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1 Introduction

Scattering amplitudes at the loop level are linear combinations of Feynman integrals. These
integrals, in dimensional regularization, obey linear relations — most notably integration
by parts identities [1, 2], Lorentz invariance identities [3] and symmetry relations. Using
these we can reduce a large number of integrals into a much smaller set of linearly inde-
pendent ones called master integrals. This reduction is an essential step of most modern
multi-loop predictions.
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The most successful and widely used integral decomposition method is the Laporta
algorithm [4], which consists in generating and solving a large and sparse system of equations
obeyed by loop integrals. This approach produced extraordinary results and has been a
key ingredient of the bulk of multi-loop predictions in the last two decades, also thanks
to efficient public implementations [5–7]. More recently, this approach has been combined
with finite fields and functional reconstruction techniques [8, 9], where complex algebraic
manipulations are replaced with efficient numerical evaluations over machine-size integers
and analytic results are reconstructed out of several numerical evaluations. This method
— also implemented in both private and public [10–13] programs — significantly pushed
the state of the art of multi-loop integral decomposition and, more generally, multi-loop
theoretical predictions.

Despite its tremendous success, the reduction to master integrals is still a major
bottleneck of higher-order theoretical predictions and it very often determines whether a
multi-loop calculation is doable or not. Moreover, this approach doesn’t make manifest
the vector-space structure obeyed by Feynman integrals. Indeed, since all the Feynman
integrals in a family (i.e. having a common denominator structure) can be decomposed into a
finite [14] basis of master integrals, they can be viewed as the elements of a finite-dimensional
vector space over the field of rational functions of the invariants that describe a process.
In traditional reduction approaches, this property only indirectly comes out of a large
number of linear identities and it is not directly exploited. The search for decomposition
methods that more directly exploit this structure is definitely of interest from a purely
theoretical point of view, as it is going to improve our understanding of Feynman integrals.
From a more pragmatic and phenomenological viewpoint, this improved understanding may
inspire the development of more efficient decomposition methods, opening up a number
of important theoretical and phenomenological studies that are currently beyond our
technical capability.

An approach that has been gaining a lot of interest is the study of Feynman integrals
within the mathematical framework of intersection theory [15–24]. The latter offers a
method for defining rational scalar products, called intersection numbers, in vector spaces
of functions with a suitable integral representation — among which are Feynman integrals.
Using a scalar product, in turn, it is straightforward to project any element of a vector space
into its components with respect to a vector basis. Hence, the problem of decomposing any
Feynman integral into a basis of master integrals is reduced to the problem of computing
scalar products.

This approach, while promising, is currently not competitive with more traditional
decomposition methods. One of the main drawbacks of current approaches to the calculation
of intersection numbers is the appearance of non-rational expressions in intermediate stages
of the calculation. Indeed, intersection numbers are typically computed as sums of residues
of local solutions of differential equations around the poles of some rational functions. These
poles can generally appear at non-rational locations. Because intersection numbers are
rational, all non-rational contributions will eventually combine into a rational expression
after summing over all residues. The handling of non-rational expressions is however a
major algebraic bottleneck. Moreover, their appearance prevents us from using the available
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finite-fields-based techniques and programs in this context, since these apply to algorithms
that are a sequence of rational operations. Finally, since both the inputs and the outputs
of intersection numbers are rational, it would be mathematically and theoretically more
satisfactory to avoid non-rational expressions in all steps of the calculation. A possible
solution to this problem was proposed in [22], where a rational algorithm for computing
intersection numbers was formulated in terms of a sequence of changes of bases, integral
transformations and the application of the global residue theorem. The required changes
of bases and integral transformations are however highly non-trivial and can themselves
become a bottleneck, especially for more complex integrals.

In this paper, we present a new purely rational method for computing intersection
numbers which does not involve any integral transformation or change of basis. The explicit
appearance of irrational poles is sidestepped via the systematic usage of the polynomial
series expansion, or p(z)-adic expansion for brevity, namely the series expansion of rational
functions in powers of a prime polynomial (it is conceptually similar to p-adic numbers,
which are instead series expansions of rational numbers in powers of a prime integer). A
p(z)-adic expansion is effectively equivalent to a local expansion around all the (potentially
irrational) zeroes of a polynomial p(z) at the same time. However, it can simply be computed
in terms of a polynomial division algorithm — which is obviously rational — and does not
require to know the location of the roots of p(z). We thus locally solve the aforementioned
differential equations in terms of p(z)-adic (rather than Laurent) expansions of their solution.
For the final sum over residues we then use a simple generalization of the global residue
theorem that applies to functions with a known p(z)-adic expansion.

We implement the new method over finite fields using the Mathematica package
FiniteFlow and test it on several one- and two-loop examples, finding agreement with
reductions obtained with the Laporta algorithm.

Another drawback of intersection theory, when applied to loop integrals, is the need to
introduce additional analytic regulators that significantly increase the complexity of the
calculation and obfuscate the typical block triangular structure of integral reductions. A
mathematical formalism for dealing with this was proposed in [25, 26]. In this paper we
propose an alternative approach based on a suitable choice of master integrals for the dual
space of Feynman integrals and on performing operations on the coefficients of the leading
terms in an expansion where the additional regulators disappear. This “effectively” removes
any analytic dependence on the regulators in the calculation and provides a number of
major simplifications, besides recovering the aforementioned block-triangular structure.

The paper is structured as follows. In section 2 we give a pedagogical review of
intersection theory and its application to Feynman integrals, setting the notation and the
main concepts used afterwards. Section 3 contains the main result of this paper, namely the
description of a new rational algorithm for computing intersection numbers. In section 4 we
describe our new approach for dealing with analytic regulators. An implementation of our
new method over finite fields is described in section 5. Finally, in section 6 we validate our
results with some examples and in section 7 we draw our conclusions and discuss possible
future developments. We give more details about the p(z)-adic expansion and the global
residue theorem in the appendices.
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2 Intersection numbers of Feynman integrals

In this section we set the notation and review some basic concepts of intersection theory
and its application to the reduction of Feynman integrals into a basis of master integrals.
This overview is meant to be accessible to readers who are not familiar with intersection
theory and we do not attempt to be mathematically rigorous or thorough. For a more
comprehensive treatment of the subject and some of its applications, we refer readers
to [15–32] and references therein.

We are interested in analyzing classes of integrals, such as Feynman integrals, that can
be viewed as elements of a vector space. In particular, we consider n-fold integrals in the
variables z = (z1, . . . zn) of the form1

|ϕR〉 =
∫

dz1 · · · dzn
1

u(z) ϕR(z) (2.1)

and dual integrals
〈ϕL| =

∫
dz1 · · · dzn u(z)ϕL(z). (2.2)

We also refer to these as right and left integrals respectively. In this work, we are not
concerned with studying the dependence on the integration domain, which never varies
and we thus leave it implicit, with our only assumption being that integrands vanish at its
boundary. In the previous equations ϕR and ϕL are rational functions in z while u(z) is a
multivalued function that regulates the singularities of ϕR and ϕL. In particular, in our
applications, u takes the form

u(z) =
∏
j

Bj(z)γj , (2.3)

where Bj(z) are polynomials and γj are generic exponents, i.e. exponents that are not
identically equal to any integer. For Feynman integrals, γj are functions of symbolic
regulators, such as the dimensional regulator. The explicit form of u (or Bj) and the
rational functions ϕR,L depends on the specific problem one is interested in — for our
identifications see subsection 2.2. We study classes of integrals with the same u(z) and
different rational functions ϕL,R, namely Feynman integrals within the same family.

We also assume that these (regulated) integrands vanish at the boundaries of integration.
Hence, we can write integration by parts identities (IBPs) as

n∑
j=1

∫
dz1 · · · dzn ∂zj

(1
u
ξ

(R)
j

)
= 0

n∑
j=1

∫
dz1 · · · dzn ∂zj

(
u ξ

(L)
j

)
= 0 (2.4)

1A more rigorous definition considers the elements |ϕR〉 and 〈ϕL| as equivalence classes of n-forms such
that forms in the same class would yield integrands that differ by total derivatives, as in eqs. (2.5). In this
paper, with an abuse of notation, we identify these with the integrals themselves, since we only compute
linear relations between integrals that can be written as integration by parts identities, i.e. in the form of
eq. (2.5).
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or equivalently,
n∑
j=1

∣∣∣(∂zj − (∂zju)/u
)
ξ

(R)
j

〉
= 0

n∑
j=1

〈(
∂zj + (∂zju)/u

)
ξ

(L)
j

∣∣∣ = 0 (2.5)

for a list of n rational functions ξ(R)
j and ξ(L)

j . By generating and solving a large number of
these identities, one can decompose any integral |ϕR〉 into a basis of linearly independent
integrals

{
|e(R)
j 〉

}ν
j=1

, commonly called master integrals,2 where ν is the (finite) dimension
of the vector space of integrals. One can similarly reduce dual integrals 〈ϕL| into a dual
basis

{
〈e(L)
j |

}ν
j=1

. In this work we are however interested in a more direct method for
achieving such decompositions.

Our main goal is the computation of rational scalar products

〈ϕL|ϕR〉 (2.6)

between left and right integrals. These are referred to as intersection numbers. Intersection
numbers are obviously linear in both ϕL and ϕR and consistent with the identities in
eqs. (2.5).

By calculating these scalar products and combining them, we can project left and right
integrals into master integrals in the same way a vector belonging to a vector space can be
decomposed into a basis via projections. Therefore we express the decomposition of any
integral |ϕR〉 and dual integral 〈ϕL| in their bases as

|ϕR〉 =
ν∑
i=1

c
(R)
i |e

(R)
i 〉

〈ϕL| =
ν∑
i=1

c
(L)
i 〈e

(L)
i | (2.7)

with

c
(R)
i =

ν∑
j=1

(
C−1

)
ij
〈e(L)
j |ϕR〉

c
(L)
i =

ν∑
j=1
〈ϕL|e(R)

j 〉
(
C−1

)
ji
, (2.8)

where we introduced the metric Cij

Cij = 〈e(L)
i |e

(R)
j 〉, (2.9)

that contains the intersection numbers between all the master integrals.
In the following, we will thus focus on methods for computing intersection numbers

and their application to the decomposition of Feynman integrals to master integrals.
2We stress that, in this work, a basis of master integrals is defined to be a set of integrals that is linearly

independent with respect to the set of relations in (2.5). Identities which cannot be written in this form,
such as some symmetry relations satisfied by Feynman integrals, are not taken into account at this stage. In
practical applications, one can easily mod out results by these additional identities after the decomposition
with respect to eqs. (2.5) has been obtained (see e.g. the massive two-loop sunrise example in section 6).
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2.1 Computing intersection numbers

We now review a known method for computing multivariate intersection numbers [17, 18],
which is recursive in the integration variables. We start from the univariate case, which
is the base case of the recursion, and then describe the recursive step, which computes
multivariate intersection numbers of n-fold integrals in terms of intersection numbers of
(n− 1)-fold integrals.

While intersection numbers are rational, the method reviewed in this section generally
involves non-rational intermediate expressions, namely poles of rational functions. In
section 3 we will propose a new method that avoids non-rational expressions in all steps of
the calculation.

Univariate case. For the univariate case, we consider intersection numbers between
1-fold integrals of the form

|ϕR〉 =
∫

dz 1
u(z) ϕR(z)

〈ϕL| =
∫

dz u(z)ϕL(z). (2.10)

Intersection numbers are calculated as a sum of residues

〈ϕL|ϕR〉 =
∑
p∈Pω

Resz=p(ψ ϕR), (2.11)

where the sum is extended over all p ∈ Pω

Pω = { z | z is a pole ofω }
⋃
{∞} (2.12)

and ψ is the local solution around the poles p of the differential equation

(∂z + ω)ψ = ϕL, (2.13)

where
ω ≡ ∂zu

u
. (2.14)

The local solution can be computed as a Laurent expansion around z = p

ψ =
max∑
i=min

ci(z − p)i +O((z − p)max+1), (2.15)

which inserted in eq. (2.13) yields a linear system of equations for the unknown coefficients
ci. The Laurent expansion can be truncated at a finite order that is sufficient for the
purpose of taking the residue in eq. (2.11).

Multivariate case. We now consider n-fold integrals of the form in eqs. (2.1) and (2.2).
We rewrite these as

|ϕR〉 =
∫

dzn |ϕR〉n−1

〈ϕL| =
∫

dzn 〈ϕL|n−1, (2.16)

– 6 –
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where |ϕR〉n−1 and 〈ϕL|n−1 are (n− 1)-fold integrals which have a parametric dependence
on zn. Since this is a recursive method, we assume to be able to compute intersection
numbers of (n− 1)-fold integrals, which we write as

〈ϕL|ϕR〉n−1 (2.17)

and are rational functions of zn. These, in turn, can be used to project any (n−1)-fold right
and left integral into a basis of master integrals

{
|e(R)
j 〉n−1

}ν(n−1)

j=1
and

{
〈e(L)
j |n−1

}ν(n−1)

j=1
respectively,

|ϕR〉n−1 =
ν(n−1)∑
j=1

ϕR,j |e(R)
j 〉n−1

〈ϕL|n−1 =
ν(n−1)∑
j=1

ϕL,j〈e(L)
j |n−1, (2.18)

where the coefficients ϕR,j and ϕL,j are also rational functions of zn.
Intersection numbers of n-fold integrals can be computed as

〈ϕL|ϕR〉 =
∑
p∈PΩ

Reszn=p

∑
j

ψj 〈e(L)
j |ϕR〉n−1

, (2.19)

where ψj are solutions of the system of differential equations

∂znψj +
ν(n−1)∑
k=1

ψk Ωkj = ϕL,j (j = 1, . . . , ν(n−1)), (2.20)

with ϕL,j defined as in eq. (2.18), while the matrix Ωjk is the differential equation matrix
of (n− 1)-fold left master integrals with respect to zn,

∂zn〈e
(L)
j |n−1 =

ν(n−1)∑
k=1

Ωjk 〈e
(L)
k |n−1. (2.21)

In practice, one can take the derivative of the (n− 1)-fold master integrals with respect to
zn under the integral sign and decompose the resulting expression into the same master
integrals to obtain the matrix Ωjk. The sum in eq. (2.19) runs over the poles of the matrix
elements Ωjk

PΩ = { z | z is a pole ofΩ }
⋃
{∞}. (2.22)

On a side note, we observe that eq. (2.19) can be rewritten as

〈ϕL|ϕR〉 =
∑
p∈PΩ

Reszn=p〈ψ|ϕR〉n−1, (2.23)

where 〈ψ|n−1 solves
∂zn〈ψ|n−1 = 〈ϕL|n−1, (2.24)

from which the more practically useful eq. (2.20) is obtained by decomposing both 〈ϕL|n−1
and 〈ψ|n−1 into (n− 1)-fold left master integrals, defining ψj as

〈ψ|n−1 =
ν(n−1)∑
j=1

ψj〈e(L)
j |n−1. (2.25)

– 7 –
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2.2 Application to Feynman integrals

Multiloop Feynman integrals in dimensional regularization are usually written, as a first
step, in momentum representation. After a tensor decomposition, a generic L-loop integral
of a given integral family with E + 1 external momenta p1, . . . , pE+1 (of which only E are
independent because of momentum conservation) takes the form

I[α1, . . . , αn] =
∫ L∏

j=1
ddkj

1
zα1

1 . . . zαn
n
, (2.26)

where z1, . . . , zn are a complete set of denominators of loop propagators and auxiliary
denominators, such that any scalar product of the form ki ·kj or ki ·pj is a linear combination
of the zi. It follows that n = L(L+ 1)/2 + LE. The exponents αj are integers, which can
be positive, negative or zero (negative exponents thus correspond to numerators).

Because of the vanishing of total derivatives in dimensional regularization, we can write
IBP identities [1, 2] ∫ L∏

j=1
ddkj

∂

∂kµi

(
vµ

zα1
1 . . . zαn

n

)
= 0, (2.27)

where vµ = kµi or vµ = pµi . We can exploit these identities, possibly combined with Lorentz
invariance identities [3] and symmetry relations, to perform the decomposition of a given set
of Feynman integrals to master integrals. The most widely used method, i.e. the Laporta
algorithm [4], consists in writing a long list of linear identities of the form of eq. (2.27) (and
similar for Lorentz invariance identities and sometimes symmetries) for different choices of
vµ and αj and combining them into a large and sparse system of linear equations satisfied
by the integrals. The solution of such a system yields the reduction to master integrals
(further modded out by symmetries, if included in the system). As mentioned, solving this
system is one of the main bottlenecks of many higher-order predictions. Moreover, the
vector-space structure obeyed by Feynman integrals is not manifest in this approach.

In order to work in the framework of intersection theory, we need to rewrite eq. (2.26)
into a representation that mimics the one in eq. (2.1). Throughout this work, we use the
Baikov representation [33], which consists in changing the integration variables from loop
momenta kµj to propagators zi. Other representations are also usable in this context, see
e.g. [25, 26, 34]. In the Baikov representation, Feynman integrals read

I[α1, . . . , αn] = K

∫
dz1 . . . dznB(z1, . . . , zn)γ 1

zα1
1 . . . zαn

n
(2.28)

with γ = d−L−E−1
2 . The Baikov polynomial B is the Gram determinant of the loop momenta

and the independent external momenta, expressed as a function of the zi. K is a constant
that does not depend on the integration variables nor the exponents. Feynman integrals in
the Baikov representation also obey IBP identities, that are the vanishing of total derivatives
with respect to the zj .

– 8 –
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Comparing eq. (2.28) to the integrals defined in section 2, we identify the multivalued
function u and the rational functions ϕR,L as

u(z) = B−γ
n∏
j=1

z
ρj

j ϕR,L(z) = 1
zα1

1 . . . zαn
n
, (2.29)

respectively. As in [18], we inserted factors zρj

j in u(z) because ϕR,L can have singularities in
zj = 0 that are generally not regulated by the Baikov polynomial alone, while having them
regulated is a requirement for applying the framework of intersection theory, as we stated
in section 2. Indeed, one can easily check that the differential equations we need to locally
solve to compute intersection numbers have no solution around unregulated singularities.
It is understood that we are interested in the limit ρj → 0 of a decomposition to master
integrals. We will refer to these additional variables ρj as analytic regulators. Analytic
regulators can generally be dropped for auxiliary denominators zi which only appear with
a negative exponent in ϕR,L, if the corresponding poles at infinity are regulated by the
Baikov polynomial (which is usually the case).

The need of analytic regulators is a further complication of the application of intersection
theory to Feynman integrals, since it adds additional parameters into the problem and
obfuscates the typical block triangular structure of integral reduction identities. We will show
in section 4, however, that if we are interested in the decomposition of Feynman integrals,
we can effectively remove the explicit dependence on ρj from the calculation of intersection
numbers, by making a suitable choice of basis for dual integrals and systematically work
in the ρj → 0 limit. An alternative mathematical framework for dual Feynman integrals
which also removes the need of regulators was proposed in [25, 26].

In this paper we identify Feynman integrals in the Baikov representation as right
integrals |ϕR〉 and their duals as left integrals 〈ϕL|. We therefore apply the framework of
intersection theory for computing intersection numbers between Feynman integrals and
their duals. This approach allows to directly decompose an integral into the basis of chosen
master integrals via the projections in (2.7), without resorting to the construction of an IBP
system. For a given integral, this approach implies the necessity to calculate intersection
numbers of n-fold integrals, with n being the number of independent denominators.

3 Intersection numbers via polynomial series expansions

In this section, we present the main result of this paper, namely a new rational method for
computing intersection numbers via the systematic use of polynomial series expansions, or
p(z)-adic expansions for brevity.

As mentioned, one of the main drawbacks of the method described in section 2 is
the appearance of non-rational poles in the calculation of intersection numbers. While
intersection numbers are rational, irrational intermediate expressions represent a bottleneck
in complicated algebraic manipulations and make the usage of efficient techniques based on
finite fields impractical.

Because we always deal with rational integrands, all their (rational and non-rational)
poles are roots of rational polynomial factors of their denominators. In the following, we

– 9 –
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will thus consider each of these polynomial factors, which are prime3 over Q, rather than
individual poles, as the building blocks of our calculation.

3.1 p(z)-adic series expansions

We elaborate on the expansion of any rational function in terms of a polynomial p(z), a
necessary step to calculate intersection numbers with our newly-proposed rational algorithm.

Consider a univariate polynomial p(z) of degree deg p in the variable z that is prime
over the field of rational numbers. We define the p(z)-adic series expansion of a rational
function f(z) as

f(z) =
max∑
i=min

ci(z) pi(z) +O
(
p(z)max+1

)
, (3.1)

where the coefficients ci(z) are polynomials in z over the rational field, whose degree is
lower than the one of p(z)

ci(z) =
deg p−1∑
j=0

cijz
j , cij ∈ Q. (3.2)

The notation O((p(z)k) stands for terms proportional to the k-th power of the polynomial
p(z). If z is such that p(z) = δ, where δ is some small quantity, then we obviously
have O(p(z)k) = O(δk). Hence, the p(z)-adic expansion allows us to consider the limit
p(z)→ 0, without resorting to non-rational operations nor knowing the explicit location of
the (irrational) roots of p(z). In particular we have

f(z)|p(z)=δ = O(δmin), (3.3)

where i = min is the starting order of the expansion. Similarly to Laurent expansions, the
latter can be deduced from polynomial factors of the form p(z)k in f(z), but unlike Laurent
expansions around irrational points, here they can be detected using only operations over
the rational field.

When calculating intersection numbers, we are often required to expand around the
irrational poles of ω or Ω. These irrational poles are the roots of some polynomials p(z)
irreducible over Q. Therefore a p(z)-adic expansion is effectively equivalent to considering
all expansions of a function around all the roots of the polynomial at once, ultimately
avoiding their explicit appearance.

The expansion in (3.1) can be obtained by repeated polynomial divisions modulo p(z)
with remainder, as illustrated in appendix A. As a simpler alternative, we observe that
we can implement the same expansion via a shortcut that avoids repeated polynomial
divisions. We introduce an auxiliary parameter δ and define, for a generic function f(z), its

3We can, in principle, relax the requirement of having prime polynomial factors to the one of having a
list of pairwise co-prime polynomial factors.

– 10 –
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remainder4 modulo p(z)− δ

bf(z)cp(z)−δ ≡ f(z)mod
(
p(z)− δ

)
, (3.4)

that is a polynomial of degree deg p−1 in z and has a rational dependence on the parameter
δ. We highlight that this step amounts to the substitution p(z) = δ and is exact, i.e. we
obtain back the original function by substituting δ → p(z) in the right-hand-side. After
doing this, we series expand for small δ, obtaining

bf(z)cp(z)−δ
∣∣∣∣
δ→0

=
max∑
i=min

deg p−1∑
j=0

cijz
jδi +O(δmax+1), (3.5)

where the coefficients cij are identified with those appearing in the p(z)-adic expansion as
in eqs. (3.1) and (3.2). In this way we obtain the p(z)-adic expansion of a rational function
up to the order O(p(z)max+1).

Polynomial series expansions can be combined with the univariate global residue theorem
(see appendix B) to compute the sum of the residues of a rational function around the poles
of a rational polynomial, with purely rational operations. A polynomial p(z) can always be
factorized over the complex field as

p(z) = lc

deg p∏
k=1

(z − yk), (3.6)

where lc is the leading coefficient, i.e. the coefficient of zdeg p in p(z), and yk are the roots
of p(z). For a generic function f(z) we define

Resp(z)(f(z)) ≡
deg p∑
k=1

Resz=yk
(f(z)), (3.7)

i.e. the sum of the residues of f(z) at the roots of p(z). If f(z) admits the p(z)-adic
expansion in eq. (3.1), then the sum of residues in the previous equation can be computed
without resorting to irrational operations and without explicitly knowing the location of
the roots yk, using the following generalization of the global residue theorem

Resp(z)(f(z)) = c−1,deg p−1
lc

, (3.8)

where the coefficients cij are defined as in eq. (3.2).
We now apply p(z)-adic expansions to the computation of univariate and multivariate

intersection numbers.
4As explained in more detail in appendix A, this also involves computing the multiplicative inverse of the

denominator of f(z) modulo p(z)− δ. Some computer algebra systems have builtin functions for polynomial
reminders that are also applicable to rational functions, such as the PolynomialRemainder function in
Mathematica.
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3.2 Univariate intersection numbers

For the computation of intersection numbers of univariate integrals in the framework of
p(z)-adic expansion, we rewrite eq. (2.11) as

〈ϕL|ϕR〉 =
∑

p(z)∈Pω [z]
〈ϕL|ϕR〉p(z), (3.9)

where the sum runs over all factors p(z) of the denominators of ω

Pω[z] = {factors of the denominator of ω}
⋃
{∞} . (3.10)

The contribution 〈ϕL|ϕR〉∞ is computed exactly as the contribution at p =∞ to eq. (2.11).
Each other addend of the form 〈ϕL|ϕR〉p(z) is instead the sum of all contributions to (2.11)
coming from the roots of p(z).

For each factor p(z), we make an ansatz for the local solution ψ of the differential
equation (2.13) close to all the roots of p(z). This takes the form of a p(z)-adic expansion

ψ =
max∑
i=min

deg p−1∑
j=0

cijz
jp(z)i +O(p(z)max+1). (3.11)

We stress that, even when p(z) has irrational roots, these do not explicitly appear in
eq. (3.11) which, once plugged into eq. (2.13) and p(z)-adic expanded again, yields a linear
system of equations with rational coefficients that is then solved for the unknowns cij .

The solution for ψ is then multiplied by ϕR and the product is again p(z)-adic expanded
with respect to p(z). We obtain

ψ ϕR =
∑
i

deg p−1∑
j=0

c̃ijz
jp(z)i +O(p(z)0) (3.12)

and apply the univariate global residue theorem as in eq. (3.8)

〈ϕL|ϕR〉p(z) = c̃−1,deg p−1
lc

, (3.13)

where lc is the leading coefficient of p(z). As we stated, this is the sum of the contributions
to the intersection number between 〈ϕL|ϕR〉 given by all the roots of p(z).

3.3 Multivariate intersection numbers

The generalization to the multivariate case is straightforward. In this subsection we let
z ≡ zn. We rewrite eq. (2.19) as

〈ϕL|ϕR〉 =
∑

p(z)∈PΩ[z]
〈ϕL|ϕR〉p(z), (3.14)

where the sum is over the factors p(z) of the denominators of Ω.

PΩ[z] = {factors of the denominator of Ωij}
⋃
{∞} . (3.15)
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As before, the contribution 〈ϕL|ϕR〉∞ is computed exactly as the contribution at p =∞ to
eq. (2.19). Each other addend of the form 〈ϕL|ϕR〉p(z) is instead the sum of all contributions
to (2.19) coming from the roots of p(z).

We make an ansatz for the local solutions ψi to the differential equation (2.20) around
all the roots of p(z) that, as in the univariate case, take the form of p(z)-adic expansions

ψi =
max∑
j=min

deg p−1∑
k=0

cijkz
kp(z)j +O(p(z)max+1) (i = 1, . . . , νn−1). (3.16)

Eq. (2.20) thus yields a linear system that we solve for the unknowns cijk.
We then take the scalar product of ψj and 〈e(L)

j |ϕR〉n−1 and p(z)-adic expand with
respect to p(z). We obtain

ν(n−1)∑
i=1

ψi 〈e(L)
i |ϕR〉n−1 =

∑
j

deg p−1∑
k=0

c̃jkz
kp(z)j +O(p(z)0). (3.17)

The contribution of the roots of p(z) to the intersection number 〈ϕL|ϕR〉 is again given by

〈ϕL|ϕR〉p(z) = c̃−1,deg p−1
lc

. (3.18)

4 Dual integrals and analytic regulators

As explained in subsection 2.2, one of the drawbacks of the application of intersection theory
to Feynman integrals is the need of introducing analytic regulators ρj for each integration
variable zi that may appear as a denominator for ϕR or ϕL. However, since we are interested
in computing intersection numbers for the purpose of reducing Feynman integrals ϕR to
master integrals, we can exploit the freedom of choice for the dual basis to simplify our
problem. Indeed, while intersection numbers obviously depend on the dual integrals, the
coefficients of the decomposition of a Feynman integral |ϕR〉 are independent of the choice
of dual bases. In this section we discuss a simple strategy that “effectively” removes
the explicit dependence on analytic regulators from the calculation, without substantially
changing the algorithm for computing intersection numbers. An alternative mathematical
formalism for choosing dual integrals and dealing with this issue was presented in [25, 26].
A comparison between the two approaches, as well as an in-depth study of all implications
and possible limitations of our new approach, is outside the scope of this work and is left to
future investigations.

4.1 Choice of dual integrals

Our approach simply consists in choosing dual integrals of the form

ϕL(z) = ρ
Θ(α1− 1

2 )
1 · · · ρΘ(αn− 1

2 )
n

1
zα1

1 . . . zαn
n

(4.1)

and systematically work in the ρj → 0 limit. In other words, we multiply each factor
z
−αj

j by the analytic regulator ρj if (and only if) αj > 0, i.e. when zj appears in the
denominator of ϕL. Then, each step in the algorithm is worked out by keeping only the
leading contributions in the ρj → 0 limit.
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One can easily see that the dependence on ρj of intersection numbers only appears at
the j-th level of the recursion. On the other hand, intersection numbers of j-fold integrals
are systematically computed in the ρj → 0 limit, which is finite when we use left integrands
of the form (4.1).5 Hence, we only have to consider one regulator at a time, namely ρj (and
only ρj) at the j-th step of the recursion.

Consider a generic integration variable z = zj and the corresponding regulator ρ = ρj .
When solving eq. (2.13) for ψ, for each order of the Laurent or p(z)-adic series expansion
in z of the equation, we only consider the leading term in a ρ → 0 expansion (similar
statements hold for ψj solving eq. (2.20)). Since we systematically work on the leading
coefficients of a ρ→ 0 expansion and obtain finite intersection numbers after each step of
the recursion, the calculation is effectively as simple as one without any dependence on ρ —
or even simpler in most cases.

For a more detailed discussion, we distinguish the two cases of exponents α ≤ 0 and
exponents α > 0 inside ϕL ∼ z−α. If α ≤ 0, then ϕL has no singularity in z = 0 hence we
do not expect to need an analytic regulator at all and one may set ρ = 0 before solving for
ψ. If instead α > 0, since poles in z = 0 are generally not regulated by ω, eq. (2.13) has no
solution unless we add an analytic regulator. The solution for ψ, in turn, develops a pole in
ρ = 0, which cancels against the prefactor ρ we add according to the prescription in (4.1),
yielding a finite solution for ψ in the ρ→ 0 limit. We observe that, therefore, for α > 0 the
solution for ψ is only non-zero (in the ρ→ 0 limit) around poles at z = 0 and possibly at
z =∞, hence we can skip the calculation at all other poles or denominator factors.

This strategy has a number of advantages.

• The calculation is effectively independent of ρj since we are directly working on the
leading coefficients of expansion around ρj → 0. The full dependence on ρj is never
considered and, when we implement the algorithm over finite fields, we do not sample
over or reconstruct the ρj dependence.

• Intermediate analytic expressions (if reconstructed) are dramatically simpler.

• The matrix of intersection numbers 〈ϕL|ϕR〉 for a list of ϕL and ϕR, as well as the
matrices Cij and Ωij have a block triangular structure, similar to what we expect
from integral decompositions in traditional approaches, where blocks correspond to
so-called sectors. In particular, 〈ϕL|ϕR〉 6= 0 only if the set of indexes k such that
αk > 0 for the integrand ϕL is either the same set or a subset of the one for ϕR —
in the language of Feynman integrals, we say that ϕL belongs to a sector that is a
subsector of ϕR. The same structure appears in the matrices Cij and Ωij (examples
are given in section 6). We note that this structure is transposed to the one that is
observed in the reduction or differential equations for (right) Feynman integrals |ϕR〉.

5This is true if at most single poles in each regulator ρj appear when solving the differential equations
required for computing intersection numbers. This can be easily proved to be true in the univariate case. In
the multivariate case, we empirically find it to be true in all the examples we computed, but exceptions may
exists and may be investigated in future works.
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• A large set of intersection numbers and contributions of poles to intersection numbers
vanishes, for the reasons illustrated above.

• At intermediate steps of the recursive algorithm, sometimes there are fewer master
integrals with respect to the case where the full ρ dependence is considered.

4.2 Subtleties of analytic regulators

A few subtleties need to be discussed. The system of equations for the coefficients of
the expansion of ψ in z can sometimes be underdetermined, regardless of the sign of the
exponent α of z. In this case, we add more constraints coming from higher-order terms in
the ρ → 0 expansion of the equations. This can also happen when α ≤ 0 — in this case
a regulator is temporarily added — as well as for contributions to intersection numbers
from denominator factors p(z) 6= z,∞ (see eq. (3.14) and (3.15)) where we can regulate the
system with the prescription

ω → ω + ρp
∂z p(z)
p(z) or Ωij → Ωij + ρp

∂z p(z)
p(z) δij . (4.2)

Even in such cases, we still solve the equation for the coefficients of ψ in the ρp → 0 limit,
keeping higher-order terms in such limit only as necessary. In most cases the additional
constraints simply amount to setting to zero the previously undetermined coefficients, hence
the next-to-leading equations in the ρ → 0 (or ρp → 0) expansion can almost always be
dropped after a numerical check.

Another subtlety is that, even if a variable z is not a factor of the Baikov polynomial,
it is still possible that Ω may have z as a denominator factor at the corresponding step of
the recursion. This, in turn, might regulate the singularity at z → 0 for at least some of the
integrals ϕL, without the need of the corresponding analytic regulator ρ. In such cases ψ
does not develop the singularity 1/ρ that cancels the ρ prefactor in eq. (4.1) and therefore
we obtain ψ = 0 for all poles — which for the purpose of computing intersection numbers
is equivalent to setting 〈ϕL| = 0. While in principle we may remove the ρ prefactor from
eq. (4.1) when this happens, in all our tests this was not needed. Indeed, even in such cases
we have always found enough integrals of the form in (4.1) to obtain a complete basis of
dual integrals in the ρ→ 0 limit.

As a final remark, our approach is only meant to deal with singularities at z = 0 or
underdetermined systems for expansions around arbitrary factors p(z). In cases where a
system with no solution appears for a p(z) 6= z,∞, both this approach and the traditional
one that considers the full dependence of intersection numbers on the analytic regulators
in (2.29) are problematic and deserve further investigation. In principle the prescription
in (4.2) may fix the singular point, but the solution for ψ generally develops a singularity in
ρp = 0 which only cancels after the intersection numbers are combined into a decomposition
as in eq. (2.8). It is possible that a generalization of the strategy proposed here — namely
multiplying the offending integrands by ρp and systematically work in the ρp → 0 limit
after applying eq. (4.2) — may also simplify the calculation in these cases.
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5 Implementation over finite-fields

One of the main motivations for developing a rational algorithm for intersection numbers,
besides avoiding algebraic difficulties in handling non-rational roots, is the possibility of
implementing it over finite fields. Finite fields are numerical fields with a finite number of
elements. In the context of scattering amplitudes, the most common choice is the field of
integers modulo a prime number, namely Zp = {0, . . . , p− 1} with p a prime. In Zp we
can perform efficient numerical evaluations using machine-size integers (for primes p < 264)
which are also exact, i.e. not affected by numerical inaccuracies. We can implement over
Zp any algorithm that is rational, i.e. a sequence of rational arithmetic operations. Out
of these numerical evaluations, we can thus use rational reconstruction techniques to infer
full analytic results as rational functions of the free parameters of the problem (see e.g.
[8–10, 12] for more details).

In this section we describe a proof-of-concept implementation of our new algorithm over
finite fields that uses the Mathematica package FiniteFlow [12]. This package offers
the possibility of building new algorithms by combining core algorithms in computational
graphs (dataflow graphs) from a high-level interface and reconstruct analytic results out of
numerical evaluations.

We give an overview of how our implementation of multivariate intersection numbers
works. At first, for simplicity, we will assume to know in advance a basis of master integrals
and dual master integrals for all levels of the recursive algorithm. We will then address this
point more thoroughly in subsection 5.4.

5.1 Setting up the recursive calculation

Before doing any explicit calculation, we make a list of intersection numbers we need to
compute at each step of the recursive algorithm. Our starting point is a list of n-variate
intersection numbers we wish to compute. This will typically include all the intersection
numbers needed for the decomposition of a selection of integrals |ϕR〉 via eqs. (2.7) and (2.8),
namely 〈e(L)

j |ϕR〉 and the ones appearing in the metric Cij = 〈e(L)
i |e

(R)
j 〉, for a basis{

|e(R)
j 〉

}ν
j=1

and a dual basis
{
〈e(L)
j |

}ν
j=1

— but we consider a generic list of n-variate
intersection numbers 〈ϕL|ϕR〉 for the sake of generality. From these, by reviewing the
algorithm in subsection 2.1, we can easily make a list of (n− 1)-variate intersection numbers
which are required as input for the recursive algorithm. More precisely, if

{
|e(R)
j 〉n−1

}ν(n−1)

j=1

and
{
〈e(L)
j |n−1

}ν(n−1)

j=1
are the chosen bases for right and left (n−1)-fold integrals respectively,

the calculation of the n-variate intersection numbers in the list requires the following (n−1)-
variate intersection numbers

• the matrix elements of the (n− 1)-variate metric 〈e(L)
i |e

(R)
j 〉n−1

• 〈ϕL|e(R)
j 〉n−1 for the decomposition of 〈ϕL| needed in the differential equation (2.20)

• 〈d(L)
i |e

(R)
j 〉n−1 with 〈d(L)

i |n−1 ≡ ∂zn〈e
(L)
i |n−1 needed for computing the matrix elements

Ωij defined in eq. (2.21)

• 〈e(L)
j |ϕR〉n−1 appearing in eq. (2.19).

– 16 –



J
H
E
P
0
8
(
2
0
2
3
)
1
7
5

This makes up a new list of required (n − 1)-variate intersection numbers. We proceed
recursively, by applying the same analysis to this new list, obtaining all the required
(n− 2)-variate intersection numbers, until we reach the univariate case.

Using this method, we easily generate a list of required intersection numbers for each
step of the recursive algorithm, before any explicit calculation is done. We can thus proceed
with the implementation of the algorithm described in section 3, starting from univariate
intersection numbers and moving up until the n-variate case.

5.2 Laurent and p(z)-adic expansions

In this subsection, we describe how we implement Laurent and p(z)-adic expansions over
finite fields, which are extensively used in all steps of the recursion. While FiniteFlow
already has algorithms for reconstructing Laurent expansions, we find it is more convenient
to adopt a different method that uses the sparse linear solvers implemented in the package.

The starting point is a rational function f(z) for which we want to compute the series
expansion, which we write as

f(z) = n(z)
d(z) =

∑
j nj z

j∑
j djz

j
(5.1)

and for which we have reconstructed the full dependence on z, while the coefficients nj and
dj are generally just known numerically, i.e. they can be evaluated via a rational algorithm.

A Laurent expansion for f(z) around z = 0 can be easily obtained by making an ansatz
for it

f(z) =
max∑
j=min

cj z
j +O(zmax +1), (5.2)

where min is easily determined from the lowest-degree non-vanishing terms in the denomi-
nator and numerator of f , while max is the order at which the expansion is needed. We
thus plug eq. (5.2) into the relation

f(z) d(z)− n(z) = 0, (5.3)

truncated at the suitable order determined by max, and impose that the coefficient of all
terms proportional to zk in the previous equation must vanish. This gives a linear system of
equations for the coefficients ci in eq. (5.2). It is easy to see that this system is triangular,
hence equivalent to a list of substitutions. Expansions around z = ∞ can be obtained
similarly, by considering instead the function

g(δ) = − 1
δ2 f

(1
δ

)
(5.4)

where the prefactor −1/δ2 is the Jacobian of the transformation. Hence we expand g(δ) for
δ → 0, using the same method illustrated above. Note that the coefficients in the numerator
and the denominator of g coincide with the ones for f , except that they multiply different
monomials, hence there’s no need of shifting variables in this case.
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The calculation of p(z)-adic expansions is instead done in two steps. Let p(z) be the
polynomial with respect to which we want to expand our functions

p(z) =
deg p∑
k=0

ak z
k. (5.5)

In the first step we compute
zk mod

(
p(z)− δ

)
(5.6)

for all needed values of the exponent k. This is done by writing a linear system of equations
of the form

deg p∑
k=0

ak z
k+α δβ − δβ+1 = 0, (5.7)

for integers α and β, where the unknowns are monomials zkδj . We solve these linear relations
for the monomials, expressing monomials with higher powers in z as linear combinations
of monomials with lower powers in z (and higher powers in δ). This yields the p(z)-adic
expansion of every monomial we need, that takes the form

zk =
∑
j

deg p−1∑
l=0

bkjlz
l δj . (5.8)

We stress that this expansion is exact, i.e. it will produce an exact identity after substituting
δ → p(z), although in practice it can also be truncated to the needed order in δ. We also
notice that the system is triangular, hence equivalent to a sequence of linear substitutions.
In the second step, we proceed similarly to the expansion around z = 0, by making an
ansatz for the p(z)-adic expansion of f

f(z) =
max∑
j=min

deg p−1∑
k=0

cjkz
k δj +O(δmax +1), (5.9)

where we have set p(z) = δ for convenience. The minimum order can be inferred by the
order of the expansion of the denominator d(z), which in turn can be easily derived by
substituting eq. (5.8) into its expression. We thus substitute this expansion into eq. (5.3),
perform the substitutions in (5.8) and impose that all the coefficients of terms zk δj of the
(appropriately truncated) expansion of (5.8) vanish. This yields a linear system of equations
for the coefficients cjk. Notice that, in the special case where p(z) is linear, eq. (5.8) is
equivalent to a shift of variables and the second step becomes identical to the expansion
around zero discussed above.

We observe that we typically need to expand several rational functions having the
same denominator. As a shortcut, we expand a generic numerator where the coefficients
nj are symbolic. In practice, we treat nj as additional unknowns in our linear system, so
that the solution for the coefficients of the expansion will be a linear combination of the
coefficients nj . Moreover, for expansions around z = 0 and z =∞, we remove factors of z
in the denominator by allowing the numerator n(z) to contain terms with negative powers
of z. This allows us to combine the expansion of a larger set of functions together.
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5.3 Polynomial factors and multivariate intersection numbers

We now describe the most important step of the implementation, namely the recursive
step in the calculation of multivariate intersection numbers. Both the univariate and the
multivariate algorithm illustrated in section 3 consist in the computation of Laurent or
p(z)-adic expansions which are then plugged into eq. (2.13) to set up linear systems for
the coefficients of ψ, which are ultimately used to take the sum of residues contributing
to the intersection numbers. All of these are clearly combinations of rational operations.
The non-trivial part, that we discuss in the following, is how to generate the input for each
step of the recursion without reconstructing (potentially large) intermediate results of the
previous steps.

For the univariate case, the input is just the analytic expression for u(z), or equivalently
the polynomials Bj(z) and the generic exponents γj .

For the multivariate case, we start from a numerical implementation of the required list
of all (n− 1)-variate intersection numbers. These, via straightforward algebraic operations,
are combined to obtain the following quantities

• the matrix elements Ωij defined in eq. (2.21)

• the coefficients ϕL,j of the decomposition into left master integrals of 〈ϕL|n−1 needed
in the differential equation (2.20)

• the intersection numbers 〈e(L)
j |ϕR〉n−1 appearing in eq. (2.19).

In the following we call the union of these three lists of quantities Xn, which we are thus
able to evaluate numerically (over finite fields) as a function of zn and the other parameters
it depends on, including other integration variables zk with k > n. It is easy to see that Xn
is the input required for the computation of n-variate intersection numbers via the recursive
algorithm we illustrated in this paper. More precisely, we need to know the dependence
on zn of each function f ∈ Xn. Moreover, we would like to have the list of factors p(zn)
appearing in eq. (3.15). In general, we want to avoid to compute the polynomial factors
p(zn) of the denominators of Xn every time we evaluate intersection numbers. Knowing the
full analytic dependence of the factors p(zn) (not just on zn but on every other parameter)
avoids the need to perform polynomial factorization at each numerical evaluation and also
allows to significantly simplify the reconstruction in zn. Moreover, as we will now see, the
reconstruction of the full analytic dependence of p(zn) is generally very simple and can be
performed in a relatively small number of numerical evaluations.

In order to set up the recursion in our numerical implementation, we follow these
three steps

1. We first reconstruct every f ∈ Xn in the variable zn modulo a prime number p, while
every other parameter is set to a random numerical value. We thus factorize the
denominators of the reconstructed functions, modulo p, to obtain a semi-numerical
list of factors p(zn).

2. We proceed to reconstruct the full analytic dependence of the denominator factors
p(zn). We first identify a “simple” subset Sn of Xn such that i) the union of the
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zn-dependent denominator factors in Sn coincides with the one in Xn and ii) the
degrees of numerators and denominators of the functions in Sn are as low as possible.
The subset Sn is easily identified from the zn reconstruction of point 1. We thus
proceed to reconstruct the zn-dependent denominator factors in Sn as follows. For
each f ∈ Sn, we make an ansatz of its dependence on zn of the form

f(zn) = n(zn)
d(zn) =

∑
j nj z

j
n∑

j dj z
j
n

(5.10)

which, again, is easily built from the result of point 1. We stress that the coefficients
nj and dj will have a rational dependence on other parameters, that is implicit in
the previous equation. We also fix the arbitrary normalization of numerator and
denominator by setting the lowest degree coefficient of the denominator to be equal to
one, i.e. dmin(j) = 1. This choice also has the effect of moving any factor of f that does
not depend on zn into the numerator coefficients nj , hence keeping the coefficients dj
very simple. We can thus write the previous equation as∑

j

nj z
j
n −

∑
j

dj z
j
n f(zn) = 0, (5.11)

which evaluated for several values of zn yields a linear system that we solve for nj and
dj . From numerical solutions of this linear systems, obtained with different values
of the parameters they depend on, we reconstruct the full analytic dependence of
the denominator coefficients dj only. Given their relative simplicity, this usually
requires a small number of evaluations and the reconstruction is thus quite efficient.
By factorizing the full analytic form of these denominators in a computer algebra
system, we obtain the full list of factors defined in eq. (3.15).

3. By combining the results obtained in steps 1 and 2 we can easily map each denom-
inator factor (or each suitable product of factors) appearing in the semi-numerical
reconstruction of point 1 into its fully analytic counterpart reconstructed in step 2.
This allows us to make an ansatz for each f ∈ Xn of the form

f(zn) =
∑

α1,...,αm,k

cα1,...,αm,k
zkn∏m

j=1 pj(zn)αj
, (5.12)

where the unknown coefficients cα1,...,αm,k are independent of zn. By evaluating Xn
for several values of zn we obtain a linear system of equations that we solve for the
unknown coefficients. This list of numerically-evaluated coefficients, together with
the functional form in zn given by the ansatz, are used as input for the calculation of
n-variate intersection numbers, which proceeds following subsection 3.3.

5.4 Master integrals

In each step of the recursive algorithm, we need to select a basis and a dual basis of master
integrals, which for simplicity was assumed to be known in advance in the discussion above.
In ref. [34] it is shown that the number of master integrals can be found as the number
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of solutions of a system of rational equations. As observed in [18] the same number can
also be computed as the dimension of a polynomial ideal, which in turn can be found via
rational operations. A guess for the list of master integrals can be made from the list of
independent monomials in such ideal, see e.g. ref.s [22, 32] for more details.

As an alternative, we can also find bases of master integrals with a more pragmatic
approach that is based on the computation of intersection numbers. We may start from
a list of integrals which form overcomplete bases (i.e. a set of spanning vectors that is
not minimal)

ẼR =
{
|ẽ(R)
j 〉

}
, ẼL =

{
〈ẽ(L)
j |

}
(5.13)

and compute an “enlarged metric” C̃

C̃ij = 〈ẽ(L)
i |ẽ

(R)
j 〉 (5.14)

which is obviously not invertible since the basis is overcomplete. We then column reduce
the matrix (or better, a numerical evaluation of it over finite fields) to find a minimal list of
independent columns, which corresponds to a basis of independent dual integrals

EL =
{
〈e(L)
j |

}
j

=
{
〈ẽ(L)
j |

}
j∈indep. columns

⊂ ẼL. (5.15)

The independent columns can thus be row-reduced and the linearly independent rows
correspond to a basis of master integrals

ER =
{
|e(R)
j 〉

}
j

=
{
|ẽ(R)
j 〉

}
j∈indep. rows

⊂ ẼR. (5.16)

In each step of the recursive algorithm, this strategy is used to find a basis ER and a dual
basis EL of master integrals.

6 Examples

We present some one- and two-loop examples of reduction to master integrals that use the
new rational algorithm presented in this paper. All the examples we showcase also use
our new prescription of section 4 for dealing with analytic regulators. The two methods
are however independent of each other and our new rational algorithm has also been
extensively tested on several examples retaining the full dependence on analytic regulators
(see also [32]).

In the following subsections we report some of the decompositions we obtained and the
bases of master integrals we used, including the ones for intermediate layers of integration.
We also include, in some cases, the reconstructed metric of intersection numbers between
master integrals. We stress that one never needs to analytically reconstruct the metric when
performing a reduction and we report it in some examples for the sole purpose of showing
their simplicity and block triangular structure, a feature that is absent when keeping the
full dependence on analytic regulators.

In the following, we use the notation in eq. (2.26) to identify Feynman integrals |ϕR〉.
As in the previous sections, the integration variables are z1, . . . , zn and in the recursive

– 21 –



J
H
E
P
0
8
(
2
0
2
3
)
1
7
5

Figure 1. One-loop massless box.

algorithm we choose the ordering of integration where z1 is the innermost integration
variable and zn the outermost one. Even if we do not explicitly write it, to avoid cluttering
the notation, we understand that all dual integrals 〈ϕL| are multiplied by analytic regulators
according to the prescription in section 4. In other words, the replacement

1
zα1

1 . . . zαn
n
→ ρ

Θ(α1− 1
2 )

1 · · · ρΘ(αn− 1
2 )

n
1

zα1
1 . . . zαn

n
(6.1)

is understood for all the integrands of left integrals (i.e. dual integrals). For all families we
produced reductions for a wide selection of integrals with various combinations of positive
and negative powers of denominators. All of these have been successfully checked against
the decomposition obtained using the traditional Laporta algorithm. A small selection
among the simplest ones is quoted for illustration purposes.

6.1 One-loop families

At one-loop, we consider the integral families of the massless box (figure 1) and the one-loop
box with two off-shell external legs — also known as two-mass hard box (figure 2). We
compute the reduction of several integrals belonging to these two families.

Massless box. We consider the family of one-loop massless box with four external legs
p1, . . . , p4 satisfying

p2
i = 0 (i = 1, . . . , 4), (6.2)

and momentum conservation
p1 + p2 + p3 + p4 = 0. (6.3)

The integrals in this family depend on two Mandelstam invariants

s = (p1 + p2)2,

t = (p1 + p3)2. (6.4)

The loop propagators zi are

z1 = k2
1, z2 = (k1 − p1)2,

z3 = (k1 − p1 − p2)2, z4 = (k1 − p1 − p2 − p3)2 (6.5)
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and yield the Baikov polynomial

B = 1
16
(
s4 + 2s3t− 2s3z1 + 2s3z2 − 2s3z3 + 2s3z4 + s2t2 − 4s2tz1 + 2s2tz2

− 4s2tz3 + 2s2tz4 + s2z2
1 + s2z2

2 + s2z2
3 + s2z2

4 − 2s2z1z2 + 2s2z1z3

− 2s2z2z3 − 2s2z1z4 + 2s2z2z4 − 2s2z3z4 − 2st2z1 − 2st2z3 + 2stz2
1

+ 2stz2
3 − 2stz1z2 − 2stz2z3 − 2stz1z4 + 4stz2z4 − 2stz3z4 + t2z2

1

+ t2z2
3 − 2t2z1z3

)
. (6.6)

We start with the one-fold integral in z1. The input for univariate intersection numbers is
the Baikov polynomial and its exponent γ = 1/2(d− 5). The bases for both left and right
integrals are given by {

e
(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1
, 1
}
, (6.7)

where, as stated above, for left integrals the replacement in eq. (6.1) is understood. The
metric obtained by calculating the univariate intersection numbers between the first-layer
master integrals is

C =
(

1 0
− s2+s(t+z2−z3+z4)+tz3

(d−6)(s+t) −4(d−5)st(sz3+tz3+(z2−z3)(z3−z4))
(d−6)(d−4)(s+t)2

)
. (6.8)

Using one-fold intersection numbers, we are able to reduce the one-fold integrals in z1
to master integrals and compute the differential equation matrix w.r.t. z2, defined as in
eq. (2.21), which reads

Ω =

 − (d−5)s(s2+s(t+z2−z3+z4)−t(z3−2z4))
p2(z) 0

z4(s(s+t−z2)+tz3)+z3(s(s+t+z2)−z3(s+t))+sz2
4

2(s+t)p1(z) − (d−6)(z3−z4)
2p1(z)

 , (6.9)

where the two z2-dependent polynomial factors in the denominators are

p1(z) = z3(s+ t− z3 + z4) + z2(z3 − z4),
p2(z) = s2z2

2 + 2sz2(s2 + st− sz3 + sz4 − tz3 + 2tz4) + (s2 + st− sz3 + sz4 − tz3)2.

(6.10)
We notice that both the metric and Ωij present a triangular structure. This is a general
feature of our approach for dealing with analytic regulators. We also observe that p2 is
quadratic in z2, as well as in the other variables zi it depends on. Hence, even in this simple
example, Ωij has non-rational poles. After calculating the relevant univariate intersection
numbers, we move to the second integration variable, z2, and we compute the needed
bivariate intersection numbers. The bases for both left and right integrals for the second
layer are given by {

e
(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2

,
1
z1
,

1
z2

}
. (6.11)

The metric of bivariate intersection numbers reads

C =


1 0 0

s2+s(t−z3+z4)−t(z3−2z4)
(d−6)s −4(d−5)tz4(s+t)(s−z3+z4)

(d−6)(d−4)s2 0
− s2+s(t−z3+z4)+tz3

(d−6)(s+t) 0 −4(d−5)stz3(s+t−z3+z4)
(d−6)(d−4)(s+t)2

 . (6.12)
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For the third integration variable z3, the bases for both left and right integrals are{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2z3

,
1
z1z3

,
1
z2

}
(6.13)

and the metric is

C =


1 0 0

s2+s(t+z4)+2tz4
(d−6)s −4(d−5)tz4(s+t)(s+z4)

(d−6)(d−4)s2 0
s(s+t+z4)2

(d−7)(d−6)(s+t) 0 st(s+t+z4)4

4(d−7)(d−3)(s+t)2

 . (6.14)

We finally move on to the fourth and last integration variable, z4. The left and right bases
for this integral family are{

e
(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2z3z4

,
1
z1z3

,
1
z2z4

}
, (6.15)

corresponding to one box and two bubbles. This last step produces the following metric

C =


1 0 0

s(s+t)
(d−7)(d−6) −

s2t(s+t)
4(d−7)(d−3) 0

s(s+t)
(d−7)(d−6) 0 st(s+t)2

4(d−7)(d−3)

 . (6.16)

An example of a simple reduction identity is

I[1, 2, 1, 2] =− 4(d− 8)(d− 5)(d− 3)
(d− 6)s2(s+ t)2 I[1, 0, 1, 0]

− 8(d− 5)(d− 3)
(d− 6)s(s+ t)3 I[0, 1, 0, 1]

+ (d− 5)((d− 6)s+ 2t)
s(s+ t)2 I[1, 1, 1, 1]. (6.17)

For testing purposes, we also repeated this calculation (and several others) without using
the method of analytic regulators described in section 4 and retaining the full dependence
on the regulators, which we set to be equal to each other, i.e. ρj = ρ for all j = 1, . . . , 4.
In this case the metric Cij and the matrix Ωij are dense and their entries significantly
more complicated. Moreover, at the third layer of integration we have four master integrals
instead of just three. These features are not particular to these example and display some
of the general advantages of the strategy illustrated in section 4.

Two-mass hard box. We consider the family of the one-loop massless box with two
adjacent massive external legs p3 and p4, with p2

3 6= p2
4. This is known in the literature as

two-mass hard box. The external momenta p1, . . . , p4 satisfy

p2
1 = 0, p2

2 = 0,
p2

3 6= 0, p2
4 6= 0,

p2
3 6= p2

4, (6.18)
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Figure 2. One-loop two-mass hard box.

and momentum conservation
p1 + p2 + p3 + p4 = 0. (6.19)

The integrals belonging to this family depend on the external masses p2
3 and p2

4 and the
following additional independent invariants

s = (p1 + p2)2, (6.20)
t = (p1 + p3)2. (6.21)

The denominators zi are defined as in eq. (6.5) (but note that now p2
3 6= 0 and p2

4 6= 0). The
Baikov polynomial is

B = 1
16
(
p4

3(s+ z2 − z3)2 + 2p2
3
(
p2

4(s2 − s(z1 + z3) + (z1 − z2)(z2 − z3))− s3

− s2(t− z1 + 2z2 − 2z3 + z4) + st(z1 − z2 + 2z3) + s(z2 − z3)(z1 − z2 + z3 − z4)
+ t(z1 − z3)(z3 − z2)

)
+ p4

4(s− z1 + z2)2 − 2p2
4
(
s3 + s2(t− 2z1 + 2z2 − z3 + z4)

+ st(−2z1 + z2 − z3) + s(z1 − z2)(z1 − z2 + z3 − z4) + t(z1 − z2)(z1 − z3)
)

+ s4 + 2s3t− 2s3z1 + 2s3z2 − 2s3z3 + 2s3z4 + s2t2 − 4s2tz1 + 2s2tz2 − 4s2tz3

+ 2s2tz4 + s2z2
1 + s2z2

2 + s2z2
3 + s2z2

4 − 2s2z1z2 + 2s2z1z3 − 2s2z2z3 − 2s2z1z4

+ 2s2z2z4 − 2s2z3z4 − 2st2z1 − 2st2z3 + 2stz2
1 + 2stz2

3 − 2stz1z2 − 2stz2z3

− 2stz1z4 + 4stz2z4 − 2stz3z4 + t2z2
1 + t2z2

3 − 2t2z1z3
)
. (6.22)

There are four integration variables z1, . . . , z4. The bases of k-fold master integrals for each
layer k of integration are given by

1− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1
, 1
}
,

2− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2

,
1
z2
,

1
z1
, 1
}
,

3− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2z3

,
1
z1z3

,
1
z3
,

1
z2
,

1
z1
, 1
}
,

4− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2z3z4

,
1

z1z3z4
,

1
z3z4

,
1
z2z4

,
1
z1z4

,
1
z1z3

}
. (6.23)
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Figure 3. Two loop massless kite with off-shell external legs.

The master integrals for the last layer coincide with the one of the integral family and consist
of one box, one triangle and four bubbles. The metric presents the following triangular
structure

C =



C11 0 0 0 0 0
C21 C22 0 0 0 0
C31 C32 C33 0 0 0
C41 0 0 C44 0 0
C51 C52 0 0 C55 0
C61 C62 0 0 0 C66


, (6.24)

where the Cij are rational functions of the kinematic invariants and of the dimensional
regulator. We report a simple representative reduction for this family

I[1, 1, 1, 2] = (d− 4)
(
p4

3 − 2p2
3(p2

4 + s) + (p2
4 − s)2) I[1, 0, 1, 1]

2p2
3p

2
4s(p2

3 + p2
4 − s− t)

+ (d− 3)(p2
3 − p2

4 − s)
p2

3p
2
4s(p2

3 + p2
4 − s− t)

I[0, 0, 1, 1]

+ (d− 3)(p2
3 − p2

4 + s)
p2

3p
2
4s(−p2

3 − p2
4 + s+ t)I[1, 0, 0, 1]

+ (d− 3)(p2
3 + p2

4 − s)
p2

3p
2
4s(−p2

3 − p2
4 + s+ t)I[1, 0, 1, 0]

+ (d− 5)
−p2

3 − p2
4 + s+ t

I[1, 1, 1, 1]. (6.25)

6.2 Two-loop families

We consider the decomposition of integrals belonging to the families of two-loop massless
kite (figure 3), the two-loop massive sunrise with equal internal masses (figure 4) and the
two-loop massless pentabox on the maximal cut (figure 5).

Massless two-loop kite. We consider the family of two-loop massless kite (figure 3)
with off-shell external momentum p. The integrals depend on the invariant

s = p2. (6.26)

The propagators are

z1 = k2
1, z2 = (k1 − p1)2, z3 = (k1 − k2)2,

z4 = k2
2, z5 = (k2 − p1)2 (6.27)
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and the Baikov polynomial is given by

B = 1
4
(
− s2z3 − sz2

3 + sz1z3 + sz2z3 + sz2z4 + sz3z4 + sz1z5 + sz3z5 − sz4z5

− sz1z2 − z2z
2
4 − z1z

2
5 − z2

2z4 + z1z2z4 − z1z3z4 + z2z3z4 − z2
1z5 + z1z2z5

+ z1z3z5 − z2z3z5 + z1z4z5 + z2z4z5
)

(6.28)

We present the basis of k-fold master integrals for each layer k of integration, highlighting
that in some cases the left and right bases may not be the same

1− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{

1, 1
z1

}
,

2− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2

,
1
z1
,

1
z2
, 1
}
,

3− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2z3

,
1
z2z3

,
1
z1z3

,
1
z1z2

}
,

4− fold{
e

(L)
j

}
=
{ 1
z2z3z4

,
1

z1z2z4
,

1
z2z3

,
1
z1z3

,
1
z1z2

,
1
z3

}
{
e

(R)
j

}
=
{ 1
z2z3z4

,
1

z1z2z4
,

1
z1z2z3

,
1
z2z3

,
1
z1z3

,

}
,

5− fold{
e

(L)
j

}
=
{
e

(R)
j

}
=
{ 1
z1z2z4z5

,
1

z1z3z5
,

1
z2z3z4

}
. (6.29)

The metric for the last layer of master integrals reads

C =


− (d−4)s2

4(d−5)(d−3) 0 0
0 4(d−4)2s4

3(3d−16)(3d−14)(3d−10)(3d−8) 0
0 0 4(d−4)2s4

3(3d−16)(3d−14)(3d−10)(3d−8)

 (6.30)

and presents a diagonal structure due to the fact that no master integral belongs to a
subsector of the others. We quote a simple example of a reduction for this family

I[1, 1, 2, 1, 1] = − 3(d− 5)(d− 2)(3d− 10)(3d− 8)
(d− 6)2(d− 4)s3 I[0, 1, 1, 1, 0]

− 3(d− 5)(d− 2)(3d− 10)(3d− 8)
(d− 6)2(d− 4)s3 I[1, 0, 1, 0, 1]

+ 4(d− 3)
(d− 6)s2 I[1, 1, 0, 1, 1]. (6.31)
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Figure 4. Two loop massive sunrise with equal internal masses and off-shell external momenta.

Massive two-loop sunrise. We consider the family of two-loop massive sunrise (figure 4)
with equal-mass internal lines and off-shell external momentum p. The integrals depend on
the internal mass m and on the external invariant

s = p2. (6.32)

The propagators are

z1 = (k1 + p1)2, z2 = k2
1 −m2, z3 = (k1 + k2 + p1)2 −m2,

z4 = (k2 + p1)2, z5 = k2
2 −m2 (6.33)

and the Baikov polynomial is given by

B = 1
4
(
−m6 + 2m4s− 2m4z2 +m4z3 − 2m4z5 −m2s2 + 2m2sz2 + 2m2sz5

−m2z2
2 −m2z2

5 +m2z1z2 −m2z1z3 +m2z2z3 + 3m2z1z4 −m2z3z4

− 3m2z2z5 +m2z3z5 +m2z4z5 − s2z3 − sz2
3 − sz1z2 + sz1z3 + sz2z3

+ sz1z4 + sz3z4 + sz2z5 + sz3z5 − sz4z5 − z1z
2
4 − z2z

2
5 − z2

1z4 + z1z2z4

+ z1z3z4 − z2z3z4 − z2
2z5 + z1z2z5 − z1z3z5 + z2z3z5 + z1z4z5 + z2z4z5

)
. (6.34)

We consider integrals of the form in (2.26) with the constrain

α1 ≤ 0, α4 ≤ 0 (6.35)

i.e. we identify z1 and z4 as auxiliary denominators. We report the bases for each layer of
integration, highlighting that in some cases the basis for left and right integrals may not be
the same.

1− fold{
e

(L,1)
j

}
=
{
e

(R,1)
j

}
= {1} , (6.36)

2− fold{
e

(L,2)
j

}
=
{
e

(R,2)
j

}
=
{ 1
z2
, 1
}
, (6.37)

3− fold{
e

(L,3)
j

}
=
{
e

(R,3)
j

}
=
{ 1
z2z3

,
1
z3
,

1
z2

}
, (6.38)
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4− fold{
e

(L,4)
j

}
=
{ 1
z2

2
,

1
z2z3

,
1
z3
,

1
z2
, z3, 1

}
{
e

(R,4)
j

}
=
{ 1
z2z2

3
,

1
z2

2z3
,
z4
z2z3

,
1
z2z3

,
1
z3
,

1
z2

}
, (6.39)

5− fold{
e

(L,5)
j

}
=
{
e

(R,5)
j

}
=
{ 1
z2z3z2

5
,

1
z2

2z3z5
,

1
z2z3z5

,
1
z3z5

,
1
z2z5

,
1
z2z3

}
. (6.40)

The 5-fold metric presents the following block triangular structure

C =



C11 C12 C13 0 0 0
C21 C22 C23 0 0 0
C31 C32 C33 0 0 0
C41 C42 C43 C44 0 0
C51 C52 C53 0 C55 0
C61 C62 C63 0 0 C66


(6.41)

Here is the example of a reduction

I[0, 1, 1,−1, 1] = 1
48(d− 5)(d− 3)m4s2

(
−
(
(d− 4)(d− 2)m8

)
+ 2(d− 2)(3d− 14)m6s

+ 16(d− 5)(d− 3)m4s2 − 2(d− 2)(3d− 14)m2s3

+ (d− 4)(d− 2)s4
)
I[0, 0, 1, 0, 1]

+ 1
48(d− 5)(d− 3)m4s2

(
(d− 4)(d− 2)m8 − 2(d− 2)(3d− 14)m6s

+ 16(d− 5)(d− 3)m4s2 + 2(d− 2)(3d− 14)m2s3

− (d− 4)(d− 2)s4
)
I[0, 1, 0, 0, 1]

+ 4m2(s−m2)I[0, 1, 1, 0, 2]
3(d− 2) + 4m2(m2 − s)I[0, 2, 1, 0, 1]

3(d− 2)

+
(
m2 + s

3

)
I[0, 1, 1, 0, 1] + 1

3I[0, 1, 1, 0, 0]. (6.42)

We observe that the master integrals in this example obey additional symmetry relations
which cannot be cast as IBP identities. Indeed, as already stated in section 2, the framework
of intersection theory does not take these into account. This is not an issue, because these
additional relations can be easily identified and added afterwards. In this case, one can
easily see that integrals of the form I[0, α2, α3, 0, α5] are invariant under permutations of
the exponents αj . This reduces the number of independent integrals from six to three, since

I[0, 1, 1, 0, 2] = I[0, 2, 1, 0, 1], I[0, 1, 1, 0, 0] = I[0, 1, 0, 0, 1] = I[0, 0, 1, 0, 1]. (6.43)

Massless pentabox on the maximal cut. We consider the family of massless pentabox
on the maximal cut. The external legs p1, . . . , p5 satisfy

p2
i = 0, (6.44)
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Figure 5. Massless pentabox, in the example we consider its maximal cut.

and momentum conservation

p1 + p2 + p3 + p4 + p5 = 0. (6.45)

The integrals belonging to this family depend on five independent invariants which we
choose as

{s12, s23, s34, s45, s51} , (6.46)

where

sij = (pi + pj)2. (6.47)

The pentabox family depends on 11 generalized denominators

z1 = (k2 + p1 + p2)2, z2 = (k2 + p1)2, z3 = (k1 + p5)2,

z4 = k2
1, z5 = (k1 − p1)2, z6 = (k1 − p1 − p2)2,

z7 = (k1 − p1 − p2 − p3)2, z8 = k2
2, z9 = (k2 + p1 + p2 + p3 + p4)2,

z10 = (k2 + p1 + p2 + p3)2, z11 = (k1 + k2)2, (6.48)

of which the first three are irreducible scalar products, i.e. we consider integrals of the
form (2.26) with

α1 ≤ 0, α2 ≤ 0, α3 ≤ 0. (6.49)

We consider the reduction of integrals belonging to the maximal cut of this family, which
corresponds to putting on-shell all the denominators via the substitution

1
zi
→ δ(zi) (i = 4, . . . , 11) (6.50)

in the expressions for ϕR,L. This still yields the correct coefficients of reductions multiplying
the master integrals of the top sector. Therefore the integrals we reduce are functions only
of the auxiliary denominators z1, z2, z3, meaning that we calculate intersection numbers of
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three-fold integrals. The Baikov polynomial of pentabox on the maximal-cut is given by

B = 1
64
(
− z3(s2

12z3(s23 − z2)2 + 2s12(−s2
23z1z3 + s23(s45z2z3 + s45z1(2z2 + z3)

+ z1z2z3) + s45(z1 − z2)z2z3) + z3(s23z1 + s45(z2 − z1))2)
+ 2s15s45z1(z3(s12(s23 + z2)− s23z1 + s45z1 − s45z2) + s34s45z2)

+ 2s34s45z2z3(s12(s23 − z2) + s23z1 + s45(z2 − z1))− s2
15s

2
45z

2
1 − s2

34s
2
45z

2
2

)
,

(6.51)

and its exponent is γ = 1/2(d − 7). The bases of master integrals for each layer of
integration are

1− fold{
e

(L)
j

}
=
{
e

(R)
j

}
= {1} ,

2− fold{
e

(L)
j

}
=
{
e

(R)
j

}
= {1} ,

3− fold{
e

(L)
j

}
=
{
e

(R)
j

}
= {z2, z3, 1} . (6.52)

Since we are on the maximal cut, all the integrals we are considering belong to the same
sector and thus all entries of the metric Cij are non-vanishing. We reconstructed the
reduction of all integrals up to degree 5 in the variables zi (which are those that contribute
e.g. to QCD amplitudes) and successfully checked them against the Laporta method.

7 Conclusions and outlook

We presented a new method for computing intersection numbers via a purely rational
algorithm that does not require any change of basis or integral transformation. This is
achieved via the systematic use of the p(z)-adic series expansion. The latter expands
functions in powers of a polynomial, allowing to study their behaviour close to potentially
irrational singular points, without having to perform any irrational operation or knowing
the explicit location of these points.

This result represents significant progress in the application of intersection theory to
the decomposition of Feynman integrals. The new algorithm is elegant and satisfactory
from a mathematical and theoretical point of view, since everything is rational in all steps
of the calculation. It also sidesteps the algebraic bottleneck of dealing with irrational
expressions and opens up the possibility of combining intersection theory with efficient
computational techniques, such as finite fields and functional reconstruction. As a proof
of concept, we implemented the new algorithm over finite fields, using the Mathematica
package FiniteFlow and tested it on several one- and two-loop examples.

We also proposed a new strategy for dealing with analytic regulators, de facto removing
any analytic dependence of the calculation on them and showing dramatic simplifications
on both analytic expressions and the structure of the results.
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These results open up several possible lines of research aimed at making intersection
theory a viable approach for phenomenological applications. Besides optimizing and simpli-
fying our proof-of-concept implementation, exploring different integral representations which
reduce the number of integration variables may lead to substantial improvements. Examples
are the loop-by-loop Baikov representation and the Lee-Pomeransky representation [34].
Even more interestingly, a method for the direct calculation of multivariate intersection
numbers — thus stepping away from the recursive univariate method — has recently been
proposed [24]. A possible generalization of our method that builds on [24] and a multivariate
generalization of the p(z)-adic expansion, combined with the multivariate global residue
theorem, is worth investigating in the near future.

Finally, we expect the method of p(z)-adic expansions may also find uses in a broader
spectrum of applications, where one needs to study the behaviour of certain functions close
to the zeroes of certain polynomials. For instance, they might be employed in studies of the
singular structure of amplitudes for a more efficient reconstruction of them — as recently
done using the similar concept of p-adic numbers [35]. The possibility of systematically
employing p(z)-adic expansions using publicly available finite-field frameworks [12] and the
fact that these are not affected by numerical instabilities, makes this technique a suitable
candidate for future theoretical and phenomenological investigations.

A p(z)-adic expansions via polynomial division

We illustrate how we can obtain the coefficients ci(z) of the p(z)-adic expansion in (3.1) as
reminders of polynomial divisions. Since f(z) is a rational function, we can write it as

f(z) = n(z)
p(z)k d(z) , (A.1)

where d(z) is co-prime (i.e. has no common factor) with p(z). Since the factor 1/p(z)k can
be trivially added back after the expansion, it is sufficient to consider a function of the form

f?(z) = n(z)
d(z) , (A.2)

whose denominator d(z) is co-prime with p(z).
Let d̃(z) be the multiplicative inverse of d(z) with respect to p(z), namely the polynomial

of degree lower than deg p such that

d(z) d̃(z) = 1 mod p(z). (A.3)

One can show that, if d(z) and p(z) are co-prime, the multiplicative inverse of d(z) exists
and is unique. It can be computed using the extended Euclidean algorithm, or simply by
making an ansatz for it and fixing the unknown coefficients using eq. (A.3).

The first term of the p(z)-adic expansion of f?(z) is simply its polynomial reminder
modulo p(z)

c0(z) ≡ f?(z)mod p(z) = n(z)d̃(z)mod p(z). (A.4)
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We can thus rewrite the numerator n(z) as

n(z) = c0(z)d(z) + q1(z)p(z), (A.5)

for some polynomial q1(z), hence

f?(z) = c0(z) + q1(z)
d(z) p(z). (A.6)

To find the next term in the expansion we repeat the procedure considering q1(z)/d(z) as a
new rational function. In general we have the recursive formula

ci(z) = qi(z)
d(z) mod p(z), (A.7)

where qi(z) for i > 0 can be computed from qi−1(z) and ci−1(z) using

qi−1(z) = ci−1(z)d(z) + qi(z)p(z), (A.8)

and q0(z) = n(z). Following this procedure we can compute ci(z) up to the order we need.
Readers familiar with the concept of p-adic numbers may recognize that the construction

of the p(z)-adic expansion of a rational function is analogous to the construction of the
p-adic expansion of a rational number, where p is a prime number rather than a prime
polynomial over the rational field and the remainder of integer division is used instead of
the polynomial remainder.

B The univariate global residue theorem

We give a brief overview of the univariate global residue theorem, whose generalization is a
key ingredient of the calculation of intersection numbers with the rational algorithm, as
described in subsection 3.1. Given a rational function

f(z) = n(z)
d(z) , (B.1)

whose denominator is coprime with a polynomial p(z), we can calculate the polynomial
reminder of f(z) modulus p(z) with eq. (A.4). It takes the explicit form

f̃(z) ≡ f(z) mod p(z) =
deg p−1∑
j=1

fjz
j . (B.2)

The univariate global residue theorem states that the global residue of f(z)/p(z), namely
the sum of all the local residues of f(z)/p(z) at the zeroes of p(z), is

Resp(z)
(
f(z)
p(z)

)
= fdeg p−1

lc
, (B.3)

where Resp(z) is defined in eq. (3.7).
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