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ABSTRACT: We investigated the impact of metric fluctuations on the higher-dimensional
black hole geometry. We generalized the four-dimensional model to higher dimensions to
treat quantum vacuum fluctuations by the classical approach. A fluctuating black hole
is portrayed by a higher-dimensional Vaidya metric with a spherically oscillating mass.
Assuming a small fluctuation amplitude, we employed a perturbation method to obtain a
radially outgoing null geodesic equation up to the second order in the fluctuation. Further-
more, the fluctuation of the event horizon up to the second order depends on the number
of spacetime dimensions. Therefore, the time-averaged values of the thermodynamic vari-
ables defined at the horizon also feature dimension-dependent correction terms. A general
solution was obtained for rays propagating near the horizon within a fluctuating geometry.
Upon examining this in a large D limit, we found that a complete solution can be obtained
in a compact form.
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1 Introduction

Einstein’s classical theory of gravity posits that a black hole, resulting from gravitational
collapse and settling into a stationary state, is characterized by three asymptotically ob-
servable parameters: mass, charge, and angular momentum. Contrary to the classical
notion of a black hole solely absorbing matter and energy, quantum mechanical effects
in proximity to the black hole horizon trigger a thermal energy transition from the black
hole over long distances. Quantum fluctuations of the black hole metric, spurred by the
uncertainty principle, initiate the spontaneous creation of energy quanta and the steady
emission of thermal energy to infinity, giving the black hole the semblance of a body with
temperature /27 (in Planck units), where k is the black hole’s surface gravity [1, 2].
The intersection of the fields of gravity, quantum mechanics, and thermodynamics in the
context of black hole thermodynamics has been an active research area in recent decades.

Dynamic descriptions of this Hawking effect were provided by York [3], who classically
approximated the zero-point fluctuations that induce the black hole’s thermal quantum
radiation to an ingoing Vaidya-type metric with a mass oscillating in the black hole’s
quasinormal mode. He showed that such quantum fluctuations lead to the formation of
a ‘quantum ergosphere’, and calculated the black hole entropy and thermal fluctuations
via a statistical method of the quasinormal modes. The statistical origins of the black
hole entropy and its thermodynamic properties have been the subject of extensive inves-
tigation [4-13]. Moreover, the quasinormal modes of black holes play a significant role in
understanding their dynamics and quantum properties [14-27].

The effects of black hole metric fluctuations on Hawking radiation have been studied
by Barrabes et al. [28]. Employing the York model, they solved the equation for outgo-
ing null rays perturbed by spherically symmetric fluctuations, deriving corrections for the



outgoing energy flux and asymptotic spectrum of the s-waves. The characteristics of black
hole geometries are being studied by tracing the ray emitted around the black holes [29, 30]
and fluctuating geometry modifications can also be found in [31-33]. Additionally, the fluc-
tuations of other quantum fields interacting with the gravitational field were approximated
using a stochastic ensemble of metric fluctuations. When such ‘induced’ fluctuations dom-
inate, stochastic gravity theory can address the fluctuations and back-reaction problems of
dynamical black hole spacetime [34-36].

In the pursuit of a complete description of quantum effects in the gravitational field,
spacetime of more than four dimensions has garnered considerable attention [37, 38]. The
concept of extra dimensions was introduced for mathematical consistency in string theory
which serves as one of the promising candidates for quantum gravity. The brane-world
scenario, assumed to resolve the problem of gravity’s scale being much larger than the
scale of the electroweak force, posits that all standard model matters are confined to a
four-dimensional hypersurface embedded in higher-dimensional spacetime, while gravity
propagates through large extra dimensions [39]. The AdS/CFT correspondence links D-
dimensional quantum field theory to a (D4 1)-dimensional gravity theory [40]. The diverse
dynamics in higher-dimensional spacetime offer valuable insights for a more comprehensive
understanding of quantum gravity.

Interestingly, when the number of spacetime dimensions is large, the complex nonlinear
dynamics of gravity theory are significantly simplified [41-43]. The gravitational influence
of a black hole is sharply localized in a thin region near the horizon, allowing for independent
analysis from the region far from the black hole. As a result, the dynamics of the black
hole horizon can be reduced to a simple and effective theory. Recent research utilizing this
‘large D effective theory’ has examined various black hole models [44-46], and investigated
the phases and instabilities of black strings/branes [47-50]. The large D limit offers a rich
landscape for analysis, furnishing new perspectives [51-59].

In this work, we investigated the influence of metric fluctuations in higher-dimensional
black hole geometry. By integrating the effects of black hole radiation, it is possible to
provide a more consistent quantum gravitational description of geometry. We generalize
the four-dimensional models of York [3] and Barrabes [28] to higher dimensions, creating
a simple model for treating fluctuations by the classical approach. This model features
an asymptotically flat, static higher-dimensional black hole metric with a spherically oscil-
lating source. Assuming the amplitude of the fluctuations to be minuscule for a massive
black hole, we analyze this geometry using classical perturbation theory. By solving the
perturbed outgoing null geodesic equation in arbitrary D-dimensions, we investigated the
dimensional dependency of the position of the black hole horizon and thermodynamic
quantities. We then calculated the general corrections for the perturbed rays propagating
near the horizon. Ultimately, we demonstrate that the perturbation terms are significantly
simplified for a large D, enabling compact, complete solutions to be obtained.

The remainder of this paper is organized as follows. In section 2, we provide a brief
review of York’s and Barrabeés models, as well as higher-dimensional Vaidya black holes.
In section 3, we generalize the model to higher dimensions and calculate the outgoing
null geodesic equation. In section 4, the positions of the perturbed horizon and time-



averaged thermodynamic variables are obtained. In section 5, we examine the propagation
of outgoing rays in a fluctuating geometry. In section 6, we apply the large D limit.
Section 7 offers a summary of our study’s findings. Throughout this study, we employ a
metric signature of (—, 4+, +,+) and use dimensionless units [28] such that c =G =h = 1.

2 Review on model and the higher-dimensional Vaidya black hole

The model proposed by York [3] represents a four-dimensional black hole undergoing simple
zero-point oscillations near its horizon. This model is approximated using an ingoing
Vaidya-type metric.

2
ds? = — (1 - :@) dv? + 2dvdr + r2d0? + r? sin? 0d¢?, (2.1)
where

m =m(v,0) = Mpy

L4+ > 20+ Dhi(v)a(6) | - (2:2)
1

The function m(v,0) serves as the source of the fluctuating geometry, Mpy represents
the total mass of the black hole, [ is the azimuthal quantum number, ¢; is a spherical
harmonic with zero magnetic quantum number (to be normalized), and p; is a dimensionless
amplitude parameter of the oscillations. The function h;(v) and the amplitude parameter
are assumed to have the form

MPlanck

, 2.3
VMo (2.3)

hi(v) = sinwv, W= q
where w; is the oscillation frequency, and a; is a pure number. Note that y; < 1 for a black
hole with mass Mpy > Mpjagner- This metric describes a Vaidya black hole fluctuating at
a small amplitude.

Barrabes [28, 60] studied the effects of a fluctuating geometry on outgoing rays using
this classical treatment of fluctuations. They considered a simple case of spherical oscilla-
tions with [ = 0, yielding ¢o(f) = 1 and assumed that the black hole was formed from the
gravitational collapse of a spherical massive null shell. Hence, the mass function can be
written as

m=m(v) = Mpg [1+ u(v)]0(v) = Mpg [1 + po sin(wv)] ¥(v), (2.4)

where ¥(v) is the Heaviside step function, which indicates that a spherical null shell with
mass equal to Mpp collapses at the origin of the advanced time coordinate v = 0. In
this geometry, radial null rays depart from past null infinity J~ at an advanced time v
and arrive at future null infinity J* at a retarded time w. For large u, outgoing rays
propagate near the event horizon and their effective frequencies are very high compared to
the characteristic frequency of the black hole, K = 1/4M. This allows us to use geometric
optics approximation to study the propagation of null rays near the horizon. For v < 0,
rays leaving J~ propagate inward in flat spacetime, bounce off at r = 0 (the regular



Figure 1. Conformal diagram of the spherically symmetric black hole formed by a gravitational
collapse of a null shell. 7~ denotes past null infinity, 7 denotes future null infinity, and the points
it and i® denote future timelike infinity and spatial infinity, respectively. The double line v = 0
represents the collapsing null shell and the dark solid line represents the trajectory of the null ray.

center of the flat space), and propagate outward. After crossing the null shell at v =
0, the rays propagate in the black hole spacetime and reach J* at large u. Figure 1
schematically shows the conformal structure and propagation of radial null rays in the
absence of fluctuations.

By tracing the trajectory of the ray reaching J+ at u backward in time, we obtain the
advanced time v = Vp(u) when the ray starts at 7. In the presence of metric fluctuations,
the causal structure of this geometry remains unchanged. However, v = Vj(u) is modified
to a new value, v = V'(u), because the trajectory of the ray is modified. Therefore, the
relation V' (u) provides information on the fluctuating geometry and is used to study the
modified energy flux and asymptotic spectrum of radiation.

In this study, we are interested in the effects of black hole metric fluctuations in
higher dimensions. For a simple model, we considered a non-rotating, neutral, and higher-
dimensional black hole. The Schwarzschild-Tangherlini metric [61] is an asymptotically flat
and static black hole solution derived from higher-dimensional Einstein’s theory of gravity
in vacuum. This metric is given by [37]

M dr?
d82:_<1_rD—3>dt2+( i

1 - L5)

where dQ% _, is the line elements on a (D — 2)-dimensional unit sphere SP~2. Here M is

+r2dQ% . (2.5)



a mass parameter which has following relation with the black hole mass Mpy.

(D—-2)Qp_o
Mpyg=-—"—""M 2.6
BH 167 ’ ( )
2r(P—1)/2 D—2
where Qp_o = Ly represents the volume of .S . We assume that the source of black
2

holes fluctuates over time. The Vaidya-type metric is useful in describing massive spherical
bodies with oscillating or radiating null fluids. We use ingoing Eddington-Finkelstein
coordinates (v,r), where v = t 4+ r, is the advanced time, allowing the mass parameter
in (2.5) to become a function of v. Hence, the higher-dimensional Vaidya metric [62] is
written as

ds? = — (1 — :ﬁfg) dv? + 2dvdr + r2dQ% _,. (2.7)

The radial tortoise coordinate 7, is defined for this metric as
dry m(v)\

=(1- . 2.8
dr < TD3> (2:8)
The event horizon of the black hole is located at

= [1 - 2@2/@)]]313 ' 29)

The surface area of the horizon and the surface gravity are given by

D -3
KR =

2rg(v)
Using these quantities and thermodynamic relations, we can derive the Hawking tempera-

ture Ty = k/2m and the entropy S = A/4 of the black hole. We apply the mass function
m(v) following York and Barrabés to classically treat the metric fluctuations and study

.A = QD_QTg_Q (v),

. (2.10)

how these variables and the trajectory of the radial null rays are modified in this geometry.

3 The fluctuating geometry in higher dimensions

In this section, we construct a simple model through generalization to higher dimensions.
We employ the metric (2.7) to consider a higher D-dimensional spacetime and utilize
the fluctuating mass function to observe the effects of small perturbations on the metric.
Because the function (2.2) contains a three-dimensional spherical harmonic ¢;(6), we must
generalize it to higher dimensions.

m=m((v,0) =M |1+ Z(2l + 1)y sin(wyv)Y(0) | 9(v). (3.1)

!
where M is the higher-dimensional mass parameter defined by (2.6) and Y;(0) is the hyper-
spherical harmonic (which is assumed to have an appropriate normalizing constant applied)
that has zero magnetic quantum number. Note that ¥(v) indicates that the black hole was



formed by the collapse of a null shell of mass M. In general, the hyperspherical harmonics
for D > 3 are given by [63, 64]

D—4

. D—k—3
Yi(my: 0, ¢) = em0=3¢ T (sinfp_g_s)™ ' Co o 2 (cosfp_p_z)™*,  (3.2)
k=0
where my, is the magnetic quantum number and
2 1 1—-¢
coqr) = ;)b SR, (—b, 20,0+ 3 2) (3.3)

is the Gegenbauer polynomials. For the simplest case with no dependence of § we consider
the lowest mode [ = m;, = 0. In that case,

D—4
D—k-3 D—k—2 1—cosfOp_p_
Y():H()02F1<0,D—/~c—3, ; COSD“’):L (3.4)
0! 2 2
k=0
Consequently, we obtain the following fluctuating mass function.
m(v) = M [1+ p(v)]9(v) = M [1 + posin(wv)] d(v), (3.5)

where pg is a dimensionless small-amplitude parameter and w is the frequency of fluctu-
ations (the subscript 0 is dropped). The second term in parentheses is associated with
fluctuations. By substituting the metric (2.7) with this mass function into Einstein’s equa-
tion, the energy-momentum tensor of this geometry is obtained as

(D—-2) :
Ty = 167 D=2 [M (1 + posin(wv))o(v) + M pow cos(wv)d(v)] lalp, (3.6)
where [, = —0,v denotes the null vector field tangent to the radially ingoing null geodesics.

To study the effect of metric fluctuations on the propagation of null rays, we solve the
equation for radial rays. Setting ds?> = 0 and dQQp_s = 0 gives

miv
— (1 — rD(—?)>) dv? + 2 dvdr = 0. (3.7)

The ingoing radial rays move with dv = 0 and the outgoing radial rays move with du = 0, or

<1 - m(“)> dv = 2dr. (3.8)

D3

Because the dimensionless amplitude pg of the fluctuations is assumed to be very small,
we use the perturbation method.

r=r) = R)+ p(v) + o)+ (3.9)

where R(v) is the unperturbed solution or the solution in the absence of metric fluctuations,
and p(v) and o(v) are the first- and second-order perturbations of 1, respectively. We
ignore the higher orders in pg denoted by dots here. We investigated the modified trajectory



of the ray in a fluctuating geometry by fixing u as a constant value of the retarded time
when the ray reached J 7 in the absence of fluctuations.

u=1t— R.(v) =v—2R,(v) = constant. (3.10)

Here, R, is an unperturbed radial tortoise coordinate defined by

afte _ (1 M )1, (3.11)

dR - RD-3

which is given by [65]

(3.12)

and
12w
aj = MD-3¢ D37, (3.13)

When v < 0, the outgoing ray propagates in flat spacetime with dv = 2dR. For v > 0,
substituting the perturbed radial coordinates (3.9) into equation (3.8) and linearizing, we

obtain

dR M
— =1—-—==— 3.14
dv RD—3’ (3.14)
dp M M
2 dv (D — 3)@9 = _W'&’ (3.15)
do M M |pu D—=2p?
22 (D-3)——0=(D-3 PE_Z—2F |, 3.16
@~ P ¥gp7 =P =3 gps lR 2 R? (3.16)
We can write the equations for the perturbations (3.15)—(3.16) as
df D-3 M
The first-order perturbation corresponds to
1 M
f=p,F= _§Wu7 (3.18)
and the second-order perturbation corresponds to
D-3 M |pu D-—2p?
—¢,F="_" e 19
f=o, 2 RD-3|R 2 R2 (3.19)

These equations include the results in [28] for D = 4. We solve these perturbed null-ray
equations to obtain a solution that describes a fluctuating event horizon of the black hole
and the general trajectory of the ray propagating near the horizon.



4 The perturbed event horizon and thermodynamics

We seek a particular solution describing the position of the perturbed horizon rg(v) =
Ry (v) + pa(v) + og(v) + -+ and examine the quantities defined on the horizon in the
presence of fluctuations. From the zeroth-order equation (3.14), the unperturbed horizon
is located at

Ry = M3, (4.1)
Following this, the unperturbed surface gravity of the black hole is
D-3 D -3
K= = —. (4.2)
2Ry oM D=3
By using these quantities and equations (3.18)—-(3.19), we find that
dpr 1
_ S 4.
don D — 2 kp%
— = = - 4.4
do  OH TR T Ry (4.4)
Upon solving these equations, we obtain the position of the horizon in the fluctuating
geometry,
o 2 cos wv + sinwv
== 4.5
PH= o0 1402 (4.5)
B /L% 202(2 — 0?) cos 2wv + Q(1 — 502) sin 2wv
TH T 4 1+ Q2)2(1 + 402)
D — 4 (1 —502)sin? wv + Q(2 — O2) sin 2wv + Q2(5 + 202?) (4.6)
D -3 (14 92)2(1 + 402) ’ )

where 2 = w/k denotes a dimensionless frequency. The integral constant was chosen to
eliminate terms causing small perturbations to grow exponentially over time. The position
of the horizon rg = M D=3 4 py + oy changes periodically, depending on the sine and
cosine functions, with frequencies and amplitudes determined by the metric fluctuation
parameters. Thus, one can imagine the horizon wriggling due to fluctuations. The second
term in the second-order correction oy depends on the number of dimensions D and
vanishes for four dimensions.

Next, we calculate the mean values of the fluctuating surface area, surface gravity,
Hawking temperature, and entropy of the black hole, averaged over time v to determine
the overall change. The average values of the surface area and surface gravity on the
fluctuating horizon are

- .
A= Qpoary(0) = o2 i 1+ 4(1 ioé?)(;i 3)2] ’ (4.7)
= (7”22(11)) =r|1+ 4(1 +OQ2)(D _ 3)2] ’ (4.8)




where k is the value of the unperturbed surface gravity (4.2). In the presence of metric
fluctuations, these quantities have slightly larger values than their counterparts in the
absence of fluctuations. Furthermore, the higher the dimensions D, the smaller the second
term’s value, corresponding to the effect of the fluctuations. The Hawking temperature
was modified to

K u5(D —2)

Ty—L = 1+
B = or ~ 2n 11+ 92)(D-3)2|"

(4.9)

The changes in surface area 4 = A — A and Hawking temperature 6Ty = Ty — Ty due
to fluctuations satisfy the following relation

0A 0Ty
— = . 4.10
1= T, (4.10)
This relationship holds not only in four dimensions but also in higher dimensions. The
standard relation S = A/4 for the entropy of a black hole is also modified. The average
entropy value was obtained using the first law dS = dE /Ty, where E = m(v) = M.

. Bo-2 A p3(D —2)
5= 9 <1 + 4(1 +092)(D — 3)2> T4 (1 S 21 +092)(D - 3)2) - @1

Again, the impact of the fluctuations diminishes as the dimension D increases.

5 Propagation of perturbed radial rays

We herein solve the null geodesic equations for the general case R # Ry after obtaining
radially outgoing null geodesic equations for a fluctuating higher-dimensional black hole
geometry and examining how the event horizon fluctuates. For v < 0, the outgoing ray
propagates with du = 0 in flat geometry. For v > 0, the trajectory of the outgoing ray
is given by equations (3.14)—(3.16). Using equation (3.14), we change the variable v in
equation (3.17) to the unperturbed trajectory R(v), yielding the solution

f:<1_R]1\74—3> _/Roo(lﬂjw)QdR’Jrfo : (5.1)
e

where fj is the integration constant. We assume that the outgoing ray reaches future null

infinity J 1 at the same time u in both the absence and presence of fluctuations. Therefore,
the perturbation term f should vanish at J*+. For both p and o, F' approaches zero as
R — o0, and we satisfy this requirement by setting fo = 0. We introduce the following
dimensionless quantities for convenience.

_ R—Ry

T R

kf. (5.2)



Subsequently, we express the dimensionless perturbations as

)= [\~ ms] [ e o

o (1+¢)P3 puE) D-2 p(§)?
U(@__[l (H—mDJ {(1+¢)P-3— 1}2<D_3){ 1+6 2 (1+£)2}d§'

(5.4)

We also express the fluctuating mass term in the integrand in dimensionless form as

p(&) = posin(wv(§)) = posin [ + 2kR.(8)]

D—-4
= Lo sin [Q (Q—F(D—S)f—i-z:eif%jln(li;i—1))}. (5.5)
=0

e D-3

These solutions describe the modified trajectory of the outgoing radial null ray in a
higher-dimensional fluctuating black hole geometry. Now, we establish the relationship
v = V(u) between the null coordinates to observe the entire history of the perturbed rays
in this geometry. We first consider a situation with no fluctuations (po = 0). For v < 0,
the spacetime is flat, and the null coordinates are related by v —u = 2R. The rays leaving
J~ at v = Vy < 0 converge toward the regular origin R = 0 of spacetime, bounce off at
R = 0, and propagate outward. Because the ingoing rays move with v = constant and the
outgoing rays move with u = constant, we obtain the relation

Vo = —2R, (5.6)

where Ry denotes the values of the unperturbed radial coordinates when v = 0. For v > 0,
the null coordinates are related by v —u = 2R, in the black hole spacetime. In this region,
the rays propagate outward only with u = constant, and we obtain

s D—
—u=2R,=2 Ro—Mﬁ+ Z 3Jln<R—1>]. (5.7)

MD=3¢'D-37

The null shell propagating along v = 0 is a singular null hypersurface across which the
metric is continuous. Thus, combining equation (5.6) obtained in the v < 0 region with
equation (5.7) obtained in the v > 0 region yields the relationship Vj(u).

We now consider the rays in the presence of fluctuations (uo # 0): because we fixed
the value of the retarded time u at which the unperturbed rays reach J 7, equation (5.7)
remains unchanged, but equation (5.6) should be modified to

V(u) = —=2[Ro(u) + po(u) + oo(u)]. (5.8)

The subscript 0 represents the intersection of the radial coordinates of the ray and null
shell. In the dimensionless form, it can be written as

V(a) = kV = =[(D = 3)(1 + 20) + p(x0) + &(20)] , (5.9)

~10 -



where g = % is the value of the dimensionless variable z on null shell v = 0. This

implies that xq satisfies

D4 : 2m 1+ 2
i+ (D=3)wg+ Y eis’In|——"—-1)=0, (5.10)

=0 -3/

which yields (). By computing the values of the fluctuations 5(zp) and &(xg), we obtain
the relationship V(@). This function illustrates the impact of metric fluctuations in higher
D-dimensions.

6 The fluctuating geometry in the large D limit

Calculating the integrals in equations (5.3) and (5.4) for generally higher dimensions can
be complex and difficult. Hence, exploring the boundaries of the dimension number D,
a well-defined natural parameter in gravity theory, is a good strategy for simplifying the
problem. This section discusses how the equations become straightforward in the ‘large D
limit’ [41, 43] and provides the corrected relation V(@) in the fluctuating geometry.

In the large D(>> 1) dimension, the radial gradient of the gravitational potential at
the black hole horizon becomes very large (~ D/Ryr), thereby localizing the gravitational
field of the black hole strongly near the horizon. Outside the thin area on the order of 1/D
where the influence of gravity exists, the black hole geometry becomes a flat Minkowski
spacetime. One can define the ‘near-horizon zone’ to study an effective theory in the
vicinity of the horizon. Since we are interested in the rays arriving at J+ at a late time
u > 1, which propagate close to the horizon, we introduce near-horizon coordinates

R= (R]Z)DS : (6.1)

defined by InR < D — 3, to compute the perturbed trajectory of a ray in a large D-
dimension. Considering the first order in D~!, we obtain the radial tortoise coordinate

from
1 ]. RH 1 A RH ]_ A~
dR, = ——— =~ dR = ~dR = ———————dR, 6.2
T e L N R (62)
R
yielding
Ry N

Subsequently, the fluctuating mass term (5.5) becomes

1(R) = posin [Q (@ + 2kR,)] = o sin [Q (11 +In(R — 1))] = polm [em“(lfi — 1)19} . (6.4)

With near-horizon coordinates, the first-order perturbation in pg is written as

p(R) = 2mp(R) = (1 =) IR) (6.5)

- 11 -



where

s [ m(T) _ ioa [~ iQ—2
I(R) = /R g 4 = ol [e /R (r— 1) 247 (6.6)
1+ i€2 QU B Q-1
_uolm[1+92e ( 1)

can be easily integrated. We require the value pg on the null shell to compute the function
V(). Here, v = 0 implies

@i+ 1In(Ry — 1) = 0, (6.7)

with Rg denoting the value of R on the null shell. Using this relationship, we obtain the
first-order perturbation on the null shell as

i 1 140 i ,Q_l]
Ro)=1[1— = 1 Ro —1)7**(R 1)*
po(Ro) ( Ro)uom[Hm(o GY
Q 1

Next, we express the second-order perturbation in pg in near-horizon coordinates as

5(R) = 2k0(R) = — (1 — })

) [ e (s -5} an 69)

R

By substituting p(7) = (1 — %) I(7), we obtain

A 1 o pu(T) 1 [>~1 5 ]
Rl=—(1-=% ————I(1)dT — = —I*(T)dr| . 1
o®) = (1-2) | [ =5 [z (6.10)
By integrating the second term by parts, we obtain
o0 1 I’(R oo [
/ —2[2(7)(17' = E ) + 2/ @I/(T) dr, (6.11)
R R R 7

where the prime symbol denotes the derivative with respect to the integration variable 7.
Then we have

By 1\ [P(R) > p(r)
5(R) = (1§> [ = */ﬁ A1) dT]. (6.12)
Using
> p(r) R
A e 1)21(7) dr = 212(R), (6.13)
we obtain the second order correction
2
(R) = —% [(1 _ ;) I(ﬁ)} . (6.14)

- 12 —



Again, we require the value on the shell. Using condition (6.7), we calculate the function
I2(Ro) as

I*(Ro) = p2 L ! (6.15)
Therefore, the second-order perturbation on the null shell is
R 2 QQ
50(Ry) = —20 (6.16)

2 (1+02)2RY

Finally, we compute the corrected relation V() in a large D dimension. By fixing
the value of @ as the (dimensionless) retarded time parameter when the unperturbed ray
reaches J 7, we obtain

Ro=1+¢e" (6.17)
from equation (6.7). In the presence of fluctuations, the relationship between the null
coordinates of the ray is

A

~V (i) = (D - 3) + InRo(@) + po(Ro(#)) + 50(Ro(i1))

¥ iy—1 M% 02 i\ —2
= —— ]_ T — 1 )T 1
Vot poga(l+e™) 2 (1+Q2)2( e (6.18)
where
Vo=(D=3)+n(1+e77) (6.19)

is the value in the absence of fluctuations. The corrected terms contain the amplitude and
frequency parameters determined by the parameters of the metric fluctuations. Interest-
ingly, when the dimension D is very large, a complete solution is obtained in a compact
form in the near-horizon zone.

7 Conclusions

In this work, we examined the impact of metric fluctuations on outgoing radial rays prop-
agating near the horizon of a higher-dimensional black hole. By generalizing the works of
York [3] and Barrabes et al. [28] to higher dimensions, we studied an ingoing Vaidya-type
metric with a spherically oscillating source over time v. The oscillating mass induced fluc-
tuations in the geometry, necessitating the correction of the null geodesic equation. Given
that the oscillations in our model were minuscule compared to the black hole mass, we used
a perturbation method to obtain the corrected equation of radially outgoing rays. The
perturbed event horizon solution was found up to the second order in the small-amplitude
parameter g, and the second-order correction exhibited a dimensional dependency arising
from the higher-dimensional spacetime. The perturbed horizon influenced the thermody-
namic variables defined on the horizon. By calculating the time averages, we examined
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the global changes in the presence of fluctuations. The corrections in these variables de-
creased as the number of spacetime dimensions increased, and a dimensional dependency
emerged in the relationship between the entropy and surface area of the black hole. We
also derived a general solution for the perturbed outgoing rays. It is worth noting that
our results encompass those of [28] for four dimensions. In the large D limit, we were able
to analytically solve the complex integrals present in the general solution. Using these
results, we established a complete V' (u) function, representing the corrected relationship
between the null coordinates of the perturbed ray in a large D-dimension. Although our
results were obtained using a simplified model that assumed classical perturbations, they
offer intriguing insights into higher dimensions.

By adjusting the V(u) function, we can derive corrections for the outgoing energy
flux and the asymptotic spectrum of Hawking radiation in higher dimensions. Moreover,
our model can be generalized to the case of a higher-dimensional rotating black hole, and
non-spherical oscillations can be considered.
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