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1 Introduction

The integrability structure in supersymmetric gauge theories has been intensively studied
since the Seiberg-Witten exact result [1, 2] and its relation to classical integrable models [3–
5]. Considering supersymmetric theories on the Ω-background, Nekrasov developed the
technique of supersymmetric localization, and reformulated the Seiberg-Witten theory in
terms of instanton partition functions [6]. These developments have revealed that the
BPS sectors of supersymmetric gauge theories on general Ω-backgrounds are governed by
algebras equipped with universal R-matrices, such as the quantum toroidal algebras and the
affine Yangian algebras [7–9]. This hints at a deep connection between the integrability and
supersymmetric gauge theories, potentially arising from some string-theoretical construction
of the gauge theories. The algebraic formulation of supersymmetric gauge theories has
been generalized to various kinds of gauge theories ranging from 2d N = (2, 2) theories
to 6d N = (1, 0) theories (e.g. [10–16]). However, the criteria for determining whether
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such integrable structures exist in a given theory is still not well understood, and even
for pure gauge theories with BCD-type gauge groups, we lack a clear understanding of
their integrable structure. One of the obstacles in studying BCD-type gauge theories is
the complicated pole structure obtained from the Jeffery-Kirwan (JK) prescription [17–19].
However, in the unrefined limit, the calculation is greatly simplified, as one can effectively
label the JK poles with tuples of Young diagrams [20–22]. This may provide a new avenue
for investigating the integrability structures of BCD-type gauge theories.

Among various different formulations of the integrability in supersymmetric gauge
theories, the qq-characters, a family of physical quantities first named in [23], serve as a
probe to the hierarchy of the integrable structure of gauge theories in different parameter
regions. In the case of A-type gauge groups, the qq-characters as operator-valued quantities
generate a so-called quiver W-algebra, that is the W-algebra associated to the Dynkin
diagram corresponding to the quiver structure of the gauge theory [24, 25]. In the Nekrasov-
Shatashvili limit, which turns off one Ω-background parameter, its expectation value gives
the TQ-relation of a class of quantum integrable models [26], and further in the classical
limit, the expectation value reduces to the Seiberg-Witten curve of supersymmetric gauge
theories with eight supercharges. In supersymmetric gauge theories with BCD-type gauge
groups, the brane construction of qq-characters was proposed in [27, 28] as a generalization
of [29]. Finding exact forms of qq-characters in 5d N = 1 supersymmetric gauge theories
with BCD-type gauge groups has been a challenging task due to the complexity of the
infinite number of terms of the natural quantity called the Y -function and the evaluation of
JK residues. In this paper, we address this issue by focusing on the unrefined limit, which
greatly simplifies the computation, and provide analytic expression of qq-characters for
these theories. This will provide further strong evidence to support the proposal of analytic
expression as a summation over Young diagrams for the instanton partition functions
presented in [21]. Furthermore, using the analytic expression of qq-characters, we explore
the algebraic structure in gauge theories that may connect to the integrability.

This paper is organized as follows. In section 2, we review the concept of qq-characters
as co-dimension four defect partition functions and provide an analytic expression based
on Young-diagram summation for classical gauge groups. In section 3, we examine the
Lie-algebraic relations between qq-characters for isomorphic gauge algebras, which serves
as a validation of the analytic expressions derived in section 2. In section 4, we delve into
the construction of a quantum-toroidal-like algebra that reproduces the expression of the
(fundamental) qq-character for SO(n) gauge theories, utilizing the Ward identity approach
outlined in [30, 31]. Additionally, several appendices are included to supplement the main
text and to provide specific computational details.

2 ABCD of qq-characters

In this section, we will give an overview of the method for deriving qq-characters through
localization computation and present “finite” expressions for the unrefined limit of the qq-
characters for classical gauge groups, evaluated in terms of Young diagrams. This will provide
a clear interpretation of the qq-characters as the quantization of Seiberg-Witten curves.
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0 1 2 3 4 5 6 7 8 9
D4/O4 • • • • • − − − − −
D0 • − − − − − − − − −
D4′ • − − − − • • • • −

Table 1. Configuration of branes in the brane web construction of ADHM construction with Wilson
lines (introduced by D4’ branes).

2.1 qq-characters as defect partition functions

The concept of the qq-characters was first introduced by Nekrasov in the context of BPS/CFT
correspondence [23], which generalizes the q-characters of quantum affine algebras [32].
They can also be understood as partition functions of 4d/5d supersymmetric gauge theories
with co-dimension four defects on the Ω-background [27, 29]. In this paper, we will focus
specifically on the case of pure Yang-Mills theory with 8 supercharges. The Ω-background
effectively reduces the 5d N = 1 pure Yang-Mills theory into supersymmetric quantum
mechanics on the instanton moduli spaces. Since the ADHM descriptions of the instanton
moduli spaces are known for classical gauge groups G, the partition function of pure
Yang-Mills theory in the presence of co-dimension four defects can be expressed by a
Jeffery-Kirwan (JK) residue integral:

Zg
defect(~z) =

∞∑
k=0

qk

|W (Gk)|

∮
JK

k∏
i=1

dφi
2πiZ

(k)
vecZ

(k)
def (~z) , (2.1)

where q indicates the gauge coupling constant (or the dynamical scale after taking the
decoupling limit). Note that Gk is the gauge group of supersymmetric quantum mechanics
on the k-instanton moduli space, and |W (Gk)| is the order of its Weyl group. The JK residue
integral [33–35] is performed on the gauge fugacities φi of the instanton quantum mechanics.
The contribution Z(k)

vec to the integrand can be obtained from the ADHM description as
given in [6, 36, 37]. To read off the defect contribution Z(k)

def (~z), one can consider the brane
configurations and open string spectra between D-branes [27, 29].

Let us consider the brane configuration given by figure 1 in Type IIA theory. In
addition, we introduce the Ω-deformation where U(1)ε1 ×U(1)ε2 rotates the x1234-plane R4

while U(1)m ×U(1)−m rotates the x5678-plane R4. Consequently, the worldvolume theory
on a stack of D4-branes is 5d N = 1∗ theory where the adjoint hypermultiplet has mass m.
The correspondence between the type of 5d gauge group and the kind of O4-plane is as
follows:

A No
B Õ4

−

C O4+, Õ4
+

D O4−

D0-branes give rise to instantons and the D4’-brane realizes the co-dimension four defect.
As we will see, the defect can be understood as Wilson loops. Recall that the D0-branes
give rise to the gauge group Gk and the D4-branes to the flavor symmetry G in the N = 4

– 3 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
0

Multiplet Gk G

Hyper � ∅
Fermi � ∅
Fermi ∅ �

Table 2. Additional multiplets due to the presence of the D4’-brane.

supersymmetric quantum mechanics on the instanton moduli space. From this viewpoint,
additional fields emerge from the string connections between D0- and D4’-branes, as well as
the strings between D4- and D4’-branes. Table 2 provides a list of these fields. Specifically,
the hypermultiplet and Fermi multiplet charged under Gk arise from the D0-D4’ strings
while the Fermi multiplet charged under G stems from the D4-D4’ strings. These multiplets
have a real mass parameter ζ associated to the relative distance of D4- and D4’-branes
along x9-direction.

By taking the decoupling limit m→∞, we can obtain the partition function of the pure
Yang-Mills theory with the presence of the defect. This brane configuration is considered
in [29] for G = SU(N) while O-planes of other types are introduced in [27] for the other
classical gauge groups. Nevertheless, as we will see below, the defect contributions become
the same as in [27] for the pure Yang-Mills. In what follows, we provide the explicit
expressions for the defect partition functions of 5d theories with classical gauge groups.

Throughout the article, we use q1 = e−ε1 , q2 = e−ε2 for the parameters of the Ω-
deformation, and we use the notation ε± = ε1±ε2

2 . The unrefined limit refers to ε1 = −ε2 = ~
so that the 5d parameter is q = e−~ = q1 = q−1

2 .

Type A. To begin with, we will review the well-established case of gauge groups of A-type.
In this case, Gk = U(k) and the integrand of the instanton partition function is

Z(k)
vec = eκφi

(
J2ε+K

Jε1KJε2K

)k k∏
i=1

N∏
α=1

1
Jε+ ± (φi − aα)K

k∏
i,j=1
i 6=j

S(φi − φj + ε+)−1 . (2.2)

From figure 2, one can read off the defect contribution [29]

Z
(k)
def (~z) =

w∏
j=1

N∏
α=1

Jζj − aα + 2ε+K
k∏
i=1
S(ζj − φi), (2.3)

with zj = exp (−ζj), Aα = exp (−aα) and S is given by

S(ζ) := Jε− ± ζK
Jε+ ± ζK

. (2.4)

In this paper, we adopt the convention that JαK := 2 sinh
(
α
2
)
and Jα±βK := Jα+βKJα−βK.

Note that κ in (2.2) is the 5d Chern-Simons level, and it is set to be zero except for
section 3.1. Here, the positions of co-dimension four defects are denoted by ζj , with the
total number w (namely the number of D4’-branes). However, our primary focus is on the
case of w = 1, unless otherwise specified (only in (2.18)).
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In the case of A-type, the qq-character was obtained with generic Ω-background
parameter (ε1, ε2) [23]. This is possible because fixed point sets of the equivariant actions
on the k-instanton moduli spaces are classified by N -tuples ~λ of Young diagrams with the
total number of boxes |~λ| = k, and the instanton partition function can be expressed as a
sum over N -tuples ~λ of Young diagrams at the refined level [6]. Also, by performing the JK
residue integrals at the refined level, one can obtain the same result [17]. When there are
no defects (i.e., when w = 0), the instanton partition function is therefore given by:

Z
su(N)
inst =

∑
~λ

q|
~λ|Z

su(N)
~λ

, Z
su(N)
~λ

=
N∏

α,β=1
N−1
λ(α)λ(β)(Qαβ , q1, q2), (2.5)

where the Coulomb branch parameters enter the formula via Qαβ = Aα/Aβ, and the
Nekrasov factor Nλν(Q, q1, q2) is expressed by

Nλν(Q, q1, q2) :=
∏

(i,j)∈λ

(
1−Qq−νi+j2 q

λtj−i+1
1

) ∏
(i,j)∈ν

(
1−Qqλi−j+1

2 q
−νtj+i
1

)
. (2.6)

Some relevant properties of the Nekrasov factor are listed in appendix D. Here, for later
use, we write a fixed point set of the equivariant actions U(1)ε1,2 ×U(1)~a (or equivalently
the sets of JK poles) as | ~A,~λ〉ref, and represent the instanton partition function with the
inner product of Gaiotto states [38]

|G〉 =
∑
~λ

(
q|
~λ|Z

su(N)
~λ

) 1
2 | ~A,~λ〉ref , 〈G |G〉 = Z

su(N)
inst . (2.7)

Recall that the pure Yang-Mills theory arises from a sphere with two irregular punctures in
the class S construction [38], and the irregular puncture corresponds to the Gaiotto state
as a coherent state in the dual W-algebra [39].

As done in [29], even with one defect w = 1, the JK poles are also classified by two
types of N -tuples of Young diagrams. Poles in the one type come from Z

(k)
vec, and therefore

they are the same as ~λ without the defect. On the other hand, in the other type, one of the
poles is located at φi = ζ − ε+, which comes from Z

(k)
def , and the other poles originate from

Z
(k)
vec, which are classified by ~λ′ where |~λ′| = |~λ| − 1. The contributions from the poles of

these two types can be nicely packaged into two expectation values as

〈χA(z)〉 = Z
su(N)
defect(z) = 〈Y A(z)〉+

〈
qcA

Y A(zq3)

〉
, (2.8)

where cA = (−1)N and q3 = (q1q2)−1. Here, 〈Y A(z)〉 can be interpreted as the expectation
value of the defect (2.3) where the expectation value of an operator O in the 5d pure
Yang-Mills theory is defined by sandwiching with the Gaiotto state |G〉

〈O〉 := 〈G| O |G〉 , (2.9)

and we can interpret that an operator Y A(z) acts diagonally on the basis {| ~A,~λ〉ref} as

Y A(z) | ~A,~λ〉ref = YA~λ (z) | ~A,~λ〉ref , (2.10)
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with

YA~λ (z) =
N∏
α=1

Jζ − aα + 2ε+K
∏
x∈~λ

S(ζ − φx) =
∏
x∈A(~λ)Jζ − φx + ε+K∏
x∈R(~λ)Jζ − φx − ε+K

, (2.11)

and
φx = aα − ε+ + (i− 1)ε1 + (j − 1)ε2 , x = (i, j) ∈ λ(α) (2.12)

Note that A(~λ)/R(~λ) is the set of boxes in ~λ that can be added/removed, respectively.
Consequently, the expectation value of Y A(z) is then given by

〈Y A(z)〉 :=
∑
~λ

q|
~λ|YA~λ (z)Zsu(N)

~λ
. (2.13)

There exist unphysical poles in both YA~λ (z) and 1/YA~λ (zq3). However, it can be shown
that their residues are zero through the evaluation of the JK residue integral because the
pole in YA~λ (z) cancels out with the pole in cA/YA~λ′(zq3), where ~λ′ satisfies |~λ′| = |~λ| − 1.
Additionally, the asymptotic behavior of the qq-character near z ∼ 0 and z ∼ ∞ can be
expressed as:

z
N
2 〈χ(z)〉 ∼ zN , z ∼ ∞

z
N
2 〈χ(z)〉 ∼ O(z0), z ∼ 0, (2.14)

which implies that z
N
2 〈χ(z)〉 is a degree-N polynomial of z, i.e.

〈χ(z)〉 = z−
N
2

N∑
i=0

fiz
i . (2.15)

The coefficients fi are rational functions of ~A, q1,2. For further information on qq-characters
of gauge theories with A-type gauge group, we refer to [40] for a comprehensive review.

As suggested in (2.8), the qq-characters actually have an algebraic meaning of the
quiver structure of A-type gauge theories (at the classical level, this relation between the
Seiberg-Witten curve and the fundamental character of quiver was first noticed in [41] and
was promoted to the full Ω-deformed region in [23, 24]). For example, the character of the
fundamental representation of su(2) is

χ = y + y−1, (2.16)

and the corresponding qq-character can be understood as a doubly-quantized version of
the Seiberg-Witten curve. The character for w = 2 corresponds to that of the adjoint
representation

χw=2 = y2 + 1 + y−2, (2.17)
and is lifted to

〈χw=2(~z)〉 = 〈Y A(z1)Y A(z2)〉+ qcA

〈
S(ζ1 − ζ2 + ε+) Y A(z1)

Y A(z2q3)

〉
(2.18)

+ qcA

〈
S(ζ2 − ζ1 + ε+) Y A(z2)

Y A(z1q3)

〉
+ q2c2

A

〈 1
Y A(z1q3)Y A(z2q3)

〉
.

This interesting relation was found in [41] for A-type gauge theories with ADE-quiver
structures.
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Type BD. The nature of qq-characters has been well investigated for A-type gauge
groups, but little has been done for other types. Let us consider the case G = SO(n) in
which the instanton quantum mechanics is described by Gk = Sp(k).

Writing n = 2N + ξ (n ≡ ξ mod 2), the integrand of the instanton partition function
for the SO(n) puer Yang-Mills [36] is given by

Z(k)
vec = J2ε+Kk

Jε1,2Kk
k∏
i=1

J±2φiKJ2ε+ ± 2φiK
Jε+ ± φiKξ

∏N
α=1Jε+ ± φi ± aαK

∏
i<j

S(ε+ ± φi ± φj)−1 . (2.19)

The contribution from the defect can be derived from table 2

Z
(k)
def (z) = JζKξ

N∏
α=1

Jζ ± aαK
k∏
i=1
S(ζ ± φi) , (2.20)

where S is defined in (2.4). This is equivalent to that derived in [27]. The integration is
carried out using the JK prescription as usual.

Type C. In Sp(N) theories, the calculation of the defect partition function is more
involved because of the discrete θ-angle [42]. In fact, the gauge group of the Sp(N)
instanton quantum mechanics is Gk = O(k) [36, 37], which has two connected components
O(k)±. A choice of taking the sum or difference of these two contributions depends on the
θ-angle in the theory:

Z
sp(N)θ
defect (z) =

∞∑
k=0

qk
Z(k+)(z)± Z(k−)(z)

2 , (2.21)

where the sum corresponds to θ = 0 and the difference corresponds to θ = π.
Writing an instanton number k = 2`+ ξ, the contributions can be evaluated using JK

residues

Z(k±)(z) = 1
|W (O(k)±)|

∮
JK

`(−1)∏
j=1

φj
2πiZ

k±
vecZ

k±
def (z). (2.22)

Note that the subscripts here express the contribution from open strings between the corre-
sponding D-branes. The concrete integral expression of the vector multiplet contribution
Zk±vec for the 5d Sp(N) vector multiplet are given as follows [37]:

Zk=2`+ξ,+
vec =

(
1

Jε1,2K
∏N
α=1Jε+ ± aαK

·
∏̀
i=1

J±φiKJ2ε+ ± 2φiK
J±φi + ε1,2K

)ξ
(2.23)

·
∏̀
i=1

J2ε+K
Jε1,2KJε1,2 ± 2φiK

∏N
α=1Jε+ ± φi ± aαK

∏̀
i<j

J±φi ± φjKJ2ε+ ± φi ± φjK
Jε1,2 ± φi ± φjK

Zk=2`,−
vec = cosh ε+

Jε1,2K J2ε1,2K
∏N
α=1J±2aα + 2ε+K

·
`−1∏
i=1

J±2φiKJ4ε+ ± 2φiK
J2ε1,2 ± 2φiK

·
`−1∏
i=1

J2ε+K
Jε1,2KJε1,2 ± 2φiK

∏N
α=1Jε+ ± φi ± aαK

`−1∏
i<j

J2ε+ ± φi ± φjK J±φi ± φjK
Jε1,2 ± φi ± φjK
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Zk=2`+1,−
vec = 1

Jε1,2K
N∏
α=1

2 cosh ε+±aα
2

·
∏̀
i=1

2 cosh ±φi2 2 cosh 2ε+±φi
2

2 cosh ε1,2±φi
2

·
∏̀
i=1

J2ε+K
Jε1,2KJε1,2 ± 2φiK

∏N
α=1Jε+ ± φi ± aαK

∏̀
i<j

J±φi ± φjKJ2ε+ ± φi ± φjK
Jε1,2 ± φi ± φjK

.

Taking into consideration the Cartan subalgebras of O(k)± [37], the defect contributions
can be obtained from figure 2:

Zk=2`+ξ,+
def (z) =

N∏
α=1

Jζ ± aαK
(

Jε− ± ζK
Jε+ ± ζK

)ξ ∏̀
i=1
S(ζ ± φi),

Zk=2`+1,−
def (z) =

N∏
α=1

Jζ ± aαK
cosh

(
ε−±ζ

2

)
cosh

(
ε+±ζ

2

) ∏̀
i=1
S(ζ ± φi),

Zk=2`,−
def (z) =

N∏
α=1

Jζ ± aαK
J2ε− ± 2ζK
J2ε+ ± 2ζK

`−1∏
i=1
S(ζ ± φi) , (2.24)

which are the same as those in [27]. Note that the orders of the Weyl groups are given by

|W (O(2`)+)| = 1
2`−1`! , |W (O(2`+1)+)| = 1

2``! ,

|W (O(2`)−)| = 1
2`−1(`−1)! , |W (O(2`+1)−)| = 1

2``! . (2.25)

2.2 qq-characters in the unrefined limit

As presented in [27], for a generic Ω-background (ε1, ε2), the qq-characters for BCD-type
gauge theories appear to be “infinite”, that is, they cannot be expressed as the expectation
value of a finite number of Y -operators (at least in an obvious way). This originates from
the fact that JK poles are rather complicated (and yet to be understood) at the refined
level. Nevertheless, the lesson we learned in [21] is that non-trivial JK poles for BCD-type
gauge theories are classified by a set of Young diagrams in the unrefined limit ε1 = −ε2 = ~.
Therefore, in this subsection, we shall show that the qq-characters for BCD-type gauge
theories take on finite forms in the unrefined limit, thus preserving their algebraic meaning
(see appendix B for further details).

Type BD. As analyzed in [21], non-trivial JK poles of SO(n) pure Yang-Mills theory
are classified by N -tuples of Young diagrams where we write n = 2N + ξ (n ≡ ξ mod 2).
More explicitly, the location of a pole is indeed the unrefined limit of (2.12):

φx = aα + (i− j)~ , x = (i, j) ∈ λ(α) , (2.26)

where |~λ| = k. Therefore, the unrefined instanton partition function can be written as

Z
so(n)
inst =

∑
~λ

q|
~λ|Z

so(n)
~λ

, (2.27)
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where explicit forms of Zso(n)
~λ

are given in (D.13) and (D.23). Even if we insert a co-
dimension four defect, the pole structure stays intact. Hence, we write the set of poles as
| ~A,~λ〉, and the expectation value of the defect at | ~A,~λ〉 is

YBD~λ (z) = JζKξ
N∏
α=1

Jζ ± aαK
∏
x∈~λ

S(φx ± ζ). (2.28)

Then, the total defect partition function receives the two contributions: the one comes from
the poles | ~A,~λ〉 while the other terms from φx = ±ζ and | ~A, ~λ′〉 with |~λ′| = |~λ| − 1. Thus,
the qq-character takes the form as

〈χBD(z)〉 = Z
so(n)
defect(z) = 〈Y BD(z)〉+

〈
cBDq

Y BD(z)

〉
, (2.29)

where
cBD = J2ζ ± ~KJ2ζK2 . (2.30)

Here, the expectation value of the Y -operator can be evaluated in a similar way to (2.13),
namely by sandwiching the corresponding Gaiotto state.

In appendix D, we provide a proof of the pole cancellations at ζ = ±φx for x ∈
A(~λ)

⋃
R(~λ) with the recursive relations presented there. Given the fact that all JK poles

can be classified by Young diagrams, it follows directly that the qq-character (2.29) is a
Laurent polynomial of degree n in z. Alternatively, the astute reader can independently
verify this property by explicitly evaluating the defect partition function.

Thanks to the polynomial nature of 〈χBD(z)〉, (2.29) can be interpreted as the quantiza-
tion (by q = e−~) of the Seiberg-Witten curve for the SO(n) pure Yang-Mills theory [43–47]
by appropriately rescaling q and z.

Type C. Now let us move on to the Sp(N) gauge group. It was observed in [21] that
non-trivial JK poles for the Sp(N) pure Yang-Mills theory are classified by (N + 4)-tuples
of Young diagrams where there are four additional effective Coulomb branch parameters
aN+j (j = 1, . . . , 4) depending on the sectors:

aN+j =



~
2(+πi), 0(+πi) (even,+) sector
~
2(+πi), ~, πi (odd,+) sector
~
2(+πi), ~(+πi) (even,−) sector
~
2(+πi), 0, ~ + πi (odd,−) sector

(2.31)

where we use the notation (even/odd,±) to label the O(k)± with even/odd number k
of instantons. Moreover, the unrefined instanton partition function involves non-trivial
multiplicity coefficients for these effective Coulomb branch parameters, and it schematically
takes the following form:

Z
sp(N),±
inst =

∑
~λ

q|
~λ|C

(±)
~A,~λ
Z

so(2N+8)
~λ

. (2.32)

We refer the reader to [21] for the explicit form of the multiplicity coefficients C(±)
~A,~λ

.

– 9 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
0

Incorporating the effective Coulomb branch parameters, the locations of poles are as
in (2.26). In 5d, the defect contributions (2.24) also depend on the sectors. Consequently,
we can evaluate the expectation value of the defect only in each sector:

YC~λ (z) =
N∏
α=1

Jζ ± aαK
Jε− ± ζK
Jε+ ± ζK

∏
x∈~λ

S(ζ ± φx) , (odd,+) sector

YC~λ (z) =
N∏
α=1

Jζ ± aαK
∏
x∈~λ

S(ζ ± φx), (even,+) sector

YC~λ (z) =
N∏
α=1

Jζ ± aαK
cosh

(
ε−±ζ

2

)
cosh

(
ε+±ζ

2

) ∏
x∈~λ

S(ζ ± φx), (odd,−) sector

YC~λ (z) =
N∏
α=1

Jζ ± aαK
J2ε− ± 2ζK
J2ε+ ± 2ζK

∏
x∈~λ

S(ζ ± φx), (even,−) sector (2.33)

Plugging these into the summation (2.32), one can evaluate the expectation value of the
Y -operator in each sector. Using these expressions, we can represent the defect partition
function in terms of the Y -operator, and it is remarkably independent of a choice of a sector
(even/odd,±)

Z(k,±)(z) =
〈
Y C

〉
+ q2

J2ζK2J2ζ ± ~K

〈 1
Y C

〉
. (2.34)

Finally, depending on the θ-angle, we can obtain the defect partition function via (2.21).
However, unlike in the case of ABD-type gauge groups, due to the additional poles (2.31),

one cannot repeat the argument of pole-cancellation, in particular, we can see that the
defect partition function of Sp(N) theory has explicit poles at z = ±1. To address this
issue, we need to subtract a spurious contribution Zextra from the defect partition function
to define a regularized qq-character. The form of Zextra is given by:

Z
sp(N)θ
extra (z) =

q z(1+z2)
(1−z2)2Z

sp(N)θ
inst for N − θ

π ≡ 1 mod 2
q 2z2

(1−z2)2Z
sp(N)θ
inst for N − θ

π ≡ 0 mod 2
, (2.35)

where Zinst is the instanton partition function without the defect. The regularized qq-
character is then defined as:〈

χsp(N)θ(z)
〉

= Z
sp(N)θ
defect (z)− Zsp(N)θ

extra (z), (2.36)

which becomes a Laurent polynomial in z. We have verified this property for Sp(1), Sp(2),
and Sp(3) theories up to six instantons using Mathematica.

The advantage of the universal form of the right-hand side of (2.34) is now clear.
By recognizing that the spurious contribution is proportional to Z

sp(N)θ
inst = 〈1〉, we can

express (2.34) as

〈
Y C

〉
+ f(N, θ) q

J2ζK2 〈1〉+ q2

J2ζK2J2ζ ± ~K

〈 1
Y C

〉
=
〈
χsp(N)θ(z)

〉
(2.37)
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where

f(N, θ) =

2 cosh(ζ) for N − θ
π ≡ 1 mod 2

2 for N − θ
π ≡ 0 mod 2

. (2.38)

In conclusion, the form of the qq-character becomes apparent only at the unrefined limit
for the Sp(N) pure Yang-Mills theory. Also, by appropriately rescaling q and z, it can be
interpreted as the quantization of the Seiberg-Witten curve [46–48]. The presence of the
“spurious” contribution is “essential” for obtaining the correct form as the quantization of
the Seiberg-Witten curve, and it provides the explicit dependence on the θ-angle in 5d.
Furthermore, as both cases in (2.38) approach 2 in the 4d limit, we can conclude that the
Seiberg-Witten curve becomes insensitive to the θ-angle in the 4d limit.

Remark. In (2.37), there are apparent poles at ζ = ±φx for x ∈ A(~λ)
⋃
R(~λ) and also

at special values as ζ = 0,±1
2 ,±~, coming from four additional Young diagrams used

to describe the Sp(N) theories. As in appendix D, it is straightforward to show the
pole cancellation at a generic pole like the case of SO(n). However, the cancellations at
these special poles are highly non-trivial and we verify the cancellations only through the
order-by-order instanton expansion up to 6-instanton.

3 Lie-algebraic relations among qq-characters

In section 2.1, it was discussed that a qq-character can be interpreted as a partition function
involving co-dimension four defects. Specifically, the D4-D4’ strings depicted in figure 2
introduce fermionic degrees of freedom [49]. When a 5d gauge theory is coupled to these
one-dimensional fermionic degrees of freedom, it gives rise to a half-BPS Wilson loop.
Moreover, the path integral involving this fermionic Fock space serves as a generating
function for half-BPS Wilson loops in antisymmetric tensor representations [29, 50, 51].
Therefore, the qq-character can be understood as

χg(z) = z−
dim �

2

dim�∑
k=0

(−z)kW∧k , (3.1)

where
∧k denotes the k-th anti-symmetric tensor product of the fundamental representation

� of the underlying gauge algebra, and dim� is the dimension of the fundamental represen-
tation. At the zero-instanton level, a Wilson loop expectation value is simply the character
of the corresponding representation. While it receives all the instanton corrections, the
isomorphism of representations of gauge algebras leads to the agreement of the Wilson
loop expectation values at all the instanton sectors. This section investigates this aspect
in the qq-characters as viewed from the perspective of Wilson loops. The results in this
section support the physical interpretation of a qq-character as a generating function of
Wilson loop expectation values, shedding light on the relationships between qq-characters
of different gauge algebras. However, as we will see below, it is important to note that
even if two gauge algebras are isomorphic, their qq-characters may not necessarily coincide
entirely due to their dependence on representations.
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3.1 sp(1) vs su(2)

Let us first consider the isomorphism sp(1) ∼= su(2) of the Lie algebras. Since their
fundamental representations agree, we expect the match of both the qq-characters. However,
there are two subtleties to consider. The first subtlety is the choice (θ = 0, π) of the θ-angle
as seen in section 2.1. In this isomorphism of the gauge algebras, it corresponds to a choice
(κ = 0, 1) of the 5d Chern-Simons level κ of the SU(2) theory [28]. The second subtlety
is that the naive Sp(1) defect partition function is not a Laurent polynomial of z, and we
need to remove the spurious contribution Zextra given in (2.35) in order to compare the
qq-character of SU(2).

First, let us consider the case κ = 0 (or equivalently θ = 0). The qq-character of
SU(2)κ=0 is well-known [23]:

〈χsu(2)κ=0(z)〉 = (z −A)(z −A−1)
z

+ q
A(2qA(1 + z2)− z(1 + q2)(1 + A2)

z(1− q)2(1−A2)2 +O(q2) . (3.2)

At zero-instanton level, it can be expanded as z−1 − (A+A−1) + z, which is a generating
function of the su(2) characters of (∅,�, ).

On the other hand, the defect partition function of Sp(1)θ=0 is

Z
sp(1)θ=0
defect (z) = (z −A)(z −A−1)

z
(3.3)

+ q
(z −A)(1− zA)

z(1− z2)2(1− q)2(1−A2)2

×
(
z(1 + z2)(1− q)2(1 +A2)− 2(q(1 + z4)− 2z2(1− q + q2))A

)
+O(q2)

The zero-instanton part comes from ZD4/D4’(z), which is equal to that of (3.2). However,
the one-instanton part is no longer a Laurent polynomial of z due to the presence of (1−z2)2

in the denominator. The difference between (3.2) and (3.3) at one-instanton is given by

− z(1 + z2)
(1− z2)2 . (3.4)

Even at higher-instanton, it can be verified that the regularized qq-character defined in (2.36)
is a Laurent polynomial of z, and moreover the following identity holds

〈χsu(2)κ=0(z)〉 = 〈χsp(1)θ=0(z)〉 = Z
sp(1)θ=0
defect (z)− q

z
(
1 + z2)

(1− z2)2 Z
sp(1)θ=0
inst . (3.5)

This identity has been checked up to 6-instanton.
Next, we consider the case κ = 1 (or equivalently θ = π). Using the procedure outlined

in (2.2), we include the 5d Chern-Simons level κ = 1 and perform a JK residue integral to
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obtain the qq-character of SU(2)κ=1:

〈χsu(2)κ=1(z)〉 = (z −A)(z −A−1)
z

+ q
(1 + z2)q(A+A3)− z(q + 2(1− q + q2)A2 + qA4)

z(1− q)2 (1−A2)2

+O(q2) . (3.6)

On the other hand, the defect partition function of Sp(1)θ=π is given by

Z
sp(1)θ=π
defect (z) = (z −A)(z −A−1)

z
(3.7)

+ q
(z −A)(1−Az)

z(1− z2)2(1− q)2(1−A2)2

× (2z(A+z)(1+Az)−(1+z2)(4Az+(1+A2)(1+z2))q+2z(A+z)(1+Az)q2)
+O(q2)

While the zero-instanton part remains unchanged, the higher-instanton part will differ from
the previous case. Now, the difference between (3.6) and (3.7) at one-instanton is given by

− 2z2

(1− z2)2 .

Therefore, as in (2.36), we can regularize it by a product of this factor and qZ
sp(1)θ=π
inst to

get the qq-character of Sp(1)θ=π, which is equal to (3.6)

〈χsu(2)κ=1(z)〉 = 〈χsp(1)θ=π(z)〉 = Z
sp(1)θ=π
defect (z)− q

2z2

(1− z2)2Z
sp(1)θ=π
inst . (3.8)

We checked this identity up to 6-instanton.

3.2 sp(2) vs so(5)

The comparison between the qq-characters of Sp(2)θ=0 and SO(5) is more subtle. First of
all, the second anti-symmetric tensor product of the fundamental representation 4 of sp(2)
is reducible:

∧2 4 ∼= 5⊕ 1 , (3.9)

where the first irreducible representation 5 is isomorphic to the vector representation 5 of
so(5). As in (2.36), the regularized qq-character of Sp(2)θ=0

〈χsp(2)θ=0(z)〉 = Z
sp(2)θ=0
defect − q

2z2

(1− z2)2Z
sp(2)θ=0
inst , (3.10)

and the Wilson loop expectation value Wsp(2)θ=0
∧24 is the coefficient of its z0-term. On the

other hand, the Wilson loop expectation value Wso(5)
5 is the coefficient of the z−

3
2 -term

of the qq-character of SO(5), and the trivial representation 1 in (3.9) correspond to the
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instanton partition function without defect. Hence, the isomorphism (3.9) gives rise to the
identity

〈χsp(2)θ=0(z)〉
∣∣
z0,A1→A1A2

=
(
〈χso(5)(z)〉

∣∣
z−

3
2

+ Z
so(5)
inst

)
A2→A1A2

2
. (3.11)

We also checked this proposal up to 6-instanton.
One may wonder about the realization of Sp(2)θ=π in terms of SO(5). This can be

achieved by adding a spinor hypermultiplet and taking a suitable limit of the spinor mass [22,
eq. (3.25)]. We expect that this can be verified at the level of qq-characters by inserting a
co-dimension four defect, but we relegate this issue to future work.

3.3 so(4) vs su(2) ⊕ su(2)

As noted above, we should be careful about the representations we consider respectively in
so(4) and su(2)⊕ su(2) to extract out the corresponding coefficients that give the same W∧k .
The vector representation 4 of so(4) is isomorphic to the product of the two fundamental
representations 2 of su(2), i.e. 4 ∼= 2⊗ 2, so it is natural to expect that

Wso(4)
4

?=Wsu(2)
2 ×Wsu(2)

2 . (3.12)

However, in 5d N = 1 gauge theory, an extra U(1) factor needs to be included. As shown
in [20], the partition function of pure 5d N = 1 SO(4) gauge theory can be written as

ZSO(4)(A1, A2; q) = ZSU(2)

(
A

1
2
1 /A

1
2
2 , q

)
ZSU(2)

(
A

1
2
1A

1
2
2 , q

)
ZU(1)(q), (3.13)

where the U(1) instanton partition function, expressed in terms of the plethystic exponential

ZU(1)(q) = P.E.
(

q

(1− q)2 q

)
, (3.14)

corresponds to the contribution from the parallel branes colored in red in the 5-brane web
construction of SO(4) shown below:

P

Q′

Q

O5−O5+ O5+
(3.15)

Therefore, the isomorphism of the representations for the Wilson loop expectation values
amounts to

Wso(4)
4 (A1, A2) =Wsu(2)

2

(
A

1
2
1 /A

1
2
2

)
×Wsu(2)

2

(
A

1
2
1A

1
2
2

)
× ZU(1) . (3.16)
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From (3.1), the Wilson loop with the vector representation of so(4) is the coefficient of
z−1-term of the qq-character χso(4)

Wso(4)
4 = −〈χso(4)(z)〉

∣∣
z−1

= (A1 +A2)(1 + A1A2)
A1A2

+ q
(A1 +A2)(1 + A1A2)

(1− q)2A1A2(A1 −A2)2(1−A1A2)2

×
(
A1A2(1 +A2

2)(1− q)2 +A3
1A2(1 +A2

2)(1− q)2 +A2
2q +A4

1A
2
2q

+A2
1(q +A4

2q − 4A2
2(1− q + q2))

)
+O

(
q2
)
. (3.17)

Likewise, (3.1) indicates that the Wilson loop with the fundamental representation of su(2)
is the coefficient of z0-term of the qq-character (3.2)

Wsu(2)
2 = −〈χsu(2)(z)〉

∣∣
z0 = A+A−1 + q

A(1 + q2)(1 + A2)
(1− q)2(1−A2)2 +O

(
q2
)
. (3.18)

It is clear from (3.17) and (3.18) that the zero-instanton part is simply the character of the
corresponding representation. In addition, we have verified the proposed identity (3.16)
using Mathematica up to 4-instanton.

3.4 so(6) vs su(4)

The vector representation 6 of so(6) is isomorphic to the rank-two antisymmetric repre-
sentation of su(4). The Wilson loop expectation value Wso(6)

6 can be read off from the
coefficient of z−2-term in χso(6). On the other hand, (3.1) tells us that Wsu(4) is equal to
the coefficient of z0-term in χsu(4). Therefore, we have the identity

〈χso(6)(z)〉
∣∣
z−2 = 〈χsu(4)(z)〉

∣∣
z0 , (3.19)

where we make the following change of the Coulomb branch parameters from the orthogonal
basis of su(4) to that of so(6)

A1 → (A1A2A3)
1
2 , A2 → (A1A

−1
2 A−1

3 )
1
2 , A3 → (A−1

1 A2A
−1
3 )

1
2 , A4 → (A−1

1 A−1
2 A3)

1
2 .

It is straightforward to check the equality (3.19) with Mathematica, and we checked it up
to 4-instanton.

4 Ward-identity approach to qq-character and algebraic structure

Another interesting aspect of the qq-characters comes from their connection to the algebraic
structures of supersymmetric gauge theories. In the context of 5d A-type gauge theories,
qq-characters generate the quiver W-algebra of the gauge theory [24] and can be embedded
in the quantum toroidal algebra Uq1,q2,q3(

..
gl1) of gl1 [52], which frames the topological vertex

formalism of 5d gauge theories [9]. In the latter algebraic framework, there exists a purely
algebraic method for deriving qq-characters through the use of a trivial identity, referred to
as a “Ward identity”, in the quantum toroidal algebra [30, 31]. The existence of such an
algebraic structure is deeply related to the integrability nature of the gauge theory we are
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considering. Unfortunately, at the current stage we do not know for sure if the BCD-type
gauge theories have integrable structures on the generic Ω-background. In this section,
we try to construct a candidate for the underlying algebraic structure of BD-type gauge
theories by employing the “Ward identity” approach to qq-characters in these theories
inversely. It may uncover some integrability nature of BD-type gauge theories in the
unrefined limit.

4.1 Quantum toroidal algebra

The underlying algebraic structure of A-type gauge theories is governed by the quantum
toroidal algebra Uq1,q2,q3(

..
gl1) of gl1, which is defined by the Drinfeld currents x±(z), ψ±(z)

with the commutation relations [53–55]

[ψ±(z), ψ±(w)] = 0,

ψ+(z)ψ−(w) = g (γ̂z/w)
g (γ̂−1z/w)ψ

−(w)ψ+(z)

ψ±(z)x+(w) = g
(
γ̂±

1
2 z/w

)
x+(w)ψ±(z) (4.1)

ψ±(z)x−(w) = g
(
γ̂∓

1
2 z/w

)−1
x−(w)ψ±(z)

x±(z)x±(w) = g (z/w)±1 x±(w)x±(z)[
x+(z), x−(w)

]
= − (Resz→1 s(z))

(
δ (γ̂w/z) ψ+

(
γ̂

1
2w
)
− δ

(
γ̂−1w/z

)
ψ−

(
γ̂−

1
2w
))

.

Here γ̂ is a central element of the algebra, q3 := q−1
1 q−1

2 , and the structure function g(z) is
given by

g(z) = s(z)
s(z−1) = (1− q1z)(1− q2z)(1− q3z)

(1− q−1
1 z)(1− q−1

2 z)(1− q−1
3 z)

, s(z) := (1− zq1)(1− zq2)
(1− z)(1− zq1q2) , (4.2)

which satisfies a nice property,
g(z−1) = g(z)−1. (4.3)

Taking the mode expansions of the Drinfeld currents as

x±(z) =:
∑
n∈Z

x±n z
−n, ψ±(z) =:

∑
±n≥0

ψ±n z
−n, (4.4)

an important relation, the Serre relation, needs to be imposed:[
x±n ,

[
x±n−1, x

±
n+1

]]
= 0, (4.5)

for ∀n ∈ Z. Then, the central elements of the algebra are γ̂ and ψ±0 , which are mapped to
constant numbers in representations. It is often convenient to parameterize them with two
new operators ˆ̀1 and ˆ̀2,

(γ̂, ψ±0 ) = (γ ˆ̀1 , γ∓
ˆ̀2), (4.6)

with γ := q
1
2
3 , where we used the automorphism ψ±(z) → α2ψ±(z) and x±(z) → αx±(z)

for α ∈ C×.
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Now, we proceed to examine the unrefined limit (q1q2 = q−1
3 = 1) of this algebra. Note

that in this limit, the function g(z) tends to 1 so that a naive reduction would lead to a
commutative algebra at a first glance. However, this is not the case. By introducing the
following mode expansion

ψ±
(
zγ̂

1
2
)

= ψ±0 exp
(∑
m>0

κmh±mz
∓m
)
, (4.7)

where κm := (1− qm1 )(1− qm2 )(1− qm3 ), the commutation relations of Uq1,q2,q3(
..
gl1) can be

re-expressed as [56][
hm, x

±
n

]
= ∓ 1

m
x±m+nγ̂

−(m±|m|)/2, [hm, hn] = −δn+m,0
γ̂m − γ̂−m

mκm
. (4.8)

Then, in the unrefined limit q3 → 1, we obtain [57, 58]

[
hm, x

±
n

]
= ∓ 1

m
x±m+n, [hm, hn] = −δn+m,0

ˆ̀1
mJ±m~K

,[
x+
m, x

−
n

]
= −J±~K

[
(m+ n)J±(m+ n)~Khm+n + δn+m,0(nˆ̀1 + ˆ̀2)

]
, (4.9)

with q1 = q−1
2 = q = e−~. Here we use the concise notation J±m~K := (1− qm)(1− q−m).

In terms of the Drinfeld currents, the unrefined limit of Uq1,q2,q3(
..
gl1) can be rewritten as

[hm, x±(z)] = ∓z
m

m
x±(z) ,

[x+(z), x−(w)] = −J±~K

δ(z/w)
∑
m∈Z
m 6=0

mJ±m~Khmz−m +
∑
n

(z/w)n(nˆ̀1 + ˆ̀2)

 . (4.10)

A family of representations of the algebra known as the vertical representations is of
relevance to the current context. Under the vertical representations, the algebra acts on
the fixed point sets {| ~A,~λ〉ref} of the equivariant actions of the instanton moduli spaces.
Moreover, the Drinfeld currents x±(z) add/remove a box to N -tuples ~λ of Young diagrams.
In other words, they act as instanton creation/annihilation operators. The Cartan part
ψ±(z) of the Drinfeld currents is related to the Y -operator (2.10).

Vertical representations. The vertical representation maps

(ˆ̀1, ˆ̀2) 7→ (0, N), (4.11)

for some positive integer N . With a suitable normalization of the basis, the Drinfeld currents
act under the representation as

x+(z) | ~A,~λ〉ref =
∑

x∈A(~λ)

δ(z/χx) Resz→χx
1

YA~λ (z)
| ~A,~λ+ x〉ref ,

x−(z) | ~A,~λ〉ref =
∑

x∈R(~λ)

δ(z/χx) Resz→χx YA~λ (zq−1
3 ) | ~A,~λ− x〉ref ,

ψ±(z) | ~A,~λ〉ref =
[
Y~λ(zq−1

3 )
Y~λ(z)

]
±
| ~A,~λ〉ref , (4.12)
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where the YA~λ -function is defined in (2.11), and χx = exp(−φx). Here [. . .]± means that
the expression inside the bracket is to be expanded in terms of z∓. Namely, it should be
expanded in powers of z−1 for ψ+ while in powers of z for ψ−.

In the unrefined limit, we use the identity

(1− qn)±1 = exp (± log(1− qn)) = exp
(
∓
∞∑
m=1

1
m
qnm

)
, (4.13)

and (D.4), (D.5) to obtain1

x+(z) | ~A,~λ〉 = J~K
∑

x∈A(~λ)

δ(z/χx) | ~A,~λ+ x〉 ,

x−(z) | ~A,~λ〉 = −J~K
∑

x∈R(~λ)

δ(z/χx) | ~A,~λ− x〉 ,

hm | ~A,~λ〉 =
N∑
α=1

Amα
m

pm(q(λ(α))t+ρ+1/2)
1− qm | ~A,~λ〉 ,

h−m | ~A,~λ〉 = −
N∑
α=1

A−mα
m

p−m(q(λ(α))t+ρ+1/2)
1− q−m | ~A,~λ〉 , (4.14)

where pm(x) =
∑
i x

m
i is the power sum function, ρ = (−1

2 ,−
3
2 ,−

5
2 , . . . ), and m > 0 in the

above equations. We will explain in appendix C how to directly check that the above action
becomes a representation of the unrefined limit (4.10) of Uq1,q2,q3(

..
gl1).

4.2 BD-type algebra

In this paper, we propose an algebra associated to BD-type gauge theories in the unrefined
limit defined with the following commutation relations.

[
hm, x

±(z)
]

=∓ (zm + z−m)x±(z) ,

[x+(z), x−(w)] =− J±~K
[
(δ(z/w) + δ(zw))

∑
m∈Z
m 6=0

J±m~Khmz−m

+
∑
m∈Z

2(zm/wm + zmwm)(mˆ̀1 + ˆ̀2)
]
. (4.15)

1We changed the normalization condition of the basis here, | ~A,~λ〉 = n(~λ) | ~A,~λ〉ref. We define n(~λ) via
the following recursive relation with n(~∅) = 1,

J~Kn(~λ+ x)
n(~λ)

=

∏
y∈R(~~λ)

Jφx − φyK∏
y∈A(~~λ)
y 6=x

Jφx − φyK
,

and then

J−~Kn(~λ− x)
n(~λ)

=

∏
y∈A(~λ)Jφx − φyK∏
y∈R(~λ)
y 6=x

Jφx − φyK
.
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This algebra also has two central elements, ˆ̀1 and ˆ̀2. A new feature of the above algebra
that was absent in the A-type (4.10) is that there is an apparent automorphism realized by

z 7→ z−1, hm 7→ h−m, x±(z) 7→ x±(z). (4.16)

The proposed algebra is indeed constructed from the recursion relation of SO(n) unre-
fined instanton partition function [21]. Since it is written as a summation of Young diagrams,
it makes perfect sense to add/remove a box, which will yield the vertical representation of
the algebra.

Vertical representation. The vertical representation again parameterizes the central
elements as (ˆ̀1, ˆ̀2) 7→ (0, N) for some positive integer N .

x+(z) | ~A,~λ〉 = J~K
∑

x∈A(~λ)

(
δ(z/χx) + δ(zχx)

)
| ~A,~λ+ x〉 ,

x−(z) | ~A,~λ〉 = −J~K
∑

x∈R(~λ)

(
δ(z/χx) + δ(zχx)

)
| ~A,~λ− x〉 , (4.17)

hm| ~A,~λ〉 =
N∑
α=1

Amα pm
(
q(λ(α))t+ρ+1/2

)
1− qm +A−mα

p−m
(
q(λ(α))t+ρ+1/2

)
1− q−m

 | ~A,~λ〉.
We check that it satisfies the algebraic relations presented in (4.15) in appendix C.

Remark. We note that in this paper, we consider only the vertical representations of the
BD-type algebra proposed here, specifically by setting ˆ̀1 = 0. As a result, the commutation
relation between x+(z) and x−(w)

[x+(z), x−(w)] ∝ δ(z/w) + δ(zw), (4.18)

and in fact one cannot check the consistency of the term containing ˆ̀1 (such as a horizontal
representation) in the context of this paper.

Additionally, we mention that by multiplying factors f1(z) and f2(z), which obey the
symmetry f1,2(z−1) = f1,2(z), to x±(z), the commutation relations between hm and x±(z)
remain unchanged, while the commutator between x+(z) and x−(w) transforms as follows:

[x+(z), x−(w)]→ f1(z)f2(z)[x+(z), x−(w)]. (4.19)

This is due to the fact that the commutator for ˆ̀1 = 0 only contains terms proportional to
the δ-function, δ(z/w). However, this ambiguity is not fixed within the current approach.

Remark 2. As previously noted, the proposed algebra is derived from the recursive
relations of the instanton partition function. However, for the C-type gauge groups, the
partition function involves non-trivial multiplicity coefficients as shown in (2.32), which
are dependent on Young diagrams. As a result, it becomes challenging to consider the
recursive relations of the partition function for C-type gauge group, and thus, uncovering
the underlying algebraic structure is beyond the scope of this paper.
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Remark 3. Let us comment about the potential relation with the quantum groups of
affine Lie algebra. The quantum group of affine sln (and also that of gln) is embedded in the
quantum toroidal algebra of ĝln [59, 60] as the zero modes. We notice that no BCD-type
Lie algebraic structure can be found from the zero-mode part of the BD-type algebra
proposed in this article. Another connection between the quantum toroidal algebra of ĝl1
and the quantum group of affine sl2 has been pursued at the level of representations in [16],
as it is easy to see that the structure function defined in (4.2) reduces in the limit q1 →∞
(with q2 fixed to finite) to

g(z)→ q−1
2

1− q2z

1− q−1
2 z

, (4.20)

which is nothing but the structure function of the quantum group of affine sl2 with q2 ≡ q2.
Unfortunately the Hall-Littlewood limit q1 → ∞ cannot be considered in the current
approach, and a shifted version of the algebra also needs to be further constructed. A
more relevant result is presented in [61], where a boundary operator K(u) associated to
the Maulik-Okounkov R-matrix is constructed and the twisted Yangian defined by this
boundary operator might be related to the candidate algebra proposed here.

4.3 “Ward identity” approach

In [30, 31], a so-called “Ward identity” approach was proposed to derive the qq-characters
from the vertical representations of quantum toroidal algebra and its 4d sibling. In this
section, we re-formulate the computation in the unrefined limit and relate the BD-type
algebra proposed in this paper with the qq-characters presented in the previous section.

Type A. To start with, let us first work out the action of the quantum toroidal algebra
on the bra states 〈 ~A,~λ| in the unrefined limit with the normalization,

〈 ~A, ~µ | ~A, ~ν〉 = δ~µ,~ν . (4.21)

We can use the identity(
〈 ~A,~λ± x|x±(z)

)
| ~A,~λ〉 = 〈 ~A,~λ± x|

(
x±(z) | ~A,~λ〉

)
, (4.22)

to obtain the conjugate of the vertical representation (4.14):

〈 ~A,~λ|x+(z) = J~K
∑

x∈R(~λ)

〈 ~A,~λ− x| δ(z/χx) ,

〈 ~A,~λ|x−(z) = −J~K
∑

x∈A(~λ)

〈 ~A,~λ+ x| δ(z/χx) ,

〈 ~A,~λ|hm = 〈 ~A,~λ|
N∑
α=1

Amα
m

pm
(
q−(λ(α))t−ρ− 1

2
)

1− q−m ,

〈 ~A,~λ|h−m = −〈 ~A,~λ|
N∑
α=1

A−mα
m

p−m
(
q−(λ(α))t−ρ− 1

2
)

1− qm . (4.23)
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The key step in deriving the qq-character from the vertical representation is the following
“Ward identity” which is a trivial identity:(

〈G|x+
>(z)

)
|G〉 = 〈G|

(
x+
>(z) |G〉

)
, (4.24)

where we define the operators containing only non-negative modes in x±(z) as

x±>(z) :=
∑
n≥0

x±n z
−n. (4.25)

By definition, we see that

x+
>(z) | ~A,~λ〉 = J~K

∑
x∈A(~λ)

1
1− χx/z

| ~A,~λ+ x〉 ,

〈 ~A,~λ|x+
>(z) = J~K

∑
x∈R(~λ)

〈 ~A,~λ− x| 1
1− χx/z

. (4.26)

From (D.12), we have

x+
>(z) |G〉= J~K

∑
~λ

(
q|
~λ|Z

su(N)
~λ

) 1
2 ∑
x∈A(~λ)

1
1−χx/z

| ~A,~λ+x〉 (4.27)

= (−1)−
N−1

2 q−
1
2
∑
~λ

∑
x∈A(~λ)

1
1−χx/z

(
q|
~λ|+1Z

su(N)
~λ+x

) 1
2 lim
ζ→φx

Jζ−φxKYA~λ+x(z) | ~A,~λ+x〉

= (−1)−
N−1

2 q−
1
2
∑
~λ′

∑
x∈R(~λ′)

χ−1
x

1−χx/z
(
q|
~λ′|Z

su(N)
~λ′

) 1
2 Resz→χx YA~λ′(z) | ~A,~λ′〉 ,

and

〈G|x+
>(z) = J~K

∑
~λ

(
q|
~λ|Z

su(N)
~λ

) 1
2 ∑
x∈R(~λ)

〈 ~A,~λ− x| 1
1− χx/z

(4.28)

= (−1)
N−1

2 q
1
2
∑
~λ′

〈 ~A,~λ′|
∑

x∈A(~λ′)

χ−1
x

1− χx/z
(
q|
~λ′|Z

su(N)
~λ′

) 1
2 Resz→χx

1
YA~λ′(z)

.

Then we derive from the trivial identity (4.24) that

∑
i

(χ+
i )−1

1− χ+
i /z

Resz→χ+
i

〈
Y A(z)

〉
+ q(−1)N

∑
j

(χ−j )−1

1− χ−j /z
Resz→χ−i

〈 1
Y A(z)

〉
= 0, (4.29)

where the sets {χ±i } respectively run over all poles (except z = 0,∞) in YA~λ (z) and 1/YA~λ (z)
(functions obtained after (Y A(z))±1 evaluated in the expectation value). This “Ward
identity” suggests that the apparent poles (excluding z = 0,∞) in the qq-character are all
cancelled, and the expectation value of the combination

χ(z) = Y A(z) + (−1)Nq
Y A(zq3) , (4.30)
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which can only have poles at z = 0 and z =∞. A rational function that only has poles at
z = 0,∞ on the entire complex plane must be a Laurent polynomial. From the asymptotic
behavior (2.14), it follows that up to an overall factor z−

N
2 , the expectation value of the

qq-character is a polynomial of degree N . For A-type gauge groups, similar arguments apply
to all qq-characters associated with higher-weight representations and higher-rank quivers.
By constructing special combinations that cancel the apparent poles, the expressions of
qq-characters (in terms of Y -operators) can be derived completely from the underlying
algebraic structure of 5d gauge theories.

Type BD. In the case of D-type gauge theories, i.e. gauge theories with SO(2N) gauge
group, it follows from (4.22) that the bra expression of the vertical representation is

〈 ~A,~λ|x+(z) = J~K
∑

x∈R(~λ)

〈 ~A,~λ− x|
(
δ(z/χx) + δ(zχx)

)
,

〈 ~A,~λ|x−(z) = −J~K
∑

x∈A(~λ)

〈 ~A,~λ+ x|
(
δ(z/χx) + δ(zχx)

)
,

〈 ~A,~λ|hm = 〈 ~A,~λ|
N∑
α=1

Amα pm
(
q(λ(α))t+ρ+1/2

)
1− qm +A−mα

p−m
(
q(λ(α))t+ρ+1/2

)
1− q−m

 . (4.31)

Now we split the operators x±(z) in a novel way into x±>(z) and x±<(z) in the vertical
representation (4.17) of the BD-type algebra as

x+
>(z) | ~A,~λ〉 = (1− q)

∑
x∈A(~λ)

( 1
1− χx/z

+ 1
1− zχx

)
| ~A,~λ+ x〉 , (4.32)

x+
<(z) | ~A,~λ〉 = (1− q)

∑
x∈A(~λ)

( 1
1− z/χx

+ 1
1− z−1χ−1

x

)
| ~A,~λ+ x〉 . (4.33)

Even for this algebra, we consider the insertion of x+
>(z) in the inner product of the Gaiotto

state |G〉 of D-type and derive the pole cancellation condition of qq-characters from the
Ward identity (4.24).

It is then parallel to derive

x+
>(z) |G〉 (4.34)

= (1− q)
∑
~λ

(
q|
~λ|Z

so(2N)
~λ

) 1
2 ∑
x∈A(~λ)

(
1

1−χx/z + 1
1−zχx

)
| ~A,~λ+ x〉

= (1−q)
J~K q−

1
2
∑
~λ

∑
x∈A(~λ)

(
q|
~λ|+1Z

so(2N)
~λ+x

) 1
2 lim
ζ→φx

Jζ−φxKYD
~λ+x

(z)
J2ζ±~K

(
1

1−χx/z + 1
1−zχx

)
| ~A,~λ+ x〉

= (1−q)
J~K q−

1
2
∑
~λ′

∑
x∈R(~λ′)

(
q|
~λ′|Z

so(2N)
~λ′

) 1
2

×
(

z
z−χx Resz→χx

z−1YD
~λ′

(z)
J2ζ±~K + 1

z−χ−1
x

Resz→χ−1
x

z−1YD
~λ′

(z)
J2ζ±~K

)
| ~A,~λ′〉 ,
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where we used the identities in (D.22), and the fact that

lim
ζ→φx

Jζ − φxKYD~λ (z) = − lim
ζ→−φx

Jζ + φxKYD~λ (z). (4.35)

Acting on the bra state, we have

〈G|x+
>(z) (4.36)

=
∑
~λ

∑
x∈R(~λ)

〈 ~A,~λ− x| (1− q)
(
q|
~λ|Z

so(2N)
~λ

) 1
2
(

1
1−χx/z + 1

1−zχx

)

= −
∑
~λ

∑
x∈R(~λ)

〈 ~A,~λ− x| (1−q)
J~K q

1
2
(
q|
~λ|−1Z

so(2N)
~λ−x

) 1
2
(

1
1−χx/z + 1

1−zχx

)
lim
ζ→φx

Jζ−φxKJ2ζK2

YD
~λ−x

(z)

= −
∑
~λ′

∑
x∈A(~λ′)

〈 ~A,~λ′| (1−q)
J~K q

1
2
(
q|
~λ′|Z

so(2N)
~λ′

) 1
2

×
(

z
z−χx Resz→χx

z−1J2ζK2

YD
~λ′

(z) + 1
z−χ−1

x
Resz→χ−1

x

z−1J2ζK2

YD
~λ′

(z)

)
.

Finally, we obtain the desired formula from the Ward identity (4.24)

∑
i

η−σi
z − ησi

Resz→ησi

〈
Y D(z)

〉
J2ζ ± ~K

+ q(−1)N
∑
j

ξ−σj
z − ξσj

Resz→ξσj

〈
J2ζK2

Y D(z)

〉
= 0, (4.37)

where σ = ±1, {ησi } = {χσ
x∈R(~λ)}~λ denotes all the poles in

〈
Y D(z)

〉
, and {ξσi } = {χσ

x∈A(~λ)}~λ
denotes all the poles in

〈
1

Y D(z)

〉
. This identity shows explicitly the pole cancellation in the

qq-character. The factor
cBD = J2ζ ± ~KJ2ζK2 , (4.38)

appearing in (2.29) is successfully reproduced from the pole-cancellation condition here.
This indicates that the pole cancellation property of the qq-characters in SO(2N) theories
is a direct consequence of the existence of such a BD-type algebra.

The derivation of the qq-character in the B-type case is analogous to that in the D-type
case. By noting that the recursive relation for the partition function of SO(2N + 1) is
identical to that of SO(2N) when YD~λ is replaced by YB~λ (see (D.25)), it follows that the
pole cancellation in qq-characters is also a direct consequence of the same BD-type algebra.
This highlights the universality and consistency of the algebraic structure in the 5d gauge
theories with BD-type gauge groups.

5 Conclusion and discussion

In this paper, we present analytic expressions for the fundamental qq-characters of BCD-
type gauge theories based on the pole classifications by Young diagrams in the unrefined
instanton partition functions proposed in [21]. The expectation values of the qq-characters
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in ABCD-type gauge theories are shown to take the following schematic form

〈χ(z)〉 = 〈Y (z)〉+
〈
c(z)q
Y (z)

〉
, for ABD-type (2.8), (2.29)

〈χ(z)〉 = 〈Y (z)〉+ c̃(z)q〈1〉+
〈
c(z)q2

Y (z)

〉
, for C-type (2.37) (5.1)

with properly defined operators Y . Our results demonstrate the polynomial nature of
the expressions of these qq-characters and establish Lie-algebraic relations among them.
Furthermore, we introduce a new algebra referred to as the BD-type algebra, which is
closely related to the quantum toroidal algebra of gl1 in the q1q2 → 1 limit. This algebra
is constructed using a technique known as the “Ward identity”, which is used to derive
the qq-characters. While many of the fundamental properties and consistency of this
new algebra are yet to be fully understood, it is expected to have a deep connection to
the integrability aspect of SO-type gauge theories. We leave further exploration of these
properties as future work.

Certainly, there are still many directions that can be explored in future research. One
limitation of our work is that it only covers the unrefined limit, as the computation on
the general Ω-background remains a technical challenge. To overcome this limitation, one
approach is to use the blowup equation, which has been generalized for gauge theories beyond
A-type gauge groups in [62]. This method can be used to solve the instanton partition
functions with an integer ratio between ε1 and ε2 starting from the unrefined instanton
partition function. Additionally, blowup equations with the presence of defects in 4d/5d/6d
theories have been formulated in [63–68]. These developments open up the possibility of
exploring qq-characters on more general Ω-backgrounds using the unrefined expressions
derived in this paper. There were also other interesting attempts to refined formulations
of gauge theories with gauge groups beyond A-type [69, 70] and quiver gauge theories
with quiver structure beyond A-type [71–73] mainly based on the brane construction and
topological vertex formalism, and it will be desired to explore how to compute qq-characters
to some closed form in such methods.

We only considered the calculation of the fundamental qq-character, i.e. the defect
partition function with only one defect of co-dimension four. However, it is important to note
that the higher qq-characters, which involve more defects, contain additional information
and their relationship with Wilson loops, particularly in BCD-type gauge theories, is
not yet fully understood. In A-type gauge theories, the qq-characters, as operator-valued
quantities, generate the quiver W-algebra, and they commute with the screening charge
in the W-algebra. One can show that the product of topological vertices assigned to the
brane web plays the role of the screening charge with the “Ward identity” introduced in
section 4.3 [52]. It is an interesting open question to explore if a similar formulation of
screening charges can be done in BCD-type gauge theories.

We proposed a new algebra, the BD-type algebra, but our proposal is still in its early
stages, and there are many properties of the algebra that are yet to be discovered. In
particular, the extension of the algebra to the refined case is proven to be challenging, due
to the difficulty in labeling JK residues using Young diagrams in that case. Additionally, we
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have only constructed vertical representations for the algebra, which are related to D5-branes
in the brane web, and it is currently unclear how to construct horizontal representations
with ˆ̀1 7→ 1. From the perspective of the brane web construction of SO-type gauge theories,
it is expected that the algebraic structure for the vertical representations or the D5-branes
added with an orientifold is modified while the algebra associated to NS5-branes remains
unchanged. Therefore, it is of interest to explore whether it is possible to embed the
O-vertex formulated in [20, 21] into the coproduct of the BD-type algebra and the usual
quantum toroidal algebra of gl1 in the unrefined limit. However, it is currently challenging
to envision the role that the O-vertex could play in the purely algebraic context of the
BD-type algebra.

The basis of the vertical representation in the quantum toroidal algebra Uq1,q2,q3(
..
gl1)

of gl1 is nothing but the Macdonald symmetric polynomial [55, 74], and in the unrefined
limit, it reduces to the Schur polynomial equivalent to the character of A-type Lie algebras.
One further obtains the generalized Macdonald polynomial introduced in [75] by taking the
coproduct of the vertical representations [76, 77]. In the current context, it is natural to
expect the orthogonal and symplectic Schur polynomials, which are naturally defined from
the characters of BCD-type Lie algebras, to play a similar role in the vertical representation
constructed in (4.17). The relation between such symmetric polynomials and BCD-type
W1+∞-algebras have been explored in [78], but there seems to be a gap between the
vertex-operator formulation there and our approach at the current stage.

Our study did not include a discussion of the candidate algebra for C-type gauge
theories, as both the instanton partition function and the qq-characters of these theories
involve the multiplicity coefficients (2.32) for four pieces of Young diagram summations,
making it difficult to apply the “Ward identity” approach. However, an alternative method
for computing the Sp(N) instanton partition function using the topological vertex formalism,
where the partition function does not involve the multiplicity coefficients, was proposed
in [79]. It is worth investigating the possibility of constructing a vertex-operator formulation
of this approach and studying the underlying algebraic structure.

The similarity between the integrand structure in instanton counting for supergroups
and BCD-type groups has been noted in [80], and the topological vertex formalism for
supergroups has been established in [81, 82]. A potential direction for future research is to
further explore this similarity and its origin in the unrefined limit.
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A Notations and conventions

Here, we summarize the notations and conventions employed in this paper. Roughly
speaking, a relationship between a 5d parameter P5d and a 4d parameter p4d, which is
given by

P5d = exp(−p4d) (A.1)

We define the Ω-background parameters as qj = exp (−εj), where q1q2q3 = 1 is a result
of the constraint ε1 + ε2 + ε3 = 0. Additionally, we introduce the notation ε± = ε1±ε2

2 ,
and the unrefined limit is defined as ε1 = −ε2 = ~, resulting in 2ε+ = ε1 + ε2 = 0. The
Coulomb branch parameters are represented as Aα = exp (−aα), and the variables of a
qq-character are denoted as zj = exp (−ζj). The poles of JK residues are represented by
χx = exp (−φx), with φx = aα− ε+ + (i− 1)ε1 + (j− 1)ε2. Lastly, we employ the shorthand
notation JαK := 2 sinh

(
α
2
)
and Jα± βK := Jα+ βKJα− βK for convenience throughout the

article. This notation has an advantage when we take the 4d limit of a partition function
because we can simply take only the argument JαK→ α removing the double bracket, and
ignore cosh terms.

In this paper, we use the following notation for Young diagrams. A Young diagram is
represented by λ = (λ1, λ2, · · · ), where the entries are arranged in non-decreasing order, i.e.
λ1 ≥ λ2 ≥ · · · . The length of a Young diagram, denoted by `(λ), is defined as the number
of non-zero entries in λ. The number of boxes in a Young diagram is given by |λ| =

∑`(λ)
i=1 λi,

and we denote the transpose of λ by λt. A set of N Young diagrams is written as

~λ =
(
λ(1), . . . , λ(N)

)
,

and the total number of boxes in this set is denoted by

|~λ| =
N∑
α=1

∣∣∣λ(α)
∣∣∣ .

The set of boxes in λ that can be added or removed is represented by A(λ) or R(λ),
respectively. (See figure 1.) When considering an N -tuple of Young diagrams, we denote
the corresponding sets by A(~λ) and R(~λ).

We use the following notation for a plethystic exponential:

P.E.[f(x, y, . . .)] = exp
( ∞∑
k=1

f(xk, yk, . . .)
k

)
,

which transforms a single-particle index f into a multiparticle index.

B Finiteness of qq-characters in the unrefined limit

In this appendix, we present the argument that the qq-characters take the finite form in the
unrefined limit whereas they involve an infinite number of terms at the refined level [27].

The evaluation of the partition function with or without defects follows the JK pre-
scription. We first assign a vector ~v =

∑k
i=1 ci~ei to each denominator factor

∑
i ciφi + d,
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x = (i, j)

`(λ)

Figure 1. The red (resp. blue) boxes can be added to (resp. removed from) the Young diagram,
and they form the set denoted by A(λ) (resp. R(λ)).

where ~ei is a k-dimensional vector with (~ei)j = δi,j . We also need to choose a k-dimensional
reference vector η̌k for each instanton number k, usually taken to be

η̌k = (1, 1 + δ1, 1 + δ2, . . . , 1 + δk−1), (B.1)

where δi are small real numbers that are not linearly dependent on integer numbers, i.e. for
∀Ii ∈ Z,

δ1 +
k−1∑
i=2

Iiδi 6= 0. (B.2)

For example, for k = 2 we can choose η̌2 = (1, 1.001) and for k = 3 we can choose
η̌3 = (1, 1.001, 1.0007), but the choice η̌3 = (1, 1.001, 1.002) is not appropriate. At the level
of k-instanton, for a set of k poles to be permitted, their corresponding vectors ~vii = 1k

must satisfy the following condition:

η̌k =
k∑
i=1

ci~vi,
∃ci > 0, i = 1, . . . , k. (B.3)

As an example, in the two-instanton computation of SO(2N) theories, we have vectors
(1, 0) attached to ε+ + φ1 ± aα, (−1, 0) attached to ε+ − φ1 ± aα, (1, 1) corresponding to
ε+ + φ1 + φ2 ± ε− and etc. In total, from the set of vectors

{(±1, 0), (0,±1), (1, 1), (1,−1), (−1, 1), (−1,−1)}, (B.4)

the allowed combinations in the JK prescription are

{(−1, 0), (1, 1)}, {(−1, 1), (1, 1)}, {(0, 1), (1,−1)}, {(0, 1), (1, 1)},
{(1, 0), (−1, 1)}, {(1, 0), (0, 1)}. (B.5)

When we add the defect contribution, i.e. poles at ε+ ± φi ± ζ for i = 1, 2, the set of
vectors and allowed combinations remain unchanged. However, if we pick up a pole in the
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defect contribution, it must be a combination containing (±1, 0) or (0,±1) respectively
corresponding to ε+ ± φi ± ζ. If we do not pick up any new poles in the defect contribution,
we get a term 〈Y D〉, and if we pick up one pole, we get a term proportional to

〈
1
Y D

〉
.

To show that the qq-characters are expressed as a finite combination of expectation
values of Y -operators in the unrefined limit, we need to rule out two possibilities. The
first is that terms picking up more than one pole in the defect contribution vanish in the
unrefined limit. The second is that poles of the form ±ζ ± ε+ are allowed in the unrefined
limit, but poles of the form ±ζ ± ε+ + iε1 + jε2 for i, j ∈ Z give trivial residues.

In the example of two-instanton calculation of the SO(2N) theory shown above, we
first want to exclude the possibility of the combination {(1, 0), (0, 1)} selecting the poles
ε+ + φ1 ± ζ and ε+ + φ2 ± ζ. It is straightforward to demonstrate that these poles vanish
even in the refined Ω-background. This is because among the variables ε+ ± φ1 ± φ2, at
least one must be equal to ε+ or −ε+ whenever one of the above combinations of poles is
chosen. The factor S(ε+ ± φ1 ± φ2)−1 in the integrand then introduces an additional zero,
eliminating any contribution from this case. This argument holds for all cases we consider
in this paper and for an arbitrary number of instantons.

The second circumstance is more involved, as its contribution is non-zero in the refined
case, but only vanishes in the unrefined limit. For example in the two-instanton calculation
of SO(2N) theory, picking up the pole φ1 = ζ − ε+ − ε1, φ2 = ζ − ε+ corresponding to the
combination {(0, 1), (1,−1)} gives non-trivial residue:

J−(ε1 + ε2)KJ2(ε1 − ζ)KJε1 − 2ζKJ2ζ − ε2KJ2ζ − ε1 − ε2KJ2(−ζ + 2ε1 + ε2)K
8Jε2KJ−ε1 + ε2K

∏N
α=1Jε1 + ζ ± aαKJε1 + ε2 − ζ ± aαKJ2ε1 + ε2 − ζ ± aαK
×J2ζ − 2ε1 − ε2KJ2ζ − 3ε1 − ε2KJ−2ζ + 3ε1 + 2ε2K . (B.6)

The origin of the factor J−2ε+K = J−(ε1 + ε2)K can be explained as follows. As in (2.20),
the defect contribution include the terms

S (φi ± ζ) = Jε− ± (φi ± ζ)K
Jε+ ± (φi ± ζ)K . (B.7)

However, when the pole φ1 = ζ − ε+ − ε1 is taken, the following factor becomes

Jε− + φ1 − ζK = J−(ε2 + ε1)K = J−2ε+K, (B.8)

in the numerator of S(φi ± ζ). The astute reader may notice that there are also J±2ε+K
even in the denominator after evaluating the residue, but they cancel the prefactor J2ε+Kk

in (2.19). Consequently, the qq-character of SO(2N) gauge group is not simply written in
terms of Y and 1/Y at the refined level [27]. However, this pole yields a trivial residue in
the unrefined limit ε+ = 0. A similar argument holds for the poles φi = ±ζ − ε+ − ε1,2 and
φi = ±ζ + ε+ + ε1,2. Their residues become trivial as they are proportional to J±2ε+K at
the refined level. (Note that the residues at φi = ±ζ − ε+ + ε1,2 and φi = ±ζ + ε+ − ε1,2
are zero even at refine level.)

Note that this phenomenon can also be observed in the instanton partition function
without a defect [21]. Poles that cannot be classified by Young diagrams provide residues
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proportional to J±2ε+K. However, at the unrefined level, these non-trivial poles do not
contribute to the partition function as their residues vanish.

The above argument applies to all BCD-type gauge theories as they all possess a similar
structure, and for an arbitrary number of instantons. In this manner, it can be shown
that poles containing each defect parameter can be selected only once in each set of JK
residues in the unrefined limit. Thus, this ensures the finiteness of qq-characters, which are
expressed as finite combinations of expectation values of Y -operators in the unrefined limit.

C Vertical representations in the unrefined limit

In this appendix, we present the verification of the algebraic relations satisfied by the
vertical representations in the unrefined limit.

Type A. The vertical representation in the unrefined limit is specified by (4.14), and here
we verify the commutation relations of the Drinfeld currents. In the vertical representations,
we set ˆ̀1 7→ 0 (i.e. γ̂ 7→ 1), hence all hm’s commute. Therefore, the only non-trivial relations
that need to be verified are those in (4.10).

Let us show the first commutation relation of (4.10). A useful equation is

pm
(
q(λ+x)t+ρ+1/2

)
− pm

(
qλ

t+ρ+1/2
)

=
{
qλ

t
j+1−(j−1)

}m
−
{
qλ

t
j−(j−1)

}m
= (qm − 1)

{
qλ

t
j+1−j

}m
. (C.1)

Also, the delta function admits the following expansion

δ(z) =
∑
m∈Z

zm . (C.2)

Then, the explicit computation of the commutation relation is given by[
hm,x

+(z)
]
| ~A,~λ〉

= J~K
m(1−qm)

N∑
α=1

∑
x∈A(~λ)

Amα δ(z/χx)
(
pm
(
q(λ(α)+x)t+ρ+1/2

)
−pm

(
q(λ(α))t+ρ+1/2

))
| ~A,~λ+x〉

=−J~K
m

N∑
α=1

∑
x∈A(λ(α))

Amα

{
q(λ(α))tj+1−j

}m
δ(z/χx) | ~A,~λ+x〉

=−J~K
m

N∑
α=1

∑
x∈A(λ(α))

χmx δ(z/χx) | ~A,~λ+x〉

=−J~Kzm

m

N∑
α=1

∑
x∈A(λ(α))

δ(z/χx) | ~A,~λ+x〉

=−z
m

m
x+(z) | ~A,~λ〉 , (C.3)

where x = ((λ(α))tj + 1, j) ∈ A(λ(α)). One can show the commutation relation [hm, x−(z)]
in a similar way.
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To show the second commutation relation of (4.10), we notice the identity

∞∑
m=1

mJ±m~Khmz−m |A, λ〉 =
∞∑
m=1

m(1− qm)(1− q−m)hmz−m |A, λ〉

=
∞∑
m=1

(1− q−m)
∞∑
j=1

Am
[
qλ

t
j+1−j

]m
z−m |A, λ〉 (C.4)

=

 ∞∑
m=1

∞∑
j=1

Am
[
qλ

t
j+1−j

]m
z−m −

∞∑
m=1

∞∑
j=1

Am
[
qλ

t
j−j
]m

z−m

 |A, λ〉 ,
=

 ∑
x∈A(λ)

∞∑
m=1

(χx/z)m −
∑

x∈R(λ)

∞∑
m=1

(χx/z)m
 |A, λ〉 ,

which follows from the cancellation between columns satisfying λtj = λtj+1. Similarly, we
also have the identity of the negative modes

−∞∑
m=−1

mJ±m~Khmz−m |A, λ〉 =
−∞∑
m=−1

m(1− qm)(1− q−m)hmz−m |A, λ〉 (C.5)

=
∞∑
m=1

(1− qm)
∞∑
j=1

A−m
[
qλ

t
j+1−j

]−m
zm |A, λ〉

=

 ∑
x∈A(λ)

∞∑
m=1

(χx/z)−m −
∑

x∈R(λ)

∞∑
m=1

(χx/z)−m
 |A, λ〉 .

Then the explicit computation of the commutation relations is given by

[
x+(z), x−(w)

]
| ~A,~λ〉 = J~K2δ(z/w)

 ∑
x∈A(~λ)

δ(z/χx)−
∑

x∈R(~λ)

δ(z/χx)

 | ~A,~λ〉
= −J±~Kδ(z/w)

∑
m 6=0

mJ±m~Khmz−m +N

 | ~A,~λ〉 (C.6)

= −J±~K

δ(z/w)
∑
m 6=0

mJ±m~Khmz−m +N
∑
n∈Z

(z/w)n
 | ~A,~λ〉 ,

which shows the second relation of (4.10) with ˆ̀1 7→ 0 and ˆ̀2 7→ N . The first line results
from the fact that the nontrivial parts only come from adding or removing the same boxes
from the Young diagrams.

In conclusion, (4.14) is a representation of the unrefined limit (4.10) of the quantum
toroidal algebra Uq1,q2,q3(

..
gl1).

Type BD. Now let us move on to the BD-type algebra (4.15), and verify the validity of
the vector representations (4.17). The method is analogous to the A-type. Using (C.1), we
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can show the first commutation relation of (4.15)[
hm, x

+(z)
]
| ~A,~λ〉 = −J~K

∑
x∈A(~λ)

(
δ(z/χx)

(
χmx + χ−mx

)
+ δ(zχx)

(
χmx + χ−mx

))
| ~A,~λ+ x〉

= −(zm + z−m)x+(z) | ~A,~λ〉 . (C.7)

One can verify the commutation relation [hm, x−(z)] in a similar way.
Similar to (C.4) and (C.5), we have∑
m∈Z
m 6=0

J±m~Khmz−m |A, λ〉 =
∑
m∈Z
m 6=0

(1− qm)(1− q−m)hmz−m |A, λ〉

=
∑
m∈Z
m 6=0

z−m(1− q−m)
∞∑
j=1

Am
(
qλ

t
j−(j−1)

)m
(C.8)

+ z−m(1− qm)
∞∑
j=1

A−m
(
qλ

t
j−(j−1)

)−m
|A, λ〉

=
∑
m∈Z
m 6=0

( ∑
x∈A(λ)

−
∑

x∈R(λ)

)
(z−mχmx + z−mχ−mx )

 |A, λ〉

=

( ∑
x∈A(λ)

−
∑

x∈R(λ)

)
(δ(z/χx) + δ(zχx)− 2)

 |A, λ〉
Then, the second commutation relation of (4.15) with ˆ̀1 7→ 0 and ˆ̀2 7→ N follows:[

x+(z), x−(w)
]
| ~A,~λ〉

= J~K2
[ ∑
x∈A(~λ)

(
δ(z/w)δ(z/χx) + δ(zw)δ(z/χx) + δ(zw)δ(zχx) + δ(z/w)δ(zχx)

)
−

∑
x∈R(~λ)

(
δ(z/w)δ(z/χx) + δ(zw)δ(z/χx) + δ(zw)δ(zχx) + δ(z/w)δ(zχx)

)]
| ~A,~λ〉

= J~K2 (δ(z/w) + δ(zw))


 ∑
x∈A(~λ)

−
∑

x∈R(~λ)

 (δ(z/χx) + δ(zχx))

 | ~A,~λ〉
= −J±~K (δ(z/w) + δ(zw))

∑
m 6=0

J±m~Khmz−m + 2N

 | ~A,~λ〉 . (C.9)

In conclusion, (4.17) is a representation of the BD-type algebra (4.15).

D Recursion relations of instanton partition functions

In this appendix, we derive the recursion relations for the SU(N) and SO(n) instanton
partition functions in terms of Young diagrams. These recursion relations are essential
for the Ward identity approach to qq-characters in section 4.3. To this end, we provide
explicit expressions for the unrefined instanton partition functions as summations over
Young diagrams and discuss their properties briefly.
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Type A. Let us first consider the recursion relation of the instanton partition function (2.5)
for A-type gauge group. In this paper, several different types of Y -functions are introduced
to give analytic expressions to qq-characters. These Y -functions are all related to the
A-type Y -function (2.11). The eigenvalue of the Y A-operator (2.10) on the state | ~A,~λ〉
can be factorized into a product of YA-functions, each depending solely on a single Young
diagram:

YA~λ (z) =
N∏
α=1
YAλ(α)(z), (D.1)

where the Y-function associated with a single Young tableau λ and Coulomb branch
parameter a is given by

YAλ (z) = Jζ − a + 2ε+K
∏
x∈λ
S(ζ − φx) . (D.2)

For this reason, it suffices to enumerate the various useful properties of the Y-function for a
single Young tableau. The most important formula, referred to as the “shell formula” in
some literature, is:

YAλ (z) =
∏
x∈A(λ)Jζ − φx + ε+K∏
x∈R(λ)Jζ − φx − ε+K

. (D.3)

Another useful expression that is easy to derive from the definition of Y-function is

YAλ (z) = −
(
zq1q2
A

) 1
2 ∏
x′∈Xλ

1− x′

zq1q2

1− q2x′

zq1q2

(D.4)

= exp

− ∞∑
m,j=1

1
m

(1− qm2 )Amqm(j−2)
2 q

m(λtj−1)
1 z−m + πi+ 1

2 log(zq1q2/A)

 ,
and equivalently

YAλ (z) =
(

A

zq1q2

) 1
2 ∏
x′∈Xλ

1− zq1q2
x′

1− zq1q2
q2x′

(D.5)

= exp

− ∞∑
m,j=1

1
m

∑
k

(1− q−m2 )A−mq−m(j−2)
2 q

−m(λtj−1)
1 zm + 1

2 log(A/zq1q2)

 ,
where Xλ = {Aqj−1

2 q
λtj
1 }∞j=1.

From now on, we consider only the unrefined limit, and the unrefined limit of the
Nekrasov factor (2.6) admits an equivalent expression and associated recursive formulae [83]:

Nλν(Q, q) =
∞∏

i,j=1

1−Qq−ν
t
j−λi+i+j−1

1−Qqi+j−1 . (D.6)
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It then follows that

N(λ(1)+x)λ(2)(A1/A2; q)
Nλ(1)λ(2)(A1/A2; q) =

∏
x′∈X

λ(2)

1− χx/x′

1− qχx/x′
= (χx/A2)

1
2YAλ(2)(χx),

Nλ(1)(λ(2)+x)(A1/A2; q)
Nλ(1)λ(2)(A1/A2; q) =

∏
x′∈X

λ(1)

1− x′/χx
1− x′/qχx

= −(A1/χx)
1
2YAλ(1)(χx), (D.7)

which can alternatively be checked directly with the Mathematica file attached to this paper.
Combining the above two recursive relations together, we obtain

N(λ+x)(λ+x)(1; q)
Nλλ(1; q) = − lim

z→χx
YAλ+x(z)YAλ (z)

= −J±~K lim
z→χx

Jζ − φxK−2
(
YAλ (z)

)2

= −J±~K−1 lim
z→χx

Jζ − φxK2
(
YAλ+x(z)

)2
. (D.8)

Another important identity we need in the rewriting of the instanton partition functions is

Nλν(Q; q) = (−Q)|λ|+|ν|q
1
2κ(λ)− 1

2κ(ν)Nνλ

(
Q−1; q

)
. (D.9)

Let us recall that the pure SU(N) Nekrasov instanton partition function (2.5) can be
written as

Z
su(N)
inst =

∑
~λ

q|
~λ|Z

su(N)
~λ

, (D.10)

where

Z
su(N)
~λ

=
N∏
α=1

N−1
λ(α)λ(α)(1, q)

∏
α 6=β

N−1
λ(α)λ(β)(Aα/Aβ , q) . (D.11)

Using (D.8), we can derive the recursive relations for λ(α) → λ(α) + x as follows:

Z
su(N)
~λ+x

Z
su(N)
~λ

= − 1
J±~K

lim
ζ→φx

Jζ − φxK2(
YA
λ(α)(z)

)2
∏
β 6=α

− 1(
YA
λ(β)(χx)

)2


= (−1)N

J±~K
lim
ζ→φx

Jζ − φxK2(
YA~λ (z)

)2

= (−1)N J±~K lim
ζ→φx

1

Jζ − φxK2
(
YA~λ+x

(z)
)2 . (D.12)

Type BD. Now let us move on to SO(n) gauge groups. The unrefined instanton par-
tition function for the SO(2N) gauge group can be written as a summation over Young
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diagrams [21]. The partition function is given by:

Z
so(2N)
inst =

∑
~λ

q|
~λ|Z

so(2N)
~λ

:=
∑
~λ

q|
~λ|M~λ

( ~A)2
N∏
α=1

A(N−4)|λ(α)|
α

N∏
α=1

q−
(N−4)κ(λ(α))

2

×
N∏
α=1

A|
~λ|
α Nλ(α)λ(α)(1, q)−1 ∏

α 6=β
Nλ(α)λ(β)(AαA−1

β , q)−1 (D.13)

where κ(λ) := 2
∑

(i,j)∈λ(j − i), and the M -factor is expressed as

M~λ
(A1,A2, . . . ,AN )

:=

N∏
α=1

∏
(i,j)∈λ(α)

(1−A2
αq

i−j+(λ(α))tj−λ
(α)
i )

∏
1≤α<β≤N

∏
(i,j)∈λ(α)

(1−AαAβqi+j−1−λ(α)
i −λ

(β)
j )

∏
(m,n)∈λ(β)

(1−AαAβq1−m−n+(λ(β))tn+(λ(α))tm)
.

Hence, to derive the recursion relations for the partition function, it is necessary to derive the
recursive formula for the M -factor by adding a box in the Young diagrams λ(α) → λ(α) + x

M~λ+x
M~λ

= P.E.(X), (D.14)

with x ∈ (m,λ(α)
m + 1) and

X(~λ) =−A2
αq

m−1−λ(α)
m

(1 + q)qm−1−λ(α)
m − q`(λ(α)) + (q − 1)

∑
i 6=m

qi−1−λ(α)
i


+Aαq

m−1−λ(α)
m
∑
β 6=α

Aβ

q`(λ(β)) + (1− q)
`(λ(β))∑
i=1

qi−1−λ(β)
i

 . (D.15)

Using χx = Aαq
m−λ(α)

m −1, we can rewrite

X(~λ) =− χx

(1 + q)χx −Aαq`(λ
(α)) + (1− q−1)

∑
y∈S(λ(α)),y 6=x−(0,1)

χy


+ χx

∑
β 6=α

Aβq`(λ(β)) − (1− q−1)
∑

y∈S(λ(β))

χy

 , (D.16)

where we denoted S(λ) = {(i, λi)}`(λ)
i=1 as the set of boxes at the surface of a Young diagram

λ. Note that if λi = λi+1 then χ(i,λi) = q−1χ(i+1,λi+1), and thus

X(~λ) =− χx

χx +
∑

y∈R(λ(α))

χy −
∑

y∈A(λ(α)),y 6=x

χy


− χx

∑
β 6=α

 ∑
y∈R(λ(β))

χy −
∑

y∈A(λ(β))

χy

 . (D.17)
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Substituting this back to (D.14), we have the following recursive relation

M~λ+x
M~λ

= (1− χ2
x)

N∏
β=1

∏
y∈R(λ(β))(1− χxχy)∏
y∈A(λ(β))

y 6=x
(1− χxχy)

. (D.18)

One can directly test the above formula with the Mathematica file attached to this paper
on the arXiv.

Note that
qcκ(λ+x)/2/qcκ(λ)/2 = χ−cx Ac, (D.19)

we obtain the following recursive relation for the SO(2N) partition function (D.13)

Z
so(2N)
~λ+x

Z
so(2N)
~λ

=
(

N∏
α=1

Aα

)
χ(N−4)
x

(−1)N−1

J~K2 lim
ζ→φx

Jζ − φxK2(
YA~λ (z)

)2

×

(1− χ2
x)2

N∏
β=1

∏
y∈R(λ(β))(1− χxχy)∏
y∈A(λ(β))(1− χxχy)

2

. (D.20)

Using the D-type Y-function defined in (2.28) and its shell formula

YD~λ (z) =
∏
x∈A(~λ)Jζ ± φxK∏
x∈R(~λ)Jζ ± φxK

= −(zN
N∏
α=1

Aα)−
1
2YA~λ (z)

∏
x∈A(~λ)(1− χxz)∏
x∈R(~λ)(1− χxz) , (D.21)

we arrive at the recursive formulae written in terms of the YD-function,

Z
so(2N)
~λ+x

Z
so(2N)
~λ

= 1
J~K2 lim

ζ→φx

Jζ − φxK2J2ζK4(
YD~λ (z)

)2

= (−J~K)2 lim
ζ→φx

J2ζ ± ~K2

Jζ − φxK2
(
YD~λ+x

(z)
)2 . (D.22)

For SO(2N + 1) theory, the partition function is given by

Z
so(2N+1)
inst =

∑
~λ

q|
~λ|Z

so(2N+1)
~λ

(D.23)

:=
∑
~λ

q|
~λ|M~λ

( ~A)2
N∏
α=1

A(N−4)|λ(α)|
α

N∏
α=1

(−q)−
(N−4)κ(λ(α))

2
∏
α 6=β

Nλ(α)λ(β)(AαA−1
β , q)−1

×
N∏
α=1

A|
~λ|
α Nλ(α)λ(α)(1, q)−1Nλ(α)∅(Aα, q)

−1N∅λ(α)(A−1
α , q)−1 .

The key distinction between (D.13) and (D.23) is the presence of the terms Nλ(α)∅N∅λ(α) ,
whose recursion relation is

Nλ(α)+x∅(Aα, q)N∅λ(α)+x(A−1
α , q)

Nλ(α)∅(Aα, q)N∅λ(α)(A−1
α , q)

= −JχxK2 (D.24)
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This recursion relation compensates for the difference in Y-functions (2.28) between the
SO(2N) and SO(2N + 1) gauge groups, as given by(

YBNλ (z)
)2 = JζK2(YDNλ (z)

)2
.

In summary, the recursive relation for the B-type instanton partition functions is

Z
so(2N+1)
~λ+x

Z
so(2N+1)
~λ

= 1
J~K2 lim

ζ→φx

Jζ − φxK2J2ζK4

JζK2
(
YD~λ (z)

)2 = 1
J~K2 lim

ζ→φx

Jζ − φxK2J2ζK4(
YB~λ (z)

)2

= J~K2 lim
ζ→φx

J2ζ ± ~K2

Jζ − φxK2
(
YB~λ+x

(z)
)2 . (D.25)

The formulas (D.22) and (D.25) can again be checked with our Mathematica file.

D.1 Proof of pole cancellation

Now we are ready to prove the pole cancellations in the expressions of qq-characters (2.29).
For the C-type, we offer a partial answer to the pole cancellation of (2.34).

Recall from the expression (D.21) and the definitions (2.28) and (2.33) that

YBN~λ (z) = JζKYDN~λ (z), (D.26)

YCN~λ (z) = 1
J2ζK2J2ζ ± ~K

YDN+4
~λ

(z), (D.27)

so there are poles at ζ = φ
x∈R(~λ) in YBCD~λ

(z) and poles at ζ = φ
x∈A(~λ)(z) in 1/YBCD~λ

(z).
The set of such poles from YBCD~λ

(z) with all Young diagrams of size k + 1 coincide with
that of 1/YBCD~λ

(z) with Young diagram size k. We also notice that although there are four
sectors in the Sp(N) calculation, the relation (D.27) holds universally for all the sectors.

Let us first evaluate the residue of YDN~λ+x
(z)Zso(2N)

~λ+x
at ζ = φx, which is contained in the

expectation value 〈Y D(z)〉.

lim
ζ→φx

Jζ − φxKYDN~λ+x
(z)Zso(2N)

~λ+x
= lim

ζ→φx
Jζ − φxK

Z
so(2N)
~λ+x

Z
so(2N)
~λ

YDN~λ+x
(z)Zso(2N)

~λ

= lim
ζ→φx

Jζ − φxK
J~K2J2ζ ± ~K2

Jζ − φxK2YD~λ+x
(z)

Z
so(2N)
~λ

= − lim
ζ→φx

Jζ − φxK
J2ζK2J2ζ ± ~K
YD~λ (z)

Z
so(2N)
~λ

, (D.28)

where we use the recursive relation (D.22) and (2.28), (2.4) in the unrefined limit. The
above rewriting shows that the residue at ζ = φx from 〈Y D(z)〉 is precisely equal to the
negative of the residue at ζ = φx from 〈 J2ζK

2J2ζ±~K
Y D(z) 〉. This shows that the pole is cancelled

and the overall net residue at ζ = φx in the qq-character (2.29) is zero. The same argument
can be applied analogously in the B-type case.
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λ(s) =
m

m

Figure 2. For As = ±1,±q 1
2 , m is defined to count the number of rows satisfying λ(s)

j ≥ j.

λ(s) =
m

m+ 1

Figure 3. For As = ±q, m is defined to count the number of rows satisfying λ(s)
j ≥ j + 1.

The computation for the C-type case follows a similar pattern, but we need to incorpo-
rate the relation (2.32):

Z
sp(N),±
~λ+x

Z
sp(N),±
~λ

=
C~λ+x, ~A
C~λ, ~A

Z
so(2N+8)
~λ+x

Z
so(2N+8)
~λ

, (D.29)

where four additional parameters As, s = N+1, . . . , N+4, are determined accordingly to the
±-sectors and even/odd number of instantons and they take value in {±1,±q

1
2 ,±q} [21]. The

coefficients C~λ, ~A only depend on the number ms that counts the number of rows satisfying
λ

(s)
j ≥ j or λ(s)

j ≥ j + 1 in the extra Young diagrams labeled by s = N + 1, . . . , N + 4
depending on the value of As (see figure 2 and 3). We call the boxes not at the specific
positions (respectively with x = ∃(i, i) and x = ∃(i, i+ 1) in λ(s) for s = N + 1, . . . , N + 4)
that change the characteristic number m, as generic boxes. Clearly, when the added box x
is a generic box, we have

C~λ+x, ~A
C~λ, ~A

= 1. (D.30)

For such generic boxes, the computation simplifies as follows

lim
ζ→φx

Jζ − φxKYCN~λ+x
(z)Zsp(2N),±

~λ+x
= lim

ζ→φx
Jζ − φxK

Z
so(2N+8)
~λ+x

Z
so(2N+8)
~λ

YDN+4
~λ+x

(z)Zsp(2N),±
~λ

J2ζK2J2ζ ± ~K

= − lim
ζ→φx

Jζ − φxK
1

YDN+4
~λ

(z)
Z

sp(2N),±
~λ

(D.31)

= − lim
ζ→φx

Jζ − φxK
1

J2ζK2J2ζ ± ~KYCN~λ (z)
Z

sp(2N),±
~λ

.

– 37 –



J
H
E
P
0
8
(
2
0
2
3
)
2
0
0

The above calculation then shows the pole cancellation of the qq-character (2.37) at a pole
φx with a generic box x of the extra Young diagrams. The poles corresponding to boxes on
the special position are located at ζ = 0, πi,±~

2 ,±(~2 + πi),±~,±(~ + πi). Interestingly we
still observe highly non-trivial cancellations at these poles from instanton expansions up to
six instantons.

We remark that the pole cancellation shown here is an independent computation of
that presented in appendix B, but they both suggest the same form of the qq-characters
schematically as Y + 1/Y .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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