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1 Introduction

Determining the macroscopic phase of matter from the microscopic description of fun-
damental interactions is a central topic in physics. The problem is challenging as simple
microscopic models can become strongly coupled at large scale, and perturbation expansion
breaks down. Monte-Carlo simulation and variational methods are useful non-perturbative
tools. Both methods are enormously successful, but still have limitations. Monte-Carlo
simulation has statistical errors. Finite-size effects can obscure the symmetry at the critical
point, and sign problems remain an obstacle in many systems. Variational methods are
usually exponentially hard to converge to the thermodynamic limit, and special methods
like MPS that have power-law convergence only demonstrate superiority in low-dimensional
systems. The bootstrap philosophy in physics has recently undergone a renaissance which
has produced strong bounds on the dynamical data in conformal field theories [1–3]. The
bootstrap approach is different from the first principle calculation approach described above
as bootstrap does not rely on a microscopic description. This gives bootstrap the power
to place rigorous, generic bounds on dynamical data but also limits its application when
we wish to implement more knowledge of the microscopic description. More recently, a
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Figure 1. A schematic demonstration of the spectral bootstrap crossing equation. The l.h.s. and
r.h.s. are analogous to the t-channel and s-channel, respectively, that arise as a consequence of OPE
associativity in the conformal bootstrap. In the t-channel, we contract the operator Oi with Oj

and obtain a third operator. In the s-channel, we contract the operators with the external states,
and sum over a complete set of exchanged states.

new bootstrap paradigm that leverages the unitarity and microscopic equations of mo-
tion emerged. The new method produces rigorous bounds using the explicit microscopic
Lagrangian and Hamiltonian, making it a promising tool to study strongly coupled sys-
tems from first principles. The method was first applied to large N lattice Yang-Mills
theory [4, 5] and was followed up by [6] with a more careful treatment of symmetries and a
more efficient algorithm. These works consider a large number of Wilson loop expectation
values and show that the space of such expectation values are constrained by reflection
positivity and Schwinger-Dyson equations of motion. The method was also used to study
the lattice Ising model [7] and matrix models [8, 9]. For hamiltonian systems there is a
similar method. Positivity of the Hilbert space inner product imposes a positive semidefi-
nite constraint on the moment matrix of eigenstates. The equations of motion are used to
reduce the number of independent parameters in this matrix and the resulting parameter
space is partitioned by the constraint. The method has been applied to various quantum
mechanical [10–16] and lattice models [17–19]. Similar methods also exist for classical
mechanical systems [20, 21] and non-unitary systems [22, 23].

These lattice and moment matrix bootstrap methods are successful both conceptually
as the bound is rigorous and numerically because the bounds converge rapidly when the
system has small correlation length, but there is still room for improvement. The infrared
(IR) resolution of lattice bootstrap is limited by the spacetime span of the operators stud-
ied, which is naively exponentially difficult to increase. The moment matrix bootstrap
setup only constrains the observables on the same in- and out-states thus many dynamical
observables are unbounded. Moreover, no existing bootstrap method produces bounds on
the gap of a lattice theory. Therefore, we are motivated to look for more constraints that
have not been considered by current methods. A possible generalization is by system-
atically introducing observables that are off-diagonal in terms of the in- and out- states.
However, as we will show in the next section, the straightforward generalization fails to
improve the bound and a more sophisticated approach needed.

In this work we report on a new bootstrap method called the spectral bootstrap that
closely mirrors the structure of the conformal bootstrap. We consider the spectral decom-
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position of any two-point correlator on a pair of energy eigenstates

〈i|O1O2|j〉 =
∑
k

〈i|O1|k〉〈k|O2|j〉 (1.1)

to be our “crossing equations”. A schematic demonstration of the crossing equation is
shown in figure 1. These equations can be organized in terms of quadratic forms of the
one-point matrix elements 〈i|O|k〉 which are analogous to the “OPE coefficients”. The
space of independent one-point matrix elements can be systematically reduced to “primary
elements” using the Hamiltonian equations of motion, reminiscent of the conformal block
decomposition. We use semidefinite programming to exploit the constraints on the positiv-
ity of the quantities |〈i|O|k〉|2. Table 1 contains the dictionary between objects appearing
in the conformal and spectral bootstraps. The spectral bootstrap manifestly contains the
unitarity constraints imposed by the moment matrix approach as a special case where O1
and 〈i| are conjugate to O2 and |j〉, respectively. The spectral bootstrap is stronger as it
imposes constraints on diagonal and off-diagonal matrix elements jointly. More observables
such as the transition rate and the gap become accessible in the spectral bootstrap and
the existing bounds from the matrix approach are expected to become stronger.

We test the spectral bootstrap method on an anharmonic oscillator model and the
(1+1)D transverse field ising model (TFIM). As a warm-up, we show that the bounds on the
low-lying energy eigenvalues E0 and E1 of a double-well potential are drastically improved
by the spectral density compared with the moment matrix approach. We begin by taking
the external states |i〉 and |j〉 in (1.1) to both be the ground state |0〉, obtaining a setup that
is analogous to the single correlator setup in the conformal bootstrap. The spectral boot-
strap bounds E0 on a narrow interval and E1 from above. Even at low truncation, the al-
lowed interval of E0 is parametrically smaller than what the moment matrix bootstrap pro-
duces at a higher truncation. The E1 upper bound is almost perfectly saturated by the exact
solution. We then extend the setup to the mixed matrix elements between the ground state
|0〉 and the first excited state |1〉 and find even for minimal truncation all parameters, E0,
E1, 〈0|x2|0〉, 〈1|x2|1〉 and 〈0|x|1〉 are bounded in a tiny island of precision ∼ 10−8. We apply
the extremal functional method as in [24, 25] to extract the spectrum and find the eigenval-
ues of many higher excited states are in good agreement with the exact result. With TFIM,
we show that the spectral decomposition of correlators of the form 〈0|OO′|0〉, Hamiltonian
equations of motion, translation invariance and spin, parity and time-reversal symmetry
together impose non-trivial upper bound on the gap and local operator matrix elements
of the infinite lattice model. The bound improves and becomes closer to the exact infinite
volume values as we include larger number of equations of motion and crossing equations.

The paper is organized as follows: in section 1.1 we summarize the key ingredients
in the spectral bootstrap method and make an analogy with the conformal bootstrap. In
section 2.1 we study the anharmonic oscillator as a warm-up. We begin by revisiting the
matrix bootstrap method and discussing the motivation to switch to the spectral bootstrap
approach. Then we introduce the spectral bootstrap and present improved numerical
results. In section 3 we study the transverse field Ising model. First we explain the
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Conformal bootstrap analogy Spectral decomposition bootstrap objects
OPE coefficients Matrix elements 〈i|Ok|j〉

Crossing equations Spectral decomposition 〈i|O1O2|j〉=
∑

k
〈i|O1|k〉〈k|O2|j〉

Conformal symmetry

{
Hamiltonian equations of motion 〈i|[H,O]|j〉= (Ei−Ej)〈i|O|j〉
Translation invariance 〈i|UnOU−n|j〉= ei(pi−pj )n〈i|O|j〉

Scaling Dimension ∆ Energy (E−Evacuum) and momentum p

Spin, parity, global symmetry irreps (discrete) rotation irreps, parity, global symmetry irreps
Descendants ∂µ1 · · ·∂µn (∂2)mφ [H, [H, · · · [H,O(xn)] · · · ]]|xn=n~e

Single-correlator bootstrap 〈Ω|O1O2|Ω〉 where O1, O2 are descendants of the same operator
Mixed-correlator bootstrap 〈Ω|O1O2|Ω〉, 〈Ω|O1O2|k〉, 〈k|O1O2|k〉 with generic O1, O2

Table 1. Dictionary of the analogy between the spectral decomposition bootstrap and the confor-
mal bootstrap.

subtleties of the infinite lattice and how to modify the bootstrap setup to address them.
Finally we present the numerical results on the TFIM.

1.1 Summary of setup

In the spectral bootstrap method, the key ingredient is the crossing equation obtained by
inserting the identity 1 = ∑

k |k〉〈k| between a product of two operators

〈i|O1O2|j〉 =
∑
k

〈i|O1|k〉〈k|O2|j〉 , (1.1)

where the external states |j〉 are taken to be the energy eigenstates of the Hamiltonian
H. The crossing equation is analogous to the crossing equations in the conformal boot-
strap. The matrix elements 〈i|O|j〉 are analogous to the OPE coefficients of the conformal
bootstrap. Whereas in the conformal bootstrap the OPE coefficients can be reduced by
conformal symmetry, in the spectral bootstrap we can reduce the number of independent
matrix elements using the Hamiltonian equations of motion, translational invariance and
global symmetries 

〈i|[H,O]|j〉 = (Ei − Ej)〈i|O|j〉
〈i|UxOU−x|j〉 = ei(pi−pj)x〈i|O|j〉
〈i|O|j〉 = 〈Qi|QOQ−1|Qj〉 ,

(1.2)

where U denotes the lattice translation operator and Q is a global symmetry generator. In
few-body quantum mechanics problems we have additional equations

〈i|HO|j〉 = Ei〈i|O|j〉 . (1.3)

After imposing the relations (1.2), the independent matrix elements are reduced to a small
basis. To make an analogy with the conformal bootstrap, we call this a basis of primary
operators A = {Ob1 ,Ob2 , · · · }, and all matrix element are fixed up to the matrix elements
of the primary operators

〈i|O|j〉 =
∑
i

gOs (Ei, Ej , pi, pj , Qi, Qj , · · · )〈i|Obs |j〉. (1.4)
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up to known factors gOi . The factors gOi depend on the quantum numbers of states |i〉 and
|j〉 that show up in the equations of motion (1.2), but for simplicity we omit the other
quantum numbers except for Ei and Ej for the rest of the introduction. By plugging the
expansion (1.4) into the crossing equation (1.1) we can constrain the allowed values of the
primary operators’ matrix elements. Both sides of (1.1) reduce to a sum over finitely many
matrix elements with a known Ek-dependent factor gOi (Ek, Ei, · · · ):

gO1O2
s (Ei, Ej , · · · )〈i|Obs |j〉 =

∑
k,s,r

gO1
r (Ei, Ek, · · · )gO2

s (Ek, Ei, · · · )(〈k|Obr |i〉)∗〈k|Obs |i〉 .

(1.5)
We claim that everything in (1.5) can be wrapped into a quadratic form

0 =
∑
k

c†V(Ek, Ei, Ej , · · · )c+ c†0V0c0, c =



...
〈k|Obs |i〉

...
〈k|Obs |j〉

...


c0 =



1
〈i|Ob1 |j〉

...
〈i|Obs |j〉

...


. (1.6)

In the above equation, c ∈ CS contains all the independent matrix elements between an “ex-
ternal state” represented by |i〉 and |j〉 in (1.1) and an “internal state” represented by |k〉 ap-
pearing in the sum of (1.1). S counts the number of independent matrix elements. The ma-
trix V ∈ CS×S contains the factors gOs (Ek, Ei, Ej , · · · ) and can always be made Hermitian.1
The special contribution from the right-hand side of (1.1) with k = i or j is swept into the
term with c0 and V0. The left-hand side of (1.1) can be interpreted as a quadratic form in-
volving the matrix elements and 1, and is also swept into the ~c0-term by prepending 1 to ~c0.

The equation (1.1) is only a single representative — corresponding to the particular
operator product O1O2 — of an arbitrary number N of crossing equations that may be
obtained by applying the same procedure to other operator products. Casting these N
equations into the same form as the constraint (1.6), we obtain N pairs of constraint
matrices which we package into matrix-valued vectors ~V ∈ CN×S×S and ~V0 ∈ CN×S0×S0 .

Our set of crossing equations can then be expressed as the constraints

~0 =
∑
k

c†~V(Ek, Ei, Ej , · · · )c+ c†0
~V0c0 . (1.7)

Any linear combination of the N constraint equations with a list of coefficients ~α ∈ RN
must be satisfied so long as (1.7) holds:

0 =
∑
k

c†
(
~α · ~V(Ek, Ei, Ej , · · · )

)
c+ c†0

(
~α · ~V0

)
c0 . (1.8)

Now we can make recourse to the standard argument in numerical bootstrap. If we find an
instance of ~α such that ~α · ~V � 0 and ~α · ~V0 � 0 for a prescribed set of {Ek, pk} then (1.8)

1For a generic equation like (1.6) we project to the real part of the equation. Then we can shift V by
any anti-Hermitian matrix and the qradratic form is invariant. In practice we always use PT -symmetric
operators and states such that the c is always real, in which case it is obvious that V can be made symmetric.
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will be violated no matter the value of c. Thus the crossing equation provides a method
for testing hypotheses pertaining to the spectrum. In this paper we focus on testing the
gap of the spectrum — in particular, our assumption is that for all states |k〉 in the sum
in (1.8) except the ground state, Ek > Egap. We prove by contradiction:

If there exists ~α ∈ RN such that
~α · ~V(Ek, Ei, Ej , · · · ) � 0 ∀Ek 6=0 > Egap

and ~α · ~V0 � 0
(optional: assumptions on specific elements in c or c0)
then all spectra with the prescribed Egap are ruled out.

(1.9)

We use semidefinite programming to obtain such functionals α as in (1.9). In practice,
we can simplify the computation and strengthen the constraints by exploiting symmetry
selection rules and demonstrating that the quadratic form in (1.8) is block-diagonal. Each
diagonal block involves only a subset of matrix elements in one charged sector, furnishing
independent, smaller positivity conditions.

A word on the meaning of the “optional” assumptions in (1.9): requiring that ~α · ~V � 0
and ~α · ~V0 � 0 is sufficient to rule out a spectrum by exhibiting a contradiction with (1.8),
but it is sometimes numerically felicitous to instead find an ~α that rules out a prescribed
spectrum at prescribed values of c, c0. The entire range of the prescribed values can then be
scanned rather than ruling them out categorically in a single long semidefinite programming
run. Indeed, this is the strategy that we employ in our first example (2.18).

2 Anharmonic oscillator warm-up

The quartic potential anharmonic oscillator is a touchstone model in the recent matrix
positivity methods for quantum mechanics bootstrap. We will use it as an opportunity to
introduce our method. The Hamiltonian is

H = p2 + ω2x2 + gx4 . (2.1)

The perturbative expansion in g does not converge and in the large g regime fails to provide
a good approximation to the exact spectrum. Instead one can evaluate the Hamiltonian
on the harmonic oscillator basis as an infinite dimensional matrix and truncate to obtain
an approximate spectrum which converges exponentially to the exact spectrum. It is
convenient to take the truncation to be large enough so that the error can be ignored and
treat the approximate spectrum as exact. We will begin by revisiting the matrix bootstrap
method, comparing it with exact results. We then introduce the spectral bootstrap method
and discuss the advantages.

2.1 Matrix bootstrap revisited

The anharmonic oscillator has been studied by the matrix bootstrap method [10–15]. Typ-
ically, one considers the moments 〈xn〉 which are the diagonal matrix elements of xn on an
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(undetermined) eigenstate |E〉. The moments are related by the Hamiltonian equations of
motion:

〈[H,O]〉 = 0
〈H O〉 = E〈O〉.

(2.2)

It is easy to derive a recursion relation for the moments by taking O to be xm and xmp [10–
12],

0=mE〈xm−1〉+1
4m(m−1)(m−2)〈xm−3〉−

〈
xm
(
ωx+2gx3

)〉
−2m

〈
xm−1

(1
2ωx+1

2gx
4
)〉

.

(2.3)
With this recursion an arbitrary moment 〈xm〉 may be expressed through combinations of
〈1〉, 〈x〉 and 〈x2〉 up to known polynomials of E. The recursion relation preserves parity and
parity constrains 〈x〉 = 0 so the only free parameters are 〈x2〉 and E. Considering arbitrary
O = ∑

m cmx
m, positivity of the norm of state ||O|E〉|| > 0 requires cmcn〈xmxn〉 > 0 for

all real vectors c, which is equivalent to the positive semidefiniteness of the Hankel matrix

Mmn ≡ 〈xmxn〉, M =



1 〈x〉 〈x2〉 〈xK〉
〈x〉 〈x2〉 〈x3〉 · · · 〈xK+1〉
〈x2〉 〈x3〉 〈x4〉 〈xK+2〉

... . . .
〈xK〉 〈xK+1〉 〈xK+2〉 〈x2K〉


� 0 , (2.4)

for arbitrary truncation level K. From (2.3) each entry in M is a function only of E and
〈x2〉. If a particular choice of these two parameters yields M � 0 then it is ruled out. The
parameter space shrinks with increasing K. For example, taking the double-well potential
ω2 = −5 and g = 1 the allowed parameter space is shown in figure 2.

The matrix bootstrap application on the anharmonic oscillator is a great success,
yielding rigorous bounds on the spectrum and exhibiting rapid convergence. It is natural
to contemplate applications on more general dynamic observables and models. From the
matrix bootstrap method all we get are constraints on the eigenvalues and diagonal matrix
elements, which are useful to construct static observables. For observables that are related
to decay and scattering we need the off-diagonal matrix elements. The off-diagonal matrix
elements can also put stronger constraints on the existing observables. For systems having
global symmetries the diagonal matrix elements are only sensitive to the Casimir elements,
and all operators carrying charge will manifestly vanish. The off-diagonal matrix elements
are sensitive to the global symmetry algebra. In [11] it was reported that the above setup
does not bound the ground state energy of the hydrogen atom, which may be addressed
by implementing the off-diagonal matrix elements.2

It is also tempting to use the method to study models with infinitely many degrees of
freedom such as the lattice theory ([17, 18] are pioneering works). In the thermodynamic

2The same authors addressed the hydrogen atom ground state energy unboundedness problem in a
following-up work [14], using the fact that the radial wave functions of hydrogen atom states satisfy a
stronger moment problem because the functions are only defined on a semi-infinite space. We conjecture
that implementing the off-diagonal matrix elements may be an alternative solution to this problem.
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Figure 2. Bound on anharmonic oscillator’s energy eigenvalues Ei and 〈x2〉 expectation value from
matrix bootstrap (2.4). The Hamiltonian is H = p2 − 5x2 + gx4. The colored regions represent
the allowed parameter space at different truncation K on the Hankel matrix and the cyan points
represent the exact eigenvalues and expectation values. The exact solution shows that the lowest
two eigenstates are in the plot region. AtK = 14 the bound does not distinguish the two eigenstates.
At K = 18 the bound is improved and the allowed region splits into two distinct islands surrounding
the exact answer.

limit the energy eigenvalues E are dominated by the IR-divergent vacuum energy and the
energy densities for all low energy states are the same. This suggests that it will be difficult
to find a bootstrap bound on a specific low energy state.3 This is in contrast with the
lattice bootstrap methods [4, 6, 7] which employ Schwinger-Dyson equations in Euclidiean
spacetime. These bound the lowest state directly since the infinite Euclidean path integral
singles out the ground state. We overcome the difficulty of addressing individual states by
considering constraints pertaining to off-diagonal matrix elements.

Despite the importance of off-diagonal matrix elements, we will see that a naive gener-
alization aimed at including these data into the existing bootstrap framework does not pro-
vide new bounds. Applying the Hamiltonian equations of motion (2.2) to the off-diagonal
case:

〈E1| [H,O] |E2〉 = (E1 − E2)〈E1|O|E2〉 (2.5a)
〈E1|H O|E2〉 = E1〈E1|O|E2〉 . (2.5b)

3The difficulty is also technical. In the equations of motion (2.2) for the matrix bootstrap setup,
〈H O〉 = E〈O〉 is problematic because E diverges in the thermodynamic limit and the product HO is
non-local. The other equation of motion 〈[H,O]〉 = 0 does not refer to any energy eigenvalues.

– 8 –
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Similar to the diagonal case (2.3) one can derive a recursion relation that relates all even
moments to 〈E1|x2|E2〉 and all odd moments to 〈E1|x|E2〉. The identity moment 〈E1|1|E2〉
vanishes. 〈E1|x2|E2〉 is non-vanishing only when the two external states have the same
parity, and 〈E1|x|E2〉 is non-vanishing only when they have opposite parity. Therefore we
can try to implement the positivity condition ||αO|E1〉+βO′|E2〉|| > 0 generalizing (2.4) by:

Mmn
IJ ≡ 〈EI |xmxn|EJ〉, M =

M11 M12

M21 M22

 � 0 . (2.6)

However, any (E1, E2, 〈E1|x2|E1〉, 〈E2|x2|E2〉) that already satisfy (2.3) and (2.4) will be
trivially consistent with (2.5) and (2.6) assigning 〈E1|O|E2〉 = 0. This obstruction moti-
vated our search for constraints that are sensitive to the physics of transition amplitudes.
The spectral bootstrap is our resolution.

In the course of preparing this manuscript, [26] demonstrated another route toward
the off-diagonal data via a Cauchy-Schwartz inequality.

2.2 Spectral bootstrap: single matrix element bootstrap

In this subsection we introduce the spectral bootstrap in its simplest setup. As is sum-
marized in table 1, the spectral bootstrap shares many similarities with the conformal
bootstrap, and we will use the analogy to guide our introduction. The key structure of
the conformal bootstrap is the crossing equations. In spectral bootstrap we consider the
ground state diagonal matrix element

〈
0
∣∣xixj∣∣ 0〉, insert a complete set of states between

xi and xj , and obtain our crossing equations〈
0
∣∣∣xi+j∣∣∣ 0〉 =

〈
0
∣∣∣xi∣∣∣ 0〉〈0

∣∣∣xj∣∣∣ 0〉+
∑
k 6=0

〈
0
∣∣∣xi∣∣∣ k〉〈k ∣∣∣xj∣∣∣ 0〉 . (2.7)

Schematically, the l.h.s. describes the “t-channel” where one operator fuses with the other
operator and acts on the external states, while the r.h.s. describes the “s-channel” where
the operator fuses with the external state and creates the whole spectrum through the
off-diagonal matrix elements. The latter is reminiscent of the operator product expansion
(OPE) in the conformal bootstrap, and state-operator-state matrix elements are the “OPE
coefficients”. Here we introduce a more economical notation that emphasizes the similarity
with the CFT bootstrap:

ck`,O ≡ 〈k |O| `〉 , ck`,1 ≡ 〈k |1| `〉 = δk` . (2.8)

Just as the operator spectrum in a CFT can be separated into primary operators and
their descendants, the latter of whose OPE coefficients are completely fixed up to the pri-
mary OPE coefficients by conformal symmetry, in the spectral bootstrap the equations of
motion (2.2) and (2.5) fix many matrix elements. It turns out that the only “primary op-
erators” are x and x2, and the remaining operators are descendants whose matrix elements
are fixed in terms of the primary matrix elements

〈k |xn| `〉 = ck`,1g
(1)
n (Ek) + ckl,xg

(x)
n (Ek, E`) + ckl,x2g(x2)

n (Ek, E`) , (2.9)
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where g(Oprim)
n (Ek) denotes some known polynomials of Ek and E`. If we substitute (2.9)

in the s-channel spectral expansion in the crossing equations (2.7), we further put the
crossing equations into the “conformal block decomposition” form (Note that we used the
fact c00,1 = 1)

〈
0
∣∣∣xi∣∣∣ 0〉〈0

∣∣∣xj∣∣∣ 0〉 = (c00,1 c00,x2)
(
~S0
)
ij

 c00,1

c00,x2


= (1 c00,x2)

(
~S0
)
ij

 1
c00,x2

 (2.10)

∑
k 6=0

〈
0
∣∣∣xi∣∣∣ k〉〈k ∣∣∣xj∣∣∣ 0〉 =

∑
k

(c0k,x c0k,x2)
(
~Sk
)
ij

 c0k,x

c0k,x2

 (2.11)

where the vectors ~S0 and ~Sk contain the “conformal blocks”,

(
~S0
)
ij
≡

 g(1)
i (E0)g(1)

j (E0) g
(1)
i (E0)g(x2)

j (E0)
g

(x2)
i (E0)g(1)

j (E0) g(x2)
i (E0)g(x2)

j (E0)

 (2.12)

(
~Sk
)
ij
≡

 g(x)
i (E0, Ek)g(x)

j (Ek, E0) g
(x)
i (E0, Ek)g(x2)

j (Ek, E0)
g

(x2)
i (E0, Ek)g(x)

j (Ek, E0) g(x2)
i (E0, Ek)g(x2)

j (Ek, E0)

 . (2.13)

The block expansion can be further decomposed into the irreducible representations of the
global symmetries. In the anharmonic case the symmetry is the parity-Z2. For parity even
states c0k,x vanish and for parity odd states c0k,x2 vanish, so we can further decompose
the (2.11) into the parity subsectors

∑
k

(c0k,x c0k,x2) ~Sk

 c0k,x

c0k,x2

 =
∑
k−

c2
0k−,x

~Sk− +
∑
k+

c2
0k+,x2 ~Sk+

(
~Sk−

)
ij
≡ g(x)

i (E0, Ek)g(x)
j (Ek, E0)(

~Sk+

)
ij
≡ g(x2)

i (E0, Ek)g(x2)
j (Ek, E0)

(2.14)

where k− and k+ are indices of parity odd and even states, respectively. Now we switch to
the t-channel in the crossing equation (2.7) and apply the same descendant rules (2.9) as
in the s-channel

〈
0
∣∣∣xi+j∣∣∣0〉= c00,1 g

(1)
i+j(E0)+c00,x2 g

(x2)
i+j (E0) =

(
1 c00,x2

) g
(1)
i+j(E0) 1

2g
(x2)
i+j (E0)

1
2g

(x2)
i+j (E0) 0

 1
c00,x2


≡
(
1 c00,x2

)(
~T0
)
ij

 1
c00,x2

 . (2.15)

Notice that even though the t-channel is linear in the matrix elements, one can still embed
it in the bilinear form because the c-vector contains a constant. Equating (2.15) and (2.14)

– 10 –
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for each operator xi+j with i, j 6 K, we obtain N = K2 “crossing equations”

~0 =
(
1 c00,x2

)(
~S0 − ~T0

) 1
c00,x2

+
∑
k−

c2
0k−,x

~Sk− +
∑
k+

c2
0k+,x2 ~Sk+ . (2.16)

In the equations above, ~S0 ∈ RN×2×2 and ~T0 ∈ RN×2×2 are matrix-valued vectors, and
each matrix is contracted with an R2 vector

(
1 c00,x2

)
to form a quadratic form. ~Sk− ∈

RN×1×1 and ~Sk+ ∈ RN×1×1 are vectors of (1×1) matrices acting on matrix element spaces
c0k−,x ∈ R1 and c0k+,x ∈ R1 respectively. All numerical quantities are real because xn are
real operators and the system enjoys time-reversal symmetry. To impose bounds on the
spectrum and matrix elements, we prove by contradiction. First we assume that the lowest
excited state has an energy E1 above the ground state energy E0, and that the remaining
eigenstates have energy no lower than E1. We also assume that c00,x2 takes a specific value
for each SDP run and scan E0, E1, and c00,x2 together over the course of many runs.4 For
each input (E0, E1, c00,x2), if we find ~α ∈ RN such that (1 c00,x2)(~α·( ~S0− ~T0))(1 c00,x2)T � 0
and ~α · ~Sk± � 0 for all Ek > E1, then we can exhibit a linear combination of (2.16):

0 = ~α ·

(1 c00,x2
)(
~S0 − ~T0

) 1
c00,x2

+
∑
k−

c2
0k−,x

~Sk− +
∑
k+

c2
0k+,x2 ~Sk+

 (2.17)

in which the real quadratic forms on the right hand side sum to strictly positive values.
This is a contradiction. We conclude that the values (E0, E1, c00,x2) are excluded.

The crossing equations (2.16) provide a similar feasibility problem as those in the
conformal bootstrap, and we summarize the feasibility problem as the following

If there exists ~α ∈ RN where N = K2 such that ∀Ek± > E1 > E0

(
1 c00,x2

)(
~α · ~S0 − ~α · ~T0

) 1
c00,x2

 = 1

~α · ~Sk− > 0
~α · ~Sk+ > 0 ,
then all spectra with the prescribed E0, E1 and c00,x2 are ruled out.

(2.18)

The numerical bootstrap bound is shown in figure 3. In the plot we project all allowed space
on the (E0, E1) plane, and compare the bounds from the spectral bootstrap and the matrix
bootstrap. The single matrix element setup (2.18) can only provide upper bounds on the
gap E1 without additional assumptions, because any allowed (E0, E1) means any E′1 > E1
is trivially allowed, so the only lower bound is E1 > E0. Nevertheless even at modest K the
bound on E0 from the spectral bootstrap case is much stronger than the matrix bootstrap
at large K. The upper bound on E1 is also much stronger than the matrix bootstrap as
the matrix bootstrap upper bound is not saturated by the exact answer while the spectral
bootstrap bound is almost saturated. It is likely that implementing an assumption on E2
could enable the spectral bootstrap to produce a strong lower bound as well.

4In principle one can require
(
~S0−~T0

)
� 0 instead and scanning c00,x2 is not necessary. In the anharmonic

oscillator case we find that the bound is significantly stronger in (2.18) with c00,x2 values explicitly provided.

– 11 –
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element spectral bootstrap and the matrix bootstrap. The shaded regions are allowed by the
corresponding bootstrap setup. The allowed region of on E0 is very narrow, and the inset plot
zooms in to the vicinity of the exact answer. The single matrix element spectral bootstrap furnishes
only an upper bound on E1, which is saturated by the exact value.

2.3 Spectral bootstrap: mixed matrix element bootstrap

Analogous to the mixed correlator bootstrap in the conformal bootstrap, we can promote
our bootstrap problem (2.18) to a mixed system by considering matrix elements 〈0|xixj |0〉,
〈1|xixj |1〉 and 〈0|xixj |1〉 assuming the first excited state |1〉 has odd parity. We write
down crossing equations similar to (2.16), but for the above 3 matrix elements jointly. The
mixed crossing equations contain an isolated s-channel ~Sc involving the matrix elements
between the external states 〈0|xi|0〉, 〈0|xi|1〉, 〈1|xi|1〉, isolated t-channel ~Tc and two internal
channels ~S− and ~S+ for the odd- and even-parity states above E1. The mixed matrix
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Figure 4. Bound on the first two eigenvalues (E0, E1) from the mixed matrix element bootstrap
equation (2.19) at K = 8. The red marker represents the exact (E0, E1) values. The blue shaded
region is the allowed parameter space of (E0, E1). The region is a projection from the 5-dimensional
parameter space (E0, E1, c00,x2 , c11,x2 , c01,x). Since the 5-dimensional sampling can be lossy, the true
allowed region may be larger than the island shown in the plot.

element crossing equation can be summarized as a vector block form

0 =
∑
k−

(
c0k,x c1k,x2

)
~S−

 c0k,x

c1k,x2

+
∑
k+

(
c0k,x2 c1k,x

)
~S+

c0k,x2

c1k,x


+
(
1 c00,x2 c11,x2 c01,x

)(
~Sc − ~Tc

)(
1 c00,x2 c11,x2 c01,x

)T
.

(2.19)

The details of the block vectors ~S±, ~Sc and ~Tc are explained in appendix A.
We show the bound on the first two eigenvalues (E0, E1) in figure 4. The allowed

parameter space is a thin needle-like island whose one tip is saturated by the exact solution
with an error . 10−10. The island is also many orders of magnitude smaller than the
single matrix element bound in figure 3, despite the fact that the mixed matrix element
bootstrap is at smaller K. The island is a projection of the 5-dimensional parameter space
(E0, E1, c00,x2 , c11,x2 , c01,x), computed by sampling about 500 angular directions on S5. For
each direction we find the boundary using a navigator function [27] and line search between
an allowed point and a disallowed point. Such an algorithm is not ideal for sampling a
5-dimensional space. In the future we can obtain a more reliable island using the OPE
scan method [28]. Nevertheless the current numerical result is enough to support our
point that the mixed matrix element bootstrap imposes much stronger bounds on the
anharmonic oscillator spectrum. When the bounds on the external parameters (E0, E1)
are nearly saturated the bootstrap equations also strongly constrain higher excitations. We
can extract an approximate spectrum of the excited states using the extremal functional

– 13 –
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Figure 5. Extremal functional of the mixed matrix element bootstrap extremal bound. The blue
and red colors correspond to two tips of the island, that is one “near end” at the tip of the island
near the exact solution, and another “far end” at the other tip of the island. Green vertical lines
represent the exact eigenvalues of the excited states. The positions of double zeros in the extremal
functional is an approximation of the excited states. The absolute magnitude of the extremal
functional is irrelevant, and we multiply each functional by a normilization constant N in order to
show them in the same plot.

method [24, 25]. Schematically, when we go to the parameter point that is marginally ruled
out, the crossing equation (2.19) and the non-negativity of the functional α · S must be
simultaneously satisfied, and a consistent functional satisfying both will need to have double
roots at the energy eigenvalues of the excited states. We show the extremal functional plots
of the two tips of the island in figure 5. In the plots we find that in both “near end” and
“far end” cases the double zeros line up accurately with the exact spectrum. The near end
functional has more double zeros which agree perfectly with the exact spectrum.

The results in this section show that the spectral bootstrap imposes highly non-trivial
constraints on the anharmonic oscillator model. Next we are ready to generalize this setup
to study infinite lattice.

3 Infinite lattice example: transverse field Ising model

The one-dimensional transverse-field Ising model (TFIM) is a quantum spin chain with the
hamiltonian

HTFIM = −
N∑
i=1

σzi σ
z
i+1 + h

N∑
i=1

σxi (3.1)

where σx,y,zi denote the Pauli matrices associated to site i of a (possibly infinite) one-
dimensional lattice. This model has a quantum phase transition with a critical point h = 1
separating a Z2 symmetry-broken phase and a paramagnetic symmetry-unbroken phase.
Its physics are readily accessible through exact diagonalization, density renormalization
group, or quantum monte carlo. It can be diagonalized analytically via a Jordan-Wigner
transformation that maps it into a theory of free fermions, up to Bogoliubov transformation.
As a well-understood model with infinitely many degrees of freedom amenable solution both
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numerically and analytically, the TFIM provides a sound basis for an assessment of the
spectral bootstrap method in the many-body regime.

We will briefly sketch the procedure for solving the TFIM analytically, see [29] for a
complete discussion. The first step is to rewrite the spin operators in terms of fermion
operators, which is called Jordan-Wigner transformation:

σ+
i =

∏
j<i

(
1− 2a†jaj

)
ai (3.2)

σ−i =
∏
j<i

(
1− 2a†jaj

)
a†i (3.3)

where σ±i = (σxi ± iσyi )/2. The second step is to employ the fourier representation of the
fermions

ãk = 1√
N

∑
j

aje−ikxj . (3.4)

Finally a Bogoliubov transformation

γk = ukãk − ivkã†−k (3.5)

maps the problem into a theory of free fermions. Having omitted the details, we only
want to emphasize that the basis γk which diagonalizes the model is on account of (3.2)
highly nonlocal in the spin variables σi. It may prove fruitful to study other theories using
the spectral bootstrap in the fermion basis, but since we would like to avoid trivializing
the computational problem for this integrable model we will use only the spin basis in
the present study. From the analytical approach we will quote the known spectrum and
magnetization.

In the free fermion picture the hamiltonian for the infinite system is

HTFIM =
∑
k

εk(γ†kγk + 1/2) (3.6)

with dispersion
εk = 2

√
1 + h2 − 2h cos k. (3.7)

For our purposes we need only the energy difference between the lowest two eigenstates.
In the regime h < 1 the spontaneously broken Z2 symmetry yields two degenerate vacua,
and E1−E0 = 0. Across the quantum phase transition where h > 1, the vacuum is unique
and the gap is quantified by the lowest excitation energy ε0 above. In summary,

E1 − E0 =

0, h 6 1
2|h− 1| h > 1

. (3.8)

Bounding this quantity using the spectral bootstrap is the main object of this section. We
will also compute it using exact diagonalization of the spin hamiltonian at finite N to have
another numerical method to which we can compare our own.

Computation of the magnetization is more involved than that of the energy spectrum,
however it has been obtained as a simple integral formula [30]

〈σx〉 = 1
π

lim
β→∞

∫ π

0

(cosω − h) tanh
√
β (h2 − 2h cosω + 1)√

h2 − 2h cosω + 1
dω. (3.9)
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3.1 Setup for infinite lattice

In this subsection we introduce the spectral bootstrap setup for TFIM. Schematically, we
begin with the crossing equations 〈0|OO′|0〉 = ∑

k〈0|O|k〉〈k|O′|0〉, then use the Hamilto-
nian equations of motion and global symmetries to reduce the matrix elements 〈0|O|k〉 into
a small primary set, and finally use semidefinite programming to test spectral assumptions.
As is discussed in section 2.1, the infinite lattice has subtleties and we will need to adjust
our bootstrap setup. We do not use the equations of motion of the product type (2.5b)
because E is IR-divergent. The rest of the equations of motion are of the commutator
type (2.5a). Unlike the quantum mechanical case, matrix elements 〈0|O|k〉 do not reduce
to a finite primary set merely using the commutator equations so we must truncate the
number of primaries. Our strategy is to take the primary operator set A to be a small set
of local “string operators” O ∈ A ⊂ {σx1 , σz1 , σx1σx2 , σx1σz2 , · · · } and generate the full set of
operators by recursively commuting with the Hamiltonian

∂O ≡ i [H,O] , ∂n+1O ≡ i [H, ∂nO] . (3.10a)

The generated operators are manifestly descendant operators that do not have independent
matrix elements:

〈`|∂nO|k〉 = in(E` − Ek)n〈`|O|k〉 . (3.10b)

Similar to the Hamiltonian equations of motion, translational invariance offers additional
equations of motion. We define a unitary operator U that permutes all sites by 1 lattice
unit, and all eigenstates acquire a definitive phase under permutation

U~σi = ~σi−1U, U |E, p〉 = eip|E, p〉 . (3.11)

This allows us to generate an extended set of descendant operators

∇nO ≡ UnOU−n (3.12a)
〈`|∇nO|k〉 = ein(p`−pk)〈`|O|k〉 . (3.12b)

The log of the phase is identified as the momentum of the states. For a lattice the mo-
mentum is only defined on the first Brillouin zone −π 6 p 6 π. On an infinite lattice, p is
continuous. A primary operator and its descendants form a multiplet

~DO := {O, ∂O,∇O, ∂2O, ∂∇O, · · · ,∇ΛO} (3.13)

and we truncate each multiplet to contain all descendants with at most Λ total number
of derivatives. The crossing equations can be generated from the fusion between these
multiplets

~DO × ~DO′ → ~DO′′ + ~DO′′′ + · · · . (3.14)

In the lattice theory we have an infinite number of primaries, and we truncate the primaries
and their multiplets. This means when we fuse ~DO with ~DO′, we may get operators that
do not belong to any truncated multiplets that we consider. Such operators do not provide
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useful bounds on the spectrum, so we take a subset of crossing equations that eliminates
those operators. The most general form of our crossing equations is the following∑

i′j′

TI,i′j′
〈
Em, pm|Di′Oj′ |Em, pm

〉
=
∑
ijkl

SI,ijkl
∑
n

〈Em, pm|DiOj |En, pn〉 〈En, pn|DkO`|Em, pm〉
(3.15)

where I is the index of the crossing equations, and TI,i′j′ and SI,ijkl are coefficients that are
determined by fusion (3.13) and linear combinations that eliminate unbounded operators.
We currently search for the crossing equations by brute force. The advantage of the setup
in this subsection is that the number of undetermined matrix elements are minimized, and
in the semidefinite programming step we will have polynomial matrices whose dimensions
are minimal.

3.2 Reduction by symmetry

The Hamiltonian (3.1) enjoys spin-Z2 symmetry, parity symmetry and time reversal sym-
metry. There is no continuous global symmetry. These discrete symmetries can be used to
further classify the primary operators and their matrix elements.

The spin-Z2 symmetry is generated by

Q =
∏
i

σxi . (3.16)

We can classify all operators according to their spin, and they transform under Q as
QOQ−1 = qOO where qO = ±1. Since Q also commutes with translation U and reflection
P , we can take each eigenstate to have definite spin. The matrix elements have the spin-
selection rule

〈q|O|q′〉 = 〈q|Q−1QOQ−1Q|q′〉 = qq′qO〈q|O|q′〉 (3.17)

indicating that the matrix element vanishes when the product qq′qO is −1.
We define the reflection operation as reflecting all spins about site 1:

P~σiP
−1 = ~σ2−i . (3.18)

We symmetrize and anti-symmetrize the operator to obtain operators with definite parity

O(±) ≡ 1
2
(
O ± POP−1

)
(3.19)

There is a subtlety in the parity selection rule. We would like to take our eigenstates to
have definite momentum in order to take advantage of translational invariance, but the
direction of momentum is not invariant under reflection. So we instead label each state
with |E, |p|, r, s〉 keeping the energy E, the absolute value of momentum |p|, the parity
r and the spin s to be definite. With this assignment, matrix elements that do not have
overall even parity will vanish. For matrix elements of descendant operators between states
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carrying nonzero momenta, they are fixed as a mixture of even- and odd- parity primary
matrix elements according to the following rule:

〈p,+|(∇nO)(+)|p′,+〉
〈p,−|(∇nO)(+)|p′,−〉
〈p,+|(∇nO)(−)|p′,−〉
〈p,−|(∇nO)(−)|p′,+〉

 = Y (n, p, p′)


〈p,+|O(+)|p′,+〉
〈p,−|O(+)|p′,−〉
〈p,+|O(−)|p′,−〉
〈p,−|O(−)|p′,+〉



Y (n, p, p′) =


cos(np) cos (np′) sin(np) sin (np′) i cos(np) sin (np′) −i sin(np) cos (np′)
sin(np) sin (np′) cos(np) cos (np′) −i sin(np) cos (np′) i cos(np) sin (np′)
i cos(np) sin (np′) −i sin(np) cos (np′) cos(np) cos (np′) sin(np) sin (np′)
−i sin(np) cos (np′) i cos(np) sin (np′) sin(np) sin (np′) cos(np) cos (np′)


, (3.20)

where E and q indices of the states are suppressed.
Finally the phases of the matrix elements are fixed by time-reversal symmetry. The

action of the time reversal operator T is simply complex conjugation,5 so

Tσx,zT−1 = σx,z, TσyT−1 = −σy . (3.21)

Complex conjugation acts trivially on the translation operator U , reflection operator P
and the spin-Z2 generator, but reflects the momentum as

UT |E, p, q〉 = TU |E, p, q〉 = Teip |E, p, q〉 = e−ipT |E, p, q〉 . (3.22)

Since T is merely complex conjugation it satisfies T 2 = 1 and there is no Kramers degen-
eracy. Without loss of generality we can choose an eigen-basis that diagonalizes PT such
that PT |E, |p|, r, q〉 = |E, |p|, r, q〉. One can prove that each matrix element is either real
or imaginary by

〈i|O|f〉 = 〈f |(PT )O(PT )−1|i〉 = ±〈i|O|f〉∗ (3.23)
where the ± sign are determined by the operator’s parity and number of i’s and σy’s.
In particular, ∂ as defined in (3.10a) flips the operator’s T parity. For matrix elements
that are purely imaginary, we can factor out i from the matrix elements so the bootstrap
equations are real-valued.

3.3 Numerical setup and results

We begin with a set of primary operators A and use the equations of motion (3.10)
and (3.12) to generate descendants up to level Λ, then take the product of these oper-
ators to generate crossing equations of the form (3.15). The matrix elements are further
constrained by a number of selection rules (3.17), (3.20) and (3.23). In this paper we focus
on the single matrix element case where for all crossing equations the external states are
the vacuum 〈0|OO′|0〉. After careful analysis we arrive at the following crossing equations
in the block vector form
~0 =cT0

(
~S0 − ~T0

)
c0 +

∑
∆Ek,|p|k

cTk,↑
~S↑(∆Ek, |p|k)ck,↑ +

∑
∆Ek,|p|k

cTk,↓
~S↓(∆Ek, |p|k)ck,↓ , (3.24)

5We thank Meng Cheng for explaining the time-reversal symmetry in the TFIM case
in https://physics.stackexchange.com/questions/228821/time-reversal-symmetry-of-transverse-field-ising-
model.
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where we use symbols q = ↑ and ↓ represent the channels for spin charge q = +1 and
−1. The summation runs over all energies ∆Ek ≡ Ek − E0 and absolute values of mo-
mentum 0 6 |p|k 6 π of the excited states. The c vectors represent the set of inde-
pendent matrix elements (“OPE coefficients”) which remain after reduction by symmetry.
Specifically, c0 ∈ RS0 contains the non-vanishing matrix elements of primary operators
inserted between vacuum states 〈0|O|0〉, while ck,q ∈ RSq contains the non-vanishing
matrix elements of primary operators inserted between the vacuum state and the ex-
cited states 〈0|O|Ek, |p|k, rk, s〉, for spin even and odd sectors separately. The objects
~S0 − ~T0 ∈ RN×S0×S0 and ~Sq ∈ RN×Sq×Sq carry the (Ek, pk, rk, q) dependence derived
from (3.10), (3.12), and (3.20); these are each matrix-valued vectors whose common length
N is dictated by the number of crossing equations taken into consideration.

Each c can contain a single or multiple primary-operator matrix elements. The resul-
tant polynomial matrix problems are respectively akin to the single or mixed correlator
cases of the conformal bootstrap. To be concrete, in this work we employ the “single cor-
relator” setup by taking A = {σx, σz} and the “mixed correlator” setup by including one
more primary operator A = {σx, σz, σxi σzi+1}. The analysis of larger mixing systems with
the inclusion of additional external states is left to future work.

Similar to the previous sections, (3.24) contains a collection of real quadratic forms
which constrain the allowed data of the spectrum and transition amplitudes. Schematically,
we assume all excited eigenstates are at least Egap above the ground state and scan Egap over
the course of many runs. For each Egap, if we find ~α ∈ RN such that ~α ·( ~S0− ~T0) � 0 and ~α ·
~Sk,q � 0 for all spin sectors q, then ~α·(3.24) furnishes a contradiction; ergo, Egap is excluded.

We can express our search for such an ~α as a polynomial matrix problem which can be
solved using semidefinite programming. There are multiple setups depending on whether
one would like to scan over specific values of the elements in c0.6 The more elementary of
the two prescriptions we pursue for excluding a chosen Egap is:

If there exists ~α ∈ RN such that ∀∆Ek > Egap and 0 6 |p|k 6 π

~α ·
(
~S0 − ~T0

)
� 0

~α · ~Sk,↑(∆Ek, |p|k) � 0
~α · ~Sk,↓(∆Ek, |p|k) � 0 ,
then all spectra with the prescribed Egap are ruled out.

(3.25)

We use sdpb [32, 33] to efficiently search for the vector ~α. Whereas in the conformal
bootstrap practitioners need only be concerned with the single continuous variable of scaling
dimension (denoted ∆), our problem presents us with both pk and ∆Ek. Semidefinite
programming can be generalized to multivariate polynomial matrix problems with some
adaptations in the numerical techniques without sacrificing rigorous and optimal bounds

6In [28] the authors detail a powerful algorithm which exploits the fact that the crossing equations only
depend on the OPE coefficients quadratically. This property allows them to efficiently search in the space
of OPE coefficients. We did not implement this algorithm; for our implementation, c0’s special properties
as the OPE coefficients remain an untapped resource. In the future when we have larger numbers of matrix
elements to scan, the advanced OPE search algorithm will be a useful tool.
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Figure 6. Upper bound on the gap of the (1 + 1)-dimensional transverse field Ising model as a
function of field strength h. The colors of the lines and shaded regions correspond to bootstrap
setups with different choices of the primary operator set A and truncation level Λ on the derivative
operators. The bound improves as we include more primary operators and take higher truncation
on derivatives. The bound approaches the exact solution faster at h away from the critical point.

on the spectrum [34, 35]. We explain the adaptations and discuss some numerical subtleties
we encounter in appendix B. The benchmark performance of these jobs is summarized in
table 2. We show the numerical bootstrap bounds on the gap in figure 6.7 The bound
makes no approximation. For truncation level Λ the crossing equations assumes the lattice
size L cannot be smaller than (2Λ + 1). The bootstrap problem (3.25) assumes no ground
state degeneracy. Therefore, we expect that the TFIM spectra for all L > 2Λ+1 and h > 1
should obey the bound, and indeed as Λ increases the upper bound is stronger as more and
more finite volume solutions are ruled out. For h < 1, even if the assumption of no ground
state degeneracy is inconsistent with the theoretical expectation of the broken phase at
infinite volume, the finite volume solutions may still be consistent with the assumptions,
so the h < 1 parameter space is not ruled out. The bounds are not saturated by the
corresponding L = 2Λ + 1 exact diagonalization solution, suggesting that we have not
fully utilized all the self-consistency conditions and that the bounds may improve as more
operators or external states are included into the mixing system.

Next we introduce the setup that scans the expectation value 〈σx〉 together with the
gap. With either A = {σx, σz} or A = {σx, σz, σxi σzi+1}, the vacuum diagonal matrix
element vector only contains σx due to the spin selection rule, ~c0 =

(
1 〈σx〉

)
. So 〈σx〉 will

be the only vacuum expectation value considered in this paper. The polynomial matrix
7The bounds with A = {σx, σz, σxi σzi+1} are obtained using the less rigorous method of discretizing p.

For two variable semidefinite programming there is a rigorous method explained in appendix B. But an
alternative approach is to just take a dense discrete set of p and require positivity of the functional only
at those values of p, and the semidefinite problem is univariate again. The discretization makes it possible
for the bound to appear stronger than the true bound because the functional does not need to be positive
between the discrete points. To ensure rigorousness one can check the positivity of the functional by hand,
but in practice we just run the same problem with higher and higher discretization until the bound no longer
changes. We emphasize that the A = {σx, σz} bounds are rigorous because we take the rigorous approach.
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Figure 7. The bootstrap bound on the gap and the 〈σx〉 vacuum expectation value at h = 1 (red)
and h = 1.6 (orange). The shaded regions represent the allowed regions from bootstrap while the
blue points indicate the exact diagonalization result. The numerical bootstrap setup takes the set
of primary operators to be A = {σx, σz}, and the maximum descendant level Λ = 5.

problem is:

If there exists ~α ∈ RN such that ∀∆Ek > Egap and 0 6 |p|k 6 π

(
1 〈σx〉

)(
~α · ( ~S0 − ~T0)

) 1
〈σx〉

 = 1

~α · ~Sk,↑(∆Ek, |p|k) � 0
~α · ~Sk,↓(∆Ek, |p|k) � 0 ,
then all spectra with the prescribed Egap and 〈σx〉 are ruled out.

(3.26)

We show a two-dimension plot of the bound on the gap Egap and the expectation value
〈σx〉 at h = 1 and h = 1.6 in figure 7. We see that the allowed regions are shaped like
wedges and the shape and position of the wedges depend on h. The allowed region for the
critical coupling h = 1 is still large, suggesting that bounding the critical point is more
difficult. At h = 1.6 the allowed region is significantly smaller. The upper bound on the
gap is close to the exact solution, and 〈σx〉 is bounded on a narrow band, providing a good
estimation of the true value with a rigorous error bar.
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set of primaries A Λ number of equations sdpb time
{σx, σz} 4 39 229s
{σx, σz} 5 56 900s
{σx, σz} 6 76 1909s

{σx, σz, σxi σzi+1}∗ 4 95 671s
{σx, σz, σxi σzi+1}∗ 5 132 1622s

Table 2. Benchmark performance of the spectral bootstrap on the TFIM. The starred setups use
the less rigorous method of discretization and are faster, and the other setups use the rigorous
two-variable semidefinite programming method. The sdpb time is the total time of a single sdpb
job on 4 cpus without hot-starting. The hot-starting can typically speed-up the computation by a
factor of 10.

4 Discussion

Our broad goal is to determine the infrared phase of a strongly coupled system from the
fundamental description in ultraviolet limit. Monte-Carlo simulation and variational meth-
ods are both enormously successful, but these methods both approximate the true physical
quantities and introduce statistical or theoretical errors. The bootstrap approach makes
no approximation and provides rigorous error bars to the physical quantities, but so far the
bootstrap approach is most successful in areas that rely on little or no knowledge of the
underlying UV description. The matrix bootstrap approach is a new method that combines
the rigorous nature of bootstrap with knowledge of the UV description. The method uses
the UV equations of motion and positivity to impose bounds on the physical quantities. We
have extended this approach to one capable of imposing bounds on the gap of an infinite
lattice by constraining the off-diagonal matrix elements. Our method uses the consistency
between the correlator and its spectral decomposition as well as the Hamiltonian equations
of motion to impose bounds on physical quantities including the gap, expectation values,
and transition amplitudes. The framework is general and we have tested it on a quantum
anhamonic oscillator and the (1 + 1)-dimension transverse field Ising model. In the anhar-
monic oscillator case, we show that the spectral bootstrap significantly improves the matrix
bootstrap method. The lowest two energy eigenvalues and the matrix elements between
these states are solved to 10−8 precision with a minimal number of crossing equations. In
the case of the transverse field Ising model, we show that spectral bootstrap imposes a
non-trivial bound on the gap and the σx vacuum expectation value. The bound improves
as we increase the number of crossing equations and primary operators in the setup.

We would like to emphasize several advantages of the spectral bootstrap approach.
First of all, this is a method that evaluates the gap and other quantities of an infinite
lattice without any approximation, and error bars are rigorous. Second, the spectral boot-
strap systematically leverages off-diagonal matrix element information that is absent in
the matrix bootstrap, so the bound can be much stronger while considering the same set
of operators. Finally, the spectral decomposition makes it possible to impose constraints
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directly on the deep IR physics. For the matrix bootstrap such information is encoded in
the expectation value of operators that have a large spatial extent, and is currently inac-
cessible. In the spectral bootstrap, the information of the deep IR is encoded in the low
energy regime of the spectral decomposition, which can be directly accessed by imposing
gaps and assumptions in the decomposition.

The spectral bootstrap is in its infancy and it has considerable room for improvement.
The bounds have not converged and it is an open question whether we can push them to
saturation at the thermodynamic limit. The most straightforward next step is to consider
a larger number of primary operators in A, as well as mixing with other states. The state
mixing setup is similar to the anharmonic oscillator mixed matrix element study, where
the bounds improve qualitatively. The current spectral bootstrap does not include any
assumption that is specific to the model at infinite volume, and in fact any finite volume
solution with L > (2Λ + 2) will not be ruled out via bootstrap. Thus it is important to
find safe assumptions that can formally rule out the finite volume solutions. An example of
such an assumption is that the energy density of all low energy states are the same in the
thermodynamic limit. The numerical adaptation of semidefinite programming to the two
variable polynomial matrix problem is experimental, and it is not at its maximum efficiency.
A systematic treatment of the multivariate problem will likely enhance the efficiency of the
spectral bootstrap method and will have many more applications in physics, such as the
higher-genus modular bootstrap. The basis operators do not need to be local operators.
The transverse field Ising model is dual to a free fermion theory where the fermion creation
operators are highly nonlocal in the original spin basis. It is conceivable that the spectral
bootstrap is more powerful for spin systems in a basis of nonlocal operators such as domain
wall creation operators or matrix product operators (MPO). Indeed, in [31] the authors
leveraged MPOs and consistency conditions to obtain strong bounds on energy densities in
spin chains. For models like the Hubbard model and lattice φ4 model, it may be advanta-
geous to take the basis operators to be Fourier transforms of local operators. We would like
to also consider future generalizations and applications of the spectral bootstrap method.
The current setup can be immediately applied to lattice φ4 theory. It is straightforward to
consider a generalization to higher spacetime dimensions, with some additional treatment
of the discrete rotation symmetry. It will also be interesting to consider how to general-
ize the spectral bootstrap to Quantum Field Theories, where Lorentz symmetry can help
further classify the matrix elements but where there is additional challenge from the UV
divergence.

Acknowledgments

We thank Meng Cheng, Rajeev Erramili, Liam Fitzpatrick, Ami Katz, Yuezhou Li, Zhijin
Li, Ian Moult, João Penedones, David Poland, Jiaxin Qiao, Balt van Rees, Victor Ro-
driguez, Junchen Rong, Marco Serone, Ning Su, Xi Yin, and Zechuan Zheng for useful
discussions. We thank Hongbin Chen for collaboration in the early stage of this work. YX
is supported by a Mossman Prize Fellowship at Yale University.

– 23 –



J
H
E
P
0
8
(
2
0
2
3
)
0
5
2

A Details of anharmonic oscillator crossing equations

In this appendix we show the details of the mixed matrix element bootstrap crossing
equation

0 =
∑
k−

(
c0k,x c1k,x2

)
~S−

 c0k,x

c1k,x2

+
∑
k+

(
c0k,x2 c1k,x

)
~S+

c0k,x2

c1k,x


+
(
1 c00,x2 c11,x2 c01,x

)(
~Sc − ~Tc

)(
1 c00,x2 c11,x2 c01,x

)T
.

(2.19)

The vector blocks ~S and ~T contain what is analogous to the “conformal blocks”, and in
our cases they are the combinations of g(O)

i factors. We introduce the short-hand notation

G
〈k|O|`|O′|m〉
i,j ≡ g(O)

i (Ek, E`)g(O′)
j (E`, Em) (A.1)

to reduce the size of the expression. First we have an isolated channel ~Sc and ~Tc denoting
the s-channel and t-channel respectively. The matrix elements involved are the matrix
elements between the external states |0〉 and |1〉, i.e. the matrix elements 〈0|O|0〉, 〈1|O|1〉,
and 〈0|O|1〉. The block vector has 3 pieces, ~S〈0ij0〉c , ~S〈1ij1〉c and ~S〈0ij1〉c from the 〈0|xixj |0〉,
〈1|xixj |1〉 and 〈0|xixj |1〉 crossing equations, respectively

~S〈0ij0〉c =


G
〈0|1|0|1|0〉
i,j G

〈0|1|0|x2|0〉
i,j 0 0

G
〈0|x2|0|1|0〉
i,j G

〈0|x2|0|x2|0〉
i,j 0 0

0 0 0 0
0 0 0 G〈0|x|1|x|0〉i,j

 (A.2a)

~T 〈0ij0〉c =


g

(1)
i+j(E0) 1

2g
(x2)
i+j (E0) 0 0

1
2g

(x2)
i+j (E0) 0 0 0

0 0 0 0
0 0 0 0

 (A.2b)

~S〈1ij1〉c =


G
〈1|1|1|1|1〉
i,j 0 G

〈1|1|1|x2|1〉
i,j 0

0 0 0 0
G
〈1|x2|1|1|1〉
i,j 0 G〈1|x

2|1|x2|1〉
i,j 0

0 0 0 G
〈1|x|0|x|1〉
i,j

 (A.2c)

~T 〈1ij1〉c =


g

(1)
i+j(E1) 0 1

2g
(x2)
i+j (E1) 0

0 0 0 0
1
2g

(x2)
i+j (E1) 0 0 0

0 0 0 0

 (A.2d)

~S〈0ij1〉c = 1
2


0 0 0 G

〈0|1|0|x|1〉
i,j +G

〈0|x|1|1|1〉
i,j

0 0 0 G
〈0|x2|0|x|1〉
i,j

0 0 0 G
〈0|x|1|x2|1〉
i,j

G
〈0|1|0|x|1〉
i,j +G

〈0|x|1|1|1〉
i,j G

〈0|x2|0|x|1〉
i,j G

〈0|x|1|x2|1〉
i,j 0


(A.2e)
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~T 〈0ij1〉c = 1
2


0 0 0 g(x)

i+j(E0, E1)
0 0 0 0
0 0 0 0

g
(x)
i+j(E0, E1) 0 0 0

 . (A.2f)

Similarly, we have the even parity channel

~S〈0ij0〉+ =

G〈0|x2|k|x2|0〉
i,j 0

0 0

 (A.3a)

~S〈1ij1〉+ =

0 0
0 G〈1|x|k|x|1〉i,j

 (A.3b)

~S〈0ij1〉+ =

 0 1
2G
〈0|x2|k|x|1〉
i,j

1
2G
〈0|x2|k|x|1〉
i,j 0

 . (A.3c)

Finally we have the odd-parity channel

~S〈0ij0〉− =

G〈0|x|k|x|0〉i,j 0
0 0

 (A.4a)

~S〈1ij1〉− =

0 0
0 G〈1|x

2|k|x2|1〉
i,j

 (A.4b)

~S〈0ij1〉− =

 0 1
2G
〈0|x|1|x2|1〉
i,j

1
2G
〈0|x|1|x2|1〉
i,j 0

 . (A.4c)

B Multivariate semidefinite programming and numerical subtleties

B.1 Map positive multivariate polynomials to sum of squares

In this subsection we discuss how to solve multivariate bootstrap problems using semidefi-
nite programming rigorously. The procedure is similar to [32] with some differences caused
by adding more variables. We will focus on the two-variable case for simplicity but it is
straightforward to generalize to any number of variables. We define a two-variable poly-
nomial matrix problem

Maximize b · α over α ∈ RN ,

such that M0
j (x, y) +

N∑
n=1

αnM
n
j (x, y) � 0 for all x, y ∈ R and 1 6 j 6 J

where Mn
j ≡


Pnj,11(x, y) · · · Pnj,1mj (x, y)

... . . . ...
Pnj,mj1(x, y) · · · Pnj,mjmj (x, y)


(B.1)
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Whether semidefinite programming can provide a rigorous and optimal solution requires
that for any non-negative polynomial P (x, y) is a sum of squares of polynomials. Equiva-
lently, there is a positive semidefinite matrix Y such that

P (x, y) = TrRδ(Y Qδ(x, y)) (B.2)

where Q is made up of a dimension-δ vector of basis polynomials in (x, y).

Qδ(x, y) ≡ ~qδ(x, y)~qδ(x, y)T

~qδ(x, y) ≡
(
q1(x, y), q2(x, y) · · · qδ(x, y)

) (B.3)

The terms and dimension of qδ depend on the requirement that Qδ must contain all degrees
of freedom in P (x, y). The requirement is satisfied for a univariate polynomial P (x). For
a multivariate polynomial P (x, y) this is no longer true, and a non-negative polynomial is
a sum of square of rational function instead, but [36] shows that for any strictly positive
polynomial P (x, y), (1 + x2 + y2)gP (x, y) satisfies (B.2) at sufficiently high g. Thus our
strategy is to run semidefinite programming with polynomials (1+x2 +y2)gP (x, y) at g = 0
first, and we may get sub-optimal bound as some positive functionals may be out of reach
if g is insufficient. Then we can increase g and the bound will monotonically improve until
all positive functionals are accessible by a sum of squares, and the bound is optimal. In
practice, in the spectral bootstrap we never have to take g to be nonzero at all. The rest
of the problem is book-keeping. Assuming the right hand side of (B.1) can be expressed
as a sum of square, we have the ansatz

P 0
j,rs(x, y) +

∑
n

αnP
n
j,rs(x, y) = TrRδ

(
Y (Qδ(x, y)⊗ Ers)

)
, (B.4)

where (Ers)ij = δri δ
s
j + δrj δ

s
i is the element symmetric matrices. The polynomial equal-

ity (B.4) for all x, y is equivalent to the equality at sufficiently many sample points
{(xk, yk)},

P 0
j,rs(xk, yk) +

∑
n

αnP
n
j,rs(xk, yk) = TrRδ

(
Y (Qδ(xk, yk)⊗ Ers)

)
∀k = 1, 2 · · · dj

(B.5)

where the dimension dj is set by the number of all possible monomials below the leading
powers of Pnj,rs(x, y). Now we have translated the polynomial matrix problem input into a
numerical equation. Finally, we map the problem to a standard semidefinite programming
problem (SDP)

Maximize b · α over α ∈ RN , Y ∈ SK ,
such that Tr(ApY ) +Bp · α = cp and
Y � 0

(B.6)

where SK is the space of K ×K symmetric matrices. The matrices in the above SDP are

Y = diag(Y1, Y2, · · · , YJ) Yj ∈ Smjδj

Ap = diag(0, 0 · · · , Qδj ⊗ Ers, · · · , 0) p ≡ (j, r, s, k)
Bp = −Pnj,rs(xk, yk)
cp = P 0

j,rs(xk, yk) .

(B.7)
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In the bootstrap algorithm, we bypass pvm2sdp and use Mathematica code to directly
generate these matrices A,B and c as the SDP input. The internal code for sdpb also
needs to be slightly changed to allow more flexible values of δj and dj .

To implement the problems (3.25) and (3.26) we take the change of variables ∆E =
Egap + x2 and eip = 1−ξ2

1+ξ2 + i 2ξ
1+ξ2 , such that the space of ∆E > Egap and −π 6 p 6 π are

mapped to x, y ∈ R.

B.2 Subtleties in the numerical study

The mixed setup taking A = {σx, σz, σxi σzi+1} has a subtlety that eventually leads us to
use discretization instead of the rigorous method. We find that when we have block forms
~S(x, y) that is a vector of n × n matrices n > 1, sdpb fails to find a positive functional
~α · ~S(x, y) � 0. For simplicity, we consider univariate ~S(x). When the highest powers do
not match, for example

~α · ~S(x) ∼

axn bxn

bxn cxn−2

 ∼ xn
a b
b 0

 , (B.8)

the functional is manifestly non-positive, and is negative unless ~α · ~S(x) realizes b = 0
exactly. This means the functional will be exactly positive semidefinite. SDPB only
scans the space of positive definite matrices, and exactly semidefinite matrices can
only be reached as an approximation that has a large feasibility error. Empirically,
--detectDualFeasibilityJump will never work. The solution is to shift the diagonal
matrix elements in ~S(x) with an infinitestimal ε-shift by εxdegree in order to push the solu-
tion away from being positive semidefinite to being slightly positive definite. While there
exists a rigorous approach which is to scan for the mismatching powers and to eliminate b
in (B.8) before running sdpb, the quick-and-dirty ε-shift is faster and still provides an ac-
curate bound. Nevertheless, in the two variable case, the ε-shift does not address the issue
anymore. We conjecture that the problem is related to the fact that ~S(x) has more than
one leading powers, making it tricky how to shift away all the non-positivity. Addressing
this subtlety is beyond the scope of this paper, so we resort to discretization in the mixed
setup.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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