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1 Introduction and summary

One of the cornerstones of the Swampland program [1] is the Weak Gravity Conjecture [2].1
This conjecture asserts that in order for an effective field theory (EFT) to allow for a con-
sistent completion to a theory of quantum gravity (QG), there needs to exist a state in
the spectrum for which the charge-to-mass ration is larger than that of the corresponding
black hole. Whereas the original Weak Gravity Conjecture (WGC) requires only a finite
number of such super-extremal states, refinements of the WGC, such as the tower WGC
(tWGC) [10–13], predict that any consistent effective theory of gravity must exhibit an infi-
nite tower of super-extremal states in every direction of the charge lattice. The motivation

1See [3, 4] for reviews on the Weak Gravity Conjecture and [5–9] for reviews on the Swampland program
more generally.
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for this refinement stems from the requirement that the original form of the WGC is pre-
served under dimensional reduction. More precisely, if in a (d+ 1)-dimensional EFT there
is a tower of super-extremal states for the (d + 1)-dimensional gauge sector (in the sense
that each site in the charge lattice or some multiple of it is populated by a super-extremal
state [14]), then after circle compactification the convex hull condition [15] for the gauge
sector in the d-dimensional theory including the Kaluza-Klein (KK) U(1) is automatically
satisfied.

Much support for the tWGC comes from string constructions where towers of super-
extremal states can be identified explicitly. In this context, one typically restricts to su-
persymmetric theories that can be described as compactifications of string theory on some
geometric backgrounds. To verify the tWGC one must reliably compute the charge-to-mass
ratio of candidates of super-extremal states. In practice, this can be achieved by considering
BPS or non-BPS states whose charge-to-mass ratio is known in certain asymptotic corners
of the field space. For BPS states, it is sufficient to show their existence, since the BPS
bound implies that a BPS state is (super-) extremal. Furthermore the charge-to-mass ratio
of a BPS state is protected by supersymmetry. Modulo potential wall-crossing phenomena
(see, e.g., [16]), for a super-extremal BPS tower the tWGC can therefore in principle be
shown to hold at any point in field space. Successful checks of the Weak Gravity Conjecture
using BPS states have been performed in particular in [17–19] for Calabi-Yau compacti-
fications to four dimensions with N = 2 supersymmetry, embarking from the asymptotic
region in complex structure moduli space, and in [20, 21] for M-theory compactifications
to five dimensions.

The situation is different if the tower predicted by the tWGC consists of non-BPS
states. Their charge-to-mass ratio is not protected by supersymmetry, and hence can
change as we move in field space. The charge-to-mass ratio of non-BPS states can typically
be calculated reliably only near asymptotic, weakly coupled points in field space where the
gauge coupling gYM is small. The WGC in weakly coupled regimes of field space is referred
to as the asymptotic WGC. Since points where gYM → 0 lie at infinite distance in moduli
space, there is a natural relation between the tower WGC and the Distance Conjecture [22].
The Distance Conjecture predicts that as we approach an infinite distance point in field
space, a tower of states becomes asymptotically massless in Planck units. And indeed, if
it exists, a tower of super-extremal states charged under the gauge group that becomes
weakly coupled has to become massless at these infinite distance points. It is therefore
natural to expect that at least a subsector of the tower of light states predicted by the
Distance Conjecture consists of super-extremal states.

In this article, we address the asymptotic tWGC in M-theory compactifications to five
dimensions. A detailed study checking the WGC for BPS states in this context also away
from asymptotic regions has been performed in [20, 21]. Our main focus will be placed
on the role of super-extremal non-BPS towers. These will be shown to make up for the
potential lack of super-extremal BPS states [20] in all directions in the charge lattice dual
to gauge groups with a weak coupling limit, hence guaranteeing the asymptotic tWGC.

The asymptotic WGC in theories with minimal supersymmetry has previously been
investigated in detail in compactifications of F-theory to six and four dimensions [23–27].
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In these theories, there are no BPS particle states. Instead, to prove the asymptotic WGC,
one resorts to the non-BPS excitations of a weakly coupled BPS string. As shown in [23, 24],
in six-dimensional compactifications of F-theory all BPS strings with weak coupling limits
in which also some gauge groups in the effective theory become asymptotically perturbative
are dual to heterotic strings. Based on the modular properties of the elliptic genus of these
six-dimensional strings, the existence of super-extremal states charged under the pertur-
bative heterotic gauge groups was established in [23, 24].2 Similarly, in four-dimensional
N = 1 theories super-extremal states can be shown to exist in emergent string limits where
a BPS string dual to a heterotic string becomes light. However, unlike in six dimensions,
in four dimensions there also exist weak coupling limits for gauge theories that cannot be
identified with the perturbative heterotic gauge group in a dual frame. Such more general
weak coupling limits have been investigated in [27] in the context of the tWGC. The strings
which become light in Planck units in such limits are not critical strings, but axionic [29, 30]
or EFT strings [31–35]. It is found in [27] that in certain cases, there are no particle-like
excitations of BPS strings that can furnish a tower of super-extremal tower of states. This
phenomenon occurs in weak coupling limits gYM → 0 in which the ratio

Λ2
WGC

Λ2
sp
≡ g2

YMM
d−2
Pl

Λ2
sp

(1.1)

does not vanish asymptotically, with d = 4. Here, ΛWGC is the scale associated to the
magnetic form of the WGC [2]. It serves as the cut-off for the gauge theory, where additional
charged states are expected to appear. On the other hand, Λsp is the species scale that
acts as an effective quantum gravity cut-off [36–38]. Accordingly from a quantum gravity
point of view, these limits do not correspond to weak coupling since the mass scale set by
the coupling (and hence the scale at which we expect a tower of super-extremal states) is
at or above the quantum gravity cut-off.

In this paper, we extend the discussion of the asymptotic WGC to theories with mini-
mal supersymmetry in five dimensions. More precisely, we consider M-theory compactified
on a Calabi-Yau 3-fold, leading to an effective five-dimensional theory with N = 1 su-
persymmetry. When the 3-fold is elliptically fibered, this five-dimensional theory can be
viewed as the circle reduction of the six-dimensional F-theory setting analyzed in [23, 24] in
the context of the WGC. In the five-dimensional M-theory context, the Abelian gauge fac-
tors arise from reducing the M-theory 3-form over the 2-cycle classes in the 3-fold. Unlike
its six-dimensional relative, the five-dimensional N = 1 theory has BPS particles that can
in principle furnish a tower of (super-)extremal states. The role of BPS particles for the
WGC in five-dimensional M-theory compactifications has been analyzed in detail in [20].
The BPS states here correspond to M2-branes wrapping certain 2-cycles in the internal
Calabi-Yau and are hence charged under the U(1)s obtained by reducing the M-theory
3-form C3 over the 2-cycles. Interestingly, [20] has shown that the BPS bound does not

2These results hold even in the presence of non-perturbative effects such as NS5-branes due to which
the explicit worldsheet description may not be known. Perturbative worldsheet arguments for the exis-
tence of super-extremal states were also given in [2, 11, 28], and [12] argues based on the modularity of a
holographically dual CFT.
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necessarily coincide with the extremality bound on the entire charge lattice. On the other
hand, the BPS and extremality bound do agree in the sub-cone of the charge lattice cor-
responding to M2-branes on movable curves [20]. Whereas [20] conjectured that for any
direction in the charge lattice within the movable cone there needs to exist a tower of BPS
states, this is not necessarily the case for any direction of the charge lattice outside this
cone. Indeed, outside the movable cone the BPS bound and the extremality bound do
not necessarily agree, such that also non-BPS states can be (super-)extremal [20]. In fact,
for many directions in the charge lattice, there are only finitely many BPS states. This is
for instance the case for U(1)s associated to shrinkable curves in the 3-fold.3 As a result,
whether the tWGC is satisfied along such directions is still an open question.

Our main focus lies on those directions in the charge lattice that are not populated
by towers of BPS states. Our goal is to show explicitly that at least the asymptotic tower
WGC holds even along such non-BPS directions. In other words, we aim to show that all
directions in the charge lattice are populated by super-extremal towers — BPS or non-BPS
— provided the dual directions in the space of gauge groups admit a weak coupling limit.

Following the lessons from the classification of weak coupling limits in four-dimensional
N = 1 compactifications of F-theory [27], the correct criterion for a weak coupling limit is
to require that the ratio (1.1) between the WGC scale, ΛWGC, and the species scale, Λsp,
vanishes asymptotically. Given that the gauge couplings of the U(1) factors are controlled
by vector multiplets, we can entirely focus on the vector multiplet sector of the effective
five-dimensional N = 1 theory, i.e., on the Kähler deformations of the internal Calabi-
Yau 3-fold. Infinite distance limits in the vector multiplet sector of Calabi-Yau 3-fold
compactifications of M-theory have previously been classified in [39]: such limits only
exist if the Calabi-Yau 3-fold allows for either a T 2-fibration or a surface fibration with
generic fiber a K3 or T 4.4 In both cases, the infinite distance limit corresponds to the
limit where the respective fiber shrinks relative to the base. Whereas the T 2-type limit is
a decompactification limit from five to six dimensions, limits with a shrinking surface fiber
can be interpreted as emergent string limits, since a critical string obtained by an M5-brane
wrapped on the generic fiber becomes tensionless and weakly coupled. This classification
serves as a starting point for our analysis of the asymptotic WGC in five-dimensional
M-theory Calabi-Yau compactifications.

Summary of results. In this work, we refine the classification of [39] for tests of the
asymptotic WGC: given any of the aforementioned infinite distance limits, we classify the
linear combinations of U(1) factors that become weakly coupled in the respective limit.
Naively one might have expected that for a given infinite distance limit, any U(1) obtained
by reducing C3 over a curve contained in a shrinking fiber leads to an asymptotically weakly
coupled U(1) as the dual divisor becomes large in the asymptotic limit. However, this logic
is not quite correct. In fact, there are many such ‘fibral’ U(1)s that do not become weakly

3By shrinkable we refer, as is customary, to curves that can shrink without enforcing a divisor to shrink
as well.

4In [40], it has been shown that every infinite distance limit in the vector multiplet space is a weak
coupling limit and vice versa.
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coupled. As we find in this work, in general U(1)s can only become weakly coupled in a
given infinite distance limit if they are obtained from reducing C3 over either of the follow-
ing kinds of curves:

i) a curve that is contained in the generic fiber or

ii) a curve that is localized in a degenerate fiber associated to a finite distance degener-
ation in the deformation space of the generic fiber.

In particular, any curve that arises in a degenerate fiber corresponding to an infinite dis-
tance degeneration does not yield a weakly coupled U(1).

For T 2-type limits, it follows from our results that the only U(1) that becomes weakly
coupled is the U(1) associated to the generic T 2-fiber; this gauge group is the KK U(1) of
the lift to F-theory on the base of the Calabi-Yau 3-fold times S1. In this case, a tower of
super-extremal states is furnished by M2-branes multi-wrapped on the T 2-fiber. These are
BPS states, reflecting the fact that the generic T 2 fiber is a movable curve, and are hence
already contained in the analysis of [20]. The situation is more interesting for limits with
vanishing surface fiber. Here we indeed identify weakly coupled U(1)s whose associated
direction in the charge lattice is not populated by BPS states. To argue for the existence
of super-extremal non-BPS states charged under these weakly coupled U(1)s we first show
that these gauge groups can be identified with perturbative gauge groups of the critical
string that becomes weakly coupled in the asymptotic limits. This is to be contrasted with
those ‘fibral’ U(1)s which do not become weakly coupled in the emergent string limit. The
latter arise from the circle reduction of the 2-forms coupling to non-critical E- or M-like
strings. It is therefore consistent that such U(1)s do not admit a perturbative limit.

Of particular interest for us are setups where the generic fiber is a K3 surface; the
critical weakly coupled, emergent string describes a heterotic string compactified in five
dimensions. The super-extremal states with respect to the perturbative heterotic gauge
group are then expected to be excitations of the heterotic string, which are not necessarily
BPS. Our approach to show that there is indeed a tower of super-extremal states arising
from the heterotic string parallels the procedure in six and four dimensions [23–26], but
involves a number of interesting differences: we first show that there exist excitations of
the heterotic string for which

nL = −1
2Q

2 , (1.2)

where nL is the left-moving excitation number and Q the quantized charge vector. The
second step then amounts to showing that these states are super-extremal, where we use
that in the weak coupling limit and for particle-like excitations, the WGC is equivalent to
the Repulsive Force Conjecture [14, 23, 41]. To accomplish the first step, we make use, in
certain cases, of the modular properties of the elliptic genus for the five-dimensional string
obtained by wrapping an M5-brane on the K3-fiber. This allows us to relate the degeneracy
of these non-BPS states in five dimensions to certain Donaldson-Thomas invariants count-
ing indices of BPS bound states of D4-D2-D0-branes obtained after circle compactification
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to Type IIA [42, 43]. The existence of states with the property (1.2) then follows from the
connection to Noether-Lefschetz theory [44, 45].

In other words, we show the existence of non-BPS states in five dimensions by relating
them to BPS states in one lower dimension. This is similar in spirit to, e.g., the six-
dimensional analysis [23, 24] where the non-BPS excitations of the six-dimensional heterotic
string can be related to BPS M2-branes in five dimensions of the kind considered also in [20].

To prove that these non-BPS states are indeed super-extremal (at least in the asymp-
totic region) we next show that they are self-repulsive. Compared to the analogous problem
in six-dimensional N = (1, 0) theories, here we must take into account that five-dimensional
N = 1 theories have access to the Coulomb branch. As a consequence, in addition to a
mass term proportional to the string tension, the mass of the charged excitations of the
heterotic string also receives a contribution proportional to their charge and the Coulomb
branch parameters. Taking this into account, we find that, indeed, the WGC is satisfied for
a tower of charged heterotic states. Since our five-dimensional heterotic string setup can
be viewed as a circle compactification of the six-dimensional heterotic string, our results
constitute a non-trivial test for the validity of the WGC under circle compactifications.

A slight variation of the result for the heterotic string further shows that, also in the
case of a T 4-type limit, there exist super-extremal states for all weakly coupled U(1)s.

In short, the results of this paper can be summarized as the following statement, which
we formalize in Claims 1 and 2 in section 3:

Any direction in the charge lattice of five-dimensional M-theory that is not
populated by a tower of BPS states either carries charge under a U(1) without
a weak coupling limit, or there are super-extremal non-BPS states arising as
excitations of a critical string.

Structure of the paper. The remainder of this article is organized as follows. In
section 2, we set our conventions by reviewing central aspects of M-theory compactifications
on Calabi-Yau 3-folds. In section 3, we state the main results of the paper, which are
summarized in Claims 1 and 2. In section 4, we study the appearance of weakly coupled
gauge symmetries in different limits in the vector moduli space. In section 5, we argue that
there always exists a tower of (non-)BPS particles whenever it is possible to realize a weak
coupling limit and complete the proof of the asymptotic tower WGC in five-dimensional M-
theory. We illustrate the main features of our analysis in an example presented in section 6.
In section 7, we discuss our findings and end with some speculative remarks.

2 M-theory on Calabi-Yau 3-folds

To set the stage for our analysis, we summarize some of the most relevant aspects of com-
pactifications of eleven-dimensional M-theory on a Calabi-Yau 3-fold X3 to five dimensions.

– 6 –
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Our main interest is in the gauge theory sector of the five-dimensional N = 1 effective
action, starting from the bosonic part of the 11d M-theory effective action5

S11d = 2πM9
11d

∫
R1,10

(
R ? 1− 1

2dC3 ∧ ?dC3

)
+ . . . . (2.1)

Upon compactifying on a 3-fold X3, we can decompose the 3-form gauge potential as

C3 = (2π)−1M−1
11dA

α ∧ Jα + . . . , (2.2)

where
{Jα} , α = 1, . . . , h1,1(X3) , (2.3)

denotes a basis of H1,1(X3,Z). This defines a basis {U(1)α} of abelian gauge group factors,
with gauge potentials Aα. Note that to each curve class C ∈ H2(X3) one can associate a
linear combination U(1)C of such gauge group factors; it is the gauge group whose gauge
potential arises by reducing C3 along the curve C. In terms of the dual basis {Cα} of
H4(X3,Z), which obeys

Jα · Cβ = δβα , (2.4)
we define this linear combination as

U(1)C = cα U(1)α , for C = cα Cα ∈ H2(X3) . (2.5)

The fluctuations of the Kähler form are encoded in real expansion parameters vα with
respect to the basis Jα,

J =
∑
α

vαJα . (2.6)

Since the overall volume of X3 is part of a universal hypermultiplet, this yields h1,1(X3)−1
independent scalar fields ΦA which can be viewed as functions of the vα and which define
the scalar fields inside the five-dimensional vector multiplets.

The kinetic terms of these scalars ΦA and of the abelian gauge fields Aα in the five-
dimensional action are given by

S5d = M3
Pl

2

∫
R1,4

(
R ? 1− gABdΦA ∧ ?dΦB

)
− 1

2g2
5

∫
R1,4

fαβF
α ∧ ?F β + . . . , (2.7)

with6

M3
Pl = 4πM3

11dV ,
1
g2

5
= MPl

(2π)(4π)1/3 . (2.8)

The gauge kinetic matrix fαβ is defined as a dimensionless quantity and obtained by di-
mensionally reducing the kinetic term of C3 as

fαβ = 1
V1/3

∫
X3
Jα ∧ ?Jβ

= 1
V1/3

(
3
2

(
∫
X3
Jα ∧ J2)(

∫
X3
Jβ ∧ J2)∫

X3
J3 −

∫
X3
Jα ∧ Jβ ∧ J

)

= 1
V1/3

(VαVβ
V
− Vαβ

)
=
(
V̂αV̂β − V̂αβ

)
.

(2.9)

5Our conventions can be obtained from those in [46], where 2κ2
11 = (2π)8M−9

11d, by rescaling M11d by 2π.
6Our convention matches the one in [20] identifying their κ2

5 with our M−3
Pl .
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Here we have introduced the abbreviations

V = 1
6

∫
X3
J3 = 1

6καβγv
αvβvγ ,

Vα = 1
2

∫
X3
Jα ∧ J2 = 1

2καβγv
βvγ , Vαβ =

∫
X3
Jα ∧ Jβ ∧ J = καβγv

γ
(2.10)

for the volume of X3, of the divisor dual to Jα and of the intersection curve of two such
divisors, respectively, in units of M11d. We have also introduced the intersection form

καβγ =
∫
X3
Jα ∧ Jβ ∧ Jγ (2.11)

and the re-scaled coordinates
v̂α = vα

V1/3 , (2.12)

so that
V̂α = 1

2καβγ v̂
β v̂γ , V̂αβ = καβγ v̂

γ . (2.13)

The coordinates v̂α satisfy the relation 1
6καβγ v̂

αv̂β v̂γ = 1 and so we should think of them
as functions of the independent vector multiplet scalars ΦA.

Note that the eigenvalues of the gauge kinetic matrix correspond to the inverse-squares
of gauge couplings. To obtain the gauge couplings (in units of the five-dimensional Planck
mass), one introduces the inverse matrix fαβ = (fαβ)−1 given by

fαβ = V1/3
(

1
2
vαvβ

V
− Vαβ

)
= 1

2 v̂
αv̂β − V̂αβ , (2.14)

where Vαβ is the inverse of Vαβ . The interaction strength of a linear combination U(1)C ,
defined in (2.5), of abelian gauge group factors is then set by the (dimensionful) quantity7

g2
YM,C = g2

5 cαf
αβcβ . (2.15)

Finally, the scalar metric gAB is related to fαβ as

fαβ = 1
2g

AB ∂

∂ΦA
v̂α

∂

∂ΦB
v̂β + 1

3 v̂
αv̂β . (2.16)

The above expressions hold for an arbitrary choice of basis {Jα} and {Cα}. In this
paper, it will be convenient to take {Cα} to consist of generators of the Mori cone of effective
curves on X3. If the Mori cone is simplicial, then the dual basis {Jα} consists of the dual
Kähler cone generators. In this case, the intersection numbers (2.11) are non-negative.
Irrespective of whether the Jα are Kähler cone generators, we can expand the Kähler form
J of X3 as a positive linear combination (2.6), where the expansion parameters vα ≥ 0 give
the volumes of the Mori cone generators Cα. If the Mori cone is not simplicial, then the

7Despite discussing abelian gauge groups, we refer to the dimensionful gauge coupling as gYM to point
out that the results carry over mutatis mutandis to non-abelian settings as well. We trust that this does
not confuse the reader.
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choice of basis of Mori cone generators is not unique, and correspondingly it takes several
patches to cover all possible Kähler forms in this way.8

Furthermore, the vα are then subject to additional constraints which ensure positivity
of all effective divisor volumes and of the volume of X3. For ease of notation, we will
oftentimes refer to the expansion parameters vα as Kähler moduli even though we stress
that this interpretation is strictly speaking correct only if the Mori cone is simplicial.

3 Criteria for (non-)BPS towers and weak coupling limits

Given a basis of U(1) gauge factors in five-dimensional M-theory, the tower WGC [10–14]
predicts an infinite tower of super-extremal particle states along all rays in the charge
lattice ΛQ. By this we mean that given a charge vector Q ∈ ΛQ, there must exist a
super-extremal state of charge

nQ , ∀n ∈ I , (3.1)

where the index set I is a subset of N. A particle is super-extremal if its charge-to-mass
ratio equals or exceeds that of an extremal black hole. A stronger version of this conjecture,
the Sublattice WGC [11], requires these super-extremal states to even populate a sublattice
of the full charge lattice.

A related conjecture, the Repulsive Force Conjecture (RFC), replaces the requirement
of super-extremality by that of self-repulsiveness [2, 14, 41], i.e., for two particles of a given
species, the repulsive long-range forces must not be weaker than the sum of attractive
long-range forces,

FCoulomb ≥ FGrav. + FYukawa . (3.2)

Both conditions, super-extremality and self-repulsiveness, are fulfilled by BPS states
since a BPS black hole is always extremal and BPS states exert an exactly vanishing net
force between one another. Hence, if there exists a tower of BPS states, this tower satisfies
both the WGC and the RFC.

For non-BPS states, the relation between the WGC and the RFC is more intricate [14].
However, under certain assumptions, the two conditions agree in the infinite distance regime
corresponding to a weak coupling limit [24]. If we consider a particle of mass Mk, then the
RFC requires

MPlg
2
YM

M2
k/M

2
Pl
≡ (MPlg

2
5)(QαfαβQβ)
M2
k/M

2
Pl

≥ d− 3
d− 2

∣∣∣∣
d=5

+ 1
4
M4

Pl

M4
k

gAB
∂

∂ΦA

(
M2
k

M2
Pl

)
∂

∂ΦB

(
M2
k

M2
Pl

)
,

(3.3)
where we recall that ΦA are scalar fields with A = 1, . . . , h1,1− 1, and gAB is the inverse of
the scalar metric appearing in (2.7). The two terms on the right-hand side account for the
attractive gravitational [2] and Yukawa [41] forces, respectively. In the following, we will

8If the Mori cone is generated by an infinite union of cones, our analysis applies for any fixed choice of
basis {Jα} and {Cα}.
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express Mk as a function of the coordinates v̂α, so it is more practical to write (3.3) as

(MPlg
2
5)(QαfαβQβ)
M2
k/M

2
Pl

≥ d−3
d−2

∣∣∣∣
d=5

+ 1
4
M4

Pl

M4
k

gAB
∂v̂α

∂ΦA

∂v̂β

∂ΦB
∂α

(
M2
k

M2
Pl

)
∂β

(
M2
k

M2
Pl

)

≥ d−3
d−2

∣∣∣∣
d=5

+ 1
2
M4

Pl

M4
k

(
fαβ− 1

3 v̂
αv̂β

)
∂α

(
M2
k

M2
Pl

)
∂β

(
M2
k

M2
Pl

)
,

(3.4)

where we have expressed the scalar metric in terms of the inverse of the gauge kinetic
metric, as in (2.16).

Not every ray in the charge lattice of a Calabi-Yau 3-fold admits a tower of BPS
states. In fact, [20] has shown in examples that when no such BPS tower exists, the black
hole extremality condition and the BPS condition do not agree. This leaves room for the
existence of a tower of non-BPS states along the ray in question which can nonetheless be
super-extremal, though no such non-BPS tower has been identified explicitly in [20]. At
the same time, one faces the possibility that the tower WGC or RFC might be violated
along certain rays in the charge lattice.

In this paper we will show that at least the asymptotic tower WGC or RFC is satisfied
along every ray in the charge lattice.9 This means that whenever we can take a weak
coupling limit, there exists either a BPS tower of (super-)extremal (or self-repulsive) states
or a non-BPS tower which satisfies the tower RFC in the asymptotic weak coupling limit.
In order to test the asymptotic WGC, we first need to define what we mean by weak
coupling. To this end, notice that the magnetic WGC associates a scale ΛWGC to a gauge
theory in d dimensions with (dimensionful) gauge coupling gYM, which is given by

Λ2
WGC = g2

YMM
d−2
Pl . (3.5)

In the present case, d = 5 and the gauge theories of interest are linear combinations of the
M-theory U(1)s. Given a basis {U(1)α} we can define the WGC scale for any U(1)C as
in (2.5) as

Λ2
WGC (U(1)C) = g2

YM,CM
3
Pl = g2

5

(
cαf

αβcβ
)
M3

Pl , (3.6)

where we used (2.15). The weak coupling limit for the gauge group U(1)C now corresponds
to the limit

Λ2
WGC (U(1)C)

Λ2
QG

→ 0 . (3.7)

Here ΛQG is the quantum gravity cut-off, i.e., the scale at which gravity becomes strongly
coupled.

With this preparation, we can state the main result of this paper:

Claim 1. Consider M-theory compactified to five dimensions on a Calabi-Yau X3. Suppose
there exists a primitive charge vector Q0 ∈ ΛQ such that {λQ0}λ∈R ∩ΛQ is not populated
by a BPS tower of super-extremal states. Defining U(1)Q0 = Q0

a U(1)a one of the following
two holds:

9Since we are focusing on the asymptotic weak coupling limit, the two versions — WGC and RFC —
are equivalent, and we will use both terms interchangeably.
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C1. There exists no limit in moduli space in which

Λ2
WGC

(
U(1)Q0

)
Λ2

QG
→ 0 (3.8)

with Λ2
WGC

(
U(1)Q0

)
defined as in (3.6).

C2. Alternatively, there does exist a non-BPS tower of states along the ray in the charge
lattice which is part of the tower of excitations of a critical string becoming weakly
coupled in the limit (3.8), and this tower of states is self-repulsive in the asymptotic
limit in the sense of satisfying condition (3.2).

To show this, we will prove an equivalent converse statement: whenever there does exist
a limit of the type (3.8), either there exists a BPS tower of super-extremal states along the
given ray in the charge lattice, or we can identify a non-BPS tower of self-repulsive states
originating in the excitation spectrum of an asymptotically weakly coupled critical string.
Notice that since ΛQG ≤ MPl a necessary condition for the existence of a weak coupling
limit of the form (3.8) is the existence of a limit

Q0
αf

αβQ0
β → 0 . (3.9)

In the following, we therefore first classify all possible limits in the five-dimensional moduli
space for which (3.9) can be achieved and subsequently compare with the scaling of ΛQG. In
order to engineer a limit of the form (3.9), note that (2.14) is invariant under a homogeneous
rescaling of all the Kähler moduli

vα → λṽα , ∀α = 1, . . . , h1,1(X3) . (3.10)

This means that to classify the possible weak coupling limits, without loss of generality,
we can assume that the overall volume V stays constant along the trajectory in moduli
space because otherwise we can simply perform a suitable rescaling (3.10) without affecting
the gauge coupling matrix fαβ . Hence it suffices to analyze limits in the vector moduli
space. Such limits have been classified in [39] and leave us with two qualitatively different
scenarios:

(1) Limits of Type T 2: X3 admits a torus fibration

π : X3 → B2 (3.11)

and the weak-coupling limit corresponds to a limit in which the volume of the generic
fiber T 2 shrinks as

VT2 ∼ 1
λ
, VB2 ∼ λ , λ→∞ . (3.12)

(2) Limits of Type K3/T 4: X3 allows for a surface fibration

ρ : X3 → P1 (3.13)

with generic fiber S being either (2.a)a K3 surface, or (2.b) an abelian surface, T 4.
In the weak coupling limit, the volume of the surface fiber shrinks as

VK3/T4 ∼ 1
λ2 , VP1 ∼ λ2 , λ→∞ . (3.14)
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A number of comments concerning this classification are in order [39]. First, consider a
limit of Type 1 and suppose that X3 admits in addition a K3 or T 4-fibration. If in the limit
also the volume of the generic surface fiber shrinks, then, by definition, the shrinking rate
of the T 2-fiber volume is faster than the square-root of the shrinking rate of the K3 or T 4-
fiber volume, otherwise the limit is said to be of Type 2. In other words, the classification
into Type 1 or 2 is according to the type of fiber which shrinks at the fastest rate, where
in case a T 2-fiber volume shrinks at the same rate as the square root of a K3 or T 4-fiber
volume, the limit is classified as Type 2. Second, in the limits of Type 2 it can be shown
that there always exists a unique K3 or T 4-fiber shrinking at a rate strictly faster than that
of any other K3 or T 4-fiber. Similarly in limits of Type 1, the 3-fold X3 may well exhibit
several T 2-fibrations whose fiber volumes shrink, but there is always a unique such fiber
which shrinks at the fastest rate. See [39] for more details and proofs.

Limits of Type T 2 are effective decompactification limits from five to six dimensions,
with the BPS tower of KK states furnished by M2-branes wrapping the shrinking T 2-fiber
an arbitrary number of times. Limits of Type K3/T 4 are effectively five-dimensional limits,
in which the heterotic/Type II string obtained by wrapping an M5-brane once around the
K3/T 4-fiber sets the new duality frame and becomes asymptotically tensionless with respect
to the five-dimensional Planck scale.

As we will show in section 4, in the limits of Type T 2, the only U(1) which becomes
asymptotically weakly coupled is the U(1)E associated with the generic torus fiber E , in
the sense of (2.5). Consistently, there exists a tower of (BPS) states charged exclusively
under U(1)E .

On the other hand, in limits of Type 2.a only U(1)s associated to curves in the generic
K3-fiber or curves associated to degenerations of the K3-fiber at finite distance in the K3
moduli space become weakly coupled. In particular, curves associated to degenerations
of the K3-fiber that are at infinite distance in the K3 moduli space do not give rise to
U(1) gauge factors with a weak coupling limit. As a consequence, the charged states
satisfying (3.8) in the limits of Type 2.a can all be interpreted as excitations of the heterotic
string obtained by wrapping an M5-brane on the generic K3-fiber. A similar interpretation
holds for limits of Type 2.b.

We can summarize these findings as

Claim 2. In M-theory compactified on a Calabi-Yau X3, the only U(1)s which admit a
weak coupling limit in the sense of (3.8) are obtained by reducing C3 over a curve in a
generic torus or K3/T 4 fiber of X3 or curves contained in a degenerate fiber arising at finite
distance in the fiber moduli space.

For example, all degenerations of an elliptic fiber correspond to the point τ = −i∞ (or
SL(2,Z) images thereof) in the complex structure moduli space of the torus and are hence at
infinite distance (the elliptic points at τ = i, (−1)1/3 do not correspond to degenerate tori).
This reflects our above claim that for limits of Type 1 the only U(1) that can become asymp-
totically weakly coupled is the KK U(1)E , as one would expect from M-/F-theory duality.
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4 Weak coupling limits in five-dimensional M-theory

In this section, we analyze the different types of weak coupling limits in the vector moduli
space of five-dimensional M-theory and prove Claim 2. We proceed by examining the
possible infinite distance limits of Types 1, 2.a and 2.b listed in section 3 for the appearance
of a gauge sector satisfying the weak coupling criterion (3.8).

4.1 Weak coupling in type T 2 limits

Let X3 be a T 2-fibered Calabi-Yau 3-fold over a base B2 with projection π : T 2 → B2.
According to the Shioda-Tate-Wazir theorem,

h1,1(X3) = h1,1(B2) + 1 + (n− 1) , (4.1)

where (n− 1) is the sum of the Mordell-Weil rank and of the total rank of the non-abelian
symmetry algebras associated with the codimension-one degenerations. A general basis
{Cα} of H2(X3,Z) composed of Mori cone generators then splits as

{Cα} =
{
Ca, Cif

}
, a = 1, . . . , h1,1(B2) , i = 1, . . . , n , (4.2)

where
{
Cif
}

is composed of generators of the relative Mori cone M(X3/B2), i.e., of the
Mori subcone of X3 spanning all purely fibral curves, while the remaining curve classes
{Ca} lie on a section or multi-section of the fibration.

The dual basis of H1,1(X3) correspondingly splits as

{Jα} = {Ja, Ji} , a = 1, . . . , h1,1(B2) , i = 1, . . . , n , (4.3)

where
Ja = π∗(ja) with ja ∈ H1,1(B2) (4.4)

denote π-vertical divisor classes, i.e., the set {ja} forms a basis of H1,1(B2). Note that if
the Mori cone is simplicial, the {ja} are the Kähler cone generators of B2.

Given this basis, we can expand the M-theory 3-form C3 as

(2π)M11dC3 = Aα ∧ Jα = Aa ∧ Ja +Ai ∧ Ji . (4.5)

The gauge potentials are associated with the abelian gauge group factors U(1)a and U(1)i,
respectively.

The generic elliptic fiber CE degenerates over the discriminant locus ∆ ⊂ B2 into a
union of curves, which can be written as positive linear combinations of the fibral curves
Cif . This implies that there exists a homological relation

CE =
n∑
i=1

ci Cif , (4.6)

for some coefficients ci and, by construction, the curves Cif are localized in special fibers
over the discriminant ∆. Moreover, notice that Ji and Jj only differ over the locus ∆ ∈ B2
over which CE splits and

π∗(ja) · π∗(jb) = nab[CE ] , (4.7)
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for nab = ja ·B2 jb. From eqs. (4.6) and (4.7), it follows that

cjJi · π∗(ja) · π∗(jb) = ciJj · π∗(ja) · π∗(jb) , (4.8)

for all (a, b) and (i, j). We will show momentarily that as a consequence of (4.8), the
leading part of the gauge kinetic matrix (2.9) has lower rank in the T 2 limit, and the only
linear combination of U(1)i that becomes asymptotically weakly coupled is

U(1)E =
n∑
i=1

ci U(1)i . (4.9)

This will be seen to be a consequence of the fact that in the weak coupling limit of Type
T 2, the elliptic fiber shrinks as in (3.12), so that the volume of the divisors Ji is dominated
by terms of the form vavb, where va and vb are the volumes of curves in the base B2. To-
gether with (4.8) this results in a rank reduction of the gauge kinetic matrix to leading order.

The weakly coupled combination (4.9) is precisely U(1)KK, i.e., the actual KK U(1)
obtained by compactifying six-dimensional F-theory on B2 on an additional circle. All other
eigenvectors of the gauge kinetic function correspond to linear combinations of U(1)i that
do not become weakly coupled, at least not in the asymptotic effectively six-dimensional
frame. This, of course, is nothing but the well-known statement that in the F-theory lift
of M-theory only the KK U(1) becomes weakly coupled, whereas the gauge coupling of all
gauge theories that lift to gauge theories in six dimensions remains finite. This means that
the (only) gauge symmetry that becomes weakly coupled in the limit is associated with a
charge vector whose lattice is populated by a BPS tower of super-extremal states, i.e., the
KK states.

In order to prove these claims, we explicitly parametrize the infinite distance limit of
Type T 2 following the classification in [39]. In this work, two possible types of limits for the
Kähler form were identified to give rise to a behavior as in Type T 2 limits, called J-class
A and J-class B limits, respectively. We begin with the asymptotic parametrization of
J-class A, which is of the form

J = vαJα =
√
λṽaJa + 1

λ
ṽiJi for λ→∞ . (4.10)

Here the split of the divisor basis is as in (4.3), and the expansion parameters ṽa and ṽi are
of order one or smaller and normalized such that V = 1

6
∫
X3
J3 remains finite. In particular,

Ja · Jb · Jc = 0 for all labels of type a, b, c. Note that in [39], (4.10) denotes the asymptotic
expansion for the Kähler form in a basis of Kähler cone generators, while in general, our
basis (4.3) is not composed of Kähler cone generators. However, the fibration structure
guarantees that a basis of Kähler cone generators can be obtained as Ĵa = mb

aJ
a and

Ĵi = kijJj for suitable matrices mb
a and kij .10 This means that the scaling of the expansion

parameters with λ remains as in (4.10) even if we have no Kähler cone basis.
The volumes appearing in the gauge kinetic function (2.9),

fαβ = V̂αV̂β − V̂αβ , (4.11)
10Such matrices can be chosen as the identity when the Kähler and Mori cones are simplicial.
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evaluate to

V̂a = λ−
1
2κabi ˆ̃vb ˆ̃vi + λ−2 1

2κaij
ˆ̃vi ˆ̃vj =: λ−

1
2
̂̃Va ,

V̂i = λ
1
2κiab

ˆ̃va ˆ̃vb + λ−
1
2κiaj ˆ̃va ˆ̃vj + λ−2 1

2κijk
ˆ̃vj ˆ̃vk =: λ ̂̃V i ,

V̂ab = λ−1κabi ˆ̃vi ,
V̂ai = λ1/2κaib ˆ̃vb + λ−1κaij ˆ̃vj ,
V̂ij = λ1/2κija ˆ̃va + λ−1κijk ˆ̃vk .

(4.12)

Here we are making use of the rescaled volumes defined in (2.12), starting from the Kähler
parameters ṽa and ṽi defined in (4.10).

The components of the gauge kinetic matrix therefore become

fij = λ2 ̂̃V i ̂̃Vj −√λκija ˆ̃va +O(1/λ) ,

fai =
√
λ

(̂̃Va ̂̃V i − κiab ˆ̃vb)+O(1/λ) ,

fab = O(1/λ) ,

(4.13)

where ̂̃V i and ̂̃Va remain finite in the limit λ→∞. By (4.8), we note that

cj
̂̃V i = ci

̂̃Vj +O
(
1/λ3/2

)
, cjκiab ˆ̃va = ciκjab ˆ̃va , ∀i, j, b . (4.14)

Hence if we introduce the vectors m(i) with components

m
(i)
j = ciδi,j − ci+1δi+1,j , m(i)

a = 0 , (4.15)

then these vectors satisfy the relations

fajm
(i)
k δ

k,j = O(1/λ) , fijm
(i)
k δ

k,j = O
(√

λ
)

(4.16)

because the leading order terms cancel. This means that the (n− 1) linear combinations

U(1)(i)
− = m(i)

α U(1)α = ci U(1)i − ci+1 U(1)i+1 (no sum over i) , i = 1, . . . , n− 1 ,
(4.17)

are not weakly coupled in the infinite distance limit, in the following sense: these U(1)(i)
−

gauge groups satisfy
m(i)
α f

αβm
(i)
β = O

(√
1/λ

)
(4.18)

and hence fulfill the necessary condition (3.9) for the existence of a weak coupling limit.
However, in order to check the stronger requirement (3.8) for these gauge groups in the
infinite distance limit, we need to compare (4.18) to the scaling of the asymptotic quantum
gravity cut-off.

An infinite distance limit of Type T 2 corresponds to an effective decompactification
limit from five- to six dimensions. The quantum gravity cutoff in (3.8) is hence the species
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scale associated to the KK tower. For a general number n of decompactifying dimensions,
this species scale is given by11

Λ3
sp,KK

M3
Pl

=
(
M3

KK

M3
Pl

) n
3+n

. (4.19)

In the present case, n = 1 and MKK is set by the volume of the shrinking T 2-fiber wrapped
by M2-branes multiple times, i.e.,

MKK

M11d
= 2πVT2 ⇒ M3

KK

M3
Pl

= 2π2V3
T2

V
= 2π2V̂3

T2 ∼
1
λ3 . (4.20)

This leads to
Λ3

sp,KK

M3
Pl
∼ 1
λ3/4 . (4.21)

Inserting eqs. (4.18) and (4.21) into (3.8) we find

Λ2
WGC

(
U(1)(i)

−

)
Λ2

sp,KK
∼ λ1/2

λ1/2 ∼ const. , (4.22)

such that, indeed, the T 2 limit is not a weak coupling limit for the U(1)(i)
− gauge theories.

On the other hand, within the space U(1)i, the only linear combination of U(1)s,
orthogonal to the combinations U(1)(i)

− , is the diagonal combination U(1)E defined in (4.9),
which obeys the relation

Λ2
WGC (U(1)E)

Λ2
sp,KK

∼ 1
λ3/2 . (4.23)

This U(1)E is the KK U(1) associated with the decompactification limit and, consistently,
becomes weakly coupled in the limit.

Finally, it is clear from the scaling of the components fab in (4.13) that all U(1)a for
a = 1, . . . , h1,1(B2), associated with the base divisors, do not become weakly coupled in
the limit of Type T 2. Unless X3 admits in addition a limit of Type K3 or T 4 or a different
type of T 2 limit, these U(1)s can never become asymptotically weakly coupled.

One may repeat a similar computation also for the J-class B limits introduced in [39].
In fact, it follows from the uniqueness of the scaling behavior in the Type T 2 limit that
the scalings of the divisor volumes Vi and Va must be the same as in (4.12). As a result,
our conclusions concerning the weak coupling nature of the abelian gauge fields carry over
to limits of Type T 2 which are technically described as limits of J-class B. Note that such
a limit cannot be described as a J-class A limit in particular when the base does not have
any Kähler cone generators that do not square to zero. This is the case for a P1×P1 base,
where both Kähler generators of the base square to zero.

The analysis of the (non-)BPS towers associated with the gauge symmetries that be-
come weakly coupled in a Type T 2 limit will be carried out in section 5.1.

11One can find this relation, as in [27, 47], from the general definition of the species scale in five dimensions,
i.e., Λ3

sp = M3
Pl

Nsp , with Nsp being the number of KK states with mass m ≤ kmaxMKK, for a certain kmax ∈ N.
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4.2 Weak coupling in type K3 limits

The next type of infinite distance limit is a limit of Type K3. A Calabi-Yau 3-fold X3
admitting such a limit is a K3-fibration over a rational curve P1 with projection

ρ : X3 → P1 . (4.24)

Let us choose a basis of H2(X3) composed of Mori cone generators

{Cα} =
{
C0, Ci, i = 1, . . . , h1,1(X3)− 1

}
, (4.25)

where C0 = P1 is the base of the K3-fibration and Ci are generators of the ρ-relative Mori
cone of curves in the fiber. We furthermore introduce the dual basis of H1,1(X3),

{Jα} =
{
J0, Ji, i = 1, . . . , h1,1(X3)− 1

}
, (4.26)

via the property that Jα · Cβ = δβα. In particular, J0 is the class of the generic K3-fiber.
Recall that if the Mori cone is simplicial, the Jα are the generators of the dual Kähler
cone. More generally, thanks to the K3-fibration structure one can always find a basis of
Kähler cone generators {Ĵ0, Ĵi} where Ĵi · C0 = 0 and Ĵ0 · Ci = 0 and furthermore Ĵ0 = J0,
Ĵi = mj

iJj for some non-degenerate matrix mj
i .

As in section 4.1, even though the basis {Jα} is composed of Kähler cone generators
only if the cones are simplicial, it will be convenient for our purposes to expand the Kähler
form J in this basis. In the infinite distance limit of Type K3, the Kähler form can be
parametrized as

J = vαJα = λṽ0J0 + 1√
λ
ṽiJi , λ→∞ , (4.27)

where vα ≥ 0 can be interpreted as volumes of the basis of Mori cone generators Cα. Note
that ṽ0 does not scale with λ and ṽi does either not scale with λ or vanishes in the limit
λ→∞, but in such a way that the total volume V = 1

6
∫
X3
J3 remains finite.

Indeed in [39] it was shown that every limit of Type K3 is characterized by a Kähler
form J = λṽ0Ĵ0+wiĴi, where Ĵα is a basis of Kähler cone generators such that in particular
Ĵ2

0 = 0 and with wi ≺ λ for all remaining Kähler parameters wi. The scaling v0 = λṽ0

reflects the expansion rate of the volume of the base C0 = P1. Furthermore, the K3-fiber
volume scales like 1/λ homogeneously, meaning that the volumes of all curves in the fiber
scale to zero at a rate 1/

√
λ or faster.12 We can then transform to the basis Jα as explained

above and obtain the scaling (4.27) with the infinite distance parameter λ.
To determine the gauge kinetic function (2.9), we compute the divisor and curve vol-

umes taking into account the relation

κ00i = 0 (4.28)

that follows from J2
0 = 0. In terms of the expansion parameters appearing in (4.27) and

the intersection form of the generic K3-fiber,

κ0ij = ηij , (4.29)
12Otherwise, the K3-fiber would have to admit an elliptic fibration and the limit λ→∞ would describe

a limit of Type T 2 [39].
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one finds

V = 1
6καβγv

αvβvγ = 1
2v

0ηijv
ivj + 1

6κijkv
ivjvk ,

V0 = 1
2κ0βγv

βvγ = 1
2ηijv

ivj ,

Vi = 1
2κiβγv

βvγ = v0ηijv
j + 1

2κiklv
kvl ,

Vαβ =
(
V00 V0j
Vi0 Vij

)
=
(

0 ηjkv
k

ηikv
k v0ηij + κijkv

k

)
.

(4.30)

These formulae hold even before taking any asymptotic limit. Expressed in the volumes
rescaled as in (2.12), the components of the gauge kinetic matrix become

f00 = 1
4(ηklv̂kv̂l)2 ,

f0j = 1
2(ηklv̂kv̂l)

(
v̂0ηjkv̂

k + 1
2κjklv̂

kv̂l
)
− ηjkv̂k ,

fi0 = 1
2(ηklv̂kv̂l)

(
v̂0ηikv̂

k + 1
2κiklv̂

kv̂l
)
− ηikv̂k ,

fij =
(
v̂0ηikv̂

k + 1
2κiklv̂

kv̂l
)(

v̂0ηjkv̂
k + 1

2κjklv̂
kv̂l
)
− (v̂0ηij + κijkv̂

k) .

(4.31)

In the infinite distance limit (4.27) one finds the scaling

f00 ∼ λ−2 , f0j ∼ fi0 ∼ λ−1/2 +O(λ−1) , fij = λ((ˆ̃v0)2ηik ˆ̃vkηjl ˆ̃vl − ˆ̃v0ηij) +O(λ−1/2) .
(4.32)

We now determine the linear combinations of abelian gauge fields which become weakly
coupled in this limit. Let us suppose for the moment that the components of fij scaling
with λ in (4.32) define a submatrix of maximal rank. Under this assumption, any charge
vector Q = (0, Qi) satisfies the relation

Qαf
αβQβ = Qif

ijQj ∼
1
λ
→ 0 . (4.33)

This means that each of the gauge groups U(1)i associated with the basis elements Ji
satisfies the necessary condition (3.9) to become weakly coupled. To test for the sufficient
condition (3.8), recall that in the infinite distance limit, the duality frame changes to that
of the perturbative heterotic string obtained from an M5-brane wrapped on the generic K3
surface. In the limit, the new heterotic string scale decreases at the rate

Mhet ∼
1√
λ
M11d . (4.34)

The excitations of the heterotic string provide a tower of non-BPS particles whose mass
scales with λ in the same way as the KK tower [39], namely

M2
nL

M2
Pl
∼ nL

Thet

M2
Pl

= 2πnLVK3
M2

11d

M2
Pl

= 2πnL

λ
V1/3 , (4.35)
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where nL is the left-moving excitation level. The masses of the particles of this tower,
then, set the species scale Λsp [37, 38] of the effective heterotic string theory, which is the
quantum gravity cutoff scale ΛQG appearing in (3.7).

More precisely, Λsp lies above the heterotic string scale due to a logarithmic scaling
factor between species scale and string scale [48, 49],

Λ2
sp ∼M2

het log
(
MPl

Mhet

)
. (4.36)

We can then compute (3.8) for a U(1) of the form U(1) = Qi U(1)i with the help
of (4.33), which results in

Λ2
WGC (U(1))

Λ2
sp

∼ 1/λ
1/λ(1 + log(λ)) → 0 . (4.37)

Therefore every linear combination of U(1)i, i = 1, . . . , h1,1(X3) − 1, is indeed weakly
coupled in the infinite distance limit, provided the leading part of fij in (4.32) defines a
maximal rank matrix.

By contrast, any combination of gauge factors containing U(1)0, the abelian gauge
group associated with the K3-fiber class J0, remains strongly coupled in the limit. In
fact, in the K3 limit, U(1)0 can be identified with the graviphoton U(1)grav.. To see this,
recall that the linear combination of the U(1)s that is identified with the graviphoton
is moduli-dependent in such a way that the central charge of wrapped M2-branes gives
the charge under the U(1)grav.. In the limit (4.27) the central charges of M2-branes vanish
asymptotically unless the wrapped curve contains the base P1 and hence carry charge under
U(1)0. Accordingly, U(1)0 is asymptotically identified with the graviphoton U(1)grav.. This
explains why U(1)0 does not admit a weak coupling limit in the vector multiplet moduli
space. In fact, it does not admit a weak coupling limit at all because its coupling strength
is always set by the Planck scale.

The discussion so far is valid under the assumption that the leading components of
the matrix fij define a maximal rank matrix. It therefore remains to understand the
invertibility properties of the leading components of fij in more detail. To this end, we
must distinguish fibrations in which the K3-fiber does not degenerate anywhere over the
base P1 and those where degenerations occur over points.

4.2.1 Fibrations without degenerations

If the K3 fiber does not degenerate anywhere, the divisors Ji other than the generic K3-
fiber of class J0 are obtained by fibering holomorphic curves of the generic fiber over the
base P1. More precisely, if ι : K3 ↪−→ X3 denotes the embedding of the K3-fiber into X3,
then the image of the Picard group Pic(K3) := H2(K3,Z) ∩H1,1(K3) of the generic fiber
under ι∗ : H2(K3)→ H2(X3) defines a set of holomorphic curve classes on X3. Under our
assumption that the fiber does not degenerate anywhere, their span is the ρ-relative Mori
cone of X3. We can obtain the basis of Mori generators (4.25) of X3 by taking a basis of
generators of this relative Mori cone and completing it with the base P1. The dual basis
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of divisors Jα of X3 is then the basis (4.26), where each Ji, i = 1, . . . , h1,1(X3), indeed has
the structure of a fibration over P1 by a curve in ι∗(Pic(K3)).

The pullback ι∗(H1,1(X3)) defines the so-called polarization lattice

Λ0 ⊂ Γ3,19 = U⊕3 ⊕ (E8 ⊕ E8) (4.38)

of signature (1, k0) for some 0 ≤ k0 ≤ 19. The curves in ι∗(Pic(K3)) then span the lattice
Λ∗0 dual to Λ0. In (4.38), U denotes a copy of the hyperbolic lattice and E8 represents
the eponymous Lie algebra lattice. Indeed, recall that Γ3,19 is the lattice H2(K3,Z) of a
K3 surface, and for every algebraic K3 surface, Pic(K3) is a sublattice thereof of signature
(1, r) with r ≤ 19.

The intersection matrix (4.29) coincides with the non-degenerate intersection matrix
on the lattice Λ0 and therefore has full rank. This shows that also the leading components
of fij in (4.32) define a matrix of maximal rank, as claimed.

4.2.2 Fibrations with degenerations

Fibrations with degenerate fibers over points on the base can be divided in two main blocks,
depending on whether the degenerations occur at finite or infinite distance in the K3 fiber
moduli space. Up to base change and birational transformations, degenerations at finite
distance in K3 moduli space correspond to K3 degenerations of Kulikov Type I, while
those at infinite distance are of Kulikov Type II or III [50–52]. Following the reviews of
semi-stable degenerations and Kulikov models in [53, 54], let us discuss how the degenerate
K3-fibers fit in Kulikov’s classification. Therefore consider the K3-fibration X3 and its
projection ρ defined in (4.24). We can zoom-in to a small disk D centered around the
point p and focus on

ρD : XD → D , (4.39)

the restriction of the K3-fibration to D. The fiber Su over a generic point 0 6= u ∈ D is a
smooth K3. As we vary u we generate a one-parameter family of K3-surfaces Su. Under
the assumption of semi-stability, the central fiber S0 = Su|u=0 degenerates into a union

S0 =
N⋃

M=1
SM (4.40)

of reduced surfaces SM with at worst normal crossing singularities. Notice that for the local
3-fold XD this semi-stability can always be achieved by performing a suitable base change,
which amounts to a reparametrization of the local fibration ρD, possibly together with a
birational transformation. For compact fibrations X3, such a base change is a more drastic
operation which would change the geometry. For now, we assume that XD is embedded in
the compact 3-fold in a way consistent with the semi-stable degeneration without having
to perform a base change on X3, and we will comment on more general situations below.

The main difference between Type I and Type II, III Kulikov models is that for the
former, the number of components is N = 1 and the special fiber is smooth, whereas the
latter cases have N > 1. Hence for a Type I Kulikov model the fiber S0 is irreducible,
whereas for Type II and III it splits into multiple components. For our following discussion,
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the distinction between Type II and III Kulikov fibers is inessential.13 Instead the main
question is whether the degenerate fiber is reducible or irreducible and hence whether the
degeneration is at finite distance (Type I) or at infinite distance (Type II and III) in the
K3 moduli space.

In the presence of degenerations, the set of Mori cone generators Ci (not including the
base C0 = P1) splits into different types of curves,

{Ci} = {Cι, Cm, Cµ} . (4.41)

Here we denote by

• Cι, ι ∈ I0, Mori cone generators located in the generic K3-fiber,

• Cm, m ∈ II, Mori cone generators localized in special fibers of Kulikov Type I or
which can be ensured to lie in Kulikov Type I fibers upon deformations of X3,14

• Cµ, µ ∈ III/III Mori cone generators localized in special fibers of Kulikov Type II or
III and which cannot be deformed out of such fibers.

This split induces a corresponding distinction between the dual divisors Ji, Jm and Jµ.
The Mori cone generators Cι, ι ∈ I0, and their dual divisors Jι, behave in the same

way as the generators in the absence of any degenerations. Generators of the form Cm arise
when a curve in a generic fiber splits into one or several components over a special point
pI ∈ P1 where the fiber undergoes a Type I Kulikov degeneration. Over the degeneration
point pI, the rank of the Picard lattice of the fiber may enhance due to the appearance
of such extra holomorphic curves. What is important for us is that the intersection form
restricted to the index set {ι,m} ∈ I0 ∪ II continues to be non-degenerate because it can
be identified with the intersection form of a — possibly higher-rank — sublattice Λ0+I of
Γ3,19. Hence again all linear combinations of abelian gauge potentials U(1)ι and U(1)m are
asymptotically weakly coupled because they satisfy the relation (4.37).

Let us now assume that the K3-fiber degenerates at infinite distance (in the K3 moduli
space) over a point pII/III ∈ P1 in the base. As reviewed above, at an infinite distance
degeneration a K3 surface in general splits into a union of surfaces intersecting over curves.
These surfaces give rise to additional effective divisors of X3 which are localized over one
of the points pII/III. We denote by Dρ the set of all such divisor classes such that we can
write the class of the generic fiber J0 as

J0 =
∑
ρ

aρDρ . (4.42)

Importantly, since the divisors Dρ are localized in the fibers over one of the points pII/III,
their intersection with the generic fiber J0 vanishes.

13Fibers of Kulikov Type II and III are distinguished, among other things, by the way how the different
components SM intersect. For Type II Kulikov models the SM form a chain with SM ∩SM+1 being elliptic
curves with fixed complex structure. For Type III Kulikov models, instead, the SM form a triangulation of
S2 and, if non-empty, SM ∩ SK are rational curves.

14It can happen that a Type I and a Type II/III fiber coincide on X3. The distinction between curves
Cm and Cµ must then be made after separating the fiber types.
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There must also exist one or several curve classes C in the generic K3-fiber whose
class splits into various components over one or several of the points pII/III (if necessary
after performing a deformation to separate the fibers, as in Footnote 14). Let us define
by M(X3,∞) the set of curve classes which only exist in the fiber over one of the points
pII/III. Each element in M(X3,∞) can be written as a positive linear combination of the
subset of Mori cone generators Cµ. A general curve class in the fiber can be expressed as

C =
∑
µ

cµCµ + Crest , (4.43)

for some coefficient cµ and if cµ = 0 for all µ, then C does not (partially) split over any
pII/III. The divisors Jµ dual to Cµ have the property

cνJµ · C = cµJν · C , (4.44)

and furthermore,
Jµ · C = 0 if cµ = 0 . (4.45)

In particular, if for a given curve all cµ = 0, this curve can be moved away from any of the
points pII/III. Hence, away from the points pII/III all generators Jµ agree with each other.

In other words, we can relate any Jµ and Jν up to divisors Dρ localized in the fiber
over pII/III, i.e.,

cνJµ = cµJν +
∑
ρ

αρDρ , (4.46)

where αρ ∈ Q. Since the Dρ are localized in the fiber over pII/III, they integrate to zero
over the generic fiber, i.e.,

0 =
∫

generic fiber
Dρ ·Dα , (4.47)

where Dα is any other effective divisor.15 Since J0 is the class of the generic fiber we have

cνJµ · J0 · Jα = cµJν · J0 · Jα , ∀α ∈ {0} ∪ I0 ∪ II ∪ III/III . (4.48)

Therefore, in the limit (4.27), the components of the gauge kinetic matrix (4.31) satisfy
the relations

cνfµα ∼ cµfνα , ∀µ, ν ∈ III/III , ∀α , (4.49)

to leading order in λ. As a result, the rank of the submatrix fij is in fact reduced to leading
order. This implies that for each curve C that splits in a Type II/III degeneration, there
is a single linear combination

U(1)C =
∑
µ

cµ U(1)µ + U(1)Crest (4.50)

which becomes weakly coupled in this limit. All orthogonal linear combinations of U(1)µ
do not become weakly coupled. For U(1)C , on the other hand, the discussion around (4.33)
applies and

Λ2
WGC(U(1)C) = g2

YM,CM
3
Pl ∼

1
λ
. (4.51)

15In particular (4.47) applies to all Kähler cone generators.
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One therefore finds a relation as in (4.37) for U(1)C , which confirms that it becomes weakly
coupled.

In section 6 we illustrate the different types of U(1)s and their weak coupling limits in
a K3 fibration with a Type II degenerate fiber.

The discussion so far has made use of the Kulikov classification of semi-stable K3 de-
generations, and we have already pointed out that in general the degenerations can be put
in semi-stable form only up to base change. The appearance of non-Kulikov type fibers on
compact Calabi-Yau 3-folds has been stressed in particular in [53], to which we refer for
some examples of what the authors call would-be Type I, II, or III fibers prior to performing
such base change and birational transformations to make all fibers semi-stable. However,
the details of the degenerate fibers do not matter for our arguments, except for the distinc-
tion between degenerations in which the K3-fiber remains irreducible versus those where it
splits into several components over points. The latter types of degenerations do not give rise
to any additional weakly coupled gauge groups, even if they are not yet in semi-stable form.

We conclude that the U(1)s with a weak coupling limit fall into the classification
of Claim 2. They arise from the perturbative gauge sector of the emergent heterotic
string [39] associated with an M5-brane along the K3-fiber, including possible Kaluza-Klein
or winding U(1)s as well as (a subgroup of) the ten-dimensional heterotic gauge group. This
interpretation and the origin of the associated (non-)BPS towers in the five-dimensional
effective theory will be elaborated on in section 5.2.

4.3 Weak coupling in type T 4 limits

The last type of infinite distance limit is a limit of Type T 4, in which the shrinking fiber is an
Abelian surface. The infinite distance limits of Type T 4 in M-theory are equi-dimensional
in the sense of [39]. The pattern of asymptotically weakly gauge groups generally parallels
the Type K3 limits studied in section 4.2. We can therefore be brief and focus on where
the discussions differ.

Let us consider a Calabi-Yau X3 that admits an Abelian surface fibration over a base
P1, with general fiber S. The pullback ofH1,1(X3) to the generic fiber induces a polarization
lattice (cf. [55]). In order to study the possible degenerations of the fibration, note that
there exist no (−2)-curves on the generic fiber S (which has c2(S) = 0) that could shrink
to zero size at finite distance in the fiber moduli space and would thereby lead to a local
degeneration of S.

If the fiber degenerates over a special point p ∈ P1 at infinite distance in the fiber
moduli space, it becomes reducible as S0 = ⋃n

i=1 Si. The surface components Si lead
to divisors of X3 localized in the degenerate fiber, such that we can apply the logic of
section 4.2 and infer that the additional U(1)s associated to degenerations of the Abelian
surface fiber do not become asymptotically weakly coupled in a limit of Type T 4. As a
result, for an Abelian surface fibration the potential asymptotically weakly coupled U(1)s
are in one-to-one correspondence with the polarization lattice induced by the pullback of
H1,1(X3) to the generic fiber.

This, of course, matches expectations based on the interpretation of the Limit of
Type T 4 given in [39]: the M5-brane wrapping the generic fiber gives rise to a Type IIB
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string defining a dual frame. Unlike the heterotic string, this string does not support a
perturbative gauge group in ten dimensions. The potentially weakly coupled gauge group
factors therefore always play the role of Kaluza-Klein or winding U(1)s, which, in Type II
string theory, cannot enhance to a non-abelian gauge group. This explains why there cannot
occur any (−2)-curves on the generic fiber, whose shrinking at finite distance in the surface
moduli space would signal such a non-abelian enhancement. On the other hand, (−2)-
curves can of course localize in the multiple component fibers, as is common for instance in
suitable Schoen manifolds [56] with Kodaira type fibers. The corresponding directions in
the charge lattice, however, are not associated with asymptotically weakly coupled U(1)s.

5 (Non-)BPS tower and weak gravity conjecture

In section 4, we have analyzed which abelian gauge groups become weakly coupled in each of
the possible weak coupling limits of Type 1, 2.a and 2.b and shown that these are classified
as in Claim 2. We are therefore ready to return to our original goal of proving Claim 1.
With this in mind, we now analyze the (non-)BPS towers that exist with charges under the
gauge groups admitting a weak coupling limit, considering each type of limit separately.

5.1 (Non-)BPS towers in type T 2 limits

For each limit of Type T 2, there exists only a single asymptotically weakly coupled U(1)E ,
defined in (4.9). This U(1)E clearly satisfies the asymptotic tower WGC conjecture because
the ray in the charge lattice along nQE is populated by a tower of BPS particles. These are
the BPS states obtained by wrapping nM2-branes along the generic fiber, which furnish the
KK tower for the effective five-dimensional to six-dimensional limit. The BPS invariants,
more precisely the genus-zero Gopakumar-Vafa invariants, for the curve nE are well known
to coincide with the Euler characteristic16 of X3, i.e., [57, 58]

N0
nE = −χ(X3) . (5.1)

Unless X3 also admits a K3/T 4 fibration, all other curve classes are necessarily charged
under linear combinations of U(1)s without a weak coupling limit. For example, this is
true for any curve class charged only under the combinations U(1)(i)

− defined in (4.17).
These curve classes are contractible and as such they do not lie inside the movable cone
of X3 (because they are localized in special fibers over the discriminant of the fibration).
According to the criteria of [20], these charge rays do not necessarily give rise to BPS
towers, in agreement with explicit computations of their BPS indices. Since one cannot
take a weak coupling for the U(1)(i)

i the absence of an obvious candidate tower — BPS or
non-BPS — is not in contradiction with the asymptotic WGC. We will come back to this
point at the end of section 7.

This does not mean that BPS towers are excluded along rays whose generating curves
are charged only under U(1)s without a weak coupling limit. For instance, for an elliptic

16When χ(X3) = 0, this indicates a cancellation of BPS states in the index computed by the BPS
invariants due to an underlying supersymmetry enhancement.
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fibration over B2 = P2 the ray along the generator of the curve lattice of the zero-section
does admit a tower of BPS states even though it is charged under a U(1) without a weak
coupling limit (in particular, X3 cannot undergo a limit of Type K3 or T 4 in this case).

5.2 (Non-)BPS towers in type K3 limits

We now investigate the existence of asymptotically light towers for Type K3 limits. We
have shown in section 4.2 that the only abelian gauge groups which become asymptotically
weakly coupled in limits of Type K3 are those associated with curves in the generic K3-
fiber or curves in irreducible degenerate fibers. Such curves form a sublattice Λ∗0+I of rank
(1, k0+I) of Γ3,19, which we will henceforth abbreviate as

Λ∗ := Λ∗0+I . (5.2)

This lattice is the dual of the polarization lattice Λ of the K3-fibration ρ : X3 → P1 and
will also be referred to as the charge lattice.

In the sequel, we will denote by Λ∗± the (anti-)self-dual part of Λ∗ inside the orthogonal
decomposition

Λ∗R = Λ∗+ ⊕ Λ∗− , (5.3)

where Λ∗+ maps into R1,0 and Λ∗− into R0,rkΛ∗−1 under the isometry from Λ∗R to R1,rkΛ∗−1.
Here our convention is such that an element Q+ ∈ Λ∗+ satisfies Q2

+ > 0, while Q2
− < 0 for

Q− ∈ Λ∗−.
Let us consider first the sublattice associated with curves Σ with Σ ·K3 Σ ≥ 0 in

Λ∗. These define rays in the charge lattice admitting towers of BPS states: M2-branes
wrapped n times along such curves give rise to BPS particles with associated genus-zero
Gopakumar-Vafa (or BPS) invariants

N0
nΣ 6= 0 for n ∈ N if Σ ·K3 Σ ≥ 0 . (5.4)

The non-vanishing of N0
nΣ is a consequence of Noether-Lefschetz theory [59] and also

fits perfectly with the results of [20]: such curves lie in the movable cone of X3 because
they are movable within the K3-fiber. In light of the duality between M-theory on the
K3-fibration X3 and the heterotic string in five dimensions, the BPS states counted by the
invariants (5.4) represent certain modes of the dual heterotic string. The non-vanishing
of their multiplicities reflects the fact that the BPS invariants N0

nΣ are the expansion
coefficients of modular forms [59, 60]. This property was already used in [39] to argue for
the appearance of the asymptotically light associated BPS towers in infinite distance limits
of Type K3.

By contrast, all curves with Σ ·K3 Σ < 0 define rays in the charge lattice which do not
support a BPS tower. Again, this is in agreement with the results of [20] because such
curves are rigid within the K3-fiber and consequently lie outside the movable cone of X3.
At the same time, the associated directions in the charge lattice are charged only under
abelian gauge groups with a weak coupling limit, and hence the asymptotic tower WGC
calls for a super-extremal tower of states in these directions.
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As we will argue in this section, the missing BPS tower is replaced by a tower of
non-BPS states which satisfy the asymptotic tower RFC, (3.3). The non-BPS states are
excitations of the emergent heterotic string, which becomes light in the weak coupling
limit, as stressed already in [39]. The existence of this asymptotically self-repulsive non-
BPS tower proves our Claim 1.

The arguments leading to the super-extremal strings differ depending on whether Q
receives a contribution from Λ∗+. In section 5.2.1, we first specialize to an anti-self-dual
charge vector Q ∈ Λ∗−. For such charges, the missing non-BPS states can be directly
identified as excitations of the five-dimensional heterotic string obtained by wrapping an
M5-brane on the K3-fiber in M-theory. We will first introduce the tools that allow us to
count a certain subset of the non-BPS excitations of this five-dimensional heterotic string.
To this end, we will invoke the duality between M-theory on X3×S1

M and Type IIA string
theory on X3. We will identify the coefficients of the elliptic genus of the five-dimensional
heterotic string at left-moving excitation level n and with charge vector Q ∈ Λ∗− with
certain D4-D2-D0 Donaldson-Thomas (DT) invariants in Type IIA string theory on X3.
The existence of these states then follows from the correspondence with Noether-Lefschetz
numbers [43–45, 59]. This reasoning is similar in spirit to the way the existence of a
tower of excitations of a six-dimensional heterotic string was deduced in [24, 25], but the
discussion in five dimensions differs at the technical level. As our main conclusion, there
exists a distinguished set of non-BPS states at left-moving excitation level nL and with
(anti-self-dual) charge vector Q ∈ Λ∗− obeying the relation

nL = −1
2Qiη

ijQj =: −1
2Q

2 , (5.5)

where ηij is the inverse of the intersection (4.29) form on the K3-fiber.
However, there can be charge vectors Q2 < 0 that do not belong only to Λ∗−. As we

argue in section 5.2.2 for these charges there also exist string excitations at left-moving
excitation level nL satisfying (5.5). To show this, we will make use of the duality of M-
theory on X3 and a five-dimensional heterotic string, which in the simplest cases is the
heterotic string compactified on K3het × S1

het.
Finally, in section 5.2.3, we will show that the towers of states with the property

nL = −1
2Q

2 indeed satisfy the asymptotic RFC, (3.3), in the weak coupling limit, and
hence provide the states missing at the BPS level.

5.2.1 Elliptic genera of strings in five dimensions and super-extremal states
with Q+ = 0

In this section, we will identify non-BPS particle states with Q ∈ Λ∗− obeying the rela-
tion (5.5) in the five-dimensional effective theory of M-theory compactified on X3. These
states are excitations of the BPS string obtained by wrapping an M5-brane on the di-
visor S ⊂ X3 given by the generic K3-fiber. This heterotic string is a special example
of a Maldacena-Strominger-Witten (MSW) string [61] and has an associated N = (0, 4)
worldsheet theory description.
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M-theory on X3 × S1
M is dual to Type IIA string theory on X3. Wrapping the five-

dimensional heterotic MSW string r times on S1
M gives rise to a set of BPS states in four

dimensions. More precisely, the states with KK number n along S1
M and of charge Q ∈ Λ∗

give BPS bound states of D4-D2-D0 charge vector γ = (r,Q, n). The BPS counting of such
states is, in turn, captured by the modified elliptic genus [42]

Z
(r)
S (τ, τ̄ , z,B) = TrRRF

2
R(−1)FRqL0−

cL
24 q̄L̄0−

cR
24 e2πiziQi , (5.6)

where the trace is taken over the Ramond-Ramond (RR) Hilbert space of the heterotic
MSW string with wrapping number r on S1

M . Here FR is the fermion number in the right-
moving sector, cL and cR are the central charges of the MSW string worldsheet theory,
q = e2πiτ with τ being the modular parameter associated with the torus worldsheet, zi are
the fugacity parameters associated with the left-moving currents U(1)i in the worldsheet
superconformal algebra, and Qi ∈ Z. The left-moving U(1) currents are of course associated
precisely with the asymptotically weakly coupled U(1)i gauge group factors. Moreover, B
is a background B-field that takes values in ΛR and which will play no role for us.

Let us now discuss the modular properties of the elliptic genus (5.6). As argued
in [42] and references therein,17 (5.6) behaves as a non-holomorphic Jacobi form of weight
(−3/2, 1/2) in (τ, τ̄), and in our five-dimensional heterotic MSW string setting, it enjoys
an expansion of the form [42, 43]

Z
(r)
S (τ, τ̄ , z,B) =

∑
µ∈Λ∗/rΛ

Zµ(τ)Θ∗µ,r(τ, τ̄ , z,B) . (5.7)

Here Θ∗µ,r(τ, τ̄ , z,B) is the complex conjugate of the Siegel theta series associated to the
coset µ+

√
rΛ ⊂ Λ∗/

√
r with µ ∈ Λ∗/rΛ, and Zµ(τ) is a vector-valued-modular form that

is the generating series for the degeneracy of BPS states Ω(γ) with charge γ = (r,Q, n),

Zµ(τ) =
∞∑
n=0

Ω(γ)qn+Q2/2r−1 . (5.8)

Note that the BPS indices Ω(γ) are conjecturally related to the Donaldson-Thomas invari-
ants associated with the charges γ.

The Siegel theta functions can be expressed as [43, 70]

Θ∗µ,r(τ, τ̄ , z,B) =
∑

λ∈µ+
√
rΛ
e−πiτ(λ+B)2

−−πiτ̄(λ+B)2
++2πi(λ+B2 )·z , (5.9)

where we introduce the notation λ± to denote the projection of a vector λ ∈ ΛR into the
sublattice Λ± inside the orthogonal decomposition (5.3).

17These results have been derived for lattice polarized K3 fibrations whose degenerations are all irre-
ducible. Based on experience with the six-dimensional elliptic genus [62–69], it is expected that the modular
properties change relatively mildly if one allows for reducible special fibers. In particular our main conclu-
sion, the existence of states satisfying (5.5), must still hold (as happens in the six-dimensional context [23,
24]) in presence of such special fibers, which only affect the strongly coupled sector in the limit, as explained
in section 4.2. With this understanding, we will continue to work in the framework of [42] in the sequel. We
will comment more on fibrations with fibers degenerating into several components at the end of this section.
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Let us now specialize to an anti-self-dual charge vector Q ∈ Λ∗− and wrapping number
r = 1. From (5.7), (5.8) and (5.9), we infer the existence of a state at KK number n = −1

2Q
2

provided the associated BPS numbers Ω(γ) are non-vanishing. The multiplicities of these
states appear as the expansion coefficients of the term qn−1e2πziQi = qn−

cL
24 e2πziQi for

n = −1
2Q

2 in the expansion of the elliptic genus (5.7).18

Furthermore, by level matching, we can identify, for such anti-self-dual charges, the
KK number n with the left-moving excitation level nL. Similar to the six/five-dimensional
context of [23, 24], this establishes not only the existence of a BPS state in the four-
dimensional theory, but also of a string excitation at left-moving excitation nL = n =
−1

2Q
2, Q ∈ Λ∗− (and suitable right-moving oscillator number such as to level match left-

and right-movers). Such states are non-BPS in five dimensions.
It therefore remains to argue for the non-vanishing of the BPS index,

Ω(γ) 6= 0 for γ = (1,Q, n) at n = −Q
2

2 , Q ∈ Λ∗− . (5.10)

For the MSW string associated with the K3-fiber of ρ : X3 → P1, [43] has argued that
the BPS indices of D4-D2-D0 bound states are determined by the Fourier coefficients
of the same vector-valued-modular form that yields all Noether-Lefschetz numbers and
Gopakumar-Vafa invariants for ρ-vertical curve classes in X3 [59, 71]. More precisely, the
authors [43] proved for the r = 1 heterotic MSW strings the expression19

Zµ(τ) = η−24(τ)Φµ(τ) (5.11)

for the generating function (5.8), where η(τ) is the Dedekind-eta function and Φµ is a
vector-valued-modular form component whose expansion coefficients are related to certain
Noether-Lefschetz numbers. Therefore we can deduce (5.10) by analyzing the coefficients
of Φµ(τ). In the following, we will consider the basics of Noether-Lefschetz theory that
will us to do this.20

Given the moduli space of Λ-polarized K3 surfaces MΛ, the authors of [59] defined
the Noether-Lefschetz numbers as the classical intersection numbers of Noether-Lefschetz
divisors with the embedding of the K3-fibration base curve into MΛ. These geometrical
invariants NL(h,Q) ∈ Z are labeled by the entries (h,Q) that are defined in the lattice
Z×Λ∗. Intriguingly, there is a link between modularity and Noether-Lefschetz theory that
is described by a vector-valued-modular form

Φ(q) =
∑
µ

Φµ(q)eµ ∈ C
[[
q

1
2∆(Λ)

]]
⊗ C[Λ∗/Λ] , (5.12)

where {eµ} is a basis of the vector space C[Λ∗/Λ]. Moreover, Φ has weight 11−rk(Λ)/2 and
transforms under the dual representation of the Weil representation ρ∗Λ of the metaplectic

18The contribution qne2πziQi comes from (5.9) for λ− = Q, λ+ = 0, B = 0, and the term q−1 comes
from (5.8) provided Ω(γ) 6= 0 for n = − 1

2Q
2.

19For r > 1, there are generalized expressions for Zµ in terms of Φµ [43], but these are not relevant to us.
20For a brief review of Noether-Lefschetz theory, we refer the reader to section 1 in [71].
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group Mp(2,Z), which is the double cover of SL(2,Z). The Φµ(τ) are the objects appear-
ing in (5.11). Their expansion coefficients are related to the Noether-Lefschetz numbers
NL(h,Q) via

NL(h,Q) = Coeff
(
Φµ, q∆NL

)
, (5.13)

where ∆NL = ∆(h,Q)/2|∆(Λ)| and ∆(h,Q) is the discriminant defined via the following
matrix

∆(h,Q) = (−1)rkΛ det
(
ηij Qi
Qj 2h− 2

)
. (5.14)

Thus, the corresponding expression for the power coefficient in (5.13) reads

∆NL = 1
2η

ijQiQj + 1− h . (5.15)

Here the relevant point is that two lattice invariants of Z × Λ∗ determine the Noether-
Lefschetz numbers, which are the discriminant ∆(h,Q) and the coset µ in the abelian
group (Λ∗/Λ)/±. Furthermore, we have the Noether-Lefschetz constraints [59, 71]:

• If ∆(h,Q) < 0, then NL(h,Q) = 0.

• If ∆(h,Q) = 0, then NL(h,Q) = −2.

• If ∆(h,Q) > 0, then NL(h,Q) ∈ Z.

Let us come back to the BPS index Ω(γ) counting for γ = (1,Q, n) and the rela-
tion (5.11). We need to show that Φµ(τ) has a non-vanishing coefficient at order q0,
because combined with the expansion η−24(τ) = q−1 +24+O(q) this gives a non-vanishing
coefficient for Zµ(τ) at order q−1 (see Footnote 18). Now, the constant contribution at
order q0 in Φ is associated to the vanishing of the discriminant ∆(h,Q) = 0, which sim-
ply relates 2h − 2 = Q2 and so Q2 ∈ 2Z. Therefore, Q is a representative of the trivial
coset 0 ∈ Λ∗/Λ, which is always present in Λ∗/Λ. Indeed, we are interested in states with
−2n = Q2, which are clearly of this form. Furthermore the coefficient at q0 is non-vanishing
because it is given by NL(h,Q) = −2.

Expanding the component of (5.11) associated with the latter class, we find that

Z0(τ) = η−24(τ)Φ0(τ) =
[
q−1 + 24 +O(q)

]
[−2 +O(q)] = −2q−1 +O(q0) . (5.16)

Hence, the BPS index Ω(γ) for the set of charges γ with n = −Q2

2 is always non-trivial.
As an illustrative example, consider the well-known STU model in which the generic

K3-fiber admits a compatible elliptic fibration over a base P1
f . The polarization lattice Λ is

a copy of the hyperbolic lattice U and is self-dual, Λ = Λ∗. This model has been discussed
from the perspective of the Emergent String Conjecture and the appearance of towers of
asymptotically light states in [39], to which we refer for more details. The dual heterotic
string is compactified on K3het×S1

het with a gauge bundle that breaks E8×E8 completely.
The polarization lattice can be identified with the lattice of curves lCU + kCT , where

CU = S + T 2 , CT = T 2 (5.17)
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with T 2 denoting the generic elliptic fiber of the K3 and S the curve associated with the
holomorphic section of the elliptic K3. These curves indeed generate the hyperbolic lattice
U because they satisfy

CU ·K3 CU = 0 = CT ·K3 CT , CU ·K3 CT = 1 . (5.18)

States with charge vector Q = (l, k) in this lattice correspond to states with KK
momentum number nKK = k and winding number w given by w = l along S1

het.
Of particular interest are the rays generated by charge vectors of negative self-

intersection, along which no BPS towers exist. Since in this section we are focusing on
directions along the anti-self-dual part of the lattice, let us therefore consider the direction
k = −l, corresponding to the charge vector Q = l(1,−1). Such states indeed lie along Λ∗−
and hence fall into the class of states analyzed in this section. BPS states of this type exist
only for l = 1 and correspond to M2-branes wrapped once on the curve P1

f in M-theory.
For these states, the Gopakumar-Vafa index is N0

P1
f

= −2 (which agrees with the Euler
characteristic of the base of the K3-fibration, i.e., of the moduli space of P1

f inside X3),
while N0

lP1
f

= 0 for l > 1. The latter assertions can be verified through Noether-Lefschetz
Theory as follows. Since Λ∗/Λ ' {0}, we only require to fix a single modular form of weight
10 in (5.12). Using that the Noether-Lefschetz number NL(h,l,k) = −2 for ∆(h,l,k) = 0, we
obtain [72]

Φ0 = −2E4E6 , (5.19)

where Ek is the k-th Eisenstein series. The Gromov-Witten/Noether-Lefschetz correspon-
dence theorem states that

N0
lCU+kCT =

∑
h≥0

r0
hNL(h,l,k) , (5.20)

where r0
h are the coefficients of η24(τ) at level h − 1 [71]. Indeed, this gives N0

lP1
f

= 0 for
l > 1 because NL(h,l,k) = 0 for ∆(h,l,k) < 0.

On the other hand, the heterotic string does admit a whole tower of (massive) non-BPS
excitations for arbitrary k = −l. If we focus on states with vanishing excitation number in
the right-moving sector, the level matching condition for the string with KK number nKK

and winding number w along S1
het gives

nL = −nKK w − δI = −kl − δI , (5.21)

where nL is the left-moving excitation level and δI represents the (in general unknown)
contribution from the dimensions compactified along K3het together with the sector charged
under the E8 × E8 lattice. States with k = −l and carrying no E8 × E8 charge therefore
satisfy the level-matching condition if their excitation level is nL = l2 = −1

2Q
2 provided

δI = 0. These states are therefore special examples of states of the form (5.5).
So far, we have considered the elliptic genera of heterotic MSW strings arising from

K3 fibrations with degenerations of Type I in the Kulikov classification. To our knowledge,
there is no well-established version of Noether-Lefschetz theory for the cases when the
K3 fiber in ρ : X3 → P1 splits into several components over the degeneration points. In
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fact, the elliptic genus Z(r)
S of a general MSW string wrapping a reducible divisor S ⊂ X3

behaves as a mock modular form [73]. For instance, in the case r = 1 the holomorphic
vector-valued modular form Zµ(τ) is replaced by

Ẑµ(τ, τ̄) = Zµ(τ)− 1
2Rµ(τ, τ̄) , (5.22)

where Rµ(τ, τ̄) is a non-holomorphic function of τ and τ̄ that can be constructed in terms of
the elliptic genera associated to the irreducible components of S.21 The upshot is that Zµ is
not modular, while Ẑµ transforms as a vector-valued modular form, at the expense of non-
holomorphicity introduced by a suitable Rµ. Moreover, for r > 1, the Siegel theta functions
are replaced by mock Siegel theta functions, which we will not discuss here further.

To illustrate the mock modularity induced by splitting K3 fibers, we will discuss in
section 6 the special case when X3 also admits an elliptic fibration. There we can extract
the holomorphic piece from (5.22) via the genus zero free energy counting BPS states of
curves rβ + nE , where β is a base curve in X3 and E the elliptic fiber of X3. Upon T 2-
duality, such BPS states map into bound states of D4-branes wrapping r-times the elliptic
surface over β with D0-brane charge n [63, 74].

5.2.2 Super-extremal states with Q+ 6= 0

Up to this point, we have focused on charge vectors Q ∈ Λ∗−.22 However, Q can also receive
contributions from both Λ∗+ and Λ∗−. As long as Q2 > 0 the existence of a tower of BPS
states along the ray defined by Q is ensured by non-vanishing BPS invariants for the curve
Σ satisfying Σ ·K3 Σ > 0. The interesting case is, thus, again Q2 < 0. When Q has a contri-
bution in Λ∗+, we cannot simply apply the argument of the previous section to argue for a
state with left-moving excitation level nL = −1

2Q
2. To see this, we note that n appearing,

e.g., in (5.10) can only be identified as nL if Q+ = 0 but in general has to be identified with

n = nL − nR , (5.23)

since by (5.7) 1
2Q

2
+ corresponds to the right-moving excitation level nR. Thus, even

though Noether-Lefschetz theory still ensures the existence of a state with n = −1
2Q

2,
this does not guarantee the existence of a state with nL = −1

2Q
2 if Q+ 6= 0. The proof of

the self-repulsiveness condition in the section 5.2.3, however, requires nL = −1
2Q

2 rather
than merely nL − nR = −1

2Q
2.

Nonetheless we can argue for the existence of a state with nL = −1
2Q

2 in the excitation
spectrum of the heterotic string as follows. In the previous section, we invoked the duality
between M-theory on X3 × S1

M and Type IIA string theory on X3 to deduce the existence
of suitable excitations of the heterotic string in 5d from the existence of BPS states in 4d.
Instead, consider now the duality between M-theory on the K3-fibered Calabi-Yau 3-fold
X3 and the heterotic string compactified on K3het×S1

het. This way we can identify wrapped
M2-brane states in 5d with 6d heterotic string states with winding number along the circle
S1

het. This works most easily if the K3-fibration admits a compatible elliptic fibration.
21For an explicit description of Rµ(τ, τ̄), see reference [73].
22Recall that Q ∈ Λ∗+ is covered by the existence of BPS towers in the K3 fiber.
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Let us for now assume that this is the case; accordingly, the generic K3-fiber allows for a
fibration with generic fiber T 2 and holomorphic section S over the base P1

f . K3-fibrations
with only a genus-one fibration with N -section or without a compatible torus fibration at
all will be discussed at the end of this section.

There are now two types of charge vectors with Q+ 6= 0 to consider. For the first type
of states, Q+ receives a contribution from a non-zero winding number w of a heterotic
string on S1

het. More precisely, a heterotic string state in the ground state sector with
winding number w 6= 0, KK number nKK and charge Q6d under the six-dimensional gauge
group maps to a state obtained from an M2-brane wrapped along the curve

Q = wCU + nKKCT +Q6d = (w + nKK)
2 C+ + (w − nKK)

2 C− +Q6d . (5.24)

Here CU = S + T 2 and CT = T 2 defined as in (5.17) generate a copy of the hyperbolic
lattice U and we have rewritten Q also in terms of the (anti-)self-dual combinations

C± = (CU ± T 2) ∈ Λ∗± , (5.25)

with C± ·K3 C± = ±2 and C+ ·K3 C− = 0. From (5.18) it follows that Q2 = 2nKK w +Q2
6d.

For charges with Q2 < 0 the existence of a BPS state along the curve Q is a priori not
guaranteed. In particular, there may not exist a tower of BPS states along the ray with
chargeQ. The remedy is to consider instead a state with the given KK and winding number
at a suitable excitation level nL 6= 0. More precisely, under the duality of M-theory on X3
and the heterotic string on K3het × S1

het, a heterotic string state with winding number w,
KK number nKK and charge Q6d at left-moving excitation level nL maps to an M2-brane
state associated with the curve

Σ = Q+ nL

w
CT = wCU +

(
nKK + nL

w

)
CT +Q6d , (5.26)

whenever nL
w is integral and for w 6= 0. The smallest value of nL for which such a state is

guaranteed to exist is obtained for Σ2 = 0, i.e.

nL = −nKK w −
1
2Q

2
6d = −1

2Q
2 . (5.27)

This uses that curves with Σ2 = 0 inside the K3 fiber have non-vanishing BPS invari-
ants, which in turn follows from the Noether-Lefschetz argument presented in the previous
section.23 Note that (5.27) is consistent with the level matching-condition (5.21) for the
heterotic string on K3het × S1

het. However, the ansatz (5.26) requires nL being divisible by
w. If this is not the case for the solution (5.27), we can suitably rescale the charge as
Q̃ = wQ and consider Σ = Q̃+ nL

w2CT such that Σ2 = 0. This gives

nL = −1
2Q̃

2 , (5.28)

23The Gromov-Witten/Noether-Lefschetz correspondence theorem states that all curve classes with
same intersection form and discriminant class in Λ∗ have the same associated Gopakumar-Vafa invariant
value [71]. This implies that N0

Σ = N0
CT

= −χ(X3), since C2
T = 0, where χ(X3) is generically non-vanishing.

In fact, the refined pairs/Noether-Lefschetz correspondence proposed in [75] predicts the appearance of non-
trivial BPS states of the form (−χ(X3) + 8)[0, 0] + [1/2, 0] + [0, 1/2], where [jL, jR] are representations of
SU(2)L × SU(2)R, which is the little group of the Lorentz group in five dimensions.
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which is divisible by w. For the purpose of showing the existence of a super-extremal tower
along the ray Q, this rescaling from Q to Q̃ = wQ is inessential. As we will see in the
next section, such states are marginally super-extremal.

The second type of states have Q+ 6= 0, but w = 0, i.e., the charge with respect to C+
and C− are equal and opposite. For vanishing winding number, we must consider instead
excitations of the six-dimensional heterotic string with KK number nKK. As is clear from
the level-matching condition (5.27), for such states the left-moving excitation number is
unaffected by nKK. We can therefore simply ask for which (minimal) excitation level, a
state with charge Q6d and vanishing charge along C+ and C− exists. The answer is the
same as for the string directly defined in five dimensions that was deduced in the previous
so that once more a state with the characteristic property (5.28) is guaranteed to exist.

If the K3-fibration only admits a compatible genus-one, rather than an elliptic, fibra-
tion, the class S in the definition of CU entering (5.24) is a N -section so that CU ·K3CT = N

and C2
U 6= 0 in general. The heterotic dual involves a circle compactification with Wilson

line for the KK U(1), but this does not affect the conclusions of the discussion in the elliptic
case.

It remains to address K3-fibrations whose generic K3-fiber is not itself elliptically or
genus-one fibered. Our analysis carries over whenever the geometry is related through a
suitable transition to a K3-fibration admitting a compatible genus-one fibration. From
the heterotic perspective, such a transition means that we start with a 6d heterotic string
compactified on an additional S1

het. We then go to a special point in the Kähler (i.e.,
vector multiplet) moduli space that leads to a non-perturbative enhancement involving
a combination of the KK and winding U(1); the transition corresponds to turning on a
non-trivial rank-changing gauge background which only leaves one combination of the KK
and winding U(1)s intact [76]. For example, in the model with elliptic fibration of the
type described around (5.24) such a special point is the self-dual radius of S1

het and we
break the enhanced SU(2) gauge group through a choice of non-abelian gauge bundle. In
the notation introduced in (5.24), this corresponds, in the M-theory picture, to shrinking
the curve C− followed by a complex structure transition that higgses the enhanced SU(2)
gauge group. The unbroken U(1) in this case is associated to C+. Any state not charged
under U(1)− is unaffected by the transition. These are the states with nKK = w in the
parent theory. The existence of such states with nL = −1

2Q
2 even after the transition

is therefore a consequence of the analysis around (5.27) applied to states with nKK = w.
This reasoning generalizes whenever a parent theory is available and allows us to deduce
states of the form nL = −1

2Q
2 and with Q+ 6= 0 even in absence of a compatible genus-one

fibration. In view of heterotic/M-theory duality, we find it plausible that such a parent
theory indeed always exists, but we leave this as a question for further investigations.

5.2.3 Tower WGC for K3 limits

We now show that the tower of non-BPS states satisfying the relation (5.5) realize the
asymptotic Repulsive Force Conjecture.

Consider the excitations of the heterotic string at left-moving excitation level nL car-
rying charges Qi within the charge lattice Λ∗. In the weak coupling limit of the heterotic
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string, the mass is given by

M2
nL,Q = 8π(nL − a)Ts + ∆CB = 16π2(4π)−2/3

(
(nL − a)V̂S + 1

4QiQj v̂
iv̂j
)
M2

Pl (5.29)

with a = 1 the zero-point energy of the critical heterotic string. This mass formula has
two contributions: the first contribution manifestly depends on the excitation level along
the worldsheet and is proportional to the tension of the heterotic string,

Ts = 2πVSM
2
11d = 2π(4π)−2/3V̂SM

2
Pl . (5.30)

Here V̂S denotes the volume, rescaled as in (2.13), of the generic K3-fiber S. The second
contribution, ∆CB, represents a moduli dependent shift which can be interpreted as a uni-
versal, i.e., nL independent, mass contribution along the five-dimensional Coulomb branch.
As such, it must be visible already at the level of the supergravity modes, which correspond
to the modes at the massless level nL = a.

To gain some intuition for the precise form of ∆CB, let us specialize for the moment to
a situation in which X3 admits a torus fibration compatible with the K3-fibration ρ. In this
case, the five-dimensional effective theory can be thought of as the circle compactification
of a six-dimensional theory given by F-theory on the base B2 of the torus fibration. The
existence of the K3-fibration implies that B2 must be rationally fibered, and a D3-brane
along the rational fiber defines the uplift of the five-dimensional heterotic string to six
dimensions. Its excitations at level nL = a give rise to the massless supergravity spectrum
in six dimensions. After circle compactification, these have a dual description in terms of
M2-branes wrapping fibral curves whose volumes can be interpreted as Coulomb branch
parameters of the gauge theories. The mass of an M2-brane on such a curve Ci is given by

MM2 = 2πQiviM11d , (5.31)

such that
M2

M2

M2
Pl

= 4π2(4π)−2/3QiQj v̂
iv̂j . (5.32)

We can identify this with the expression of the mass of the five-dimensional string excita-
tions at level nL = a,

M2
a,Q

M2
Pl

= 4π2(4π)−2/3QiQj v̂
iv̂j . (5.33)

Extrapolating to the full excitation tower explains the precise value for the Coulomb branch
shift in the final mass formula (5.29), which is valid for general K3-fibrations.

Let us now analyze in more detail the special subset of states for which

− 1
2Qiη

ijQj = nL (5.34)

introduced in (5.5). The states with this property have the highest charge-to-mass ratio
per excitation level and are therefore candidates to satisfy the asymptotic WGC or RFC.
To verify that these states indeed satisfy the RFC, we evaluate both sides of (3.4), taking
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nL � a so that we can neglect the shift due to the vacuum energy. We can start by defining
$ = 16π2(4π)−2/3 and rewriting (5.29) as

M2
nL,Q

M2
Pl

= $nL

(
V̂K3 + 1

4nL
QiQj v̂

iv̂j
)
. (5.35)

To evaluate the right-hand side (r.h.s.) of (3.4), we first compute the inverse of the
gauge kinetic matrix, fαβ , in the weak coupling limit (4.27). According to (2.14), we need
the inverse of Vαβ evaluated in (4.30). In the limit, it takes the form

Vαβ ' 1
v0ηklvkvl

(
−(v0)2 viv0

vjv0 (ηklvkvl)ηij−vivj

)
= 1

2
1
V1/3

(
−(v̂0)2 v̂iv̂0

v̂j v̂0 2 V̂
v̂0 η

ij− v̂iv̂j

)
, (5.36)

where ηij is the inverse of ηij defined in (4.29). In the weak coupling limit, V ' v0VK3 =
1
2v

0ηklv
kvl so that we can write the gauge couplings matrix as

fαβ = V1/3
(

1
2
vαvβ

V
− Vαβ

)
' 1
V2/3

(
(v0)2 0

0 vivj − V
v0 η

ij

)
=
((
v̂0)2 0
0 v̂iv̂j − ηij

v̂0

)
, (5.37)

using the rescaled coordinates in (2.12).
With these expressions at hand, and using the mass formula (5.35), the r.h.s. of (3.4)

evaluates to

r.h.s. = 2
3 + 4

3 −
$nL

v̂0
M2

Pl

M2
nL,Q

− $2n2
L

v̂0
M4

Pl

M4
nL,Q

1
4nL

QiQj v̂
iv̂j
(

1 + 1
2nL

(
Qkη

klQl
))

. (5.38)

We can rewrite the second contribution to the r.h.s. of (5.38) using V̂ ' v̂0V̂K3 so that

$nL

v̂0
M2

Pl

M2
nL,Q

' V̂K3

V̂K3 + 1
4nL

QiQj v̂iv̂j
= 1−

1
4nL

QiQj v̂
iv̂j

V̂K3 + 1
4nL

QiQj v̂iv̂j
. (5.39)

Eventually, this gives

r.h.s. ' 1 +
1

4nL
QiQj v̂

iv̂j

V̂K3 + 1
4nL

QiQj v̂iv̂j
− $2n2

L

v̂0
M4

Pl

M4
nL,Q

1
4nL

QiQj v̂
iv̂j
(

1 + 1
2nL

(
Qkη

klQl
))

.

(5.40)
Here and in the sequel, we use the symbol ' to indicate that we have used the relation
V ' v0VK3 = 1

2v
0ηklv

kvl, which holds asymptotically in the weak coupling limit.
We are interested in the RFC for the candidate states whose charges Qi satisfy the

relation (5.34). For such states, the terms in brackets cancel and

r.h.s.|(5.34) ' 1 +
1

4nL
QiQj v̂

iv̂j

V̂K3 + 1
4nL

QiQj v̂iv̂j
. (5.41)

Let us now compute the left-hand side (l.h.s.) of (3.4), again for the states (5.34):

l.h.s.|(5.34) ' 1 +
1

4nL
QiQj v̂

iv̂j

V̂K3 + 1
4nL

QiQj v̂iv̂j
. (5.42)
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It is then clear that the l.h.s. and the r.h.s. of (3.4) match as expected, in the asymptotic
weak coupling limit and for nL � a. Reinstating the vacuum shift a, a lengthy but
straightforward computation shows that the l.h.s. is bounded below by the r.h.s. More
concretely, one finds

r.h.s.|(5.34) ' l.h.s.|(5.34) −
V̂2

K3(
1

4nL
QiQj v̂iv̂j + V̂K3

)2
a

nL
+O

((
a

nL

)2
)
, (5.43)

hence proving that the string excitations with property (5.34) indeed satisfy the asymptotic
tower RFC.

Taking into account also the BPS towers along all rays in the charge lattice Λ∗ with
Q2 ≥ 0, the preceding analysis establishes the existence of asymptotically self-repulsive
towers along all directions in the charge lattice Λ∗ associated with asymptotically weakly
coupled gauge group factors. We recall that this lattice is of rank (1, k0+I) for k0+I ≤ 19 and
includes a sublattice of E8⊕E8, the heterotic gauge group present already in ten dimensions.
The additional generators are associated with suitable unbroken linear combinations of KK
and winding number U(1)s of the dual five-dimensional heterotic string theory, and the self-
repulsive towers identified above include states charged under these gauge groups.

5.3 (Non-)BPS towers in type T 4 limits

We now briefly turn to the asymptotic RFC for limits of Type T 4. We recall from section 4.3
that the gauge group factors with a weak coupling limit are encoded in the polarization
lattice Λ of the fibration. States charged under such U(1)s are hence associated with the
directions in the dual lattice Λ∗ of curve classes within the generic abelian surface fiber.

Consider first charge vectors in the self-dual part of the lattice, or those of vanishing
norm. The associated rays in the charge lattice support BPS towers from (multi-)wrapped
M2-branes, which automatically satisfy the asymptotic RFC. As for K3 fibrations, this
matches the conclusions of [20] because the associated curves are in the movable cone
of X3. Note that such BPS states exist even though, in many instances, the genus-zero
BPS numbers may vanish due to an underlying higher supersymmetry, as discussed in this
present context in [39]; in this case the vanishing of the genus-zero index merely reflects
the Bose-Fermi degeneracy resulting from the higher supersymmetry.

Of particular interest are therefore the remaining, anti-self-dual charge vectors. As
stressed in section 4.3, such directions do not support holomorphic curve classes in the
generic abelian surface fiber. The duality frame set by the M5-brane along the surface
fiber defines a five-dimensional Type II compactification on S1 × Z with Z an in general
non-geometric background [39]. The charges associated with the weakly coupled gauge
group factors can be interpreted as Kaluza-Klein or winding numbers of this dual Type II
compactification. By complete analogy with the discussion around (5.21), it is therefore
clear that string excitations at excitation level n = −1

2Q
2 exist. This distinguished set of

non-BPS states again furnishes a tower of asymptotically self-repulsive states.
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In the spirit of section 5.2.1, explicitly verifying the existence of this tower in the ge-
ometry requires computing a possibly refined version of the D4-D2-D0 Donaldson-Thomas
invariants.24 We leave this interesting direction as a task for the future.

6 Example

We illustrate the possible weak coupling limits and their associated super-extremal towers
by means of a Calabi-Yau 3-fold X3 which admits both a K3-fibration ρ : X3 → P1 and a
compatible elliptic fibration π : X3 → B2. The elliptic fibration is constructed as a generic
Weierstrass model over the base B2 = Bl(F2), the blowup of the Hirzebruch surface F2 in
one point. Since B2 is rationally fibered, X3 admits also a compatible K3-fibration.

The resulting Calabi-Yau X3 can be described torically via the following data:

C0 C1 C2 C3



D1 −2 −3 −1 −2 1 −1 0 1
D2 −2 −3 −1 1 0 1 0 −1
D3 −2 −3 0 −1 −2 1 0 0
D4 −2 −3 0 1 0 0 0 1
D5 −2 −3 1 0 1 0 0 0
D6 1 0 0 0 0 0 2 0
D7 0 1 0 0 0 0 3 0
D8 −2 −3 0 0 0 −1 1 −1

. (6.1)

Assigning projective coordinates [s : t : u : v : w : x : y : z] to the toric divisors {Di}i=1,...,8
in the same corresponding ordering, we obtain the Stanley-Reissner ideal

SR = {tu, uv, sw, tw, sv, xyz} . (6.2)

The Euler number of X3 is χ(X3) = −420. The Mori cone is simplicial and generated by
the curves Ci, i = 0, 1, 2, 3. The dual Kähler cone generators Ji are expressed in terms of
the toric divisors, for instance, as

J0 = D1 +D2 , J1 = D2 +D4 , J2 = 1
2D6 , J3 = D4 . (6.3)

In particular, D1 and D2 are among the generators of the cone of effective divisors. Fur-
thermore, c2(X3) ·Jα = (24, 48, 82, 36). This identifies J0 as the divisor associated with the
K3-fiber of ρ, and J2 = S0+π∗c1(B2) with S0 being the zero-section of the elliptic fibration.
Its dual Mori cone generator C2 therefore corresponds to the class generic elliptic fiber.

The generic rational fiber of B2 lies in the class C1 + C3. The base of this rational
fibration is the base P1 of the K3-fibration ρ; its class coincides with C0. Over a special point
on the base P1, the rational fiber of B2 splits into two rational curves in class C1 and C3, each
of self-intersection −1 on B2. The elliptic fibration over each of these two curves defines

24For example, [77] computes the relative GV invariants for Schoen manifolds.

– 37 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
7

a rational elliptic surface, or dP9, of Euler characteristic 12. As a result, the K3-fibration
undergoes a Kulikov Type II degeneration, in which the generic K3 fiber class splits as

S0 = S1 ∪ S2 . (6.4)

We identify the class of S1 and S2 with the toric divisor classes D1 and D2.
To the given basis {Cα}α=0,...,3 of the Mori we can now associate a basis {U(1)α} of

the Abelian gauge factors and hence a basis of charges {Qα} that parametrize the charge
lattice. We notice that C2 is the only Mori cone generator that is also a movable curve.
Hence the results of [20] imply that there is an infinite tower of BPS states with charge

Q = (Q0, Q1, Q2, Q3) = (0, 0, n, 0) . (6.5)

In fact, since C2 is the elliptic fiber class, the genus-zero BPS invariants along this direction
are

N0
(0,0,n,0) = −χ(X3) = 420 . (6.6)

On the other hand, the rays in the charge lattice with Q2 = 0 do not support towers of
BPS states and hence invite an application of Claim 1.

To this end we should first consider which linear combinations of U(1)0,U(1)1, and
U(1)3 admit weak coupling limits. Let us begin with the K3-fibration ρ and its associated
weak coupling limit of Type K3. The dual of the polarization lattice is spanned by the
generators of the ρ-relative Mori cone that lie in the generic K3-fiber. This identifies

Λ∗ = 〈C2, C1 + C3〉 ' U , (6.7)

where U is the hyperbolic lattice of signature (1, 1). According to the general discussion of
section 4.2, the two Kähler cone generators J1 and J3 dual to the curves C1 and C3 in the
generic rational fiber must satisfy a homological relation of the form (4.48). Indeed, from
the intersection form
I(X3) = 7J3

2 + 2J2
2 · J0 + 4J2

2 · J1 + 3J2
2 · J3 + 2J2

1 · J2 + J2
3 · J2 + J0 · J1 · J2

+ J0 · J2 · J3 + 2J1 · J2 · J3
(6.8)

it follows that
J3 · J0 · Jα = J1 · J0 · Jα , ∀α = 0, . . . , 3 . (6.9)

An infinite distance limit of Type K3 is parametrized as

J = λṽ0J0 + 1√
λ
ṽiJi , λ→∞ . (6.10)

In terms of the rescaled Mori cone volumes ˆ̃vα = ṽα

V1/3 , the gauge kinetic matrix fαβ at
leading order in λ takes the form

fαβ = λ
ˆ̃v2

0 ˆ̃v2
2(

ˆ̃v0 ˆ̃v2
(

ˆ̃v1 + ˆ̃v2 + ˆ̃v3
))4/3


0 0 0 0
0 1 1 1
0 1

ˆ̃v2
1+2(ˆ̃v2+ˆ̃v3)ˆ̃v1+2ˆ̃v2

2+ˆ̃v2
3+2ˆ̃v2 ˆ̃v3

ˆ̃v2
2

1
0 1 1 1

+O
(
1/
√
λ
)
.

(6.11)

– 38 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
7

We notice that the second and the fourth rows (or columns), associated to the divisors
J1 and J3 satisfying (6.9), are identical. At leading order, the rank of the matrix fij is
therefore reduced, as expected from the discussion in section 4.2. In particular, the space
of asymptotically weakly coupled abelian gauge symmetries is spanned by the combination

U(1)+ = U(1)1 + U(1)3 , (6.12)

together with U(1)2, while any U(1) involving the orthogonal combination U(1)1 − U(1)3

as well as U(1)0 cannot become asymptotically weakly coupled in the limit of Type K3.
In particular, U(1)1 and U(1)3 individually do not admit weak coupling limits as in (3.8).
Hence, we do not expect to find any super-extremal non-BPS string excitations with charge
Q = (0, n, 0, 0) or Q = (0, 0, 0, n) for n > 1. Instead a tower of super-extremal excitations
charged under U(1)1 or U(1)3 must have Q1 = Q3. And indeed, U(1)+ and U(1)2 are pre-
cisely the abelian gauge symmetries under which the curve classes in the dual polarization
lattice Λ∗ are charged. From the heterotic perspective, these are the U(1)s associated to
winding and momentum along the heterotic S1. For these U(1)s the existence of states
satisfying (5.5) can be established from the elliptic genus as in section 5.2.1.

To this end, we discuss the elliptic genera of MSW strings realized by the divisor
J0 = D1 +D2 and its splitting components. First, we compute Gopakumar-Vafa invariants
N0
C for curve classes C = β + nE , which give rise to the elliptic genera of strings in six

dimensions realized by D3-branes wrapping π∗β as in [23, 24, 62–69]. Considering the curve
β = C1, we obtain the six-dimensional elliptic genus of the E-string, given by [78]

ZE(τ) = E4(τ)
η12(τ) = q−

1
2 (1 + 252q + 5130q2 +O(q3)) = q−

1
2
∑
d

N0
C1+dC2qd , (6.13)

where Ek is the k-th Eisenstein series. The same meromorphic modular form ZE(τ) is
obtained for the curve class β = C3 instead. Moreover, the six-dimensional elliptic genus
of the heterotic string is

Zhet(τ) = −23
12
E4E6
η24 −

1
12
E2

4E2
η24 = −2q−1−χ(X3)+O(q) = q−1∑

d

N0
C1+C3+dC2qd . (6.14)

As discussed at the end of section 5.2.1, from the latter expression we derive the holomor-
phic piece for the heterotic MSW string from (5.22). Since Λ∗ = U , the discriminant group
Λ∗/Λ only contains the trivial class. Hence, the non-holomorphic completion constrains
the five-dimensional heterotic elliptic genus Z(1)

J0
(τ, τ̄ , z,B) = Ẑ0(τ, τ̄)Θ∗0,1(τ, τ̄ , z,B) to take

the form
Ẑ0(τ, τ̄) = −23

12
E4E6
η24 −

1
12

(
E4
η12

)2
Ê2 , (6.15)

where Ê2 = E2 − 3/πIm(τ) is the non-holomorphic second Eisenstein series, which is also
a mock modular form. Notice that the quadratic factors E4/η

12 in (6.15) are meromorphic
modular forms corresponding to the MSW strings deriving from the dP9 surfaces [63] given
by D1 and D2; their quadratic product is expected to be present in the non-holomorphic
contribution since J0 = D1 + D2 [73]. Using (6.15), similar arguments as discussed in

– 39 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
7

section 5.2.1 can be repeated to argue for the existence of a non-trivial tower of states
satisfying (5.5).

Since X3 admits in addition an elliptic fibration, we can also consider a limit of Type
T 2, for example by imposing the scaling

J =
√
λ
∑
i 6=2

ṽiJi + 1
λ
ṽ2J2 , λ→∞ . (6.16)

The only asymptotically weakly coupled gauge group in such a limit is U(1)E = U(1)2,
under which the generic elliptic fiber class is charged. Following our general discussion in
section 5, the super-extremal states come from the BPS states counted by (6.6). These
states are the KK modes for the asymptotic decompactification to six dimensions in the
limit (6.16).

Since these two classes of limits exhaust the possible weak coupling limits, the U(1)s
which cannot undergo any weak coupling limit are all linear combinations outside the span
of U(1)2 and U(1)+. Curves charged under such U(1)s do not lie in the movable cone.
Furthermore, the associated directions in the charge lattice do not support a BPS tower,
nor can we identify a stringy non-BPS tower. On the other hand, U(1)+ and U(1)2 do
admit a weak coupling limit, and we can identify an associated stringy tower of non-BPS
and, respectively, BPS super-extremal states. This demonstrates Claim 1 in the present
explicit example.

7 Conclusions and discussion

We have investigated the asymptotic form of the WGC in M-theory compactifications on
Calabi-Yau 3-folds. Our main motivation was to understand when non-BPS states furnish
towers of super-extremal states along directions in the charge lattice where no tower of
BPS states exists according to the analysis of [20].

The tower WGC is best motivated in asymptotic weak coupling limits. A natural
starting point for our analysis are therefore asymptotically weak coupling limits for the
gauge theories. More precisely, our goal was to prove the tower WGC for those linear
combinations of U(1) factors that can undergo a limit in which the ratio between the
WGC scale, ΛWGC, and the quantum gravity cut-off vanishes. As our main result we have
shown Claim 1 stating that whenever a direction in the charge lattice is not populated by
a tower of BPS states, there either does not exist a weak coupling limit for the dual gauge
group factors, or one can identify a tower of asymptotically super-extremal non-BPS states
arising as excitations of a critical string.

An important ingredient in arriving at this conclusion is our classification of all weak
coupling limits for U(1) gauge factors in five-dimensional M-theory, building on the classi-
fication of infinite distance limits in [39]. According to this reference, any infinite distance
limit in the vector multiplet moduli space of M-theory on Calabi-Yau 3-folds is associated
to a limit where either a T 2-, a K3-, or a T 4-fiber shrinks. Our analysis characterizes the
lattice of states charged under a potentially weakly coupled U(1) very compactly as follows:
it is the lattice spanned by all curve classes on the 3-fold which lie in the generic fiber or
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which arise at a degeneration of the fiber at finite distance in its moduli space. For Type
T 2 limits, this means that only U(1)s which play the role of a KK U(1) in some asymptotic
duality frame can become weakly coupled. For Type K3 limits, the resulting structure is
richer: in physics terms, asymptotically weakly coupled U(1)s embed into a dual pertur-
bative heterotic gauge group, including possible KK or winding U(1)s. Geometrically, we
have to distinguish between irreducible special K3 fibers and degenerations in which the
K3 fiber splits into several components. In the context of semi-stable degenerations, the
first type of degenerations are Kulikov Type I degenerations at finite distance, which con-
tribute to the charge lattice coupling to potentially weakly coupled U(1)s; the second type
of degeneration is of Kulikov Type II/III at infinite distance and does not yield U(1)s that
can become weakly coupled. Although we argued that our conclusions hold more generally
than in semi-stable settings, for instance in those exemplified in [53], the importance of
K3-fibrations for the taxonomy of weak coupling limits certainly motivates a more in-depth
analysis of such fiber degenerations beyond Kulikov type.

Armed with the classification of the U(1)s admitting a weak coupling limit, we
have shown that there always exists either a BPS tower of super-extremal states (the
KK/decompactification case) or a tower of super-extremal non-BPS states arising as exci-
tations of a perturbative, critical string. In the latter case, we made use of the modular
properties of the elliptic genus of the five-dimensional string [42, 43] and the connection
between Donaldson-Thomas invariants and Noether-Lefschetz theory [44, 45]. This estab-
lishes the existence of a tower of states for which the square of the quantized charge is equal
to twice the (negative of the) left-moving excitation level. Strictly speaking, the results
of [42] apply to geometries in which all K3-fibers are irreducible, which is not the case in
the presence of Type II/III degenerations. These degenerations signal the presence of non-
perturbative strings, such as E- or M-strings. By experience from six dimensions [23, 24],
however, the presence of the non-perturbative strings should not affect the existence of
the states required for the tWGC. For the example of a K3-fibration with a compatible
elliptic fibration, we have illustrated that the departure from modularity in the presence
of Type II Kulikov degenerations is rather mild, as in six dimensions. This example is a
special case of the more drastic mock modularity that could be expected beyond elliptic
K3 surfaces with Type II degenerations, and it would be interesting to extend the analysis
of the five-dimensional elliptic genus to include such types of degenerations.

Most of our analysis focused on the Type K3 limits, and we have treated the Type
T 4 limits largely by analogy. We have argued that such abelian surface limits behave
similarly (given that they are also more constrained due to enhanced supersymmetry),
but a systematic study of the underlying geometries could nevertheless be interesting and
would provide a more complete and satisfactory discussion.

Our findings can be viewed as a five-dimensional analogue of the results of [27] for
four-dimensional N = 1 theories. In both settings, the only non-BPS tower satisfying
the asymptotic tWGC are given by the excitations of critical strings, since otherwise the
relevant gauge groups cannot undergo an effective weak coupling limit. Based on these
results for the asymptotic tWGC it is natural to ask about the fate of the tWGC away
from weak coupling limits. In principle, there are two ways to address this question:
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first, one can follow the non-BPS states corresponding to super-extremal string excitations
along our motion in moduli space away from asymptotic weak coupling and trace their
charge-to-mass ratio. As we re-enter the bulk of the moduli space, string loop corrections
to the physical charge and the mass become important and can, in principle, change the
charge-to-mass ratio. In [26] the analogous effect in four-dimensional N = 1 theories was
investigated. Compared to this analysis, the five-dimensional case is considerably simpler,
since here one does not have to worry about perturbative α′-corrections. This makes it
possibly more feasible to verify the tWGC including string loop corrections, at least as long
as a weak coupling limit exists in principle. Notice that, as long as we stay sufficiently close
to the asymptotic region in moduli space, the string excitations still have masses below
the species scale and can hence still be treated as particle-like excitations in an effective
theory of supergravity. Therefore also the WGC should still be equivalent to the RFC.
Using this, one could, as was done in the analogous four-dimensional N = 1 setting of [26],
infer the string loop corrections to the black hole extremality bound from the corrections
to the RFC, and it would be interesting to do so.

What remains more mysterious is the tower WGC for the U(1)s which do not admit a
weak coupling limit. We conclude this paper with some, partially more speculative, remarks
related to this open question. First, recall that in many instances an infinite tower of (super-
) extremal states can indeed be firmly established away from weak coupling. This is the
case whenever the charge lattice supports BPS towers. Combining the reasoning of [20]
and our findings, these directions in the charge lattice include all curves in the movable
cone of a Calabi-Yau X3 [20] that are not contained in a non-degenerate torus or surface
fiber or a degenerate such fiber undergoing only a finite distance degeneration in its moduli
space.25 Furthermore, there can, of course, exist a finite number of BPS states along other
directions in the charge lattice even though they do not support a tower. For example, the
base P1 of a surface fibration falls into this category and admits a single super-extremal
BPS state, but not an infinite tower.

Similarly, based on our analysis, we certainly cannot exclude the existence of super-
extremal non-BPS states charged under U(1)s without a weak coupling limit. To name but
one possible source, such states might, in principle, come from M2-branes wrapped on non-
holomorphic curves. In particular, it is very conceivable that there exists a finite number of
charged states with very low mass, which would then be highly super-extremal, also along
directions without BPS representatives. Since the mass of these states is well below the
quantum gravity cut-off, they can be included in the low-energy EFT in a sensible way.

The crucial question is rather whether one expects towers of non-BPS super-extremal
states along directions without weak coupling regimes, and how to make sense of them.
The reason one might be skeptical is that one would expect an infinite tower of charged
states to appear, if at all, at the mass scale set by ΛWGC, and hence above the cutoff of the
EFT, as we now explain.

25In addition there can be infinite towers of BPS states along curves that shrink at a boundary where also
a divisor shrinks to zero size or strictly super-extremal towers in a cone slightly larger than the movable
cone [20].
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First, we concede that from the point of view of the WGC alone, it would certainly
be consistent if the actual mass of the super-extremal states was below ΛWGC. In that
case, even if the ratio (1.1) is always at least of O(1) for a given U(1), there could exist a
tower of super-extremal states below the quantum gravity cut-off in this direction of the
charge lattice. These states would, however, contribute to the number of light species and
hence lower the species scale. In particular, a tower of such states would considerably
lower the species scale. In the vicinity of, e.g., a decompactification limit, this would spoil
the relation between species scale and higher-dimensional Planck scale. Extrapolating
from such situations it seems unnatural to have such a highly super-extremal tower also
in absence of a decompactification limit.26 A second argument is that the existence of a
highly super-extremal infinite tower of states parametrically below ΛWGC would run counter
to the expectation that for higher and higher masses these states should become black holes
- which would be in tension with the fact that they would still be super-extremal.

These two arguments appear to favor the scenario that the WGC tower sits at ΛWGC,
at least for high masses. In particular, this is the case for the tower of super-extremal
states for U(1)s with a weak coupling limit, as our results show.

Now, for a U(1) for which the ratio (1.1) never vanishes, a tower at ΛWGC has a mass at
or above the quantum gravity cut-off. While BPS towers of this type are protected by the
BPS condition, for a non-BPS tower (not inherited from a weak coupling limit) there would
be almost no chance of identifying the tower states; after all, there is no way to include
them as particles in the EFT. This goes against the original logic of the WGC to constrain
the EFT. Therefore, for a U(1) for which the ratio (1.1) is always at least of order one,
the tWGC does not give a constraint on the spectrum of the low-energy effective theory of
gravity. Of course, this does not mean that the tWGC may not hold for generically strongly
coupled gauge theories, but if it does, it would not have any immediate implications for the
particle spectrum of the EFT, and verifying it would in any case require control of a strongly
coupled theory above its quantum gravity cutoff. From this point of view, it is tempting to
speculate that away from weak coupling (or at least when there is no chance to reach weak
coupling asymptotically) the WGC may not have to be interpreted in its tower version.

On the other hand, the asymptotic tower WGC is on firm grounds, and we believe that
the results in this work on its realization in the non-BPS sector in M-theory serve as an
important further piece of evidence in its favor.
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