e+e− → 3π data sets as detailed in section 5.1. The gray band shows the
total uncertainty, while the black band represents the fit uncertainty only. The difference between
the two is hardly visible on the logarithmic plot, as they are of similar size in most regions.

the lack of sensitivity to this phase in the e+e− → 3π data themselves, we quote the results
at δϵ = 0 as central values, while assigning the change to δϵ = 3.5◦ as an additional source
of systematic uncertainty. Our central fit is illustrated in figure 3, with zoom-in views of
the ω and ϕ regions in figure 4.

With this procedure, we find

Mω = 782.697(32)(4)(4)[32]MeV, Γω = 8.711(21)(12)(10)[26]MeV,

Mϕ = 1019.211(17)(4)(1)[17]MeV, Γϕ = 4.270(13)(3)(1)[13]MeV,

Mω′ = 1436(26)(17)(6)[32]MeV,

Re ϵω = 1.49(21)(11)(8)[25]× 10−3, (5.5)

where the errors refer to statistics, truncation of the conformal polynomial, dependence on δϵ,
and quadratic sum, respectively. The mass of the ω′ comes out in agreement with eq. (5.1),
the mixing parameter about 1.9σ below the expectation from e+e− → 2π. The comparison
of the ω and ϕ resonance parameters to our previous determinations [14, 17, 82] as well
as the PDG values [117] is given in table 7. For the mass parameters, the main change
concerns the improved functional form of the representation including ρ–ω interference,
which leads to an increase in Mω of 0.06MeV, while the change in Mϕ is much smaller. In
both cases, the precision hardly changes when including the BaBar data [86], ultimately due
to the necessity of the energy rescaling (5.4). In contrast, the uncertainties in the widths
decrease appreciably when including ref. [86], about a factor 2 for Γω and a factor 4 for Γϕ.
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Figure 4. Same as figure 3, but for the close-up views of the ω and ϕ resonance regions.

e+e− → π0γ e+e− → K̄K e+e− → 3π
ref. [17] ref. [82] ref. [14] this work PDG [117]

Mω [MeV] 782.584(28) — 782.631(28) 782.697(32) 782.53(13)
Γω [MeV] 8.65(6) — 8.71(6) 8.711(26) 8.74(13)
Mϕ [MeV] 1019.205(55) 1019.219(4) 1019.196(21) 1019.211(17) 1019.201(16)
Γϕ [MeV] 4.07(13) 4.207(8) 4.23(4) 4.270(13) 4.249(13)

Table 7. VP-subtracted resonance parameters of ω and ϕ in comparison to our previous determi-
nations from e+e− → 3π [14], e+e− → π0γ [17], and e+e− → K̄K [82]. The last column gives the
PDG values [117], with VP removed using the corrections from ref. [46].

In the latter case, the determination from e+e− → 3π is now competitive with e+e− → K̄K,
which dominates the corresponding PDG average. We find agreement with the PDG values
in all cases, albeit for Mω only due to the scale factor S = 2.0 included in the PDG
uncertainty, reflecting the conflict between e+e− → 3π and p̄p → ωπ0π0 alluded to above.
For e+e− → π0γ and e+e− → K̄K we observe mostly good agreement as well, except for Mω

in the π0γ channel, which comes out slightly lower than in 3π, and Γϕ in the K̄K channel,
in which case the 3π and K̄K determinations are not compatible within uncertainties.

6 Consequences for the anomalous magnetic moment of the muon

As key application, we reevaluate the 3π contribution to HVP, including the separate effects
from radiative corrections and ρ–ω mixing. Defining the latter contributions as the leading
term in the corresponding IB parameters e2 and ϵω, we find

a3π
µ |≤1.8 GeV = 45.91(37)(35)(13)[53]× 10−10,

aFSR
µ [3π] = 0.509(4)(6)(6)[9]× 10−10,

aρ–ω
µ [3π] = −2.68(36)(22)(56)[70]× 10−10, (6.1)
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1010 × a3π
µ |≤1.8 GeV 1010 × aFSR

µ [3π] 1010 × aρ–ω
µ [3π]

short-distance window 2.51(2)(1)(0)[2] 0.026(0)(0)(0)[0] −0.13(2)(1)(3)[3]
intermediate window 18.27(15)(12)(5)[20] 0.199(2)(2)(2)[4] −1.03(14)(9)(21)[27]
long-distance window 25.13(20)(22)(8)[31] 0.284(2)(4)(3)[6] −1.52(20)(12)(33)[40]
total 45.91(37)(35)(13)[53] 0.509(4)(6)(6)[9] −2.68(36)(22)(56)[70]

Table 8. Decomposition of the total 3π HVP contribution as well as the FSR and ρ–ω components
onto the short-distance, intermediate, and long-distance windows from ref. [56].

where the errors again refer to statistics, truncation of the conformal polynomial, dependence
on δϵ, and quadratic sum, respectively.7 For the total contribution, both the statistical and
systematic errors have decreased by almost a factor 2 compared to a3π

µ |≤1.8 GeV = 46.2(6)(6)×
10−10 [14], which traces back to including the BaBar data [86] and to the improved dispersive
representation constructed in this paper. Concerning the IB corrections, the FSR piece
comports with the naive scaling expectation aFSR

µ [3π] ≃ aFSR
µ [2π]a3π

µ /a2π
µ ≃ 0.4 × 10−10,

while aρ–ω
µ [3π] indeed comes out large and negative, canceling a significant portion of

aρ–ω
µ [2π] = 3.68(17)× 10−10 [81], for the reasons anticipated in section 4. The sensitivity

to the assumed line shape is clearly reflected by the uncertainties quoted in eq. (6.1), as
aρ–ω

µ [3π] is the only quantity for which the error derived from the variation in δϵ dominates.
Finally, we also provide the decomposition of the total HVP integral onto the Euclidean-time
windows from ref. [56], see table 8.

7 Conclusions

In this work, we developed the necessary formalism to describe the leading isospin-breaking
effects in e+e− → 3π, which originate from infrared-enhanced radiative corrections and
the interference of ρ and ω resonances. For the former, we made use of the fact that the
dominant effects arise as a remnant of the cancellation of infrared singularities between
certain virtual-photon diagrams and bremsstrahlung corrections, leading to a generalization
of the standard inclusive FSR correction factor η2π(q2) for e+e− → π+π−, see section 3 for
the derivation of the resulting η3π(q2). For ρ–ω mixing, we presented an implementation
based on a coupled-channel system for e+e−, π+π−, and 3π, preserving analyticity and
unitarity properties and predicting the line shape of the ρ in a way consistent with the
dispersive representation of the self energies in the multichannel system. In particular,
our approach allows us to make the connection with the ρ–ω mixing parameter ϵω in
e+e− → π+π− manifest.

Based on this improved dispersive representation of the e+e− → 3π cross section, we
performed a phenomenological analysis including the latest data from the BaBar experiment.

7We emphasize that the error for FSR does not include an estimate for the subleading, non-IR-enhanced
terms. In the 2π case, such corrections amount to 3% [99], which would translate here to an additional
uncertainty of 0.015× 10−10.
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First, we observed that including ρ–ω mixing in the description markedly improves the
fit quality, demonstrating that the effect is visible in the data and can be distinguished
from background despite the broad nature of the ρ. For the quantitative analysis, the
main uncertainty arises from the line shape of the ρ–ω mixing contribution, which, in our
framework, can be estimated by investigating the dependence on a small phase of ϵω, as
generated by radiative decay channels. We found that ϵω comes out slightly smaller than
expected from e+e− → 2π, yet in view of the associated uncertainties still indicating a
remarkable consistency between the two channels. As a first application, we provided the
resonance parameters of ω and ϕ that correspond to the global fit to the 3π data base, see
eq. (5.5) for the final results.

The main application concerns the 3π channel in the hadronic-vacuum-polarization
contribution to the anomalous magnetic moment of the muon. First, with new data from
BaBar and our improved dispersive representation, both the statistical and systematic
uncertainties reduce by almost a factor 2, see eq. (6.1) for the key results. Moreover,
we can quantify the contribution of the 3πγ channel, estimated as the combined effect
of the dominant infrared-enhanced radiative corrections, as well as the impact of the
ρ–ω interference. While the former scales as expected from the total size of the 2π and
3π channels, the latter is large and negative, canceling a substantial part of the ρ–ω
mixing contribution in the 2π channel. This cancellation can be understood in terms of
narrow-width arguments, see section 4, and likely points to a general interplay between
the two channels. Our results corroborate the evaluation of the 3π channel with reduced
uncertainties, and provide crucial input to a phenomenological analysis of isospin-breaking
effects in the hadronic-vacuum-polarization contribution to the anomalous magnetic moment
of the muon [84, 147].

Acknowledgments

We thank M. Davier and V. Druzhinin for helpful communication on ref. [86], Dominik
Stamen for providing 3π KT basis functions, and Janak Prabhu for collaboration on the
electromagnetic corrections in an early stage of this project. Financial support by the DFG
through the funds provided to the Sino-German Collaborative Research Center TRR110
“Symmetries and the Emergence of Structure in QCD” (DFG Project-ID 196253076 — TRR
110) and the SNSF (Project No. PCEFP2_181117) is gratefully acknowledged. MH thanks
the INT at the University of Washington for its hospitality and the DOE for partial support
(grant No. DE-FG02-00ER41132) during a visit when part of this work was performed.

– 21 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] Muon g − 2 collaboration, Measurement of the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm, Phys. Rev. Lett. 126 (2021) 141801 [arXiv:2104.03281] [INSPIRE].

[2] Muon g − 2 collaboration, Magnetic-field measurement and analysis for the Muon g − 2
Experiment at Fermilab, Phys. Rev. A 103 (2021) 042208 [arXiv:2104.03201] [INSPIRE].

[3] Muon g − 2 collaboration, Beam dynamics corrections to the Run-1 measurement of the
muon anomalous magnetic moment at Fermilab, Phys. Rev. Accel. Beams 24 (2021) 044002
[arXiv:2104.03240] [INSPIRE].

[4] Muon g − 2 collaboration, Measurement of the anomalous precession frequency of the muon
in the Fermilab Muon g − 2 Experiment, Phys. Rev. D 103 (2021) 072002
[arXiv:2104.03247] [INSPIRE].

[5] Muon g − 2 collaboration, Final Report of the Muon E821 Anomalous Magnetic Moment
Measurement at BNL, Phys. Rev. D 73 (2006) 072003 [hep-ex/0602035] [INSPIRE].

[6] T. Aoyama et al., The anomalous magnetic moment of the muon in the Standard Model,
Phys. Rept. 887 (2020) 1 [arXiv:2006.04822] [INSPIRE].

[7] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio, Complete Tenth-Order QED
Contribution to the Muon g − 2, Phys. Rev. Lett. 109 (2012) 111808 [arXiv:1205.5370]
[INSPIRE].

[8] T. Aoyama, T. Kinoshita and M. Nio, Theory of the Anomalous Magnetic Moment of the
Electron, Atoms 7 (2019) 28 [INSPIRE].

[9] A. Czarnecki, W.J. Marciano and A. Vainshtein, Refinements in electroweak contributions to
the muon anomalous magnetic moment, Phys. Rev. D 67 (2003) 073006 [Erratum ibid. 73
(2006) 119901] [hep-ph/0212229] [INSPIRE].

[10] C. Gnendiger, D. Stöckinger and H. Stöckinger-Kim, The electroweak contributions to
(g − 2)µ after the Higgs boson mass measurement, Phys. Rev. D 88 (2013) 053005
[arXiv:1306.5546] [INSPIRE].

[11] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the hadronic vacuum
polarisation contributions to the Standard Model predictions of the muon g − 2 and α(m2

Z)
using newest hadronic cross-section data, Eur. Phys. J. C 77 (2017) 827
[arXiv:1706.09436] [INSPIRE].

[12] A. Keshavarzi, D. Nomura and T. Teubner, Muon g − 2 and α(M2
Z): a new data-based

analysis, Phys. Rev. D 97 (2018) 114025 [arXiv:1802.02995] [INSPIRE].
[13] G. Colangelo, M. Hoferichter and P. Stoffer, Two-pion contribution to hadronic vacuum

polarization, JHEP 02 (2019) 006 [arXiv:1810.00007] [INSPIRE].
[14] M. Hoferichter, B.-L. Hoid and B. Kubis, Three-pion contribution to hadronic vacuum

polarization, JHEP 08 (2019) 137 [arXiv:1907.01556] [INSPIRE].
[15] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, A new evaluation of the hadronic vacuum

polarisation contributions to the muon anomalous magnetic moment and to α(m2
Z), Eur.

Phys. J. C 80 (2020) 241 [Erratum ibid. 80 (2020) 410] [arXiv:1908.00921] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/PhysRevLett.126.141801
https://arxiv.org/abs/2104.03281
https://inspirehep.net/literature/1856627
https://doi.org/10.1103/PhysRevA.103.042208
https://arxiv.org/abs/2104.03201
https://inspirehep.net/literature/1856534
https://doi.org/10.1103/PhysRevAccelBeams.24.044002
https://arxiv.org/abs/2104.03240
https://inspirehep.net/literature/1856628
https://doi.org/10.1103/PhysRevD.103.072002
https://arxiv.org/abs/2104.03247
https://inspirehep.net/literature/1856531
https://doi.org/10.1103/PhysRevD.73.072003
https://arxiv.org/abs/hep-ex/0602035
https://inspirehep.net/literature/710962
https://doi.org/10.1016/j.physrep.2020.07.006
https://arxiv.org/abs/2006.04822
https://inspirehep.net/literature/1800513
https://doi.org/10.1103/PhysRevLett.109.111808
https://arxiv.org/abs/1205.5370
https://inspirehep.net/literature/1115845
https://doi.org/10.3390/atoms7010028
https://inspirehep.net/literature/1756917
https://doi.org/10.1103/PhysRevD.67.073006
https://doi.org/10.1103/PhysRevD.73.119901
https://doi.org/10.1103/PhysRevD.73.119901
https://arxiv.org/abs/hep-ph/0212229
https://inspirehep.net/literature/604695
https://doi.org/10.1103/PhysRevD.88.053005
https://arxiv.org/abs/1306.5546
https://inspirehep.net/literature/1239669
https://doi.org/10.1140/epjc/s10052-017-5161-6
https://arxiv.org/abs/1706.09436
https://inspirehep.net/literature/1608028
https://doi.org/10.1103/PhysRevD.97.114025
https://arxiv.org/abs/1802.02995
https://inspirehep.net/literature/1653992
https://doi.org/10.1007/JHEP02(2019)006
https://arxiv.org/abs/1810.00007
https://inspirehep.net/literature/1696451
https://doi.org/10.1007/JHEP08(2019)137
https://arxiv.org/abs/1907.01556
https://inspirehep.net/literature/1742686
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7792-2
https://doi.org/10.1140/epjc/s10052-020-7857-2
https://arxiv.org/abs/1908.00921
https://inspirehep.net/literature/1747772


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[16] A. Keshavarzi, D. Nomura and T. Teubner, g − 2 of charged leptons, α(M2
Z), and the

hyperfine splitting of muonium, Phys. Rev. D 101 (2020) 014029 [arXiv:1911.00367]
[INSPIRE].

[17] B.-L. Hoid, M. Hoferichter and B. Kubis, Hadronic vacuum polarization and vector-meson
resonance parameters from e+e− → π0γ, Eur. Phys. J. C 80 (2020) 988
[arXiv:2007.12696] [INSPIRE].

[18] A. Kurz, T. Liu, P. Marquard and M. Steinhauser, Hadronic contribution to the muon
anomalous magnetic moment to next-to-next-to-leading order, Phys. Lett. B 734 (2014) 144
[arXiv:1403.6400] [INSPIRE].

[19] K. Melnikov and A. Vainshtein, Hadronic light-by-light scattering contribution to the muon
anomalous magnetic moment revisited, Phys. Rev. D 70 (2004) 113006 [hep-ph/0312226]
[INSPIRE].

[20] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersive approach to hadronic
light-by-light scattering, JHEP 09 (2014) 091 [arXiv:1402.7081] [INSPIRE].

[21] G. Colangelo et al., Towards a data-driven analysis of hadronic light-by-light scattering, Phys.
Lett. B 738 (2014) 6 [arXiv:1408.2517] [INSPIRE].

[22] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic
light-by-light scattering: theoretical foundations, JHEP 09 (2015) 074 [arXiv:1506.01386]
[INSPIRE].

[23] P. Masjuan and P. Sánchez-Puertas, Pseudoscalar-pole contribution to the (gµ − 2): a
rational approach, Phys. Rev. D 95 (2017) 054026 [arXiv:1701.05829] [INSPIRE].

[24] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Rescattering effects in the
hadronic-light-by-light contribution to the anomalous magnetic moment of the muon, Phys.
Rev. Lett. 118 (2017) 232001 [arXiv:1701.06554] [INSPIRE].

[25] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer, Dispersion relation for hadronic
light-by-light scattering: two-pion contributions, JHEP 04 (2017) 161 [arXiv:1702.07347]
[INSPIRE].

[26] M. Hoferichter et al., Pion-pole contribution to hadronic light-by-light scattering in the
anomalous magnetic moment of the muon, Phys. Rev. Lett. 121 (2018) 112002
[arXiv:1805.01471] [INSPIRE].

[27] M. Hoferichter et al., Dispersion relation for hadronic light-by-light scattering: pion pole,
JHEP 10 (2018) 141 [arXiv:1808.04823] [INSPIRE].

[28] A. Gérardin, H.B. Meyer and A. Nyffeler, Lattice calculation of the pion transition form
factor with Nf = 2 + 1 Wilson quarks, Phys. Rev. D 100 (2019) 034520 [arXiv:1903.09471]
[INSPIRE].

[29] J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Short-distance constraints
for the HLbL contribution to the muon anomalous magnetic moment, Phys. Lett. B 798
(2019) 134994 [arXiv:1908.03331] [INSPIRE].

[30] G. Colangelo et al., Short-distance constraints on hadronic light-by-light scattering in the
anomalous magnetic moment of the muon, Phys. Rev. D 101 (2020) 051501
[arXiv:1910.11881] [INSPIRE].

[31] G. Colangelo et al., Longitudinal short-distance constraints for the hadronic light-by-light
contribution to (g − 2)µ with large-Nc Regge models, JHEP 03 (2020) 101
[arXiv:1910.13432] [INSPIRE].

– 23 –

https://doi.org/10.1103/PhysRevD.101.014029
https://arxiv.org/abs/1911.00367
https://inspirehep.net/literature/1762580
https://doi.org/10.1140/epjc/s10052-020-08550-2
https://arxiv.org/abs/2007.12696
https://inspirehep.net/literature/1808855
https://doi.org/10.1016/j.physletb.2014.05.043
https://arxiv.org/abs/1403.6400
https://inspirehep.net/literature/1287074
https://doi.org/10.1103/PhysRevD.70.113006
https://arxiv.org/abs/hep-ph/0312226
https://inspirehep.net/literature/635797
https://doi.org/10.1007/JHEP09(2014)091
https://arxiv.org/abs/1402.7081
https://inspirehep.net/literature/1283181
https://doi.org/10.1016/j.physletb.2014.09.021
https://doi.org/10.1016/j.physletb.2014.09.021
https://arxiv.org/abs/1408.2517
https://inspirehep.net/literature/1310649
https://doi.org/10.1007/JHEP09(2015)074
https://arxiv.org/abs/1506.01386
https://inspirehep.net/literature/1374620
https://doi.org/10.1103/PhysRevD.95.054026
https://arxiv.org/abs/1701.05829
https://inspirehep.net/literature/1510073
https://doi.org/10.1103/PhysRevLett.118.232001
https://doi.org/10.1103/PhysRevLett.118.232001
https://arxiv.org/abs/1701.06554
https://inspirehep.net/literature/1510263
https://doi.org/10.1007/JHEP04(2017)161
https://arxiv.org/abs/1702.07347
https://inspirehep.net/literature/1515024
https://doi.org/10.1103/PhysRevLett.121.112002
https://arxiv.org/abs/1805.01471
https://inspirehep.net/literature/1671783
https://doi.org/10.1007/JHEP10(2018)141
https://arxiv.org/abs/1808.04823
https://inspirehep.net/literature/1687430
https://doi.org/10.1103/PhysRevD.100.034520
https://arxiv.org/abs/1903.09471
https://inspirehep.net/literature/1726418
https://doi.org/10.1016/j.physletb.2019.134994
https://doi.org/10.1016/j.physletb.2019.134994
https://arxiv.org/abs/1908.03331
https://inspirehep.net/literature/1748671
https://doi.org/10.1103/PhysRevD.101.051501
https://arxiv.org/abs/1910.11881
https://inspirehep.net/literature/1761428
https://doi.org/10.1007/JHEP03(2020)101
https://arxiv.org/abs/1910.13432
https://inspirehep.net/literature/1761991


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[32] T. Blum et al., Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous
Magnetic Moment from Lattice QCD, Phys. Rev. Lett. 124 (2020) 132002
[arXiv:1911.08123] [INSPIRE].

[33] G. Colangelo et al., Remarks on higher-order hadronic corrections to the muon g − 2, Phys.
Lett. B 735 (2014) 90 [arXiv:1403.7512] [INSPIRE].

[34] E.-H. Chao et al., Hadronic light-by-light contribution to (g − 2)µ from lattice QCD: a
complete calculation, Eur. Phys. J. C 81 (2021) 651 [arXiv:2104.02632] [INSPIRE].

[35] E.-H. Chao et al., The charm-quark contribution to light-by-light scattering in the muon
(g − 2) from lattice QCD, Eur. Phys. J. C 82 (2022) 664 [arXiv:2204.08844] [INSPIRE].

[36] T. Blum et al., Hadronic light-by-light contribution to the muon anomaly from lattice QCD
with infinite volume QED at physical pion mass, arXiv:2304.04423 [INSPIRE].

[37] C. Alexandrou et al., The η → γ∗γ∗ transition form factor and the hadronic light-by-light
η-pole contribution to the muon g − 2 from lattice QCD, arXiv:2212.06704 [INSPIRE].

[38] A. Gérardin et al., Lattice calculation of the π0, η and η′ transition form factors and the
hadronic light-by-light contribution to the muon g − 2, arXiv:2305.04570 [INSPIRE].

[39] M. Hoferichter and P. Stoffer, Asymptotic behavior of meson transition form factors, JHEP
05 (2020) 159 [arXiv:2004.06127] [INSPIRE].

[40] J. Lüdtke and M. Procura, Effects of longitudinal short-distance constraints on the hadronic
light-by-light contribution to the muon g − 2, Eur. Phys. J. C 80 (2020) 1108
[arXiv:2006.00007] [INSPIRE].

[41] J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, Short-distance
HLbL contributions to the muon anomalous magnetic moment beyond perturbation theory,
JHEP 10 (2020) 203 [arXiv:2008.13487] [INSPIRE].

[42] J. Bijnens, N. Hermansson-Truedsson, L. Laub and A. Rodríguez-Sánchez, The two-loop
perturbative correction to the (g − 2)µ HLbL at short distances, JHEP 04 (2021) 240
[arXiv:2101.09169] [INSPIRE].

[43] M. Zanke, M. Hoferichter and B. Kubis, On the transition form factors of the axial-vector
resonance f1(1285) and its decay into e+e−, JHEP 07 (2021) 106 [arXiv:2103.09829]
[INSPIRE].

[44] I. Danilkin, M. Hoferichter and P. Stoffer, A dispersive estimate of scalar contributions to
hadronic light-by-light scattering, Phys. Lett. B 820 (2021) 136502 [arXiv:2105.01666]
[INSPIRE].

[45] G. Colangelo et al., Short-distance constraints for the longitudinal component of the hadronic
light-by-light amplitude: an update, Eur. Phys. J. C 81 (2021) 702 [arXiv:2106.13222]
[INSPIRE].

[46] S. Holz, C. Hanhart, M. Hoferichter and B. Kubis, A dispersive analysis of η′ → π+π−γ and
η′ → ℓ+ℓ−γ, Eur. Phys. J. C 82 (2022) 434 [Addendum ibid. 82 (2022) 1159]
[arXiv:2202.05846] [INSPIRE].

[47] J. Leutgeb, J. Mager and A. Rebhan, Hadronic light-by-light contribution to the muon g − 2
from holographic QCD with solved U(1)A problem, Phys. Rev. D 107 (2023) 054021
[arXiv:2211.16562] [INSPIRE].

[48] J. Bijnens, N. Hermansson-Truedsson and A. Rodríguez-Sánchez, Constraints on the hadronic
light-by-light in the Melnikov-Vainshtein regime, JHEP 02 (2023) 167 [arXiv:2211.17183]
[INSPIRE].

– 24 –

https://doi.org/10.1103/PhysRevLett.124.132002
https://arxiv.org/abs/1911.08123
https://inspirehep.net/literature/1766090
https://doi.org/10.1016/j.physletb.2014.06.012
https://doi.org/10.1016/j.physletb.2014.06.012
https://arxiv.org/abs/1403.7512
https://inspirehep.net/literature/1287744
https://doi.org/10.1140/epjc/s10052-021-09455-4
https://arxiv.org/abs/2104.02632
https://inspirehep.net/literature/1856326
https://doi.org/10.1140/epjc/s10052-022-10589-2
https://arxiv.org/abs/2204.08844
https://inspirehep.net/literature/2069237
https://arxiv.org/abs/2304.04423
https://inspirehep.net/literature/2650003
https://arxiv.org/abs/2212.06704
https://inspirehep.net/literature/2613832
https://arxiv.org/abs/2305.04570
https://inspirehep.net/literature/2657601
https://doi.org/10.1007/JHEP05(2020)159
https://doi.org/10.1007/JHEP05(2020)159
https://arxiv.org/abs/2004.06127
https://inspirehep.net/literature/1791135
https://doi.org/10.1140/epjc/s10052-020-08611-6
https://arxiv.org/abs/2006.00007
https://inspirehep.net/literature/1798637
https://doi.org/10.1007/JHEP10(2020)203
https://arxiv.org/abs/2008.13487
https://inspirehep.net/literature/1814154
https://doi.org/10.1007/JHEP04(2021)240
https://arxiv.org/abs/2101.09169
https://inspirehep.net/literature/1842434
https://doi.org/10.1007/JHEP07(2021)106
https://arxiv.org/abs/2103.09829
https://inspirehep.net/literature/1852275
https://doi.org/10.1016/j.physletb.2021.136502
https://arxiv.org/abs/2105.01666
https://inspirehep.net/literature/1862113
https://doi.org/10.1140/epjc/s10052-021-09513-x
https://arxiv.org/abs/2106.13222
https://inspirehep.net/literature/1870135
https://doi.org/10.1140/epjc/s10052-022-10247-7
https://doi.org/10.1140/epjc/s10052-022-11094-2
https://arxiv.org/abs/2202.05846
https://inspirehep.net/literature/2032003
https://doi.org/10.1103/PhysRevD.107.054021
https://arxiv.org/abs/2211.16562
https://inspirehep.net/literature/2605916
https://doi.org/10.1007/JHEP02(2023)167
https://arxiv.org/abs/2211.17183
https://inspirehep.net/literature/2605943


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[49] J. Lüdtke, M. Procura and P. Stoffer, Dispersion relations for hadronic light-by-light
scattering in triangle kinematics, JHEP 04 (2023) 125 [arXiv:2302.12264] [INSPIRE].

[50] M. Hoferichter, B. Kubis and M. Zanke, Axial-vector transition form factors and
e+e− → f1π

+π−, arXiv:2307.14413 [INSPIRE].

[51] Muon g − 2 collaboration, Muon (g − 2) Technical Design Report, arXiv:1501.06858
[INSPIRE].

[52] G. Colangelo et al., Prospects for precise predictions of aµ in the Standard Model,
arXiv:2203.15810 [INSPIRE].

[53] J. Calmet, S. Narison, M. Perrottet and E. de Rafael, Higher Order Hadronic Corrections to
the Anomalous Magnetic Moment of the Muon, Phys. Lett. B 61 (1976) 283 [INSPIRE].

[54] M. Hoferichter and T. Teubner, Mixed Leptonic and Hadronic Corrections to the Anomalous
Magnetic Moment of the Muon, Phys. Rev. Lett. 128 (2022) 112002 [arXiv:2112.06929]
[INSPIRE].

[55] S. Borsanyi et al., Leading hadronic contribution to the muon magnetic moment from lattice
QCD, Nature 593 (2021) 51 [arXiv:2002.12347] [INSPIRE].

[56] RBC and UKQCD collaborations, Calculation of the hadronic vacuum polarization
contribution to the muon anomalous magnetic moment, Phys. Rev. Lett. 121 (2018) 022003
[arXiv:1801.07224] [INSPIRE].

[57] M. Cè et al., Window observable for the hadronic vacuum polarization contribution to the
muon g − 2 from lattice QCD, Phys. Rev. D 106 (2022) 114502 [arXiv:2206.06582]
[INSPIRE].

[58] Extended Twisted Mass collaboration, Lattice calculation of the short and intermediate
time-distance hadronic vacuum polarization contributions to the muon magnetic moment
using twisted-mass fermions, Phys. Rev. D 107 (2023) 074506 [arXiv:2206.15084] [INSPIRE].

[59] Fermilab Lattice et al. collaborations, Light-quark connected intermediate-window
contributions to the muon g − 2 hadronic vacuum polarization from lattice QCD, Phys. Rev.
D 107 (2023) 114514 [arXiv:2301.08274] [INSPIRE].

[60] T. Blum et al., An update of Euclidean windows of the hadronic vacuum polarization,
arXiv:2301.08696 [INSPIRE].

[61] G. Colangelo et al., Data-driven evaluations of Euclidean windows to scrutinize hadronic
vacuum polarization, Phys. Lett. B 833 (2022) 137313 [arXiv:2205.12963] [INSPIRE].

[62] SND collaboration, Measurement of the e+e− → π+π− process cross section with the SND
detector at the VEPP-2000 collider in the energy region 0.525 <

√
s < 0.883GeV, JHEP 01

(2021) 113 [arXiv:2004.00263] [INSPIRE].

[63] CMD-3 collaboration, Measurement of the e+e− → π+π− cross section from threshold to
1.2 GeV with the CMD-3 detector, arXiv:2302.08834 [INSPIRE].

[64] CMD-2 collaboration, High-statistics measurement of the pion form factor in the ρ-meson
energy range with the CMD-2 detector, Phys. Lett. B 648 (2007) 28 [hep-ex/0610021]
[INSPIRE].

[65] M.N. Achasov et al., Update of the e+e− → π+π− cross-section measured by SND detector in
the energy region 400 <

√
s < 1000MeV, J. Exp. Theor. Phys. 103 (2006) 380

[hep-ex/0605013] [INSPIRE].

– 25 –

https://doi.org/10.1007/JHEP04(2023)125
https://arxiv.org/abs/2302.12264
https://inspirehep.net/literature/2636295
https://arxiv.org/abs/2307.14413
https://inspirehep.net/literature/2682301
https://arxiv.org/abs/1501.06858
https://inspirehep.net/literature/1341289
https://arxiv.org/abs/2203.15810
https://inspirehep.net/literature/2060022
https://doi.org/10.1016/0370-2693(76)90150-7
https://inspirehep.net/literature/108225
https://doi.org/10.1103/PhysRevLett.128.112002
https://arxiv.org/abs/2112.06929
https://inspirehep.net/literature/1989873
https://doi.org/10.1038/s41586-021-03418-1
https://arxiv.org/abs/2002.12347
https://inspirehep.net/literature/1782626
https://doi.org/10.1103/PhysRevLett.121.022003
https://arxiv.org/abs/1801.07224
https://inspirehep.net/literature/1649231
https://doi.org/10.1103/PhysRevD.106.114502
https://arxiv.org/abs/2206.06582
https://inspirehep.net/literature/2095867
https://doi.org/10.1103/PhysRevD.107.074506
https://arxiv.org/abs/2206.15084
https://inspirehep.net/literature/2103903
https://doi.org/10.1103/PhysRevD.107.114514
https://doi.org/10.1103/PhysRevD.107.114514
https://arxiv.org/abs/2301.08274
https://inspirehep.net/literature/2625158
https://arxiv.org/abs/2301.08696
https://inspirehep.net/literature/2625168
https://doi.org/10.1016/j.physletb.2022.137313
https://arxiv.org/abs/2205.12963
https://inspirehep.net/literature/2087900
https://doi.org/10.1007/JHEP01(2021)113
https://doi.org/10.1007/JHEP01(2021)113
https://arxiv.org/abs/2004.00263
https://inspirehep.net/literature/1789269
https://arxiv.org/abs/2302.08834
https://inspirehep.net/literature/2634277
https://doi.org/10.1016/j.physletb.2007.01.073
https://arxiv.org/abs/hep-ex/0610021
https://inspirehep.net/literature/728302
https://doi.org/10.1134/S106377610609007X
https://arxiv.org/abs/hep-ex/0605013
https://inspirehep.net/literature/716141


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[66] BaBar collaboration, Precise Measurement of the e+e− → π+π−(γ) Cross Section with the
Initial-State Radiation Method at BABAR, Phys. Rev. D 86 (2012) 032013
[arXiv:1205.2228] [INSPIRE].

[67] KLOE-2 collaboration, Combination of KLOE σ
(
e+e− → π+π−γ(γ)

)
measurements and

determination of aπ+π−

µ in the energy range 0.10 < s < 0.95GeV2, JHEP 03 (2018) 173
[arXiv:1711.03085] [INSPIRE].

[68] BESIII collaboration, Measurement of the e+e− → π+π− cross section between 600 and
900 MeV using initial state radiation, Phys. Lett. B 753 (2016) 629 [Erratum ibid. 812 (2021)
135982] [arXiv:1507.08188] [INSPIRE].

[69] L. Di Luzio, A. Masiero, P. Paradisi and M. Passera, New physics behind the new muon g − 2
puzzle?, Phys. Lett. B 829 (2022) 137037 [arXiv:2112.08312] [INSPIRE].

[70] L. Darmé, G. Grilli di Cortona and E. Nardi, The muon g − 2 anomaly confronts new physics
in e± and µ± final states scattering, JHEP 06 (2022) 122 [arXiv:2112.09139] [INSPIRE].

[71] A. Crivellin and M. Hoferichter, Width effects of broad new resonances in loop observables
and application to (g − 2)µ, Phys. Rev. D 108 (2023) 013005 [arXiv:2211.12516] [INSPIRE].

[72] N.M. Coyle and C.E.M. Wagner, Resolving the muon g − 2 tension through Z ′-induced
modifications to σhad, arXiv:2305.02354 [INSPIRE].

[73] M. Passera, W.J. Marciano and A. Sirlin, The Muon g− 2 and the bounds on the Higgs boson
mass, Phys. Rev. D 78 (2008) 013009 [arXiv:0804.1142] [INSPIRE].

[74] A. Crivellin, M. Hoferichter, C.A. Manzari and M. Montull, Hadronic Vacuum Polarization:
(g − 2)µ versus Global Electroweak Fits, Phys. Rev. Lett. 125 (2020) 091801
[arXiv:2003.04886] [INSPIRE].

[75] A. Keshavarzi, W.J. Marciano, M. Passera and A. Sirlin, Muon g − 2 and ∆α connection,
Phys. Rev. D 102 (2020) 033002 [arXiv:2006.12666] [INSPIRE].

[76] B. Malaescu and M. Schott, Impact of correlations between aµ and αQED on the EW fit, Eur.
Phys. J. C 81 (2021) 46 [arXiv:2008.08107] [INSPIRE].

[77] G. Colangelo, M. Hoferichter and P. Stoffer, Constraints on the two-pion contribution to
hadronic vacuum polarization, Phys. Lett. B 814 (2021) 136073 [arXiv:2010.07943]
[INSPIRE].

[78] M. Cè et al., The hadronic running of the electromagnetic coupling and the electroweak
mixing angle from lattice QCD, JHEP 08 (2022) 220 [arXiv:2203.08676] [INSPIRE].

[79] G. Colangelo, M. Hoferichter, J. Monnard and J. Ruiz de Elvira, Radiative corrections to the
forward-backward asymmetry in e+e− → π+π−, JHEP 08 (2022) 295 [arXiv:2207.03495]
[INSPIRE].

[80] G. Chanturia, A two-potential formalism for the pion vector form factor, PoS Regio2021
(2022) 030 [INSPIRE].

[81] G. Colangelo, M. Hoferichter, B. Kubis and P. Stoffer, Isospin-breaking effects in the two-pion
contribution to hadronic vacuum polarization, JHEP 10 (2022) 032 [arXiv:2208.08993]
[INSPIRE].

[82] D. Stamen et al., Kaon electromagnetic form factors in dispersion theory, Eur. Phys. J. C 82
(2022) 432 [arXiv:2202.11106] [INSPIRE].

[83] ETMC collaboration, Probing the Energy-Smeared R Ratio Using Lattice QCD, Phys. Rev.
Lett. 130 (2023) 241901 [arXiv:2212.08467] [INSPIRE].

– 26 –

https://doi.org/10.1103/PhysRevD.86.032013
https://arxiv.org/abs/1205.2228
https://inspirehep.net/literature/1114155
https://doi.org/10.1007/JHEP03(2018)173
https://arxiv.org/abs/1711.03085
https://inspirehep.net/literature/1634981
https://doi.org/10.1016/j.physletb.2015.11.043
https://doi.org/10.1016/j.physletb.2020.135982
https://doi.org/10.1016/j.physletb.2020.135982
https://arxiv.org/abs/1507.08188
https://inspirehep.net/literature/1385603
https://doi.org/10.1016/j.physletb.2022.137037
https://arxiv.org/abs/2112.08312
https://inspirehep.net/literature/1990931
https://doi.org/10.1007/JHEP06(2022)122
https://arxiv.org/abs/2112.09139
https://inspirehep.net/literature/1992788
https://doi.org/10.1103/PhysRevD.108.013005
https://arxiv.org/abs/2211.12516
https://inspirehep.net/literature/2514078
https://arxiv.org/abs/2305.02354
https://inspirehep.net/literature/2656593
https://doi.org/10.1103/PhysRevD.78.013009
https://arxiv.org/abs/0804.1142
https://inspirehep.net/literature/782987
https://doi.org/10.1103/PhysRevLett.125.091801
https://arxiv.org/abs/2003.04886
https://inspirehep.net/literature/1784796
https://doi.org/10.1103/PhysRevD.102.033002
https://arxiv.org/abs/2006.12666
https://inspirehep.net/literature/1802519
https://doi.org/10.1140/epjc/s10052-021-08848-9
https://doi.org/10.1140/epjc/s10052-021-08848-9
https://arxiv.org/abs/2008.08107
https://inspirehep.net/literature/1812325
https://doi.org/10.1016/j.physletb.2021.136073
https://arxiv.org/abs/2010.07943
https://inspirehep.net/literature/1823454
https://doi.org/10.1007/JHEP08(2022)220
https://arxiv.org/abs/2203.08676
https://inspirehep.net/literature/2053773
https://doi.org/10.1007/JHEP08(2022)295
https://arxiv.org/abs/2207.03495
https://inspirehep.net/literature/2107871
https://doi.org/10.22323/1.412.0030
https://doi.org/10.22323/1.412.0030
https://inspirehep.net/literature/2083007
https://doi.org/10.1007/JHEP10(2022)032
https://arxiv.org/abs/2208.08993
https://inspirehep.net/literature/2139422
https://doi.org/10.1140/epjc/s10052-022-10348-3
https://doi.org/10.1140/epjc/s10052-022-10348-3
https://arxiv.org/abs/2202.11106
https://inspirehep.net/literature/2036696
https://doi.org/10.1103/PhysRevLett.130.241901
https://doi.org/10.1103/PhysRevLett.130.241901
https://arxiv.org/abs/2212.08467
https://inspirehep.net/literature/2615431


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[84] M. Hoferichter et al., Chiral extrapolation of hadronic vacuum polarization and
isospin-breaking corrections, PoS LATTICE2022 (2022) 316 [arXiv:2210.11904] [INSPIRE].

[85] C.L. James, R. Lewis and K. Maltman, ChPT estimate of the strong-isospin-breaking
contribution to the anomalous magnetic moment of the muon, Phys. Rev. D 105 (2022)
053010 [arXiv:2109.13729] [INSPIRE].

[86] BABAR collaboration, Study of the process e+e− → π+π−π0 using initial state radiation
with BABAR, Phys. Rev. D 104 (2021) 112003 [arXiv:2110.00520] [INSPIRE].

[87] D. Boito, M. Golterman, K. Maltman and S. Peris, Evaluation of the three-flavor
quark-disconnected contribution to the muon anomalous magnetic moment from experimental
data, Phys. Rev. D 105 (2022) 093003 [arXiv:2203.05070] [INSPIRE].

[88] D. Boito, M. Golterman, K. Maltman and S. Peris, Data-based determination of the
isospin-limit light-quark-connected contribution to the anomalous magnetic moment of the
muon, Phys. Rev. D 107 (2023) 074001 [arXiv:2211.11055] [INSPIRE].

[89] G. Benton et al., Data-driven determination of the light-quark connected component of the
intermediate-window contribution to the muon g − 2, arXiv:2306.16808 [INSPIRE].

[90] A. Hoefer, J. Gluza and F. Jegerlehner, Pion pair production with higher order radiative
corrections in low energy e+e− collisions, Eur. Phys. J. C 24 (2002) 51 [hep-ph/0107154]
[INSPIRE].

[91] H. Czyż, A. Grzelińska, J.H. Kühn and G. Rodrigo, The Radiative return at Φ and B
factories: FSR for muon pair production at next-to-leading order, Eur. Phys. J. C 39 (2005)
411 [hep-ph/0404078] [INSPIRE].

[92] J. Gluza, A. Hoefer, S. Jadach and F. Jegerlehner, Measuring the FSR inclusive π+π−

cross-section, Eur. Phys. J. C 28 (2003) 261 [hep-ph/0212386] [INSPIRE].

[93] Y.M. Bystritskiy, E.A. Kuraev, G.V. Fedotovich and F.V. Ignatov, The Cross sections of the
muons and charged pions pairs production at electron-positron annihilation near the threshold,
Phys. Rev. D 72 (2005) 114019 [hep-ph/0505236] [INSPIRE].

[94] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett. B 37 (1971)
95 [INSPIRE].

[95] E. Witten, Global Aspects of Current Algebra, Nucl. Phys. B 223 (1983) 422 [INSPIRE].

[96] L. Ametller, M. Knecht and P. Talavera, Electromagnetic corrections to γπ± → π0π±, Phys.
Rev. D 64 (2001) 094009 [hep-ph/0107127] [INSPIRE].

[97] A.I. Ahmedov, G.V. Fedotovich, E.A. Kuraev and Z.K. Silagadze, Near threshold radiative 3π
production in e+e− annihilation, JHEP 09 (2002) 008 [hep-ph/0201157] [INSPIRE].

[98] S. Bakmaev, Y.M. Bystritskiy and E.A. Kuraev, Process e+e− → 3π(γ) with final state
radiative corrections, Phys. Rev. D 73 (2006) 034010 [hep-ph/0507219] [INSPIRE].

[99] B. Moussallam, Unified dispersive approach to real and virtual photon-photon scattering at
low energy, Eur. Phys. J. C 73 (2013) 2539 [arXiv:1305.3143] [INSPIRE].

[100] N.N. Khuri and S.B. Treiman, Pion-Pion Scattering and K± → 3π Decay, Phys. Rev. 119
(1960) 1115 [INSPIRE].

[101] M. Hoferichter et al., Dispersive analysis of the pion transition form factor, Eur. Phys. J. C
74 (2014) 3180 [arXiv:1410.4691] [INSPIRE].

[102] S.L. Adler, B.W. Lee, S.B. Treiman and A. Zee, Low Energy Theorem for γ + γ → π + π + π,
Phys. Rev. D 4 (1971) 3497 [INSPIRE].

– 27 –

https://doi.org/10.22323/1.430.0316
https://arxiv.org/abs/2210.11904
https://inspirehep.net/literature/2168896
https://doi.org/10.1103/PhysRevD.105.053010
https://doi.org/10.1103/PhysRevD.105.053010
https://arxiv.org/abs/2109.13729
https://inspirehep.net/literature/1932398
https://doi.org/10.1103/PhysRevD.104.112003
https://arxiv.org/abs/2110.00520
https://inspirehep.net/literature/1937349
https://doi.org/10.1103/PhysRevD.105.093003
https://arxiv.org/abs/2203.05070
https://inspirehep.net/literature/2049507
https://doi.org/10.1103/PhysRevD.107.074001
https://arxiv.org/abs/2211.11055
https://inspirehep.net/literature/2512912
https://arxiv.org/abs/2306.16808
https://inspirehep.net/literature/2672881
https://doi.org/10.1007/s100520200916
https://arxiv.org/abs/hep-ph/0107154
https://inspirehep.net/literature/559980
https://doi.org/10.1140/epjc/s2004-02103-1
https://doi.org/10.1140/epjc/s2004-02103-1
https://arxiv.org/abs/hep-ph/0404078
https://inspirehep.net/literature/647855
https://doi.org/10.1140/epjc/s2003-01146-0
https://arxiv.org/abs/hep-ph/0212386
https://inspirehep.net/literature/605644
https://doi.org/10.1103/PhysRevD.72.114019
https://arxiv.org/abs/hep-ph/0505236
https://inspirehep.net/literature/683515
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1016/0370-2693(71)90582-X
https://inspirehep.net/literature/67330
https://doi.org/10.1016/0550-3213(83)90063-9
https://inspirehep.net/literature/13234
https://doi.org/10.1103/PhysRevD.64.094009
https://doi.org/10.1103/PhysRevD.64.094009
https://arxiv.org/abs/hep-ph/0107127
https://inspirehep.net/literature/559845
https://doi.org/10.1134/1.1755389
https://arxiv.org/abs/hep-ph/0201157
https://inspirehep.net/literature/581852
https://doi.org/10.1103/PhysRevD.73.034010
https://arxiv.org/abs/hep-ph/0507219
https://inspirehep.net/literature/687789
https://doi.org/10.1140/epjc/s10052-013-2539-y
https://arxiv.org/abs/1305.3143
https://inspirehep.net/literature/1233382
https://doi.org/10.1103/PhysRev.119.1115
https://doi.org/10.1103/PhysRev.119.1115
https://inspirehep.net/literature/46908
https://doi.org/10.1140/epjc/s10052-014-3180-0
https://doi.org/10.1140/epjc/s10052-014-3180-0
https://arxiv.org/abs/1410.4691
https://inspirehep.net/literature/1322719
https://doi.org/10.1103/PhysRevD.4.3497
https://inspirehep.net/literature/67296


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[103] M.V. Terent’ev, Process π± → π0π± in Coulomb field and anomalous divergence of neutral
axial vector current, Phys. Lett. B 38 (1972) 419 [INSPIRE].

[104] R. Aviv and A. Zee, Low-energy theorem for γ → 3π, Phys. Rev. D 5 (1972) 2372 [INSPIRE].

[105] I.J.R. Aitchison and R.J.A. Golding, Relativistic Three Pion Dynamics in the omega Channel,
J. Phys. G 4 (1978) 43 [INSPIRE].

[106] F. Niecknig, B. Kubis and S.P. Schneider, Dispersive analysis of ω → 3π and ϕ → 3π decays,
Eur. Phys. J. C 72 (2012) 2014 [arXiv:1203.2501] [INSPIRE].

[107] S.P. Schneider, B. Kubis and F. Niecknig, The ω → π0γ∗ and ϕ → π0γ∗ transition form
factors in dispersion theory, Phys. Rev. D 86 (2012) 054013 [arXiv:1206.3098] [INSPIRE].

[108] M. Hoferichter, B. Kubis and D. Sakkas, Extracting the chiral anomaly from γπ → ππ, Phys.
Rev. D 86 (2012) 116009 [arXiv:1210.6793] [INSPIRE].

[109] I.V. Danilkin et al., Dispersive analysis of ω/ϕ → 3π, πγ∗, Phys. Rev. D 91 (2015) 094029
[arXiv:1409.7708] [INSPIRE].

[110] M. Dax, T. Isken and B. Kubis, Quark-mass dependence in ω → 3π decays, Eur. Phys. J. C
78 (2018) 859 [arXiv:1808.08957] [INSPIRE].

[111] M. Jacob and G.C. Wick, On the General Theory of Collisions for Particles with Spin,
Annals Phys. 7 (1959) 404 [INSPIRE].

[112] M. Hoferichter, B. Kubis and M. Zanke, Radiative resonance couplings in γπ → ππ, Phys.
Rev. D 96 (2017) 114016 [arXiv:1710.00824] [INSPIRE].

[113] J. Bijnens, A. Bramon and F. Cornet, Three Pseudoscalar Photon Interactions in Chiral
Perturbation Theory, Phys. Lett. B 237 (1990) 488 [INSPIRE].

[114] R.A. Briceño et al., The ππ → πγ⋆ amplitude and the resonant ρ → πγ⋆ transition from
lattice QCD, Phys. Rev. D 93 (2016) 114508 [Erratum ibid. 105 (2022) 079902]
[arXiv:1604.03530] [INSPIRE].

[115] C. Alexandrou et al., πγ → ππ transition and the ρ radiative decay width from lattice QCD,
Phys. Rev. D 98 (2018) 074502 [Erratum ibid. 105 (2022) 019902] [arXiv:1807.08357]
[INSPIRE].

[116] M. Niehus, M. Hoferichter and B. Kubis, The γπ → ππ anomaly from lattice QCD and
dispersion relations, JHEP 12 (2021) 038 [arXiv:2110.11372] [INSPIRE].

[117] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022)
083C01 [INSPIRE].

[118] F. Campanario et al., Standard model radiative corrections in the pion form factor
measurements do not explain the aµ anomaly, Phys. Rev. D 100 (2019) 076004
[arXiv:1903.10197] [INSPIRE].

[119] F. Ignatov and R.N. Lee, Charge asymmetry in e+e− → π+π− process, Phys. Lett. B 833
(2022) 137283 [arXiv:2204.12235] [INSPIRE].

[120] J. Monnard, Radiative corrections for the two-pion contribution to the hadronic vacuum
polarization contribution to the muon g − 2, Ph.D. Thesis, Bern University (2020)
[https://boristheses.unibe.ch/2825/].

[121] G. Abbiendi et al., Mini-Proceedings of the STRONG2020 Virtual Workshop on “Space-like
and Time-like determination of the Hadronic Leading Order contribution to the Muon g − 2”,
(2022) [arXiv:2201.12102] [INSPIRE].

– 28 –

https://doi.org/10.1016/0370-2693(72)90171-2
https://inspirehep.net/literature/69364
https://doi.org/10.1103/PhysRevD.5.2372
https://inspirehep.net/literature/69373
https://doi.org/10.1088/0305-4616/4/1/007
https://inspirehep.net/literature/5287
https://doi.org/10.1140/epjc/s10052-012-2014-1
https://arxiv.org/abs/1203.2501
https://inspirehep.net/literature/1093521
https://doi.org/10.1103/PhysRevD.86.054013
https://arxiv.org/abs/1206.3098
https://inspirehep.net/literature/1118267
https://doi.org/10.1103/PhysRevD.86.116009
https://doi.org/10.1103/PhysRevD.86.116009
https://arxiv.org/abs/1210.6793
https://inspirehep.net/literature/1193344
https://doi.org/10.1103/PhysRevD.91.094029
https://arxiv.org/abs/1409.7708
https://inspirehep.net/literature/1319320
https://doi.org/10.1140/epjc/s10052-018-6346-3
https://doi.org/10.1140/epjc/s10052-018-6346-3
https://arxiv.org/abs/1808.08957
https://inspirehep.net/literature/1691832
https://doi.org/10.1016/0003-4916(59)90051-X
https://inspirehep.net/literature/2320
https://doi.org/10.1103/PhysRevD.96.114016
https://doi.org/10.1103/PhysRevD.96.114016
https://arxiv.org/abs/1710.00824
https://inspirehep.net/literature/1628406
https://doi.org/10.1016/0370-2693(90)91212-T
https://inspirehep.net/literature/283126
https://doi.org/10.1103/PhysRevD.93.114508
https://doi.org/10.1103/PhysRevD.105.079902
https://arxiv.org/abs/1604.03530
https://inspirehep.net/literature/1445121
https://doi.org/10.1103/PhysRevD.98.074502
https://doi.org/10.1103/PhysRevD.105.019902
https://arxiv.org/abs/1807.08357
https://inspirehep.net/literature/1683416
https://doi.org/10.1007/JHEP12(2021)038
https://arxiv.org/abs/2110.11372
https://inspirehep.net/literature/1950104
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097
https://inspirehep.net/literature/2106994
https://doi.org/10.1103/PhysRevD.100.076004
https://arxiv.org/abs/1903.10197
https://inspirehep.net/literature/1726528
https://doi.org/10.1016/j.physletb.2022.137283
https://doi.org/10.1016/j.physletb.2022.137283
https://arxiv.org/abs/2204.12235
https://inspirehep.net/literature/2072382
https://boristheses.unibe.ch/2825/
https://arxiv.org/abs/2201.12102
https://inspirehep.net/literature/2021577


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[122] D. Stamen et al., Analysis of rescattering effects in 3π final states, Eur. Phys. J. C 83 (2023)
510 [Erratum ibid. 83 (2023) 586] [arXiv:2212.11767] [INSPIRE].

[123] C. Hanhart, A New Parameterization for the Pion Vector Form Factor, Phys. Lett. B 715
(2012) 170 [arXiv:1203.6839] [INSPIRE].

[124] S. Ropertz, C. Hanhart and B. Kubis, A new parametrization for the scalar pion form
factors, Eur. Phys. J. C 78 (2018) 1000 [arXiv:1809.06867] [INSPIRE].

[125] L. von Detten et al., On the scalar πK form factor beyond the elastic region, Eur. Phys. J. C
81 (2021) 420 [arXiv:2103.01966] [INSPIRE].

[126] R. Omnès, On the Solution of certain singular integral equations of quantum field theory,
Nuovo Cim. 8 (1958) 316 [INSPIRE].

[127] J.J. Sakurai, Currents and Mesons, University of Chicago Press (1969).

[128] F. Klingl, N. Kaiser and W. Weise, Effective Lagrangian approach to vector mesons, their
structure and decays, Z. Phys. A 356 (1996) 193 [hep-ph/9607431] [INSPIRE].

[129] C. Bouchiat and L. Michel, La résonance dans la diffusion méson π-méson π et le moment
magnétique anormal du méson µ, J. Phys. Radium 22 (1961) 121 [INSPIRE].

[130] S.J. Brodsky and E. de Rafael, Suggested boson-lepton pair couplings and the anomalous
magnetic moment of the muon, Phys. Rev. 168 (1968) 1620 [INSPIRE].

[131] V.M. Aul’chenko et al., Study of the e+e− → π+π−π0 process in the energy range
1.05–2.00GeV, J. Exp. Theor. Phys. 121 (2015) 27 [INSPIRE].

[132] SND collaboration, Study of dynamics of the process e+e− → π+π−π0 in the energy range
1.15–2.00GeV, Eur. Phys. J. C 80 (2020) 993 [arXiv:2007.14595] [INSPIRE].

[133] BaBar collaboration, Study of e+e− → π+π−π0 process using initial state radiation with
BaBar, Phys. Rev. D 70 (2004) 072004 [hep-ex/0408078] [INSPIRE].

[134] M.N. Achasov et al., Measurements of the parameters of the ϕ(1020) resonance through
studies of the processes e+e− → K+K−, KSKL, and π+π−π0, Phys. Rev. D 63 (2001)
072002 [hep-ex/0009036] [INSPIRE].

[135] M.N. Achasov et al., Study of the process e+e− → π+π−π0 in the energy region
√
s from 0.98

to 1.38GeV, Phys. Rev. D 66 (2002) 032001 [hep-ex/0201040] [INSPIRE].

[136] M.N. Achasov et al., Study of the process e+e− → π+π−π0 in the energy region
√
s below

0.98GeV, Phys. Rev. D 68 (2003) 052006 [hep-ex/0305049] [INSPIRE].

[137] R.R. Akhmetshin et al., Measurement of ϕ meson parameters with CMD-2 detector at
VEPP-2M collider, Phys. Lett. B 364 (1995) 199 [INSPIRE].

[138] R.R. Akhmetshin et al., Study of dynamics of ϕ → π+π−π0 decay with CMD-2 detector,
Phys. Lett. B 434 (1998) 426 [INSPIRE].

[139] CMD-2 collaboration, Reanalysis of hadronic cross-section measurements at CMD-2, Phys.
Lett. B 578 (2004) 285 [hep-ex/0308008] [INSPIRE].

[140] R.R. Akhmetshin et al., Study of ϕ → π+π−π0 with CMD-2 detector, Phys. Lett. B 642
(2006) 203 [INSPIRE].

[141] A. Cordier et al., Cross-section of the Reaction e+e− → π+π−π0 for Center-of-mass Energies
From 750 to 1100MeV, Nucl. Phys. B 172 (1980) 13 [INSPIRE].

[142] DM2 collaboration, Measurement of the e+e− → π+π−π0 and e+e− → ωπ+π− reactions in
the energy interval 1350–2400MeV, Z. Phys. C 56 (1992) 15 [INSPIRE].

– 29 –

https://doi.org/10.1140/epjc/s10052-023-11665-x
https://doi.org/10.1140/epjc/s10052-023-11665-x
https://doi.org/10.1140/epjc/s10052-023-11749-8
https://arxiv.org/abs/2212.11767
https://inspirehep.net/literature/2617378
https://doi.org/10.1016/j.physletb.2012.07.038
https://doi.org/10.1016/j.physletb.2012.07.038
https://arxiv.org/abs/1203.6839
https://inspirehep.net/literature/1095487
https://doi.org/10.1140/epjc/s10052-018-6416-6
https://arxiv.org/abs/1809.06867
https://inspirehep.net/literature/1694676
https://doi.org/10.1140/epjc/s10052-021-09169-7
https://doi.org/10.1140/epjc/s10052-021-09169-7
https://arxiv.org/abs/2103.01966
https://inspirehep.net/literature/1849738
https://doi.org/10.1007/BF02747746
https://inspirehep.net/literature/9142
https://doi.org/10.1007/s002180050167
https://arxiv.org/abs/hep-ph/9607431
https://inspirehep.net/literature/421201
https://doi.org/10.1051/jphysrad:01961002202012101
https://inspirehep.net/literature/1731129
https://doi.org/10.1103/PhysRev.168.1620
https://inspirehep.net/literature/51153
https://doi.org/10.1134/S1063776115060023
https://inspirehep.net/literature/1389908
https://doi.org/10.1140/epjc/s10052-020-08524-4
https://arxiv.org/abs/2007.14595
https://inspirehep.net/literature/1809286
https://doi.org/10.1103/PhysRevD.70.072004
https://arxiv.org/abs/hep-ex/0408078
https://inspirehep.net/literature/656680
https://doi.org/10.1103/PhysRevD.63.072002
https://doi.org/10.1103/PhysRevD.63.072002
https://arxiv.org/abs/hep-ex/0009036
https://inspirehep.net/literature/533574
https://doi.org/10.1103/PhysRevD.66.032001
https://arxiv.org/abs/hep-ex/0201040
https://inspirehep.net/literature/582183
https://doi.org/10.1103/PhysRevD.68.052006
https://arxiv.org/abs/hep-ex/0305049
https://inspirehep.net/literature/619011
https://doi.org/10.1016/0370-2693(95)01394-6
https://inspirehep.net/literature/406880
https://doi.org/10.1016/S0370-2693(98)00826-0
https://inspirehep.net/literature/480170
https://doi.org/10.1016/j.physletb.2003.10.108
https://doi.org/10.1016/j.physletb.2003.10.108
https://arxiv.org/abs/hep-ex/0308008
https://inspirehep.net/literature/624947
https://doi.org/10.1016/j.physletb.2006.09.041
https://doi.org/10.1016/j.physletb.2006.09.041
https://inspirehep.net/literature/734590
https://doi.org/10.1016/0550-3213(80)90157-1
https://inspirehep.net/literature/140174
https://doi.org/10.1007/BF01589702
https://inspirehep.net/literature/339265


J
H
E
P
0
8
(
2
0
2
3
)
2
0
8

[143] S.I. Dolinsky et al., Summary of experiments with the neutral detector at the e+e− storage
ring VEPP-2M, Phys. Rept. 202 (1991) 99 [INSPIRE].

[144] G. D’Agostini, On the use of the covariance matrix to fit correlated data, Nucl. Instrum.
Meth. A 346 (1994) 306 [INSPIRE].

[145] NNPDF collaboration, Fitting Parton Distribution Data with Multiplicative Normalization
Uncertainties, JHEP 05 (2010) 075 [arXiv:0912.2276] [INSPIRE].

[146] Crystal Barrel collaboration, Antiproton-proton annihilation at rest into ωπ0π0, Phys.
Lett. B 311 (1993) 362 [INSPIRE].

[147] M. Hoferichter et al., A phenomenological estimate of isospin breaking in hadronic vacuum
polarization, arXiv:2307.02532 [INSPIRE].

– 30 –

https://doi.org/10.1016/0370-1573(91)90127-8
https://inspirehep.net/literature/321108
https://doi.org/10.1016/0168-9002(94)90719-6
https://doi.org/10.1016/0168-9002(94)90719-6
https://inspirehep.net/literature/361137
https://doi.org/10.1007/JHEP05(2010)075
https://arxiv.org/abs/0912.2276
https://inspirehep.net/literature/839825
https://doi.org/10.1016/0370-2693(93)90583-4
https://doi.org/10.1016/0370-2693(93)90583-4
https://inspirehep.net/literature/355980
https://arxiv.org/abs/2307.02532
https://inspirehep.net/literature/2674729

	Introduction
	Dispersive parameterization of e**(+) e**(-) –> 3 pi
	Electromagnetic corrections to e**(+) e**(-) –> 3 pi
	rho–omega mixing in e**(+) e**(-) –> 3 pi
	Fits to e**(+) e**(-) –> 3 pi data
	Fits to data base prior to BaBar 2021
	Fits to BaBar 2021
	Global fit

	Consequences for the anomalous magnetic moment of the muon
	Conclusions

