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1 Introduction

Energy-momentum tensor (EMT), Tµν(x), is a fundamental observable in physics that
is closely related to space-time symmetry. EMT plays indispensable roles in classical
and quantum field theories for various purposes; for example, its individual components,
energy and momentum densities, and stress tensor, are basic quantities having definite
physical meanings.

Recently, there has been remarkable progress in using the EMT operator for investigating
localized systems in quantum field theory. An example is the experimental investigations of
the gravitational form factors (GFF) of hadrons [1–4], that is the matrix element of the
EMT operator [5–12]. The GFF in the coordinate space represent the mechanical structure
of hadrons [7, 13], and provide us with novel insights into the hadron structure. Their
detailed study is one of the central goals of the Electron-Ion Collider (EIC) [14], and precise
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experimental data will be provided in the future. The measurement of the GFF on the
lattice is also ongoing [15, 16].

Another progress has been made in the numerical analysis of static-quark systems in
lattice gauge theory. Thanks to an efficient method to measure the expectation value of the
EMT operator on the lattice [17–23] based on the gradient flow [24, 25], detailed analysis
of the local distribution of EMT in various non-uniform and non-isotropic systems has been
realized [26–28]. In particular, the numerical result of the static quark-anti-quark (QQ̄)
system [26] has revealed the formation of the flux tube and its mechanical structure in
terms of the gauge-invariant observable.

In these localized systems, quantum effects should play crucial roles in determining the
EMT distribution. For example, in the QQ̄ system it is known that the width of the flux tube
becomes larger with increasing the QQ̄ distance due to quantum string vibrations [29–32].
Its importance is also suggested from the comparison of the lattice result in ref. [26] with the
classical EMT distribution around the flux tube in the dual superconductor model [33]. The
pressure anisotropy induced by boundaries also arises from purely quantum effects [27, 34].
To understand these experimental and numerical results, therefore, investigations of the
quantum effects on the EMT distribution are inevitable.

In the present study, as a trial of such investigations, we focus on the kink in the 1 + 1
dimensional scalar φ4 theory and calculate the EMT distribution around it incorporating
quantum effects to one-loop order. The kink, which is also called the soliton, is a localized
and stable classical solution in this theory that connects two degenerate vacua [35]. Its
properties and applications have been discussed actively more than half century [35–51].
However, its EMT distribution at the quantum level has not been understood well to the
best of the authors’ knowledge. As for related studies, the quantum correction to the total
energy of the kink has been calculated at one-loop order in the renowned paper by Dashen,
et al. [36], and the result has been confirmed in many literature [35, 52–57]. Also, there
are several attempts to calculate the energy density [43, 48], i.e. the expectation value of
T 00(x).1 However, these studies have not investigated the spatial component T 11(x). In
the present study, we calculate all components simultaneously. We show that our result
satisfies the momentum conservation. However, the expectation value of T 00(x) does not
agree with any of those in refs. [43, 48], while the spatial integral of T 00(x) reproduces the
total energy in ref. [36] in all the results.

In this analysis, we face a difficulty arising from the zero mode in the fluctuations
around the classical solution, which physically represents the space translation of the kink.
The zero mode causes an infrared divergence in the perturbative expansion. It also brings
about a conceptual difficulty in the definition of the EMT distribution around the kink in
quantum systems, since the location of the kink is not fixed in the quantum ground state.
It is known that these problems are resolved by employing the collective coordinate method
(CCM) [58–61], in which the zero mode is eliminated by promoting the coordinate of the
kink to a dynamical variable. The CCM also allows us to define the EMT distribution of
the kink around its center-of-mass frame, which is the Fourier transform of the GFF [7, 35].
We will discuss these issues in section 3.

1Also, the mean-square radius of the energy density has been evaluated in ref. [50].
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The analysis at one-loop order also has ultraviolet (UV) divergences. We eliminate them
in two steps; vacuum subtraction and mass renormalization. For the former, we employ the
same procedure as in ref. [36], which is named the mode-number cutoff (MNC) scheme [62].
In this method, the subtraction between the kink and vacuum sectors is performed in a
finite system of length L assuming that each sector has the same mode numbers. The result
after the vacuum subtraction is still logarithmically divergent, which can be removed by
mass renormalization.

We show that our result of T 00(x) and T 11(x) obtained at the spatial length L has a
constant term proportional to 1/L. This term has a finite contribution to the total energy
in the L→∞ limit, while it vanishes in the local EMT distribution. The total energy in
ref. [36] is reproduced including this contribution. This result means that the integral of
the local EMT distribution defined in the L → ∞ limit is not consistent with the result
in ref. [36].

This paper is organized as follows. In the next section we introduce the φ4 theory and
its kink solution, and summarize their basic properties. In section 3 we give a brief review of
the CCM. The expectation values of EMT around the kink are then calculated in section 4,
and the final result and its properties are discussed in section 5. The final section is devoted
to a summary and outlook. The topological charge density is calculated in appendix A.
In appendix B, appendix C and appendix D, specific topics on the mass renormalization,
vacuum subtraction based on the MNC, and analysis of the tadpole diagram, respectively,
will be discussed. In appendix E, we discuss the analyses in refs. [43, 48].

2 Model

We employ the real-scalar φ4 theory in a 1 + 1 dimensional system, whose Lagrangian
density is given by

L = 1
2∂µφ∂

µφ−U(φ), (2.1)

with the potential term

U(φ) = λ

4
(
φ2 − v2

)2
= −1

2m
2φ2 + λ

4φ
4 + λv4

4 , (2.2)

where φ = φ(x) is the real scalar field. The potential U(φ) has two degenerate minima at
φ = ±v with v2 = m2/λ.

2.1 Classical solutions

The classical equation of motion (EoM) of this theory is given by

∂2
0φ− ∂2

1φ+ dU

dφ
= ∂2

0φ− ∂2
1φ−m2φ+ λφ3 = 0. (2.3)

Since U(φ) has minima at φ = ±v,

φvac(x) = ±v = ± m

λ1/2 , (2.4)

are static solutions of eq. (2.3). We refer to these trivial solutions as the vacuum.
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The EoM (2.3) has other static solutions called the kink and anti-kink,

φkink(x;X) = ± m

λ1/2 tanh m(x−X)√
2

, (2.5)

where X is a free parameter that represents the position of the kink. As eq. (2.5) behaves
φkink(x;X)→ ±v in the limit x→∞ or x→ −∞, the (anti-)kink solution connects two
vacua in eq. (2.4).

The EMT in this theory is given by the Noether current as

Tµν(x) = (∂µφ)(∂νφ)− 1
2g

µν(∂ρφ)(∂ρφ) + gµνU(φ). (2.6)

Substituting eqs. (2.4) and (2.5) into eq. (2.6), one finds that Tµν(x) = 0 for the vacuum and

T 00
kink(x) = m4

2λ sech4m(x−X)√
2

, T 01
kink(x) = T 11

kink(x) = 0, (2.7)

for the kink with sechx = 1/ cosh x. By integrating T 00
kink(x), we obtain the total energy

Ekink =
∫
dxT 00

kink(x) = 2
√

2m3

3λ . (2.8)

In the following, we evaluate the quantum correction to eq. (2.7) to the leading order
of perturbative expansion with respect to λ; the dimensionless expansion parameter is
λ/m2, or λ~/m2 if ~ is explicitly shown. Since eq. (2.7) is of order λ−1, the leading-order
correction to it is at order λ0. We also note that φkink(x) is of order λ−1/2 as in eq. (2.5).

One can also define the topological current [35]

jµ(x) = λ1/2

2m εµν∂νφ(x), (2.9)

that satisfies the current conservation ∂µj
µ = 0, where εµν is the anti-symmetric tensor.

From eq. (2.5) one has

j0
kink(x) = λ1/2

2m ∂1φkink(x;X) = ± 1
2msech2m(x−X)√

2
. (2.10)

The topological charge Q is given by the spatial integral of j0;

Q =
∫ ∞
−∞

dxj0(x) = λ1/2

2m [φkink(∞;X)− φkink(−∞;X)] =

±1 (kink/anti-kink),
0 (vacuum).

(2.11)

In appendix A, we calculate the quantum correction to eq. (2.10).
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2.2 Expansion around the classical solutions

To calculate the quantum correction to eq. (2.7), we expand the field φ(x, t) around the
classical solutions as

φ(x, t) = v + χ(x, t), (2.12)
φ(x, t) = φkink(x;X) + η(x, t), (2.13)

where we take the positive sign in eq. (2.5) in the following. The action is written in terms
of χ(x, t) and η(x, t) as

S =
∫
dx2L

= Svac +
∫
dx2

[1
2(∂0χ)2 − 1

2(∂1χ)2 −m2χ2 − λ1/2mχ3 − λ

4χ
4
]

(2.14)

= Skink +
∫
dx2

[1
2(∂0η)2 − 1

2(∂1η)2 − λ

2
(
3φ2

kink − v2)η2 − λφkinkη
3 − λ

4 η
4
]
, (2.15)

where Svac = S[v] and Skink = S[φkink(x;X)] are the classical action of each sector. We
note that terms linear in χ(x, t) or η(x, t) are eliminated by the partial integral and the
EoM (2.3).

The quadratic terms in eq. (2.15),

−1
2

∫
d2xη(∂2

0 + ∆)η, ∆ = −∂2
1 + λ

(
3φ2

kink − v2), (2.16)

are diagonalized by solving the eigenequation

∆ψl(x) = ω2
l ψl(x). (2.17)

The analytic solution of eq. (2.17) is known as [63]

ω2
0 = 0, ψ0(x) =sech2mx√

2
∼ ∂1φkink(x; 0), (2.18)

ω2
1 = 3

2m
2, ψ1(x) = sinh mx√

2
sech2mx√

2
, (2.19)

ω2
q = q2 + 2m2, ψq(x) =eiqx

(
3 tanh2 mx√

2
− 1− 2

m2 q
2 − 3

√
2i q
m

tanh mx√
2

)
, (2.20)

for X = 0. Here, ψ0(x) and ψ1(x) are discrete modes, while ψq(x) for real number q form
a continuous spectrum. ψ0(x) is proportional to ∂1φkink(x; 0) and represents the space
translation of the kink. It thus is called the translational mode. This mode is interpreted
as the Nambu-Goldstone mode associated with the violation of translational invariance due
to the existence of the kink. The continuous modes ψq(x) have an asymptotic behaviour

ψq(x) −−−−→
x→±∞

C exp
(
iqx± i

2δp(q)
)
, (2.21)

with a constant C and the phase shift

δp(q) = −2 arctan 3
√

2mq
2m2 − 2q2 . (2.22)
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The argument of arctan diverges at q = ±m, which means that the phase shift crosses
δp(q) = ±π there. Requiring δp(0) = 0, to make δp(q) continuous we obtain2 [62]

δp(q) −−−−→
q→±∞

∓2π ± 3
√

2m
q
. (2.23)

For later use, we introduce the normalized eigenmodes ψ̄l(x) where l represents all the
eigenmodes. Because the following analysis is mainly performed in a finite system of length
L where the continuous modes are discretized, we impose the orthogonality condition∫ L/2

−L/2
dxψ̄∗l1(x)ψ̄l2(x) = δl1l2 . (2.24)

For the discrete modes l = 0, 1, we obtain

ψ̄0(x) =
( 3m

4
√

2

)1/2
ψ0(x), ψ̄1(x) =

( 3m
2
√

2

)1/2
ψ1(x), (2.25)

where the effect of finite L is exponentially suppressed for mL � 1. For the continuous
modes, using

|ψq|2 =
(

3 tanh2 mx√
2
− 1− 2q2

m2

)2
+ 18 q

2

m2 tanh2 mx√
2

= 2
m4 (2q2 +m2)(q2 + 2m2)− 3

m2 (2q2 +m2)ψ2
0 −

6
m2 (q2 + 2m2)ψ2

1, (2.26)

the normalization constant is calculated to be

Nq =
∫ L/2

−L/2
dx|ψq|2 = 2L

m4 (2q2 +m2)(q2 + 2m2)− 12
√

2
m3 (q2 +m2)

= 2L
m4 (2q2 +m2)(q2 + 2m2)

(
1 + 1

L
δ′p(q)

)
, (2.27)

which gives ψ̄q(x) = ψq(x)/
√
Nq with

δ′p(q) = dδp(q)
dq

= − 6
√

2m(q2 +m2)
(2q2 +m2)(q2 + 2m2) . (2.28)

For the boundary conditions (BC), we impose the anti-periodic BC (APBC)

φ(x+ L) = −φ(x), (2.29)

unless otherwise stated, since this choice of the BC conforms to eq. (2.5). The effect of the
boundary in the analysis of the total energy has been discussed in the literature [62, 65].
Their conclusion is that the total energy does not depend on the choice of the BC. Later, we
will argue that the APBC removes a divergence that appears in the calculation of a tadpole

2If we take phase shift to behave δp(q) → 0 for |q| → ∞, δp(q) becomes discontinuous at q = 0. This
choice of the phase shift leads to the same result as discussed in ref. [64].
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diagram most naturally. From eq. (2.29) that means η(x+ L) = −η(x) and eq. (2.21), the
values of q are restricted to discrete ones satisfying

Lqn + δp(qn) = (2n+ 1)π, (2.30)

for L→∞ with integer n.
Using the normalized eigenfunctions, η(x) is represented as

η(x) = c0ψ̄0(x) + c1ψ̄1(x) +
∑
n

cqnψ̄qn(x) =
∑
l

clψ̄l(x), (2.31)

where the sum on the far right-hand side runs over l = 0, 1 and qn. The quadratic
Hamiltonian is expressed in terms of cl as

H = 1
2
∑
l

ωlc
2
l . (2.32)

For the vacuum sector, the eigenmodes are discretized as

ϕn(x) = eiknx, kn = (2n+ 1)π
L

, (2.33)

with the APBC χ(x+ L) = −χ(x).3

Substituting eqs. (2.12) and (2.13) into eq. (2.6), EMT is rewritten as

T 00 = 1
2(∂0χ)2 + 1

2(∂1χ)2 +m2χ2 +O(λ1/2), (2.34)

T 11 = 1
2(∂0χ)2 + 1

2(∂1χ)2 −m2χ2 +O(λ1/2), (2.35)

T 01 = −(∂0χ)(∂1χ), (2.36)

for the vacuum sector and

T 00 = T 00
kink + 1

2(∂0η)2 + 1
2(∂1η)2 + (∂1φkink)(∂1η)

+ λφkink(φ2
kink − v2)η + λ

2 (3φ2
kink − v2)η2 +O(λ1/2), (2.37)

T 11 = + 1
2(∂0η)2 + 1

2(∂1η)2 − (∂1φkink)(∂1η)− λφkink(φ2
kink − v2)η

− λ

2 (3φ2
kink − v2)η2 +O(λ1/2), (2.38)

T 01 = − (∂0η)(∂1η)− (∂0η)(∂1φkink), (2.39)

for the kink sector, where we omitted higher order terms that are negligible to order λ0. We
note that eqs. (2.37) and (2.38) have linear terms in η(x), while such terms do not appear in
the action (2.15) as they are eliminated by the partial integral and the EoM. We will see later
that these linear terms calculated from the tadpole diagrams have nonzero contributions.

3We impose the same APBC for the vacuum sector. This choice makes the vacuum subtraction transparent
as discussed in appendix C. However, the APBC would be inconsistent with the periodicity of the classical
solution in the vacuum sector. For further discussion, see appendix C.
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3 Collective-coordinate method

In the perturbative analysis, the zero mode in eq. (2.18) leads to an infrared divergence.
The appearance of the zero mode is related to the fact that the kink position X is arbitrary
and the translation of the kink requires zero energy. The zero mode also causes another
conceptual difficulty. In the ground state of this system in quantum theory, the value of
X is not fixed, but the ground state is the eigenstate of the conjugate momentum of X.
Hence, the expectation value of EMT is uniform in space in the ground state. To obtain a
non-trivial result, one has to introduce a quantum expectation value with fixed X.

It is known that these problems are resolved by employing a procedure called the
collective-coordinate method (CCM) [58–60]. In the CCM, the perturbative analysis is
performed by eliminating the zero mode in place of the promotion of X to a dynamical
variable. In this section, we give a brief review of the CCM to make the manuscript
self-contained. The CCM has been formulated by various methods, such as the canonical
and the path-integral formalisms, which give the same result [35, 58–61]. In this section,
we illustrate the CCM based on refs. [60, 61]. See also section 8 of ref. [35].

3.1 Canonical transformation

Let us start from the classical system described by the Lagrangian (2.1). There are various
choices for a set of dynamical variables to describe the system; in addition to the original
field φ(x, t), one can choose η(x, t) in eq. (2.13), or cl in eq. (2.31).

Now, let us rewrite φ(x, t) as

φ(x, t) = φkink(x;X(t)) + η̃(x−X(t), t), (3.1)

and regard X(t) as a dynamical variable. Since this causes redundancy in the degrees of
freedom, we impose a constraint on η̃(x, t)∫

dxη̃(x, t)ψ̄0(x) = 0. (3.2)

This constraint means that the variable c0 in eq. (2.31), i.e. the zero mode, is removed and
η̃(x, t) is given by

η̃(x, t) =
∑
l 6=0

cl(t)ψ̄l(x). (3.3)

The basic idea of the CCM is to describe the system using the set of variables X(t) and
η̃(x, t), or equivalently X(t) and cl(t) for l 6= 0.

The Hamiltonian of the system is represented in terms of the new variables by canonical
transformation. For this we introduce the conjugate momenta of X(t) and η̃(x, t),

P (t) = ∂L

∂(∂0X) , π̃(x, t) = δL

δ(∂0η̃) , (3.4)

where L =
∫
dxL is the Lagrangian. The conjugate field π̃(x, t) can also be defined as

π̃(x, t) =
∑
l 6=0

γl(t)ψ̄l(x), (3.5)
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with γl = (∂L)/(∂(∂0cl)) being the canonical conjugate of cl. In any case, π̃(x, t) also
satisfies the orthogonality condition∫

dxπ̃(x)ψ̄0(x) = 0. (3.6)

It is found that the conjugate of the original field π = ∂L/∂(∂0φ) is given by

π(x, t) = π̃(x−X, t)− P (t) +
∫
dxπ̃∂1η̃

E
1/2
kink(1 + ξ/E

1/2
kink)

ψ̄0(x−X), (3.7)

with ξ =
∫
dx(∂1η̃(x))ψ̄0(x).

The variables X(t) and P (t) satisfies {X,P} = 1, where {·, ·} is the Poisson bracket in
this subsection. The Poisson bracket of η̃(x, t) and π̃(y, t) is given by

{η̃(x), π̃(y)} =
∑
l 6=0

ψ̄l(x)ψ̄∗l (y) = δ(x− y)− ψ̄0(x)ψ̄0(y), (3.8)

due to the constraints (3.2) and (3.6). The deviation from the delta function in eq. (3.8) is
understood as the Poisson bracket in constrained systems [66]. These Poisson brackets and
eq. (3.7) give

{φ(x), π(y)} = δ(x− y). (3.9)

In terms of X, P , η̃, and π̃, the Hamiltonian of the system is written as

H = Ekink + 1
2Ekink

(P +
∫
dxπ̃∂1η̃)2(

1 + ξ/E
1/2
kink

)2 + H̃, (3.10)

with

H̃ =
∫
dxH̃(x−X), (3.11)

H̃(x) = 1
2 π̃

2(x) + 1
2(∂1η̃(x))2 + U(φkink(x; 0) + η̃(x))−U(φkink(x; 0)). (3.12)

In eq. (3.10), the first term Ekink represents the classical energy of the kink (2.8) at order
λ−1. The second term contains cross terms between P and η̃(x), π̃(x), which arise as a
price of using new variables. However, this term is O(λ), and thus is negligible for our
purpose that evaluates the quantum correction to leading order, provided that P is of order
O(λ0). It, however, is notable that P 2/2Ekink in this term represents the kinetic energy of
a non-relativistic particle.4 We also note that eq. (3.10) does not depend on X explicitly as
the X dependence in H̃(x−X) is eliminated by the x integral. This fact is in accordance
with the translational invariance of the theory. The third term in eq. (3.10) is independent
of X and P . H̃(x) is interpreted as the Hamiltonian density of the kink at X = 0. While
H̃(x) has a similar form as the original Hamiltonian, it is written by η̃(x) and π̃(x) that do
not include the zero mode.

4These terms correspond to the first two terms in the non-relativistic expansion of the kinetic energy√
E2

kink + P 2 = Ekink + P 2/2Ekink + · · · . The higher order terms in the expansion manifest themselves in
the higher order terms of the perturbative expansion of λ [59]. For the Lorentz symmetry of eq. (3.10), see
refs. [59, 60].
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Using the new set of variables, EMT is expressed as

Tµν [X,P, η̃, π̃] = Tµνkink(x−X) + ∆T̃µν [π̃(x−X), η̃(x−X)], (3.13)

with

∆T̃ 00[π̃, η̃] = 1
2 π̃

2 + 1
2(∂xη̃)2 + (∂xφkink)(∂xη̃) + λφkink(φ2

kink − v2)η̃

+ λ

2 (3φ2
kink − v2)η̃2 +O(λ1/2), (3.14)

∆T̃ 11[π̃, η̃] = 1
2 π̃

2 + 1
2(∂xη̃)2 + (∂xφkink)(∂xη̃)− λφkink(φ2

kink − v2)η̃

− λ

2 (3φ2
kink − v2)η̃2 +O(λ1/2), (3.15)

∆T̃ 01[π̃, η̃] =− π̃(∂xη̃)− π̃(∂xφkink) +O(λ). (3.16)

3.2 Quantization

The system described by eq. (3.10) is quantized by promoting the variables X(t), P (t),
η̃(x, t) and π̃(t) to quantum operators. The Poisson brackets are promoted to the commu-
tation relations

[X,P ] = i, [η̃(x), π̃(y)] = i
(
δ(x− y)− ψ̄(x)ψ̄(y)

)
. (3.17)

All other commutation relations vanish. The second term in eq. (3.10) contains the cross
terms between the conjugate fields. Although the order of operators has to be chosen
carefully for quantizing such terms, as discussed already these terms are of order O(λ1) and
negligible for our purpose.

Since the Hamiltonian (3.10) does not depend on X and P to order that we are working,
it is convenient to separate the Hilbert space Φ into the direct product as

Φ = ΦX ⊗ Φη̃, (3.18)

where ΦX and Φη̃ represent the subspaces described by the corresponding subindices. Then,
to order λ0, the Hamiltonian is diagonalized in ΦX and Φη̃ separately. The subspace Φη̃

is described by eq. (3.11), and its ground state is determined without specifying the state
in ΦX .

After setting the quantum state to be the ground state in Φη̃, we still have arbitrariness
to specify the state in ΦX . For example, one can consider eigenstates of the operator X̂
satisfying X̂|X〉 = X|X〉, where |X〉 is assumed to be the ground state in Φη̃. The matrix
element of the EMT operator (3.13) between these states is then calculated to be

〈X|Tµν(x)|X ′〉 =
(
Tµνkink(x−X) + ∆Tµνkink(x−X)

)
δ(X −X ′) +O(λ), (3.19)

with

∆Tµνkink(x−X) = 〈X|∆T̃µν(x)|X〉. (3.20)
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Figure 1. Diagrammatic representation of the renormalization condition.

Here, ∆Tµνkink(x) is interpreted as the quantum correction of the EMT distribution around
the kink at X = 0.

One can also consider the momentum eigenstates satisfying P̂ |P 〉 = P |P 〉 and 〈X|P 〉 =
eiPX , where |P 〉 is again assumed to be the ground state in Φη̃. The matrix element of
Tµν(x) between these states is given by

〈P |Tµν(x)|P ′〉 =
∫
dX
(
Tµνkink(x−X) + ∆Tµνkink(x−X)

)
ei(P−P

′)X . (3.21)

Substituting x = 0 into eq. (3.21), one sees that the Fourier transform of Tµνkink(x)+∆Tµνkink(x)
is the form factor of the kink, i.e. the GFF. In the next section, we calculate eq. (3.20).
This analysis corresponds to the perturbative expansion without the zero mode.

Further comments on the GFF are in order. Conventionally, the GFF of a spin-0
particle are defined as [3, 6, 7]

〈p|Tµν(0)|p′〉 = KµKν

K2 Θ1(∆2) + ∆µ∆ν − gµν∆2

∆2 Θ2(∆2), (3.22)

where |p〉 represents a quantum state with the Lorentz vector pµ,Kµ = pµ+p′µ, ∆µ = pµ−p′µ

and the metric tensor gµν . Equation (3.22) has two independent components Θ1 and Θ2. In
1 + 1 dimensions, however, the projection operators satisfy KµKν/K2 = gµν −∆µ∆ν/∆2

and only one component does exist in the GFF, corresponding to the fact that there are
no “transverse” directions in 1 + 1 dimensions. Equation (3.19) corresponds to the Fourier
transform of this component. We also note that our analysis assumes the non-relativistic
limit since it is valid only when P is of order O(λ0), while the kink mass (2.8) is of order λ−1.

4 Perturbative analysis

4.1 Vacuum subtraction and mass renormalization

In the analysis of eq. (3.20), we face two types of ultraviolet (UV) divergence. We remove
them with the same procedure as refs. [35, 36].5 We first perform the vacuum subtraction,

5To deal with these divergences, one would first regularize the EMT operators (3.14)–(3.16) so that their
expectation value vanishes in the vacuum sector, and then calculate their expectation values in the kink
sector without the vacuum subtraction. This can be done by taking the normal ordering of eqs. (3.14)–(3.16),
as well as the Hamiltonian [35, 51]. It is shown that this procedure leads to the same result as that in this
paper. We thank anonimous referee for notifying this point.
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i.e. we require that the expectation value of Tµν(x) vanishes in the vacuum sector. This
means that the expectation value in the kink sector is defined by

〈Tµν(x)〉 = 〈T̃µν(x)〉K − 〈Tµν(x)〉V, (4.1)

where the subscripts K and V mean the expectation values for the kink and vacuum
sectors, respectively, and the expectation value without a subscript is defined by eq. (4.1)
in what follows.

After the vacuum subtraction, eq. (4.1) is still UV divergent. A conventional renor-
malization procedure removes this divergence. It is known that the 1 + 1 dimensional φ4

theory is regularized only by the mass renormalization that adds the mass counterterm

Lct = −1
2δm

2φ2 = −1
2δm

2(v2 + 2vχ+ χ2)

= −1
2δm

2(φ2
kink + 2φkinkη̃ + η̃2), (4.2)

to Lagrangian density.6 To determine δm2 we impose the renormalization condition shown
in figure 1(a), which results in

δm2 = − 3λ
2L

∑
n

1√
k2
n + 2m2 , (4.3)

where the discrete momenta kn are defined in eq. (2.33). This condition is equivalent to
figure 1(b), i.e. vanishing of the tadpole diagram in the vacuum sector. We note that the
common counterterm (4.3) is adopted to both the vacuum and kink sectors.

As the Lagrangian density is modified by the counterterm (4.2), the EMT operator is
also modified by this term. Since δm2 is of order λ1 as in eq. (4.3), only the terms δm2v2

and δm2φ2
kink contribute at order λ0 in the vacuum and kink sectors, respectively. Taking

this effect into account, the explicit form of ∆Tµνkink(x) is given by

∆T 00
kink(x) = T1(x) + T2(x) + T3(x) + T4(x), (4.4)

∆T 11
kink(x) = T1(x)− T2(x) + T3(x)− T4(x), (4.5)

with

T1(x) = 1
2〈π̃

2〉K + 1
2〈(∂1η̃)2〉K −

1
2〈π̃

2
χ〉V −

1
2〈(∂1χ)2〉V, (4.6)

T2(x) = λ

2 (3φ2
kink − v2)〈η̃2〉K −m2〈χ2〉V + 1

2δm
2(φ2

kink − v2), (4.7)

T3(x) = (∂1φkink)〈∂1η̃〉K, (4.8)

T4(x) = λφkink(φ2
kink − v2)〈η̃〉K. (4.9)

From time reversal symmetry, we also obtain

∆T 01
kink(x) = 0. (4.10)

In the following, we calculate eqs. (4.6)–(4.9) one by one.
6We perform the analysis in the renormalized perturbation theory, where m stands for the renormalized

mass. The analysis in the bare perturbation theory is discussed in appendix B.
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4.2 T1(x)

We start from the calculation of T1(x). The expectation values in the kink sector 〈π̃2〉K
and 〈(∂1η̃)2〉K are calculated with the use of the Green function of H̃ given by

G(x, x′; t− t′) = 〈η̃(x, t)η̃(x′, t′)〉K =
∫
dω

2π
∑
l 6=0

eiω(t−t′)ψ̄l(x) i

ω2 − ω2
l + iε

ψ̄∗l (x′), (4.11)

and

〈π̃(x, t)π̃(x′, t′)〉K = 〈∂0η̃(x, t)∂0η̃(x′, t′)〉K
= ∂t∂t′G(x, x′; t− t′)− δ(t− t′)

[
δ(x− x′)− ψ̄0(x)ψ̄0(x′)

]
(4.12)

=
∫
dω

2π
∑
l 6=0

eiω(t−t′)ψ̄l(x) iω2
l

ω2 − ω2
l + iε

ψ̄∗l (x′), (4.13)

where ψ̄0(x)ψ̄0(x′) in eq. (4.12) comes from the commutation relation eq. (3.17) [59].
Using eqs. (4.11) and (4.13), 〈π̃2〉K and 〈(∂1η̃)2〉K are calculated to be

〈(∂1η̃)2〉K = lim
x′→x

∂1∂
′
1G(x, x′; 0) =

∑
l 6=0

1
2ωl
|∂1ψ̄l(x)|2, 〈π̃2〉K =

∑
l 6=0

ωl
2 |ψ̄l(x)|2, (4.14)

with ∂′1 = ∂/∂x′. From

|ψ̄q(x)|2 = |ψq(x)|2

Nq

= 1
L

{
1− 3m2

2(q2 + 2m2)ψ
2
0 −

3m2

2q2 +m2ψ
2
1

}(
1−

δ′p(q)
L

)
+O(L−3), (4.15)

= 1
L

{
1− 3m2

2(q2 + 2m2)
(
ψ2

0 + ψ2
1
)
− 9m4

2(q2 + 2m2)(2q2 +m2)ψ
2
1

}(
1−

δ′p(q)
L

)
+O(L−3), (4.16)

|∂1ψ̄q(x)|2 = 1
L

{
q2 + 3

[
(∂1ψ0)2 + (∂1ψ1)2]− 3m2(∂1ψ0)2

2(q2 + 2m2) −
3m2(∂1ψ1)2

2q2 +m2

}
×
(

1−
δ′p(q)
L

)
+O(L−3), (4.17)

and m2(ψ2
0 + ψ2

1) = 2((∂1ψ0)2 + (∂1ψ1)2), one obtains

〈π̃2〉K + 〈(∂1η̃)2〉K = 1
2L

∑
n

(√
q2
n + 2m2 + q2

n√
q2
n + 2m2

)(
1−

δ′p(qn)
L

)

− 3
2D1(∂1ψ0)2 +

(√3
4 −

3
2D2

)(3m2

2 ψ2
1 + (∂1ψ1)2

)
, (4.18)
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with

D1 = 1
L

∑
n

m2

2
√
q2
n + 2m2(q2

n + 2m2)

(
1−

δ′p(qn)
L

)
−−−−→
L→∞

∫ ∞
−∞

dq

2π
m2

2
√
q2 + 2m2(q2 + 2m2)

= 1
4π , (4.19)

D2 = 1
L

∑
n

m2√
q2
n + 2m2(2q2

n +m2)

(
1−

δ′p(qn)
L

)
−−−−→
L→∞

∫ ∞
−∞

dq

2π
m2√

q2 + 2m2(2q2 +m2)
=
√

3
9 . (4.20)

Here, the sums in eqs. (4.19) and (4.20) are convergent and they are replaced with the
integrals in the L→∞ limit.

The first term in eq. (4.18) is UV divergent. The divergence is removed by the
subtraction of the vacuum sector given by

〈π̃2
χ〉V + 〈(∂1χ)2〉V = 1

2L
∑
n

(√
k2
n + 2m2 + k2

n√
k2
n + 2m2

)
. (4.21)

As shown in appendix C, the results of the subtraction in the MNC are given by

1
L

∑
n

√
q2
n + 2m2

(
1−

δ′p(qn)
L

)
− 1
L

∑
n

√
k2
n + 2m2 −−−−→

L→∞
−3
√

2m
πL

, (4.22)

1
L

∑
n

q2
n√

q2
n + 2m2

(
1−

δ′p(qn)
L

)
− 1
L

∑
n

k2
n√

k2
n + 2m2 −−−−→L→∞

−3
√

2m
πL

, (4.23)

1
L

∑
n

1√
q2
n + 2m2

(
1−

δ′p(qn)
L

)
− 1
L

∑
n

1√
k2
n + 2m2 −−−−→L→∞

0. (4.24)

Accumulating these results, one obtains

T1(x) = −3
√

2m
2πL − 3

4D1(∂1ψ0)2 + 1
2

(√3
4 −

3
2D2

)(3m2

2 ψ2
1 + (∂1ψ1)2

)
= −3

√
2m

2πL + A

2 (∂1ψ0)2 + B

2

(3m2

2 ψ2
1 + (∂1ψ1)2

)
= −3

√
2m

2πL +Bm2sech2mx√
2

+
(
A− 7

4B
)
m2sech4mx√

2
+ (−A+B)m2sech6mx√

2
,

(4.25)

with

A = −3
2D1 = − 3

8π , (4.26)

B =
√

3
4 −

3
2D2 =

√
3

12 . (4.27)
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Figure 2. Tadpole diagram contributing to 〈η̃(x)〉K.

4.3 T2(x)

Next, let us calculate T2(x). 〈η̃2(x)〉K and 〈χ2(x)〉V are calculated to be

〈η̃(x)2〉K = lim
x′→x

G(x, x′; 0) =
∑
l 6=0

1
2ωl
|ψ̄l(x)|2

= 1
2L

∑
n

1√
q2
n + 2m2

(
1−

δ′p(qn)
L

)
+Aψ2

0 +Bψ2
1, (4.28)

〈χ2(x)〉V = 1
2L

∑
n

1√
k2
n + 2m2 = − 1

3λδm
2. (4.29)

Substituting them into T2(x), we obtain

T2(x) = λ

2 (3φ2
kink − v2)(〈η̃2〉K − 〈χ

2〉V)

= m2

2 (3φ̄2
kink − 1)(Aψ2

0 +Bψ2
1)

= Bm2sech2mx√
2

+
(
A− 5

2B
)
m2sech4mx√

2
− 3

2(A−B)m2sech6mx√
2
, (4.30)

where φ̄kink(y) = (
√
λ/m)φkink(y; 0) and we used eq. (4.24) for the vacuum subtraction.

4.4 T3(x) and T4(x)

Finally, we calculate the terms including one-point correlation function T3(x) and T4(x).
The coefficients of these terms are of order λ−1/2. They have order λ0 contribution through
〈η̃(x)〉K obtained from the tadpole diagram in figure 2, where the three-point interaction
λφkink is of order λ1/2. The one-point function in the vacuum sector 〈χ(x)〉V vanishes by
mass renormalization. The expectation value of η̃(x) is calculated to be

〈η̃(x)〉K = −i
∫
dy2φkink(y; 0)

{
3λ 〈η̃(x)η̃(y)〉K 〈η̃(y)η̃(y)〉K + δm2 〈η̃(x)η̃(y)〉K

}
= −i

∫
dyφkink(y; 0)G̃(x, y){3λG(y, y) + δm2}

= −3iλ
∫
dyφkink(y; 0)G̃(x, y){Aψ2

0 +Bψ2
1}, (4.31)

where G̃(x, y) =
∫
dt′G(x, y; t− t′). In the last equality, we used eqs. (4.3), (4.24) and (4.28).

Using ψ2
0(x) = 1− 2φ̄2

kink(x) + φ̄4
kink(x) and ψ2

1(x) = φ̄2
kink(x)− φ̄4

kink(x), eq. (4.31) is further
rewritten as

〈η̃(x)〉K = −3im
√
λ
{
A
(
H1(x)− 2H3(x) +H5(x)

)
+B

(
H3(x)−H5(x)

)}
, (4.32)
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with

Hi(x) =
∫
dyφ̄ikink(y)G̃(x, y). (4.33)

Using analytic forms of eq. (4.33) given in appendix D, one obtains

〈η̃(x)〉K = −
√
λ

m

{
(A−B)φ̄kink(1− φ̄2

kink) + 3
2Bx∂1φ̄kink

}
. (4.34)

This result gives

T3(x) = − (A−B)m
2

2 ψ2
0(1− 3φ̄2

kink)− 3
2B(∂1φ̄kink)∂1(x∂1φ̄kink)

=
(
A− 7

4B
)
m2sech4mx√

2
− 3

2(A−B)m2sech6mx√
2

+ 3
√

2
4 Bm3x tanh mx√

2
sech4mx√

2
, (4.35)

T4(x) = 1
2(A−B)(∂1ψ0)2 + 3

2Bm
2φ̄kink(1− φ̄2

kink)x∂1φ̄kink

= (A−B)m2sech4mx√
2
− (A−B)m2sech6mx√

2

+ 3
√

2
4 Bm3x tanh mx√

2
sech4mx√

2
. (4.36)

As discussed in appendix D, in the analysis of eq. (4.33) there appear surface terms from
partial integrals. Equation (4.34) is the result obtained neglecting these terms. We note
that the vanishing of the surface terms is most clearly justified with the APBC, although it
would be valid for any case.

Equation (4.34) also allows us to calculate the quantum correction to the topological
charge density (2.10) as discussed in appendix A.

5 Result

Accumulating these results, the expectation value of EMT to one-loop order is obtained as

〈Tµν(x)〉 =Tµνkink(x) + ∆Tµνkink(x), (5.1)

∆T 00
kink(x) =

√
3

6 m2sech2mx√
2
−
( 3

2π + 7
√

3
12

)
m2sech4mx√

2

+ 5
( 3

8π +
√

3
12

)
m2sech6mx√

2
+
√

6
8 m3x tanh mx√

2
sech4mx√

2

− 3
√

2m
2πL , (5.2)

∆T 11
kink(x) =− 3

√
2m

2πL . (5.3)
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T 00(x)

〉
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∆T 00
kink(x)

Figure 3. Energy density around the kink 〈T 00(x)〉 at λ/m2 = 1. The classical value T 00
kink(x) and

the quantum correction ∆T 00
kink(x) in the L → ∞ limit are also shown by the dashed and dotted

lines, respectively.

In figure 3, we show the behavior of eqs. (5.1) and (5.2) in the L→∞ limit together with
the classical value T 00

kink(x) at λ/m2 = 1. By taking the spatial integral of 〈T 00(x)〉, we
obtain the total energy∫ L/2

−L/2
dx 〈T 00(x)〉 = Ekink +m

(√6
12 −

3
√

2
2π

)
, (5.4)

which reproduces the result in ref. [36].
A notable feature of eqs. (5.1)–(5.3) is that all x dependence cancels out in eq. (5.3) and

〈T 11(x)〉 becomes a constant. This result is in agreement with the momentum conservation
in static systems, ∂1T

11(x) = 0, which is also interpreted as the equilibration of the
force. While the energy density, i.e. eq. (5.2), has been investigated in the same model
in refs. [43, 48], 〈T 11(x)〉 is not analyzed there. Our result (5.2) does not agree with any
of them.7 The calculation of 〈T 11(x)〉 and a confirmation of the momentum conservation
would be used for a check of the validity of each analysis. Although the reproduction of
their analyses is difficult, we give some arguments in appendix E.

Although eq. (5.3) is obtained to leading order in 1/L, it is easily confirmed that
∂1 〈T 11(x)〉 = 0 holds even to higher orders in 1/L as follows. The higher order terms in
1/L come from eqs. (4.16) and (4.17), and also eqs. (4.22) and (4.24). Among their effects
on the final result, the modifications of A and B in eqs. (4.26) and (4.27) do not affect the
cancellation of each term in ∆T 11

kink(x). Also, eq. (4.24) becomes nonzero at order 1/L2, and
it modifies T2(x), T3(x) and T4(x). However, one can easily verify that this effect cancels
out in x-dependent terms. Therefore, 〈T 11(x)〉 is a constant even to higher order in 1/L, as
it should be from the momentum conservation.

Equation (5.3), however, is nonzero. Equation (5.2) also contains the same term
proportional to 1/L. The term in eq. (5.2) contributes to the total energy eq. (5.4) and is

7In refs. [43, 48], the definition of m is different from ours. Their results are comparable to ours with a
replacement m2 → 2m2.
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mandatory to reproduce the result of ref. [36]. However, this term vanishes if one defines
the energy density of the kink as the L→∞ limit of eq. (5.2). The total energy defined
from this energy density ∫ ∞

−∞
dx lim

L→∞
〈T 00(x)〉 = Ekink +

√
6

12 m, (5.5)

thus contradicts the one of ref. [36]. This result raises the question of what is the correct
total energy of the kink. We note that the quantum correction in ref. [36] is negative, while
eq. (5.5) is positive.

There is another issue concerning the 1/L term. Since the stress tensor 〈T 11(x)〉
represents the force acting on each space point, this force does the work when the system
size L is varied. More specifically, by varying the system size from L to L+ ∆L, the total
energy of the system should be reduced by T 11∆L due to the work. As a result, the total
energy must have a term proportional to

∫
L dL

′T 11(L′) .8 Substiting T 11(L) ∼ 1/L into this
term leads to its logarithmic divergence in the L→∞ limit, which, however, constradicts
the existence of the finite total energy in this limit. There are several possibilities to explain
this contradiction. One of them is that T 11(x) would not be interpreted as the force in
this system, or the system investigated here would not physically correspond to the one in
which kinks and anti-kinks are aligned alternately with the interval L. It would also be
possible that the regularization based on the MNC with the CCM causes problems in the
vacuum subtraction [51, 62]. We also note that our analysis relies on the nonrelativistic
approximation since it is justified only when P is of order O(λ0) as discussed in section 3.
The clarification of the problem, however, is beyond our present understanding, and we
leave it for future study.

6 Summary and outlook

In this study, we have explored the EMT distribution around the kink in the 1+1 dimensional
φ4 theory to one-loop order. Our final result is given in eqs. (5.2) and (5.3). This result
is consistent with the momentum conservation ∂1 〈T̃ 11(x)〉 = 0. The spatial integral of
〈T̃ 00(x)〉 reproduces the total energy in ref. [36], while our result obtained in a finite system
of length L contains a constant term proportional to 1/L, whose physical interpretation
deserves further investigation.

There are many future extensions of the present study. Investigations of the kink and
localized structures in other 1 + 1 dimensional models are straightforward ones among
them. An example is the sine-Gordon model, which has a stable kink solution and the
time-dependent solution called the breather mode [36]. While the quantum correction to
their total energy has been investigated [37], EMT distribution has not been analyzed so
far. Their analysis will be reported in the forthcoming publication [67]. Next, exploring
the quantum effects on the localized structures in higher-dimensional systems is a further
interesting subject. For example, the 2 + 1 dimensional φ4 theory has a classical solution

φ(x, y) = φkink(x;X), (6.1)
8For the case of Casimir effect, this correspondence between the stress and internal energy is

fullfilled [27, 34].
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Figure 4. Topological charge density around a kink at λ/m2 = 1.

having the translational invariance in the y direction, which is the surface connecting two
vacua. By quantizing this system, the position of the kink is obscured. Although this effect
leads to instability for an infinitely-long surface, the problem will be well defined when the
positions of the surface are fixed by hand at two points, say y = ±R/2. An investigation of
the EMT distribution in this system will give us novel insights into the quantum effects on
the surface. The problem would also be extended to a 3 + 1 dimensional system, where
the classical solutions can have string-like structures, such as the vortex solution in the
Abelian-Higgs model [33]. The analysis of quantum effects in this system will provide us
with a microscopic basis of the effective string models [29, 68–70], as well as the numerical
results of flux tube [26, 32, 70].
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A Topological charge density

In this appendix, we calculate the 1-loop correction to the topological charge density (2.10)
in the kink sector. From eq. (4.31), the expectation value of j0(x) in kink sector is given by

〈j0(x)〉K = j0
kink(x) + ∆j0

kink(x), (A.1)

∆j0
kink(x) = 1

2v 〈∂1η̃〉K

= 1
2

[(√
2A− 7

√
2

4 B

)
msech2mx√

2
+ 3
√

2
2 (−A+B)msech4mx√

2

+ 3
2Bm

2x tanh mx√
2

sech2mx√
2

]
. (A.2)
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The behavior of eqs. (A.1) and (A.2) at λ/m2 = 1 is shown in figure 4. The spatial integral
of eq. (A.2) is given by ∫

dx∆j0
kink(x) = 0, (A.3)

which leads to
∫
dx 〈j0(x)〉K = 1.

B Mass renormalization

In this appendix, we discuss the dependence of our results on the mass renormalization
condition and clarify their mutual relation. It is also shown that the bare perturbation
theory gives the same result as eqs. (5.1)–(5.3).

To resolve these issues, we first point out that the terms arising from the mass countert-
erm cancel out in 〈T 11(x)〉. This can be checked by formally accumulating terms including
δm2 in eq. (4.5). Such terms exist in T2(x), T3(x) and T4(x). First, T2(x) contains

δT2(x) = 1
2δm

2(φ2
kink − v2) = −m

2

2λ δm
2sech2mx√

2
. (B.1)

Next, in T3(x) and T4(x), such terms arise from the first or second line of eq. (4.31)

〈δη̃(x)〉K = −iδm2
∫
dy

2πφkink(y; 0)G̃(x, y) = −i m√
λ
δm2H1(x), (B.2)

that gives

δT3(x) = (∂1φkink)〈∂1δη̃〉K = m2δm2

2λ

(
− sech4mx√

2
+ mx√

2
tanh mx√

2
sech4mx√

2

)
, (B.3)

δT4(x) = λφkink(φ2
kink − v2)〈δη̃〉K

= m2δm2

2λ

(
sech2mx√

2
− sech4mx√

2
+ mx√

2
tanh mx√

2
sech4mx√

2

)
. (B.4)

From eqs. (B.1), (B.3) and (B.4) one finds

−δT2(x) + δT3(x)− δT4(x) = 0, (B.5)

which means that these terms cancel out in eq. (4.5).
From eq. (B.5), it is concluded that 〈T 11(x)〉 does not depend on δm2, and hence

the renormalization condition. In particular, the momentum conservation ∂1 〈T 11(x)〉 = 0
is always satisfied. Equation (B.5) also tells us that eq. (5.3) is obtained in the bare
perturbation theory (BPT), where the mass counterterm does not exist.

Next, let us focus on 〈T 00(x)〉. In this case, the change of the renormalized mass modifies
the classical term T 00

kink(x), which gives rise to additional terms at order λ0. To clarify the
discussion, let us consider two renormalization conditions that give different renormalized
masses m1 and m2, whose difference m1 −m2 is of order λ. Then, in each renormalization,
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Figure 5. Eigenvalue distributions in the kink and vacuum sectors for the APBC. The kink sector
has two bound states shown by the orange lines. The continuum spectra shown by the blue lines
are doubly degenerated. On the right-hand side of eq. (C.3), the subtraction is taken between the
modes connected by the arrows.

the classical energy density is given by m4
1/(2λ)sech4(m1x/

√
2) andm4

2/(2λ)sech4(m2x/
√

2),
respectively, whose difference is

(m1 −m2)∂T
00
kink(x)
∂m

, (B.6)

where the value of mass in ∂T 00
kink(x)/∂m is irrelevant at order λ0. On the other hand, the

value of mass counterterms δm2
1 and δm2

2 in each renormalization differ by δm2
1 − δm2

2 =
m2

1−m2
2 ∼ (m1−m2)m1. The difference of eq. (4.4) coming from it is δT2(x)+δT3(x)+δT4(x)

but δm2 is replaced with δm2
1 − δm2

2. It is shown that this modification exactly cancels out
with eq. (B.6). This can be shown from the relation

−δm
2

2m
∂T 00

kink(x)
∂m

= δT2(x) + δT3(x) + δT4(x) +O(λ), (B.7)

that is obtained by an explicit calculation of the left-hand side.
Equation (B.7) also tells us that eq. (5.2) is obtained even in the BPT. In the BPT,

we use the bare mass m0 that is related to the renormalized mass m as m2 = m2
0 + δm2,

while the mass counterterm is not introduced. In this case, since the mass in T 00
kink(x) is m0,

eq. (B.7) appears at order λ0 when T 00
kink(x) is rewritten by m, which is exactly the term

coming from the mass counterterm in the renormalized perturbation theory. Therefore, the
results in the bare and renormalized perturbation theories are the same at order λ0 as they
should be.

C Mode-number cutoff

In this appendix we derive eqs. (4.22) and (4.24). For this, we use the mode-number cutoff
(MNC) prescription. We refer to refs. [35, 36, 62] for a more detailed discussion on the
MNC. In particular, see ref. [62] for the treatment of the phase shift.

We start from the form of subtraction
1
L

∞∑
n=−∞

f(qn)− 1
L

∞∑
n=−∞

f(kn), (C.1)
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for an even function f(x), where qn and kn are the discretized momenta in the kink and
vacuum sectors in eqs. (2.30) and (2.33). Using f(x) = f(−x), eq. (C.1) is rewritten as

2
L

∞∑
n=0

f(qn)− 2
L

∞∑
n=0

f(kn). (C.2)

Note that qn = −q−n−1 and kn = −k−n−1 from eqs. (2.30) and (2.33).
To perform the subtraction in eq. (C.2), one has to introduce the upper limits of the

two sums to make them finite, and then take them to infinity keeping the difference finite.
In the MNC, this cutoff is introduced in such a way that the mode numbers in the kink
and vacuum sectors are equivalent. This prescription is justified, for example, in the lattice
regularization. Then, since the kink sector has two bound states that are not included in
eq. (C.2), and there are two modes for each n in eq. (C.2), the upper bound for the kink
sector is one smaller than the vacuum sector. Therefore, in the MNC the sum (C.2) is
defined as

2
L

N−1∑
n=0

f(qn)− 2
L

N∑
n=0

f(kn) = 2
L

N−1∑
n=0

(
f(qn)− f(kn+1)

)
− 2
L
f(k0), (C.3)

where N is half the number of the modes that are taken infinity at the end of the calculation.
On the right-hand side of eq. (C.3), the subtraction is taken between the modes off by one
as in figure 5, and the remaining n = 0 mode in the vacuum sector is put outside the sum.

From eqs. (2.30) and (2.33), one sees that

qn = kn+1 −
2π + δp(qn)

L
= kn+1 −

2π + δp(kn+1)
L

+O(L−2). (C.4)

In the limit L→∞ we thus have

f(qn)− f(kn+1) = −f ′(kn+1)2π + δp(kn+1)
L

. (C.5)

Plugging eq. (C.5) into eq. (C.3), eq. (C.1) is calculated to be

1
L

∞∑
n=−∞

f(qn)− 1
L

∞∑
n=−∞

f(kn)

= − 2
L

lim
N→∞

N−1∑
n=0

f ′(kn+1)2π + δp(kn+1)
L

− 2
L
f(k0)

−−−−→
L→∞

− 2
L

∫ ∞
0

dk

2πf
′(k)(δp(k) + 2π)− 2

L
f(k0)

= − 1
πL

[
f(k)(δp(k) + 2π)

]∞
0

+ 2
L

∫ ∞
0

dk

2πf(k)δ′(k)− 2
L
f(k0)

= −3
√

2
Lπ

lim
k→∞

(
f(k)m

k

)
+ 2
L

∫ ∞
0

dk

2πf(k)δ′p(k), (C.6)

where in the last equality we used eq. (2.23). The last term in eq. (C.6) cancels out
with δ′p(qn)/L term in eqs. (4.22)–(4.24). Substituting f(x) =

√
x2 + 2m2 and f(x) =

1/
√
x2 + 2m2 into this result gives eqs. (4.22)–(4.24), respectively.
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In the above derivation, we imposed the APBC for both the kink and vacuum sectors.
Other BCs have been employed in the literature for the calculation of the total energy of
the kink [35, 36, 62]. These analyses have shown that the final result does not depend on
the BCs employed in these studies. In particular, it has been pointed out that different
BCs for the kink and vacuum sectors, for example, APBC for the kink sector and PBC
for the vacuum sector, yield the same result [65]. Upon our examination, these arguments
directly apply to our manipulation as well. Therefore, we expect that eqs. (4.22)–(4.24) are
valid even for other BCs.

D Calculations of Hi(x)

In this appendix, we calculate Hi(x) in eq. (4.33) that appear in the analysis of the tadpole
diagram in section 4.4.

We start from an identity [59],9∫
dy∂2

y φ̄kink(y)G̃(x, y) = i

2x∂xφ̄kink(x). (D.1)

Substituting the EoM

(∂2
y +m2)φ̄kink(y) = m2φ̄3

kink(y), (D.2)

into eq. (D.1), we obtain∫
dy∂2

y φ̄kink(y)G̃(x, y) = m2
∫
dy(φ̄3

kink(y)− φ̄kink(y))G̃(x, y)

= m2(H3(x)−H1(x)). (D.3)

By the partial integral, eq. (D.1) is also calculated to be∫
dy∂2

y φ̄kink(y)G̃(x, y) =
[
∂yφ̄kink(y)G̃(x, y)

]L/2
−L/2 −

∫
dy∂yφ̄kink(y)∂yG̃(x, y)

= −
[
φ̄kink(y)∂yG̃(x, y)

]L/2
−L/2 +

∫
dyφ̄kink(y)∂2

yG̃(x, y). (D.4)

Provided that the surface terms in the second and third lines vanish, one obtains∫
dy∂2

y φ̄kink(y)G̃(x, y) =
∫
dyφ̄kink(y)∂2

yG̃(x, y). (D.5)

Here, we note that the surface terms in eq. (D.4) vanish trivially when the APBC (or
Dirichlet) BC is imposed on η̃(x). We employ the APBC from this cancellation, although
the surface terms would vanish even for other BCs because of limx→±∞ ∂xφ̄(x) = 0 and
limy→±∞G(x, y) = 0.

Plugging

(−∂2
y −m2 + 3m2φ̄2

kink(y))G̃(x, y) = −iδ(x− y), (D.6)
9See, eq. (4.7) of ref. [59].
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into eq. (D.5) gives∫
dy∂2

y φ̄kink(y)G̃(x, y) =
∫
dyφ̄kink(y)

{
(−m2 + 3m2φ̄2

kink(y))G̃(x, y) + iδ(x− y)
}

= m2(3H3(x)−H1(x)) + iφ̄kink(x). (D.7)

From eqs. (D.3) and (D.7), one finds

H1(x) = − i

2m2∂x
(
xφ̄kink(x)

)
, (D.8)

H3(x) = − i

2m2 φ̄kink(x). (D.9)

To calculate H5(x), we use the following relations∫
dyφ̄3

kink(y)∂2
yG̃(x, y) =

∫
dyφ̄3

kink(y)
{
(−m2 + 3m2φ̄2

kink(y))G̃(x, y) + iδ(x− y)
}

= m2(3H5(x)−H3(x)) + iφ̄3
kink(x), (D.10)∫

dyφ̄3
kink(y)∂2

yG̃(x, y) =
∫
dy∂2

y

(
φ̄3

kink(y)
)
G̃(x, y)

= m2(6H5(x)− 9H3(x) + 3H1(x)), (D.11)

which lead to

H5(x) = i

2m2∂x
(
xφ̄kink(x)

)
− 4i

3m2 φ̄kink(x) + i

3m2 φ̄
3
kink(x). (D.12)

E Other approaches

The energy densities obtained in refs. [43, 48] and our result on 〈T 00(x)〉 differ with one
another. In this appendix, in order to gain insights into the origin of the difference
we give a brief review of the regularization employed in ref. [43] called the local-mode
regularization (LMR).

In the LMR, vacuum subtraction is performed in an infinitely-long system. Since the
eigenfunctions eq. (2.20) form a continuous spectrum in this case, it is convenient to use
the orthogonality condition of eigenfunctions∫ ∞

−∞
dxψ̌0(x)ψ̌0(x) =

∫ ∞
−∞

dxψ̌1(x)ψ̌1(x) = 1,
∫ ∞
−∞

dxψ̌∗q (x)ψ̌p(x) = δ(q − p), (E.1)

in place of eq. (2.24).
According to ref. [43], the LMR introduces the local mode density

ρK
Λ(x) ≡

N∑
l=0

ψ̌∗l (x)ψ̌l(x) = ψ̌2
0(x) + ψ̌2

1(x) + 2
∫ Λ

0

dq

2π |ψ̌q(x)|2, (E.2)

for the kink sector with a cutoff Λ = 2πN/L and the corresponding one ρV
Λ(x) for the

vacuum sector

ρV
Λ(x) = 2

∫ Λ

0

dk

2π . (E.3)
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Then, the UV cutoff in each sector, ΛK and ΛV, which are dependent on x, is introduced
so that the local-mode densities are equivalent for each sector

ρK
ΛK

(x) = ρV
ΛV

(x), (E.4)
ΛV = ΛK + ∆Λ(x). (E.5)

Using the completeness relation∫ ∞
−∞

dq

2π{|ψ̌q|
2 − 1}+ ψ̌2

0 + ψ̌2
1 = 0, (E.6)

eq. (E.2) is given by

ρK
Λ = −2

∫ ∞
Λ

dq

2π |ψ̌q|
2 + 2

∫ ∞
0

dq

2π . (E.7)

From eqs. (E.7) and (E.3) one obtains

∆Λ(x) =
∫ ∞

Λ
dq
{
1− |ψ̌q|2

}
=
∫ ∞

Λ
dk
{ 3

2(k2 + 2m2)ψ
2
0 + 3

2k2 +m2ψ
2
1

}
= 3m2

2Λ (ψ2
0 + ψ2

1) +O(Λ−2)

= 3m2

2Λ sech2mx√
2

+O(Λ−2). (E.8)

Using eq. (E.8), the vacuum subtractions in eqs. (4.22) and (4.24) are calculated to be

1
2

∫ ∞
−∞

dq

2π

√
q2 + 2m2 − 1

2

∫ ∞
−∞

dk

2π
√
k2 + 2m2

=
∫ Λ

0

dq

2π

√
q2 + 2m2 −

∫ Λ+∆Λ

0

dk

2π
√
k2 + 2m2

= −
∫ Λ+∆Λ

Λ

dk

2π
√
k2 + 2m2 = −Λ∆Λ

2π +O(Λ−1)

−−−−→
Λ→∞

−3m2

4π sech2mx√
2
, (E.9)

1
2

∫ ∞
−∞

dq

2π
1√

q2 + 2m2 −
1
2

∫ ∞
−∞

dk

2π
1√

k2 + 2m2

= ∆Λ
2πΛ +O(Λ−3) −−−−→

Λ→∞
0. (E.10)

Since the LMR is needed only for the subtraction between divergent sums, the replacement
of eqs. (4.22) and (4.24) with eqs. (E.9) and (E.10), respectively, is only the change in the
LMR compared with the MNC. Thus, the final result of the EMT distribution in the LMR
is obtained by simply replacing

−3
√

2m
2πL −→ −3m2

4π sech2mx√
2
, (E.11)

in eqs. (5.2) and (5.3). This result gives ∆T 11
kink(x) = −3m2/(4π)sech2(mx/

√
2), which is

not consistent with the momentum conservation ∂1T
11 = 0, while the spatial integral of

〈T̃ 00(x)〉 reproduces the result in ref. [36] even after the replacement.
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We, however, note that the result of ∆T 00
kink(x) obtained with the replacement (E.11)

does not agree with the energy density in ref. [43]. This suggests the existence of a difference
in the manipulation other than the vacuum subtraction scheme. On the other hand, we
found that this result agrees with the energy density in ref. [48], while the point-split
regularization is employed there. The agreement implies the similarity of the regularization
schemes. We, however, do not pursue details further in the present study.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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