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1 Introduction

A ’t Hooft loop [1] is a typical disorder operator defined by singular boundary conditions for
gauge fields, rather than by taking a product of field operators. In essence the ’t Hooft loop
is a trajectory of a point-like Dirac monopole. When embedded in N = 4 super Yang Mills
theory, the ’t Hooft line constitutes a 1/2 BPS defect of co-dimension three and gives rise to
a defect conformal field theory [2]. This defect CFT has been subject of extensive analyses
building on S-duality and supersymmetric localization [3–5], but should be amenable to
other exact tools such as the boundary conformal bootstrap and integrability.

The holographic dual of the ’t Hooft line consists of a D1-brane appropriately embedded
in the AdS5 × S5 background [6], and the boundary conditions provided by this object for
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the string sigma model belong to the list of integrable ones given in [7]. Furthermore, the
boundary bootstrap equations for the present set-up were argued to immediately follow
from those of the more studied co-dimension one, 1/2 BPS defect version of N = 4 SYM,
dual to the D3-D5 probe brane system [8]. Seemingly, the ’t Hooft line set-up is the simplest
defect CFT where all these exact methods come together.

The ’t Hooft loop is related to the more studied Wilson loop by S-duality [9–11]. A
number of exact results obtained for the Wilson loop using matrix model techniques can
hence be directly translated to the ’t Hooft loop. This holds for instance for the expectation
value of the ’t Hooft loop itself as well as its correlators with chiral primary operators in the
bulk. We shall demonstrate that exact results for correlators with non-protected local bulk
operators can be obtained from integrability. Our approach is for the moment perturbative
and should be seen as a necessary preparatory step for a full non-perturbative solution
evoking integrability bootstrap in the spirit of [12–15].

At the leading perturbative order the computation of correlators reduces to a combi-
natorial problem which can be handled efficiently using the tools of integrability [16, 17].
At the quantum level, the computations entail the study of beautiful examples of exactly
solvable quantum mechanical problems, including Dirac’s original monopole problem [18]
and the problem of a spin one particle coupled to a scalar in a monopole potential. A
first outcome of the perturbative analysis is a solid confirmation of the predictions made
by S-duality and a number of exact expressions for the leading contribution to correlators
between the ’t Hooft line and non-protected operators in specific subsectors.

Our paper is organized as follows. We begin by introducing the ’t Hooft line in
section 2 and turn to discussing the implications of S-duality for its expectation value
and its correlators with local, protected bulk operators in section 3. Section 4 is devoted
to the quantization of the ’t Hooft line and ends with the above mentioned confirmation
of an S-duality prediction. A discussion of how to reproduce the S-duality prediction
from supergravity and string theory has been relegated to an appendix. In section 5 we
demonstrate the leading order integrability of the ’t Hooft line. Finally, section 6 contains
our conclusion.

2 Kinematics

The ’t Hooft loop represents a trajectory of a point-like monopole, and is defined by the
prescribed singularity of the gauge fields. For the static ’t Hooft line [2]:

Fij = B

2 εijk
xk
r3 , (2.1)

ΦI = BnI
2r . (2.2)

These should be regarded as boundary conditions for the fields in the path integral. For
the straight ’t Hooft line, xi are the spatial coordinates, more generally they should be
regarded as coordinates of the 3d hyperplane orthogonal to the loop at a given point. And
the boundary conditions are imposed at xi → 0.
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Figure 1. A ’t Hooft line can be modeled by a stack of D1-branes ending on a stack of D3-branes.
Because of the no-force condition the D1-branes are aligned in the transverse directions and are
hence characterized by the same R-charge vector ni, but can be split along the D3 world volume.
An elementary object is thus a ’t Hooft loop with one unit of magnetic charge.

(a) (b) (c)

Figure 2. (a) A correlator between the ’t Hooft line and a local operator. (b) The correlator with
the circular loop in general position. (c) The OPE limit thereof.

The ’t Hooft loop operator is characterized by the magnetic charge vector B and
the R-charge orientation ni, a unit vector in six dimensions. The magnetic charges are
embedded in the Cartan algebra of the gauge group:

B = diag(B1, . . . , BN ), (2.3)

and obey the Dirac quantization condition, that requires all Bi’s to be integer. The brane
configuration describing this setup is shown in figure 1. The D1-branes can be split along
the worldvolume of the D3’s at no energy cost, in this sense the generic ’t Hooft line is a
composite object consisting of elementary building blocks with unit magnetic charge. We
will concentrate on the elementary ’t Hooft line and will set

B = diag(1, 0, . . . , 0), (2.4)

that corresponds to a single D1-brane attached to one of the D3’s in the stack.
The straight ’t Hooft line in N = 4 SYM preserves scale invariance along with some

supersymmetry1 and thus defines a supersymmetric defect CFT. Local operators can be
1The subalgebra of psu(2, 2|4) preserved by the ’t Hooft line is osp(4∗|4) [8], the same as for the circular

Wilson loop [19].
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confined to the defect or inserted in the bulk, for instance the correlator of the ’t Hooft line
with a local operator defines a one-point bulk correlation function:

〈Oa(x)〉T ≡
〈T (L)Oa(x)〉
〈T (L)〉 . (2.5)

Since the only scale in the problem is the distance from the line to the operator insertion,
figure 2a, the scale symmetry alone fixes the one-point function up to a single constant:

〈Oa(x)〉T = Ca

(2|x⊥|)∆a
. (2.6)

The constant depends on the operator normalization but once normalization is fixed carries
dynamical information on both the defect and operator. We fix the normalization ambiguity
by demanding the standard form of the two-point function far from the defect:〈

O†a(x)Ob(0)
〉

= δab
|x|2∆a

. (2.7)

An extra 2 in (2.6) is a rather standard convention, and is introduced for the following
reason. An inversion map makes a circle out of a line, figure 2b. Applying inversion to (2.6)
and reading off the geometric data from the result one finds the correlator of a circular loop
with a local operator in general position:

〈T (C)Oa(x)〉
〈T (C)〉 = CaR

∆a

[h2 + (r −R)2]
∆a
2 [h2 + (r +R)2]

∆a
2
. (2.8)

Consistency with (2.6) can be checked by setting r = R and sending h→ 0.
In the opposite limit, figure 2c,

〈T (C)Oa(x)〉
〈T (C)〉

x→∞' CaR
∆a

|x|2∆a
. (2.9)

Notice a factor of two difference with (2.6). This formula shows that Ca is the OPE
coefficient of the ’t Hooft loop expanded in the basis of local operators [20]:

T (C) = 〈T (C)〉
(

1 +
∑
a

CaR
∆aOa(0)

)
. (2.10)

The normalization conventions are such that C1 = 1 and all of the OPE coefficients are
dimensionless. Those latter will be the focus of our discussion.

3 S-duality and protected operators

The expectation value of the circular Wilson loop and its correlators with chiral primary
operators admit a matrix model representation [21–23] that can be derived from super-
symmetric localization on S4 [24]. An equivalent representation is through 2d Yang-Mills
theory [25]. Either way, the resulting matrix model is Gaussian and the correlators can
be computed exactly, at any value of the gauge coupling and for any N [22, 26]. The
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correlators of the ’t Hooft loop follow from S-duality which inverts the Yang-Mills coupling
(not the ’t Hooft coupling that we use throughout the paper):

λ→ 16π2N2

λ
. (3.1)

The S-duality and the large-N limit do not commute, so to reconstruct the ’t Hooft loop
we really need to know the Wilson loop at any finite N , not just in the ’t Hooft limit.

3.1 ’t Hooft loop expectation value

The expectation value of the circular Wilson loop is known exactly at any value of the
coupling [22]:

〈W 〉 = e
λ

8N L1
N−1

(
− λ

4N

)
, (3.2)

where Lmn (x) are the Laguerre polynomials. Applying S-duality we get for the expectation
value of the circular ’t Hooft loop:

〈T 〉 = e
2π2N
λ L1

N−1

(
−4π2N

λ

)
. (3.3)

The large-N limit for the ’t Hooft and Wilson loops are quite different because the
factors of N are reversed by S-duality. Yet, the ’t Hooft loop in the planar limit appears to
be related to the multiply-wound Wilson loop in the limit when the number of windings
scales with N [27]. The k-wound Wilson loop is given by (3.2) with λ replaced by λk2. If
we now take the simultaneous limit of N →∞, k →∞ with κ = λk/N fixed the problem
becomes formally equivalent to computing the ’t Hooft loop in the conventional large-N
limit with κ = 4π/

√
λ.

The multiply-wound Wilson loop is known to exponentiate [26–28] and the expectation
value of the ’t Hooft loop can be inferred from that result just by replacing κ with 4π/

√
λ:

〈T 〉 N→∞' eNFT (λ), (3.4)

FT (λ) = 2π√
λ

√
1 + π2

λ
+ 2 ln

√1 + π2

λ
+ π√

λ

 . (3.5)

The next order in 1/N can be found in [29, 30]. Derivation of this result by a direct
computation is very easy and is sketched below.

It follows from an integral representation of (3.3):

〈T 〉 =
√
λN

2πN ! e−
2π2N
λ

∫ ∞
0

dt tN−
1
2 e−tI1

4π

√
Nt

λ

 . (3.6)

Changing variables t = Nτ , using the Stirling formula for N ! and taking the asymptotics of
the Bessel function we get:

〈T 〉 ' λ
3
4

8π
5
2

∫ ∞
0

dτ τ−
3
4 e−NS(τ), (3.7)
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where
S(τ) = τ − ln τ − 4π

√
τ

λ
+ 2π2

λ
− 1. (3.8)

The main contribution to the integral comes from the saddle point at

√
τ∗ =

√
1 + π2

λ
+ π√

λ
, (3.9)

and in the leading approximation we get (3.4), (3.5).
The localization prediction is consistent with the semiclassical nature of the ’t Hooft

loop. At weak coupling:

FT
λ→0' 2π2

λ
+ ln 4π2

λ
+ . . . (3.10)

The first term is just the Yang-Mills action evaluated on the field of the monopole [3, 27],
while the log-correction comes from the zero modes and the gauge group volume [3, 27].

On the strong-coupling side:

FT
λ→∞' 4π√

λ
+ . . . (3.11)

This can be compared to the action of the hemi-spherical D1-brane ending on the circular
loop at the boundary of AdS5. Indeed, the D1-brane tension is2

TD1 = 2N√
λ
, (3.12)

and the regularized volume of the minimal surface equals A = −2π [32, 33]. Thus,

〈T 〉 ' e−TD1A = e
4πN√
λ ,

in agreement with the result obtained by localization.

3.2 Correlators with chiral primaries

Consider chiral primary operators

OL = 1√
L

(
4π2

λ

)L
2

trZL. (3.13)

The overall factor makes them unit-normalized. To make contact with localization we need
to align the R-charge of the operator to that of the ’t Hooft loop. For that matter, we
assign the orientation vector ni = (1, 0, . . . , 0) to the ’t Hooft loop and define the operator’s
polarization by Z = Φ1 + iΦ2.

For the Wilson loop with the same R-charge assignment the one-point function is known
exactly [26]:

〈WOL(x)〉 = 1√
L

( √
λ

2NR

)L
e

λ
8N

L∑
k=1

LLN−k

(
− λ

4N

)
. (3.14)

2This is the standard textbook formula [31] re-written in the AdS units, whereupon the string tension is
defined by the dimensionless ratio: α′/R2 = 1/

√
λ, and the string coupling is traded for the gauge coupling:

gs = 4πλ/N .
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This formula is literally correct if the operator is inserted in the centre of the circle, otherwise
R should be replaced by the appropriately defined conformal distance from (2.8).

Applying S-duality we get for the correlator with the ’t Hooft loop:

〈TOL(x)〉 = 1√
L

( 2π√
λR

)L
e

2π2N
λ

L∑
k=1

LLN−k

(
−4π2N

λ

)
. (3.15)

The large-N limit can again be extracted from the integral representation:

〈TOL(x)〉 = 1
√
λN

L
2 RL

e−
2π2N
λ

∫ ∞
0

dt e−t
L∑
k=1

tN−k+L
2

(N − k)! IL

4π

√
tN

λ

 . (3.16)

Changing variables to τ = tN and taking the large-N limit of all the prefactors we get:

〈TOL(x)〉 ' λ
1
4

4π
3
2
√
LRL

∫ ∞
0

dτ
L∑
k=1

τ
L
2−k−

1
4 e−NS(τ), (3.17)

with S(τ) given by (3.8). Evaluating the integral in the saddle-point approximation and
normalizing by (3.7) we get:

〈Oa(x)〉T = 2π√
λLRL

L∑
k=1

τ
L
2−k+ 1

2∗ = 2π√
λLRL

τ
L
2∗ − τ

−L2∗

τ
1
2∗ − τ

− 1
2∗

, (3.18)

with τ∗ from (3.9). Comparing to (2.9) we read off the OPE coefficient:

CL = 1√
L


√1 + π2

λ
+ π√

λ

L −
√1 + π2

λ
− π√

λ

L
 . (3.19)

Foreseeing an integrability description we can interpret the first term as an asymptotic
answer, to be dressed by Bethe-ansatz structures for non-protected operators, while the
second term is naturally interpreted as a wrapping correction [34]. The two terms are
indeed separated by L orders of perturbation theory as appropriate for diagrams “wrapping
the cylinder”.

We can make the argument sharper by introducing the Zhukowski variable

x(u) + 1
x(u) = 4πu√

λ
, (3.20)

and denoting
ixa ≡ x

(
ai

2

)
. (3.21)

Then (3.19) can be concisely written as

CL = 1√
L

(
xL1 −

1
xL1

)
. (3.22)

Structurally, this is very similar to the one-point function in the D3-D5 dCFT [13] but is
much simpler. In that latter case the asymptotic part is a sum of k terms (k is a quantum

– 7 –



J
H
E
P
0
8
(
2
0
2
3
)
1
8
4

(a) (b)

Figure 3. The one-loop correction to the one-point function. The dots denote the classical
field (2.1), (2.2). The loop propagator is the Green’s function in this background.

number of the defect) of the form xLa with a running between 1 − k and k − 1, and the
wrapping corrections are a series in 1/xLa . Each of the asymptotic terms corresponds to a
particular bound state formed by a elementary magnons with the D5-brane. There is only
one asymptotic term here and we expect that the string modes do not form bound states,
so the scattering theory for the ’t Hooft loop must be way simpler.

Expanding the one-point function at weak coupling, we find:

CL '
1√
L

(
4π2

λ

)L
2
(

1 + g2
YM (N − 1)

4π2 L+ . . .

)
. (3.23)

In the ’t Hooft limit this formula is just Taylor series of (3.19), but written that way remains
valid at any N , as follows from (3.15), (3.3) and the asymptotic form of the Laguerre
polynomials:

Lsn(x) = xn

n!

[
1 + n(n+ s)

x
+ . . .

]
. (3.24)

The leading order is consistent with substituting the classical field (2.2) into (3.13).3

The next order can likewise be reproduced by a quantum field theoretical calculation as we
will demonstrate in section 4 by explicitly calculating the planar diagram in figure 3a and
showing that the non-planar corrections in figure 3b vanish.

Planar corrections at the next L orders come entirely from the first term in (3.19). The
simplicity of the answer suggests many cancellations and points to simple combinatorics
of the higher-loop corrections. We can also compare the exact OPE coefficient with
supergravity and string theory at strong coupling. This analysis is relegated to appendix A.

4 Quantizing ’t Hooft lines

In this section we will set up the program for doing perturbative calculations in the monopole
background, and as a first application we reproduce the one-loop result predicted by S-
duality (3.23). Various aspects of the quantization of ’t Hooft lines have been discussed
in [3, 4]. The problem is similar to quantization of monopole operators in 3d [35, 36], which
has been discussed in the gauge theory with sixteen supercharges (the dimensional reduction

3It is important to recall that the classical field (2.2) describes an infinite ’t Hooft line, figure 2a, correlator
which has an extra factor of 1/2∆ compared to the circular model, see (2.6).
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of N = 4 SYM) [37]. Unfortunately we cannot use these results directly because the theory
is not conformal in 3d and the mixing pattern of various field components is different as
a result.

4.1 Expanding around the monopole background

We start from the N = 4 SYM action in the following form

S = 2
g2
YM

∫
d4x tr

[
−1

4FµνF
µν − 1

2DµϕiD
µϕi + 1

4[ϕi, ϕj ][ϕi, ϕj ] + fermions
]
, (4.1)

where
Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ], Dµϕi = ∂µϕi − i[Aµ, ϕi], (4.2)

with µ, ν = 0, 1, 2, 3 and i, j = 1, 2, . . . , 6, and we wish to expand around the classical field
configuration given by (2.1), (2.2) and (2.4). Inserting

ϕi = ϕcl
i + ϕ̃i, Aµ = Acl

µ + Ãµ, (4.3)

and adding a gauge fixing term

Sgf = 2
g2
YM

∫
d4x tr

[
−1

2
(
∂µÃ

µ + i[Ãµ, Acl
µ ] + i[ϕ̃i, ϕcl

i ]
)2
]
, (4.4)

we get for the resulting action4

S = 2
g2
YM

∫
d4x tr

{
−1

2D̄νAµD̄
νAµ − 1

2D̄νϕiD̄
νϕi

+ iF̄µν [Aµ, Aν ] + 2i ∂µϕcl
i [Aµ, ϕi]

+1
2[Aµ, ϕcl

i ][Aµ, ϕcl
i ] + 1

2[ϕj , ϕcl
i ][ϕj , ϕcl

i ]
}
, (4.5)

where we have omitted the tildes on the quantum fields and where

D̄ν = ∂ν − i[Acl
ν , · ]. (4.6)

The symmetry breaking pattern of the classical fields implies the following block decompo-
sition of the quantum fields

1 N − 1

Aµ, ϕi =


å ø ø ø
ø _ _ _
ø _ _ _
ø _ _ _


1

N − 1
(4.7)

Here the action for the field components of type æ as well as for the component å are
unaffected by the presence of the defect whereas new quadratic terms appear for the fields
of type ø.

4Strictly speaking we should consider the full N = 4 SYM and perform the gauge fixing by adding a
BRST exact term as in [38, 39].
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We now choose ni = (1, 0, 0, 0, 0, 0), and clearly we can set Acl
0 = 0, cf. eqs. (2.2), (2.1).

Next, we can replace ϕcl
i with ϕcl

1 in the expression (4.5) for the action, and we observe that
the fields split into two groups, namely the simple fields {A0, ϕ2, ϕ3, ϕ4, ϕ5, ϕ6} for which
the quadratic terms are diagonal in flavour and the complicated fields {ϕ1, A1, A2, A3}
which mix between each other. A convenient gauge choice for the remaining components of
Acl [18] is5

Acl
φ = B

2r
1− cos θ

sin θ , Acl
r = Acl

θ = 0, (4.8)

or expressed in Cartesian coordinates

Acl
x = − By

2r(r + z) , Acl
y = Bx

2r(r + z) , Acl
z = 0. (4.9)

4.2 Dirac’s quantum mechanical monopole problem

Determining the propagators for the fields without flavour mixing amounts to solving Dirac’s
original quantum mechanical monopole problem [18]. The starting point is the quadratic
term in the Lagrangian density for the ø-components of the simple fields which reads

Ls = ϕ1j(∂2 + 2iAcl
ν ∂ν − (Aν)cl(Aν)cl − (ϕcl

1 )2)ϕj1, (4.10)

= ϕ†j1

(
∂2
t + (∂k + iAkcl)(∂k + iAcl

k )− B

4r2

)
ϕj1, j 6= 1, (4.11)

where it is understood that the classical fields are replaced by their non-vanishing 11-
component and where we have introduced the notation

ϕ†1j = (ϕ†)1j = ϕj1. (4.12)

Furthermore, the index k now runs over spatial values only. In order to determine the
propagators of the simple fields we shall start by determining the spectrum of the operator

Ĥ = −
(
∂k + iAkcl

) (
∂k + iAcl

k

)
+ B

4r2 , (4.13)

i.e. solving the eigenvalue problem
ĤΨ = EΨ. (4.14)

Apart from the last purely radial term, this problem is identical to Dirac’s original quantum
mechanical monopole problem [18] whose solution we now briefly review following [40–42],
see also [43]. It is convenient to work in spherical coordinates where the Hamiltonian reads

Ĥ = −
(
∇2 + i B

r2(1 + cos θ)∂φ −
B2

4r2
1− cos θ
1 + cos θ −

B2

4r2

)
, (4.15)

5The gauge connection is A = B(1 − cos θ)dφ/2, whose curvature is indeed the volume form of S2:
F = Bdφ ∧ dθ/2. The factor of r sin θ arises from transformation to the local frame of the spherical
coordinate system.
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with ∇2 the 3d Laplacian. Following [41] we define

L± = Lx ± iLy = e±iφ
[
± ∂

∂θ
+ i cot θ ∂

∂φ
+ B

2
sin θ

1 + cos θ

]
, (4.16)

Lz = −i ∂
∂φ

+ B

2 . (4.17)

Then we have
Ĥ = p2

r + L2(θ, φ)
r2 , where pr = −i

r

∂

∂r
r, (4.18)

and

L2(θ, φ) = −
[

1
sin θ

∂

∂θ
sin θ ∂

∂θ
+ 1

sin2 θ

∂2

∂φ2 + iB

1 + cos θ∂φ −
B2

2
1

1 + cos θ

]
. (4.19)

Now, it holds that [
~L,H

]
= 0, (4.20)

and the operators Li fulfill the familiar SU(2) commutation relations

[Li, Lj ] = iεijkLk. (4.21)

The solution to the eigenvalue problem is found by assuming that the wave function
factorizes as follows

Ψ = ρ(r)W (θ, φ), (4.22)

which implies that (4.14) becomes equivalent to the following two equations

∂2ρ

∂r2 + 2
r

∂ρ

∂r
− λ

r2 ρ = −Eρ, (4.23)

L2(θ, φ)W (θ, φ) = λW (θ, φ). (4.24)

We can immediately conclude that the angular wave functions will constitute highest weight
representations of SU(2). Introducing the further factorization

W (θ, φ) = U(θ)eimφ, m = 0,±1,±2, . . . , (4.25)

where m has to be integer for the wave function to be single valued, we find

LzW (θ, φ) =
(
m+ B

2

)
W (θ, φ) ≡ mW (θ, φ), (4.26)

and the angular wave equation takes the form

− 1
sin θ

∂

∂θ
sin θ ∂U

∂θ
+
(

m2

sin2 θ
+ mB

1 + cos θ + B2

2
1

1 + cos θ

)
U(θ) = λU(θ). (4.27)

From SU(2) representation theory we know that the possible values of λ are

λ = l(l + 1), (4.28)
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where l is a non-negative integer, when B = 0. In the presence of the monopole, we
encounter the phenomenon of spectral flow, i.e. the fact that the energy levels re-organize
themselves as B is varied. In figure 4 we illustrate the spectral flow between B = 0 and
B = 2. For the case, we are interested in, i.e. B = 1, we see that the possible values of l
have shifted from integer values at B = 0 to half-integer values at B = 1, cf. equation (4.26).
Introducing the variable

x = cos θ, (4.29)

equation (4.27) can be written as[
(1− x2) ∂

2

∂x2 − 2x ∂
∂x
− 1

2(1− x)

(
m− B

2

)2
− 1

2(1 + x)

(
m+ B

2

)2
]
U = −λU. (4.30)

Performing the following rescaling

U(x) = (1− x)α/2 (1 + x)β/2 Ũ(x), (4.31)

with
α =

∣∣∣∣m+ B

2

∣∣∣∣ , β =
∣∣∣∣m− B

2

∣∣∣∣ , (4.32)

the equation (4.30) turns into the following equation for Ũ

(1−x2)Ũ ′′+(β−α−x(2+α+β))Ũ ′+
(
l(l+1)+ 1

4(α+β)(2+α+β
)
Ũ = 0, (4.33)

where the primes denote differentiation with respect to x. We recognize equation (4.33) as
the defining equation for the Jacobi polynomials, i.e.

Ũ(x) = NP (α,β)
n (x), (4.34)

with N a normalization constant, provided(
l(l + 1) + 1

4(α+ β)(2 + α+ β

)
= n(n+ α+ β + 1), n = 0, 1, 2, . . . , (4.35)

i.e.
l = n+ 1

2(α+ β) = n+ 1
2

∣∣∣∣m+ B

2

∣∣∣∣+ 1
2

∣∣∣∣m− B

2

∣∣∣∣ , n = 0, 1, 2, . . . . (4.36)

More specifically the eigenfunctions of our angular problem read

W (θ, φ) = Y
(q)
lm̄ (θ, φ) (4.37)

= Clm (1− cos θ)α/2(1 + cos θ)β/2P (α,β)
l−α/2−β/2(cos θ) ei(m−B/2)φ, (4.38)

where Clm is a normalization constant and where the superscript q denotes the monopole
charge

q = B

2 . (4.39)

These are the so-called monopole spherical harmonics and for the case of interest in this
paper, i.e. B = 1,

l = 1
2 ,

3
2 , . . . , m = −l,−l + 1, . . . , l − 1, l, (4.40)

exposing again the phenomenon of spectral flow.

– 12 –



J
H
E
P
0
8
(
2
0
2
3
)
1
8
4

(a) (b)

Figure 4. (a) The spectrum, at B = 2. (b) The spectral flow from B = 0 to B = 2. The Dirac
quantization condition corresponds to crossing (half-)integer-l lines when the spectrum recombines
into the usual SU(2) multiplets. The zero angular momentum state disappears in the process.

The normalization constant can be determined explicitly and reads

Clm =

 (2l + 1)
(
−α

2 −
β
2 + l

)
! Γ
(
l + α

2 + β
2 + 1

)
2+α+β+2 π Γ

(
l + α

2 −
β
2 + 1

)
Γ
(
l − α

2 + β
2 + 1

)
1/2

. (4.41)

Returning to the radial equation, we insert λ = l(l + 1) and rescale ρ(r) = r−1/2R(r)
which leads to Bessel’s equation

d2R(r)
dr2 + 1

r

dR(r)
dr

+
(
E − (l + 1/2)2

r2

)
R(r) = 0. (4.42)

Picking the solution which makes ρ(r) regular at r = 0 gives

ρ(r) = (
√
Er)−1/2Jν(

√
Er), (4.43)

with
ν = l + 1

2 . (4.44)

Having completed the quantization of the monopole problem we can construct the propaga-
tors of the simple fields via spectral decomposition, cf. section 4.4

4.3 An S = 1 particle, a scalar and the monopole

Determining the propagators for the fields with flavour mixing amounts to determining the
spectrum of a spin one particle interacting with a scalar in the monopole background. The
problem involving the spin one particle alone was analyzed in [44, 45] (we will follow [44]).
The starting point is the quadratic part of the Lagrangian density for the ø components of
the fields with mixing, i.e. ϕ1 ≡ ϕ,A1, A2, A3, which reads

Lm = ϕ†j1

(
∂2
t + (∂k + iAkcl)(∂k + iAcl

k )− B

4r2

)
ϕj1

+ ~A†j1

(
∂2
t + (∇k + iAkcl)(∇k + iAcl

k )− B

4r2

)
~Aj1

+ iϕ†j1

(
B

r2 r̂ · ~Aj1
)
− i

(
~A†j1 ·

B

r2 r̂
)
ϕj1

− i ~A†j1 ·
(
B

r2 r̂× ~Aj1

)
, j 6= 1, (4.45)
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where we have underlined the fact that the A-field constitutes a vector field. As for the
simple fields we will start by diagonalizing the time-independent part of the problem. From
section 4.2 we already know how to diagonalize the term in the first line above making
use of monopole spherical harmonics. In a similar manner we can diagonalize the second
term making use of monopole vector spherical harmonics. The angular momentum operator
components, Lx, Ly, Lz can be defined as in section 4.2 and the vector nature of the gauge
field is taken into account by using a spin-one basis for the coordinate functions. Effectively,
we are thus searching for eigenfunctions corresponding to the total angular momentum
J = L+S with the spin eigenvalue equal to one. We have already seen that in the monopole
background with B = 1 the possible values of the angular momentum is ` = 1

2 ,
3
2 , . . . which

means that we have the following possibilities for the total angular momentum, J

For ` > 3
2 :J = `− 1, `, `+ 1, (4.46)

For ` = 1
2 :J = `, `+ 1. (4.47)

Combining the monopole spherical harmonics with S = 1 representation matrices one can
construct monopole vector spherical harmonics [44] which fulfill

(L+ S)2 Y(q)
J`M (θ, φ) = J(J + 1)Y(q)

J`M (θ, φ), (4.48)

(Lz + Sz) Y(q)
J`M (θ, φ) = M Y(q)

J`M (θ, φ), (4.49)

L2Y(q)
J`M (θ, φ) = `(`+ 1)Y(q)

J`M (θ, φ), (4.50)

S2Y(q)
J`M (θ, φ) = 2 Y(q)

J`M (θ, φ). (4.51)

These vector spherical harmonics have the following additional properties which will prove
convenient in the following

r̂ ·Y(q)
J`M (θ, φ) = C(q)

J` Y
(q)
JM (θ, φ), (4.52)

r̂×Y(q)
J`M (θ, φ) = i

∑
L

A(q)
J`L Y(q)

JLM (θ, φ), (4.53)

where the constants A(q)
J`L and C(q)

J` are known in closed form. We have listed these in
appendix B. In addition, one has

rY (q)
JM =

∑
`

C
(q)
J` Y(q)

J`M (θ, φ). (4.54)

We thus expand the scalar field in the basis of monopole spherical harmonics and the vector
field in the basis of monopole vector spherical harmonics in the following way (leaving out
the subscripts on the fields)

ϕ(r, θ, φ) =
∑

J= 1
2 ,

3
2 ,...

J∑
M=−J

r−1KJ(r)Y (q)
JM (θ, φ), (4.55)

~A(r, θ, φ) =
∑

J= 1
2 ,

3
2 ,...

J∑
M=−J

~AJM (r, θ, φ), (4.56)
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where

r ~AJM (r, θ, φ) = (4.57)

F J−(r)Y(q)
JJ−1M (θ, φ) + F J0 (r)Y(q)

JJM (θ, φ) + F J+(r)Y(q)
JJ+1M (θ, φ),

with the understanding that F
1
2
− (r) ≡ 0. Working in this basis the spectral problem that we

need to solve reads

Ĥ

(
ϕ
~A

)
= 1

r2

(
r2p2

r + L2 −iB r̂T

iBr̂ r2p2
r + L2 − iB r̂×

)(
ϕ
~A

)
= E

(
ϕ
~A

)
. (4.58)

We will follow the strategy of [44] where the part of the problem involving only the gauge field
was solved. Inserting the expansions of ϕ and ~A and making use of the relations (4.50), (4.52),
and (4.53) one finds for each value of J a set of four coupled differential equations for the
radial functions F J−(r), F J0 (r), F J+(r) and KJ(r). The first of these equations reads(

z2 d
2

dz2 − z
2 − J(J + 1)

)
K(z) (4.59)

+ iB
(
C(q)
JJ−1 F

J
−(z) + C(q)

JJ F
J
0 (z) + C(q)

JJ+1 F
J
+(z)

)
= 0,

where we have defined
z =
√
E r. (4.60)

The other three equations are analogous. We now notice that the function
√
zJν(z) fulfils

the equation (
z2 d

2

dz2 − z
2 −

(
ν2 − 1

4

))√
zJν(z) = 0. (4.61)

It thus makes sense to search for a solution to the set of four coupled differential equations
where all the four unknown functions are proportional to

√
zJν(z) for some ν. Writing

KJ(z) = KJ√zJν(z),

F J−(z) = F J−
√
zJν(z), F J0 (z) = F J0

√
zJν(z), F J+(z) = F J+

√
zJν(z),

where KJ , F J−, F J0 and F J+ are constants we get a set of four linear equations for these four
unknown constants, which we can write as

a −i CJ−1 −i CJ −i CJ+1
i CJ−1 a+ 2J + AJ−1J−1 AJJ−1 0
iCJ AJ−1J a+ AJJ AJ+1J
iCJ+1 0 AJJ+1 a− 2(J + 1) +AJ+1J+1



K

F−
F0
F+

 =


0
0
0
0

 ,
where for readability we have suppressed the superscript q as well as the first indices on the
C’s and A’s which obviously all take the value J , and likewise for the superscripts on the
constants. Furthermore, we have introduced

a = ν2 −
(
J + 1

2

)2
, (4.62)
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and we have set B = 1. The possible values of ν for a given J are thus given by the values
of a for which the determinant of the above matrix vanishes (i.e. by minus the eigenvalues
of the matrix), which are

a = {0, 0,−2J, 2(J + 1)} , J > 3/2, (4.63)

corresponding to

ν =
{
J − 1

2 , J + 1
2 , J + 1

2 , J + 3
2

}
≡ {νJ−, νJ0 , νJ0 , νJ+}, J > 3/2. (4.64)

It is interesting to note the difference between this result and the result of [44]. Of the three
values of ν, which one gets in the situation where one considers only the gauge field, one
value equals νJ0 but the other two are irrational. The coupling to the scalar field, originating
from the supersymmetry of N = 4 SYM, clearly renders the problem analytically more
tractable, manifesting the presence of integrability. We can choose a set of orthonormal
eigenvectors of the above matrix as follows

V J
− =

 −i
2
√
J(2J + 1)

,

√
(2J + 1)(2J − 1)

2J ,
1

2J

√
J + 1
2J + 1 , 0

 , (4.65)

V J
0 =

− i2
√

2J − 1
J

,− 1
2J ,

√
(2J − 1)(J + 1)

2J , 0

 ,
V̂ J

0 =

 i
2

√
2J + 3
J + 1 , 0,

√
J(2J + 3)
2J + 2 ,

1
2J + 2

 ,
V J

+ =
(

−i
2
√

(J + 1)(2J + 1)
, 0, −J

2(1 + J)
√
J(1 + 2J)

,

√
(2J + 1)(2J + 3)

2(1 + J)

)
.

For the special case of J = 1/2, where F
1
2
− (r) ≡ 0, we find

ν = {0, 1, 2} ≡ {ν
1
2
−, ν

1
2
0 , ν

1
2
+}, J = 1/2, (4.66)

with the corresponding eigenvectors

V
1
2
− =

(
− i2 ,

√
3
4 , 0

)
, V

1
2

0 =
(
i

√
2
3 ,
√

2
3 ,

1
3

)
,

V
1
2

+ =
(
−i

2
√

3
,−1

6 ,
2
√

2
3 ,

)
, (4.67)

consistently with the above. These eigenvectors provide us with a basis for the space of
solutions of the quantum mechanical problem (4.58) and we can determine the propagators
of the fields with flavour mixing. In the following we will explicitly determine only the
propagators for the scalars, but it is not difficult to reconstruct the vector propagator as well.
The fermion propagators are naturally expanded in the spinor monopole harmonics [46].
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4.4 The propagators for the scalars

The equation defining the propagators of the simple scalars, cf. eq. (4.11) reads (assuming
Euclidean signature) (

− ∂2

∂t2
− ∂2

∂r2 −
2
r

∂

∂r
+ 1
r2L

2(θ, φ)
)
G(x,x′) =

g2
YM

2
δ(t− t′)δ(r − r′)δ(θ − θ′)δ(φ− φ′)

r2 sin θ , (4.68)

where L2(θ, φ) was defined in (4.19) and where x = (t, r, θ, φ). We now make the following
ansatz for G(x,x′)

G(x,x′) = g2
YM

2
∑
l,m̄

(r r′)−1Gl(r, r′, t, t′)Y
(q)
l,m̄(θ, φ)Y (q)∗

l,m̄ (θ′, φ′), (4.69)

and find that Gl(r, r′, t, t′) has to fulfill the following equation(
− ∂2

∂t2
− ∂2

∂r2 + l(l + 1)
r2

)
Gl(r, r′, t, t′) = δ(r − r′)δ(t− t′), (4.70)

which we recognize as the propagator of a scalar in AdS2 with mass parameter m2 = l(l+ 1).
The appearance of an AdS2 propagator was to be expected given the symmetries of the
problem. We elaborate on this connection to AdS2 in appendix C. A convenient way to
write the scalar propagator with mass parameter m2 for AdSd+1 is exactly by means of its
spectral decomposition [47]

Gν(r, r′, ~x, ~y) = (rr′)d/2
∫

ddk

(2π)d
∫ ∞

0
dω

ω

ω2 + ~k2
ei
~k(~x−~y)Jν(ωr)Jν(ωr′)

= (rr′)d/2
∫

ddk

(2π)d e
i~k(~x−~y)Iν(|~k|r<)Kν(|~k|r>), (4.71)

where Iν and Kν are modified Bessel functions and where

ν =
√
m2 + 1

4 . (4.72)

For the scalar which mixes with the gauge field the relevant mode expansion is not in terms
of orbital but in terms of total angular momentum, J . To get the propagator for this
field we write a spectral decomposition like (4.71) for the propagator of the combined field
(ϕ1, ~A) making use of the complete basis of eigenfunctions determined earlier and identify
the desired propagator as the 11-component. This leads to an expression similar to (4.69)
except that the single term Gl gets replaced with the sum

|(V J
− )1|2GνJ− +

(
|(V J

0 )1|2 + |(V̂ J
0 )1|2

)
GνJ0

+ |(V J
+ )1|2GνJ+ ,

where (V J
− )1 is the first component of the eigenvector V J

− etc., cf. eqs. (4.65)–(4.67), and
where it is understood that |(V̂

1
2

0 )1| = 0. We notice that the lowest mode which appears is
ν

1/2
− which exactly saturates the BF-bound [48].
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For the computation of one-loop corrections to one-point functions we will need to
evaluate propagators with coinciding endpoints and we need a regularization procedure. For
the AdS2 part of the propagator we can use the method successfully employed in [38, 39],
i.e. dimensional regularization. We regularize the propagator for coinciding points by going
to polar coordinates in d = 1− 2ε dimensions and obtain

Gν(r, r, t, t) = g2
YM

2 r
2π1/2−ε

Γ(1/2− ε)

∫ ∞
0

dk
k−2ε

(2π)1−2ε Iν(kr)Kν(kr). (4.73)

Expanding to two leading orders in ε we get

Gν(r, r, t, t) = g2
YM

2
1

4π

(1
ε
− γ + log(4π) + 2 log(r)− 2Ψ(ν + 1

2)
)
. (4.74)

Alternatively one can use propagators in AdS2 and regularize by point-splitting. This gives
the same result, see appendix C.

4.5 The correction to the one-point function

In order to compute the one-loop correction to the one-point function we start from the
properly normalized operator (3.13), insert the complex scalar Z and expand around the
classical field, ie.

Z = Φ1 + ϕ1 + iϕ2, (4.75)

with Φ1 given in eq. (2.2) and ϕ1 and ϕ2 the quantum fields. To one-loop order we
only get contributions from configurations in the form of tadpoles where two quantum
fields occupying neighboring sites get connected by a propagator, figure 3a. The fields
propagating in the loop are from the å and ø blocks in (4.7) and have color indices ϕ1j

a ,
but the contribution of the 11 component is unaffected by the monopole and vanishes by
chirality. The non-planar diagrams 3b are not only large-N suppressed, but identically
vanish, because the fields propagating in the loop are ϕ11

a .
In principle one could also get contributions from diagrams, denoted as “lollipop”

diagrams in [38, 39], where a single quantum field gets connected by a propagator to a
closed loop. However, the contributions from such diagrams are expected to vanish due
to supersymmetry provided a supersymmetric regulator like dimensional regularization in
combination with dimensional reduction is applied. This was demonstrated by explicit
calculation for the supersymmetric D3-D5 probe brane set-up in [38, 39]. Accordingly, we
shall therefore ignore these diagrams.

There are L tadpole configurations and N − 1 field components with a non-trivial
coupling to Φ1. This implies

〈OL(x)〉T = 1√
L

(
4π2

λ

)L/2{ 1
(2r)L + (N−1)L

(2r)L−2 [〈ϕ1(x)ϕ1(x)〉−〈ϕ2(x)ϕ2(x)〉]
}
. (4.76)

Making use of the identity

∑
M

Y
(q)
JM (θ, φ)Y (q)∗

JM (θ, φ) = (2J + 1)
4π , (4.77)
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we can write the propagator for the simple field at coinciding points as (cf. eq. (4.69))

〈ϕ2(x)ϕ2(x)〉 = g2
YM

2
1
r2

∑
J= 1

2 ,
3
2 ,...

2J + 1
4π GνJ0

(x, x). (4.78)

For the field ϕ1 which mixes with the gauge field we get a similar expression except that
the single term GνJ0

(x, x) gets replaced with the sum

|(V J
− )1|2GνJ−(x, x) +

(
|(V J

0 )1|2 + |(V̂ J
0 )1|2

)
GνJ0

(x, x) + |(V J
+ )1|2GνJ+(x, x).

Noting that the following relation is fulfilled

|(V J
− )1|2 + |(V J

0 )1|2 + |(V̂ J
0 )1|2 + |(V J

+ )1|2 = 1, (4.79)

we see that all terms containing a pole in ε cancel out and we are left with the following
expression for the one-loop correction to the one-point function

〈OL(x)〉1−loopT = 1√
L

(
4π2

λ

)L/2{ 1
(2r)L

g2
YM (N − 1)L

4π2 ×

∑
J

(2J + 1)
[(

1− |(V J
0 )1|2 − |(V̂ J

0 )1|2
)

Ψ
(
νJ0 + 1

2

)
−|(V J

− )1|2 Ψ
(
ν− + 1

2

)
− |(V J

+ )1|2 Ψ
(
ν+ + 1

2

)]}
. (4.80)

Furthermore, upon using the identity

Ψ(z + 1) = Ψ(z) + 1
z
, (4.81)

as well as the exact expressions for the relevant components of the eigenvectors, the sum
telescopes and we obtain:

〈OL(x)〉1−loopT = 1√
L

(
4π2

λ

)L/2 1
(2r)L

g
2
YM (N − 1)L

4π2

∑
J= 1

2 ,
3
2 ,...

1
4

( 1
J2 −

1
(J + 1)2

)
= 1√

L

(
4π2

λ

)L/2 1
(2r)L

(
g2
YM (N − 1)L

4π2

)
, (4.82)

exactly as predicted by (3.23).

5 Unprotected operators and integrability

As we discussed in the introduction the straight ’t Hooft line is expected to preserve
integrability of N = 4 SYM. The evidence is based on classical string theory where the
’t Hooft line is described by a D1-brane in the bulk of AdS5× S5 that features integrability-
preserving boundary conditions [7]. Here we will study integrability from the weak-coupling
perspective by probing the ’t Hooft line with local operators. Single-trace operators can be
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viewed as states in an integrable quantum spin chain, while a D-brane (the ’t Hooft line in
this case) maps to a boundary state whose overlaps with the Bethe eigenstates determine the
one-point correlation functions [16, 17]. The boundary state may or may not be integrable.
If it is, the one-point functions admit a compact determinant representation [16, 17] that
potentially can be extended to all operators and all loop orders by a version of integrability
bootstrap [13–15]. Our goal is to establish perturbative integrability of ’t Hooft loops. We
will limit ourselves to the leading perturbative order and to specific sectors where the spin
chain takes a particularly simple form.

5.1 SO(6) sector

The SO(6) sector consists of generic scalar operators

O = ΨI1...IL tr ΦI1 . . .ΦIL , (5.1)

which at one loop only mix among themselves. The mixing matrix acting on the wavefunction
ΨI1...IL coincides with the Hamiltonian of an integrable SO(6) spin chain [49]:

Γ = λ

16π2

L∑
`=1

(2− 2P``+1 +K``+1) , (5.2)

where P and K are permutation and trace operators acting on the neighboring sites:
P IKJL = δILδ

K
J , KIK

JL = δIKδJL.
The model is solvable by Bethe ansatz with the standard Lie-algebraic Bethe equations:(

uaj − iqa
2

uaj + iqa
2

)L∏
bk

uaj − ubk + iMab
2

uaj − ubk − iMab
2

= −1, (5.3)

where Mab is the Cartan matrix of SO(6) and qa are the Dynkin labels of its vector
representation:

M =

 2 −1 0
−1 2 −1
0 −1 2

 , q =

0
1
0

 . (5.4)

The one-loop anomalous dimension is given by

∆ = L+ λ

8π2

∑
aj

q2
aj

u2
aj + q2

aj

4

, (5.5)

for a state with Ka Bethe roots and quantum numbers (the Dynkin labels of the SO(6)
representation):

µa = Lqa −
∑
b

MabKb. (5.6)

Computing the correlator of (5.1) with the ’t Hooft loop at the tree level is straight-
forward, each field is replaced by its classical expectation value (2.2). The spin-chain
wavefunction gets projected on a fixed external state as a result:

BstI1...IL = nI1 . . . nIL . (5.7)
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The one-point function is the overlap with this state:

〈O(x)〉T =
(

2π2

λr2

)L
2

L−
1
2
〈Bst |Ψ〉
〈Ψ |Ψ〉

1
2
. (5.8)

An extra λ-dependent prefactor arises because of the difference between the spin-chain
norm and (2.7). Propagators in the two-point function add a factor of λ/8π2 each and an
overall cyclicity gives rise to a factor of L.

The boundary state (5.7) is known to be integrable [50]. Indeed, the boundary state
picks up a single component of the wavefunction, say Ψ1...1 for n = (1,0). Such a projection
can be shown to commute with all odd charges of the integrable hierarchy [50], which is
how integrability is defined for boundary states [51, 52].

According to that definition non-zero overlaps are allowed only for parity-invariant
configurations of Bethe roots:

{uaj} = {−uaj} . (5.9)

Allowed configurations may either contain pairs of roots (uaj ,−uaj) or in addition include
a solitary root at zero.

For states satisfying the selection rule the overlap admits an elegant determinant
representation [50]:

〈O(x)〉T =
(

π√
λ r

)L
√√√√√√√ 1
L

∏
j
u2

2j

(
u2

2j + 1
4

)
∏
j
u2

1j

(
u2

1j + 1
4

)∏
j
u2

3j

(
u2

3j + 1
4

) detG+

detG− , (5.10)

where the products are over half of the roots (picking one root in each pair), and the Gaudin
factors are K/2×K/2 determinants:

G±aj,bk =
(

Lqa

u2
aj + 1

4
−
∑
cl

K+
aj,cl

)
δabδjk +K±aj,bk,

K±aj,bk = Mab

(uaj − ubk)2 + M2
ab
4

± Mab

(uaj + ubk)2 + M2
ab
4

, (5.11)

with indices labelling positive roots again. For configurations containing zero roots or
singular roots at ±i/2 the determinant formula needs to be slightly modified. The general
expression that accommodates these special cases can be found in [53].

5.2 SL(2) sector

The SL(2) sector consists of operators

O =
∑
{nl}

1
n1! . . . nL! Ψn1...nL trDn1Z . . .DnLZ, D ≡ D0 +D3. (5.12)

The states at each site are conventionally labelled as

|n〉 ←→ 1
n! D

nZ. (5.13)
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They form an infinite-dimensional unitary representation of sl(2):

D |n〉 = (n+ 1) |n+ 1〉 ,
K |n〉 = n |n− 1〉 ,

S |n〉 =
(
n+ 1

2

)
|n〉 , (5.14)

where K = D† generates special conformal transformations and S is the spin.
Operator mixing in the sl(2) sector is described by the spin-chain Hamiltonian

Γ = λ

8π2

L∑
`=1

h`,`+1, (5.15)

with [54]
h |n,m〉 =

∑
k

[
(H(n) +H(m)) δkn −

1− δkn
|k − n|

]
|k, n+m− k〉 , (5.16)

where H(n) is the harmonic number:

H(n) =
n∑
s=1

1
s
. (5.17)

The spectral equations are(
uj − i

2
uj + i

2

)L∏
k

uj − uk − i
uj − uk + i

= −1, E = λ

8π2

∑
j

1
u2
j + 1

4
. (5.18)

To find the one-point function we just need to substitute the classical expectation
value (2.2) for Z. The derivative D acts on Z as ∂3, and we can use the identity

∂n3
1
r

= (−1)nn!
rn+1 Pn(cos θ) (5.19)

to express the result of differentiation on each site. Here θ is the angle between the radius
vector and the x3 direction, and Pn are Legendre polynomials. The one-point function can
then be written in the overlap form:

〈O(x)〉T =
( 2π√

λ

)L L−
1
2

rL+S
〈Bsl |Ψ〉
〈Ψ |Ψ〉

1
2
, (5.20)

where S = n1 + . . .+ nL and

〈Bsl| = 〈B| ⊗ . . .⊗ 〈B| , (5.21)

with
〈B| =

∞∑
n=0

(−1)nPn(cos θ) 〈n| = 〈0|
∞∑
n=0

(−K)n

n! Pn(cos θ). (5.22)

We posit that this is an integrable boundary state.
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In fact, at θ = 0 this state is just a vacuum descendant. For θ = 0 we have Pn(1) = 1 and

〈B|
∣∣∣∣
θ=0

= 〈0| e−K . (5.23)

The additivity of the exponential then implies

〈Bsl|
∣∣∣∣
θ=0

= 〈0| e−Ktot , (5.24)

where

Ktot =
L∑
l=1

Kl. (5.25)

And Ktot = D†tot.
The special conformal generator annihilates any primary state:

Ktot |Ψprimary〉 = 0. (5.26)

Hence, the one-point function of any conformal primary vanishes on the positive x3 semi-axis:

〈Oprimary(x)〉T
∣∣∣∣
θ=0

= 0, (5.27)

the only exception being the spin-chain vacuum trZL.
The one-point function in general position is not protected by symmetries and in general

does not vanish. We find that it is described by the following determinant formula:

〈O(x)〉T =
( 2π√

λ r

)L (sin θ
r

)S√√√√ 1
L

Q(0)
Q
(
i
2

) detG+

detG− , (5.28)

which applies to any state with paired roots:6 {uj ,−uj}j=1...S2
. The Q-functions are

defined as

Q(x) =
S
2∏
j=1

(
x2 − u2

j

)
, (5.29)

and the Gaudin factors are given by

G±jk = δjk

(
L

u2
j + 1

4
−
∑
s

K+
js

)
+K±jk,

K±jk = − 2
(uj − uk)2 + 1 ∓

2
(uj + uk)2 + 1 . (5.30)

We were lead to this formula by taking inspiration from general results on integrable overlaps
and thoroughly checked the formula on a few dozens of eigenstates. In addition, we checked
that the overlap vanishes for unpaired configurations of Bethe roots. Explicit formulas of

6A root at zero is also allowed and can be included by appropriately modifying the Gaudin factors [55].
For unpaired states the one-point function must vanish.
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this type for the sl(2) spin chain, but for different types of boundary states, have been
presented in [56–58].

The most powerful approach to first-principles derivation of overlap formulas is based
on the algebraic Bethe ansatz [14, 59–61] and is applicable to spin chains with an infinite-
dimensional Hilbert space, such as the sl(2) spin chain at hand. We were informed by
Tamas Gombor that the boundary state (5.21), (5.22) falls into the general category of
integrable boundary states considered in [60] and that the overlap formula (5.28) can be
derived by the algebraic methods presented there.7

For illustration of the overlap representation of the one-point function, consider the
two-magnon states [62]:

|Ψ〉 =

∑
`<`′

[
e ip(`−`′) + e ip(`′−`)+iδ

]
D(`)D(`′) + cos δ2 e

iδ
2
∑
`

D(`)2

 |0〉 . (5.31)

These are Bethe eigenstates with two Bethe roots {u,−u}, where

e ip =
u+ i

2
u− i

2
= e iδ. (5.32)

The following sums appear in the overlap and the norm:

∑
`<`′

[
e ip(`−`′) + e ip(`′−`)+iδ

]
= −L e

iδ
2

(
cos δ2 + cot p2 sin δ2

)
,

∑
`<`′

∣∣∣ e ip(`−`′) + e ip(`′−`)+iδ
∣∣∣2 = L (L− 1− cos δ − cot p sin δ) , (5.33)

where the Bethe equation e ipL+iδ = 1 has been used to simplify the expressions. For the
norm and the overlap we get:

〈Ψ |Ψ〉 = L(L+ 1),

〈Bsl |Ψ〉 = − L
r2 cos p2 e

iδ
2 sin2 θ. (5.34)

Here we also used (5.32). Dropping a phase we then get for the one-point function in (5.20):

〈O(x)〉T =
( 2π√

λ r

)L (sin θ
r

)2 u√
(L+ 1)

(
u2 + 1

4

) . (5.35)

For the state with two roots the Gaudin factors are just numbers:

G+ = L

u2 + 1
4
, G− = L+ 1

u2 + 1
4
, (5.36)

and the determinant representation (5.28) recovers the above result.
7T. Gombor, private communication.

– 24 –



J
H
E
P
0
8
(
2
0
2
3
)
1
8
4

5.3 Gluon subsector

The field tensor Fµν contains two representations of the Lorentz group. The irreducible
components are the self-dual and anti-self-dual projections which can be singled out by
contracting with the ’t Hooft symbols [63]:

η±iµν = ε0iµν ± δ0µδiν ∓ δ0νδiµ. (5.37)

The ’t Hooft symbols satisfy:
η±iµν = ±1

2εµνλρη
±
iλρ, (5.38)

and realize an embedding of su(2)L/R into so(4) = su(2)L ⊕ su(2)R. The index i in η+
iµν is

thus the vector index of su(2)L in its spin-1 representation. In a slight abuse of notation
we use the same notation as for ordinary spatial indices, the latter corresponding to the
diagonal subalgebra in su(2)L ⊕ su(2)R. We hope this will not lead to confusion.

The (anti-)self-dual components of the field strength,

F±i = 1
2 η
±
iµνF

µν , (5.39)

form a closed sector under dilatations, in the sense that operators

O = Ψi1...iL trF±i1 . . . F
±
iL
, (5.40)

mix only among themselves at one loop. Operators of this form appear naturally if the
psu(2, 2|4) spin chain is formulated in the standard Cartan basis with a single fermion node
on the Dynkin diagram, also known as the “Beast” grading [64].

The ground state (or rather the reference state) then is a gluon operator

O0 = tr(F±z )L, (5.41)

where
F±z = F±1 + iF±2 . (5.42)

This operator is not protected and acquires a one-loop anomalous dimension 3λL/8π2 [54, 64].
Excited states are constructed by replacing some of the Fz’s by

F±x = F±3 , Fz̄ = F±1 − iF
±
2 . (5.43)

All of them have lower dimension, the ground state (5.41) has the largest energy possible
for a given length. For example, the length-2 singlets

T ± = tr[F±z F±z̄ + (F±x )2] = trF±i F
±
i , (5.44)

have anomalous dimension zero. These operators are in fact linear combinations of the
Lagrangian density (its gluon part) and that of the topological charge:

T ± = 1
2 trFµνFµν ±

1
2 trFµνF̃µν . (5.45)

They are not renormalized because the beta-function is zero.
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The one-loop mixing matrix of the gluon operators (5.40) is the Hamiltonian of an
SO(3) spin chain [65, 66]:

Γ = λ

16π2

L∑
l=1

(5 + Pl,l+1 − 2Kl,l+1) , (5.46)

where P and K are permutation and trace operators acting on the SO(3) indices of F±il .
The model is integrable [67–69] and its Bethe-ansatz solution [70–72] is given by:

(
uj − i
uj + i

)L∏
k

uj − uk + i

uj − uk − i
= −1, E = λ

8π2

3L−
∑
j

2
u2
j + 1

 . (5.47)

The singlet state (5.44), for example, corresponds to u =
{

1/
√

3 ,−1/
√

3
}
.

The (anti-)self-dual components of the field strength are linear combinations of electric
and magnetic fields F±i = Bi ∓ Ei, and for the field of the monopole we have:

〈
F±i

〉
T

= B

2
xi
r3 . (5.48)

To unambiguously define the one-point functions we need a proper normalization condition
for tensor operators in (5.40). This is to some extent arbitrary, we take:

〈
O+(t,0)O−(0,0)

〉
= 1
t2∆ . (5.49)

Then, taking into account 〈
F+
i (t,0)F−j (0,0)

〉
= λδij
π2t4

, (5.50)

and substituting the classical field (2.1) into the operator we find:

〈O(x)〉T =
(

π

2
√
λ r3

)L
L−

1
2
〈Bgl |Ψ〉
〈Ψ |Ψ〉

1
2
. (5.51)

The boundary state 〈Bgl| is one-site factorizable:

Bgli1...iL = xi1 . . . xiL . (5.52)

It picks one particular component of the wave function where spins on all sites point in the
same direction (that of the radius vector of the operator insertion).

We expect on general grounds that this state is integrable. As such it should have
non-zero overlaps only with balanced Bethe eigenstates in which all roots are paired, and
should have a determinant representation similar to (5.10) and (5.28). We have not proven
integrability in any direct way, nor have we honestly derived the overlap formula, but we
have extensively checked both. We computed numerically overlaps with all eigenstates up
to length nine and checked that they vanish for unbalanced Bethe states. For overlaps with
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paired states u = {uj ,−uj}j=1...M/2 we found a concise determinant formula:8

〈O(x)〉T =
(

π

2
√

2λ

)L zL−M

r3L−M

√√√√ 1
L

Q(0)
Q
(
i
2

) detG+

detG− , (5.53)

where Q(x) is the Baxter polynomial:

Q(x) =
M
2∏
j=1

(
x2 − u2

j

)
, (5.54)

and G± are the Gaudin factors:

G±ij =
(

2L
u2
j + 1

−
∑
s

K+
js

)
δjk +K±jk, (5.55)

K±jk = 2
(uj − uk)2 + 1 ±

2
(uj + uk)2 + 1 . (5.56)

The space-time dependence of the one-point function is very simple, simpler than
required by explicit symmetries alone. Those require the spin-S overlap to be of the form
zSP , where P is a homogeneous polynomial in x ≡ x3 and |z|. For the highest-weight states
the polynomial prefactor neatly combines into (x2 + |z|2)(L−S)/2 = rM . This simplification,
we believe, is also a consequence of integrability.

To exemplify the use of the overlap formula, we consider the two-magnon states
of arbitrary length with Bethe roots at u and −u constrained by the Bethe equations.
The chiral components of the field strength form the canonical basis of the su(2) spin-1
representation:

F±z ←→
√

2 |1〉 , F±x ←→ |0〉 , F±z̄ ←→
√

2 |−1〉 . (5.57)

The spin lowering operator acts as

L−F
±
z = 2F±x , L−F

±
x = −F±z̄ . (5.58)

The two-magnon eigenstate of the Hamiltonian (5.46) can be generated by applying the
lowering operators twice:

|Ψ〉= 1
2

∑
`<`′

[
e ip(`−`′)+ e ip(`′−`)+iδ

]
L−(`)L−(`′)+cos δ2 e

iδ
2
∑
`

L−(`)2

 |0〉 , (5.59)

quite similarly to (5.31), while the phase shift and the momentum of the magnons are now

e ip = u+ i

u− i
, e iδ =

u− i
2

u+ i
2
. (5.60)

8The number of Bethe roots in a balanced state needs not to be even, there are exceptional states
containing a triplet of singular roots at i,−i, 0 [73, 74] and an even number of paired regular roots. These
states are also parity-invariant and have vanishing total momentum thus allowing for non-zero overlaps. The
determinant formula is ill-defined on singular roots and has to be regularized, more details can be found
in [75].
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For two magnons the Gaudin factors are just numbers:

G+ = 2L
u2 + 1 , G− = 2L

u2 + 1 −
1

u2 + 1
4
, (5.61)

which gives the following prediction for the one-point function:

〈O2−magnon(x)〉T =
(

π

2
√

2λ

)L zL−2

r3L−2
u√(

u2 + 1
4

)(
L− 1

2
u2+1
u2+ 1

4

) . (5.62)

The the norm and the overlap can be computed with the help of (5.33). Taking into
account the Bethe equations, we get:

〈Ψ |Ψ〉 = 2LL
(
L− 1

2
u2 + 1
u2 + 1

4

)
, 〈Bgl |Ψ〉 = Lr2zL−2 u√

u2 + 1
4

. (5.63)

Substitution of these expressions into (5.51) recovers (5.62).

6 Conclusions

Our results confirm that an infinite ’t Hooft line in the N = 4 super-Yang-Mills theory defines
an integrable dCFT. Integrability opens an avenue for computing expectation values of
local operators exactly without any approximations. As of now, we found exact expressions
for protected operators by combining localization with S-duality. For unprotected operators
our results are limited to the leading order in perturbation theory and to certain subsectors
of the operator algebra, but they do reveal the integrability structure expected of the
exact answer.

The diagram technique in the monopole field, here applied to protected one-point
functions, can be used for non-protected operators as well, and also to more complicated
correlation functions. For example, it should be relatively straightforward to construct loop
corrections to the overlap formulas we derived.

It is not inconceivable that the full solution can be bootstrapped from integrability. Our
results point to a relative simplicity of the underlying scattering theory. For comparison,
scattering on the D3-D5 defect [13] (used to construct non-perturbative one-point functions
in [13–15]) involves boundary resonances. The boundary states we found have no internal
structure (require no auxiliary space), and we expect the boundary scattering to be free
of bound states. The simplicity of the protected one-point functions (3.22) points in the
same direction. Analogous one-point functions for the D3-D5 system are sums of k terms,
each depending on xa with a = 1 . . . k [76], plus wrapping corrections, where k happens to
coincide with the number of bound states in the boundary scattering [13]. We only found
one term that depends on x1, in this sense the ’t Hooft line should be similar to the D3-D5
dCFT at k = 1 which was studied in more detail in [58].

Finally, similar techniques should be applicable to monopole operators in the ABJM
theory. In three dimensions monopole operators are point-like, but the one-point functions
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similar to those we have studied may still be non-trivial because the monopole operators
and those built from the fundamental fields are not mutually local. We expect integrability
of AdS4/CFT3 to be part of that story.
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A One-point function at strong coupling

When
λ→∞, L− fixed, (A.1)

the correlator of the ’t Hooft loop with a chiral primary is described by classical supergravity
in AdS5 × S5.

The localization prediction (3.19) in this limit becomes

CL ' 2π

√
L

λ
. (A.2)

Here we will reproduce this results from the explicit supergravity calculation.
A macroscopic object in the bulk perturbs the metric of AdS5 × S5 and according to

the standard AdS/CFT dictionary an expectation value of a local operator is the response
to this perturbation as seen from the boundary. The computation of CL thus involves
a bulk-to-boundary propagator connecting the operator insertion to the vertex operator
on the world-volume of the D1-brane that represents the ’t Hooft line. We will use the
method first applied to the fundamental string [32] and generalized to D-branes in [77].
A similar approach can be used to compute the correlator of the ’t Hooft loop with the
Wilson loop [78].

The dual of the circular ’t Hooft loop is a D1-brane of the spherical shape:

xµ = R

cosh τ (sin σ, cosσ, 0, 0) , z = tanh τ, (A.3)

where (z, xµ) are the standard Poincaré coordinates of AdS5 × S5:

ds2 = dx2 + dz2

z2 + dθ2 + sin2 θ dΩ2. (A.4)

The calculation closely follows the footsteps of [32] where the circular Wilson loop was
considered.

The supergravity dual of the chiral operator (3.13) is a scalar with m2 = L(L− 4) and
the canonically normalized propagator:9

〈φL(z, x)φL(w, y)〉SUGRA
w→0= L− 1

2π2
zLwL

[z2 + (x− y)2]L
. (A.5)

9We only need the bulk-to-boundary propagator and hence send one of the points, (w, y), to the boundary.
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The response function is given by the standard AdS/CFT prescription:

〈OL(y)〉 =

√
2π2

L− 1 lim
w→0

w−L 〈φL(w, y)〉SUGRA , (A.6)

assuming there is a source of φL in the bulk.
The source in our case is the D1-brane that couples to the 10D metric through the

usual DBI action:

SDBI = TD1

∫
d2σ

√
det
ab
∂aXM∂bXNgMN . (A.7)

And the field φL resides in the metric perturbation around the ambient AdS5 × S5 back-
ground [79] (see also [80]):

δgmn = 2YL [2∇m∇n − L(L− 1)gmn]φL,
δgαβ = 2L(L+ 1)gαβYLφL,
amnpr = εmnprs(L+ 1)YL∇sφL,
aαβγδ = −(L+ 1)εαβγδε∇εYLφL, (A.8)

where YL is the spherical function on S5. For the operator at hand:10

YL = π

N
√

8L(L− 1)
(sin θ)L e iLϕ. (A.9)

The D1-brane does not couple directly to the four-form and resides at one point on
S5. Therefore only the metric fluctuations in AdS5 contribute to the one-point function.
Expanding the D-brane action to the linear order we find:

〈OL(y)〉T = −TD1
2

∫
d2σ
√
hhab∂aX

M∂bX
NδgMN , (A.10)

where hab is the induced metric on the world-volume. Taking into account (A.8), we get:

〈OL(y)〉T = − π2

(L− 1)
√
λL

∫
d2σ
√
hhab∂aX

m∂bX
n (A.11)

× lim
w→0

w−L 〈[2∇m∇n − L(L− 1)gmn]φL(X)φL(w, y)〉SUGRA ,

where we took into account various factors appearing in (3.12), (A.6) and (A.9), and set
θ = π/2, ϕ = 0 as appropriate for the ’t Hooft line with the R-symmetry orientation
ni = (1,0).

10The scalar fields Φi are in one-to-one correspondence with the Cartesian coordinates ni on S5. The
general chiral primary operator Ci1...iL tr Φi1 . . .ΦiL , defined by a symmetric traceless tensor CA, maps to
the spherical function YA = Ci1...iLA ni1 . . . niL . For trZL the spherical function is (n1 +in2)L = (sin θ)L e iLϕ.
There are two natural ways to normalize the spherical harmonics, one by the tensor squared of CA, the other
by integrating the square of YA over S5. The L-dependent overall factor partly arises from this difference in
normalization [79] and partly from mixing of the KK modes on S5 [81], it also includes the square root of
the 10D gravitational constant κ10 = (2π)5/8N2 appearing as an overall factor in the supergravity action
but absent in the canonically normalized propagator that we use to compute the amplitude.
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It remains to integrate the bulk-to-boundary propagator over the minimal surface (A.3).
The answer anticipated from the conformal symmetry is rather contrived, eq. (2.8), but the
whole dynamical information is contained in the overall constant, which can be computed
by choosing any convenient y, for instance y →∞ [32], as in (2.9). Then,

CL = (L+ 1)
√
L

2RL
√
λ

∫
d2σ
√
h zL−2

[
(∂x)2 − (∂z)2

]
. (A.12)

The solution (A.3) is in the conformal gauge, the induced metric is trivial, and we find:

CL = 2π(L+ 1)
√
L√

λ

∫ ∞
0

dτ
tanhL τ
cosh2 τ

= 2π

√
L

λ
, (A.13)

in agreement with (A.2).
There is another regime of interest:

λ→∞, L→∞, λ

L2 − fixed, (A.14)

the BMN limit [82]. The localization prediction in this case is

CL '
2√
L

sinh πL√
λ
. (A.15)

The operator in the BMN limit is dual to a classical string rather than a supergravity
mode. The form of the answer points to a one-loop origin, since sinh admits a product
representation over n2 + π2L2/λ, which are exactly the BMN string modes [82]. It would
be very interesting to make this argument more precise.

B Clebsch Gordon coefficients

Below we list the Clebsch Gordon coefficients entering the relations (4.52) and (4.53) for
the case of monopole charge, q = 1/2. Their explicit derivation as well as their counterparts
for general value of the monopole charge can be found e.g. in [44]. For the C’s one has

CJJ−1 = 1
2

√
2− 1

J
, CJJ = − 1

2
√
J(J + 1)

, CJJ+1 = −1
2

√
1

J + 1 + 2, (B.1)

and for the A’s one finds

AJ−1J−1 = 1
2J , AJJ = − 1

2J(J + 1) , AJ+1J+1 = − 1
2(J + 1) , (B.2)

AJ−1J = AJJ−1 =
√

(2J − 1)(J + 1)
2J , AJJ+1 = AJ+1J =

√
J(2J + 3)
2J + 2 , (B.3)

AJ−1J+1 = AJ+1J−1 = 0. (B.4)
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C Reduction to AdS2

The connection of monopole quantization to AdS2 can be made very explicit. The R4 in
spherical coordinates is conformally equivalent to AdS2 × S2:

ds2 = r2
(
dτ2 + dr2

r2 + dθ2 + sin2 θ dϕ2
)
. (C.1)

The conformal factor drops out from the action because the scaling symmetry is preserved by
the ’t Hooft loop. Expansion in the monopole harmonics can be viewed as the Kaluza-Klein
reduction on S2:

Φ(x) = 1
r

∑
lm

χlm(τ, r)Y (q)
lm (θ, ϕ), (C.2)

resulting in an infinite tower of fields on AdS2.
Take for example the simple scalar with the kinetic operator

−D2 + B2

4r2 = 1
r

(
− ∂2

∂τ2 −
∂

∂r2 + L2

r2

)
r, (C.3)

where Li is the angular momentum operator in the monopole background. The action for a
given KK mode is then

S = 1
2

∫
dτdr

[
(∂τχ)2 + (∂rχ)2 + l(l + 1)

r2 χ2
]
, (C.4)

where we took into account the r2 from the measure and used the explicit form of the L2

eigenvalues. This is just the canonical action of the scalar field of mass m2 = l(l+1) in AdS2.
The momentum squared plays the role of the mass-squared operator in the reduced theory.

The scalar field in AdS2 is characterized by the dimension of the dual operator in the
effective CFT1 on the ’t Hooft line, which is related to the mass by the standard formula

∆(∆− 1) = m2. (C.5)

The paramater ν defined in (4.72) is related to ∆ by

ν = ∆− 1
2 . (C.6)

For the scalar with m2 = l(l + 1), the dimension is ∆ = l + 1 and ν = l + 1/2.
The propagator of the field χ is just the standard bulk-to-bulk propagator in AdS2:

G∆(τ1, r1; τ2, r2) = Γ(∆)ξ∆

2∆+1√π Γ
(
∆ + 1

2

) 2F1

(∆
2 ,

∆ + 1
2 ; ∆ + 1

2 ; ξ2
)
, (C.7)

where
ξ = 2r1r2

r2
1 + r2

2 + (τ1 − τ2)2 . (C.8)

The natural regularization in AdS2 is covariant point-splitting. For a2 ≡ (τ1 − τ2)2 +
(r1 − r2)2 → 0:

G∆(ξ) ' − 1
2π

(
ln a

2r + γ + Ψ(∆)
)
, (C.9)

which coincides with (4.74) up to unimportant constant terms that encapsulate regularization
ambiguity and should cancel in any properly renormalized (or finite) observable.
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