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1 Introduction

Many things change when quantum field theory is applied to a cosmological background,

ds2 = −dt2 + a2(t)dx⃗ · dx⃗ =⇒ H(t) ≡ ȧ

a
, ϵ(t) ≡ − Ḣ

H2 . (1.1)

One of these is the way the accelerated expansion (ϵ < 1) of primordial inflation causes
the energy-time uncertainty principle to predict the production of cosmological wavelength
particles which are both massless and not conformally invariant [1]. This is the basis for
the primordial spectra of gravitons [2] and scalars [3].

Of course these particles must interact with themselves and with other quanta, which
can change kinematics, long range forces, and even the expansion rate. Effects mediated
by scalars are easier to compute, but model-dependent. Even on the simplest background
(de Sitter, with ϵ = 0) graviton effects require heroic computations [4–7] and suffer from
potential gauge dependence [8, 9], but they can do things which scalars cannot, and no one
doubts that they can be described by general relativity as a low energy effective field [10–14].

An important feature of loop corrections from inflationary gravitons is that they some-
times grow in time as more and more quanta are ripped from the vacuum. For example, a
single loop of gravitons on de Sitter background changes the mode function of plane wave
gravitons [15] and the Newtonian potential [16] to,

u(t, k) = u0(t, k)
{
1 + 16GH2

3π
ln2(a) + O(G2)

}
, (1.2)

Ψ(t, r) = −GM

ar

{
1 + 103G

15πa2r2 − 8GH2

π
ln3(a) + O(G2)

}
. (1.3)
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Similar results have been reported for 1-loop graviton corrections to fermions [17, 18], to
massless, minimally coupled scalars [19], and to electromagnetism [20, 21].

It is fascinating to wonder what happens when the factors of ln[a(t)] grow large enough
to overwhelm the inflationary loop counting parameter of GH2. One would also like to
generalize the background from de Sitter to an arbitrary cosmological background (1.1) in
order to search for effects which persist long after inflation has ended. Nonlinear sigma
models provide a good theoretical framework for such studies because they possess the
same derivative interactions as quantum gravity, without the complicated index structure
and the gauge problem [22–25]. A recent de Sitter background study [26, 27] of this model,

L = −1
2∂µA∂νAgµν√−g − 1

2

(
1 + 1

2λA

)2
∂µB∂νBgµν√−g . (1.4)

showed that the large logarithms can be summed by combining a variant of Starobinksy’s
stochastic formalism [28, 29] with a variant of the renormalization group. For example, the
leading logarithms in the expectation value of the field A(x) sum to the form,

〈
Ω
∣∣∣A(x)

∣∣∣Ω〉 −→ 2
λ

√1 + λ2H2 ln(a)
16π2 − 1

+ (Stochastic acceleration) , (1.5)

where the final term speeds the field down its effective potential Veff(A)=−3H4

8π2 ln
∣∣∣1+ 1

2λA
∣∣∣.

The evolution of the scalar background (1.5) is entirely a stochastic effect. One derives
it by integrating out the differentiated B fields in the presence of a constant A background,

δS[A, B]
δA

= ∂µ
[√

−g gµν∂νA
]
− λ

2

(
1 + λ

2A

)
∂µB∂νBgµν√−g , (1.6)

−→ ∂µ
[√

−g gµν∂νA
]
− λ

√
−g gµν∂µ∂′

νi∆(x;x′)|x′=x

2
(
1 + λ

2 A
) = 0 . (1.7)

Because (1.7) is the equation of motion for a scalar potential model, one can sum its leading
logarithms using Starobinsky’s stochastic formalism [28, 29]. The stochastic random field
A(t, x⃗) of this formalism obeys the Langevin equation,

−3H(t)
[
Ȧ(t, x⃗)− Ȧ0(t, x⃗)

]
=

λ
2T [a](t)

1 + λ
2A(t, x⃗)

, (1.8)

where the stochastic “jitter” A0(t, x⃗) is the infrared-truncated, free field mode sum,

A0(t, x⃗) ≡
∫ aH

aiHi

d3k

(2π)3

√
H2(tk)C(ϵ(tk))

2k3

{
e−ik⃗·x⃗α(k⃗ ) + eik⃗·x⃗α†(k⃗ )

}
, a(tk)H(tk) ≡ k ,

(1.9)
where inflation begins at time ti and C(ϵ) ≡ 1

πΓ2
(

1
2 + 1

1−ϵ

)
[2(1 − ϵ)]

2
1−ϵ . Here T [a](t)

stands for the trace of the coincident, differentiated propagator which depends functionally
on the expansion history a(t),

T [a](t) ≡ gµν∂µ∂′
νi∆(x;x′)

∣∣∣
x′=x

. (1.10)
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Neglecting the stochastic jitter (which merely accelerates the rolling of A(t, x⃗) down its
potential) gives a first order equation which can be integrated (from A(ti, x⃗) = 0) to give,

A(t, x⃗) = 2
λ

[√
1− λ2

6

∫ t

ti

dt′
T [a](t′)
H(t′) − 1

]
+ (Stochastic acceleration) . (1.11)

The de Sitter result (1.5) was obtained by using dimensional regularization on de Sitter
background to evaluate the trace of the coincident, differentiated propagator [30, 31],

T [de Sitter] (t) = − HDΓ(D)
(4π)D

2 Γ
(

D
2

) −→ −3H4

8π2 (D = 4) . (1.12)

The purpose of this paper is to evaluate (1.11) using a recently developed analytic ap-
proximation of T [a](t) for a general expansion history which has undergone primordial
inflation [32].1 In section 2 we review these results. In particular, we specify the renormal-
ization condition, which was not needed for the de Sitter result (1.12). Section 3 devises
a plausible expansion history and presents numerical results for (1.11) in this expansion
history. Of course this requires us to make explicit choices for the coupling constant λ and
for the renormalization scale. Our conclusions comprise section 4.

2 Generalizing from de Sitter

The purpose of this section is to review the analytic approximation developed in [32] for the
trace of the coincident, doubly differentiated scalar propagator (1.10) on a general cosmo-
logical geometry (1.1) which has undergone primordial inflation. We first give the primitive
results, both during inflation and afterwards. Then we implement renormalization.

2.1 General primitive results

Dolgov and Pelliccia have shown that T [a](t) can be inferred from the coincidence limit of
the scalar propagator V[a](t) ≡ i∆(x;x) [39],

T [a](t) = −1
2

(
d

dt
+ (D − 1)H

)
V̇[a](t) , (2.1)

where a dot indicates differentiation with respect to co-moving time t. One obtains V[a](t)
for a general expansion history (which has undergone primordial inflation) by first express-
ing it as a dimensionally regulated, spatial Fourier mode sum of the norm-square of the
mode function Ṽ(t, k) = u(t, k)u∗(t, k),

V(t) =
∫

dD−1k

(2π)D−1 Ṽ(t, k) = 2
Γ
(

D−1
2

)
(4π)D−1

2

∫ ∞

aiHi

dk kD−2Ṽ(t, k) . (2.2)

We then employ appropriate analytic approximations for Ṽ(t, k) depending upon the re-
lation between the physical wave number k/a(t) and the Hubble parameter H(t). During
inflation a(t)H(t) grows and there are two such regions:

1Note also the related study of scalar perturbations amplified during inflation to explain dark energy
and the Hubble tension [33–38].
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• Ultraviolet — for a(t)H(t) < k < ∞; and

• Infrared — for a(ti)H(ti) < k < a(t)H(t).

Only the ultraviolet modes require dimensional regularization. When the appropriate ap-
proximations are inserted in the mode sum the result during inflation consists of a divergent
part and a finite part [32],

Vdiv = −1
8

(
D − 2
D − 4

) [D − 2ϵ(t)]HD−2(t)
Γ
(

D−1
2

)
(4π)D−1

2
, (2.3)

Vfin = −H2(t)
8π2 + 1

4π2

∫ t

ti

dt′H3 (t′) [1− ϵ
(
t′
)]

C
(
ϵ
(
t′
))

. (2.4)

Note that the horizon crossing relation k = a(tk)H(tk) has been used to change variables
from dk

k to [1 − ϵ(t)]H(t)dt. Recall that inflation begins at time ti, and the function C(ϵ)
was defined after equation (1.9). Finally, note that the key derivative for (2.1) is,

V̇fin = H3

4π2 [1− (1− ϵ)[1− C(ϵ)]] . (2.5)

Inflation ends at co-moving time te, after which a(t)H(t) falls and some of the infrared
modes experience 2nd horizon crossing. This partitions the mode sum into three regions:

• Ultraviolet — for a(te)H(te) < k < ∞;

• Near Infrared — for a(t)H(t) < k < a(te)H(te); and

• Far Infrared — for a(ti)H(ti) < k < a(t)H(t).

If a mode experiences 1st horizon crossing at time t, then t2(t) represents the time at
which it experiences 2nd crossing. Similarly, if a mode experiences 2nd crossing at time
t then t1(t) represents the time at which it experiences 1st horizon crossing. Of course
the ultraviolet divergence does not change but the finite part after the end of inflation
becomes [32],

Vfin = (2− ϵ)H2

8π2 ln
(

ke

aH

)
− H2

8π2

(
ke

aH

)2

+ 1
4π2a2(t)

∫ t

te

dt′
[
ϵ
(
t′
)
− 1
]
H
(
t′
)

a2 (t′)× cos2
[∫ t

t2(tk)
dt′′

k

a (t′′)

]
×H2 (t1)C (ϵ (t1))

+ 1
4π2

∫ t2(ti)

t
dt′
[
ϵ
(
t′
)
− 1
]
H
(
t′
)
×H2 (t1)C (ϵ (t1)) .

(2.6)
The factor cos2

[∫ t
t2(tk) dt′′ k

a(t′′)

]
oscillates wildly and averages to 1/2 inside the integral.

The key derivative for (2.1) after inflation is,

V̇fin = −

[
2ϵ(2− ϵ) + 1

H ϵ̇
]

H3

8π2 ln
(

ke

aH

)
− (1− ϵ)(2− ϵ)H3

8π2 + H3

4π2

(
ke

aH

)2

− H(t)
4π2a2(t)

∫ t

te

dt′
[
ϵ
(
t′
)
− 1

]
H
(
t′
)

a2 (t′)× H2 (t1)C (ϵ (t1)) .

(2.7)
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2.2 Renormalization

The coincident field A2(x) is a composite operator and we must use composite operator
renormalization to remove the divergence (2.3) which afflicts it [40, 41]. The only local,
dimension two operator with which A2 can mix is the Ricci scalar R = (D − 1)[D − 2ϵ]H2.
Hence the appropriate counterterm is,

∆V[a](t) =
(

D − 2
8

) [D − 2ϵ(t)]H2(t)
Γ
(

D−1
2

)
(4π)D−1

2

(
µD−4

D − 4

)
, (2.8)

where µ is the scale of dimensional regularization. Adding (2.8) to (2.3) and taking the
unregulated limit gives a finite residual,

lim
D→4

[Vdiv[a](t)−∆V[a](t)] = R(t)
48π2 ln

[
µ

H(t)

]
≡ Vres[a](t) . (2.9)

It is useful to make the running dimensionless with the parameterization µ = eα × H(te),

Vres[a](t) =
R(t)
48π2 ln

[
H(te)
H(t)

]
+ αR(t)

48π2 ≡ R(t)
48π2 ln

[
H(te)
H(t)

]
+ Vrun[a](t) . (2.10)

Combining the first term with Vfin defines the renormalized result,

Vren(t) ≡ Vfin[a](t) +
R(t)
48π2 ln

[
H(te)
H(t)

]
. (2.11)

3 A plausible expansion history

The purpose of this section is to develop an explicit expansion history so that equa-
tion (1.11) can be numerically evolved. We begin by grafting a simple model of scalar-
driven inflation onto the ΛCDM model of post-inflationary cosmology. Then a convenient
dimensionless formulation is introduced for the various independent and dependent vari-
ables. Finally, explicit results are presented for the scalar background.

3.1 Attaching inflation to a hot Big Bang

Our cosmology begins with inflation supported by the potential V (φ) of a scalar inflaton φ,

φ̈ + 3Hφ̇ + V ′(φ) = 0 =⇒

H2 = 8πG
3

[
1
2 φ̇2 + V (φ)

]
ϵφ = 3φ̇2

φ̇2+2V (φ)

 . (3.1)

In order to exploit simple slow roll expressions for the purposes of estimating parameters
we chose the quadratic model,

V (φ) = c2φ2

16πG
, c = 7.1× 10−6 . (3.2)

With initial value φ(ti) = 15/
√
8πG one gets about 56.8 e-foldings of inflation. This model

agrees with the observed scalar amplitude and spectral index [42] but it badly violates the

– 5 –
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Figure 1. Evolution of the composite slow roll parameter (3.5) over cosmic history.

increasingly tight bounds on the tensor-to-scalar ratio [43]. However, for the illustrative
purposes of this study that should not matter. Indeed, a more realistic plateau potential [44]
would increase the accuracy of our analytic approximation (2.4) [32].

Inflation ends when ϵφ(te) = 1, after which ϵφ oscillates between 0 and 3 with constant
amplitude and increasing frequency. We want to graft this expansion history onto that of
the ΛCDM model,

ϵΛ(t) =
2Ωr(1 + z)4 + 3

2Ωm(1 + z)3

Ωr(1 + z)4 +Ωm(1 + z)3 +ΩΛ
, 1 + z ≡ a(t0)

a(t) . (3.3)

where t0 is the current time. The ΛCDM parameters are [45],

Ωm ≈ 0.315 , ΩΛ ≈ 0.685 , Ωr ≈ Ωm

3390 . (3.4)

Of course the ΛCDM model is not accurate at very early times when the number of rela-
tivistic particles grows, but it will serve for our purpose of providing a numerical framework
to illustrate our analytic approximation (2.6). Rather than devise an elaborate theory of
reheating, we simply interpolate ϵφ(t) into ϵΛ(t),

ϵ(t) ≡ 1
2 [1− tanh(n − neq)]× ϵφ(t) +

1
2 [1 + tanh(n − neq)]× ϵΛ(t) , n ≡ ln

[
a(t)
a(ti)

]
,

(3.5)
where neq = 59.1. Figure 1 shows the resulting first slow roll parameter.

3.2 Dimensionless formulation

It is desirable to convert the evolution variable from the co-moving time t to the dimen-
sionless number of e-foldings since the beginning of inflation, n ≡ ln

[
a(t)
a(ti)

]
. The resulting

– 6 –
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change in calculus is,

d

dt
= H

d

dn
,

d2

dt2 = H2
[

d2

dn2 − ϵ
d

dn

]
,

∫
dt =

∫
dn

H
. (3.6)

Hence the relation (2.1) between T [a](t) and V[a](t) becomes,

Tren = −H2

2

[
d

dn
+ (3− ϵ)

]
dVren

dn
. (3.7)

And the key integral in expression (1.11) can be written as,∫ t

ti

dt′
Tren

H(t′) = −1
2

∫ n

0
dn′

[
d

dn′ + (3− ϵ)
]

dVren
dn′ ≡ − I(n)

16πG
. (3.8)

3.3 Numerical results

As figure 2 shows, the running term (2.10) makes only a small contribution during inflation,
and virtually nothing afterwards. Figure 3 shows the much larger contribution from the
dimensionless integral I(n) which was defined in expression (3.8). Note that it grows during
inflation, and then falls off afterwards. The expectation value of the dimensionless field
can be expressed in terms of I(n) as,

〈
Ω
∣∣∣√8πG A(x)

∣∣∣Ω〉 = 2
√
8πG

λ

√1 + 1
12

(
λ√
8πG

)2
I(n)− 1

+(Stochastic acceleration) .

(3.9)
Of course the right hand side of (3.9) depends on our choice of the dimensionless coupling
constant λ/

√
8πG. Figure 4 shows the analytic part for a convenient choice. We have

ignored the “stochastic acceleration” term which increases the growth during inflation, and
disappears afterwards. Even at the present day one can see that the dimensionless field
retains more than half the value it built up during inflation. Had we employed a model with
a larger period of primordial inflation this effect would have been correspondingly greater.

One can see from figure 3 that I(n) is never larger than about 4 × 10−9. This is
because the inflationary model of section 2 persists for only the minimum of 50–60 e-
foldings required to explain the Horizon Problem. One can envisage much longer periods
of inflation; extending the number of e-foldings by a factor increases the peak value of I(n)
by roughly that same factor. Because the dimensionless coupling λ/

√
8πG = 1

10 chosen for
figure 4 is of order one, the square root in equation (3.9) is near unity and perturbation
theory never breaks down,

Perturbative =⇒
〈
Ω
∣∣∣√8πG A(x)

∣∣∣Ω〉 ≃ λI(n)
12

√
8πG

. (3.10)

However, expression (3.9) is nonpertutbative, and we can make perturbation theory break
down, either by increasing the duration of primordial inflation or else by increasing the
dimensionless coupling. The result in that case becomes,

Nonperturbative =⇒
〈
Ω
∣∣∣√8πG A(x)

∣∣∣Ω〉 ≃

√
I(n)
3 . (3.11)

Figure 5 illustrates this regime for λ = 106 ×
√
8πG.

– 7 –
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α=0.1

α=0.3

α=0.5

α=0.7

α=0.9

α=1

Figure 2. Evolution of (8πG times) the running contribution (2.10) to the coincident propagator
for different values of α. Note that Vrun vanishes exactly during radiation domination, and is too
small to show up afterwards.

Figure 3. Evolution of I(n) from the beginning of primordial inflation to today.

The alert reader will note from figures 3 through 5 that the decrease due to modes
experiencing 2nd horizon crossing ceases at the onset of the current phase of cosmic accel-
eration. Indeed, one might expect to see the decline reversed because modes again begin
exiting the horizon. However, it must be recalled that the strength of the amplitude scales
like the square of the Hubble parameter at 1st crossing, as per equation (62) in ref. [32].
Because the current Hubble parameter is some 55 orders of magnitude smaller than its
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Figure 4. Evolution of the expectation value of
√
8πG A for λ = 1

10 ×
√
8πG.

20 40 60 80 100 120
n

0.00001

0.00002

0.00003

(8πG)
1

2 A

Figure 5. Evolution of the expectation value of
√
8πG A for λ = 106 ×

√
8πG.

value during inflation, the predicted late time growth would not be visible on our plots,
even if they were extended beyond the present time.

4 Conclusions

We have analyzed the evolution of the expectation value of the scalar field A in a non-linear
sigma model (1.4) on a general cosmological background (1.1) that experiences primordial
inflation. We did this by solving the Starobinsky Langevin equation (1.7) for this theory [26]
which involves T [a](t), the trace of the doubly differentiated, coincident propagator (1.10).
Expression (2.1) gives T [a](t) in terms of the coincident propagator V[a](t). A good analytic
approximation [32] for the dimensionally regulated, primitive form of V[a](t) was reviewed
in section 2.1, and subjected to composite operator renormalization in section 2.2. The
final result takes the form of a small “running” term proportional to the local Ricci scalar,
plus a much larger contribution (2.11), with (2.4) and (2.5) pertaining during inflation
and (2.6) and (2.7) afterwards.

Although our analytic approximations should apply for any cosmology which has ex-
perienced primordial inflation, we devised an plausible expansion history in section 3.1

– 9 –
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to provide explicit numerical results. Figure 1 shows the first slow roll parameter of this
cosmology, from which the Hubble parameter and the scale factor can be constructed by
integration. The small running contribution (2.10) to V[a](t) is shown in figure 2. Figure 3
gives the key integral (3.8) which determines the expectation value of the field shown in
figures 4 and 5.

A major goal of this study was to quantify the extent to which the high scales of
primordial inflation are transmitted to late times. In this regard it is worth noting that
the expectation value of A would vanish if the Universe was eternally radiation dominated
(that is, ϵ(t) = 2), or if it was flat. The fact that we get nonzero results, even during
radiation domination, is due to the initial phase of primordial inflation. Note also from
figures 4 and 5 that, even at very late times, the field retains a substantial amount of the
amplitude it built up during primordial inflation. Note finally that an arbitrarily large
amplitude could be built up by extending the duration of primordial inflation, whereas
there can be no extension of the post-inflationary diminution.

This study demonstrates that it is not only possible to sum the series of leading log-
arithms of nonlinear sigma models on de Sitter, but also on an arbitrary cosmological
background (1.1) which has undergone primordial inflation. And we have seen two cru-
cial things:

• That evolution never stops; and

• That an arbitrarily large effect from primordial inflation can be transmitted to late
times.

The next step is extending this formalism to quantum gravity in order to discover what
becomes of graviton loop corrections such as (1.2)–(1.3) at late times and after perturbation
theory has broken down.
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