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1 Introduction

Over recent years, hadronic matter under conditions of temperature and chemical poten-
tials relevant to the QCD phase diagram has been the object of intense study. Theoretical
tools, based mostly on effective field theories [1–27], the rapid development of lattice simu-
lations [28–37] and even experimental information within the Beam Energy Scan program
in heavy-ion collisions [38, 39] have boosted the activity and knowledge within this field.
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The emerging consistent picture is that the QCD transition of deconfinement and
chiral symmetry restoration takes place in the plane of temperature T and baryon chemical
potential µB as a smooth crossover at low µB, which would turn into a first-order transition
at the QCD critical point. The existence and properties of the latter constitute one of the
open problems in the field [34–36], together with the nature of the transition, and its
connection with U(1)A restoration, which is studied mostly through the degeneration of
susceptibilities and screening masses in different channels [1, 22–27, 30–33, 40–46]. At
µB = 0, the crossover transition takes place at a critical temperature Tc ' 155MeV,
which goes down to T 0

c ' 129MeV in the light chiral limit mu,d → 0+ [37]. In that case,
the transition is possibly of second order, although it could be of first order if the U(1)A
symmetry is sufficiently weak near Tc [1, 41, 46].

A relevant part of this program has been to include the effect of interactions among
the thermal bath components and understand their role in the phase diagram, especially
regarding chiral symmetry restoration. Actually, for certain observables, it turns out that
including properly the thermal (or in-medium) modifications of their spectral properties,
such as the mass and width of the resonances that can be created and decay in the thermal
bath, is more relevant than including heavier states, as customarily done in approaches
based on the Hadron Resonance Gas (HRG) model [13, 14, 17]. A very significant example
is the light scalar susceptibility, i.e., the correlator of the quark condensate at vanishing
momentum. This is one of the key observables signaling chiral symmetry restoration since
it develops a peak at the transition temperature in the crossover regime that should get
stronger as the light u, d quark masses decrease, becoming a divergence in the light chiral
limit if the transition is of second order [28, 29, 34–37, 47]. In fact, in recent years it
has been shown that saturating the scalar susceptibility with the lightest meson state
with its quantum numbers of isospin and total angular momentum I = J = 0, i.e., the
f0(500) thermal resonance, yields the expected peaked profile in accordance with lattice
results and improves the description of the scalar susceptibility around the transition over
the HRG [20, 48]. The spectral properties of the f0(500) resonance have been obtained
from the second Riemann sheet pole of the I = J = 0 partial wave of the ππ scattering
amplitude at finite temperature in unitarized Chiral Perturbation Theory (ChPT) [11, 12],
which has proven to be a quite successful scheme to describe light meson spectroscopy
and thermal properties [4, 6, 8, 15, 20, 23, 24]. While ChPT provides the most general
low-energy Lagrangian and a consistent perturbative scheme compatible with the QCD
symmetries [4, 49, 50], unitarization methods allow one to extend the ChPT applicability
range and generate dynamically the expected resonance spectrum [51–60]. Actually, the
same scheme yields in the I = J = 1 channel the thermal modifications of the mass
and width of the ρ(770) resonance at finite temperature [11, 12, 61] in agreement with
the in-medium broadening of that resonance expected from other theoretical analyses and
from the experimental dilepton spectrum [9, 62–64]. In addition, the study of the thermal
spectral functions of the ρ(770) and the a1(1260) mesons shows that those states become
degenerate at the chiral transition, as it should be expected [9, 65].

In the present work, we extend the previous program to study pion-kaon scattering.
Namely, we will compute the πK elastic scattering amplitude at finite temperature within
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ChPT, as well as study its unitarization and the generation of the thermal K∗0 (700) and
K∗(890) resonances. Updated analyses and reviews about these resonances at T = 0 can
be found, for e.g., in [59, 66–68], where their present theoretical and experimental status,
as well as precise determinations of their spectral properties, are studied.

The interest in the K∗0 (700) resonance at finite temperature has increased lately. For
instance, in [69], its thermal properties are studied within thermal sum rules, and in [70],
using virial expansion methods. Nevertheless, these two references do not take into account
the thermal modifications of the πK amplitude at finite temperature. Our analysis also
has direct implications for the chiral transition and its nature since, in a recent work [71],
it has been proved using Ward Identities (WI) that the I = 1/2 scalar susceptibility
should also have a peak above Tc. This peak indicates the onset of UA(1) restoration via
the degeneration of the scalar and pseudoscalar channels, whose lightest states are the
K∗0 (700) and the kaon, respectively. In addition, in [71], it has been shown that such a
peak can be reproduced by saturating the I = 1/2 scalar susceptibility with the K∗0 (700)
thermal pole, which, in turn, is generated via the unitarization of a simplified πK thermal
amplitude. While at T = 0 such amplitude corresponds to the full ChPT prediction,
at finite temperature it only includes the S-channel contribution responsible for thermal
unitarity, along the lines discussed in [72].

Therefore, the purpose of the present work is to provide the full calculation of the πK
scattering amplitude in ChPT at finite temperature and analyze its main phenomenological
consequences for the topics discussed above related to the QCD phase diagram. The main
advantages and novelties of our analysis are the following:

1. By construction, ChPT includes the correct thermal dependence of any Goldstone-
boson scattering amplitude at low temperatures, not only the effects related to ther-
mal unitarity. In particular, as we will see in detail, the analytical structure of a
thermal amplitude gets much more complicated due to the loop integrals involved.
We will then incorporate all effects properly, of which those weighted by Bose-Einstein
distribution functions evaluated at the pion mass are expected to have a significative
effect near Tc. In particular, we will include thermal tadpoles, which were neglected
in [71], and only partially considered in [72] as corrections to thermal masses.

2. The pion-kaon amplitude is renormalized consistently within the standard ChPT
dimensional regularization scheme, where the low-energy constants (LECs) absorb
ultraviolet divergences at T = 0. Therefore, we will be able to use recent LECs
determinations when performing our numerical analysis.

3. The pion and kaon mass dependence of the amplitude is under control within ChPT.
This will be particularly useful when discussing the light chiral limit, which is of great
relevance for chiral and U(1)A restoration, as well as the behavior towards the SU(3)
limit of pion-kaon degeneration.1

1Note that studying the exact SU(3) limit would require a coupled-channel analysis since, in this case,
the ηK and πK thresholds coincide. Instead, we will study only the behavior towards SU(3) degeneration,
limiting ourselves to kaon masses for which an elastic approximation still makes sense.
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4. The complete πK perturbative amplitude and its unitarization at finite temperature
will provide a rigorous check of the consistency and robustness of previous approaches
for the I = 1/2, J = 0 channel regarding the thermal behavior of the K∗0 (700) pole,
as well as its connection with chiral restoration.

5. We obtain in turn the I = 1/2, J = 1 vector partial wave at finite temperature.
Thus, we also study the thermal properties of the K∗(892) pole, which has not been
studied before in this context. Note that while scalars meson can be reproduced
reasonably well within the type of unitarization methods used in [71, 72], vector
mesons require an accurate fourth-order ChPT description. The K∗(892) meson
can be indeed produced in heavy-ion collisions [73], and recent estimations predict
small in-medium modifications (temperature and baryon chemical potential) of its
spectral properties compared with the ρ(770) [74], consistently with not observing a
significative reduction in K∗(892) production.

This article is organized as follows. In section 2 we present the general features of the
πK thermal amplitude and calculate it in ChPT. In section 3 we discuss the modifications
of the amplitude analytical structure induced by finite-temperature corrections. These
corrections are quite different from those in ππ scattering discussed in [11]. The fact that
pion-kaon scattering is an unequal-mass process gives rise to the appearance of the so-
called thermal Landau cuts, related to scattering processes taking place in the thermal bath.
Thus, we obtain here the generalization for unequal masses of the thermal unitarity relation
for the perturbative amplitude obtained in [11]. The temperature modification of partial
waves and scattering lengths in ChPT is obtained in section 4 as a direct phenomenological
consequence of our study. In section 5 we construct a unitarized thermal amplitude from the
perturbative ChPT one, following the guidelines of the Inverse Amplitude Method (IAM)
at finite temperature. From the unitarized amplitude, we will calculate the temperature
dependence of the I = 1/2, J = 0 pole parameters, mass, width, and residue, and compare
them with previous results. This pole is used in section 6 to saturate the scalar I = 1/2
susceptibility. We will see that the expected behavior is reproduced and we will provide
a comparison with previous analysis. Special attention is paid to the effect of the LECs
uncertainties in our results. As commented, our analysis is also suitable to reproduce the
K∗(892) thermal properties, which is carried out in section 5. Finally, we have moved to
the appendices all the technical details regarding kinematics, thermal loop integrals, and
other issues, as well as the explicit expression for the thermal amplitude.

2 The πK scattering amplitude at finite temperature in ChPT

For the definition of the scattering amplitude at finite temperature, we follow the standard
prescription and assume that the temperature dependence arises in the loops from the
Thermal Field Theory Feynman rules [75], i.e., in the four-point Green function connected
with the T -matrix elements through the LSZ reduction formula. Within this approach,
the ππ scattering lengths [76, 77] and the I = J = 1 partial wave [78] have been computed
at finite temperature in the Nambu-Jona-Lasinio (NJL) model. The scattering lengths
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Figure 1. Feynman diagrams corresponding to the Kπ → Kπ scattering amplitude up to fourth
order in ChPT.

have also been calculated within the Linear Sigma Model (LSM) [79] and in ChPT [80],
while, as mentioned above, the full ChPT ππ scattering finite-temperature amplitude was
obtained in [11]. As for the πK elastic thermal amplitude, the only available analyses to
our knowledge are those in [71, 72], which provide a partial calculation of the amplitude
since the sole one-loop effects included are those related to thermal unitarity (see below).

The ChPT framework guarantees that the low-energy amplitude includes all possible
terms compatible with the QCD symmetries and, especially, the chiral symmetry breaking
pattern within a consistent low-energy chiral power counting, renormalizable order by
order. Here, we are interested in the elastic K π → K π scattering amplitude. The relevant
type of Feynman diagrams are shown in figure 1. We are considering the amplitude up
to O(p4) in the chiral power counting, so that the vertices and propagators entering those
diagrams (the same as for T = 0) are calculated from the ChPT SU(3) Lagrangians L2
and L4 given in [50], with Ln denoting the O(pn) Lagrangian and p standing for a generic
low-energy scale such as meson momenta, masses or temperature. Note that this implies
that we neglect any multipion contributions, which are suppressed at low energies by their
multibody phase space and have not been observed experimentally below 1GeV at T = 0.

The general structure of the amplitude is as follows. First, as for T = 0, one has
to consider the contributions from the S, T , U− channels corresponding to the different
ways of pairing incoming and outgoing external momenta in the reaction pK pπ → p′K p

′
π as

shown in figure 1. For every one of those channels and for the sum of them, the amplitude
at finite temperature T , e.g., for the process K+π+ → K+π+, can be written according to
the general structure

T (S,T,U;T ) = T2(s, t, u) + T tree
4 (s, t, u) + T F4 (S,T,U;T ) + T J4 (S,T,U;T ), (2.1)

where S = pK + pπ, T = pK − p′K , U = pK − p′π, being s = S2, t = T2, and u = U2
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the usual Mandelstam variables. The different contributions to the amplitude read as
follows: T2(s, t, u) is the tree-level O(p2) contribution to the amplitude coming from the L2
Lagrangian (diagram (a) in figure 1), T tree

4 is the O(p4) tree-level L4 contribution showed
in diagram (b) in figure 1, and T F4 , T J4 are the one-loop contributions, from which the
temperature dependence arises, standing for the tadpole-like and J-like thermal integrals
(we follow the same convention as in [11]), defined by the loop functions

Fβa(T ) =
∑∫
q

1
q2 −M2

a

, (2.2)

and
Jabk (Q0, | ~Q|;T ) =

∑∫
q

qk0
[q2 −M2

a ]
[
(q −Q)2 −M2

b

] , (2.3)

respectively. We work within the imaginary-time formalism of Thermal Field Theory [75]
so that, at finite temperature, momentum time-like integrals turn into Matsubara sums:

∑∫
q
≡ T

∞∑
n=−∞

∫
dD−1q

(2π)D−1 (2.4)

with q0 = ωn ≡ 2π i n T , Q0 = ωm with n, m integers, and the Euclidean metric
(−,−,−,−) is used. Note that the J-integrals in T J4 come from diagrams (e), (f), and
(g) in figure 1, while the tadpoles in T F4 come from diagrams (c) and (d), as well as from
relations between the J integrals, to be explained below. We also recall that the tadpole
contributions coming from diagram (d) in figure 1 are encoded in the self-energy and residue
of the propagator for the external legs, which are both T -dependent through Fβa(T ). That
correction is only perturbatively relevant in the T2 amplitude, as explained at T = 0, e.g.,
in [54].

It is important to observe that the J integrals depend separately on external timelike
and spacelike momenta due to the loss of Lorentz covariance in the thermal bath. Actually,
while at T = 0 energy-momentum conservation and the on-shell condition for external legs
leave only three Lorentz-invariant quantities for a generic scattering process pa pb → pc pd,
e.g., pa · pb, pa · pc, pb · pc or s, t, u, at T 6= 0 one has six independent rotation invariants,
e.g., ~pa · ~pb, ~pa · ~pc, ~pb · ~pc, p0

a, p0
b , p0

c , which we can recast into s, t, u, S0, T 0, U0. In both
cases, the on-shell s+ t+u =

∑
M2
i condition reduces the number of independent variables

to two and five, respectively.
Once the Matsubara sums are performed using standard Thermal Field Theory, the

resulting integrals can be analytically continued for scattering processes through

Jk(2πmT, | ~Q|)→ (−i)kJk(−i(Q0 + iε), | ~Q|), (2.5)

with Q0 ∈ R [11, 75]. Explicit expressions for the above Jabk loop integrals and tadpoles Fi
at finite temperature are given in appendix B, where we also discuss their most relevant
analytical properties for the present work. Note that due to the loss of Lorentz covariance
in the thermal bath, there are three independent Jabk functions for k = 0, 1, 2. Nevertheless,
in the CM frame, they are related through (B.13)–(B.14). In addition, it is worth noting
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that T J4 contains the integrals responsible for elastic unitarity above the physical pion-kaon
threshold.

Another important feature of the finite-temperature case is that the usual T = 0
relations based on Lorentz covariance (Pasarino-Veltman like relations), which allows one
to write loop integrals with momenta in the integrand numerator, such as Jk above, in
terms of just one integral, say J0 [49, 50], are no longer valid due to the loss of Lorentz
covariance. Nevertheless, there are still useful relations between the F and Jk loop thermal
integrals, which help to simplify the expression for the amplitude. Those relations are also
provided in appendix B.

The thermal amplitude can be decomposed into partial waves tIJ of definite isospin I
and angular momentum J . One has to be careful only with performing the usual crossing
symmetry now in terms of S,T,U variables instead of s, t, u, which gives rise to the isospin
projections:

T3/2(S,T,U;T ) = T (S,T,U;T ), (2.6)

T1/2(S,T,U;T ) = 1
2 [3T (U,T,S;T )− T (S,T,U;T )] , (2.7)

with T (S,T,U;T ) the finite-temperature K+π+ → K+π+ amplitude, which we collect in
appendix C. For the partial-wave projection, we consider the center of momentum (CM)
frame (see appendix A) and define [54]

tIJ(s;T ) = 1
32π

∫ 1

−1
dxPJ(x)TI

[
S0 =

√
s, ~S = ~0, T0 = 0, |~T |2 = 2p2(s)(1− x),

U0 = ∆√
s
, |~U |2 = 2p2(s)(1 + x);T

]
(2.8)

with x the cosine of the scattering angle in the CM frame, PJ(x) the Legendre polynomial
of order J , p(s) = pCM (s;MK ,Mπ) defined in (A.3) and ∆ = ∆Kπ = M2

K −M2
π .

3 Analytical and cut structure of the thermal amplitude. Thermal uni-
tarity and Landau cuts

In this section, we discuss the analytic structure in the complex-s plane of the perturbative
ChPT partial waves at finite temperature and obtain a generalized thermal unitarity rela-
tion, which includes the Landau cut contribution arising from the pion-kaon mass difference
MK −Mπ. Such thermal unitarity relation generalizes the results in [11] for equal-mass
scattering and supports the unitarization method explained in section 5. In appendix B
(sections B.2 and B.3), we provide a detailed description of the analytic structure of the
J-loop integrals in the S, T , and U channels.

At nonzero T , the generic Jabk (Q) thermal function given in (2.3) can be integrated
using standard contour techniques, leading to the results collected in (B.1). Its analytic
structure, depicted in figure 11, can be obtained from its imaginary part in (B.15). The
modifications with respect to the T = 0 case are twofold: first, the unitary cut contribution
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for Q2 ≡ s ≥ (Ma + Mb)2 is weighted by the combination of Bose-Einstein functions
1 + n1 + n2, where ni is short for nB(Ei) = (eEi/T − 1)−1 and the unity contribution
stands for the T = 0 part; second, a new cut, denoted as the Landau cut, appears for
−| ~Q|2 ≤ s ≤ (Ma −Mb)2 and is weighted by n1 − n2.

The presence of these two cuts and their statistical Bose-Einstein weights are explained
by scattering processes coming from the interactions of particles in the thermal bath with
the incoming and/or outgoing asymptotic states [11, 81–83]. Namely, for a generic scat-
tering process a b → c d, one has to take into account the stimulated production of the c
and d states from scattering with the thermal bath components, as well as their absorption
by the thermal bath; the Bose-Einstein function ni and 1 + ni weight the probability for
absorption and production of meson i, respectively. These possible interactions with the
bath fall into two categories corresponding to the unitary and the Landau cuts, namely,
processes with even and odd numbers of particles in the initial and final states.

In more detail, denoting by bar letters the particles in the bath, the unitary-like pro-
cesses are the stimulated production process āb̄→ cd (in other words, bath → bath + c d)
weighted by the function (1+nc)×(1+nd), and the absorption c d→ ā b̄ (bath+cd→ bath)
weighted by −nc × nd. For negative energies Ec and/or Ed, one could have instead the
production process 0→ ā b̄ c d weighted by (1+nc)× (1+nd), minus absorption ā b̄ c d→ 0
weighted by nc × nd. The net contribution in both cases is (1 + nc)× (1 + nd)− nc × nd =
1 + nc + nd, which we readily identify as the 1 + n1 + n2 factor associated to the unitary
cut in (B.15). The Landau-like processes correspond to either ā b̄ c→ d (bath→ bath+ d)
weighted by nc× (1 + nd), minus the inverse process d→ ā b̄ c (bath+ d→ bath) weighted
by nd × (1 + nc), or the reactions ā b̄ d → c weighted by nd × (1 + nc) minus c → ā b̄ d

weighted by nc × (1 + nd). The net contribution is proportional to nc − nd corresponding
to the n1 − n2 contribution in (B.15).

Note that not all these reactions will be allowed by the kinematics of a given scatter-
ing process (see below) and that, in the above thermal processes, an antiparticle state is
understood as an incoming line changed into an outgoing one with respect to a b → c d

scattering or conversely.
As the case of interest here, the possible thermal bath processes for Kπ → Kπ scat-

tering are depicted in figure 2. As we will immediately explain, the only allowed processes
for which all of the particles involved are physical, i.e., with positive energies, are those
labeled as U1 and L1 in the figure.

In the following, we will provide the explicit expressions for the imaginary part of
the πK partial waves alongside the S-channel physical cuts including thermal scattering
processes and the position of the unphysical T, U -channel cuts. We have summarized in
figure 3 the different discontinuities contributing to the πK scattering partial waves arising
from this analysis.

3.1 Physical S-channel cuts: thermal unitarity

For a given isospin channel, the Jk(S) thermal integrals provide the S-channel discontinuity
or physical cut, which is related to the physical processes taking place in the thermal bath
and renders the thermal unitarity relation, as we are about to see.
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K+

π+

K+

π+

(1+nK )(1+nπ )

K+

π+

K+

π+

- nKnπ

U1 :

U2 :

K+

π+

K-

π-

(1+nK )(1+nπ )

K+

π+

K-

π-

-nKnπ

L1 :
K+

π+

K+

π-

(1+nK ) nπ

K+

π+

K+

π-

- nK (1+nπ )

L2 :
π+

K+

K-

π+

(1+nπ ) nK

π+

K+

K-

π+

- nπ (1+nK )

Figure 2. Processes contributing to K+π+ → K+π+ scattering in the thermal bath. Dashed lines
denote thermal bath particles, solid lines correspond to states produced or absorbed in the bath,
while U and L stand for processes contributing to the Unitary or Landau cut, respectively. We
also include the statistical Bose-Einstein factors associated with every process, where nπ,K stand
for nB(Eπ,K). Note that for each process of thermal production of π+, K+ outgoing states, there
is an absorption process carrying a relative minus sign with respect to the production one.
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sηK
- sKπ

+ sηK
+sKπ

- Re[s]

Im[s] s

S-channel physical cuts

T-channel cuts

U-channel cuts

Figure 3. General cut structure of πK scattering partial waves at finite temperature with s±ab =
(Ma±Mb)2. Note that in the I = 3/2 channel, the physical cuts opening above s > s+

ηk and s < s−ηk
are not present. The circular cut discussed in section 3.4 is not displayed here.

At T = 0, one has only the standard unitary cuts starting from each two-particle
scattering threshold. For πK scattering, the first such cut opens at s ≥ (MK+Mπ)2 coming
from the JKπ(S) integrals. For the I = 1/2 channel, a second physical cut (inelastic) starts
at s ≥ (MK +Mη)2, corresponding to the process Kπ → Kη and coming from the JηK(S)
loop function. Note that due to this inelastic contribution, the unitarization of the I = 1/2
channel would require a coupled-channel approach [54, 84]. However, the main properties
of the K∗0 (700) and K∗(890) resonances can be understood by considering only the elastic
region [59, 66] and we will follow the same approach here.

At nonzero T , we have, on the one hand, the thermal correction to Im JKπ(S) in the
unitary cut. For the K+π+ → K+π+ process, i.e., the I = 3/2 one, the thermal bath
processes contributing to such modification are those labeled as U1,2 in figure 2. However,
it is easy to see that the U2-like processes require negative energies for at least one of the
incoming (outgoing) states since the sum of all particle energies has to vanish. Therefore,
the only physical processes contributing to the unitary cut at finite temperature are the
U1 ones. Note that in the CM frame, these processes give rise to the first contribution to
the imaginary part of JKπ(S) in (B.18), with Q0 = EK + Eπ =

√
s > 0, EK = s+∆Kπ√

s
,

Eπ = s−∆Kπ√
s

, which are both positive since s > ∆Kπ > 0 at the unitary cut.
On the other hand, the Landau cut is generated by the processes L1,2 in figure 2. For

L1, we have ĒK + Ēπ = EK − Eπ =
√
s, where the bars correspond to the thermal bath

particles; i.e, we are denoting s = (pK − pπ)2 = (p̄K + p̄π)2 so that in the CM frame,
~pπ − ~pK = ~0. With positive energies of the thermal bath particles, the solution to the
energy conservation equation in the CM frame is EK = s+∆Kπ√

s
and Eπ = ∆Kπ−s√

s
with

Q0 = EK + Eπ, which satisfy EK > Eπ > 0 since 0 < s < (MK −Mπ)2 < ∆Kπ for the
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Landau cut. These processes provide the second contribution to Im JKπ(S) in (B.18). For
the L2-like processes, we have ĒK+Ēπ = Eπ−EK , which cannot be satisfied for all positive
energies since Mπ < MK and they do not contribute to the imaginary part of JKπ(S).

The crucial point for obtaining the thermal unitarity relation at one-loop order in
ChPT is to realize that at T = 0,

Im tIJ(s) = Im tIJ4 (s) = 16π Im JKπ0 (S)
[
tIJ2 (s)

]2
= σKπ(s)

[
tIJ2 (s)

]2
, (3.1)

where tIJ2 and tIJ4 stand for the O(p2) and O(p4) ChPT amplitudes, respectively, and
σKπ(s) = (2/

√
s) pCM (s;Mk,Mπ) is the two-body phase space. It implies that, for any IJ

channel, Im JKπ0 (S) in the t4 ChPT amplitude comes multiplied by 16π
[
tIJ2 (s)

]2
. At finite

temperature, once the relations (B.13) and (B.14) are used, the T -independent function
multiplying J0(s;T ) is the T = 0 one. In addition, we have to take into account those
processes allowed in the thermal bath. For instance, the process K+π+π− → K+ with
momenta pKpπp̄′π → p′K , which can be obtained from the K+π+ → K+π+ reaction by
changing p̄′π → −p′π. This transformation leaves the t2 amplitude invariant in terms of the
variables s = (pK + pπ)2 = (p′K − p′π)2, t = (pK − p′K)2 = (pπ + p′π)2, and u = (pK + p′π)2 =
(p′K−pπ)2. The same argument applies to the thermal amplitude in terms of s, t, u, S0, T 0,

and U0 variables. Thus, an extended thermal perturbative unitarity relation can be ob-
tained by including the physical Landau-type process multiplied by its corresponding ther-
mal phase-space factor (B.18) for that cut. In the I = 1/2 channel, one also has to take into
account the contribution from the ηK intermediate sate, which involves Im JηK0 (S), this
time multiplied by

[
tKπ→Kη2

]2
. Nevertheless, one arrives to the same conclusion regarding

the inclusion of the thermal bath processes K̄0π
0 → K̄0η and K̄0K0π

0 → η.
Altogether, the generalized thermal unitarity relation for the perturbative Kπ → Kπ

ChPT amplitude for the I = 3/2, J = 0, 1 channels reads:

Im tKπ→Kπ4 (s;T ) = σTKπ(s)
[
tKπ→Kπ2 (s)

]2
θ
[
s−(MK +Mπ)2

]
+σ̃TKπ(s;T )

[
tKππ→K2 (s)

]2
θ
[
(MK−Mπ)2−s

]
θ (s)

=
[
tKπ→Kπ2 (s)

]2{
σTKπ(s)θ

[
s−(MK +Mπ)2

]
+σ̃TKπ(s;T )θ

[
(MK−Mπ)2−s

]
θ (s)

}
, (3.2)

while for I = 1/2, J = 0, 1 one has

Im tKπ→Kπ4 (s;T ) = σTKπ(s)
[
tKπ→Kπ2 (s)

]2
θ [s− (MK +Mπ)]2

+σTηK(s)
[
tKη→Kπ2 (s)

]2
θ [s− (MK +Mη)]2

+σ̃TKπ(s)
[
tKππ→K2 (s)

]2
θ
[
(MK −Mπ)2 − s

]
θ (s)

+σ̃TηK(s)
[
tKKπ→η2 (s)

]2
θ
[
(Mη −MK)2 − s

]
θ (s)
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=
[
tKπ→Kπ2 (s)

]2 {
σTKπ(s) θ [s− (MK +Mπ)]2

+σ̃TKπ(s) θ
[
(MK −Mπ)2 − s

]
θ (s)

}
+
[
tKη→Kπ2 (s)

]2 {
σTηK(s) θ [s− (MK +Mη)]2

+ σ̃TηK(s) θ
[
(Mη −MK)2 − s

]
θ (s)

}
, (3.3)

with the thermal phase space factors

σTab(s) = σab(s)
[
1 + nB

(
s+ ∆ab

2
√
s

)
+ nB

(
s−∆ab

2
√
s

)]
, (3.4)

σ̃Tab(s) = σab(s)
[
nB

(∆ab − s
2
√
s

)
− nB

(
s+ ∆ab

2
√
s

)]
, (3.5)

with ∆ab = M2
a −M2

b , so that the above equations can be used to easily generalize thermal
unitarity for any thermal scattering amplitude.

3.2 T -channel cuts

The analytic properties of the J(0,
√
−t(s, θ);T ) thermal integrals with t(s, θ) in (A.1), are

collected in appendix B.3.2, where one can see that, in the CM frame, the only imaginary
part arises for s < 0, and the range of the scattering angle where (Ma + Mb)2 < t(s, θ) <
−4 p2

CM (s). We remind that for the πK scattering amplitude, only Jab(T ) integrals with
Ma = Mb arise.

3.3 U-channel cuts

The J(U) integrals contributing to the πK partial waves (2.6) and (2.7) come from the
loop-functions JKπk (U) and JηKk (U). In the CM frame, taking into account (A.2), we can
see that the Mandelstam variable u(s, θ) is bounded by

−s+ 2ΣKπ ≤ u ≤ ∆2
Kπ/s, for p2

CM (s; MK ,Mπ) ≥ 0, (3.6)
∆2
Kπ/s ≤ u ≤ −s+ 2ΣKπ, for p2

CM (s; MK ,Mπ) ≤ 0,

since the cosine of the scattering angle varies between −1 and 1, and where we have used

∆2
Kπ/s− 4p2

CM (s;MK ,Mπ) = −s+ 2ΣKπ, ΣKπ = M2
K +M2

π .

First, for s ≥ (MK +Mπ)2, and taking into account that in that region

p2
CM(s;MK ,Mπ) ≥ 0 and ∆2

Kπ/s ≤ (MK−Mπ)2 ≤ (MK +Mπ)2 ≤ (MK +Mη)2, (3.7)

it can be seen that the JKπ(U) and JηK(U) loop functions develop a Landau cut but not
the unitary one. Note that in this region u ≥ −|~U |2 since U2

0 = ∆2
Kπ/s > 0 and that u

can take any value in the range −|~U |2 < u < 0 for arbitrarily large values of s. One of the
most important conclusions of this result is that this unphysical U -channel discontinuity
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overlaps with the physical unitary cuts corresponding to the Kπ → Kπ and Kπ → Kη

processes discussed in section 3.1, as shown in figure 3, which is a genuine thermal effect.
Second, in the interval (MK −Mπ)2 ≤ s ≤ (MK +Mπ)2, where p2

CM (s; MK ,Mπ) ≤ 0,
there is no Landau-cut contribution either from JKπ(U) or from JηK(U) since ∆2

Kπ/s ≥
(MK−Mπ)2 ≥ (Mη−MK)2. In addition, the maximum value of −s+2ΣKπ in this interval
is (MK + Mπ)2 < (Mη + MK)2 reached at s = (MK −Mπ)2; hence, these values of u lie
also outside the unitary cut. It implies that the amplitude remains real in that interval,
which allows one to apply Schwarz’s reflection principle for the analytic continuation of the
different partial waves.

Third, in the interval 0 ≤ s ≤ (MK − Mπ)2, p2
CM (s; MK ,Mπ) ≥ 0 and ∆2

Kπ/s ≥
(MK +Mπ)2, so that u takes arbitrarily large values near s = 0. It implies that the unitary
cuts of both JKπ(U) and JηK(U) are reached for cos θ sufficiently close to −1. On the
contrary, the minimum value of −s+ 2ΣKπ is (MK +Mπ)2 > (MK −Mπ)2 > (Mη−MK)2,
so that JKπ(U) and JηK(U) do not develop Landau cuts.

Finally, for s < 0, p2
CM (s; MK ,Mπ) ≤ 0 and −s + 2ΣKπ > 2ΣKπ > (MK + Mπ)2 so

that both unitary cuts of JKπ(U) and JηK(U) are reached, while U2
0 = ∆2

Kπ/s < 0 so that
u lies off the Landau cuts for those integrals.

3.4 Circular cut

So far, we have discussed the discontinuities of the one-loop πK amplitude T (S,T,U;T ).
Nevertheless, when dealing with pion-kaon partial waves, defined in (2.8), there is an
additional source of singularities one has to take into account, which involves the angular
integration over the Legendre polynomials PJ in (2.8). The easiest way to analyze these
singularities is through the so-called Froissart-Gribov representation of scattering partial
waves, which, in turn, is expressed in terms of the Legendre functions of second kind QJ(x).
The functions QJ(x) are analytic in the x plane but for two discontinuities with branch
points at x = ±1. Thus, in the CM frame, pion-kaon partial waves will be singular at
those values of s satisfying

1 + t

2p2
CM

= ±1, 1 + 1
2p2

CM

(
u− ∆2

πK

s

)
= ±1, (3.8)

for values of t and u in the ranges

4M2
π ≤ t, (Mπ +MK)2 ≤ u, (3.9)

and pCM the momentum in the CM frame defined in (A.3). The solutions of (3.8) and (3.9)
involve two additional discontinuities. Namely, around the circle |s| ≤M2

K−M2
π and along

the negative real axis from s ∈ (−∞, 0], arising from the t channel; along the real axis from
(MK −Mπ)2 to −∞, arising from the u channel. Nevertheless, none of these singularities
are associated with the thermal bath; hence, they are also present at T = 0.

4 Results for ChPT partial waves and scattering lengths

In this section, we provide the numerical results from the perturbative ChPT calculation
of the πK scattering amplitude at finite temperature.
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Lr1 Lr2 Lr3 Lr4 Lr5 Lr6 Lr7 Lr8

LECs ×103 0.70+0.01
−0.01 1.04 −3.44+0.04

−0.04 −0.08+0.03
−0.04 0.98+0.07

−0.05 0.24+0.08
−0.06 0.008+0.090

−0.140 0.098+0.100
−0.110

Table 1. O(p4) chiral parameters (×103) obtained in the Global Fit IV in [85].
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Figure 4. Temperature evolution of the phase shifts δIJ for IJ = 1/2 0 (left), IJ = 1/2 1 (right)
and IJ = 3/2 0 (bottom).

For our calculations we have used: Mπ = 139.6MeV, MK = 495.8MeV, Mη =
552.5MeV, Fπ = 92.3MeV, FK = 110.6MeV, Fη = 119.2MeV and the LECs extracted
from [85] given in table 1. In addition, all error bands shown below are obtained through
the propagation in quadrature of the LECs uncertainties.

From the ChPT πK thermal amplitude, we can obtain the thermal evolution of any
low-energy observables. For instance, we show in figure 4 the results for the πK phase
shifts of the S and P waves, which at low energies can be defined as δIJ = σTπKRe(tIJ).2

The thermal evolution of the I = 1/2, J = 0, and J = 1 phase shifts follow a similar
trend as the I = J = 0 and I = J = 1 waves in ππ scattering, respectively, obtained
in [11]. Namely, the phase shifts increase with temperature at low energies, reflecting
the increase in the interaction strength due to the thermal bath. On the contrary, the
I = 3/2, J = 0 phase shift becomes more repulsive (negative) at higher temperatures,

2Note that in the elastic region a partial wave is parameterized as tIJ(s) = sin δIJ(s)eiδIJ (s)/σIJ(s), so
that, at low energies, one has, σIJ(s) Re tIJ(s) = sin 2δIJ(s)/2 ∼ δIJ(s).
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Figure 5. Temperature evolution of the scattering lenghts aIJ for IJ = 1/2 0 (left) and IJ = 3/2
0 (right). The bands correspond to the LECs uncertainties, as explained in the text.

at least at low energies where the ChPT expansion is well-behaved, hence resembling the
thermal tendency of the IJ = 20 wave in ππ scattering. Note that we have considered
the thermal dependence of the masses in the initial and final asymptotic states. As a
consequence, there is a shift of the pion-kaon threshold at T 6= 0 in figure 4.

We also provide in figure 5 the temperature dependence of the corresponding scattering
lengths, defined as [51, 86]

aI0 = 2
Mπ +MK

Re tI0((Mπ +MK)2, T ).

Their thermal evolution follows similar trends to those discussed above for the partial
waves, highlighting that the strength of the interaction increases in the thermal bath as
the temperature rises, for low and moderate energies where the ChPT approach is reliable.

5 Unitarization and the thermal K∗
0(700) and K∗(892) poles

So far we have been dealing with the perturbative ChPT πK thermal amplitude, satisfying
the generalized thermal unitarity relation for partial waves derived in (3.2) and (3.3). Our
purpose in this section is to construct a unitarized thermal amplitude tU through the so-
called Inverse Amplitude Method (IAM), developed at T = 0 in [51, 54] and for T 6= 0 and
ππ scattering in [12].

At T = 0, the IAM unitarized amplitude tU is constructed by demanding exact uni-
tarity in the physical region, i.e., for any partial wave and in the elastic approximation one
should have

Im tU (s) = σ(s)|tU (s)|2 ⇒ Im
( 1
tU (s)

)
= −σ(s), s ≥ (Ma +Mb)2, (5.1)

with σ the phase space, i.e., in the elastic approximation, the imaginary part of the inverse
amplitude 1/t is completely fixed by unitarity. The IAM amplitude is constructed by
demanding the previous condition on Im (1/t) exactly and imposing that the low-energy
expansion of the Re (1/t) of the unitarized amplitude reproduces the ChPT prediction.
That leads to tU (s) = [t2(s)]2 / [t2(s)− t4(s)].
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As in previous works [12], extending now the unitarized amplitude to finite temperature
with the replacement t4(s) → t4(s;T ) with the finite-T amplitude calculated in previous
sections, we obtain

tU (s;T ) = [t2(s)]2

t2(s)− t4(s;T ) , (5.2)

where, as explained before, we are sticking to the one-channel case for the πK amplitude,
i.e., we are demanding exact unitary only below the Kη threshold, the relevant kinematic
region to reproduce the behavior of the K∗0 (700) and K∗(892) resonances.

Note that the unitarized partial wave in (5.2) satisfies Im (1/tU ) = −Im t4/t
2
2, so that,

from (3.2) and (3.3), we see that the unitarized amplitude satisfied exact (single channel)
thermal unitarity, as expected from our generic definition of a thermal amplitude, i.e,

Im tU (s;T ) =

 σTab(s) [tU (s;T )]2 , s ≥ (Ma +Mb)2,

σ̃Tab(s) [tU (s;T )]2 , 0 ≤ s ≤ (Ma −Mb)2,
(5.3)

with the thermal phase-space factors given in (3.4) and (3.5). The relations (5.3) are then
inherited from the thermal ChPT perturbative relations, including the new Landau-type
contributions coming from scattering in the thermal bath. Furthermore, tU = t2 + t4 + . . .

perturbatively, as requested.
It is also important to stress that except for the possible presence of poles in t−1(s;T )

corresponding to zeros of t(s, T ), the cut structure of the unitarized amplitude is the same
as that of the perturbative one depicted in figure 3, which on the S-like physical cuts turns
into the thermal unitarity relation just discussed. However, although the T and U cuts
remain in the same place, the imaginary part of tU and t4 only coincide in the left-hand
cut perturbatively, as it also happens at T = 0 [54]. Finally, let us recall that the second
Riemann sheet, where resonance poles appear, can be defined from the first one as

tIIU (s;T ) = tU (s;T )
1 + 2 i σTKπ(s)tU (s;T )

, (5.4)

where the σTKπ(s) determination is chosen so that σTKπ(s∗) = −
(
σTKπ

)∗
to ensure the

Schwarz reflection symmetry in the second Riemann sheet. Having the correct analytic
structure, the unitarized πK partial wave in the second Riemann sheet can be continued
into the complex plane looking for resonance poles, which at T = 0 allows one to reproduce
the K∗0 (700) and K∗(892) states in the I = 1/2, J = 0 and I = 1/2, J = 1 channels,
respectively [59, 66–68, 87]. Likewise, we can now obtain the temperature dependence of the
pole position of those resonances in the second Riemann sheet, parameterized as customary
as sp(T ) = [Mp(T )− iΓp(T )/2]2, whereMp and Γp would approximately correspond to the
mass and width of a resonance in the Breit-Wigner limit Γp � Mp, which in the present
analysis would apply only to the K∗(892).

In figure 6 and figure 7 we present our results for the T -dependence of the K∗0 (700)
and K∗(892) poles. We have displayed in figure 6 the curves corresponding to the thermal
dependence of the pole parameters Mp, Γp, while in figure 7 we show the thermal pole
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Figure 6. Upper panels: pole parameters Mp (upper left panel) and Γp (upper right panel) of
the K∗0 (700) (κ) at finite temperature calculated within the three different unitarization methods
explained in the main text. Lower panels: Mp (lower left panel) and Γp (lower right panel) param-
eters of the K∗(892) obtained within the IAM unitarization method at finite temperature. For the
K∗(892) we also show the result of reducing the kaon mass from its physical value toMK = 350MeV.

trajectories, that is, we plot the width as a function of the mass when increasing the tem-
peratures from 0 to 200MeV. In the case of the K∗0 (700), we compare our analysis with
the results in [72], which we call method 1. The unitarized amplitude in method 1 includes
only the contribution from the JKπ(S) loop function in the fourth-order partial waves, i.e.,
it neglects the T −U channel contributions and their modification of the analytic structure
discussed in section 3. In addition, it does not include any tadpole-like corrections. A vari-
ant of this method was considered in [71] (here method 2) by considering in the full one-loop
ChPT amplitude at T = 0 but including only the thermal modifications for the JKπ(S) part.

The results in figure 6 for the K∗0 (700) confirm qualitatively the findings in [71, 72],
although we observe sizable quantitative differences for T > 100MeV. On the one hand,
the real part of √sp, i.e., Mp(T ), stays constant up to temperatures around T ∼ 75MeV,
from which it shows a decreasing behavior. On the other hand, Γp(T ) increases at low
temperatures (roughly driven by the increase of thermal phase space in (3.4)) and decreases
for T closer to the transition, which can be understood as the regime where the reduction
of phase space driven by the mass drop dominates over the increase given by (3.4). This
behavior is very similar to that of the f0(500) pole obtained in [12, 48], and in both cases
is fully consistent with the expected trends for the scalar susceptibility in terms of chiral
and U(1)A restoration, as we will see in detail in section 6.
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Figure 7. Upper (lower) panel: the temperature dependence of the pole position of the K∗0 (700)
(K∗(892)) resonance when increasing the temperature T from 0 to 200MeV. The bands correspond
to the LECs uncertainties. In both panels, we have also plotted the pole position at T = 0, 150,
and 200MeV with their respective uncertainties.

As for the K∗(892), the results in figure 6 confirm a softer temperature dependence
for the pole, consistently with the analysis in [74] based on heavy-ion data, which predict
a softer medium dependence than for the ρ(770), i.e., its corresponding I = 1 partner in
the vector octet. Actually, one of the main advantages of the IAM is that it encodes the
correct quark-mass dependence inherited from ChPT; hence, with our present formalism,
we can examine the beahvior towards the SU(3) degeneration limit, ml/ms → 1, to check
whether the K∗(892) pole parameters become similar to those of the ρ(770), for which Mp
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Figure 8. Temperature dependence of the couplings of the K∗0 (700) and the K∗(892) resonances
to Kπ.

varies slowly with T , but Γp(T ) increases considerably instead [12]. In our case, we confirm
this behavior by reducing the kaon mass. For a kaon mass of 350MeV, we find that Γp
increases in all the considered temperature ranges. Moreover, as we can see in figure 6, the
width rises by 45MeV from T = 0 to T = 200MeV, roughly doubling its value, while this
gap is equal to 20MeV for the physical kaon mass. The variation of Mp(T ) on the contrary
lies below the 10% range in both cases.

Finally, in figure 8, we plot the thermal dependence of the modulus of the K∗0 (700) and
K∗(892) pole residues, obtained from the contour integral of the amplitudes in the second
Riemann sheet around the pole position,

Res (T ) = 1
2πi

∮
ds tIJ(s, T )II . (5.5)

In the case of elastic resonances, well-isolated from other singularity structures, res-
onance residues can be related to the pole widths [88], which can be clearly observed by
comparing figures 8 and 6.3 Finally, note that the thermal dependence of both residues
has a maximum in a temperature range between 120–170MeV, with the K∗(892) residue’s
maximum being slightly above the K∗0 (700) one, confirming the correlation with the widths
in figure 6.

6 The I = 1/2 scalar susceptibility and consequences for chiral and
U(1)A restoration

The temperature dependence of the K∗0 (700) pole discussed in section 5 has important
consequences regarding the restoration of both the chiral SU(2)V × SU(2)A ≈ O(4) and
U(1)A symmetries. The latter can be restored by medium effects related to instantons

3In our convention, the thermal dependence of the width can be related to the product of the residue
and thermal phase space for narrow resonances [89].
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and its possible restoration close to the QCD transition has been the subject of several
theoretical and lattice analyses in the literature [1, 20, 23, 24, 26, 27, 30–33, 40–45, 71].

The connection with our present analysis comes from the following Ward Identities
(WI) [23, 24]

χKP (T ) =
∫ 1/T

0
dτ

∫
d3~x 〈T Ka(x)Ka(0)〉 = −〈q̄q〉l (T ) + 2〈s̄s〉(T )

ml +ms
, (6.1)

χκS(T ) =
∫ 1/T

0
dτ

∫
d3~x 〈T κa(x)κa(0)〉 = 〈q̄q〉l (T )− 2〈s̄s〉(T )

ms −ml
, (6.2)

where χKP and χκS are the pseudoscalar and scalar susceptibilities in the kaon and kappa
channels, respectively, 〈q̄q〉l = 〈ūu+ d̄d〉 and 〈s̄s〉 are the light- and strange-quark conden-
sates, ml,s the light and strange quark masses, and

Ka = iψ̄γ5λaψ, κa = ψ̄λaψ, a = 4, · · · , 7, (6.3)

are the pseudoscalar and scalar I = 1/2 quark bilinears, with ψ the quark triplet, whose
lightest states are the kaon and K∗0 (700) mesons, respectively.

On the one hand, as explained in detail in [27], the temperature dependence of the
quark condensate combinations on the right-hand side of the WIs (6.1)–(6.2) is consistent
with the degeneration of K − κ susceptibilities at temperatures above the chiral transition
Tc, signaling O(4)×U(1)A restoration in this channel [24]. On the other hand, the WI (6.2)
predicts that χκS(T ) must develop a peak above Tc. The behaviour of χκS below and above
the peak is related to O(4) and O(4) × U(1)A restoration, respectively. In particular, it
implies that when approaching the ml/ms → 1 limit (SU(3) degeneration) the peak should
displace towards Tc and increase its height, hence resembling the behavior of χS , the I = 0
scalar susceptibility, associated with the quantum numbers of the f0(500) resonance [48].
Conversely, in the light chiral limit ml/ms → 0, chiral symmetry restoration is enhanced,
taking place at a lower Tc, and K −κ degeneration takes place also at lower temperatures.
As shown in [71], this implies a more rapid growth of χκS(T ) at the chiral transition region,
i.e., below the peak, which is confirmed by lattice results. On the contrary, a flattening
behavior is expected above the peak in the light chiral limit, consistently with a more
efficient K − κ degeneration [24, 25, 71].

Since the K∗0 (700) or κ is the lightest scalar state in the I = 1/2 channel, we can expect
it to provide the dominant contribution to χκS [27]. Thus, as carried out also in [71], our
present analysis provides a way to compute χκS by saturating it with the thermal K∗0 (700)
pole, similarly to what was done in [20, 48] for the χS susceptibility in the I = 0 channel,
this time saturated with the f0(500) resonance. For the κ case, such an approach implies

χκ,US (T ) = Aκ
M2
κ(0)

M2
κ(T ) , (6.4)

where Aκ is fixed to reproduce the perturbative ChPT result at T = 0 calculated in [24]
and M2

κ(T ) = M2
p (T ) − Γ2

p(T )/4 is the real part of the K∗0 (700) self-energy at the pole,
which in the present work is determined with the IAM, as discussed in section 5.
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Figure 9. Unitarized κ susceptibility calculated using the IAM for physical masses and the light
chiral limit, including the theoretical uncertainty bands of the LECs. We have also plotted the
susceptibility obtained with the unitarization method 2.

We show our results for χκ,US (T ) in figures 9 and 10. The peak of the κ scalar suscepti-
bility is clearly reproduced, as well as the expected behavior as the ml/ms ratio is varied.
In figure 9 we see that, near the light chiral limit of vanishing pion mass (with fixed ms),
the growth of the curve below the peak is more pronounced and compatible with a flat-
tening above the peak. The evolution towards the ml/ms → 1 limit is shown in figure 10,
where we see the displacement of the peak towards Tc and its growth, consistently with its
degeneracy with χS . We also compare our complete unitarized ChPT calculation here with
the method followed in [71]. The results are qualitatively similar, which supports their ro-
bustness. In the chiral limit, the results in this work show more clearly the expected trend.

7 Conclusions

In this work, we have calculated the πK elastic scattering amplitude at finite temperature
T in Chiral Perturbation Theory and we have obtained its unitarized version through
the Inverse Amplitude Method, which allows one to generate the K∗0 (700) and K∗(890)
poles. The thermal evolution of these states has been studied and related with a relevant
application for the QCD phase diagram; namely, the connection of the K∗0 (700) pole with
chiral and U(1)A restoration through its role in the I = 1/2 scalar susceptibility.

The analytical structure of the amplitude shows interesting features at T 6= 0; apart
from the standard T = 0 cuts, including the unitarity cut above threshold, at T 6= 0 Landau
cuts arise, which are related to physical processes taking place inside the thermal bath. The
latter gives rise to an extended thermal unitarity relation, derived here for the first time
for unequal-mass meson-meson scattering, such as the πK case. The unitarized thermal
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Figure 10. Unitarized κ susceptibility for physical masses and for MK closer to the SU(3) limit.
The bands correspond to the LECs uncertainties.

amplitude constructed here through the one-loop Inverse Amplitude Method satisfies exact
unitarity, including the Landau-type processes, while matching the next-to-leading order
ChPT series at low energies.

By extracting the poles of the unitarized amplitude in the second Riemann sheet,
we have obtained the thermal evolution of the K∗0 (700) and the K∗(892) resonances in
the I = 1/2, J = 0 and I = 1/2, J = 1 channels, respectively. In addition, we have
analyzed their behavior in the light chiral limit ml/ms → 0 and when approaching the
SU(3) ml/ms → 1 limit, both reachable within our theoretical framework.

In the vector channel, the K∗(892) pole position varies much more smoothly with
temperature than its corresponding I = 1 state in the vector meson nonet, i.e., the ρ(770).
This is in accordance with recent estimates based on heavy-ion data. We have examined
the bevavior towards the ml/ms → 1 limit, where the SU(3) nonet members are meant to
share physical properties. This analysis provides the expected results since the width of
the K∗(892) increases significantly with the temperature when the value of the kaon mass
approaches the pion mass, thus resembling the behavior of the ρ(770) at finite T in the
literature.

As for the K∗0 (700), we have explored in detail the connection of the pole at finite T
with properties regarding the restoration of chiral and U(1)A symmetries, relevant for the
QCD phase diagram. In particular, through a saturation approach, the pole of the K∗0 (700)
can be related to the scalar susceptibility in the I = 1/2 channel, which has been previously
shown using WI to develop a peak above the QCD transition temperature Tc. The suscepti-
bility obtained confirms that behavior and satisfies the expected trend around that peak as
ml/ms is varied. On the one hand, as we approach the ml/ms → 1 limit, the susceptibility
tends to show the same behavior as for the I = J = 0 channel one, saturated by the f0(500).
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In that case, chiral restoration dominates, the susceptibility peak increases and its center
moves towards Tc. On the other hand, in the ml/ms → 0 light chiral limit, the susceptibil-
ity slope increases below the peak, driven by the amplification of chiral restoration effects,
while it tends to flatten above the peak due to a more efficient K−κ partner degeneration.

We have also computed the residues of both resonances and found that their thermal
dependence resembles the behavior of the corresponding pole widths, and in particular,
showing a maximum in the region around 120–170MeV.

The results obtained here complement in a rigorous way previous analyses regarding
finite-temperature hadronic properties of relevance for the QCD phase diagram, revealing
new theoretical features. In particular, the extension of finite-temperature scattering to un-
equal masses developed here and the corresponding extended thermal unitarity, open many
future lines for analysis of scattering and resonances within the light hadron multiplets.
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A Kinematics of πK elastic scattering

For the process Kπ → Kπ with external 4-momenta pK pπ → p′K p
′
π, in the center of

momentum (CM) frame where ~S ≡ ~pK +~pπ = ~p′K + ~p′π = ~0, we have in the physical region
s ≥ (MK +Mπ)2,

|~pK |2=|~pπ|2=|~p′K |2=|~p′π|2=p2
CM (s;MK ,Mπ),

E2
K=E′2K= (s+∆Kπ)2

4s ,

E2
π=E′2π = (s−∆Kπ)2

4s ,

T0≡=EK−E′K=0, t(s,θ)=−|~T |2=2p2
CM (s;MK ,Mπ)(cosθ−1), (A.1)

U0(s)≡=EK−E′π= ∆Kπ√
s
, u(s,θ)=U2

0−|~U |2= ∆2
Kπ

s
−2p2

CM (s;MK ,Mπ)(cosθ+1), (A.2)

where s = S0 = (pK,0 +pπ,0)2, ∆Kπ = M2
K−M2

π > 0, cos θ = ~pK ·~p′K/p2
CM is the scattering

angle and

p2
CM (s;Ma,Mb) =

[
s− (Ma +Mb)2] [s− (Ma −Mb)2]

4s , (A.3)

the two-body phase space being given by σab(s) = 2√
s
pCM (s;Ma,Mb).
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B Loop integrals at finite temperature

B.1 General expressions and relations

The Matsubara sums in the loop integrals (2.2) and (2.3) can be performed using standard
complex contour techniques [75]. We get

Fβa(T ) = Fβi(T = 0)− T 2

2π2

∫ ∞
Ma/T

dy
√
y2−(Ma/T )2nB(Ty),

Jabk (Q0, | ~Q|;T ) = Jabk (Q2;T = 0)+ 1
4π2

∫ ∞
0

dqq2
∫ 1

−1
dx

1
4E1E2

×
{ 1
E1 +E2 +Q0 + iε

[
(−E1)knB(E1)+(Q0 +E2)knB(E2)

]
+ 1
E1 +E2−Q0− iε

[
(E1)knB(E1)+(Q0−E2)knB(E2)

]
− 1
E1−E2 +Q0 + iε

[
(−E1)knB(E1)−(Q0−E2)knB(E2)

]
− 1
E1−E2−Q0− iε

[
(E1)knB(E1)−(Q0 +E2)knB(E2)

]}
, (B.1)

where the analytic continuation in (2.5) has been carried out, q ≡ |~q |, E2
1 = q2 + M2

a ,
E2

2 = q2 + | ~Q|2 + M2
b − 2|~q || ~Q|x, nB(y) = (ey/T − 1)−1 is the Bose-Einstein distribution

function and the T = 0 expressions are [50]:

Fβa(0) = −2M2
i λ−

M2
a

16π2 log M
2
a

µ2 ,

Jab0 (Q2;T = 0) = −2λ− 1
16π2∆ab

[
M2
a log M

2
a

µ2 −M
2
b log M

2
b

µ2

]
(B.2)

+ 1
32π2

[
2+

(∆ab

Q2 −
Σab

∆ab

)
log M

2
b

M2
a

− νab(Q
2)

Q2 log
[
Q2 +νab(Q2)

]2−∆2
ab

[Q2−νab(Q2)]2−∆2
ab

]
,

where

λ = µD−4

16π2

[ 1
D − 4 −

1
2 (log 4π − γ + 1)

]
, (B.3)

with µ the dimensional regularization scale, γ the Euler constant, ∆ab = M2
a −M2

b , Σab =
M2
a + M2

b , ν2
ab(x) =

[
x− (Ma +Mb)2] [x− (Ma −Mb)2] and J1,2(Q2; 0) are related to

J0(Q2; 0) by the usual Veltman-Pasarino relations provided also in [50]. As mentioned
above, those relations are no longer valid at nonzero T . Instead, at finite temperature, the
following relations hold for the different combinations of loop integrals with momenta in
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the numerator (with q0 = 2πnT , Q0 = 2πmT and Euclidean metric (−,−,−,−)):

∑∫
q

qi
(q2 −M2

a )
(
(q −Q)2 −M2

b

) = − Qi

| ~Q|2

[
Q0J1 + (Q2 + ∆ab)

2 J0 + 1
2 (Fβb − Fβa)

]
, (B.4)

∑∫
q

qµQ
µ

(q2 −M2
a )
(
(q −Q)2 −M2

b

) = (Q2 + ∆ab)
2 J0 + 1

2 (Fβb − Fβa) , (B.5)

∑∫
q

q0qi
(q2 −M2

a )
(
(q −Q)2 −M2

b

) = − Qi

| ~Q|2

[
Q0J2 + (Q2 + ∆ab)

2 J1 + Q0
2 Fβb

]
, (B.6)

∑∫
q

qiqj
(q2 −M2

a )
(
(q −Q)2 −M2

b

) = QiQjIab + gij Îab , (B.7)

∑∫
q

q0(q · q)
(q2 −M2

a )
(
(q −Q)2 −M2

b

) = Q0Fβb +M2
aJ1 , (B.8)

∑∫
q

qi(q · q)
(q2 −M2

a )
(
(q −Q)2 −M2

b

) = QiFβb (B.9)

−M2
a

Qi

| ~Q|2

[
Q0J1 + 1

2(Q2 + ∆ab)J0 + 1
2 (Fβb − Fβa)

]
,

∑∫
q

(q · q)2

(q2 −M2
a )
(
(q −Q)2 −M2

b

) = (Q2 + Σab)Fβb +M4
aJ0 , (B.10)

Iab = 1
(D − 2)| ~Q|4

{[
(D − 1)Q2

0 + | ~Q|2
]
J2 + (D − 1)Q0(Q2 + ∆ab)J1

+
[
D − 1

4 (Q2 + ∆ab)2 +M2
a | ~Q|2

]
J0 +

[(
Q2

2 +Q2
0

)
(D − 1) + | ~Q|2

]
Fβb (B.11)

+ D − 1
4 (Q2 + ∆ab) (Fβb − Fβa)

}
,

Îab = 1
(D − 2)| ~Q|2

{
−Q2J2 +Q0(Q2 + ∆ab)J1 +

[1
4(Q2 + ∆ab)2 +M2

a | ~Q|2
]
J0

−Q
2

2 Fβb + 1
4(Q2 + ∆ab) (Fβb − Fβa)

}
. (B.12)

In the CM frame where | ~Q| = 0, the following additional simplifications take place:

Jab1 (Q0, 0;T ) = 1
2Q0

[
Fβa − Fβb −

(
−Q2

0 + ∆ab

)
J0(Q0, 0;T )

]
, (B.13)

Jab2 (Q0, 0;T ) = −Fβb2 +
(
−Q2

0 + ∆ab

)
4Q2

0

[
Fβb − Fβa +

(
−Q2

0 + ∆ab

)
J0(Q0, 0;T )

]
, (B.14)

B.2 Analytical structure

Following the original analysis in [81], one can use (B.1) to obtain the cuts in the real
Q0 axis for which the imaginary part of the Jk integrals is nonzero. Note that it includes
discontinuities related to physical processes inside the thermal bath. On the one hand,
we have the standard unitary cut, which corresponds to the region of the integrand where
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Figure 11. Cuts of the Jabk (Q0, | ~Q|;T ) integrals in (B.1) in the s = Q2 complex plane.

E1 + E2 = |Q0| (first two terms in (B.1)) requiring the condition s ≥ (Ma + Mb)2 with
s = Q2

0− | ~Q|2. This cut is the one giving rise to unitarity already at T = 0, as discussed in
section 3. On the other hand, the third and fourth terms in (B.1) give rise to the so-called
Landau cuts, for E1 − E2 = |Q0|, which requires −| ~Q|2 ≤ s ≤ (Ma −Mb)2 [90, 91]. This
cut is purely thermal, i.e., it vanishes at T = 0. The analytic structure of the J integrals
is represented in figure 11.

In section 3 we have discussed the interpretation of these cuts from physical processes
taking place in the thermal bath. The contribution of those thermal processes becomes
clearer by considering the imaginary part of the thermal integrals, namely, from (B.1)

Im Jabk (Q0, | ~Q|;T ) = 1
2π2

∫ ∞
0

dqq2
∫ 1

−1
dx

Ek1
4E1E2

×
{

[1 + nB(E1) + nB(E2)]
[
δ(E1 + E2 −Q0) + (−1)k+1δ(E1 + E2 +Q0)

]
− [nB(E1)− nB(E2)]

[
δ(E1 − E2 −Q0) + (−1)k+1δ(E1 − E2 +Q0)

]}
. (B.15)

B.3 Particular cases of interest for the scattering amplitude

Here we provide useful expressions for the thermal loop integrals corresponding to the
scattering diagrams in figure 1 according to the center of mass kinematics provided in
appendix A.

B.3.1 S-channel in CM frame

In this case, in the CM frame, we are interested in Q2
0 = s ≥ 0, | ~Q| = 0 in (B.1). To

derive the imaginary part in (B.15), recall that the solution to [E1(q)± E2(q)]2 = s is
given by q = pCM (s;Ma,Mb) in (A.3) and E1 = |s + ∆ab|/(2

√
s), E2 = |s −∆ab|/(2

√
s).
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In particular, note that E1 = E2 for Ma = Mb. Therefore,

(E1 + E2)2 = s ⇔ E1 = s+ ∆ab

2
√
s

, E2 = s−∆ab

2
√
s

(
s ≥ (Ma +Mb)2

)
, (B.16)

(E1 − E2)2 = s ⇔ E1 = s+ ∆ab

2
√
s

, E2 = ∆ab − s
2
√
s

(
0 ≤ s ≤ (Ma −Mb)2

)
, (B.17)

where we are choosing the masses so that Ma ≥ Mb, so that ∆ab ≥ 0 and E1 ≥ E2 for
s ≥ 0. Note that in this frame, the lower limit for the Landau cut is at s = 0, in accordance
with figure 11. In this way, this cut vanishes for Ma = Mb in the CM frame.

Therefore, solving for the corresponding δ functions in (B.15) we get

Im Jabk (Q0, 0;T ) = sgn(Q0)k+1σab(s)
16π

(
s+ ∆ab

2
√
s

)k
×
{[

1 + nB

(
s+ ∆ab

2
√
s

)
+ nB

(
s−∆ab

2
√
s

)]
θ
[
s− (Ma +Mb)2

]
+
[
nB

(∆ab − s
2
√
s

)
− nB

(
s+ ∆ab

2
√
s

)]
θ
[
(Ma −Mb)2 − s

]
θ (s)

}
, (B.18)

with s = Q2
0 and where we can readily identify the unitary and Landau contributions. The

above structure has direct implications for thermal unitarity, as discussed in section 3.
For the extension of the thermal amplitude to the s or Q0 complex plane, we need an

expression for the thermal integrals manifestly analytic in Q0 +iε. One can use the relation

Jab0 (s, 0;T )−Jab0 (s;T = 0) = − 1
2π2

∫ ∞
M1

dy
√
y2 −M2

1
s+ ∆ab

(s+ ∆ab)2 − 4sy2nB(y)+(Ma ↔Mb)

(B.19)
where s = (Q0 + iε)2 = s + sgn(Q0)iε with ε → 0+, so that the above expression allows
one for the analytical continuation to the upper (lower) s plane for Q0 > 0 (Q0 < 0).
Since J0(s) is real in the real axis for (Ma − Mb)2 ≤ s ≤ (Ma + Mb)2, we can extend
the analytical continuation from one half-plane to the other through Schwarz’s reflection
principle J0(s̄) = J0(s). Note that the corresponding analytic functions for J1,2(s) in the
CM frame can be obtained from (B.19) through the relations (B.13) and (B.14).

The expressions in (B.18) and (B.19) reduce to that in [11] for the case of equal masses
Ma = Mb. In particular, as mentioned above, the Landau cut contribution in (B.18)
vanishes in that case.

B.3.2 T -channel in CM frame

In this channel we have Q0 = T0 = 0 and | ~Q|2 = |~T |2 = −t(s, θ) =
−2p2

CM (s;MK ,Mπ)(cos θ − 1).
First, from (B.15), we realize that the thermal imaginary part corresponding to

the Landau cut in the t variable vanishes in this channel since it is proportional to∫
[nB(E1)− nB(E2)] δ(E1 − E2), which corresponds to the lower end of the Landau cut

in figure 11. As for the unitary cut, it requires t ≥ (Ma + Mb)2, so that from (A.3) we
conclude that it is present only for s < 0, as in the T = 0 case.
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Therefore, in the physical region s ≥ (Ma + Mb)2, where |~T | > 0 and t < 0, the
Jk(0, |~T | =

√
−t;T ) are real. In particular, from (B.1), we have for t < 0

Jab0 (0,
√
−t;T )− Jab0 (t;T = 0) = − 1

4π2P
∫ 1

−1
dx

∫ ∞
0

dq q2

E1(q)
nB [E1(q)]

t+ 2qx
√
−t+ ∆ab

+ (Ma ↔Mb)

= 1
8π2√−t

∫ ∞
0

dq qnB [E1(q)]
E1(q) log

∣∣∣∣∣ t+ ∆ab − 2q
√
−t

t+ ∆ab + 2q
√
−t

∣∣∣∣∣
+ (Ma ↔Mb) ,

Jab1 (0,
√
−t;T ) = 0,

Jab2 (0,
√
−t;T )− Jab2 (t;T = 0) = 1

8π2√−t

∫ ∞
0

dq qE1(q)nB [E1(q)] log
∣∣∣∣∣ t+ ∆ab − 2q

√
−t

t+ ∆ab + 2q
√
−t

∣∣∣∣∣
+ (Ma ↔Mb) , (B.20)

where P denotes Cauchy’s principal value and where we have performed the change of
variable ~q → −~q + ~T in the integrals containing nB(E2) in (B.1).

The above expressions generalize those obtained in [11, 12] for Ma = Mb. Actually, in
the present work, only Jaa integrals appear in the T channel, so we refer to [12] for the
analytical continuation of those integrals to the complex s− or t−plane beyond the real
t < 0 region.

B.3.3 U-channel in CM frame

Now we have Q0 = U0 and | ~Q|2 = |~U |2, which explicit expressions in the CM frame are
given in (A.2). Thus, in principle, one has both the Landau and unitary cut contributions
in this channel. Performing as before the change ~q → −~q + ~U in the integrals containing
nB(E2), for real values of U0 and |~U | > 0, we have from (B.1)

Jab0 (U0,|~U |;T )−Jab0 (u;T=0)

=− 1
4π2

∫ ∞
0

dq
q2nB [E1(q)]

E1(q)

∫ 1

−1
dx

u+2q|~U |x+∆ab

(U0+iε)4−2(U0+iε)2
(
2q2+|~U |2−2q|~U |x+Σab

)
+
(
∆ab−|~U |2+2q|~U |x

)2

+(Ma↔Mb) (B.21)
Jab1 (U0,|~U |;T )−Jab1 (u;T=0)

= U0

4π2

∫ ∞
0
dq q2

∫ 1

−1
dx

{
−2nB [E1(q)] E1(q)

(U0+iε)4−2(U0+iε)2
(
2q2+|~U |2−2q|~U |x+Σab

)
+
(
∆ab−|~U |2+2q|~U |x

)2

+
nB
[
Ẽ2(q)

]
Ẽ2(q)

2q2−u−2q|~U |x+Σab
(U0+iε)4−2(U0+iε)2

(
2q2+|~U |2−2q|~U |x+Σab

)
+
(
−∆ab−|~U |2+2q|~U |x

)2

}
(B.22)

Jab2 (U0,|~U |;T )−Jab2 (u;T=0)

=− 1
4π2

∫ ∞
0
dq q2

∫ 1

−1
dx

{
nB [E1(q)] E1(q)(u+2q|~U |x+∆ab)

(U0+iε)4−2(U0+iε)2
(
2q2+|~U |2−2q|~U |x+Σab

)
+
(
∆ab−|~U |2+2q|~U |x

)2

+
nB
[
Ẽ2(q)

]
Ẽ2(q)

[
(Ẽ2

2(q)−U2
0 )2−(Ẽ2

2(q)+U2
0 )(E2

1(q)+|~U |2−2q|~U |x)
]

(U0+iε)4−2(U0+iε)2
(
2q2+|~U |2−2q|~U |x+Σab

)
+
(
−∆ab−|~U |2+2q|~U |x

)2

}
, (B.23)

with Ẽ2
2(q) = q2 +M2

b .
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The previous expressions can be evaluated numerically and extended to complex U0
and |~U | values when needed. Actually, using these expressions, we have checked numerically
that the general cut structure depicted in figure 11 is fulfilled.

C Complete expression for the thermal amplitude

Here we list the expressions of the temperature-dependent corrections of the pion-kaon
scattering amplitude to one loop in ChPT, with T F,J4 (S,T,U;T ) = T F,J4 (s, t, u;T = 0) +
∆T F,J4 (S,T,U;T ) and ∆f(T ) ≡ f(T )− f(0),

∆T F4 (S,T,U;T )

= 1
f4

{
− (~k·~T )(~p·~T )

2|~T |4
(3t+4|~T |2)

(
∆Fβπ+1

2∆FβK
)
− (~k·~T )
|~T |2

( 1
18(7|~T |2−18p0T0)∆Fβπ (C.1)

+ 1
6(|~T |2−3p0T0)∆FβK

)
+(~p·~T )
|~T |2

( 1
18(7|~T |2+18k0T0)∆Fβπ+1

6(|~T |2+3k0T0)∆FβK
)

+ (~k·~U)(~p·~U)
16|~U |4

(
−3(3(−M2

K+M2
π+u)+8|~U |2)∆Fβπ+9(M2

η−2M2
K+M2

π−2u)∆FβK

− 3(3(M2
η−M2

K+u)+8|~U |2)∆Fβη
)
+ (~k·~U)

12|~U |2

(1
2(−4|~U |2+3(M2

K+M2
π−u+6p0U0))∆Fβπ

+ (3M2
η−M2

K−2M2
π−3u)∆FβK−

1
2(6M2

η+M2
K−M2

π−9u+12|~U |2−18p0U0)∆Fβη
)

+ (~p·~U)
12|~U |2

(
(7|~U |2−3(M2

K−2M2
π+2u−3k0U0))∆Fβπ−

1
2(3M2

η−16M2
K+13M2

π−12u)∆FβK

+ 1
2(3M2

η−10M2
K+M2

π+6|~U |2+18k0U0)∆Fβη
)

+ t(~p·~k)
2|~T |2

(
∆Fβπ+1

2∆FβK
)

+ 3(~p·~k)
16|~U |2

(
−(M2

K−M2
π−u)∆Fβπ−(M2

η−2M2
K+M2

π−2u)∆FβK+(M2
η−M2

K+u)∆Fβη
)

+ 1
72
[
M2
K−47M2

π+7s−21t−20u+28k0T0−28p0T0+12k0U0−42p0U0
]
∆Fβπ

− 1
180
[
15M2

η+8M2
K+33M2

π−14s+16t−14u−30k0T0+30p0T0
]
∆FβK

+ 1
360
[
39M2

η−199M2
K+46M2

π+21s+21t−114u+180k0U0−90p0U0
]
∆Fβη

}
(C.2)

∆T J(S,T,U;T )

= 1
f4

{
1
4(M2

K+M2
π−s)2∆JKπ0 (S)−

~k·~p
4|~T |2

[
(t2+4M2

π |~T |2)∆Jππ0 (T )−4tT0∆Jππ1 (T ) (C.3)

+4t∆Jππ2 (T )+1
2(t2+4M2

K |~T |2)∆JKK0 (T )−2tT0∆JKK1 (T )+2t∆JKK2 (T )
]

+6(~k·~T )(~p·~T )
|~T |4

[ 1
36(27t2+36(M2

π+t)|~T |2+14|~T |4)∆Jππ0 (T )−(3t+2|~T |2)T0∆Jππ1 (T )

−(|~T |2−3T 2
0 )∆Jππ2 (T )+ 1

24(9t2+4(3M2
K+2t)|~T |2)∆JKK0 (T )−1

6(9t+4|~T |2)T0∆JKK1 (T )

−1
2(|~T |2−3T 2

0 )∆JKK2 (T )
]
+(~k·~T )
|~T |2

[ 1
36
(
6t(t−4p0T0)+|~T |2(3M2

π+2t−14p0T0)
)
∆Jππ0 (T )

+1
3
(
−tT0+p0(3t+2|~T |2−4T 2

0 )
)
∆Jππ1 (T )−2p0T0∆Jππ2 (T )− t

12(3t+4|~T |2)∆JKK0 (T )

+1
6
(
(3t+4|~T |2)p0+3tT0

)
∆JKK1 (T )−p0T0∆JKK2 (T )− 1

12M
2
π |~T |2∆Jηη0 (T )

]
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+6(~p·~T )
|~T |2

[ 1
18(3t(t−2p0T0)+|~T |2(5t−7p0T0))∆Jππ0 (T )+1

3(−tT0+k0(3t+4|~T |2−2T 2
0 ))∆Jππ1 (T )

−2k0T0∆Jππ2 (T )− t

12(t+4k0T0)∆JKK0 (T )+1
6(tT0+k0(3t−4T 2

0 ))∆JKK1 (T )−k0T0∆JKK2 (T )
]

− 3~k·~p
16|~U |2

[(
(M2

K−M2
π+u)2+4M2

K |~U |2
)
∆JKπ0 (U)−4U0(M2

K−M2
π+u)∆JKπ1 (U)+4u∆JKπ2 (U)

+
(
(−M2

η+M2
K+u)2+4M2

K |~U |2
)
∆JKη0 (U)+4U0(M2

η−M2
K−u)∆JKη1 (U)+4u∆JKη2 (U)

]
+3(~k·~U)(~p·~U)

16|~U |4
[
(3(M2

K−M2
π+u)2+4M2

K |~U |2)∆JKπ0 (U)−12U0(M2
K−M2

π+u)∆JKπ1 (U)

−4(|~U |2−3U2
0 )∆JKπ2 (U)+

(
3(−M2

η+M2
K+u)2+4M2

K |~U |2
)
∆JKη0 (U)

−12U0(−M2
η+M2

K+u)∆JKη1 (U)−4(|~U |2−3U2
0 )∆JKη2 (U)

]
− (~k·~U)

8|~U |2

[(
−M4

K+(M2
π−u)2)∆JKπ0 (U)−2(3(M2

K−M2
π+u)p0−(M2

K+M2
π−u)U0)∆JKπ1 (U)

+12p0U0∆JKπ2 (U)−1
3(6M2

η+M2
K−M2

π−9u)(M2
η−M2

K−u)∆JKη0 (U)

+2
3(9(M2

η−M2
K−u)p0+(−6M2

η−M2
K+M2

π+9u)U0)∆JKη1 (U)+12p0U0∆JKη2 (U)
]

− (~p·~U)
4|~U |2

[(
M4
K−3M2

K(M2
π−u)+2(M2

π−u)2)∆JKπ0 (U)

−
(
3(M2

K−M2
π+u)k0+2(M2

K−2M2
π+2u)U0

)
∆JKπ1 (U)

+6k0U0∆JKπ2 (U)+1
6(3M2

η−10M2
K+M2

π)(M2
η−M2

K−u)∆JKη0 (U)

+1
3
(
9(M2

η−M2
K−u)k0+(3M2

η−10M2
K+M2

π)U0
)
∆JKη1 (U)+6k0U0∆JKη2 (U)

]
+1

4(M2
π−u)(M2

K+M2
π−u)∆JKπ0 (U)−1

4
(
−(M2

K+M2
π−u)k0+2(M2

K−2M2
π+2u)p0

)
∆JKπ1 (U)

+3
3k0p0∆JKπ2 (U)− 1

216(3M2
η−10M2

K+M2
π)(6M2

η+M2
K−M2

π−9u)∆JKη0 (U)

− 1
12
(
(6M2

η+M2
K−M2

π−9u)k0−(3M2
η−10M2

K+M2
π)p0

)
∆JKη1 (U)−3

2∆JKη2 (U)

+ t

36
(
(−3M2

π+4t−10p0T0)+k0T0(3M2
π+2t−14p0T0)

)
∆Jππ0 (T )+1

3(tp0+k0(t+6p0T0))∆Jππ1 (T )

+2k0p0∆Jππ2 (T )+ t

12(t+4k0T0)∆JKK0 (T )−1
6(tp0+k0(3t−4p0T0))∆JKK1 (T )+k0p0∆JKK2 (T )

− 1
36M

2
π(3M2

η+M2
π−3t−3k0T0)∆Jηη0 (T )

}
, (C.4)

with kµ = (pK)µ and pµ = (pπ)µ.
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