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1 Introduction

In effective theory of superstring, moduli fields, light fields associated e.g. with higher-
dimensional gravitational degrees of freedom, play crucial roles in constructing realistic
models of particle physics as well as cosmology.

Modular symmetry is the geometrical symmetry of compact space, where moduli trans-
form non-trivially. Four-dimensional effective field theory derived from superstring theory
also has the modular symmetry [1–16]. In addition, the modular symmetry includes finite
groups such as S3, A4, S4, and A5 [17]. These discrete groups have been used in flavor
model building in the bottom-up approach [18–26]. Inspired by these aspects, modular
flavor symmetric models have been receiving attention as an origin of flavor structure in
the standard model of particle physics [27–78].1

In the modular flavor symmetric models, Yukawa couplings correspond to modular
forms of complex structure moduli τ , and the structure of Yukawa couplings is determined
by the vacuum expectation values (VEVs) of complex structure moduli, which are complex
scalar fields in 4D effective theory. Therefore, moduli stabilization plays a crucial role in

1See for more references ref. [79].
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such flavor symmetry models. Indeed, moduli stabilization has been studied in modular
flavor symmetric models [52, 57, 80–85].

In particular, residual ZN symmetries remain at fixed points [32]. Each modular form
behaves like (τ − τ∗)m around a fixed point τ∗, depending on the ZN charge m of the
modular form. Thus, the modular forms are suppressed by ε = τ −τ∗ at nearby fixed point
τ∗. This behavior is important to realize the hierarchy of quark and lepton masses and
mixing angles [86–94].

One of the ways to stabilize the moduli is the use of fluxes of p-form fields along com-
pactified dimensions that yield effective potential to complex structure moduli. If somehow
the chosen flux potential yields preferable VEV to the complex structure moduli, it would
explain the flavor structure in the standard model by chance. Another possibility is due to
non-perturbative effects. On the other hand, there might be some dynamical origin why the
complex structure moduli may take some special value in the moduli space: in [95], it was
pointed out that particle production takes place when moduli dynamically crosses the spe-
cial point called the enhanced symmetry point (ESP) at which particles coupled to the mod-
uli become massless. The produced particle gives effective potential to the moduli such that
the moduli are attracted to the ESP and trapped around it. Such mechanism may explain
why the VEV of moduli chooses some particular value from the landscape of moduli space.

In this work, we consider the dynamical moduli trapping mechanism in modular flavor
symmetric models. First, with simple toy models we briefly review and develop a numerical
approach to discuss the moduli dynamics back-reacted by the production of spectator fields.
Despite its straightforwardness, we find a common difficulty due to the computational costs
in the simulations. Furthermore, the modular flavor symmetric models contain extra com-
plications due to the structure of Yukawa couplings as well as moduli being coupled to mat-
ters via Planck suppressed operators. Therefore, we will develop a semi-analytic approach
where only the first particle production event is taken into account, and contributions from
all the momentum modes are included. Using the analytic result, we show that the moduli
trapping mechanism works even for (complicated) modular flavor symmetric models.

This paper is organized as follows. In section 2, we review and discuss a fully numerical
approach, which is in principle applicable to any dynamical systems. In section 3, we
review the modular flavor symmetry , and then specify the system we consider in this
work and derive the equations of motion that we need to solve. We then analytically
evaluate the amount of particle production when moduli crosses the ESP in section 4. We
also numerically examine the moduli dynamics using the analytic expressions we derived.
Finally, we summarize our results and discuss implications to more realistic models in
section 5. In appendix A, we give a brief review on particle productions in time-dependent
background. Modular forms, which we use, are shown in appendix B. In appendix C, we
review field dynamics in expanding Universe.

Throughout this paper, we take a natural unit convention ℏ = 1, c = 1 but we write the
Planck scale Mpl ∼ 2.4×1018GeV explicitly to clarify the hierarchy between various scales.
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2 A toy model

We briefly review some ingredients that we will use in modular flavor symmetric models.
For simplicity, we discuss the following system consists of two massless real scalar fields,

S = −1
2

∫
d4x

√
−g

[
(∂ϕ)2 + (∂χ)2 + λϕ2χ2

]
. (2.1)

We assume that ϕ behaves as a classical homogeneous field ϕ = ϕ(t), the background to be
the Friedman-Robertson-Walker (FRW) spacetime ds2 = −dt2 + a2(t)dx2 and χ to be a
quantum field, and then the coupling term λϕ(t)2χ2 behaves as an effective time-dependent
mass term of χ. We quantize χ as follows: first, the action of χ is

S = 1
2

∫
dtd3xa3

[
χ̇2 − a−2(∂iχ)2 − λϕ2χ2

]
, (2.2)

which, by introducing χ̃ = a
3
2 χ, can be rewritten as

S = 1
2

∫
dtd3x

[(
˙̃χ − 3

2Hχ̃

)2
− a−2(∂iχ̃)2 − λϕ2χ̃2

]

= 1
2

∫
dtd3x

[
˙̃χ2 − a−2(∂iχ̃)2 −

(
λϕ2 − 3

2Ḣ − 9
4H2

)
χ̃2
]

. (2.3)

Then, the quantum field χ̂ is written by

χ̂(t, x) = 1
a

3
2 (t)

∫
d3k

(2π)
3
2

[
âkeik·xfk(t) + â†

ke−ik·xf∗
k (t)

]
, (2.4)

where the mode function fk(t) satisfies

f̈k(t) + ω2
k(t)fk(t) = 0, (2.5)

and

ω2
k(t) =

k2

a2(t) + λϕ2(t)− 3
2Ḣ(t)− 9

4H2(t). (2.6)

The mode function fk(t) satisfies the normalization condition

fkḟ∗
k (t)− f∗

k (t)ḟk(t) = i, (2.7)

which implies the canonical commutation relation

[âk, â†
k′ ] = δ3(k − k′) or equivalently [χ̂(t, x), ˙̂χ(t, y)] = iδ3(x − y), (2.8)

for all t. In general, it is impossible to solve (2.5) analytically, but we are able to introduce
a formal adiabatic solution

fk(t) =
1√

2ωk(t)

(
αk(t)e−i

∫ t
ωk(t′)dt′ + βk(t)ei

∫ t
ωk(t′)dt′

)
. (2.9)
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The auxiliary functions αk(t), βk(t) satisfy

α̇k(t) =
ω̇k

2ωk
βke+2i

∫ t
ωk(t′)dt′ , (2.10)

β̇k(t) =
ω̇k

2ωk
αke−2i

∫ t
ωk(t′)dt′ , (2.11)

and |αk(t)|2 −|βk(t)|2 = 1 for all t, which is equivalent to (2.7). Note that the choice of the
adiabatic solution is not unique, and we have chosen the zeroth order adiabatic solution with
Vk(t) = 0 in [96–98]. We choose the initial condition αk(t) → 1 and βk(t) → 0 as t → −∞
which realizes the adiabatic past vacuum.2 In general, βk(t) becomes non-vanishing due to
the time-dependence of background fields, which can be physically understood as “particle
production from vacuum”. We briefly review it in appendix A. The production of particles
back-reacts to the dynamics of the background field. Throughout this work, we assume
that the backreaction affects only the modulus ϕ, and the background spacetime is intact.

Let us consider the dynamics of ϕ back-reacted by χ-particles, whose E.O.M. is given by

ϕ̈(t) + 3Hϕ̇ + λ⟨χ2⟩renϕ(t) = 0, (2.12)

where ⟨χ̂2(x)⟩ren is an expectation value of a renormalized χ̂2 operator with the adiabatic
vacuum state. The vacuum expectation value of χ̂2 without renormalization is explicitly
given by

⟨χ2⟩= lim
y→x

⟨0|inχ̂(x)χ̂(y)|0⟩in

= lim
y→x

∫
d3kd3k′

(2π)3a3(t)δ3(k−k′)
(
eik·x−ik′·yfk(x0)f∗

k′(y0)
)

=
∫

d3k

(2π)3a3(t) |fk(t)|2 (2.13)

=
∫

d3k

(2π)3a3(t)
1

2ωk(t)

(
|αk(t)|2+|βk(t)|2+αk(t)β∗

ke2i
∫ t

ωk(t′)dt′+α∗
k(t)βke−2i

∫ t
ωk(t′)dt′

)
=
∫

d3k

(2π)3a3(t)
1

2ωk(t)

(
1+2|βk(t)|2+αk(t)β∗

ke2i
∫ t

ωk(t′)dt′+α∗
k(t)βke−2i

∫ t
ωk(t′)dt′

)
.

We note that βk(t) is vanishing unless particle production occurs, which cannot be re-
moved by local counter terms. Therefore, we may identify the βk-independent term to be
a “vacuum” contribution. We first evaluate the “vacuum” contribution as∫

d3k

(2π)3a3(t)
1

2ωk(t)
→
∫

ddk

(2π)dad(t)
µ3−d

2ωk(t)

= 2π
d
2

(2π)dΓ
(

d
2

) ∫ dk
µ3−dkd−1

2
√

k2 + M2
eff

= M2
eff

8π2ϵ
− M2

eff
16π2

[
1− γE − log

(
M2

eff
4πµ2

)]
+O(ϵ), (2.14)

2The infinite past may be replaced by some finite t, which does not change as long as the initial time is
sufficiently far from the time of the first particle production event.
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where we have used the dimensional regularization d = 3 + ϵ with ϵ → 0, M2
eff ≡

λϕ2 − 3
2Ḣ − 9

4H2 is the effective mass,3 and µ is renormalization scale parameter. We
here applied dimensional regularization such that the invariance under trivial scale trans-
formation a → ca, k → ck (x → c−1x) with a constant c holds. Thus, with appropriate
counter terms, we can formally write the E.O.M. of ϕ as

ϕ̈(t) + δV (ϕ) + F (t) = 0, (2.15)

where δV (ϕ) denotes quantum corrected potential terms of ϕ and

F (t)≡λϕ(t)
∫

d3k

(2π)3a3(t)
1

2ωk(t)

(
2|βk(t)|2+αk(t)β∗

ke2i
∫ t

ωk(t′)dt′ +α∗
k(t)βke−2i

∫ t
ωk(t′)dt′

)
≈λϕ(t)

∫
d3k

(2π)3a3(t)
1

ωk(t)
nk(t), (2.16)

where nk(t) ≡ |βk(t)|2 and we have dropped fast-oscillatory terms since it would be aver-
aged to be zero.4 We note that |βk(t)| typically decays faster than any powers of k, and
therefore, there would be no UV divergence associated with it.5

We would like to give some comments about solving the dynamics of the system under
consideration:

1. In the following, we assume that the quantum-corrected effective potential δV (ϕ) =
0 throughout this work. Such a situation is effectively realized e.g. if the theory
is supersymmetric. Strictly speaking, the time-dependence of backgrounds break
supersymmetry spontaneously and there would be some potential. We will leave the
effect of the quantum corrected potential for future work.

2. We use Emarkov-Milne equation, which directly yields the time-dependent particle
number density: we use fk(t) = ξk(t)e−iλk(t) as an Ansatz for the mode function.
From the normalization condition (2.7) the function λk(t) satisfies

λk(t) =
1
2

∫ t

dt′ξ−2
k (t′) (2.17)

and the mode equation reads

ξ̈k(t) + ω2
k(t)ξk(t) =

1
4ξ−3

k (t), (2.18)

3The effective mass M2
eff may become tachyonic, which leads to imaginary part to the effective potential.

Such instability simply shows the existence of tachyonic modes that cannot be naively integrated out.
Therefore, one has to treat such modes separately if exist. In the following, we consider only the cases
where such instability shows up.

4The neglected terms contain memory of the past, which makes the E.O.M. of ϕ an integro-differential
equation.

5For adiabatic vacuum states β(−∞) = 0, βk(t) becomes non-zero due to Stokes phenomena/particle
production, which is not a local but a global property with respect to time. Therefore, it is reasonable
that the terms associated with such global (non-local) effects do not lead to UV divergences which are local
effects due to short wave length modes.
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with the initial values

ξk(t0) →
1√

2ωk(t)
, ξ̇k(t0) → 0. (2.19)

In terms of ξk(t), the particle number density nk(t) is simply given by

nk(t) =
ξ2

k(t)
2ωk(t)

( 1
2ξ2

k(t)
− ωk(t)

)2

+ ξ̇2
k(t)

ξ2
k(t)

 , (2.20)

which is much easier to evaluate, since it can be solved simply as a set of differential
equations. It is crucial to neglect the oscillatory terms in F (t) to avoid an integro-
differential equation.

3. As done in [95] we discretize the momentum integration appearing in F (t), which
allows us to perform numerical simulations. However, even with such approximation,
it is still a hard problem unless we reduce the number of k-modes in numerical
simulations. To do so, it would be useful to rescale the momentum k by some reference
scale. Assuming that the effective mass M2

eff is dominated by the modulus coupling
λϕ2, the most relevant scale turns out to be v = λ

1
4 |ϕ̇(t0)|

1
2 where t0 is the time when

ϕ first crosses ϕ = 0 at which Meff ≈ λ
1
2 |ϕ| = 0.6 Therefore, we rescale dimensionful

quantities by v like k̃ = k/v,

ω̃k = ωk/v =

√
k̃2 + M2

eff(t)
v2 . (2.21)

Noting that

nk(t) =
ω̃kξ̃2

k

2

( 1
2ω̃kξ̃2

k

− 1
)2

+
˙̃ξ2

ω̃2
k ξ̃2

k

 , (2.22)

where ξ̃k =
√

vξk, we rewrite F (t) as

F (t) = λϕ(t)v2
∫

d3k̃

(2π)3
nk(t)
ω̃k(t)

= λϕ(t)v2

2π2

∫
dk̃

k̃2nk(t)
ω̃k(t)

. (2.23)

Let us discuss how to perform the discretization of the integral effectively. We note
that the particle number density after the first crossing of m2(t) = 0 is approximately
given by

nk = exp
(
−π

k2
√

λ|ϕ̇(t0)|

)
= exp

(
−πk̃2

)
. (2.24)

This is why we have taken v as the reference scale. The mode πk̃2 ∼ O(10) does
not contribute to the integration and here we take k̃ = N to be the effective cut-off
of the momentum integration where N = O(1) is a positive integer. Thus, F (t) is
approximately given by

F (t) ≈ λϕ(t)v2

2π2

∫ N

0
dk̃

k̃2nk(t)
ω̃k(t)

→ λϕ(t)v2

2π2a3(t)

n∑
j=1

(
N

n

)3 j2nkj
(t)

ω̃kj
(t) , (2.25)

6We will explain the reason why v is a reference scale below.
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Figure 1. The moduli dynamics in flat spacetime. We have numerically solved the E.O.M and
mode equations with the parameters λ = 1, ϕ̃(0) = 10, ϕ̃′(0) = −1, N = 2, n = 10.

where n is a positive integer characterizing the lattice spacing and

k̃j = Nj

n
. (2.26)

We may recover the continuous case by taking N, n → ∞. Thus, we have reduced
the problem to be a set of n differential equations.7

Using above approximation, we find a set of equations:

ξ̃′′ki
(t̃) + ω̃2

ki
ξ̃ki

(t̃) = 1
4 ξ̃−3

ki
(t̃) (2.27)

ϕ̃′′(t̃) + 3H̃ϕ̃(t̃) + λϕ̃(t̃)
2π2a3(t̃)

n∑
j=1

(
N

n

)3 j2nkj
(t̃)

ω̃kj
(t̃)

= 0, (2.28)

where i = 1, 2, · · · , n, t̃ = vt, ϕ̃ = ϕ/v, H̃ = H/v and the prime denotes derivative with
respect to t̃. We show numerical solutions in figure 1 with parameters and initial conditions
λ = 1, ϕ̃(0) = 10, ϕ̃′(0) = −1 in Minkowski spacetime a(t) = 1. As quoted in [95], in this
model, parametric resonance occurs after the second and subsequent zero crossings, which
extremely enhances the number density of low k modes and strengthens the trapping effect.
In numerical simulations, we have observed that the numerical solutions with different
numbers of the mode number n are qualitatively similar to each other but quantitatively
different.

As another illustration, we consider the background

a(t) =
(

t

t0

)β

=
(

t̃

t̃0

)β

, (2.29)

7We will not include the zero mode since it does not contribute to the effective potential within our
approximation.
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Figure 2. The moduli trapping effect in the matter dominated Universe. The parameters are
chosen as t̃0 = 25, N = 3, n = 10.
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t
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ϕ

Figure 3. The moduli trapping effect in the radiation dominated Universe. The parameters are
chosen as t̃0 = 55, N = 3, n = 9.

where β is a positive constant, and we have normalized the scale factor such that a(t̃0) = 1
at the initial time t̃ = t̃0. Then,

H̃ = β

tv
= β

t̃
. (2.30)

In Figs 2, 3 we show the numerical solution for the matter dominated universe β = 2
3

and the radiation dominated universe β = 1/2, respectively. These figures show that the
trapping mechanism works even in the expanding background. Note however that, if the
initial Hubble parameter is large enough (t̃0 ∼ O(1)), it is possible to slow the trapping by
the dilution of particles as well as Hubble friction.

Let us consider a more involved case that instead of λϕ2 the mass term is given by

M2
χ(ϕ) = µ2(sin πϕ + A sin 3πϕ)2, (2.31)
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Figure 4. The behavior of the ϕ-dependent mass (2.31) for µ2 = 1, A = 0.7. ϕ = n ∈ Z are the
true symmetric points and there are fake points, where the mass becomes small but non-zero.

where A is a real parameter. In this case, there is a true symmetric point ϕ = n ∈ Z where
χ becomes massless, but there is a fake symmetric point as shown in figure 4. The E.O.M.
of ϕ turns to

ϕ̈ + 2πµ2(sin πϕ + A sin 3πϕ)(cosπϕ + 3A cos 3πϕ)⟨χ2⟩ = 0. (2.32)

We show two numerical solutions with different parameters in Minkowski spacetime
a(t) = 1 in Figs 5, 6. We note that the false vacua are ϕ = 2n+1

2 , (n ∈ Z). In the former
case, the modulus is immediately trapped to the true symmetric vacuum ϕ = 1, whereas
the latter shows that the modulus is trapped both at the false and the true symmetric
vacua, but finally reaches the true symmetric vacuum. We expect that modulus trapping
at the true vacuum is not a generic property since the effective potential vanishes even at
the false vacua, which can be seen from the E.O.M. of ϕ. Nevertheless it is true that the
particle production takes place more efficiently near the true vacua since χ becomes much
lighter at the point. Therefore, if the true and false vacua are sufficiently separated, we
expect the modulus to be trapped near the enhanced symmetry point.

Before closing this section, we finally comment on some technical issues remaining in
our numerical approach shown here. We have tried our numerical simulations with different
set of parameters or initial conditions several times. Although the behavior qualitatively
converges, the results are quantitatively unstable under the change of parameters such
as mode numbers. Such a behavior may be understood from the fact that parametric
resonance become important when the modulus ϕ is almost trapped to the ESP, and the
resonance is sensitive to the parameters such as momentum. As we will discuss later,
the modular flavor symmetric models contain more issues in performing fully numerical
simulations. Therefore, we will propose a semi-analytic approach to capture the moduli
dynamics. Nevertheless, the numerical approach we have taken in this section would still
be useful for some class of models.
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Figure 5. A numerical solution to (2.32) with µ = 10, n = 10, A = 0.5, ϕ(0) = 1.5, ϕ̇(0) = −1.
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Figure 6. A numerical solution to (2.32) with µ = 7, n = 10, A = 0.5, ϕ(0) = 1.8, ϕ̇(0) = −1.

3 Modular flavor symmetric models

We show the modular flavor symmetric model considered in the following sections. In this
section, we first briefly review modular flavor symmetry and then derive the E.O.M. of
complex structure moduli as well as a spectator scalar χ while we will study in detail the
χ-particle production in the next section.

3.1 Modular flavor symmetry

The SL(2, Z) group,

γ =
(

a b

c d

)
, (3.1)

– 10 –
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where a, b, c, d are integer and ad − bc = 1, is generated by two generators, S, and T ,

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
. (3.2)

They satisfy the following algebraic relations:

S4 = 1, (ST )3 = 1. (3.3)

This group is referred to the homogeneous modular group, Γ = SL(2, Z).
Under the modular symmetry, the modulus τ transforms as

γ(τ) = aτ + b

cτ + d
. (3.4)

Note that τ is invariant under S2. That is, the generators satisfy

S2 = 1, (ST )3 = 1, (3.5)

on the modulus τ . This group is referred to the inhomogeneous modular symmetry, Γ̄ =
PSL(2, Z) = SL(2, Z)/Z2. Also we define the congruence subgroup Γ(N),

Γ(N) =
{(

a b

c d

)
∈ Γ

∣∣∣∣∣
(

a b

c d

)
=
(
1 0
0 1

)
(mod N)

}
, (3.6)

which includes T N . Similarly, we can define Γ̄(N).
The modular forms f(τ)i are the holomorphic functions of τ , which transform under

the modular symmetry,

f(γ(τ))i = (cτ + d)kρij(γ)f(τ)j , (3.7)

where k is the modular weight and ρ(γ)ij is a unitary matrix. Suppose that

f(γ(τ))i = (cτ + d)k(γ)f(τ)i, (3.8)

for γ ∈ Γ̄(N). Then, the matrix ρ(γ)ij represents the quotient, ΓN = Γ̄/Γ̄(N), where
T N = 1. Interestingly, these quotients ΓN with N = 2, 3, 4, 5 are isomorphic to S3, A4, S4,
A5, respectively.

There are fixed points on τ , i.e. τ = i, ω = e2πi/3, i∞, where residual symmetries
remain. That is, ZS

2 , ZST
3 , ZT

N symmetries remain at τ = i, ω = e2πi/3, i∞, respectively.
The modular form f(τ) has definite charges under these residual symmetries and their
behaviors are determined by their charges.

As illustrating examples, we study modular A4 symmetric models in this paper. Mod-
ular flavor symmetric superpotential can be written by

W = Yijk(τ)ΦiΦjΦk, (3.9)

where Φi are the chiral superfields with modular weights ki and they have some represen-
tations under A4. The Yukawa couplings Yijk(τ) are modular forms. The superpotential
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must be invariant under the modular symmetry including the A4 symmetry. The Kähler
potential of chiral matter fields can be written by

K =
∑

i

1
(2Imτ)ki

|Φi|. (3.10)

The fundamental modular forms of A4 have the modular weight 2 and they correspond
to the A4 triplet (Y1(τ), Y2(τ), Y3(τ)) [27]. Their explicit forms are shown in appendix B.
The modular forms of higher modular weights can be obtained by their tensor products.
For example, we use the modular forms of weight 8, because all of three A4 singlets, 1, 1′,
and 1′′ appear as modular forms when the weight is 8, i.e. Y

(8)
1 (τ), Y

(8)
1′ (τ), and Y

(8)
1′′ (τ),

which are shown in appendix B. The three A4 singlets, 1, 1′, and 1′′ have the ZST
3 charges,

0, 1, 2, respectively. The corresponding modular forms have additional contributions from
the automorphic factors (cτ + d)k.

As a simple illustrating model, in the following sections we consider a single complex
scalar spectator field that has the mass term

|Mχ(τ, τ̄)|2|χ|2, (3.11)

where Mχ(τ, τ̄)|2 is given by modular forms. Such a complex scalar field can appear in
supersymmetric models with

K = 1
(2Imτ)k

|Φ|2, (3.12)

W = mY (τ)ΦS, (3.13)

where Φ is a chiral superfield whose scalar component is χ, k is the modular weight of Φ,
m a mass parameter, and Y (τ) a holomorphic function of τ given by modular forms. S

is an additional chiral superfield which is a singlet under modular symmetry.8 Although
there are fermions in such a model, which are as light as the scalar χ, we only discuss the
complex scalar χ only. The fermionic particle production can be similarly discussed along
the line e.g. of [99–101] but would be more involved than the bosonic case we consider here
because of the chiral structure.

We would like to comment on the relation to the standard model. In the supersymmet-
ric standard model, mass terms of scalars and fermions through Yukawa couplings are not
generated until the electroweak symmetry is spontaneously broken. Therefore, we do not
expect standard model particles to contribute the moduli trapping.9 Instead, we can iden-
tify Φ as a superfield that obtains its mass term through the GUT symmetry breaking.10

Therefore, the mass parameter m can be sufficiently large (but smaller than Mpl).

8Since S is a singlet, it may have a heavy mass term independent of the above one. If S has a heavy
mass, it can decouple from the theory even at ESPs where Y (τ) → 0.

9Scalars would have mass terms by supersymmetry breaking and they generally depend on moduli.
Therefore, the moduli dynamics may generate scalars in the supersymmetric standard model.

10Another candidate would be right-handed (s)neutrinos, where the superpotential can be written by
W = mY (τ)Φ2.
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3.2 Dynamics of moduli and spectator scalars

We consider quantization of a spectator complex scalar field χ that couples to the complex
structure modulus τ , and the action of χ is given by

S = −
∫

d4x
√
−g

[ 1
(2Imτ)k

|∂χ|2 + |Mχ(τ, τ̄)|2|χ|2
]

. (3.14)

We introduce quasi-canonical real fields

τ =
√
2θ/Mpl + ie

√
2ϕ/Mpl , (3.15)

which will become a choice that makes ϕ canonical. We assume that the “bare mass”
M2(τ, τ̄) is given by modular forms as

|Mχ(τ, τ̄)|2 = m2
∣∣∣Y (8)

1 (τ)
∣∣∣2 or m2

∣∣∣Y (8)
1′ (τ)

∣∣∣2 , (3.16)

where m denotes some mass scale such as the VEV of a GUT Higgs field, and the back-
ground spacetime is ds2 = −dt2 + a2(t)dx2. Introducing χ = χ̃1 + iχ̃2, we rewrite the
action as

S =
∫

dtd3x

[ 1
2k

a3e−
√

2kϕ/Mpl

(
˙̃χ2
i −

1
a2 (∇χ̃i)2

)
− a3|Mχ(τ, τ̄)|2χ̃2

i

]
, (3.17)

which can be made canonical by introducing a new basis χ̃i = αχi where

α ≡ 2
k−1

2

a
3
2

e
√

2
2 kϕ/Mpl . (3.18)

With the new basis, we find

S =
2∑

i=1

∫
dtd3x

[1
2

(
χ̇2

i −
1
a2 (∇χi)2

)
− 1

2M2
effχ2

i

]
, (3.19)

where we have assumed that the background field depends only on t, and used integration
by parts in the second equality. Thus, the effective mass of the canonically normalized
spectator field is

M2
eff = 2ke

√
2kϕ/Mpl |Mχ|2 − 2 α̇2

α2 + α̈

α

= 2ke
√

2kϕ/Mpl |Mχ|2 −
k2

2M2
pl

ϕ̇2 + 3
√
2k

2Mpl
ϕ̇H +

√
2k

2Mpl
ϕ̈ − 9

4H2 − 3
2Ḣ

≈ 2ke
√

2kϕ/Mpl |Mχ|2. (3.20)

The time derivative terms of ϕ in the second line may be interpreted as the higher-
dimensional curvature induced mass as Imτ is related to the area of the extra dimensional
torus. We will neglect such terms as well as Hubble induced terms in the following.11 We
also notice that the effective mass is modular invariant as it should be.

11Since the mass becomes zero at the critical point and the low k-mode can be tachyonic, it is generally
non-trivial if such approximation is allowed. We may neglect such effect by assuming that the specta-
tor scalar has a small mass that is comparable to the derivative terms so that the tachyonic instability
disappears. On the other hand, the instability near the critical point may enhance the particle production.
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Let us consider the effective action of the complex structure modulus τ given by

S = −
∫

d4x
√
−g

[
M2

pl
(2Imτ)2 |∂τ |2 + V (τ, τ̄) + a−3M2

eff

2∑
i=1

⟨χ2
i ⟩
]

= −
∫

d4x
√
−g

[
1
2(∂ϕ)2 + 1

2e−2
√

2ϕ/Mpl(∂θ)2 + V (τ, τ̄) + a−3M2
eff

2∑
i=1

⟨χ2
i ⟩
]

. (3.21)

Note that the appearance of non-covariant expression +a−3M2
eff
∑2

i=1⟨χ2
i ⟩ is the result of

making χi canonical.12 The equations of motions of ϕ, θ are given by

−□ϕ −
√
2e−2

√
2ϕ/Mpl(∂θ)2 − 2

√
2e

√
2ϕ/Mpl

Mpl
Im(∂τ V ) + 1

a3 ∂ϕM2
eff

2∑
i=1

⟨χ2
i ⟩ = 0, (3.22)

−□θ + 2
√
2

Mpl
∂µϕ∂µθ + 2

√
2e2

√
2ϕ/Mpl

Mpl
Re(∂τ V ) + e2

√
2ϕ/Mpl

1
a3 ∂θM2

eff

2∑
i=1

⟨χ2
i ⟩ = 0. (3.23)

It is straightforward to generalize our previous discussion to this case by using

ω2
p = p2

a2 + M2
eff ≈ p2

a2 + 2ke
√

2kϕ/Mpl |Mχ|2. (3.24)

The vacuum expectation value of ⟨χ̂2
1⟩ is given by

⟨χ̂2
1⟩ ≈

a3M2
eff

8π2ϵ
− a3M2

eff
16π2

[
1− γE − log

(
M2

eff
4πµ2

)]
+
∫

d3p

(2π)3
np(t)
ωp(t)

. (3.25)

Thus, the renormalized effective potential is found to be

Veff = M4
eff

8π2ϵ
− M4

eff
16π2

[
1− γE − log

(
M2

eff
4πµ2

)]
+ δCT + M2

eff
a3

∫
d3p

(2π)3
np(t)
ωp(t)

, (3.26)

where δCT denotes possible local counter-terms eliminating divergent pieces.13 As the
previous sections, we assume the cancellation of all but the last term in (3.26).

In analysing the dynamics of the moduli fields ϕ, θ, there are several technical issues in
this model in addition to the ones discussed within toy models: since the coupling between
χ and moduli are suppressed by Planck scale which causes hierarchically small or large
numbers, and the moduli dependence is quite complicated, the numerical costs become
more than that in the toy models. More specifically, the effective field theory description
requires the field velocity and the Hubble parameter to be much smaller than the Planck
scale. Furthermore, if the moduli trapping occurs after inflation, the Hubble scale needs to
be less than about O(1013GeV) by the constraint on the tensor-to-scalar ratio. Therefore,
it would be natural to assume the ratio between the initial field velocity and Planck scale to

12One could use the original variable, but would be more involved since both the mass and the kinetic
term of χ appear in the E.O.M. of ϕ through the non-minimal coupling in the kinetic term.

13We point out that the “effective potential” contains the derivative of the background field ϕ in general,
which behaves as higher-derivative terms. Such terms should be removed by appropriate counter-terms in
order to avoid (possibly) unphysical ghost degrees of freedom.
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be below O(10−5), which appear in couplings if we normalize all dimensionful parameters
by the scale of initial field velocity. The complication of the mass term given by modular
forms shown later further makes the numerical simulations difficult. Therefore, we will
develop semi-analytic approaches to discuss the moduli dynamics within modular flavor
symmetric models in the next section.

4 Particle production at ESPs in modular flavor symmetric models

In order to overcome some technical difficulties within our setup, we consider a semi-
analytic approach, where we analytically estimate the number density of the spectator
scalar particle produced at the first particle production time at which M2

χ(t0) ≈ 0. Using
the estimate, we analytically evaluate the effective potential arising after the first particle
production event, and numerically solve the E.O.M. of moduli fields with the estimated
effective potential, which does not contain the difficulties mentioned before. Although this
approach cannot capture the subsequent particle production events, we expect such events
just strengthen the trapping potential, which does not change the dynamics of moduli
qualitatively.

We first show analytic formulas for particle number density produced at the crossing
of the ESP. To do so, we need to know the behavior of the effective mass near the ESPs.
In modular symmetric models, the ESPs are τ = i, e2iπ/3(≡ ω),+i∞ where some modular
forms vanish. In the following discussion, we focus on τ = ω as a representative case, but
similar analysis can be done for any other critical points in a similar way.

In the following subsections, we first discuss the behavior of the effective mass of the
spectator scalar field near the ESP τ ∼ ω, which enables us to analytically estimate the
amount of particle number density produced after the crossing with the ESP.

With the aid of the analytic expression of the effective mass around τ ∼ ω, we discuss
one-dimensional dynamics of θ or ϕ where one of them is fixed to a constant value. We
give analytic formulas for the particle number density as well as the effective forces of the
produced particle on the modulus.

4.1 The behavior of the effective mass near the critical point

The modular forms can be classified as representations of subgroup. The singlet modular
forms of weight 8, Y

(8)
1,1′,1′′ transform as [87]

Y
(8)

1 (−(τ + 1)−1)
Y

(8)
1′ (−(τ + 1)−1)

Y
(8)

1′′ (−(τ + 1)−1)

 = (−(τ + 1))8

 1 0 0
0 ω 0
0 0 ω2




Y
(8)

1 (τ)
Y

(8)
1′ (τ)

Y
(8)

1′′ (τ)

 , (4.1)

which can be equivalently written as
Y

(8)
1 (ω2u)

Y
(8)

1′ (ω2u)
Y

(8)
1′′ (ω2u)

 =
(
1− ω2u

1− u

)8
ω−8 0 0

0 ω−7 0
0 0 ω−6




Y
(8)

1 (u)
Y

(8)
1′ (u)

Y
(8)

1′′ (u)

 , (4.2)
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where

u ≡ τ − ω

τ − ω2 , (4.3)

is a variable for the deviation from the symmetric point τ = ω. Therefore, we obtain


Ỹ

(8)
1 (ω2u)

Ỹ
(8)

1′ (ω2u)
Ỹ

(8)
1′′ (ω2u)

 =

ω−8 0 0
0 ω−7 0
0 0 ω−6




Ỹ
(8)

1 (u)
Ỹ

(8)
1′ (u)

Ỹ
(8)

1′′ (u)

 , (4.4)

where Ỹ
(8)

r (u) ≡ (1− u)−8Y
(8)

r (u). Expanding both sides with respect to ω yields

(
ω2l − ωqr−8

) dlỸ
(8)

r (u)
dul

∣∣∣∣
u→0

= 0, (4.5)

where qr = 0, 1, 2 for 1, 1′, 1′′, respectively. This relation implies that dlỸ
(8)

r (u)
dul

∣∣∣∣
u→0

= 0

unless 2l = qr − 8 (mod 3). Thus, Ỹ
(8)

1,1′(0) = 0, and
dỸ

(8)
1,1′′
du (0) = 0. Noting that

∂u

∂τ
= (1− u)2

√
3i

, (4.6)

we find

Y (8)
r (τ)|τ→ω = Ỹ (8)

r (u)|u→0, (4.7)

dY
(8)

r

dτ

∣∣∣∣∣
τ→ω

= 1√
3i

[
−8Ỹ (8)

r + dỸ
(8)

r

du

]
u→0

, (4.8)

d2Y
(8)

r

dτ2

∣∣∣∣∣
τ→ω

=
[
−24Ỹ (8)

r + 6dỸ
(8)

r

du
− 1

3
d2Ỹ

(8)
r

du2

]
u→0

. (4.9)

Note also that

u = τ − ω

ω − ω2 +O((τ − ω)2) = τ − ω√
3i

+O((τ − ω)2). (4.10)

The leading order terms of each singlet 1, 1′, 1′′ are as follows:

Y
(8)

1 (τ) = −1
6

d2Ỹ
(8)

1 (0)
du2 (τ − ω)2 +O((τ − ω)3), (4.11)

Y
(8)

1′ (τ) = 1√
3i

dỸ
(8)

1′ (0)
du

(τ − ω) +O((τ − ω)2), (4.12)

Y
(8)

1′′ (τ) = Ỹ
(8)

1′′ (0) +O((τ − ω)1), (4.13)
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and the last one shows that 1′′ cannot produce the particles at ESP τ = ω, because χ is
still massive.14 Thus, the effective mass can be approximated as

M2
eff = 26|C|2

9 m2e8
√

2ϕ/Mpl |τ − ω|4 + · · ·

= 9|C|2

4 m2

(√
2θ

Mpl
+ 1

2

)2

+
(

e
√

2ϕ/Mpl −
√
3
2

)2
2

+ · · · (for r = 1), (4.14)

M2
eff = 28|D|2

3 m2e8
√

2ϕ/Mpl |τ − ω|2 + · · ·

= 27|D|2m2

(√
2θ

Mpl
+ 1

2

)2

+
(

e
√

2ϕ/Mpl −
√
3
2

)2
+ · · · (for r = 1′), (4.15)

where C ≡ d2Ỹ
(8)

1 (0)
du2 , D ≡ dỸ

(8)
1′ (0)
du , and ellipses denote the terms higher order in (τ − ω).

Before going to the details of particle production, we would like give a few comments
on the behavior of the effective mass for each representation. We notice that depending on
the representation r, the behavior of the mass term near the ESP τ = ω changes. Since
the moduli dependence comes with powers of χ/Mpl or θ/Mpl, we can say the particle
production in r = 1 case should be much smaller than that in r = 1′. Therefore, the
moduli trapping effect becomes more significant for r = 1′. Such observation is based
on the fact that moduli are gravitationally coupled to matter fields, which are completely
independent of particle production dynamics discussed below.

4.2 1D dynamics: ϕ-fixed

In this subsection, we discuss the particle production due to the θ dynamics while ϕ is
fixed at the ESP ϕ = ϕ0 where e

√
2ϕ0/Mpl =

√
3

2 , and we parametrize θ as

θ = v(t − t0)−
1

2
√
2

Mpl, (4.16)

where t0 is the time at which θ crosses the enhanced symmetry point and v > 0 is the
velocity of θ at t = t0. This parametrization is a good approximation if Hubble param-
eter is smaller than

√
v. (See appendix C.) Then, near t ∼ t0 the effective mass can be

approximated by

M2
eff ≈ 9|C|2m2

(
v(t − t0)

Mpl

)4

(for r = 1), (4.17)

M2
eff ≈ 54|D|2m2

(
v(t − t0)

Mpl

)2

(for r = 1′), (4.18)

and the effective frequency for k-mode is

ω2
k ≈ k2

a2(t0)
+ M2

eff , (4.19)

14More precisely speaking, for r = 1′′, particles are produced if τ = ω is the local minimum of Y
(8)

1′′ , but
as the leading term is non vanishing, the particle production would be less than that of r = 1 or 1′.
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where we have approximated the scale factor by its value at t = t0. We will show the
analytic estimate of the particle production taking place around t ∼ t0 separately for both
r = 1 and r = 1′ respectively.

r = 1 case. In order to estimate the particle production rate, we need to find the
turning points at which ω2

k(t) = 0 in a complex t-plane. (See [97, 98, 102–106] for review.)
With (4.17) the turning points are found to be

t±1 − t0 = e±iπ/4 Mpl
v

(
k2

9|C|2m2a2(t0)

) 1
4

, t±2 − t0 = e±3iπ/4 Mpl
v

(
k2

9|C|2m2a2(t0)

) 1
4

,

(4.20)
with which the effective frequency can be rewritten as

ω2
k ≈ R

(
−(t∗ − t0)4 + (t − t0)4

)
, (4.21)

where t∗ can be any of turning points and

R ≡ 9|C|2m2v4

M4
pl

. (4.22)

Notice that there are two pairs of turning points (t+
i , t−i ) (i = 1, 2) which are complex

conjugate to each other, and Stokes lines connecting them crosses the real t-axis. The
amount of particle production can be approximately given by a simple formula (see e.g. [97,
98, 102–106] for details15)

nk(t) = |βk(ti)|2 ≈
∣∣∣eF1 + eiθ12eF2

∣∣∣2 , (4.23)

where we have assumed that t is sufficiently later than t0, and

Fi ≡ exp
(
i
∫ t+

i

t−i

ωk(t′)dt′
)

, (4.24)

θ12 ≡ exp
(
2i
∫ t+

1

t+
2

ωk(t′)dt′
)

. (4.25)

More explicitly we find

Fi = exp
[
−

Γ2(1
4)

6
√

πR
1
4

(
k

a(t0)

) 3
2
]

, (4.26)

θ12 =
Γ2(1

4)
3
√

πR
1
4

(
k

a(t0)

) 3
2

. (4.27)

Therefore, the particle number density after crossing two Stokes lines can be approximately
estimated as

∆nk = 2e−γk(1 + cos γk), (4.28)
15See also [107].
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Figure 7. Comparison between the analytic formula (4.28) (the blue line) and numerical results
(red dots). The momentum p is in units of the velocity

√
|v| at the particle production time t0. In

this example, we have taken vt0 = 50, vtini = 15, β = 1
2 ,
√
|v|/Mpl = 5× 10−4, m/

√
|v| = 5× 102.

We have also checked that the agreement is quite well for various sets of parameters.

where

γk ≡
Γ2(1

4)
3
√

πR
1
4

(
k

a(t0)

) 3
2

. (4.29)

We have numerically checked the validity of this formula, and find a very good agreement
of the numerical result and the analytic formula as shown in figure 7. Thus, we can
estimate the total particle production as well as the effective potential on the basis of the
approximate formula (4.28).

With the approximate particle number formula for a k-mode (4.28), we are able to
estimate the total number density to be16

∆N =
∫

d3k

(2π)3∆nk = 2× 4π

8π3

(
Γ2(1

4)
3
√

πR
1
4 a

3
2 (t0)

)−2

× 2
3 = 6

√
Ra3(t0)

πΓ4(1
4)

. (4.30)

Even though we have an approximate formula of the produce particle number density, it
is still difficult to evaluate the effective force given by

Fθ(t) =
(Imτ)2∂θ(M2

eff)
a3

∫
d3p

(2π)3
∆np

ωp(t)
. (4.31)

Since the effective support of the integrand is localized to small k, we may approximate
ωp ≈ Meff in the integrand, which allows us to approximate Fθ(t) as

Fθ(t) ≈
3∂θ(M2

eff)
4a3Meff

∆NΘ(t − t0) =
9
√

Ra3(t0)∂θ(M2
eff)

2πΓ4(1
4)Meffa3(t)

Θ(t − t0), (4.32)

where we have introduced the Heaviside theta function Θ(t − t0).
16The oscillatory part eγk cos γk turns out to be vanishing in the momentum integration.
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Figure 8. Comparison between the analytic formula (4.34) (the blue line) and numerical results
(red dots). The momentum p is in units of the velocity

√
|v| at the particle production time t0.

Here, we have taken vt0 = 70, vtini = 5, β = 1
2 ,
√
|v|/Mpl = 10−4, m/

√
|v| = 10. We have also

checked that the agreement is quite well for various sets of parameters.

r = 1′ case. Next, we consider the case r = 1′ where the effective mass is given by (4.18),
and find a pair of turning points

t±1 − t0 = ±i Mplk

3
√
6|D|mv

. (4.33)

Similarly to the previous case, the particle number produced at t = t0 can be evaluated by

nk(t0) ≈ exp
(
2i
∫ t+

1

t−1

ωk(t′)dt′
)

= exp
[
− πk2Mpl

3
√
6|D|mv

]
. (4.34)

We show the comparison of our analytic formula (4.34) and numerical results in figure 8.
Again, we have found an excellent agreement between them.

Accordingly, the total particle density is found to be

∆N =
∫

d3k

(2π)3 nk(t0) =
1

2π2 ×
√

π

4

(
3
√
6|D|mv

πMpl

) 3
2

= 1
8π3

(
3
√
6|D|mv

Mpl

) 3
2

, (4.35)

and the effective force is approximately given by

Fθ(t) =
3a3(t0)∂θ(M2

eff)
4a3(t)

∫
d3p

(2π)3
np(t)
ωp(t)

≈ 3a3(t0)(∂θM2
eff)(t)

32π3a3(t)Meff(t)

(
3
√
6|D|mv

Mpl

) 3
2

Θ(t − t0).

(4.36)
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4.3 1D dynamics: θ-fixed

We consider the case that θ is fixed at θ = −Mpl
2
√

2 and parametrize ϕ as

ϕ =
Mpl log

(√
3

2

)
√
2

+ v(t − t0), (4.37)

with which the effective mass can be rewritten as

M2
eff = 81|C|2

64 m2
(

e

√
2v(t−t0)

Mpl − 1
)4

+ · · ·

≈ 81|C|2

16 m2
(

v(t − t0)
Mpl

)4

(for r = 1), (4.38)

M2
eff = 81|D|2m2

4

(
e

√
2v(t−t0)

Mpl − 1
)2

+ · · ·

≈ 81|D|2m2

2

(
v(t − t0)

Mpl

)2

(for r = 1′), (4.39)

where we have expanded the terms higher order in v(t− t0)/Mpl since it is generally small.
We notice that these expressions are the same as the ϕ-fixed case (4.17), (4.18) by replacing
|C|2 → 9

16 |C|2 and |D|2 → 3
4 |D|2, respectively. Thus, the particle number density of the

k-mode is given by

∆nk =
{
2e

− 2√
3

γk
(
1 + cos 2√

3γk

)
(for r = 1)

exp
[
− 2πk2Mpl

9
√

2|D|mv

]
(for r = 1′).

(4.40)

Therefore, the effective force on ϕ due to particle production can be written as17

Fϕ(t) ≈
18
√

Ra3(t0)(∂ϕM2
eff)(t)

πΓ4(1
4)Meff(t)a3(t)

Θ(t − t0) (for r = 1), (4.41)

or

Fϕ(t) ≈
a3(t0)(∂ϕM2

eff)(t)
8π3a3(t)Meff(t)

(
9|D|mv√
2Mpl

) 3
2

Θ(t − t0) (for r = 1′). (4.42)

We note that if there are N fields that has the same Yukawa coupling, the effective force
would be multiplied by N , which enhances the effect. We have checked the agreement
between analytic formulas (4.40) and numerical results shown in figure 9.

We show a numerical example of the moduli dynamics by using our analytic approx-
imation in figure 10. In the example, we have used the 1′-model. We have used the
formulas (C.3), (C.4) to choose appropriate initial conditions such that ϕ crosses the ESP

17Recall that R ∝ |C|2 and also that Fϕ does not have an extra factor (Imτ)2 while Fθ does.
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Figure 9. Comparison between the analytic formula (4.40) (blue lines) and numerical results (red
dots). The left panel shows the r = 1-case and the right the r = 1′-case. We see a good agreement
for both cases.
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Figure 10. A numerical solution of the E.O.M. of ϕ with (left) or without (right) particle pro-
duction effect. Here we have taken the following parameters: the expansion parameter β = 1

2 , the
initial time

√
vtini = 5, the time of particle production

√
vt0 = 50, the Yukawa coupling parameter

m/
√

v = 100, and the species number to be N = 1. The field velocity at the particle production is√
v = 10−4Mpl. The blue solid curve is the trajectory of ϕ and the red dashed line is the critical

point Imτ =
√

3
2 .

at t0.18 As a cross-check of our numerical solution, we show the behavior of the field ve-
locity ϕ̇ in figure 11. As is clear from this simulation, the moduli trapping works despite
Planck suppressed couplings between the matter field χ and the moduli. Thus, the moduli
fields seem to prefer the ESP if they cross such a point along their time-evolution.

We emphasize that here only the first particle production event is taken into account,
but as we see, there would be secondary and more particle production events when the
modulus crosses the ESP, which further strengthen the trapping effect as quoted before.

18Another technical note: we have modified the denominator of (4.42) as Meff →
√

10−6v + M2
eff such

that the singular behavior at the critical point is avoided. We have checked that the result is not affected
by the IR cut-off.
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Figure 11. The time dependence of the field velocity ϕ̇ with (left) or without (right) particle
production effect. We have taken v as the unit of the velocity. The parameters are the same as
that in figure 10. We see that in both cases the velocity is 1 at vt = vt0 = 50.

5 Summary and discussion

In this work, we have studied the moduli trapping mechanism due to the particle produc-
tion near ESPs within modular flavor symmetric models. We have reviewed and developed
a general method for numerical simulations of models that the classical background fields
and quantum fields interact with each other. Despite generality and simplicity, we have
found that such an approach is not suitable for the application to modular flavor symmetric
models because of the complexity of the couplings between background fields and quantum
fields. Therefore, we have developed a semi-analytic approach where we analytically eval-
uate the particle production near the first crossing with the ESP, which yields the effective
potential arising from produced particles. Although this approach looses the effect of sub-
sequent particle production events, we have found the expected behavior, namely that the
moduli in the modular flavor symmetric models can be trapped around the ESP at which
there is a residual discrete symmetry.

Although we have studied moduli trapping effects due to the scalar field χ, we could
discuss effects due to spinor and vector fields in a similar way. As illustrating models, we
have used the A4 modular forms of weight 8, which have suppressed values around τ = ω.
Similar results would be obtained for modular forms of generic weights and other finite
groups, if they have suppression behavior around τ = ω and τ = i. Furthermore, concrete
modular flavor symmetric models include many fields, whose masses are determined by
similar modular forms. Thus several modes would be produced around fixed points, which
enlarges the effect of moduli trapping.

There are several issues that should be addressed in future work. One is to embed
this mechanism into more realistic models of particle physics. In particular, it would be
interesting to study the moduli dynamics within magnetized orbifold models where the
standard model flavor structure including flavor mixings as well mass hierarchies has been
realized [108–114]. It is also important to notice that the moduli trapping due to particle
production never completes the moduli stabilization since the effective potential disappears
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as the particle numbers are diluted by expansion of the Universe, which therefore requires
the introduction of additional potential terms. In particular, we have not taken into account
the 1-loop effective potential such as the Coleman-Weinberg type potential that we have
shown. Although it becomes small in supersymmetric models, it would be important to
investigate the effect of such potential and the fate of moduli in the late Universe.

Another interesting issue would be the cosmological implications of moduli dynamics.
It has been known that the particle production during inflation may give imprints on the
curvature perturbation spectrum that can be seen from observations of cosmic microwave
background [115–119]. In particular, moduli in modular flavor symmetric models may
become inflaton directions. (See e.g. [120, 121].) Furthermore, the presence of the dynam-
ically changing CP phase for the standard model matter fields may realize baryogenesis.
In such a case, the method we have applied in this work would be useful to discuss the
dynamics of matter and moduli simultaneously. We leave these interesting questions and
model buildings for future work.
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A Review of particle production in time-dependent backgrounds

We give a short review of particle production in time-dependent backgrounds. Let us
consider a scalar field having a time-dependent mass,

χ̂(x) =
∫

d3k

(2π)
3
2

[
âke+ik·xfk(t) + â†

ke−ik·xf∗
k (t)

]
, (A.1)

where f(t) satisfies a mode equation (2.5) with a(t) = 1 and the normalization condi-
tion (2.7). We have “formally” introduced creation and annihilation operators, which sat-
isfies the canonical commutation relation (2.8). This is yet insufficient to give any meanings
to the vacuum state that is annihilated by âk since we have not determined fk(t). More pre-
cisely speaking, unless the boundary condition of fk(t) is specified, the above expansion has
no physical meaning. In Minkowski spacetime, the annihilation operators are introduced
as coefficients of positive frequency modes ∼ 1√

2ωk
e−iωkt. In time-dependent backgrounds,

it is impossible to define a “global” positive frequency mode, but locally (in time) it is
possible to find an approximate solution. For instance, the formal solution (2.9) becomes
asymptotically a positive frequency mode if αk(t) → 1 and βk(t) → 0 as t → −∞.19 Indeed,
under this condition, the scalar operator becomes

χ̂(x) →
t→−∞

∫
d3k

(2π)
3
2

[
âke−iωkt+ik·x + â†

ke+iωkt−ik·x
]

, (A.2)

19We assume that the background fields asymptote to be time-independent in the asymptotic past and
future.
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and the vacuum state that satisfies âk|0⟩in = 0 is understood as a vacuum state in the
asymptotic past. Thus we have defined a past (adiabatic) vacuum.

However, the “past” vacuum state is not a “vacuum” for a future observer. In general,
βk(t) becomes non-zero due to Stokes phenomena,20 t being asymptotic future time. In
such a case, it is not appropriate to call fk(t) as a “positive frequency mode”. Notice that
the scalar operator can be expanded as

χ̂(x) →
t→+∞

∫
d3k

(2π)
3
2

[
(αk(∞)âk+β∗

k(∞)â†
k)e

−iωkt+ik·x+(α∗
k(∞)â†

k+βk(∞)âk)e+iωkt−ik·x
]

≡
∫

d3k

(2π)
3
2

[
b̂ke−iωkt+ik·x+ b̂†ke+iωkt−ik·x

]
. (A.3)

The new set of creation and annihilation operators b̂k, b̂†k defines a future vacuum state
|0⟩out. Now, we find that the future creation and annihilation operators are given by linear
combinations of the past creation annihilation operators. Note that there is no momentum
exchange and the linear combination is diagonal with respect to momenta k.

How can we find particle production from vacuum? We define the future particle
number density as

N̂f
k ≡ b̂†kb̂k = (α∗

k(∞)â†
k + βk(∞)âk)(αk(∞)âk + β∗

k(∞)â†
k). (A.4)

We would like to know how much “future” particles are contained in the past vacuum
state |0⟩in, which can be explicitly evaluated as

in⟨0|N̂f
k |0⟩in = |βk(∞)|2⟨âkâ†

k⟩in = |βk(∞)|2 V

(2π)3 (A.5)

where we have used limk→0 δ3(k) = V
(2π)3 and V being spatial volume. Thus, we have

found that the number density for (future) k-mode is given by

nk = |βk(∞)|2. (A.6)

It turns out that the past “vacuum” state is not a “vacuum” for a future observer viewpoint.
The “particle production from vacuum” would be more appropriate to be understood as the
ambiguity of energy, which does not allow us to globally define positive and negative modes.

We emphasize that the definition of “particle” is quite ambiguous except for constant
backgrounds. In particular, when time-dependence is not turned off, we have to introduce
adiabatic solutions such as WKB solutions, but there are infinitely many choices of adia-
batic solutions. There is no clear answer to the question “which solution should we take?”
but it is known that the optimal definition of the “adiabatic particle number” is related to
the Stokes phenomena [97, 98].21

20Review of Stokes phenomena can be found e.g. in [97, 98, 102–106]. For now, we just assume Stokes
phenomena occur at some time and we are considering the time sufficiently far from the event.

21The optimal truncation of the adiabatic series was originally studied in [122–124].
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B Modular forms

The modular forms consist of the log derivatives of Dedekind eta function, which is given by

η(τ) = q
1

24

∞∏
n=1

(1− qn), q = e2πiτ . (B.1)

The A4 modular forms of weight 2 are [27]

Y1(τ) =
i
2π

(
η′(τ/3)
η(τ/3) + η′((τ + 1)/3)

η((τ + 1)/3) + η′((τ + 2)/3)
η((τ + 2)/3) − 27η′(3τ)

η(3τ)

)
, (B.2)

Y2(τ) =
−i
π

(
η′(τ/3)
η(τ/3) + ω2 η′((τ + 1)/3)

η((τ + 1)/3) + ω
η′((τ + 2)/3)
η((τ + 2)/3)

)
, (B.3)

Y3(τ) =
−i
π

(
η′(τ/3)
η(τ/3) + ω

η′((τ + 1)/3)
η((τ + 1)/3) + ω2 η′((τ + 2)/3)

η((τ + 2)/3)

)
, (B.4)

where ω = ei 2π
3 . They correspond to the A4 triplet. By noting the fact that any positive

integers can be written as 3m, 3m− 1, 3m− 2, (m ∈ N) and they consist of the logarithmic
derivatives of the Dedekind eta function, one can easily rewrite these functions as

Y1(τ) = 1 +
∞∑

m=1

[
9mqm − 18m2m + 9mq3m

(1− qm)3 + 3(3m − 2)q3m−2

1− q3m−2

+ 3(3m − 1)q3m−1

1− q3m−1 − 27q3m

1− q3m

]
, (B.5)

Y2(τ) = −6q−
2
3

∞∑
m=1

[
(3m − 2)qm

1− q3m−2 + (3m − 1)q2m

1− q3m−1

]
, (B.6)

Y3(τ) = −6q−
1
3

∞∑
m=1

[
(3m − 1)qm

(1− q3m−1 + (3m − 2)q2m−1

1− q3m−2

]
. (B.7)

We will approximate the infinite sum by some (sufficiently large) finite one. In our numer-
ical simulations, we truncated the series up to some finite order.

By tensor products of Y1(τ), Y2(τ), and Y3(τ), we can write modular forms of higher
weights. The modular forms of weight 8 corresponding to three A4 singlets, 1, 1′, and 1′′

can be written by [55]

Y
(8)

1 (τ) = (Y 2
1 + 2Y2Y3)2, Y

(8)
1′ (τ) = (Y 2

1 + 2Y2Y3)(Y 2
3 + 2Y1Y2),

Y
(8)

1′′ (τ) = (Y 2
3 + 2Y1Y2)2. (B.8)

C Field dynamics without potential in expanding Universe

Here we discuss the free field dynamics in the expanding Universe. The E.O.M. of a
massless free scalar field in the FRW background is given by

ϕ̈ + 3Hϕ̇ = 0, (C.1)
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which can also be written as
1
a3

d

dt

(
a3ϕ̇

)
= 0. (C.2)

Therefore, the first integration yields

ϕ̇(t) = a3(tr)
a3(t) ϕ̇(tr) =

(
tr

t

)3β

ϕ̇(tr), (C.3)

where tr is a reference time. The secondary time integration leads to

ϕ(t) = ϕ(tr) +
1

1− 3β

[(
tr

t

)3β−1
− 1

]
trϕ̇(tr), (C.4)

assuming β ̸= 1
3 . Near t = tr, we may expand the above expression as

ϕ(t) = ϕ(tr) + ϕ̇(tr)(t − tr)−
3βϕ̇(tr)(t − tr)2

2tr
+O((t − tr)3). (C.5)

Now since H(tr) ∼ 1/tr, we can neglect the third and higher order terms as long as Hubble
parameter at t = tr is sufficiently smaller than

√
|ϕ̇(tr)|.

The relation between the initial velocity vini = ϕ̇(tini) and v = ϕ̇(t0) at some reference
time t0 > tini is

v =
(

tini
t0

)3β

vini. (C.6)

This would be useful to relate the initial velocity with the field velocity at the crossing
with enhanced symmetry points particularly in estimating the particle production rate.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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