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1 Introduction

Collective field theory [1, 2] is a promising approach to the AdS/CFT duality [3-5] as it
offers a constructive method to establish the dual holographic gravity theory starting from
the given conformal field theory (CFT). The algorithm consists of two steps. The first
step is a change of field variables from the original fields to gauge invariant collective fields.
This trades the loop expansion parameter () of the original CFT for! % The second step,
a change of coordinates, is needed to clarify the gravitational interpretation of the theory.
This identifies the CFT coordinates with coordinates of the dual AdS spacetime. The
defining fields of the CFT are in irreducible representations of the so(2,d) conformal group.
The gauge invariant collective fields, given by products of the defining fields, transform in a

In this article we focus on vector models. For vector models, the collective fields are bilocal fields
obtained by contracting the gauge indices of pairs of fields.



direct sum of many irreducible representations of so(2,d).? Each irreducible representation
corresponds to a bulk field on the AdS spacetime, so the gravity interpretation is simplest
in a basis where the so(2,d) generators are block diagonal. The change of coordinates of the
second step achieves this transformation from the tensor product basis in which the CFT is
defined, to the block diagonal basis. The bilocal holography construction, proposed in [6]
and further developed in [7-13] provides a detailed illustration of this procedure, when the
CFT is a free vector model, which is dual [14, 15] to higher spin gravity [16, 17].

Our focus is on the free O(N) vector model in 2+1 dimensions. The single trace
primary operators are a scalar with A = 1 and spinning conserved currents with dimension
A = 2s+1 and spin 2s for every positive integer s. Not all components of this current are
independent. After imposing that the current is symmetric, traceless and conserved there
are only 2 independent components of the CFT current at each s > 0. The single trace
primaries, as usual, determine the spectrum of fields of the dual gravity theory. They are
dual to a bulk scalar and a set of higher spin gauge fields, one at each spin 2s for every
positive integer s. After fixing the gauge, solving the associated constraint and taking
account of the fact that the gauge fields are symmetric traceless fields, we find there are 2
independent components of the gravity gauge fields at each s > 0. The bilocal holography
map is the statement that these degrees of freedom are identical.

The objective of this paper is to discuss bilocal holography with special attention
to how it manages to give a complete and detailed mapping of CFT degrees of freedom
to gravitational degrees of freedom, to demonstrate that bilocal holography provides a
valid bulk reconstruction, to demonstrate how bilocal holography provides an explicit and
detailed example of entanglement wedge reconstruction [18-23] and how it realizes the
principle of the holography of information [24-27],% extending and completing the analysis
of* [29, 30]. This constitutes compelling evidence in favour of the collective field theory
approach to AdS/CFT.

There are two natural bilocals that can be employed in the construction of collective
field theory: equal time and unequal time bilocals. In section 2 we discuss the difference
between these two. The equal time bilocal is a description in terms of independent compo-
nents of the higher spin currents, while the unequal time bilocal includes all components
of the current. This is a new result and it shows that by formulating the CFT in terms of
equal time bilocal fields, one is performing the reduction to independent degrees of free-
dom. We then review bilocal holography on a light front in section 3. The reduction to
physical and independent degrees of freedom in the higher spin gravity has been worked
out in complete detail in [31]. The reduction to independent degrees of freedom in the
CFT is performed by using equal 2™ bilocals. The mapping of bilocal holography gives

2We will work in d = 3. Irreducible representations of s0(2,3) are labelled by the dimension A and spin
s of the primary on which the representation is constructed. The free scalar has A = % and s = 0. Denote
this representation as [A, s] = [4,0]. For the vector model example, the collective bilocal fields are products
of pairs of the original fields which transform as [%, 0] x [%, 0] =[1,0] P B2, (25 + 1,2s].

3For a beautiful set of lectures, incredibly helpful when learning this material, go to ref. [28].

4While the light front map employing equal =t bilocals was derived in [7], the map employing equal ¢

bilocals is a new result.



a complete bijection between the independent operators in the CFT and the independent
and physical degrees of freedom of higher spin gravity. The final result of section 3 is
to explain how the holography of information and entanglement wedge reconstruction are
reflected in the map. In section 4, we develop an equal time version of bilocal holography,
by employing a description of higher spin gravity that respects the Poincaré subgroup of
the boundary CFT, developed in a fascinating paper [32]. In the CFT we employ equal
time bilocals. The form of the holographic mapping is completely parallel to the mapping
obtained on the light front. We argue that the equal time holographic mapping again
provides a complete bulk reconstruction, it codes information into the higher dimensional
spacetime exactly as predicted by the holography of information and it can be used to
derive the expected entanglement wedge reconstruction. We present a discussion of these
results, and our conclusions in section 5. This includes a discussion of some open directions
as well as a description of how one might approach the holography of matrix models, again
within the collective field theory framework.

Since this paper was preceded by a number of works on bilocal holography it is worth
isolating the new elements of this paper. As mentioned above, the understanding that
equal time bilocals perform the reduction to independent of degrees of freedom in the CFT
is new. This then motivates the general lesson that choosing a specific bilocal is dual to
choosing a gauge in the bulk. The demonstration of entanglement wedge reconstruction
given in [29] used a light front quantization. This description is a little unusual: a constant
X slice has a Ryu-Takayanagi surface [33] that is a semi-circle in the X, Z plane times the
X~ line. This is a null surface, which has zero area matching the fact that entanglement
entropies for any subregion on the X slice vanishes [34]. Section 4 of this paper employs
an equal time quantization. In this framework the demonstration of entanglement wedge
reconstruction (given in section 4.3) is standard: it reproduces the correct spacelike Ryu-
Takayanagi surface, whose area computes the entanglement entropy of the corresponding
subregion.® Similar comments hold for our discussion of the principle of the holography
of information. The principle of the holography of information refers to the information
available in a small neighbourhood of the boundary. In practice we take Z < € as a
working definition of this neighbourhood. However, as explained in the original works [24—
28], defining this region precisely is subtle in a theory with a fluctuating metric, since
one needs a gauge-invariant definition of the neighbourhood. One may worry about how
the boundaries of this neighbourhood fluctuate with large perturbations in the interior of
the slice. To side step these issues, [24-28] think of operators pushed all the way to the
asymptotic boundary at Z = 0 and at this boundary they take operators from the algebra
of a small time band [0,7]. The information contained in the algebra of bulk operators
in the region Z < € is equivalent to the information contained in the algebra of operators
at Z = 0, in the small time band. The description employing the time band is a precise
way of stating what the neighbourhood of the boundary is in the quantum gravity theory.

5Tt is not obvious what we mean by area in a theory of higher spin gravity, in distinction to conventional
Einstein gravity. This is because the usual definition of area is not invariant under higher spin transforma-
tions in the bulk. See section 4.3 of [35] for a transparent discussion. We will not resolve this issue in this
paper.



In the description of [30], which again utilized a light front quantization, the time band
at the boundary has constant X boundaries. The time band relevant for the equal time
quantization of section 4 has constant time boundaries matching the time band of [24-28].

Finally, we note that similar constructions have recently been developed in [36—38].
These papers employ the first step in the collective field theory algorithm. They use un-
equal time bilocals and so do not reduce to independent degrees of freedom in CFT. Further,
they construct a gravitational interpretation of the theory by using known results, from
the harmonic analysis of conformal symmetry, to extract the irreducible representations
contained in the bilocal field. Of course, collective field theory does not require a reduction
to independent degrees of freedom. For an approach to the unequal time bilocals, demon-
strating how the Witten diagram rules are recovered from collective field theory, see [13].
The free field theory, which we discuss here, corresponds to the (unstable) UV fixed point.
For discussions treating the (stable) IR fixed point see [39, 40].

2 Equal time versus unequal time bilocals

The defining fields® of the vector model ¢ transform in the vector representation of O(IV).
The O(N) invariant variables are products of pairs of fields with O(NN) indices contracted.
Each field is at a distinct point so we naturally obtain bilocal fields. Using equal time
quantization and a Hamiltonian approach, the dynamics is written in terms of bilocal fields
with the fields in the bilocal at distinct spatial locations, but at the same time. Path integral
quantization uses bilocals with fields at distinct times and positions. The goal of this section
is to discuss the interpretation of equal time versus unequal time bilocal collective fields.
A useful result for this discussion is the operator product expansion (OPE) which can
be used to express the bilocal as a sum over the single trace primary operators of the CFT.
For the free O(N) vector model in d = 3 dimensions, the single trace primary operators
include a scalar j()(z) of dimension A = 1 and spinning currents ]é - 2%) #25 (7)) of spin 2s and

dimension 2s+1 for any positive integer s. The relevant operator product expansion is [30]

9 2d
Z ¢ (x +y) o (x — Zchd < axu) Y Yoy (@) (2.1)

a=1 s=0d=0
where
1 (2s)!(4s — D!
Cod — W and Csd — d!22d+45_1(d n 23)' s>0 (22)
and the spinning currents are
Jos (Y ) = Yy Y Gy, ()
25—
N 2s ey .
=73 S~k (v ‘%“) @ (v ‘%") ) (2.3)
P wrt k!(2s — )'F(k - %) (2s —k+3)

Applying this OPE to the equal time bilocal o(t, 1, Z2) = ¢°(t, ¥1)p?(t, T2) we easily find

d
o(t, &1, %) = (o(t, T1, To) +Zchd< axu) Y " Yuosd(ag) | (@) (2.4)

s=0d=0

SWe are assuming a real field. The extension needed to consider a complex field is a simple exercise.



where we have introduced the coordinates

zh =zt 4+ y* zh =at —yH
1 1
= @l = (e +ah) ' = 5la - ay) (2.5)

From the right hand side of (2.4) we see that the coordinate y* contracts with indices of
the currents. For the equal time bilocal we have

1 1
Ww=0 y'= 5(96% —xy) Y= 5(96% — 23) (2.6)

This makes it clear that the equal time bilocal only packages currents with spatial po-
larizations. In contrast to this, the unequal time bilocal, which has y° # 0, packages all
polarizations of the current.

In section 2.1, we describe how conformal transformations are realized on unequal
time bilocal fields. In particular, we explain how to recover the familiar generators of the
Poincaré transformations and dilatations on the conserved currents, from the transforma-
tions of the scalar field. In section 2.2 we argue that the equal time bilocal describes a
reduction of the CFT obtained by eliminating components of the conserved current, with
the help of the conservation equation. This argument amounts to understanding how con-
formal transformations are realized on equal time bilocal fields. We start with a discussion
of equal T bilocals in a light front quantization and argue that equal =+ bilocals describe
a reduction of the CFT obtained by eliminating + polarizations of the conserved current.
We then argue that an equal time bilocal in a standard equal time quantization describes
a reduction of the CFT obtained by eliminating 0 polarizations of the conserved current.

A final comment is in order. Reducing to independent components in the CFT entails
solving the current conservation equation, as well as the traceless and symmetric conditions.
In practise it is the solution of the current conservation equation that is non-trivial. In-
deed, the traceless condition is preserved by conformal transformations, so that reducing to
the traceless subspace does not entail modifying the generators. The symmetry of the cur-
rent is simply the statement that certain current components are equal, which can easily be
enforced by contracting current indices with a commuting polarization vector. The y* coor-
dinate of the collective bilocal in (2.4) plays this role. In contrast to this, solving the current
conservation equation entails a choice of which polarization will be eliminated, and then
a non-trivial modification of the generators of conformal transformations. For this reason,
when performing the reduction we focus only on the solution of the current conservation
equation. It is this step of the reduction that is achieved by equal time collective fields.

2.1 Unequal time bilocals

We will write the unequal time bilocal

N

o(af,ah) =Y ¢*(af)o"(a}) (2.7)

a=1

in terms of the coordinates defined in (2.5). It is a simple exercise to determine how the
bilocal transforms under a conformal transformation, using the known transformation of



the free scalar field, as well as the co-product. Expressing the generators in terms of z#
and y* we obtain
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- 0 0 n 9 0
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The subscript o on these generators signifies that they are derived using the co-product
of the action of conformal transformations on the free scalar field, i.e. they are the action
of conformal transformations on the bilocal o. To make contact with generators acting on
higher spin currents we need to use the OPE result (2.4), which we write as

d
o(xf,xh) : = Z chd ( 8“) Yur yuzsﬂéﬂ)ms (z)

s=0d=0

d
= chsd< “M> Jes)(@,y) (2.9)

5=0d=0

The action of G € s0(2,3) on the bilocal field translates into an action on the primary
spinning currents as follows

d
Go: (t x1a=732 = Gs Z(];)Csd( a#) Yui - y#zs]éu 2s) Hee (-T) (2'10)
d
= chsd [goa< > ‘|](25 L,y +ZZCsd( ) go](Qs (.%’ y)
s=0d=0 s=0d=0

It is simple to check that

lgg,( fﬂ)d] =0 (2.11)

for G € {P,, J", D}. Inspecting the action of these generators on the bilocal field (2.8) we
see that these agree with the usual generators acting on the conserved currents. To explain
this agreement note that translations, scalings and Lorentz transformations of x4 and zf



correspond to the same transformations in the new coordinates

) /
' =af +at zg' =ah +at = 't =gt 4+ gt Yt =yt
/ /
zf =zt zd' = \ah = = At Yyt = Iyt
/ v / v / v / v
= A zq' = A*, ab = ot = Ay yt=Aty (2.12)

In contrast to the generators described so far, the action of a#K, on the bilocal does not
agree with the usual generator acting on the spinning current. This is a consequence of
the fact that

0 L0 0
[(a“KM)U , y“—amu = —2a-yy By + yQCLMaT/u —a-y= AWM (2.13)
0 L0 0
a _
[A(Z) : yu@_ =0 (2.15)

The fact that (2.13) is non-zero implies that the variation of the right hand side of (2.9) is
not just the result of the variation of the primary current: it includes variation of the y - %
factor. Thus, reading off the transformation of the conformal current from this equation
is not straight forward. The mismatch is further explained by noting that an infinitesimal
special conformal transformation in the original coordinates

ot = ok + 2(xy - D)l — blay -1 24 =l + 2(xg - D)k — Vg - 1o (2.16)

does not correspond to an infinitesimal special conformal transformation in the new coor-
dinates

ot =k +2bzat — bl + 2y bt — V- y

Yyt =yt + 2 byt + 2y - bt — Wy (2.17)
so we should not expect a match between the generator of special conformal transformations
acting on the conserved current and Ky, derived above.

At the risk of semantic satiation we finally again note that the OPE given in (2.9) im-
plies that the unequal time bilocal packages all components of the conserved CFT currents.

2.2 Equal time bilocals

Higher spin currents jé 1)“ 2Hs (zv), have dimension A = s + 1, are traceless and conserved
Ouithy? " (2¥) = 0 Tl (@) = 0 (2.18)

A useful formalism for describing these currents has been developed by Metsaev [31]. The
higher spin current is represented as’

sy (8, @) = G @)y -+ 040, ]0) (2.19)

"The Fock space here is not coming from the second quantization of a field, but rather it is an “auxiliary
Fock space” that automates the symmetrization of indices and simplifies the tensor calculus.



where a* is a bosonic creation operator with a* the corresponding annihilation operator
so that
[a,a”] =" v =0,1,2 (2.20)

As usual we have a#|0) = 0. The conservation equation and traceless conditions are written
as
d”8V|j(S)(t7:f, a”)> =0 dVC_Ll,’j(s)(t,f, CLM)> =0 (2.21)

The conservation equation can be used to eliminate a component of the current. Our goal is
to construct the conformal transformations in this reduced theory, following the discussion
in [31].

Solving the current conservation equation is straight forward in the auxiliary Fock
space description. In an equal z+ quantization it is natural to eliminate + polarizations,
producing a description in terms of transverse and — polarizations. In this case the solution

to the first of (2.21) is given by (b runs over directions transverse to the lightcone)®

. ato— + abob . .
lj(s)) = exp <—a+ [(% ligs)) = Plis)) (2.22)

where we have defined an operator P and the state [i(y)) is defined by
Liqdg g

|i(5)> = J(s) @iy @iy * - A, |0) (2.23)

The indices i; in this last equation run over — and the directions transverse to the light
cone so that no components of the current with a + index are packaged in |i(5)). Operators
O acting on the original currents |j,)) become

O=P'OP (2.24)
when acting on the reduced current [i(s)). This follows by noting that
Oljs)) = PP 'OPli(s)) = POli(s)) (2.25)

Using this rule we construct operators acting in the reduced theory. As an example, the
generators of Lorentz boosts in d dimensions are given by’

) ) )
e S I L 2.2
T =PI Pt S e —aa (2.26)
o 0
ti _p-lpip_ o+ 9 a0 iy 2.2
JH= PP —at o o —a (2.27)
| P ) ato” +abd’
-t _p-ly—ip_ .~ 7 i 7 —at ¢ 2.2
JH=P TP =a o —a e aa i (2.28)
and
Ji = plJip = i — 239 + d'ad — ol (2.29)

8 As usual, we assume that 97 has no zero modes.
9Bear in mind that it is @+ that has a non-trivial commutator with a~.



where 4,7 = 1,2,--- ,d — 2 run over directions transverse to the lightcone. We will take
d = 2+ 1. In this case there is a single direction transverse to the lightcone so that J¥
and J% vanish.

In an equal time quantization it is natural to eliminate temporal (0) polarizations. We
can verify that!”

. a'ol + a’0? , ,
o) = exp (—ao lWD i) = Plie) (2.30)
with
lis)) = Jél)kz *oag, apy - - ag,|0) (2.31)

solves the first of (2.21). The indices k; in this last equation only run over the spatial
directions. Using (2.24) we construct the reduced boost generators

204 —1 0i i i i@/
JOi — p=1g0ip _ 05 _ 4ig0 _ 5 (2.32)
JU =P LJip = 2197 — 290" + a'd! — a'a’ (2.33)

The reduced Lorentz generators have a clear interpretation. Lorentz boosts mix tem-
poral and spatial polarizations of the current. In contrast to this, the reduced Lorentz
boosts given in (2.32) mix only the spatial polarizations of the current packaged in [i(,)).
To understand what the reduced generators are doing, consider the s = 2 current and
consider an infinitesimal boost along the ¢ = 1 direction, of rapidity €. The purely spatial
component of the current j(122) (for example) transforms as j(122) — ]Eg with

8 0
12 12 .02

J = d) +€ ( En 8951) Jiz) T €i2) (2.34)
so that purely spatial components mix with temporal components. This transformation
law (as well as the transformation of all other components of the current, and currents
with s # 2) is reproduced by the boost generator

T = 2 aib —a’ aia +M®P M® =% — aba” (2.35)
in the usual way
3() = (L+ed™)js) (2.36)

Using the generator of boosts in the reduced theory J%
i) = (14 €T igs) (2.37)

we find

12 29
712 0 ) 12 61](2) —1—82](2) (2.38)

L0
1) = ()*6( ot Tlagn)ie — ¢ 3

10The division by 8° might not well defined since 8° may have zero modes. The treatment of these zero
modes depends on the boundary conditions adopted. These details do not play any role in our analysis.



As we have already noted, this transformation rule does not involve temporal components
of the current. Comparing (2.34) and (2.38) it is clear that j?22) in (2.34) is replaced

y —(O1 j(122) + O j(222)) /0 in (2.38). This replacement rule is implied by the conservation
equation

demonstrating that the reduced boost is indeed obtained by eliminating temporal polariza-
tions with the current conservation equation. There is a parallel discussion for the boosts
obtained by eliminating + polarizations in an equal T quantization.

In the remainder of this subsection we will argue that this reduction is naturally
implemented by the equal time bilocal collective field, which is given by

o(t, Ty, 72) = ¢*(t, 71)P" (t, T2) (2.40)

To see that this must be the case, note that from the OPE (2.4) we know that the equal
time bilocal packages only spatial polarizations of the current. Since any conformal trans-
formation takes an equal time bilocal into another equal time bilocal, it must be that the
collective field performs the reduction outlined above.

We can check this slick argument with explicit examples. Consider an infinitesimal
boost along the z! direction, generated by J°'. Perform the Lorentz transformation on the
two scalars and then use (2.4) to work out the transformation implied for the conserved
currents. The boost takes t — ¢t + ex!, ' — z' + ¢t and 22 — 2?. Applying this rule to
each scalar field we have!!

(14-eJNn(t,21,32) = :¢%(t+ext,xi+et,xd) ¢ (t,2a) : +: % (t,41) % (t+exd, xd+et,x2):
= ¢a(t,f1)¢a(t,f2)+€y ( O (t, )¢ (t,fg)Z—Z¢a(t,f1)8t¢a(t,f2):)
+(ex Oy +etdyn ) : 9% (¢, 1) % (t,Ta) : (2.41)

Now, using the identity (A.5) derived in appendix A, this becomes

1 3y 10,1 + 8y2 0,2
2

eJOn(t, 71, ) = € (x O + 10,1 +y ):qﬁ“(t,fl)(b“(t,fz): (2.42)

so that we read off
8y1 1 +8y2 2

7

JOV = 219, + 0, + (2.43)

in perfect agreement with (2.32). A completely parallel argument shows that J° also
comes out correctly. Under the action of J'? we have

n(t, 1, d2) — n(t, a:% — ex%, x% + em%, CL‘% — ex%, x% + ex%) (2.44)

This transformation is realized using the differential operator

J? = xlaxz - 1‘28961 + y18y2 - y28y1 (2.45)

""Recall that the coordinates z* and y* were defined in (2.5).

~10 -



in perfect agreement with (2.33). Together these results reproduce the description of the
reduced currents obtained by eliminating 0 polarizations.

A parallel analysis shows that the equal ™ bilocal reproduces the reduction obtained
by eliminating light like polarizations. The equal ™+ bilocal is

U($+7$f>$17$5a$2) = ¢“(m+,xf,$1)¢“(m+,x5,x2) : (246)

The boost generated by J1~ generates the transformation'?

(1 +eJ T ) n(xt, 2], 21,25 ,m2) = ¢%(a" +ext 2] —ex],21)0%(x", 25, 22)
+¢*(zT, 2], 1) (2T +ex T, xy — ewy, x2)
= (1 + € (x+8x+ — Oy — y_ay_>) n(xt, z], 1,25, 72)
0 _ 0 0

+— _ ot _ o
= J=e ozt ¥ oz Y oy~

(2.47)

in complete agreement with (2.26). The argument for J ¢ is similar. Finally, under the
action of J~% we have

EJ_in(:E+,mf,:v1,x§,x2) =: ¢“($+ —exl,xf,xl+exf)¢a($+,x5,x2) :
+:¢%(a T 2], 21) % (2T —exg, 1y, ma+exy )
= ey(: ¢a(x+7$;7$1)8+¢a(x+7x53$2) S 8+¢a($+,$f,$1)¢a($+,l‘;,lig) :)

+ (2~ 0y —exdy +ey 0y) : ¢ (xt, 2], 21) 9% (x 1,25, 22) : (2.48)
Using the identity (A.8) derived in appendix A, we easily find

B, 0yr + 0,0,

J =270, — 20+ +y 0y +y 3
xt

(2.49)

in complete agreement with (2.28).

3 Bilocal holography on a light front

Gauge theory/gravity duality relates an ordinary quantum field theory to a theory of
quantum gravity. It implies that the physical degrees of freedom of these two theories
must match. Bilocal holography is an explicit demonstration of this fact and it establishes
a precise bijection between the physical and independent degrees of freedom of the two
theories. By working in light cone gauge in the higher spin gravity, it is possible to com-
pletely gauge fix the theory, to solve the constraint associated to light cone gauge and then
to reduce to non-redundant physical degrees of freedom. Denoting the higher spin gauge
fields by Aé‘sl)’"“ * light cone gauge sets

A?;‘)‘Q'"“S =0 s=24,6,--- (3.1)

2Here we use of the coordinates defined in (2.5) which are given by #1 = x+y, xa =z —y, 2] =2~ +y~

and z; =z~ —y~. The inverse transformation is = $(z1 + 2), y = 3(x1 — x2), = = (2] +z5) and
v =3 - ).

- 11 -



As usual, the equations of motion associated to fields set to zero by the gauge condition must
be imposed as constraints. The constraints associated to this gauge condition determine
all fields with — polarizations A(_S’)‘ 2Ms  The higher spin gauge fields, which are usually
double traceless, become traceless in this gauge. Thus, the physical degrees of freedom are

iqevig

given by a traceless symmetric field A(S) where the indices take the values Z, X. The

i s Ags
number of independent symmetric tensors Al(;) ’ is Naymm = s + 1 so that the number of
independent symmetric and traceless tensors is

A
Nsyin;l,tr =s5+1—(s—2+1)=2 (3.2)

The reduction to physical and independent degrees of freedom in higher spin gravity has
been carried out in detail in [31]. We will simply review the results we need in section 3.2.
The gauge invariant CF'T currents j(,) packaged by the bilocal are traceless symmetric

and conserved. The number of independent symmetric tensors j(*; 1)'"“3 is stﬁﬁlm = %(s +
1)(s 4+ 2) so that the number of independent symmetric and traceless tensors is

j 1 1
N o = SETD+2) —S(5-2+1)(s -2 +2) =25 +1 (3.3)
The number of symmetric, traceless and conserved tensors is

NI —2s4+1-(2(s—1)+1)=2 (3.4)

symm,tr,com

The non-trivial element of this reduction to physical degrees of freedom is the solution of
the current conservation equation. This is described in section 3.1 and it is accomplished
by employing equal ™ bilocal fields.

Bilocal holography establishes the identity of the two physical and independent com-
ponents of the higher spin gravity gauge field and the two independent components of the
spinning CFT current. This mapping is described in section 3.3. In section 3.4 we draw
some general lessons from the holographic map.

A comment on notation: we use little letters (z7, 27, x) for CFT3 coordinates and
capital letters (X, X, X, Z) for the coordinates of AdS,.

3.1 Collective field theory

The conformal field theory dynamics is expressed as the collective field theory of an equal
2 bilocal field

N
O'(ZE+, $;7 x1, l‘;, x2) = Z ¢a(x+’ $;7 x1)¢a(x+v ZL‘;, $2) (35)

a=1

The change to collective (invariant) variables ensures that the loop expansion parameter
of the resulting field theory is % which matches the loop expansion parameter of the dual
gravity theory. The reduction to independent components of the current entails solving
the conservation equation to eliminate all 4+ polarizations of the current. This reduction
is automatically achieved, as explained in section 2.2, by using equal ™+ bilocal fields. In

particular, the generators of conformal transformations are those of the reduced theory.
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The change to bilocal field variables necessarily involves a Jacobian, which has been
described, for example, in [41]. Expanding this Jacobian about the leading large N value of
the bilocal generates an infinite sequence of interaction vertices. The Feynman diagram loop
expansion using these vertices then reproduces the 1/N expansion of correlation functions.
These vertices will reproduce the complete non-linear interactions of gravity and they can
be compared directly to the completely gauge fixed higher spin gravity theory. In the dis-
cussion which follows we work in the large IV limit so that these vertices will not play a role.

In formulating the map to the dual gravity theory, it is convenient to Fourier transform
from = to p™. Thus, we work with the bilocal field

_ I S _ _
a(x+,pf,x1,p;,x2) = / dx] /duv2 g1 Ty TWPa Ty J(x+,m1 , L1, Ty, T2) (3.6)

The equation of motion for this bilocal field is

1 o 1 02
8 +7 +7 ) +7 = | "5 92 4 ++99 +7 +7 ) +7 3.7
(3 -|—O'(IE pl X1 p2 .TQ) 2])1"_ ax% 2]7;_ 61’% O'(x pl I p2 .TQ) ( )
The bilocal field o develops a large N expectation value. Expanding about this leading

configuration we have
1
U(ervpi‘r? I17p3_7 .’132) - 0.0(]:4*7])1‘!" xhp;_u .’EQ) + ﬁﬁ(erva, $17p3_7 .’EQ) (38)

It is the fluctuation n(z™, pf, 1, p;, x2) that is identified with the fields of the higher spin
gravity. Notice that n(z™,p], x1,p5, x2) is a function of 5 coordinates. Finally, the large

N expectation value o is nothing but the leading large N equal ™ two point function of
the field ¢°.

3.2 Higher spin gravity

The light-cone gauge description of higher spin gravity has been developed in detail by
Metsaev [31]. We are interested in the gravity dual to the large N limit of the CFT, which
corresponds to free bulk fields. In this case we can work with the Fronsdal description [42]
rather than the full Vasiliev theory [16, 17]. The spin-s Fronsdal field A, ,, ..., is symmetric
and obeys a double tracelessness condition

ALY s = () (3.9)

The dual to the free O(NN) vector model involves these gauge fields, one for every even spin
2s. The higher spin gauge symmetry is

A _ g g peeens) (3.10)

The gauge parameter A#t-Fs-1 is symmetric and traceless and V, is the AdS covariant
derivative. The AdS vierbein e;‘ converts frame indices to spacetime indices. In the
Poincaré patch of AdS we have

1
e = ;5;?. (3.11)
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We denote the Fronsdal fields with frame indices by ®414s and again employ an auxiliary
Fock space description

(o]
d=> 0y a0 a’9)0) (3.12)
s=0

The creation o and annihilation & operators obey the commutator
(a4, ] = ¥ (3.13)

where A, B run over all frame field dimensions. We will also use the indices (4) =
(+,—,I) = (+,—, 2,4). The double traceless condition is

(@2)%® = (a- @)@ = (aa4)?® =0 (3.14)

while the gauge transformation is

D' =& +a'DyA (3.15)
with a traceless (a?A = 0) gauge parameter. The AdS covariant derivative in frame field
indices is 1

DAEéA+§wABCnBDnCEMDE MBC = oBa¢ — aCaP (3.16)

with 5,4 = effﬁ“ and w42 is the frame field spin connection for Poincaré AdS. The equation
of motion for the higher spin fields is

1
(DADA +wa®Dp — ® + 25+ 2 — aDaD + 5(OCD)Qoz2 — a2a2) d=0 (3.17)

where we use the shorthand aD = a?Dy and aD = a?Dy4. In light-cone gauge ® is
traceless a2® = 0 and after some work, the equations of motion become [31]

22040, (f) =0 (3.18)

This is the equation of motion obtained after fixing the gauge and solving the constraint
associated with this gauge choice.

To determine the action of the conformal transformations on the higher spin gauge
fields, we use the Lie derivative along the flow defined by the Killing vectors of the AdS
isometries. The generators of these transformations do not, in general, preserve the light
cone gauge choice. For this reason they must be supplemented by compensating gauge
transformations' which restore the gauge. This analysis has been carried out in detail
in [31] and the complete set of generators are given in section 3.8 of [31].

As discussed above, only two components of the higher spin gauge field, at each spin,
are physical and independent degrees of freedom. We will choose these two components to

13The Lorentz transformations are modified with a compensating gauge transformation in order that
they preserve the light cone gauge condition. For this reason, tensors in the CFT do not map into tensors
with the same indices in gravity. Indeed we will see that —, x components of the current map into X, Z
components of the gauge fields. The details of this matching agrees perfectly with the GKPW mapping
after transforming to the lightcone gauge [43].
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be ®XX XX and XX XZ  (Collect the complete set of physical and independent fields
into a single field, with the help of an additional variable 6 as follows

00 PXX XX XX X2
dXT X7,X,7,0) = ;) <cos(239) -+ sin(2s6) = ) (3.19)
For what follows it is again convenient to perform a Fourier transform to obtain
d(XT, P, X,Z,0) :/dX* PTXTo(XT X, X, 0) (3.20)
The equation of motion (3.18) becomes
i 0 (Xt P X, Z,0)=— ! o +82 (X, P X, Z,0) (3.21)
oX+ oo opt \9X2 o 072 o ‘

3.3 Holography

The equal x bilocal field n(z™, pf, 1, p; , x2) packages a scalar field of dimension A =1
and the two independent components at each spin 2s of spinning conserved currents. It is
a single field that is a function of 5 coordinates. The higher spin field ®(X ™, P* X, Z, 0)
packages a bulk scalar as well as two physical and independent components of a spin-
ning gauge field at each spin 2s. It is a single field that is a function of 5 coordinates.
Bilocal holography explicitly demonstrates the equality of these degrees of freedom by
giving the identification between these two fields. This mapping is determined entirely
by conformal symmetry. The action of the conformal group on the higher spin field
dAr-A2s (X+ X~ X, Z) (and hence also on ®(XT, P, X, Z, 6)) follows from the analy-
sis of [31], while the action of the conformal group on the bilocal is given by the coproduct
of the usual free scalar field representation. A key observation, derived in [7, 29], is that
the generators of these two representations are exactly mapped to each other through the
identification of the coordinates

0 6
:B1:X+Ztan<2> xng—Zcot<2) rt=X"
+ +oo2(f + +wn2(f
p; = P7 cos 3 Py = P7 sin 3 (3.22)

and the fields
® =27PTsind n (3.23)

The inverse of (3.22) is

_ pla 4 pi e g \/Pi D3 (21— 22)

Py +p3 i +p3

+
Pt =pf +p5 0 =2tan"! ( zi) (3.24)
1

The basic claim of bilocal holography is that this mapping between the coordinates of the
CFT and those of AdSy, as well as the identification between the bilocal and the higher
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spin fields, provides a construction of the higher spin quantum gravity starting from the
conformal field theory. This claim passes some highly non-trivial checks.

At the most basic level, we should verify that we have obtained a valid bulk recon-
struction. Under the identification (3.22), the CFT equation of motion (3.7) is mapped
to the higher spin equation of motion (3.21). To see this, start from the CFT equation of
motion, which implies that

1 02 1 02
0= 3.25
el (2}9;r ax% + 2}05r 8I%> " ( )

Since 1 and ® are proportional to each other, with the constant of proportionality (see
equation (3.23) above) independent of x; and z2, we know that ® obeys the same equation
of motion. Thus, we have (the second equality below uses the chain rule as well as (3.24))

1 62 1 62
0,0 = — | — 5+ —— | D
o <2p1+ o o a)
1 d? 9?
~ 2Pt <aX2 * az2> ® (3:20)

This proves that the complete tower of higher spin fields obey the correct equations of

motion. Do these fields satisfy the correct boundary conditions? This entails studying the
Z — 0 limit of the bulk fields [44, 45]. The usual GKPW dictionary [4, 5] is formulated in
de Donder gauge, where the solution to the higher spin equations of motion behaves as

Moo 72728 AMMos (x+ X=X 7 = 0) + 22T MMy (X X X, 7 = 0)

as Z — 0. Here the indices M; take values +, —, X. Components of the gauge field with k
Z polarizations behave as

@Ml . MQS_kZ .. Z ~ Z2—2S—k}AM1MQS_kZZ(X:i'X_’X, Z — O)
Z2s Ik pMy Mok 22 (Xt X X 7 =0)  (3.27)

Picking up the leading term of the normalizable solution, and noting that (at leading
order in Z) we have conservation and tracelessness of the identified tensors, we obtain the
holographic dictionary

BMl"'M2s (X+, X ,X,7Z = O) _ E7\2/151)]\425 (X+, X, X) (328)

with j(]\Q/[Sl)'“MQS (X*, X, X) the CFT primary. Our fields do not obey this boundary condi-

tion. Rather, as Z — 0 we find

2s 2s ( 1\ka2s—k a( v+ Yv— k afv+ v—
%@25(X+;X_,X,O):167TNZ( VIO oK X X)X X X) (3.29)
0X = T (25—k+3 )T (k+3 ) kl(25—k)!

|
w=— (3.30)
r(25+1)
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which is easily proved [12] by making use of the identity

+ 25 cos | 4stan—! @ _ 2 (‘Uk( T)QS k(p )k
) (‘” pf) AP e o e eI

This apparent discrepancy was resolved in [43]. The basic point is that, as we have observed,

the GKPW dictionary is obtained in the de Donder gauge while the bilocal mapping,
is written in lightcone gauge. Under the change of gauge from de Donder to light cone
gauge, the boundary condition (3.28) transforms into (3.29). This proves that the complete
collection of fields in the higher spin gravity obey the correct equations of motion with the
correct boundary condition.

Another property of the map that can be explored regards subregion duality: for every
given CFT subregion A together with some code subspace, there exists a maximal bulk
subregion a whose algebra of operators A, acting on the code subspace can be encoded in
the algebra of boundary operators A 4. The region a is the bulk region bounded by A and
its Ryu-Takayanagi (RT) surface at leading order in the gravitational coupling Gy. We
recall that the RT surface is the minimal area extremal surface homologous to the boundary
region A, whose area in Planck units gives the CFT entropy of the boundary region A to
leading order in the G expansion. The bulk region a is referred to as the entanglement
wedge. From the point of view of the bilocal holographic map, a simple example of a CFT
subregion A is to allow z~ (and hence pT) to be unrestricted, but to restrict —£ < z < L
Consider a bilocal composed of two excitations that are described by wave packets tlghtly
peaked about some position = and some momentum p*. Locate the first excitation at
and py, and the second at x5 and pJ . Where is the corresponding bulk excitation located?
Using the mapping (3.24) it is simple to verify that

2 _ 2
(X _ W) e (M) (3.32)
2 2
This locates the excitation dual to this bilocal on a semi-circle in the bulk. To localize the
excitation to a definite bulk position, we need to localize on angle # in figure 1.
Simple trigonometry shows that

o+
A \/pip
tan§ = L (3.33)

X —mgm e pf4p)

and further, that this angle 0 is exactly the angle appearing in (3.22) and (3.24), which
justifies its name. Thus, it is by localizing the CFT excitations in both z and p™ that allows
us to localize an excitation in the bulk. This tells us that the collection of bilocals with
both excitations located in the CFT subregion A explore the region of the bulk defined by

L 2
X2+ 72 < (2> and any X~ (3.34)

See figure 2 for an illustration. The boundary of this region is the union of the subregion
in the CFT and an extremal surface in the bulk, so that we have naturally reproduced the
statement of entanglement wedge reconstruction [29].
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——— X (parallel to the boundary)

Il X9
Figure 1. The horizontal direction, parametrized by X, is parallel to the boundary. The vertical

direction, perpendicular to the boundary is parametrized by the emergent holographic coordinate
Z. The semicircle centre is at ﬂ%z

——— X (parallel to the boundary)

Nl

Il = — Tro =

L
2

Figure 2. We consider a subregion A of the CFT defined by taking —% <z < % Bilocal
operators belonging to this CFT subregion can be used to construct bulk operators lying in the
grey region, which is the corresponding entanglement wedge a. The bilocal with excitations located
at 1 = —% and zg = % corresponds to a bulk excitation that can be localized on the boundary of
the entanglement wedge. By considering bilocal fields with their excitations (shown as blue circles in
the figure) inside the subregion A, we construct bulk operators lying inside the entanglement wedge.
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The behaviour of the angle 6 as a function of p; and pj is interesting to explore. 6
positions us on the semicircle as shown in figure 1. At pf = py we have 0 = 5 so that
the bulk excitation is as deep in the bulk as possible. When one of the p* momenta is
very small compared to the other, the bilocal is dominated by the large p™ excitation and
becomes point like. In this case § ~ 0 or § ~ 7 (depending on which particle dominates
the bilocal) and the bulk excitation is again located close to the boundary.

There is one more point worth discussing: information localizes in bilocal holography
exactly as expected from a theory of quantum gravity. As a consequence of the entan-
glement structure of the quantum vacuum and the Gauss Law of gravity, [24-28] have
argued for the principle of the holography of information which states that “In a theory of
quantum gravity, a copy of all the information available on a Cauchy slice is also available
near the boundary of the Cauchy slice. This redundancy in description is already visible in
the low-energy theory.” From the mapping (3.24) it is clear that single trace primaries and
their descendants'® in the CFT map into the region at the boundary of AdS,, while bilocals
that are deep in the bulk have the two fields in the bilocal well separated. The holography
of information is then implied by the operator product expansion of the CFT [30] which
expresses a product of separated operators as a convergent sum of the local single trace
primary operators and their descendants. This assumes that the single trace primaries and
their descendants are complete in the sense that they generate all local operators when
they are multiplied. This is reasonable since they are dual to the fields appearing in the
dual gravity and hence they should generate the complete gravity Fock space.

Thus, bilocal holography explains the origin of the extra holographic dimension,'® it
gives rise to fields that obey local field equations with the correct boundary conditions in
this higher dimensionsal spacetime and we have some evidence that it localizes information
exactly as is expected in a theory of gravity.

3.4 Comments on the holographic map

We have performed our analysis in the light cone gauge motivated by the fact that this
gauge is particularly convenient for performing a total gauge fixing that reduces the theory
to its physical degrees of freedom. It is not easy to perform a complete gauge fixing in other
gauges and hence one suspects that it will not be easy to repeat our argument in this case.
With this observation in mind, it is worth studying the lightcone map to see what general
lessons we can extract, since these may provide a more efficient route to constructing the
map in other gauges. This is the goal of this section.

It is possible to give the map as a change of coordinates in momentum space. The
first two entries of the map simply reflect the fact that the boundary CFT and the bulk
gravity share the same translation invariance, so that we can equate the conserved charges
of these symmetries

Pt =pl +p5 P =p1+p2 (3.35)

MFor which both fields in the bilocal are at the same spatial position so that Z = 0.
5Tt is determined by the separation between the two fields in the bilocal - see the formula for Z in (3.24).
This was one of the important conclusions reached in [7].
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In momentum space, the equations of motion in the CFT imply the equations of motion
of the higher spin gravity if we choose

+ +

z V%) b1
P* = —P1 — —— P2 (336)

\oi T\ s

Finally, the angle 0 summarizes the structure of the spinning CFT primary conserved
currents. They play a role only at Z = 0, where the boundary conditions requiring that
the bulk field correctly reproduces the CFT operators, are imposed. This determines

0 = 2arctan (3.37)

=%,

To see this, it is useful to recall equations (3.29) and (3.31).
Now consider the position space version of the map. The formulas for X and X~ look
like centre of mass coordinates, for the pair of excitations in the bilocal

_pimtpims o pl piwy

X
pi +p3 pi +p3

(3.38)
Note that pf and p; play the role of masses, which is natural from the point of view of
light front kinematics. The centre of mass coordinate is the obvious formula to associate
to an extended body. The Z coordinate is now determined to be

1 — T2) (3.39)

by the requirement that we obtain the correct entanglement wedge for the CF'T subregion
described by —% <z < % The requirement that we obtain the correct entanglement
wedge is given in equation (3.32). The resulting formula for the holographic coordinate
Z, given in (3.39), has a very important property: it locates bulk excitations dual to the
single trace primaries (which have x1 = z3) in an arbitrarily small neighbourhood of the
boundary, while bilocals with well separated fields map to bulk excitations located deep in
the bulk. Using the OPE we can express bilocals (and their products) in terms of single
trace primaries (and their products), so that our formula for Z is perfectly consistent
with the principle of the holography of information. In this way, collective field theory is
providing a geometrization of the space of CFT operators in a manner that is perfectly
consistent with how we expect information to localize in a theory of quantum gravity.
Finally, the angle # again summarizes the structure of the CFT primary operators, and
this structure is again only relevant at Z = 0 where the boundary condition related the
boundary behaviour of bulk gravity fields to the operators in the CFT. From figure 1 it
is clear that 0 is a “local angle” defined with respect to an origin defined locally by the
bilocal. Looking at equation (3.19) we see that 6 is used as a book keeping device to collect
the different spin states. In this sense it is not too different from a polarization. In the
case of light for example, polarization is defined as transverse to the direction of motion,
i.e. it too is a defined locally with respect to the photons direction of propagation.
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Our discussion of how information localizes in the bilocal description begs the question
of a precise definition of entanglement entropy for the bilocal sector of the CFT, as well
as in the dual gravity. This is a subtle question both in CFT and in higher spin gravity,
as we now discuss. In the CFT we can calculate entanglement entropy using a physical
regulator, such as a lattice. This approach introduces a Hilbert spaces at each lattice site
n. Describe the state of the field theory using a density matrix p. For any subset A of
lattice sites, we can restrict p to A by tracing out the degrees of freedom of lattice sites
not in subset A. Denote this reduced density matrix by p4. The entanglement entropy of
A is given by the von Neumann entropy S(pa) = —Tr(palnpa). In the bilocal CFT, the
Hilbert space is not a tensor product over regions of space, so the lattice approach does
not give a suitable definition of entanglement entropy. In this case, a natural definition
is obtained by embedding the Hilbert space into a tensor product of Hilbert spaces that
include edge modes living on the boundary [46]. These edge modes contribute positively to
the entanglement entropy. For the specific case of a light front quantization, it is known that
entanglement entropies simplify dramatically: entropies saturate the strong subadditive
inequality which implies that the vacuum behaves like a product state and entanglement
entropy vanishes [34]. This is naively in agreement with the fact that the Ryu-Takayanagi
surface is null. We have used the qualifier “naively” because in the bulk there are also
subtleties to be clarified. The definition of area is not obvious in a theory of higher spin
gravity. Indeed, the usual definition of area gives a quantity that is not invariant under
higher spin gauge transformations [35] so it does not define a physical observable. For this
reason even the area of the Ryu-Takayanagi surface is not obviously physical. A related
comment is that entanglement entropy measures the entanglement of a spatial subregion
of the bulk with its complement. This is a tricky concept since the bulk theory is a theory
of higher spin gravity. In usual Einstein gravity, for a smooth spacetime background with
approximately local physics, we expect that this is the entanglement of quantum fields
(including gravitons) across the co-dimension two boundary of the subregion. In higher
spin gravity where the notions of Riemannian geometry are not gauge invariant it is less
clear how we should make sense of a spatial subregion.

As a final comment, on the gravity side to reduce to physical degrees of freedom, we
have to choose a gauge. On the CFT side this reduction amounted to working with the
equal 2T bilocal. Had we chosen a temporal gauge (for example), we would be eliminating
temporal polarizations, in which case we would need to consider the equal time ¢ bilocal.
This illustrates that the choice of which bilocal is used in CFT, is closely related to the
gauge choice in the dual gravity.

4 Covariant bilocal holography

In the present discussion, the term “covariant” refers to the preservation of the boundary
Poincaré symmetry. In the light front approach to bilocal holography we identified two in-
dependent components of the current at each spin. In the higher spin gravity this entailed
fixing light cone gauge and its associated constraint, leaving only components of the gauge
field with X, Z polarizations. This obviously does not preserve the boundary Poincaré
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symmetry. In the CFT description, the reduction to independent components requires
solving the current conservation equation to eliminate redundant components of the cur-
rent and this step necessarily breaks the boundary Poincaré invariance. To maintain this
symmetry, we will not solve the current conservation equation, at the cost of working with a
larger set of redundant variables. In the dual gravity we will employ a modified de Donder
gauge [47] (see also [48-50]) which preserves the boundary Poincaré invariance. The goal
is then to establish a correspondence between this larger set of variables and a redundant
set of variables in higher spin gravity. Fortunately, a well-executed and insightful paper
by Metsaev [32] has already done this, providing valuable insights that we will use heavily
in this section. Omnce the correspondence is established, we can then solve the current
conservation equation and again reduce both sides to physical and independent degrees of
freedom. We will follow this route to obtain the map for the equal time bilocal theory.

The construction of [32] introduces extra fields into the CF'T description and imposes a
constraint on this bigger set of fields. There is a redundancy in this extra field description,
which can be expressed as a “gauge symmetry”. There is an action of the conformal group
on this larger collection of fields. In the dual higher spin gravity, the modified de Donder
gauge is used. This gauge has the attractive feature that it leads to decoupled equations
of motion, at every spin, that can be explicitly solved. In this gauge, on shell, there is a
residual gauge symmetry. The analysis of [32] demonstrates that the modified de Donder
gauge condition and the residual gauge symmetry of the higher spin gravity matches the
constraint imposed and the “gauge symmetry” of the CFT. The action of the so(2,d)
symmetry generators on the two sides also match.

Once again, following [32], it is convenient to assemble fields into ket vectors |¢). For
this purpose, we use the same oscillators (a®, a?) for the gravity and CFT descriptions.

Z is a book

Here the index a runs over the coordinate labels in CFT. The oscillator o
keeping device in the CFT. In the dual gravity it plays a more physical role since it is

associated to the holographic dimension Z. The oscillator commutators are
(@, a’] = n® [@%,0%] =1 (@, a?] =0 =[a?,a" (4.1)
The so(2,d) generators can then be written as

O¢

¢) = Gl¢) (4.2)

where (3 is a differential operator, given by

Pe = §° Jab _ xaab . xbaa + Mab Mab = aa&b _ OébC_Va
1
D=z-0+A K%'= —§m26a + 29D + M®zb + R® (4.3)

Thus, the representation is determined by giving R* and A. This form of the generators
is valid in both the CFT and in the higher spin gravity, once the correct A and R® are
determined.

In sections 4.1 and 4.2 we review the construction of [32] and then use it, in section 4.3
to determine the map of covariant bilocal holography. This gives the holographic map for
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the equal time bilocal field. Once again we are able to verify that the mapping gives a
valid bulk reconstruction, it realizes the holography of information and it provides a simple
explanation of entanglement wedge reconstruction.

4.1 Covariant CFT

The field content is summarized, using the oscillator language, as follows

5 Q «
—g' . . al - Lay .Q1...Q ./
6) =D ay " lis)  is) = o "|0) (4.4)
s'=0

s/ (s —§)! I
where j;l,l'"as' is a rank-s’ tensor, traceless for s’ = 2,3 and double-traceless for s’ > 4

. . .abedas...a s
nabjgb = nabjgb% =0 Nab ncdj:, cdasast — s =4,5,...,s (4.5)

We use the notation js,l'"as' for the fields since they represent the conserved currents of
CFT. These fields have dimension A(ji, ") = s’ +d — 2. |¢) is a degree-s polynomial in
a® a? and |jy) is a degree-s’ homogeneous polynomial in o

(No + Nz)|9) = s]9) Naljs) = 'ljs) (4.6)

where we have introduced the number operators N, = naboﬂo_zb and Ny = a?a?. The

double-tracelessness constraint is written as

(@-a)*¢) = (npa®a”)*|¢) = 0 (4.7)

This defines the - notation which indicates a contraction over the CFT directions i.e. the
Z index is not summed. This is in contrast to section 3.2 where the dot indicated a
contraction, including Z.

This description employs more fields than required to describe a symmetric, traceless
and conserved spinning current of spin s. Consequently, the description is redundant and
so it is possible to impose a constraint. In the next section it will become clear that the
constraint we impose in the CF'T matches the modified de Donder gauge condition imposed
in the higher spin gravity. The CFT constraint can be written as

Corr|¢) =0 (4.8)
where the operator Copr is given by
A - 1 I /S
CCFT:a-a—ia-aa~oz+§a era-a+e a” 010 (4.9)
where
1 o - 2s4+d—4— Ny
YN, ) L \/25+d—4—2NZ (4.10)

The operator €; evaluates to an s, s’ dependent number for each term summed in |¢). Since

j:,lmas/ is double traceless, it can be uniquely decomposed into the sum of a traceless rank
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s’ tensor and a traceless rank s’ — 2 tensor. The operator II is a projector, which projects
onto the traceless rank s’ piece.

There are local transformations of the fields that leave the constraint (4.8) invariant.
Following [32] we refer to these local transformations as “gauge symmetries” of the CFT.
These local transformations match the on shell residual gauge transformations that remain
after fixing the modified de Donder gauge in the higher spin gravity. The parameters of
these local transformations are & areds’ ¢! =0,1,...,5 — 1. They can be collected into a
vector |€) defined by

s—1—s' — Qqy - .- Qg ay...agr
Z ay TUlEs) €)= T €5 "10) (4.11)
so that
(Na+ Nz)I€) = (s = 1)I§)  Nalés) = 5'€) (4.12)

These parameters are totally symmetric tensor fields, have dimension A(£]) ") = s'+d—3
and are traceless

a2(€) = nap atalle) =0 (4.13)

The “gauge transformations” that leaves the constraint (4.8) invariant are

1

~ 7
ol 4.14
s td—6-2n, @ @bl (4.14)

Scrr|d) = (a-0—a’er +
The representation of the conformal group on these fields is defined by A = s+d—2— Nz and

ot -

= ~a ~a 2 ~a 1 =
_T(O‘ R Y A L N Oy A 3 Y > O‘))

Ra

=i

= —((25+d—4— Nz)(2s+d—4— 2NZ))1/2&Z (4.15)

It is possible to “choose a gauge” that recovers the standard CFT description of the
current. Using a compact notation jg ~ ja,l Ay~ 55,1“'%', d ~ 0% and n ~ 7™ the
gauge transformation (4.14) is

5js/N8€8’—1+§S/+nD€S’—2 8/2273)"'75
dj1 ~ 0& + &1 6o ~ &o (4.16)

and & = 0. The currents jy with s’ > 2 decompose as
jo =i @it s =23,...,s (4.17)

where ;7 and 53T, are rank-s’ and rank-(s’ — 2) traceless tensors. From (4.16), it is clear
that we can use &y to set jo to zero, & to set j; to zero and &y to set jz to zero for
s’ =2,3,...,5s — 1. These further “gauge conditions” can be written as

Mjy)=0 s =01,....,s—1 or aZI|¢)=0 (4.18)
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or equivalently

. 1 .
|]5/>:a-amoz~oz|jsf>, 5/20,1,...75—1 (419)

After making this choice, the constraint (4.8) implies that
_ 1 s 1_ . /
(a-a—504-8a~a)|]s/)+§el\NZ:s_s/_1a'a\js/+1>:0 §=0,1,...,s (4.20)

which can be expressed as

2N, +d—4 1 _ _ . 1_ _ .
= <a-8—a2 da-a)a~a|j3/)+61|NZ:5_8/_1a-a|jS/+1>:O (4.21)

2N, +d — 2 2N, + 2
when s’ =0,1,2,...,5s — 1, and for s’ = s we have
1 72 .
a-0— Pk oa” )|js) =0 (4.22)

Now, (4.21) implies that if @ - a|jy) = 0, then & - @|jy 1) = 0. Since [jo) =0, [71) = 0 we
thus obtain

aljg) =0 & =0,1,...,s (4.23)

so that by (4.19) we obtain
js) =0, §=01,...,5s—1 (4.24)
In the end we are left with the one spin-s traceless current |j,) which, by (4.22) is conserved
a-0ljs) =0 (4.25)

Thus, we have recovered the usual description of the spinning current [j,)) as a totally
symmetric and traceless conserved spin s field

ay as

‘ , attal
B =1ia) s = ooy (4:26)
Acting on this state we have
Alg) = (s +d = 2)[$) R%¢) =0 (4.27)

so that we recover the standard so(2,d) generators. We could, if we like, reduce to phys-
ical degrees of freedom, by eliminating the 0 polarizations with the current conservation
equation and solving the traceless and symmetric conditions leaving two independent com-
ponents. The techniques needed to carry this out in complete detail are described in [12].
We will not need the details of this reduction.
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4.2 Covariant higher spin gravity

Following [32], a massless spin-s field in AdS,;1 spacetime is described by a scalar, a vector,
and totally symmetric tensor fields ¢ " for s’ = 0,1,...,s. Collect these fields into a ket

Qq aasl ay...ags
Z O‘ ’¢s ’(bs > = TS’)' ¢5/ ’0) (4.28)
which obeys
(Na + NZ)|¢(S)> = 8|¢(S)> Na‘¢s’> = Sl|¢s’> (4'29)

The fields qﬁal " with s/ > 3 are double-traceless which can be expressed as

(@-a@)*|") = (npa’a’)*¢t*)) = 0 (4.30)

The modified de Donder gauge condition is

Caaslo®™) =0 (4.31)
where Cqg is given by
_ 1 .1, 2s+d—5—2Nyz\ _
Cpras = -0 ia'ﬁa-a ia 61<8Z+ 57 )a
2s+d — 2N,
+(az oo 225 Z) a?11 (4.32)

The importance of this gauge is because we obtain decoupled equations of motion [47]

1 d—4
(D+8§—ZQ(V —))\(;5 (@2)=0 wv=s+ 0N, (@s)
16
where 52 52 52

This is an important simplification since, as we will see below, these equations are easily
solved and the explicit form of the solution in indispensable in matching to the CFT. The
gauge condition and equations of motion are invariant under the following residual on-shell

gauge transformation

Saas|e™) = (a 0+ e (az + (4.35)

o 2s+d—5—2Ny 5 a? s—1)
+25+d—6—2NZ(aZ 27 ) )'5 )

28—|—d—5—2Nz)
27

61n section 3 our notation used capital letters for the coordinates of AdSs and little letters for CFTs.
In this section we use z® for CFT3 and Z,z® for AdS4. The identification between CFT coordinates and
some of the AdS4 coordinates is because the boundary Poincaré symmetry is preserved. We will revert to
capital letters for AdS4 coordinates in the next section. We also write z® = (¢, z,y).
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where the ket |£(6~D) is

s—1—s _ Qqy - - - aas/ ai...ay
Z ay 'Ey) €)= = (15 — 5,)!533 10) (4.36)

The transformation parameters are traceless a - &|§(S_1)> = 0 and obey the equations of

(D+8§ 212 (y —>>|§8 Dy = (4.37)

Notice that the number of currents ja,lmas' employed in the covariant CFT description of

the spinning current matches the number of fields ¢, 1% used in this section. Further, the

motion

number of “gauge” transformation parameters in the CFT “gauge symmetry” description
matches the number of residual gauge transformation parameters in the AdSg4; higher
spin gravity, in modified de Donder gauge.

To go further we need the explicit solutions to the equations of motion. The normal-
izable and non-normalizable solutions are

109 (, Z)) = U, (=)V7|1) (2)) (4.38)

where this solution depends on an arbitrary ket |¢(*)(z)) that depends only on z and

U, =qZJ,qZ)g "2 ¢ =0 (4.39)

The asymptotic behaviour of our solutions is

6@, 2)) T 27%3160) (@) = 2°]¢) () (4.40)

The representation of so(2,d) in this gauge requires some care. The modified de Donder

gauge condition is invariant under both Poincaré and dilatation symmetries. It is not how-

ever invariant under transformations generated by the special conformal transformations.

This can be corrected by supplementing K with a compensating gauge transformation.
The result of this analysis gives a representation of so(2,d) with

1

A= Zdz+ 5( -1) R* = Rfy) + R}y + Reomp (4.41)

Ry =2 (aa —a- 2N +d 50 >6164Z — ZaZ&a" (4.42)

Ry = 2220 Bilé(@.2)) = b6 (@,2)) (443

€ (0,2)) = ZUsan (@ - 0%+ ) (<1)7]6) ) (4.44)

Metsaev now provides a remarkable and explicit identification of the degrees of freedom
in the CFT and in the AdS higher spin gravity. The proposal identifies the ket vector
|0() () appearing on the r.h.s. of (4.38) with the ket |¢) of the previous subsection.
There are three compelling pieces of evidence for this:
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i. The residual gauge transformations of AdS higher spin gravity reproduce the local

symmetry of the CFT in the sense that

Saas|¢®) (w, 2)) = Uy (=)"?bcrr|e"™ (2))

(4.45)

ii. The modified de Donder gauge condition of AdS higher spin gravity reproduces the

constraint imposed in the CF'T in the sense that

Cas|6'(z, 2)) = U (—)"2Copr|o) (z))

(4.46)

iii. The global so(d, 2) bulk symmetries of the massless spin-s modes in AdS;y; become

the global so(d, 2) boundary conformal symmetries (G €so(2,d))
Gaas|¢®) (x, 2)) = U, (—)¥*Gorr|¢") (2))

The proof of these statements uses the following useful identities

1

V—3 v+ 1
<3z+ 22>Uy= v—1 (32— 22>Uu= v1(—0)

1
V+§

-
0z + 7 U, =U_,q1(-0) 0z —

which are proved starting from the following Bessel function identities

v

(az + ;) JAZ) = Jy1(Z) (a - Z) JAZ) = —Jysr(Z)

(4.47)

) Uy =U_yy  (4.48)

(4.49)

In the conformal field theory we performed a “gauge fixing” that recovered the standard

CF'T description in terms of a traceless, symmetric and conserved spin s current. We now

consider the same gauge fixing in the AdS higher spin gravity. Following the decomposition

used in the CFT, we decompose the fields ¢ with s’ > 2 as follows
by = P @ Pty §=23,...s
Concretely, the decomposition is
Aoy Qay by = ay - aa, ()™ 9192 (ggT,) 0 a)
with both fields appearing, traceless
Nab(¢T) 20930 = 0 = o ($TT ) abas s

The degree s’ piece in a® of the gauge transformation law (4.35) is given by

Qay -+ Oa, ((Gads@a)™ % + 0™ (Jaas Py’ o)™ %)

/ nay fd2 Oy 52 — 52 s\ La1-ay
:aal..-aasl Sa 55,71 + 23/—|—1 82‘1‘2 §8,

(4.50)

(4.51)

(4.52)

(4.53)

+8/(8l — 1) 5% — (S, — 1)2 (82 o s’ — 1) na1a2§;1/3"éa5/:|

2s' — 3 2s' — 1 A
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for s’ > 2,

21 1
Qay6aas(91)™ = aq {8‘”&) +y/2 3 (8Z + Z) ‘“} (4.54)

for s/ =1 and
Saas(dg) = sz & (4.55)

for s’ = 0. From (4.55) we can use & to set ¢¢ = 0 and then from (4.54) we can use £ to
set (¢1)® = 0. Next, using (4.53) we can use (£)% % to set (¢5)¥ 7% =0 for s’ = 2,
then s’ = 3 and so on up to s’ = s — 1. Thus, in the end we use the complete set of gauge
parameters to set

(pL)ue =0 §=0,1,2,---,s—1 (4.56)

s

These further gauge conditions can be written as
aZ1l|¢) =0 (4.57)
so that the operator defining the modified de Donder gauge condition (4.31) becomes

~ 1 1
Cags=a-0— 50&'80_42— 2aZ€1<8Z+

28—|—d—5—2NZ>_ _
-

7 (4.58)

Thus, in this gauge, the terms independent of a® in (4.31) imply that

(1)1 (2) = 0

N|=

Z A 2
= ¢3T(z) =0 (4.59)

(az + 1) (7 ) = (az + 1) Us (—1) V267 () = U

Making use of this result, the linear in o terms in (4.31) imply that
2 a 2 a a
(02 + 5 ) (GF7(Z2) = (9 + 3 ) Ug(-1)2(eET)" () = Uy (-1 ()" (2) =0
= (¢57)"(x) =0 (4.60)
Assume that (¢17)® % (2, Z) = 0. The terms of degree s’ — 1 in a® in (4.31) then imply
that
s’ TT yai-ay s’ Nz TT yai-ay
(07 + 5 ) @FT o1 (Zia) = (07 + 2) Uy (0 V201 (a)
= Uy (CVHT ) @) =0
= (¢gy) %1 (z) = 0 (4.61)

NI

for s = 3,4,---,s—1. Consequently, the only field that remains is ¢3} " and the modified
de Donder gauge condition (4.31) becomes the statement that this field is conserved

Dadia2-5 = ( (4.62)

so that we recover the usual degrees of freedom in the spin s primary current. It is straight
forward to describe the action of the so(2,d) generators in this gauge. The representation
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is determined by the choice of A and R® given in (4.41). Using the fact that in this gauge

our state
ar .,

o -a®s a
[¢0) = —— 0% |0) (4.63)

has no dependence on the o oscillators, we easily find

at ... n%s
A[pW) = (s +d =2 = Np) =0 g0(0) = (s +d = 961)  (4.64)
and 1

Riylo¥) = —Za”a%|¢")  Ryy|™) = —5220“|¢(5)> (4.65)

The contribution coming from the compensating gauge transformation is

2s+d—5 —a s
Reomp|¢*) (2, 7)) = (a 0 +a” (az + 22)) 20y 116" (-1)"2|¢1) (@)

= a-0ZU,1a%(—1)N? (¢ (2)) + ZaZ a9 (x, Z)) (4.66)

The contribution with coefficient o in the last term above cancels against the contribution
from R‘(ZO). Thus, putting these contributions together, we find

RGO (2, 2)) = — 3 220169 (@, 2)) + -0 2Upir 6 ()M 6@ (4.67)

Since the action of R* does not introduce any dependence on a?, the representation closes
on the ¢ % fields, mirroring the analysis in the CFT.
When acting on the state (4.63) the equation of motion (4.33) becomes

(D+a§—212 ((s—;>2—i>>|¢<s>(gg,2)> —0 (4.68)

To derive the holographic mapping, it is convenient to assemble the complete collection
of spinning fields into a single field.!” Towards this end, introduce the vector

3 2) =Y (2202162 (@, 7)) + e3¢ (w, 7)) (4.69)
s=0

The equation of motion can be written as

? 1 [ 1)\ +

To obtain an equation that naturally connects to the CF'T we need to perform a small ma-
nipulation. Introduce a new state |¢) = v/Z|¢). The equation of motion for |¢) is given by

<D+ O Lo, az)w( 7)) =0 (4.71)
972 " 792 T 722 )10 2N = ‘
We will see that the equation of motion in this form is directly connected to the equation

of motion of the bilocal field 7.

"The states |¢(*)) all have dimension 1 independent of the spin s so we can sensibly add them. This is
easily seen by looking at (4.40) and noting that Z is a length and we identify |¢*)(x)) with a free CFT
state of dimensions s + 1. Further, at each s there are only two independent and physical states that we
index using +.
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4.3 Mapping

The discussion of the previous two sections has been valid for general d. We now specialize
to d = 3. Our strategy is to use the insights obtained from the light front map. In that case
the gravity coordinates X and X~ take a centre of mass form, with p;" play the role of the
mass for the field at z;. It is natural to expect a similar formula for X and Y with the role
of the mass now naturally played by the energies p{ and pJ. This motivates the formulas

0 0 0 0
Y - pll’é + p(2)1'2 v — p1y(1) —|—p(2)y2 (4.72)
Pi + D3 Pi + D3

When writing these formulas we have in mind bilocal fields composed of excitations that are
described by wave packets tightly peaked about the energies p{ and p9. The Z-coordinate
is determined by requiring that we obtain the correct entanglement wedge for a subregion
given by a disk in the X,Y plane at Z = 0. The RT surface for a disk subregion in AdSy
is a hemisphere. To obtain the correct entanglement wedge, the map must satisfy (refer to
figure 3)

2 2 _ 2 _ 2
(X _ T JQF “) + (Y _ 4 "2”/2> P ) I(yl 2) (4.73)

This is easily solved by setting Z2 = Z? + Z2 where

0,0 0,0
PipPs pipy

Z) = 5 (@1 — x2) Zy = \0/70(?/1 ) (4.74)
p1 Tt P2 Pl + py

The angle 0 in the light front map, which plays the role of a polarization, is a local angle in
the X, Z plane, defined with respect to an origin defined by the bilocal and not obviously
related to any angle defined in the CFT. This is simply a consequence of the fact that
choosing light cone gauge and then solving the constraint does not preserve the Poincaré
subgroup of s0(2,3), so the relation between rotations and boosts in the CFT and the dual
gravity is not straight forward. Here we introduce an angle ¢ that will play a similar
role. Since our description of the higher spin gravity and the CFT are both covariant with
respect to the boundary Poincaré symmetry, we expect a simple relation between ¢ and
angles in the CFT. With this in mind, it is natural to identify

Zy = Zcosp Zy = Zsinp (4.75)

Notice that once again Z only vanishes when the two fields in the bilocal are coincident.
This implies that the single trace primaries are again localized to a neighbourhood of the
boundary and further, that bilocals composed using two well separated fields, are located
deep in the bulk. By making use of the OPE operators localized deep in the bulk can be ex-
pressed as elements of the boundary algebra which explains how our map is consistent with
the principle of the holography of information. Thus, with the above map the resulting col-
lective field theory localizes information exactly as expected in a theory of quantum gravity.
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The above map is invertible with the result

0
=X+, 22, v =X—/Blz, (4.76)
p1 )
0
-V 4+ ,/I%ZQ y =Y — |2 7, (4.77)
pi D3
Expressing the momenta in the form p, = —i% and using (4.72) and (4.74), as well

s (4.76) and (4.77), the chain rule can be used to derive the mapping between bulk and
CFT momenta. The result is

=pi +p3 =p{ +ph
0
p2 P1 » P2 pl
—Pp —5Dh (4.78)
Vo P32 BRI e
and
N N /P y /P
P=—5.a oLz Pi= 5, ob 0ol %
pi + D3y Py + Y Di T P2 Pi + D3
N M ox /PR y /P
Py = 5 OP oPZ1 Py = OP -5 0P22 (4.79)
pi + Dy ) + 9 DI+ P2 Pi + D3

The formulas for PX and PY given above are exactly what they should be: the boundary
CFT and bulk gravity share translation invariance in both X and Y. These formulas simply
equate the conserved charges of these symmetries. Below we will argue that the formulas
for Py, lead to the correct bulk equations of motion. The last ingredient in the map is
the identification of the bilocal field n and the gravity field |¢). We consider the equal
time bilocal theory, described by the field n(t,#1,#2). In the dual gravity, we reduce to
physical degrees of freedom by using (4.62) to eliminate the temporal polarizations of the
current. This gives a field [¢(X4)) = |6(t, X, Y, a!, a?)) where we have explicitly indicated
the dependence on the oscillators. The map between fields is

3 2 pY p)
n(t, X + Ezl,YJr EZQ,X— le,Y— FZQ):MS(t,X,Y,Zl,Zg)) (4.80)
1 1 2 2

Does this map is provide a valid bulk reconstruction? To verify that the bulk fields
obey the correct equations of motion we argue that the CFT equations of motion imply
the bulk equations of motion. The CFT equations of motion, after Fourier transforming
to momentum space and using (4.80), are given by

((P1)* = B1)* = )HID(P) = 0 = ((1)* — (15)* — (¥3)*) |6 (P™)) (4.81)

while the bulk equation of motion is given by (4.71). Rewriting in terms of Z; and Zs, the
equation of motion for [¢(X4)) is given by

82
( s S 822) 6(XA)) = 0 (4.82)
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Figure 3. The base of the hemisphere above is a disk centred at (”’12&, ?“Qﬂ) on the horizontal
plane, parametrized by X,Y, which is the boundary on which the CFT is defined. The vertical
direction, perpendicular to the boundary, is parametrized by the emergent holographic coordinate
Z. The lines of longitude shown correspond to lines of fixed ¢. Adjusting the energies p) and p9
of the two particles in the bilocal moves the bulk excitation dual to the bilocal along the lines of
longitude. To move between the lines of longitude we need to change ¢ which rotates the (77, Z3)
coordinates. The two red circles on the plane show the location of the excitations in the bilocal.
The excitation is located at any point on the red curve in the bulk. Choosing a specific p? and p9
will localize the excitation on this curve.

After a Fourier transform to momentum space, we have
(P2 = (P¥)2 = (PY)? = P}, — PE,)|o(P) =0 (4.83)

Finally, since the boundary CFT and the bulk gravity share the same time translation
invariance we know that P? = p? +pJ. Start with the L.h.s. of (4.83) and use (4.78) to find

0 0 0 0
(P2 = PP (R + D) - PP (8 + 69D )lo) (484)
b1 D3

Enforcing the CFT equations of motion (4.81) we find

0 .0 0, .0
(P2 = PP )2 - PP 7 ) = (PO = R+ 092)l) (4.89)
p1 D3
which does indeed vanish. This completes the demonstration that the CFT equations of
motion, together with the holographic mapping, imply the bulk equations of motion.

To complete this discussion consider the boundary conditions obeyed by the field, which
are spelled out in (4.40). After reducing to spatial polarizations, only two independent
components of the current (denoted j(jés)) at each spin remain. The OPE (2.1) becomes

- o A . 9\2s - , CoNds - gy
n(t,xlaxz)zgdz_ocsd (y aﬂ) (W' + i) oy (6:3) + (0! — ™)™ Jy ()
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Using the holographic mapping (4.76) and (4.77) we easily find

0. .0 0. .0

gt =21 — 29 = p2+p1Z1 :p2+p1Zcos<,0 (4.86)
\/Pird PPy
0., .0 0., .0

+ +p9

V=g -y = 2 01?1 Zy =12 OpOlZsmso (4.87)
P1P2 \/ PiP2

=X+02) y=Y+0(2) (4.88)

so that, as Z — 0 we have

sp+p) is o—2is
n(t, Ty, d2) = ZCSOZ2 2 2% (2 ® (Jr)(tXY) 2ise

in perfect agreement with (4.40). This proves that we have indeed obtain a valid bulk

(ﬂLXﬂ+Ow»

reconstruction.
Finally, it is interesting to study the behaviour of the extra holographic coordinate Z
of a bulk excitation dual to a given bilocal. The coordinate Z is given by

\/p1p2

(1 — x2)? + (11 — y2)? (4.89)
p1 + p2 \/
+/p9ps
pd+p)
p} = pY, so that the bulk excitation is located deepest in the AdS spacetime when the

< 1. This factor is maximized when

Since energies are always positive we have 0 <

total energy is shared equally between the two excitations in the bilocal. If either of the
excitations carry most of the energy this factor becomes small and the excitation is located
close to the boundary. Finally, to locate excitations deep in the bulk, we need a large

spacial separation /(1 — 22)% + (y1 — y2)? between the two fields in the bilocal.

5 Conclusions

In this article we have used collective field theory [1, 2] as a constructive approach to the
holography of vector models [6]. First we performed a change from the original scalar
field to gauge invariant bilocal field variables. Then we performed a change of spacetime
coordinates and specified the relation between the fluctuation of the bilocal field and the
dual higher spin gravity fields. This provides a mapping between the complete set of single
trace primaries and the complete set of bulk scalar plus spinning gauge fields. There are a
number of lessons about bilocal holography that are worth listing;:

1. Bilocal holography provides a complete reconstruction of the bulk spacetime. The
equation of motion for every bulk field, together with the correct boundary condition
for each of these fields, is reproduced by the bilocal holography map.

2. The choice of a gauge in the higher spin gravity is related to the choice of bilocal used
in the CFT description. Indeed, choosing an equal time bilocal in the CFT is a choice
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about how the CFT will be reduced to independent degrees of freedom: the temporal
polarization will be eliminated. The choice of gauge in gravity is also related to
choosing how the theory will be reduced: the gauge condition and its constraint both
eliminate degrees of freedom. In this way, the equal ™ bilcoal is naturally related to
lightcone gauge, while equal time bilocal is naturally related to temporal gauge.

3. Both in the lightfront and the covariant version of bilocal holography, the choice of the
momenta associated to the holographic coordinate Z is fixed by the bulk equations
of motion. The bulk equations of motion determine how the fields in the bulk Z > 0
are determined in terms of their boundary values. The boundary condition (which
is set at Z = 0) encodes the usual GKPW map of AdS/CFT and it determines
the structure of a local angle which plays the role of a polarization, packaging the
spinning fields into a single field.

4. The holographic map constructs the extra holographic radial coordinate Z as the
distance between the two operators in the bilocal. Single trace primaries which are
obtained by taking derivatives and letting the two fields in the bilocal approach a
common point, live in a neighbourhood of the boundary at Z = 0. Bilocals with well
separated fields are located deep in the bulk at some Z > 0. The OPE expresses
bilocals (and their products) in terms of single trace primaries (and their products),
so that our formula for Z is perfectly consistent with the principle of the holography
of information. Collective field theory provides a geometrization of the space of CFT
operators in a manner that is in perfect agreement with how we expect information
to localize in a theory of quantum gravity.

5. For the case of a strip subregion (for the equal 2™ bilocal) or of a disk subregion (for
the equal ¢ bilocal) we find that the map of bilocal holography predicts the correct
entanglement wedge. This is further evidence that collective field theory localizes
information exactly as in a theory of quantum gravity.

Point 4 deserves some extra discussion. Here we are constructing a 4d gravity theory
from a 3d CFT. The CFT does not have enough degrees of freedom to produce a genuine 4d
theory, so there must be redundancies between the degrees of freedom of the 4d theory. Our
analysis shows that the collective field theory description does indeed have redundancies
and they take exactly the form predicted by the holography of information. This is strong
evidence that collective field theory is producing a higher dimensional theory of gravity.

There are a number of ways in which this work can be extended. First, it would be
interesting to compute subleading corrections in % and make contact with the interaction
vertices of higher spin gravity. These vertices are generated in the CFT by expanding the
Jacobian about the leading large N configuration oyg.

Moving on to other backgrounds, constructing the holographic map for the equal time
description of the CFT at finite temperature, would provide deep insights into the geometry
dual to the thermofield double state. This is particularly interesting given the fact that in
this case we expect horizons in the bulk spacetime.
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Another interesting question is to ask to what extent the equal time approach developed
in section 4 can be used to write an off-shell map between bilocal fields in the CFT and
higher spin fields in the bulk. The equal time bilocal eliminates temporal polarizations of
the bulk higher spin fields by using current conservation. Enforcing current conservation
forces the fields on-shell. In contrast to this, the two time approaches of [13] and [36-38]
retain all bulk polarizations and provide a much more promising starting point towards an
off-shell map.

Finally, it is interesting to ask how this map for the vector model can be extended to
a theory of free matrices. Again, we can declare that it is the singlet sector that is dual
to the gravity theory. For the matrix model the space of invariants is much richer that
it was for the vector model. For the vector model we could only produce bilocal fields
because the only way to produce an O(N) is invariant is by contracting a pair of vectors.
For the matrix model we can produce a U(N) invariant by taking a trace of any number k
of matrices and hence we generate k-local invariant collective fields for every k. Correctly
constructing the holographic map in this setting would be another convincing test of the
idea that collective field theory provides a constructive approach to holography.
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A Identities obeyed by the bilocal field

In section 2.2 we made use of identities obeyed by the equal time (and equal x1) collective
bilocal field. In this appendix we derive these identities. The identity obeyed by the equal
time bilocal follows by evaluating

w 09
K Oyt Oz

(@t +y") et (aF =yt (A1)

If both derivatives act on a single field we have
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where we use the free equation of motion. Thus
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Now, work in Cartesian coordinates, specialize to d = 3 and evaluate the identity (A.3) at
0
y =0

(9 — — a — — a — —\ a o d )
a(:f)@“(t,x—ky)gf) (t, & —g): —: (t, T+ §)Orop (t,x—y):)
0 0 0 DN it o
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This is the first identity we wanted to prove.
For the identity obeyed by the equal z* bilocal field, work in lightcone coordinates
and evaluate the identity (A.3) at y© =0
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This is the second identity we wanted to prove.

B Further comments on higher spin gravity

In our discussion of higher spin gravity in the light cone gauge, following [31] we have
used the double-traceless Fronsdal field ®41++4s [51]. The description used in section 4,
developed in [32], uses double-traceless so(d-1,1) algebra fields. This is not the Fronsdal
field and is used because it facilitates the connection to the dual CFT. In this appendix we
will simply state the relation between these two descriptions and refer the reader to [47]
for the details. Denoting the Fock space state corresponding the spin s Fronsdal field by ®
and the Fock space state for the spin s field of the so(d-1,1) description by ¢, the relation is

¢ =77 NTI*® (B.1)
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where
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The inverse transformation is

= Z TN (B.6)
where
% = il + aAaA 1 e (aAozA — 2 dZ&Z>
@ 22(Ng+ Nz +d+1) “ 2(No+ Nz)+d—-1
1l = 0(a,a?, Ny + Nz, a,a%,d+ 1) (B.7)

In this appendix a? = a®a’n, and & = a*abngy.
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