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1 Introduction

The replication of fermion families is one of the main puzzles of particle physics. Three
fermion families are in identical representations of the Standard Model (SM) gauge symmetry
SU(3) × SU(2) × U(1). Left-handed quarks qLi = (uL, dL)i and leptons `Li = (νL, eL)i
transform as weak doublets whereas right-handed components uRi, dRi, eRi are weak singlets,
i = 1, 2, 3 being the family index. The fermion masses emerge after spontaneous breaking
of the EW symmetry SU(2)×U(1) by the Higgs doublet φ, via the Yukawa couplings

Y ij
u u

c
iqjφ+ Y ij

d d
c
iqjφ̃+ Y ij

e e
c
i`jφ̃+ h.c. (1.1)

where Ye,u,d are the Yukawa matrices, and φ̃ = iτ2φ
∗. Here, instead of the right-handed

fermion fields, we use their left-handed complex conjugates (antifields) as ucL = CuRT and
omit in the following the subscript L for q, uc, dc etc. all being the left-handed Weyl spinors.
With these notations, the description can be conveniently extended to a supersymmetric
extensions of the SM and/or to a grand unified theory (GUT). The Yukawa couplings (1.1),
after substituting the Higgs vacuum expectation value (VEV) 〈φ0〉 = vw = 174GeV,
originate the fermion mass matrices Mf = Yfvw, f = u, d, e. They can be brought to the
diagonal form (the mass eigenstate basis) via the bi-unitary transformations:

V c
f MfVf = Mdiag

f (1.2)
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so that the quark masses mu,mc,mt andmd,ms,mb are the eigenvalues of the mass matrices
Mu and Md. (In the following we discuss concretely the quark sector considering the presence
of leptons implicitly.) The “right” matrices V c

u,d rotating the right-handed quarks have no
physical meaning in the SM context, while the “left” ones Vu,d give rise to the mixing in
the quark charged currents coupled to weak W± bosons which is determined by the unitary
Cabibbo-Kobayashi-Maskawa (CKM) mixing matrix VCKM [1, 2]:

VCKM = V †uVd =

 Vud Vus VubVcd Vcs Vcb
Vtd Vts Vtb

 (1.3)

This matrix is unitary, and by rotating away the irrelevant phases, it can be conveniently
parameterized in terms of four parameters, three mixing angles θ12, θ23, θ13 and one
CP-violating phase δ [2]. In the so called standard parameterization [3] it is written as:

VCKM =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

 (1.4)

where sij = sin θij , cij = cos θij and θij can be chosen so that sij , cij ≥ 0. As a measure
of CP violation, the rephasing-invariant quantity J∑m,n εikmεjln = Im[VijVklV ∗ilV ∗kj ] can
be considered instead of the phase δ, the Jarlskog invariant [4], which in the standard
parameterization reads:

J = sin δ s12s23s13 c12c23c
2
13 (1.5)

The mass spectrum and the mixing angles of quarks present a strong inter-family
hierarchy. Namely, by parameterizing masses and mixings between quarks with a small
parameter ε ∼ 1/20, we have for down-type quarks mb : ms : md = 1 : ε : ε2 and for up-type
mt : mc : mu = 1 : ε2 : ε4, with Vus ∼

√
ε, Vcb ∼ ε, Vub ∼ ε2. The SM does not contain

any theoretical input that could explain the inter-family hierarchy of fermion masses and
the pattern of the CKM mixing angles. Besides, the same is true for its supersymmetric
or grand unified extensions. In a sense, the SM is technically natural since it can tolerate
any pattern of the Yukawa matrices Yf , but it tells nothing about their structures which
remain arbitrary. So the origin of the fermion mass hierarchy and their weak mixing pattern
remains a mystery.

It is tempting to think that the fermion flavour structure is connected to some underlying
theory which determines the pattern of the Yukawa matrices, and that relations between
masses and mixing angles such as the well-known formula for the Cabibbo angle Vus =√
md/ms are not accidental. In particular, relations between the fermion masses and mixing

angles can be obtained by considering Yukawa matrix textures with reduced number of free
parameters, with certain zero elements. This zero-texture approach was originally thought
to calculate the Cabibbo angle in the two-family framework in refs. [5–7], in fact before the
discovery of b and t quarks.
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In the frame of six quarks, in refs. [8, 9] H. Fritzsch extended the zero texture for the
mass matrices in the form:

Yu,d =

 0 A′u,d 0
Au,d 0 B′u,d

0 Bu,d Cu,d

 (1.6)

where all non-zero elements are generically complex, with the symmetricity condition
|Au,d| = |A′u,d|, |Bu,d| = |B′u,d| motivated in the context of the left-right symmetric models.1
Besides reproducing the formula for the Cabibbo angle, this texture exhibits at least two
remarkable features.

• By a phase transformation of the quark fields, F ′u,dMu,dFu,d = M̃u,d, the matrices (1.6)
can be brought to real symmetric matrices M̃u,d, which then can be diagonalized
by orthogonal transformations, OTu,dM̃u,dOu,d = Mdiag

u,d . In this way, the three real
parameters |Ad|, |Bd|, |Cd| can be expressed in terms of the three eigenvalues of
M̃d, i.e. the down quark masses md,ms,mb, and so the three rotation angles in the
orthogonal matrix Od can be expressed in terms of the mass ratios md/ms and ms/mb.
Analogously, the three angles in Ou can be expressed in terms of the upper quarks mass
ratios mu/mc and mc/mt. The CKM matrix (1.3) is obtained as VCKM = OTuF

∗
uFdOd,

where the diagonal matrix F = F ∗uFd can be parameterized by two phase parameters,
F = diag(eiα, eiβ , 1). Then, the four physical elements of the CKM matrix, that is
the three mixing angles θ12, θ23, θ13 and the CP-phase δ, can be expressed in terms
of the known mass ratios, md/ms, ms/mb, mu/mc and mc/mt, and of two unknown
phases α and β.

• In view of the interfamily hierarchies, md � ms � mb and mu � mc � mt, the
Fritzsch ansatz (1.6) demonstrates an interesting property coined as the decoupling
hypothesis [11]. Since the CKM angles depend on the quark mass ratios, in the limit
in which the masses of the first family vanish, mu,md → 0, the mixing of the latter
with the heavier families should disappear, i.e. θ12, θ13 → 0. At the next step, in the
limit of massless second family, ms,mc → 0, also the 2-3 mixing should disappear, i.e.
θ23 → 0.

However, in the original works [8, 9], the ‘zeros’ in these matrices were achieved at the
price of introducing several Higgs bi-doublets differently transforming under some discrete
flavor symmetry. This underlying theoretical construction looks rather obsolete. Namely,
the need for several Higgs bi-doublets spoils the natural flavor conservation [12–14] and
unavoidably leads to severe flavor-changing effects [15]. In a more natural way, without
employing the left-right symmetry, the Fritzsch texture can be obtained in the context
of models with SU(3)H gauge symmetry between the three families [16, 17], as we shall
describe in this work.

1It has been shown in ref. [10] that Yukawa matrices of the form in eq. (1.6) without the assumption of
hermiticity can always be obtained by a weak-basis transformation starting from arbitrary Yukawa matrices,
that is, eq. (1.6) is derived by a specific choice of weak basis, the nearest-neighbour interaction basis, and
does not imply any relation for the Yukawa couplings.
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Moreover, in light of present experimental and lattice results on quark masses and
CKM elements, the symmetric Fritzsch texture for quarks must be excluded, since there is
no parameter space in which these precise data can be reproduced [18, 19]. More concretely,
the small enough value of |Vcb| and large enough value of |Vub/Vcb| cannot be achieved for
any values of the phase parameters. A possibility to obtain viable textures is to extend the
original Fritzsch texture by replacing one of the zero entries with a non-zero one, e.g. by
introducing a non-zero 13 element [20] or a non-zero 22 element, as recently analysed e.g.
in refs. [21–26]. However, these modifications do not satisfy the decoupling feature and the
introduction of new parameters reduces the predictivity.

On the other hand, instead of decreasing the number of zero entries, one can think to
break the symmetricity condition. Namely, an asymmetry in the 23 blocks of the Yukawa
matrices of the form in eq. (1.6) can be introduced, |Bu,d| 6= |B′u,d| [27–29]. It is worth
noting that in this scenario the properties of the original texture are preserved. In fact, the
decoupling feature does not require the equality of the moduli of non-diagonal elements
in (1.6). We will give a detailed study of such minimally modified Fritzsch ansatz. We show
that this texture can predict all the correct masses, mixing angles and CP-violating phase.
Moreover, we find that a scenario presenting the minimal modification |Bd| 6= |B′d| in the
down-quarks sector while maintaining the symmetricity |Bu| = |B′u| in the up-quarks sector
can accommodate all experimental data.

The paper is organized as follows. In section 2 we describe how the Fritzsch texture
can be obtained within the context of the inter-family gauge group SU(3)H , and how it
can be minimally deformed in the 2-3 blocks in presence of a scalar field in adjoint (octet)
representation of SU(3)H . In section 3 we analyse the relations between the parameters
of the asymmetric Fritzsch texture and the quark mass ratios and mixing angles. In
section 4 we confront the minimally modified Fritzsch matrices with the recent high
precision determinations of quark masses and CKM matrix elements, and show that this
flavour structure predicts all the masses, the mixing angles and the CP-violating phase in
perfect agreement with the experimental results. In section 5 we summarize our results.

2 Fritzsch-like textures from horizontal symmetry SU(3)H

2.1 Fermion masses with horizontal symmetry: effective opearators

The key for understanding the replication of families, fermion mass hierarchy and mixing
pattern may lie in symmetry principles. For example, one can assign to fermion species
different charges of an abelian global flavor symmetry U(1) [30]. There are also models
making use of an anomalous gauge symmetry U(1)A to explain the fermion mass hierarchy
while also tackling other naturalness issues [31–35]. Abelian flavour symmetries with extra
Higgs doublets have been used to generate Yukawa matrices with vanishing entries [36–39].
However, it is difficult to obtain the highly predictive quark mass matrices with six texture
zeros within this approach.

Nonetheless, one can point to a more complete picture by introducing the non-abelian
horizontal gauge symmetry SU(3)H between three families [16, 17, 40–45]. This symmetry
should have a chiral character, with the left-handed and right-handed components of quarks

– 4 –



J
H
E
P
0
8
(
2
0
2
3
)
1
6
2

(and leptons) transforming in different representations of the family symmetry, namely as
SU(3)H triplets and anti-triplets respectively, so that the fermions cannot acquire masses
without the breakdown of SU(3)H invariance. In our chiral notations this means that all
left-handed fields must transform as triplets:

qi, u
c
i , d

c
i ∼ 3 (`i, eci ∼ 3) (2.1)

where i = 1, 2, 3 is the family SU(3)H index. Such an arrangement is compatible with
the grand unified extensions of the SM. In particular, in the context of SU(5) GUT [46]
each family is represented by the left-handed Weyl fields F̄i = (dc, `)i and Ti = (uc, ec, q)i
respectively in 5̄ and 10 representations of SU(5). Then, the fermions can be arranged in
the following representations of SU(5)× SU(3)H [17, 40, 41]:

F̄i = (dc, `)i ∼ (5̄, 3), Ti = (uc, q, ec)i ∼ (10, 3) (2.2)

while in the context of SO(10)× SU(3)H all these fermions, along with the “right-handed
neutrinos” νcL = CνR

T can be packed into the unique multiplet in the spinor representation
of SO(10), Ψi = (F̄ , T, νc)i ∼ (16, 3).2

Due to the chiral character of the horizontal symmetry, the fermion masses cannot be in-
duced without breaking SU(3)H , which forbids the direct Yukawa couplings of fermions (2.1)
with the Higgs doublets φ. As far as the fermion bilinears uciqj , dciqj and ec` transform in
representations 3× 3 = 6 + 3̄, the fermion masses can be induced only via the higher order
operators

χij

M
uciqjφ+ χij

M
dciqjφ̃+ χij

M
eci`jφ̃+ h.c. (2.3)

involving some horizontal scalars χ (coined as flavons) in symmetric (anti-sextets χ{ij} ∼ 6̄)
or antisymmetric (triplets χ[ij] = εijkχk ∼ 3) representations of SU(3)H , where M is some
effective scale (the coupling constants of different flavons are omitted). After inserting
the flavon VEVs in the operators (2.3), the standard Yukawa couplings (1.1) are induced
which will reflect the VEVs pattern. Extending the SM to SU(5) GUT, in the context of
SU(5)× SU(3)H theory [17, 40], the Yukawa couplings emerge from the decomposition of
the SU(5)-invariant Yukawa couplings

Giju TiTjH +Gijd F̄iTjH
∗ + h.c. (2.4)

where H is the scalar 5-plet which contains the SM Higgs doublet φ. Giju and Gijd are
effective Wilson coefficients of operators containing flavons, emerging from the structures
(χij/M)TiTjH and (χij/M)F̄iTjH∗. Some χ-flavons can also be in adjoint representations
of SU(5), or more generally these effective coefficients should involve a scalar 24-plet Σ of
SU(5) in order to avoid the undesiderable relations between the down quark and lepton

2With this set of fermions, SU(3)H would have triangle anomalies. For their cancellation one can
introduce additional chiral fermions transforming under SU(3)H [16, 17, 40, 41]. The easiest way to cancel
the anomalies is to share the SU(3)H symmetry with mirror fermions [47] belonging to a parallel SM′ sector
of particles identical to the SM sector of ordinary particles (for a review, see e.g. [48, 49]).
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masses [17].3 In the following, we mainly concentrate on the quark sector in the context of
the SM, having in mind that in the context of grand unification analogous considerations
can be extended to leptons.

Interestingly, operators (2.3) which are invariant under the local SU(3)H symmetry
by construction, in fact have a larger global symmetry U(3)H . Namely, they are invariant
also under a global chiral U(1)H symmetry, implying an overall phase transformation of
fermions uci , dci , qi and flavon scalars χ. Hence, all families can become massive only if U(3)H
symmetry is fully broken.

This feature allows to relate the fermion mass hierarchy and mixing pattern with the
breaking pattern of U(3)H symmetry, with a natural realization of the decoupling hypothesis.
When U(3)H breaks down to U(2)H , the third family of fermions become massive while
the first two families remain massless, and mixing angles are zero. At the next step, when
U(2)H breaks down to U(1)H , the second family acquires masses and the CKM mixing
angle θ23 can be non-zero, but the first family remains massless (mu,md = 0) and unmixed
with the heavier fermions (θ12, θ13 = 0). Only at the last step, when U(1)H is broken, also
the first family can acquire masses and its mixing with heavier families can emerge. In
this way, the inter-family mass hierarchy can be related to the hierarchy of flavon VEVs
inducing the horizontal symmetry breaking U(3)H → U(2)H → U(1)H → nothing.

In the last step of this breaking chain, the chiral global U(1)H symmetry can be
associated with the Peccei-Quinn symmetry provided that U(1)H is also respected by the
Lagrangian of the flavon fields [17, 51]. This can be achieved by forbidding the trilinear
terms between the χ-scalars by means of a discrete symmetry. Thus, in this framework, the
Peccei-Quinn symmetry can be considered as an accidental symmetry emerging from the
local symmetry SU(3)H . In this case the axion will have non-diagonal couplings between
the fermions of different families, i.e. it will act as a familon [16, 51]. Phenomenological
and cosmological implications of such flavor-changing axion were discussed in refs. [52–61].

Let us discuss now how Fritzsch zero textures can naturally emerge in this scenario
with horizontal symmetry. As the simplest set of χ-flavons, we can choose two triplets χ1,
χ2, and one anti-sextet χ3, and arrange their VEVs in the following form [17]:

〈χ{ij}3 〉 = diag(0, 0, V3) 〈χ2i〉 =

 V2
0
0

 〈χ1i〉 =

 0
0
V1

 (2.5)

3The minimal scenario, with matrices Gu and Gd being SU(5) singlets, would imply Yu = Y T
u and Ye = Y T

d ,
the latter equality leading to incorrect relations between the down quark and charged lepton masses. However,
this shortcoming can be avoided in a more general context, by considering Gu,d = Gu,d(Σ/M) as functions
of the scalar Σ in the adjoint representation (24-plet) which breaks SU(5) down to the SM gauge group
SU(3)×SU(2)×U(1) at the GUT scale MG ' 1016 GeV or so. This is equivalent to introducing higher order
operators in powers of Σ/M , which can be obtained e.g. by integrating out some heavy vector-like fermions at
the mass scale M > MG. In this way, the expansions Gu,d(Σ) = G

(0)
u,d +G

(1)
u,d(Σ/M)+G

(2)
u,d(Σ2/M2)+ . . . will

in general contain terms in 1, 24 etc. representations of SU(5) which remove the above restrictive relations
Yu = Y T

u and Ye = Y T
d and render the Yukawa matrices Yu,d,e in the low energy SM to be independent from

each other (for a review, see e.g. [50]).
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i.e. the VEV of χ3 is given by a symmetric rang-1 matrix directed towards the 3rd axis in
the SU(3)H space, the VEV of χ1 is parallel to 〈χ3〉 and the VEV of χ2 is orthogonal to it
and without losing generality it can be oriented towards the 1st axis (for the analysis of the
flavon potential allowing such a solution see ref. [40]). The total matrix of flavon VEVs has
the form

〈χij〉 =
〈
χ

[ij]
1 + χ

[ij]
2 + χ

{ij}
3

〉
=

 0 V1 0
−V1 0 V2

0 −V2 V3

 (2.6)

Then, modulo different coupling constants of χ-flavons in the two operators in (2.3),
the Yukawa matrices Yu, Yd ∝ 〈χ〉/M will reflect the VEV pattern (2.6). Hence, the
Yukawa matrices would acquire the ‘symmetric’ Fritzsch forms (1.6) with A′u,d = Au,d
and B′u,d = Bu,d (the − signs can be eliminated by quark phase transformations). The
hierarchies between the different Yukawa entries, corresponding to the inter-family mass
hierarchies, can be related to a hierarchy V3 � V2 � V1 in the horizontal symmetry
breaking chain U(3)H → U(2)H → U(1)H → nothing. After this breaking, the theory
reduces to the SM with one standard Higgs doublet φ, and so, in difference from the
Fritzsch’s original model [8, 9], in our construction the flavor will be naturally conserved in
neutral currents [12–14].

2.2 UV completing and the role of heavy vector-like fermions

In the UV-complete pictures the operators (2.3) can be induced via renormalizable interac-
tions after integrating out some extra heavy fields, scalars [40] or verctor-like fermions [16,
17, 51]. Hereafter we shall employ the second possibility. Namely, one can introduce
the following set of left-handed fermions of up- and down-quark type in weak singlet
representations

Ui, Di ∼ 3 U ci, Dci ∼ 3̄ (2.7)

These fermions are allowed to have SU(3)H invariant mass terms. More generically, their
mass terms transform as 3̄× 3 = 1 + 8 and they can emerge from the Yukawa couplings
with the scalars in singlet and octet representations of SU(3)H , S ∼ 1 and Φ ∼ 8, namely

(gDSδij + fDΦi
j)DiD

cj + h.c. (2.8)

with analogous couplings for Ui, U ci. In fact, one can introduce an adjoint scalar Φ of
SU(3)H in analogy to the adjoint scalar of SU(5), the 24-plet Σ. We also assume that the
cross-interaction terms of Φ with χ-flavons in the scalar potential align the Φ VEV towards
the largest VEV V3 in (2.6), i.e. proportionally to the λ3 generator: 〈Φ〉 = V diag(1, 1,−2).
In this case, the heavy fermion mass matrices contributed by singlet and octet VEVs have
the diagonal forms

MU,D = gU,D〈S〉+ fU,D〈Φ〉 = MU,D diag(X−1
U,D, X

−1
U,D, 1) (2.9)

– 7 –
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where MU,D ∼ M is an overall mass scale determined by the VEVs of S and Φ and
generically XU,D 6= 1 are complex numbers. Only in the absence of the octet contribution
we have XU,D = 1.

The following Yukawa couplings between the light quarks qi, uci , dci ∼ 3 (2.1) and heavy
fermions (2.7) are allowed by the symmetry

3∑
n=1

h(n)
u χijn u

c
iUj +

3∑
n=1

h
(n)
d χijn d

c
iDj + yuφU

ciqi + ydφ̃D
ciqi (2.10)

with couplings hu,d and yu,d. In this way, the matrices of Yukawa couplings Yu,d in eq. (1.1)
are induced after integrating out the heavy fermions via universal seesaw mechanism [16, 17].
Namely, for the upper quarks this mechanism is illustrated by the first diagram in figure 1
while the analogous diagram involving D and Dc states will work for the down quarks.
More generally, also heavy quarks in weak doublet representations Qi ∼ 3̄ and Qci ∼ 3 can
be used for quark mass generation (see the second diagram in figure 1). However, this would
not affect the final form of the Yukawa matrices (1.6) which we shall discuss in this work.4
Analogously, the charged lepton Yukawa couplings can be induced by introducing the vector
like lepton states, weak singlets Ei ∼ 3, Eci ∼ 3̄ and weak doublets Li ∼ 3̄, Lci ∼ 3. In
particular, they will be at work in the case of SU(5) × SU(3)H extension [17] where all
these states fit into the set of fermions in vector-like representations (5̄, 3̄) = (Dci, Li),
(5, 3) = (Di, L

c
i) and (10, 3̄) = (U ci, Qi, Eci), (10, 3) = (Ui, Qci , Ei). Interestingly, in the

context of supersymmetry our mechanism can lead to interesting relations between the
fermion Yukawa couplings and the soft SUSY breaking terms which allow to naturally
realize the minimal flavor violation scenarios [47, 70–72].

After substituting the flavon VEVs into eq. (2.10), we obtain

Yu = χuM−1
U yu, Yd = χdM−1

D yd; χiju,d =
3∑

n=1
h

(n)
u,d〈χ

ij
n 〉 (2.11)

Therefore, the Yukawa couplings of quarks will have the forms

Yd = yd
MD


0 XDh

(1)
D V1 0

−XDh
(1)
D V1 0 h

(2)
D V2

0 −XDh
(2)
D V2 h

(3)
D V3

 ,

Yu = yu
MU


0 XUh

(1)
U V1 0

−XUh
(1)
U V1 0 h

(2)
U V2

0 −XUh
(2)
D V2 h

(3)
U V3

 (2.12)

where the non-zero entries are generically complex. By the phase transformations Ỹu,d =
F ′u,dYu,dFu,d, where Fd,u = diag(eiαd,u , eiβd,u , eiγd,u), the Yukawa matrices can be brought

4Mixing of the light quarks with vector-like quarks with mass of order TeV can be at the origin of the
recently observed Cabibbo angle anomalies [62–68] (see ref. [69] for a review).

– 8 –



J
H
E
P
0
8
(
2
0
2
3
)
1
6
2

qi U ci Uj uck

φ δjiS + Φj
i χjk

qi Qc
j Qk uck

χij δjkS + Φj
k φ

Figure 1. Seesaw diagrams inducing the Yukawa couplings of upper quarks via exchange of
vector-like quarks U,U c and Q,Qc. Analogous diagrams with U,U c → D,Dc and φ→ φ̃ will work
for down quarks.

to the forms

Ỹd =

 0 Ad 0
Ad 0 xdBd
0 x−1

d Bd Cd

 , Ỹu =

 0 Au 0
Au 0 xuBu
0 x−1

u Bu Cu

 (2.13)

with all parameters being real and positive. In absence of the SU(3)H octet contribution in
the heavy fermion masses we would have xu,d = 1 and thus we would effectively obtain the
“symmetric” Fritzsch ansatz. However, this possibility is excluded since it predicts too large
value of |Vcb| and too small value of |Vub/Vcb|.

2.3 A prototype model: SU(5) × SU(3)H

Let us conclude this section by presenting a prototype model which gives xu = 1 in the up
quark Yukawa matrix in eq. (2.13), that is the symmetric Fritzsch texture, by symmetry-
based arguments in the context of SU(5)× SU(3)H theory. In this case the quark states
should be “packed” together with leptons in multiplets 5i = (5̄, 3) and 10i = (10, 3), as
in (2.2). For the ‘generation’ of fermion masses we introduce the extra vector-like fermions
like T i = (Q,U c, Ec)i and T i = (Qc, U,E)i respectively in representations (10, 3̄) + (10, 3),
which are in principle sufficient for inducing the up quark, down quark and charged lepton
masses. Additional contribution to the down quark and lepton masses can be obtained by
involving also F i = (Dc, L)i and Fi = (D,Lc)i in (5̄, 3̄) + (5, 3) representations.

Let us involve the real scalars in the following representations: Σ ∼ (24, 1) and
Φ ∼ (1, 8) in the adjoint representations of SU(5) and SU(3)H respectively, and two singlets
R,S ∼ (1, 1). We also keep three complex flavon scalars χ1,2,3 with the VEVs forming the
Fritzsch-like texture as in eq. (2.6) in the SU(3)H space. In addition, flavons χ1 and χ3
remain in representations (1, 3) and (1, 6) while χ2 is taken in the mixed representation
(24, 3), for reasons that will become clear later. Needless to say, for inducing the quark and
lepton masses we must also introduce the scalar 5-plet H = (φ, τ) ∼ (5, 1) of SU(5) which
includes the SM Higgs doublet φ along with its color-triplet partner τ .

As for the fermion sector, it consists of the following multiplets:

T ∼ (10, 3), F 1,2 ∼ (5, 3), F ∼ (5, 3),
T ∼ (10, 3), T ∼ (10, 3); F ∼ (5, 3), F ∼ (5, 3) (2.14)
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Let us introduce now two discrete symmetries under which the following fields change sign:

ZΣ : Σ→ −Σ, R→ −R, T → −T , F → −F , χ1,2,3 → −χ1,2,3

ZΦ : Φ→ −Φ, S → −S, F → −F (2.15)

while the rest of the fields remain invariant under these symmetries.
The Yukawa couplings invariant under SU(5) × SU(3)H and compatible with these

discrete symmetries are the following:

LYuk = yTT H + ỹTFH + y1F 1T H + y2F 2T H
+ (gΣ + g′R)T T + (fΣ + f ′R)FF
+ (a1S + a′1Φ)F 1F + (a2S + a′2Φ)F 2F

+ h(n)χnTT + h
(n)
1 χnF 1F + h

(n)
2 χnF 2F + h.c (2.16)

where a, a′, . . . are couplings of order O(1). The family indices as well as the indices of
SU(5) are suppressed, and H stands for the complex conjugate of H . Notice that the terms
in the first and second rows do not contain the scalars which break the family symmetry
and they remain degenerate between the three families also after SU(3)H breaking. On the
contrary, the third and fourth rows carry the information on the SU(3)H breaking pattern.

Let us remark that the discrete symmetry ZΣ, namely χ1,2,3 → −χ1,2,3, forbids the
trilinear couplings between the flavon fields. Then, at the level of renormalizable couplings,
the Lagrangian of the theory acquires an accidental global symmetry under the flavon phase
transformation (in fact, the Yukawa terms (2.16) automatically respect this symmetry, under
proper transformation of the fermion phases). This chiral global symmetry U(1)H has color
anomaly and it can be considered as the Peccei-Quinn symmetry which is spontaneously
broken by the smallest of the flavon VEVs in eq. (2.5) (see also refs. [16, 17, 51]).

For a proper range of parameters in the Higgs potential, the scalar fields get VEVs,
with 〈Σ〉 = VΣ · diag(1/3, 1/3, 1/3,−1,−1) breaking SU(5) down to SU(3)× SU(2)×U(1),
〈Φ〉 = VΦ · diag(1, 1,−2) breaking SU(3)H down to SU(2)H × U(1)H , and 〈R,S〉 = VR,S .
We assume that these VEVs are all of the order of the GUT scale VΣ.5 As for the flavon
fields, they have the VEV pattern shown in eq. (2.5) in the SU(3)H space, while the VEV
of χ2 breaks also SU(5), 〈χ2〉 = (V2, 0, 0)⊗ diag(1/3, 1/3, 1/3,−1,−1).

The masses of ordinary fermions, up quarks, down quarks and charged leptons of the
three families, are induced by the Yukawa couplings in the first row of eq. (2.16) involving
the SM Higgs doublet φ ⊂ H, after integrating out the heavy fermion species. Notice that
the discrete symmetries (2.15) prevent the vector-like fermion species in (2.14) to have
arbitrarily large masses, much larger than the GUT scale VΣ.

5We assume that the VEV 〈H〉 of order 100GeV is due to fine-tuning, without discussing the questions of
the grand-hierarchy and doublet-triplet splitting. The latter problems can be addressed in supersymmetric
extension of the model, and most naturally in the context of supersymmetric SU(6) theory, with specific
implications also for the fermion mass generation [74–76]. In SU(6) theory the fermions of one family
are settled in representations 15 + 61,2 which decomposition under SU(6) → SU(5) reads as 15 = 10 + 5
and 61,2 = 51,2 (plus two singlets, that can be considered as “right-handed neutrinos” for the neutrinos
mass generation). In fact, our choice of multiplets T, F and F 1,2 in first line of (2.14) is motivated by the
possibility of embedding SU(5) in SU(6).
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The couplings in the second line of eq. (2.16), after substituting the VEVs of Σ and R,
induce the Dirac mass terms between the vector-like species Q,U c, Ec ⊂ T and Qc, U,E ⊂ T ,
and analogously between Dc, L ⊂ F and D,Lc ⊂ F . These masses are degenerate in SU(3)H
space, but they have SU(5) splitting induced by the non-zero contribution of 〈Σ〉 which
depends on the U(1) hypercharge of the fermion species. Namely, we get

MΨ = M10(1 + κr10YΨ), Ψ = Q,U c, Ec; MΨ = M5(1 + κr5YΨ), Ψ = Dc, L (2.17)

where M10 = g′VR and M5 = f ′VR can be taken real without loss of generality. The Yukawa
ratios r10 = g/g′ and r5 = f/f ′ are in general complex and κ = VΣ/VR determines the size
of SU(5) splittings between the fermion fragments, with YΨ being the U(1) hypercharge of
the given species (normalized as YQ = 1/3, YDc = 2/3 etc.).

Analogously, the Yukawa terms of the third row in eq. (2.16) induce the Dirac masses
between the 5-plets F i and one combination F i of the two identical species F 1i and
F 2i (i = 1, 2, 3 being the family index), with mixing angles θi determined by the
proportion between the mass values M1i = a1VS + a′1VΦYi and M2i = a2VS + a′wVΦYi.
The other (orthogonal) combination of 5-plets F ′i remains light and it represents in fact
the multiplet which contains the light species dci , `i ⊂ F

′
i. The masses M1i and M2i have

no splitting in the SU(5) space but they are split in the family space by the contribution
of 〈Φ〉 = VΦ · diag(1, 1,−2), which breaks SU(3)H down to SU(2)H ×U(1)H . Namely, the
splitting is given by the values of U(1)H hypercharges Y1,2 = 1, Y3 = −2. Therefore, after
this breaking, F ′i does not form anymore an SU(3)H triplet but rather a 2+1 representation
of SU(2)H × U(1)H . The mixing angle θi is different for i = 1, 2 and i = 3, and thus the
original states F 1i and F 2i entering in the Yukawa Lagrangian in eq. (2.16) contain the
survived light states F ′i with different weights, respectively sin θi and cos θi, θ1 = θ2 6= θ3.

Let us consider first the up quark masses which are induced by integrating out the
heavy species T , T . Substituting the large VEVs in the relevant Yukawa couplings of (2.16),
we obtain the full 9× 9 mass matrix of all (light and heavy) up quark states

(
uc Qc U c

) 0 yHI χTuc

χq MQI 0
yHI 0 MUcI


 q

Q

U

 (2.18)

where the diagonal 3× 3 blocks given by eq. (2.17) are degenerate in families (I denotes
the 3× 3 unit matrix). Namely, taken the hypercharges YQ = 1/3 and YUc = −4/3, we get
MQ = M10(1 + 1

3κr10) and MUc = M10(1− 4
3κr10).

The pattern of the flavor symmetry breaking is encoded in the off-diagonal blocks
composed by the VEVs of the flavon fields:

χψ =
∑
n

h(n)〈χn〉 =

 0 h(1)V1 0
−h(1)V1 0 h(2)V2Yψ

0 −h(2)YψV2 h(3)V3

 (2.19)
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where again we have Yq = 1/3 in χq and Yuc = −4/3 in χuc . Then, after rotating away the
heavy states, for the up quark Yukawa matrix we obtain in the seesaw approximation:

Yu = −y(M−1
Q χq + χTucM−1

Uc ) =

 0 Au 0
−Au 0 Bu

0 −Bu Cu

 (2.20)

where we have

Cu = (2− κr10)y(
1− κr10 − 4

9κ
2r2

10
) · h(3)V3

g′VR
,

Bu = 5y
3
(
1− κr10 − 4

9κ
2r2

10
) · h(2)V2

g′VR
,

Bu
Cu

= 5
3(2− κr10) ·

h(2)V2
h(3)V3

Au = −5κr10y

3
(
1− κr10 − 4

9κ
2r2

10
) · h(1)V1

g′VR
,

Au
Bu

= −κr10
h(1)V1
h(2)V2

(2.21)

Hence, in this model the up-quarks Yukawa matrix has a Fritzsch texture without any
deformation. By rotating the fermion phases, the matrix (2.20) can be transformed into
the real symmetric form Ỹu in (2.13) with xu = 1. The matrix elements are related to the
up-quark Yukawas yu,c,t approximately as Cu ≈ yt, Bu ≈

√
ycyt and Au ≈

√
yuyc.

Given that all Yukawa couplings in the model are assumed to be order 1, then the
top Yukawa value yt ∼ 1 implies V3 ' VR. The Yukawa hierarchy yt : yc : yu ' 1 :
4× 10−3 : 10−5 can be related to the milder hierarchy in SU(3)H symmetry breaking VEVs,
V2/V3 ∼ Bu/Cu ≈

√
yc/yt ' 1/15. As for the small eigenvalue yu, in the absence of the Σ

contribution in the masses of the heavy 10-plets T , T , i.e. in the limit κ = VΣ/VR → 0, we
would get Au → 0 and thus yu → 0. This is because the antisymmetric flavon χ[ij]

1 cannot
contribute since the combination TiTjH is symmetric in family indexes i and j. However,
the matrix (g′〈R〉+ g〈Σ〉)−1 in SU(5) space contains a piece of 24-plet, and so the triplet
flavon χ1 ∼ (1, 3) can effectively contribute anti-symmetrically in the entries 12 − 21, in
combination with the effective 45-plet contained in the tensor product ΣH, 45 ⊂ 24× 5.
As for χ2 ∼ (24, 3), it also can contribute anti-symmetrically in the entries 23− 32 as an
effective 45-plet.6 The small value Au/Bu ≈

√
yu/yt ' 1/300 can come from the ratio

κ = VΣ/VR ∼ 0.1. Namely, the correct relations between yu,c,t can be obtained by taking
the VEV ratios of the same order, for example V1/V2 ∼ V2/V3 ∼ VΣ/VR ∼ 1/15.

As regards the down quarks and charged leptons, as described above, after integrating
out the heavy F +F states, the fragments dci , `i are contained in the effective light combina-
tions F ′i = sin θiF 1i+cos θiF 2i which do not form anymore an SU(3)H triplet since θ1,2 6= θ3.
Then, the Yukawa terms (y1F 1i + y2F 2i)T iH contained in eq. (2.16) can be reduced to
y′iF

′
iT iH where y′i = y1 cos θi + y2 sin θi, and so we have y′1 = y′2 6= y′3. Therefore, by

denoting y′3 = y′ and y′1,2 = XDy
′, the above Yukawa terms can be written as y′iF

′
iX

i
jT jH,

where X = diag(x, x, 1) is the diagonal matrix. Needless to say, these terms maintain SU(5)
degeneracy between the down quark dc and lepton ` states.

6Interestingly, in the context of supersymmetric SU(5) theory, such a structure can also lead to natural
suppression of dangerous D = 5 operators since the quark couplings qiqiτ with the color-triplet in H are
symmetric, and hence cannot be induced by antisymmetric flavons [73].
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Hence, in terms of light states dci , `i ⊂ F
′
i we obtain the full 9× 9 mass matrices of all

(light and heavy) down quark and charged lepton type species respectively as

(
dc Qc Dc

) 0 y′HX χTdc

χq MQI 0
ỹHI 0 MDcI


 q

Q

D

 ,
(
` E L

) 0 y′XH χT`
χec MEcI 0
ỹHI 0 MLI


 ec

Ec

Lc

 (2.22)

where the mass terms in the diagonal 3×3 entriesMEc ,MDc andML are given by eq. (2.17),
modulo their U(1) hypercharges YEc , etc. Notice also that the blocks MQI and χq are the
same as in the up-quark case (see eq. (2.22)). As for the off-diagonal leptonic entry χec ,
which is originated from the couplings h(n)χnTT in eq. (2.16), it carries the Fritzsch-like
texture given by eq. (2.19), with Yec = 2.

The situation is different for the matrices χdc and χ`. In fact, the couplings (h(n)
1 F 1i +

h
(n)
2 F 2i)χijnF i in terms of the light states F ′i reduces to the terms F ′i(h̃

(n)
i χijn )F i, where

h̃
(n)
i = h

(n)
1 cos θi + h

(n)
2 sin θi. Hence, the matrix χdc (and similarly for χ`) has a deformed

Fritzsch-like form and it can be presented as χ̃dcX̃ where χ̃dc has the Fritzsch texture
like (2.19) and X̃ = diag(x̃, x̃, 1) is the deformation matrix.

Thus, after integrating out the heavy states, for the Yukawa matrices of down quarks
and charged leptons we obtain the modified Fritzsch textures

Yd = −y′XM−1
Q χq − ỹX̃χ̃TdcM−1

Dc =

 0 Ad 0
−Ad 0 xdBd

0 −x−1
d Bd Cd

 ,

Y T
e = −y′XM−1

Ec χec − ỹX̃χ̃T`M−1
L =

 0 Ae 0
−Ae 0 xeBe

0 −x−1
e Be Ce

 (2.23)

where in general xd,e 6= 1. The detailed analysis of the lepton sector is beyond the scope
of this paper. Let us note, however, that the famous SU(5) degeneracy between the down
quark and charged lepton masses is essentially violated between 23− 32 entries induced
by the VEV of the flavon field χ2 ∼ (24, 3), Bd 6= Be. As for other entries, we have the
approximate relations Cd ≈ Ce and Ad ≈ Ae provided that VΣ < VR. This means that,
e.g. for κ = VΣ/VR ∼ 0.1 or so, there are interesting relations yb ≈ yτ and ydys ≈ yeyµ
fulfilled at about 10 % accuracy. For the hierarchy of the SU(3)H breaking scales we
expect V1/V3 ∼ Ae/Ce ≈

√
yeyµ/yτ ' (1/15)2, and thus the relative smallness of the ratio

Au/Cu ∼ κV1/V3 is naturally explained by small value of κ = VΣ/VR ∼ 1/15. In other
words, In the limit κ → 0 we would have yu = 0 and Ad = Ae, Cd = Ce. Hence, the
precision of the relations yb ≈ yτ and ydys ≈ yeyµ is in fact due to the small value of yu.

– 13 –



J
H
E
P
0
8
(
2
0
2
3
)
1
6
2

3 Parameters of the asymmetric Fritzsch texture

The Yukawa matrices in the Fritzsch form (1.6) can be diagonalized by biunitary transfor-
mations parameterized as:

(F ′dO′d)† Yd (FdOd) = diag(yd, ys, yb) , (F ′uO′u)† Yu (FuOu) = diag(yu, yc, yt) (3.1)

where Od(u), O′d(u) are orthogonal matrices and Fd(u), F ′d(u) are the phase transformations,
so that the rephased matrices:

Ỹd = F ′ †d YdFd =

 0 Ad 0
Ad 0 Bd xd
0 Bd/xd Cd

 , Ỹu = F ′ †u YuFu =

 0 Au 0
Au 0 Bu xu
0 Bu/xu Cu

 (3.2)

present only real and positive entries. Then, the real matrices are diagonalized by the
bi-orthogonal transformations

O′Td ỸdOd = diag(yd, ys, yb) , O′Tu ỸuOu = diag(yu, yc, yt) (3.3)

Therefore, for the CKM matrix of quark mixing we obtain

VCKM = OTuFOd = OTu

 e
i(β̃+δ̃) 0 0

0 eiβ̃ 0
0 0 1

Od (3.4)

where the matrix F = F ∗uFd without loss of generality can be parameterized by the two
phases β̃ and δ̃ while the orthogonal matrices Ou,d can be parametrized as

Od = Od23Od13Od12 =

 1 0 0
0 cd23 sd23
0 −sd23 c

d
23


 cd13 0 sd13

0 1 0
−sd13 0 cd13


 cd12 sd12 0
−sd12 c

d
12 0

0 0 1

 (3.5)

with cdij = cos θdij and sdij = sin θdij , and analogously for up-quarks, with Ou = Ou23Ou13Ou12.
The rotations of right-handed states O′u,d, can be parameterized in the same way, with sines
s
d(u)′
ij and cosines cd(u)′

ij .
Hence, Ỹd contains four parameters, Ad, Bd, Cd and xd, which determine the three

Yukawa eigenvalues yd,s,b and the three rotation angles in Od. Analogously, the four
parameters in Ỹu determine the Yukawa eigenvalues yu,c,t and the three angles in Ou.
Therefore, we have 10 real parameters Au/d, Bu/d, Cu/d, xu/d and two phases β̃, δ̃ which have
to match 10 observables, the 6 Yukawa eigenvalues and 4 independent parameters of the
CKM matrix (1.4).

The Yukawa eigenvalues and rotation matrices O and O′ can be found by considering
the “symmetric” squares respectively of the Yukawa matrices Ỹ T

f Ỹf and Ỹf Ỹ T
f , f = u, d.

In doing so, we obtain the following relations

C2 + (x2 + x−2)B2 + 2A2 = Y 2
3 + Y 2

2 + Y 2
1

B4 + 2C2A2 + (x2 + x−2)B2A2 +A4 = Y 2
3 Y

2
2 + Y 2

3 Y
2

1 + Y 2
2 Y

2
1

A2C = Y1Y2Y3 (3.6)

– 14 –



J
H
E
P
0
8
(
2
0
2
3
)
1
6
2

where we omit the indices f = u, d and imply Y1,2,3 = yu,c,t for the Yukawa eigenvalues of
upper quarks and Y1,2,3 = yd,s,b for down quarks.

It is useful to expand the parameters having in mind the approximate hierarchy
yt : yc : yu ∼ 1 : εu : ε2u and yb : ys : yd ∼ 1 : εd : ε2d, where it can also be noted that
phenomenologically the rough relation εu ∼ ε2d applies. In leading order approximation (up
to corrections of order ε ∼ Y2/Y3 ∼ Y1/Y2) we have (see also ref. [28])

C ≈ Y3, B ≈
√
Y2Y3, A ≈

√
Y1Y2 (3.7)

so that Cf : Bf : Af ∼ 1 : ε1/2f : ε3/2f . Since these ratios in fact reflect the hierarchy in
the horizontal symmetry breaking (2.5), C : B : A ∼ V3 : V2 : V1, this means that the
inter-family mass hierarchy can actually be induced by a milder hierarchy between the
VEVs. The matrix entries Af , Bf and Cf depend on the deformation xf only at higher
orders in εf :

A

Y3
=
√
Y1 Y2
Y 2

3

1
cf ′23c

f
23

+O(ε7/2) , B

Y3
=

√√√√Y2
Y3

[
1− 1

2
Y1
Y2

(
cf23

cf ′23
+ cf ′23

cf23

)]
+O(ε7/2) ,

C

Y3
=
√

1− B2

Y 2
3

(
x2 + 1

x2

)
+ Y 2

2
Y 2

3
− 2A

2

Y 2
3

+O(ε4) . (3.8)

On the other hand, considering again the hierarchy Y3 : Y2 : Y1 ∼ 1 : ε : ε2, the rotation
angles in (3.5) appear to be small, so that cd,uij ≈ 1, and in the leading approximation we
obtain

sf23 ≈
x−1B

C
≈ 1
x

√
Y2
Y3
, sf12 ≈

AC

B2 ≈
√
Y1
Y2
,

sf13

sf23
≈ x2A

C
≈ x2sf12

Y2
Y3

(3.9)

so that sf23, s
f
12 ∼ ε

1/2
f and sf13 ∼ ε2f , f = u, d. More precisely, we have

tan(2θf23) = 2
x

√
Y2 − Y1
Y3

√
1− (x−2 + x2)Y2−Y1

Y3
+ Y 2

2
Y 2

3

1− 2
x2

Y2−Y1
Y3

+ Y 2
2
Y 2

3

+O(ε7/2)

tan(2θf12) = −2

√√√√Y1 c
f ′
23

Y2 c
f
23

1
1 + 1

2
Y1
Y3

(3x2 − x−2)
+O(ε7/2)

tan(2θf13) = 2Asf ′23
Y3

+O(ε4) = 2xY2
Y3

√
Y1
Y3

[
1− 1

2
Y1
Y2
− 1

4

(
x2 − 1

x2

)
Y2
Y3

]
+O(ε4) (3.10)

which, up to relative corrections of order O(ε2), correspond to:

sf23 ≈
1
x

√
Y2
Y3

(
1− 1

2x
2Y2
Y3
− 1

2
Y1
Y2

)
+O(ε5/2),

sf12 ≈ −

√√√√Y1 c
f ′
23

Y2 c
f
23

[
1− 3

2
Y1 c

f ′
23

Y2 c
f
23

]
+O(ε5/2),

sf13 ≈
Asf ′23
Y3

+O(ε4) = x
Y2
Y3

√
Y1
Y3

[
1− 1

2
Y1
Y2
− 1

4

(
x2 − 1

x2

)
Y2
Y3

]
+O(ε4) (3.11)
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The expressions for θf ′23, θ
f ′
12 and θf ′13 are the same with the replacement x→ 1/x, sf ′23 → sf23,

cf ′23 → cf23.
These equations show that the yukawa matrix elements Au/d, Bu/d, Cu/d, xu/d and the

rotation angles in the matrices Ou,d can be computed respectively in terms of the Yukawa
ratios ys/yb, yd/ys and yu/yc, yc/yt and the ‘deformation’ parameters xd and xu.

Then, up to relative corrections O(ε2d), we have for the CKM matrix elements

|Vus| =
∣∣∣ sd12 − su12 c

d
12c

d
23 e
−iδ̃

∣∣∣+O(ε5/2) ,

|Vcb| =
∣∣∣ sd23 − su23 c

d
23 e
−iβ̃

∣∣∣+O(ε5/2) ,

|Vub| =
∣∣∣sd13 e

iδ̃ − su12

(
sd23 c

u
23 − su23 c

d
23 e
−iβ̃

)∣∣∣+O(ε4) . (3.12)

It can be noticed that for fixed values of the asymmetries xd, xu, Vus depends on the phase
δ̃ while Vcb only on the phase β̃. It is also worth noting that for xd = 1, the contribution of
sd13 in |Vub| is negligible and the Fritzsch texture implies the prediction |Vub/Vcb| ≈

√
yu/yc.

Similar considerations can be inferred for the other off-diagonal elements

|Vcd| =
∣∣∣ sd12 c

d
23 − su12 c

d
12 e

iδ̃ + sd12s
d
23s

u
23 e
−iβ̃
∣∣∣+O(ε5/2) ,

|Vts| =
∣∣∣(sd23 − su23 c

d
23 e

iβ̃
)
cd12

∣∣∣+O(ε5/2) ,

|Vtd| =
∣∣∣sd13 e

iδ̃ − sd12

(
sd23 − su23 c

d
23 e

iβ̃
)∣∣∣+O(ε3) , (3.13)

with the prediction |Vtd/Vts| ≈
√
yd/ys for xd = 1. As regards the complex part of VCKM,

we can consider the rephasing-invariant quantity J = −Im(V ∗usV ∗cbVubVcs), the Jarlskog
invariant. In our scenario we have

J = − sin δ̃ su12s
d
12

[
(sd23)2 cd23c

d
12 − 2 cos β̃ sd23s

u
23 + (su23)2

]
+
(
sin δ̃su12s

d
23 + sin β̃sd12s

u
23

)
sd13 +O(ε4d) (3.14)

4 Analysis of the Yukawa parameters and CKM mixing

4.1 Observables

The input values in our analysis will be the ratios of the Yukawa eigenvalues and the CKM
matrix elements. More specifically, since we do not need to make assumptions on the
energy scale at which the Yukawa matrices assume the Fritzsch form, we want to reproduce
Yukawas ratios and CKM elements at different energy scales. Yukawa matrices evolve
according to the renormalization group equations, as a function of the energy scale. For
energy scales µ . mt, the running is basically determined by the strong coupling αs(µ)
and QCD renormalization factors cancel in quark-mass ratios. We can derive the ratios
of Yukawa couplings through the ratios of running quark masses at µ = mt. The latter
ratios can be deduced from the data collected in table 1. For up quarks we also need the
ratio mt/mb, from renormalization group equations (see for example ref. [80]) we obtain
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ms/mud 27.31(10) PDG [3]∗

mu/md 0.477(19) PDG [3]∗

mc/ms 11.768(34) FLAG Nf = 2 + 1 + 1 [77]
mb/ms 53.94(12) Bazavov et al. 2018 [78]
mb/mc 4.579(9) PDG [3]
Q 22.9(4) PDG [3]∗

22.1(7) phenomenological [79]
Mt 172.69± 0.30GeV PDG [3]
mb(mb) 4.203(11)GeV FLAG 2021 Nf = 2 + 1 + 1 [77]
MZ 91.1876(21)GeV PDG [3]
αs(MZ) 0.1185(16) PDG [3]
α(MZ)−1 127.951(9) PDG [3]
sin2 θW (MZ) 0.2299(43) PDG [3]
∗Value adopted by Particle Data Group (PDG), averaging Nf = 2 + 1 + 1 and
Nf = 2 + 1 + 1 flavours lattice results [77].

Table 1. Determinations of quark mass ratios used in this work. In the first line, mud = (mu+md)/2.

mt/mb = 59.46± 0.55. Then, at µ = mt we have

md

ms
= 1

20.17± 0.27 ,
mu

mc
= 1

498± 21
ms

mb
= 1

53.94± 0.12 ,
mc

mt
= 1

272.3± 2.6 , (4.1)

where we extracted the value ms/md through the relation ms/md = ms/mud (mu/md+1)/2
(blue band in figure 2). The main source of uncertainty in the mass ratios belongs to the
ratio rud = mu/md, which affects the ratios md/ms(rud), mu/mc(rud).7

For energy scales µ larger than mt, the set of coupled differential equations for the
running of the Yukawa and gauge couplings should be considered (see refs. [81–83]). Namely,
the renormalization group evolution of yt at one loop reads:

µ
dyt
dµ
≈ yt

1
16π2

(9
2y

2
t −

17
20g

2
1 −

9
4g

2
2 − 8g2

s

)
(4.2)

where gs, g2, and g1 are normalized as in SU(5), so that the electroweak gauge coupling
constants are g2

2/(4π) = g2/(4π) = α/ sin2 θW and g2
1/(4π) = 5

3g
′2/(4π) = 5

3α/ sin2 θW .
Since the light generations evolve in the same way with gauge couplings and trace of Yukawa
matrices, the ratios yd/ys, yu/yc remain invariant. The third generation instead receives
additional Yukawa contributions. Consequently the ratios with the heaviest generations

7In the following we are going to neglect the other small errors contributing in eq. (4.1) and consider
only this larger uncertainty.
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Figure 2. Light quarks mass ratios (see also table 1). Black continuous lines show the average of
three and four flavours lattice determinations of the ratio mu/md; blue lines represent the average
of three and four flavours lattice determinations of the ratio ms/mud, mud = (mu + md)/2; red
lines are obtained from the relation Q2 = (m2

s −m2
ud)/(m2

d −m2
u), using lattice determinations

of quark mass ratios. We also indicate the phenomenological determinations Q = 22.1(7) [79]
(dashed magenta) and ms/md = 17–22 [3] (dashed grey). The black star represents the central value
(mu/md,ms/md) = (0.477, 20.17).

evolve as:

µ
d

dµ

yc
yt
≈ −yc

yt

1
16π2

3
2 y

2
t , µ

d

dµ

ys
yb
≈ ys
yb

1
16π2

3
2 y

2
t (4.3)

As regards the CKM matrix, the mixing angles involving the third generation change
according to renormalization group equations [84, 85]:

µ
dVcb
dµ
≈ Vcb

1
16π2

3
2 y

2
t , µ

dVub
dµ
≈ Vub

1
16π2

3
2 y

2
t (4.4)

and similarly for Vtd and Vts, while the mixings between the first two families (Vus, Vud,
Vcd, Vcs) remain unchanged. As regards the CP violating Jarlskog invariant, the scaling of
J at leading order is the same as |Vcb|2, |Vtd|2, etc., see eq. (4.4).

In order for the Yukawa matrices (3.2) to be a viable texture, we must verify that we
can obtain the correct determinations of the quark masses and of moduli and phases of the
elements of the CKM matrix VCKM. Since VCKM is unitary, there are only 4 independent
observables. In the standard parameterization (1.4) these quantities correspond to:

s2
13 = |Vub|2 , s2

12 = |Vus|2

1− |Vub|2
, s2

23 = |Vcb|2

1− |Vub|2

J = −Im(VubVcsV ∗usV ∗cb) (4.5)

where we indicated the invariant J instead of the phase δ. The results of the latest global
fit for the low energy observables are [3] (see also table 3):

s13 = 0.00369(11) , s12 = 0.22500(67) , s23 = 0.04182+0.00085
−0.00074 (4.6)
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Quantity Value Quantity Value
|Vud| 0.97373(31) |Vcs| 0.975(6)
|Vus| 0.2243(8) |Vcd| 0.221(4)
|Vub| 0.00382(20) |Vtd| 0.0086(2)
|Vcb| 0.0408(14) |Vts| 0.0415(9)
|Vtd/Vts| 0.207(3) |Vub/Vcb| 0.084(7)

Table 2. Magnitudes and phases of CKM elements as quoted by Particle Data Group [3].

Parameter Global fit value [3]
sin θ12 0.22500± 0.00067
sin θ23 0.04182+0.00085

−0.00074

sin θ13 0.00369± 0.00011
J (3.08+0.15

−0.13)× 10−5

δ 1.144± 0.027

Table 3. Result of global fit for CKM parameters, including constraints implied by the unitarity of
the three generation CKM matrix, as reported by Particle Data Group [3].

and concerning CP violation:

J = (3.08+0.15
−0.13)× 10−5 (4.7)

or δ = 1.144(27). These values produce the CKM matrix [3]

|VCKM| =

 0.97435± 0.00016 0.22500± 0.00067 0.00369± 0.00011
0.22486± 0.00067 0.97349± 0.00016 0.04182+0.00085

−0.00074
0.00857+0.00020

−0.00018 0.04110+0.00083
−0.00072 0.999118+0.000031

−0.000036

 (4.8)

which may be compared to the determinations collected in table 2.
In our numerical analysis we will consider three benchmark scales at which the Yukawa

matrices are assumed in the Fritzsch form in eq. (3.2): 103 GeV, 106 GeV and 1016 GeV. In
order to test the viability of the model against different hypothesis for the scale of new
physics, in our numerical analysis we will consider three benchmark scales at which we
assume that the Yukawa matrices acquire the Fritzsch form in eq. (3.2): 103 GeV, 106 GeV
and 1016 GeV. This choice of benchmark scales is also related to scenarios with interesting
phenomenological or theoretical implications.

Namely, in a scenario with gauge horizontal symmetry SU(3)H , the corresponding gauge
bosons mediate flavour-changing processes such as K → K mixing, K → πµe, K → µe,
. . . which set a limit on the ‘horizontal’ symmetry breaking scale V2 & 106 GeV or so. In
fact, these processes are contributed by the gauge bosons of SU(2)H ⊂ SU(3)H which act
between the first two families and whose masses are related to the intermediate scale V2
(the largest scale V3 of SU(3)H breaking can be estimated from the VEV ratio of order
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V2/V3 ∼ 0.1, which is needed for the explanation of the quark mass hierarchy and mixing
pattern). Then, if V2 . 106 GeV these flavor changing processes would be detectable. For
larger values of SU(3)H symmetry breaking scales these phenomena would be strongly
suppressed.

The choice of scale µ ∼ 103 GeV is motivated by some present anomalies which could
be related to the presence of the vector-like fermion species at the TeV scale. Vector-like
fermions mixing with SM families are present in the model. If the masses of these new
fermions are large, then mixings with the SM fields are small and the effect on the CKM
matrix (or equivalently on the PMNS matrix in the lepton sector) are negligible. However,
there are hints of tensions in different determinations of CKM elements, which can be a
sign of the presence of such vector-like species with masses at the TeV scale and large
mixings with SM light quarks [62–68]. In this scenario, violation of CKM unitarity would
be expected, as well as several new phenomena (e.g. flavour changing neutral currents
processes) which may be detected. Moreover, mixing with the top quark can generate a
positive contribution to mW [68, 86–89], as would be needed taking into account the recent
result by the CDF Collaboration [90], which exhibits a large discrepancy from the SM
expectation. However, since the spontaneous breaking scale of the gauge SU(3)H symmetry
should be larger then V3 > 106 GeV, the choice of few TeV scale for the vector-like quarks
would require that the flavon fields should have extremely small Yukawa constants.

Finally, the choice of the GUT scale µ ∼ 1016 GeV is natural in the context of the
SU(5)× SU(3)H picture, and in particular in the context of the prototype model presented
at the end of section 2.

4.2 Analysis and results

In this section we are going to verify that asymmetric Fritzsch textures can predict quark
masses together with moduli and phases of the mixing elements, given present precision of
experimental data and recent results from lattice computations. We will test the validity of
this flavour pattern considering its formation at different energy scales. As already noted,
we have 10 real parameters Ad,u, Bd,u, Cd,u, xd,u, β̃, δ̃ which have to match 10 observables,
the 6 Yukawa eigenvalues and the 4 independent parameters of the CKM matrix.

4.2.1 Symmetric Fritzsch texture: why it does not work

The canonical Fritzsch texture with xu,d = 1, employing 8 parameters to determine 10
observables, would be the most predictive structure. However, it is in contradiction with
the experimental data, as can be seen in refs. [18, 19]. Before proceeding with the modified
texture, we illustrate the reasons behind the failure of the Fritzsch matrices, taking into
account present precision data and using our formalism, in order to demonstrate how these
predictions can be adjusted by a deformation of the texture.

In this scenario, the 6 yukawa eigenvalues and the element Vus (or equivalently the
Cabibbo angle s12) can be reproduced by the symmetric Yukawa matrices by using 7
parameters, the 6 yukawa elements and the phase δ̃. In fact, as it is apparent from
eq. (3.12), besides the ratios of Yukawas, the value of Vus is selected only by the phase δ̃
while it has almost no dependence on the phase β̃. On the contrary, the value of Vcb is
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Figure 3. Symmetric Fritzsch textures for quark Yukawa matrices do not predict the correct value
of Vcb and of the ratio Vub/Vcb.

determined by the phase β̃, independently of the phase δ̃. Along with that, in the symmetric
case, Vub only presents a mild dependence on δ̃, given the smallness of sd13. Therefore, the
symmetric Fritzsch texture also implies a clean prediction of the ratio |Vub/Vcb| ≈

√
mu/mc,

basically independent of δ̃ but also of β̃. However, the experimental determinations of |Vcb|
and of the ratio |Vub/Vcb| cannot be accommodated by any of the values of the phase β̃,
regardless of the energy scale at which the Yukawa matrices assume the Fritzsch texture.
In a similar way, the predicted values of |Vtd|, |Vts| and |Vtd|/|Vts| appear to be too large.

We illustrate this result in figure 3. The value of Vus determines the phase δ̃ as shown
in figure 3(a), 3(b). In figures 3(c) and 3(d) we show the value of Vcb and Vub/Vcb in this
case, given Vus within 1σ of the experimental constraint. We indicate the predictions
(red bands) assuming that the Yukawa matrices present the symmetric Fritzsch texture
at a scale between 103 GeV (blue lines) and 1016 GeV (red lines), confronted with the
experimental determinations (grey bands) at 1σ confidence level. In figure 3(d), in addition
to the experimental determination |Vub/Vcb| = 0.094(5) (grey) obtained from the separate
determinations of Vub and Vcb (see table 2), we also indicate the independent measurement
of the ratio |Vub/Vcb| = 0.084(7) (cyan). The width of the prediction in this case is given by
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the uncertainty on the ratio mu/md and on Vus. It is clear that the expectations implied
by this scenario largely disagree with the experimental requirements.

We are therefore going to consider the minimally modified Fritzsch texture with
asymmetry parameters xd and xu. We will pay a special attention to the 9 parameters case
with xu = 1, xd 6= 1 which can be motivated in the context of SU(5) grand unification and
demonstrate that such a predictive ansatz can perfectly work.

4.2.2 Asymmetric Fritzsch texture: how it works

Let us first provide an example in order to convey a comparison with the expectations of the
standard Fritzsch texture displayed in figure 3. For this purpose, we fix xd = 3.3 (keeping
xu = 1). As it is clear from eq. (3.12), again the expected value of Vus manifests almost
no dependence from the phase β̃ whereas it is determined by the phase δ̃. Conversely, Vcb
remains independent of the phase δ̃. However, as effect of the presence of the asymmetry, the
rotation angle sd23 decreases while sd13 increases. This modification causes the prediction of
|Vcb| to shift towards lower values. As a result, an interval of values of the phase β̃ intercepts
the experimental determination. Furthermore, the asymmetry originates a dependence of
|Vub| on δ̃ and of the ratio |Vub/Vcb| on β̃. Similarly, the predictions of Vtd and Vts adjust to
lower values.

Remarkably, the values of δ̃ and β̃ selected by |Vus| and |Vcb| provide a prediction
of all other observables which results within 1σ of their experimental constraints for any
scale of new physics. In fact, a χ2 fit using the determinations of |Vus|, |Vub|, |Vcb| and J
(again we have 8 parameters against 6 eigenvalues plus 4 CKM observables) returns in the
minimum χ2

min ≈ 0. In figure 4 we illustrate the new predictions (red bands) for Fritzsch-like
texture at a scale between 103 GeV (blue lines) and 1016 GeV (red lines), confronted with
the experimental determinations (grey bands) at 1σ confidence level. We also indicate the
1σ interval of the phases δ̃ and β̃ (green and yellow bands respectively). In displaying
the plots, the other variables are allowed to move inside the 1σ confidence region. The
1σ and 2σ confidence intervals of δ̃ and β̃ are displayed in figure 5. In figure 6 we report
the expectations on Vtd and Vts produced by these parameters. It is evident that all these
observables can be obtained within 1σ of the experimental constraints independently on
the scale of new physics. We will now describe a more detailed analysis, allowing different
values of the asymmetries in order to find the parameter space for which all observables are
in agreement with the experimental constraints.

4.2.3 Global numerical analysis

In the general scenario in which both up and down Yukawa matrices can present the
asymmetry, xd, xu 6= 0, we have 10 conditions for 10 parameters. Therefore, we can wonder
if an exact solution exists. We proceed as follows. We first evaluate the matrix entries
Ad,u, Bd,u, Cd,u in eq. (3.2) in terms of the Yukawa ratios and of the parameters xd, xu, β̃,
δ̃. Hence, we fit the CKM mixing elements. In particular, we want to find the values of
the asymmetry parameters xd, xu and the phases β̃, δ̃ for which, if they exist, the mixing
matrix in eq. (3.4) can reproduce the 4 independent quantities describing the unitary matrix
VCKM as determined by present global data reported in eqs. (4.6), (4.7). Next, we want
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Figure 4. Predictions of the asymmetric Fritzsch-like textures (see eq. (3.2)) with xd = 3.3, xu = 1,
confronted with experimental data.
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Figure 5. 1σ and 2σ confidence intervals of the parameters.
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Figure 6. Predictions of Vts and Vtd from asymmetric Fritzsch textures, with paramters determined
as in figure 4. We also show the wrong predictions of the symmetric Fritzsch texture (orange region)
at a scale between 103 GeV (blue dashed lines) and 1016 GeV (red dashed lines).

to investigate the SU(5) motivated scenario with symmetric texture for up-type quarks,
by imposing xu = 1. Hence, we perform a χ2 fit of the four CKM observables with three
parameters, the asymmetry parameter xd and the phases β̃, δ̃.

In the following, we will use the central values of Yukawas ratios. The ratios mu/md and
ms/md are not well-known, as shown in figure 2. For this reason, in principle rud = mu/md

could be left as a parameter, so that we would obtain the functions yd
ys

(rud), yu

yc
(rud),

VCKM(rud, xd, xu, β̃, δ̃) which can vary with this ratio (as we did in the previous example).
However, since the central value of the determination mu/md turns out to be also a good
point in our fit, we also impose mu/md = 0.477, in the central value. In order to test the
viability of the model against different hypothesis for the scale of new physics, we illustrate
the analysis assuming that the Yukawa matrices acquire the Fritzsch form in eq. (3.2) at
the benchmark scales of 103 GeV, 106 GeV and 1016 GeV.
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µ = 103 GeV. At 1TeV, we have (recalling that the ratios yd/ys, yu/yc in eq. (4.1)
remain renormalization invariant)

ys
yb

= 1
53.21 ,

yc
yt

= 1
276.0 ,

yd
yb

= 1
1073 ,

yu
yt

= 1
1.37× 105 , (4.9)

corresponding to yc/yt(µ = 1TeV) ≈ (1− 0.014)mc/mt, ys/yb(µ = 1TeV) ≈ 1.014ms/mb,
For the mixing with the third generation we find Vcb(1TeV) = 1.014Vcb, Vub(1TeV) =
1.014Vub, and the same for Vtd and Vts. After imposing theYukawas ratios (4.9), we can
write the Yukawa matrices in terms of the four parameters xd, xu, β̃, δ̃. Hence, we get a
system of four equations (we have to match three angles and J) to be solved with the four
parameters xd, xu, β̃, δ̃. This system turns out to have a solution:

xd = 3.15 , xu = 0.97 , β̃ = −0.75 , δ̃ = −1.91 . (4.10)

This means that the Fritzsch-like pattern in eq. (3.2) can be considered as a good flavour
structure which gives the right predictions of masses and mixings of quarks. A second
solution can be found with (xd, xu, β̃, δ̃) = (5.28, 1.35,−1.25, 3.09), which requires larger
asymmetries and we are not going to consider here.

Given the result in eq. (4.10), we are interested to analyse the scenario in which the
up-quark Yukawa matrix assumes the original symmetric Fritzsch texture, that is xu = 1.
Having one less parameter, we perform a χ2 fit of the three CKM angles and the CP-violating
quantity J with the parameters xd, δ̃, β̃. We obtain χ2

min = 0.25 in the minimum, with best
fit values in:

xd = 3.16± 0.17 , β̃ = −0.78± 0.02 , δ̃ = −1.92± 0.04 (4.11)

where we also indicated the 1σ interval of the parameters (χ2
min + 1). We conclude that the

canonical symmetric Fritzsch texture for up quarks is a good predictive ansatz in models in
which an asymmetry is generated in the mixing between the second and third generation in
the down sector.

µ = 106 GeV. Assuming 103 TeV as the scale of new physics, we have (with the ratios
yd/ys, yu/yc in eq. (4.1))

ys
yb

= 1
51.31 ,

yc
yt

= 1
286.2 ,

yd
yb

= 1
1034 ,

yu
yt

= 1
1.42× 105 , (4.12)

corresponding to yc/yt(103 TeV) ≈ 0.95mc/mt and ys/yb(103 TeV) ≈ 1.05ms/mb. For the
mixing elements we find Vcb(103 TeV) = 1.051Vcb, Vub(103 TeV) = 1.051Vub and the same
for Vtd and Vts. By imposing the values of the Yukawas and the four CKM parameters we
find the solution:

xd = 3.09 , xu = 0.92 , β̃ = −0.75 , δ̃ = −1.91 , (4.13)

and a second solution in (xd, xu, β̃, δ̃) = (5.18, 1.28,−1.25, 3.09).
Again we can fix xu = 1 so that the up-quark Yukawa matrix assumes the original

symmetric Fritzsch texture. After imposing the Yukawa eigenvalues, we perform the fit of
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the three CKM angles and J with the parameters xd, δ̃, β̃. We obtain χ2
min = 0.03 in the

minimum and the 1σ intervals of parameters (χ2
min + 1):

xd = 3.14± 0.16 , β̃ = −0.84± 0.02 , δ̃ = −1.92± 0.04 (4.14)

µ = 1016 GeV. At 1016 GeV, we have (with the ratios yd/ys, yu/yc in eq. (4.1))

ys
yb

= 1
48.40 ,

yc
yt

= 1
303.4 ,

yd
yb

= 1
976 ,

yu
yt

= 1
1.51× 105 , (4.15)

meaning yc/yt(1016 GeV) ≈ (1− 0.1)mc/mt, ys/yb(1016 GeV) ≈ 1.1ms/mb. For the mixing
elements we have Vcb(1016 GeV) = 1.114Vcb, Vub(1016 GeV) = 1.114Vub. We find the solution

xd = 3.00 , xu = 0.85 , β̃ = −0.75 , δ̃ = −1.91 , (4.16)

and a second solution in (xd, xu, β̃, δ̃) = (5.03, 1.17,−1.25, 3.09), with larger asymmetries.
By imposing the condition xu = 1, we perform the χ2 fit of the three CKM angle and

invariant J . We receive the minimum χ2
min = 0.75 in the best fit values of the parameters

(and relative 1σ interval, χ2
min + 1)

xd = 3.12± 0.16 , β̃ = −0.93± 0.02 , δ̃ = −1.94± 0.04 (4.17)

Summary. We conclude that a symmetric Fritzsch texture for up quarks (xu ≈ 1) and
a minimally modified Fritzsch texture as in eq. (3.2) for down quarks with xd ≈ 3 are
good flavour structures, which can predict the right masses of quarks as well as CKM
mixings and phase. In particular, 3 . xd . 3.3 is a good interval for any energy scale at
which the Fritzsch-like textures exist. In figure 7 we present the results of the analysis in
the xd-β̃, δ̃-β̃ and xd-β̃ planes in the scenario with xu = 1, marginalizing over the other
variable, assuming Fritzsch-like texture at 103 GeV, 106 GeV, 1016 GeV (left, centre and right
respectively). We show the 1σ, 2σ, 3σ (blue, red and green regions) confidence intervals
(χ2

min + 1, χ2
min + 4, χ2

min + 9). The best fit values give for the three benchmark scales
respectively the magnitudes of CKM elements:

0.97435 0.22500 0.00369
0.22486 0.97347 0.0418
0.00865 0.0410 0.99910

 ,
0.97435 0.22500 0.00367

0.22485 0.97341 0.0416
0.00880 0.0409 0.99903

 ,
0.97435 0.22500 0.00365

0.22481 0.97330 0.0415
0.00901 0.0407 0.99892


(4.18)

in perfect agreement with the observables in eq. (4.8).
By adopting different choices of experimental results, e.g. some of the determinations in

table 2 instead of the global fit, the result of the numerical analysis would be very similar.
In fact, we find that this flavour pattern is able to reproduce all CKM observables within 1σ.
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Figure 7. Parameter space in the scenario with xu = 1 (symmetric Fritzsch texture for up-type
quarks, asymmetric 23 entries for down-type quarks, see eq. (3.2)) in the xd-β̃, δ̃-β̃ and xd-β̃ planes,
marginalizing over the other variable. 1σ, 2σ and 3σ preferred regions of the parameters are indicated
(χ2

min + 1, χ2
min + 4, χ2

min + 9), assuming Yukawa matrices of Fritzsch-like form at 103 GeV (left),
106 TeV (centre), 1016 TeV (right).

5 Conclusion

The hierarchy between fermion masses, their mixing pattern as well as the replication of
families itself remain a mystery in the context of the Standard Model or grand unified
theories. It is intriguing to think that clues for an explanation may be found in the existing
relations between mass ratios and mixing angles, as the formula for the Cabibbo angle
Vus =

√
md/ms, which may be regarded as not accidental but rather connected to an

underlying flavour theory. These relations can be predicted by mass matrices with reduced
number of parameters. Moreover, present experimental data and lattice computations have
reached enough precision to scrutinize some of the hypothesis on the Yukawa textures.
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In this work, we concentrated on the predictive Fritzsch texture for quark masses, with
6 zero entries (three in the up-quarks Yukawa matrix and three in the down-type one).
This flavour structure contains 8 parameters which should match 10 observables: six quarks
masses, three mixing angles and one CP-violating phase. However, the original symmetric
ansatz is excluded by present data. Nevertheless, an asymmetry in the mixing between the
second and third generation can be introduced. We analyzed this asymmetric version of
the Fritzsch texture, with the same vanishing elements, considering its possible origin and
confronting its predictions with recent precise experimental and lattice results on quark
masses and mixings.

In particular, we showed that the canonical symmetric Fritzsch form for up-type quarks
can be combined with the asymmetric texture for down quarks. In this way, with 9
parameters to match 10 observables, all values of mass ratios and CKM matrix observables
can be reproduced within ∼ 1σ, independently on the energy scale at which the Fritzsch
structure is generated.

We showed how this flavour pattern, the symmetric texture for up quarks and the
asymmetric one for down quarks, can naturally arise from models with SU(3)H gauge family
symmetry in the context of Standard Model or grand unified theories.
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