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1 Introduction

In a weakly coupled quark-gluon plasma (QGP) at large temperature T or chemical potential
µ, the propagation of massless gluonic modes is qualitatively modified through interactions
with medium fluctuations, leading to the phenomena of dynamical screening. Such screening
primarily affects long-wavelength gluonic modes, with energies of the order of gsT or gsµ,
where gs is the strong gauge coupling. For these “soft”, long-wavelength gluons, interactions
with the highest-energy partons within the QGP (with energy proportional to T or µ,
dubbed a “hard” energy scale) qualitatively modify their dispersion relation, signalling the
emergence of a thermal mass scale.

Due to the large separation of scales gsT � T in a weakly coupled QGP, the dynamics
of long-wavelength gluons can be studied within an effective field theory known as Hard-
Thermal-Loop (HTL) effective field theory [1] (or Hard-Dense-Loop in the specific case of
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large µ and small T [2, 3]). This name arises from considering the interactions of soft gluons
within the language of Feynman diagrams; in this language, soft external gluon propagation
(or interactions between multiple soft gluons) becomes corrected through interactions with
hard internal loop momenta. Including these additional HTL propagators and vertices in
higher-order diagrams contributing to soft scattering processes or thermodynamics protects
the calculations from infrared (IR) divergences that are otherwise present (see e.g. [4] for
a review). The HTL framework has been successfully applied to a number of problems.
For example, in the context of high-temperature Quantum Chromodynamics (QCD) the
static gluon damping rate and the nonabelian Debye screening mass were first computed
to leading order in gs in [5] and [6], respectively. The computation of the Debye mass
was later generalized to next-to-leading order (NLO) in [7, 8]. In addition, there are
several dynamical quantities that are sensitive to the soft gsT scale, such as thermal photon
production rates [9–12], jet and heavy quark energy loss [13–15], nonrelativistic heavy quark
diffusion [16, 17] and transport coefficients [18–20]. In the context of T = 0 and large µ, the
HTL framework has been a crucial part of recent advances in the evaluation of the QCD
pressure to next-to-next-to-next-to leading order (N3LO) [21, 22].

Until recently, HTL has been nearly exclusively used in the sense which we refer to here
as “one-loop HTL”.1 That is to say, the HTL propagators and vertices are computed as soft
limits of one-loop quantities. Corrections to one-loop HTL fall into two categories: the first
is further loop corrections, and the second is what is referred to as power corrections. The
former arises in the usual diagrammatic expansion, while the latter is related to higher-order
expansions in the external gluonic momenta within the lower-order diagrams.

In the context of Quantum Electrodynamics, both of the HTL corrections have been
computed at both high T [24–26] and high µ and arbitrary T [27, 28] using diagrammatic
machinery and the real-time formalism, and they have recently been extended to the case
of general gauge theories at high T using a kinetic-theory approach in Feynman gauge [29].
In this work, we compute both the two-loop HTL and power corrections to the gluon
self-energy for large T and µ in general covariant gauge within a diagrammatic approach
using the real-time formalism.

Note that in order to compute the full self-energy, and infer from it physical properties
of soft gluons, such as dispersion relations, one must compute not only these higher-order
corrections to the HTL theory, but one must also calculate diagrams using the HTL theory.
That is, to calculate the gluon dispersion relation at high T and/or µ to O(g4

s), one must also
compute one-loop diagrams with soft, HTL-resummed internal gluon lines. Such corrections
in fact dominate over the two-loop and power corrections calculated in this work at high
T [30]: Due to the Bose enhancement, they get lifted to O(g3

s), and even the resummed
two-loop diagrams contribute to the full O(g4

s) self-energy, being lifted from O(g6
s) for the

same reason. Even at small T , the one-loop resummed diagrams still compete with the
corrections to HTL at O(g4

s). We emphasise that, unless otherwise stated, in the terminology
used in this work after this section, ‘NLO’ always refers to next-to-leading order in the HTL
expansion, which will be discussed in more detail in section 3.2, instead of the complete

1Note that this is distinct from the concept of e.g. the loop counting in HTLpt [23].
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self-energy, for which the calculation presented here would constitute only a partial NLO
contribution at small T and a partial next-to-next-to-leading order (NNLO) contribution
at large T . We will not consider the soft resummed diagrams in our computation here,
leaving them for future work. We do however note that the corrections to HTL bring
valuable information on their own. For example, within the context of the N3LO pressure
of QCD at T = 0, the effect of these corrections has already been computed in [21, 22], and
a distinct missing contribution can be attributed to the NLO corrections to HTL alone.
Diagrammatically, the two types of corrections to the self-energy contribute to the pressure
in a rather distinct way, as the resummed diagrams contribute through two-loop HTL
topologies, while the terms computed in this paper contribute through insertions on the
one-loop HTL ring sum.

There is one main subtlety related to the evaluation of the two-loop self-energy in
general covariant gauge that is not present in the standard one-loop case and that we will
encounter in this work: namely, the tensor structure. Generally, the Ward identities of
QCD are weaker than those in QED and do not ensure transversality of the self-energy
Πµν(K) with respect to the external four-momentum K [31]. In the one-loop HTL case,
both transversality and gauge independence do hold (both of which are related due to
the Ward identities), and the basis of rank-two tensors is two-dimensional (taking into
account the symmetry as well as the remnant SO(d)-invariance, with d the number of spatial
dimensions). At higher orders, this is not guaranteed. Indeed, even transversality of the
self-energy with respect to KµKν is broken at O(g4

s) for general external momenta. As we
will see here, it also turns out that both transversality and gauge independence are broken
individually for the two-loop HTL and power correction contributions to the self-energy,
although they may be restored for specific combinations and kinematic limits of these two
components. For general kinematics, these properties are expected to break down further.

The organization of this work is as follows. We begin in section 2 with a brief overview of
the setup and details, conventions, and a summary of the real-time formalism. In section 3,
we present the general structure of the gluonic self-energy and a general formalism for
the HTL expansion of the quantity. We then proceed in section 4 to give details of the
calculation, with our Results and Discussion presented in section 5. Many technical details
of the calculations are explained in the appendices.

2 Setup

2.1 Conventions

Our conventions and notation are as follows. We work in D = 4− 2ε spacetime dimensions
and d = D − 1 spatial dimensions, and in Minkowskian space with the mostly plus
Minkowskian metric gµν = diag(−1,+1,+1,+1). We write the components of four-vectors as

P ≡ (p0,p), p ≡ |p|, (2.1)

with P 2 = −p2
0 + p2, where the individual spatial components are pi with i = 1, . . . , d. We

regulate the divergent parts of the loop diagrams within dimensional regularization. The
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D-dimensional integration measure is defined as

∫
P
≡
(
eγEΛ2

4π

) 4−D
2 ∫ dDP

(2π)D =
∫ ∞
−∞

dp0

2π

∫
p
, (2.2)

where the shorthand
∫

p denotes the spatial part of the integration

∫
p
≡
(
eγEΛ2

4π

) 3−d
2 ∫ ddp

(2π)d . (2.3)

Here, the factor (eγE/4π)(3−d)/2, with γE the Euler-Mascheroni constant, is introduced as
usual to simplify the final expressions, and Λ is the MS renormalization scale.

The SU(Nc) group theory factors that appear in the calculation are given by:

CAδ
cd = fabcfabd = Ncδ

cd,

dA = δaa = N2
c − 1,

CF δij = (T aT a)ij = N2
c − 1
2Nc

δij .

(2.4)

Here, Nc is the number of colors, fabc is totally anti-symmetric with respect to the inter-
change of any pair of its indices and the generators T a in the fundamental representation
are normalized according to Tr

[
T aT b

]
= δabTF with TF = 1/2. In addition, the fermion

loop comes with the factor of Nf , where Nf is the number of fermions.

2.2 Real-time formulation of thermal QCD

We use the real-time formulation of thermal QCD at finite temperature and density in
the r/a basis (for a recent review see e.g. [4]). We work in the Rξ-class of (covariant)
renormalizable gauges, where the free (or bare) retarded/advanced [DR/A

µν ]ab ≡ δabD
R/A
µν

and the symmetric [Drr
µν ]ab ≡ δabDrr

µν gluon propagators are given by

DR
µν(P ) =

a r

P
≡ gµν∆R(P )− i(1− ξ)PµPν [∆R(P )]2,

DA
µν(P ) =

r a

P
≡ gµν∆A(P )− i(1− ξ)PµPν [∆A(P )]2,

Drr
µν(P ) =

r r

P
≡ gµν∆rr

B,1(P )− i(1− ξ)PµPν∆rr
B,2(P ),

(2.5)

where ξ is the gauge-fixing parameter, ∆rr
B,n is the symmetric scalar propagator for bosons

(defined below) and ∆R/A is given by

∆R/A(P ) ≡ −i
P 2 ∓ iηp0 . (2.6)
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Here, η > 0 determines the causal structure of the propagator and will either drop out or
in the end be taken to zero for physical quantities. For the ghosts, the retarded/advanced
[D̃R/A]ab ≡ δabD̃R/A and symmetric [D̃rr]ab ≡ δabD̃rr propagators are simply

D̃R/A(P ) ≡ ∆R/A(P ), D̃rr(P ) ≡ ∆rr
B,1(P ), (2.7)

and for the fermions, the retarded/advanced [SR/A]ij ≡ δijSR/A and symmetric [Srr]ij ≡
δijS

rr propagators read

SR/A(P ) ≡ −/P∆R/A(P ), Srr(P ) ≡ −/P∆rr
F (P ). (2.8)

The symmetric scalar propagators ∆rr
B,n and ∆rr

F are related to the retarded and advanced
ones through the Kubo-Martin-Schwinger (KMS) relation

∆rr
B,n(P ) ≡ NB(P )∆d

n(P ), ∆rr
F (P ) ≡ N−F (P )∆d

1(P ), (2.9)

where the functions NB and NF are given in terms of the bosonic and fermionic distribution
functions

NB(P ) ≡ 1
2 + nB(p0), N±F (P ) ≡ 1

2 − nF (p0 ± µ), (2.10)

with nB/F (p0) ≡ (ep0/T ∓ 1)−1. The function ∆d
n is defined as the difference of the nth

powers of retarded and advanced propagators

∆d
n(P ) ≡ ∆R(P )n −∆A(P )n, (2.11)

where we usually abbreviate ∆d ≡ ∆d
1. In our calculations, we utilize the following formula

originating from the residue theorem [27]∫
R

dp0

2π ∆d
n(P )f(p0) = (−i)n+1∑

±
Res

[
f(p0)
(P 2)n , p

0 = ±p
]
, (2.12)

where f is not singular at P 2 = 0. In the case n = 1, the above equation corresponds to
the familiar Sokhotski-Plemelj formula,

∆d
1(P ) = −i

P 2 − iηp0 −
−i

P 2 + iηp0 = 2π sgn(p0)δ(P 2) = π

p

(
δ(p− p0)− δ(p+ p0)

)
. (2.13)

Further, we frequently rely on the parity properties of the functions above,

∆A(P ) = ∆R(−P ) , ∆d
n(P ) = −∆d

n(−P ) ,
NB(P ) = −NB(−P ) , N±F (P ) = −N∓F (−P ) .

(2.14)

In addition to propagators, we also need all the possible three- and four-point QCD vertices
coming from the gluon self-interactions and interactions between the fermion and gluon.
In the r/a basis, there are two distinct ways to assign r/a labels to three- and four-point
vertices. These are rra, rrra, aaa, and aaar, in which the latter two vertices are multiplied
with an extra factor of +1/4. These vertices are drawn in figure 1 by using the same
graphical causal arrow representation we introduced for the propagators.

Finally, we note that the complete set of QCD Feynman rules for the propagators and
vertices in general covariant gauges are given in appendix A of this paper.
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Figure 1. Possible r/a assignments for the (left) three-point and (right) four-point vertices in the
real-time formalism. Vertices with three a assignments receive an extra factor of +1/4.

3 Structure of the gluon self-energy

In the real-time formalism, the gluon self-energy (or amputated two-point function) becomes
a 2× 2 matrix

Π =
(

0 ΠA

ΠR Πaa

)
. (3.1)

The retarded/advanced self-energy tensor [ΠR/A
µν ]ab ≡ δabΠR/A

µν of the gluon field is defined
through the Dyson-Schwinger equation as

iΠR/A
µν (K) =

(
D̂R/A
µν

)−1
(K)−

(
DR/A
µν

)−1
(K), (3.2)

where (D̂R/A
µν )−1 and (DR/A

µν )−1 are the inverse full and free gluon propagators, respectively.
The form of the gluon self-energy tensor is further constrained by requiring gauge-invariance
of various QCD Green’s functions resulting in the Slavnov-Taylor identities [32, 33] (non-
Abelian generalization of Ward-Takahashi identities). For example, in the Rξ-class of
(covariant) renormalizable gauges, the full retarded gluon propagator satisfies the following
identity [31],

KµKνD̂R
µν(K) = −iξ. (3.3)

This relation constrains the self-energy tensor through the Dyson-Schwinger equation in
eq. (3.2). It is important to note that the Slavnov-Taylor identities do not fix the self-energy
itself to be gauge-invariant: the dependence on ξ is seen to disappear quite easily for the
leading-order HTL self-energy, but generally, only physical quantities such as screening
masses must be gauge-independent.

3.1 Spacetime rank two tensor basis

In the vacuum, the only available tensor structures for Πµν are gµν and KµKν , owing
to Lorentz symmetry and the symmetry of the self-energy in the Lorentz indices. The
application of eq. (3.3) in that case requires the self-energy to be transverse to its momentum,

KµΠµν(K) = 0. (3.4)

Hence, the vacuum self-energy may be written as

Πµν(K) =
(
gµν −

KµKν

K2

)
Π(K2) ≡ Pµν(K)Π(K2), (3.5)
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where P is a projector transverse D-dimensionally transverse to its argument, satisfying the
usual property PµλPλν = Pµν (idempotent), and Π(K2) is a Lorentz scalar.

In a thermal medium, the Lorentz symmetry is broken by the rest frame of the thermal
bath nµ, but the symmetry in the Lorentz indices is maintained. Consequently, the tensor
basis for the self-energy extends to four different tensors: gµν , KµKν , nµnν and nµKν+Kµnν .
For simplicity, we will choose to work in the rest frame of the thermal medium so the
remaining symmetry is associated with spatial rotations, and the velocity of the medium
satisfies nµ = (1,0). When considering the transversality properties of the self-energy, it
is convenient to define a vector ñµ(K) = Pµν(K)nν , and choose the tensor basis as linear
combinations of the above tensors:

PL
µν ≡

ñµñν
ñ2 , (3.6)

PT
µν ≡ Pµν − PL

µν = δiµδ
j
ν

(
gij −

kikj
k2

)
, (3.7)

PC
µν ≡

1
k

(ñµKν +Kµñν) , (3.8)

PD
µν ≡

KµKν

K2 . (3.9)

One may check that PT, PL and PD are idempotent and mutually orthogonal. On the other
hand, PC satisfies the relations

PT
µλPCλ

ν = 0, (3.10)

PC
µλPCλ

ν = −PL
µν − PD

µν , (3.11)

PL
µλPCλ

ν = ñµKν

k
, (3.12)

PD
µλPCλ

ν = Kµñν
k

, (3.13)

i.e., it is not idempotent and only orthogonal to PT but the contractions with PL,PD vanish
once traced over, in particular implying KµKνPC

µν = 0. Further, it is easy to show that the
projectors PT and PL are transverse to K.

By using the above projectors, the retarded gluon self-energy2 decomposes as [31]

ΠR
µν = PT

µνΠT + PL
µνΠL + PC

µνΠC + PD
µνΠD (3.14)

in the rest frame of the thermal medium. The components now depend separately on k0

and k due to the broken Lorentz symmetry. By employing the above properties of the
projectors, one can project out the individual components from the full tensor,

ΠT = 1
d− 1P

T
µνΠµν , ΠL = PL

µνΠµν ,

ΠC = −1
2P

C
µνΠµν , ΠD = PD

µνΠµν .

(3.15)

2From now on, every appearance to the self-energy Π will implicitly refer to the retarded self-energy ΠR

unless otherwise specified.
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The full retarded gluon propagator can be obtained by inserting the free retarded
propagators from the previous section into the Dyson-Schwinger equation in eq. (3.2) while
imposing the Slavnov-Taylor identity in eq. (3.3). This leads to a decomposition in terms
of the four projectors

D̂R
µν = PT

µν∆T + PL
µν∆L + PC

µν∆C + PD
µν∆D , (3.16)

where

∆T = −i
K2 + ΠT

, (3.17)

∆L = −i
K2 + ΠL

(
1 + ξ

ΠD

K2

)
, (3.18)

∆C = −i
K2 + ΠL

(
−ξΠC

K2

)
, (3.19)

∆D = − iξ

K2 , (3.20)

with the self-energy components satisfying the non-linear relation

ΠD = − Π2
C

K2 + ΠL
. (3.21)

Note that for notational simplicity, we have absorbed the iη from the free propagator into
k0, i.e. when the iη-prescription is relevant we must substitute k0 → k0 + iη. Dictated by
the Slavnov-Taylor identity, the longitudinal component ∆D does not receive self-energy
corrections and is determined by the bare propagator alone. Furthermore, contrary to the
vacuum case, the Slavnov-Taylor identity does not require a transverse gluon self-energy, so
generally KµΠµν 6= 0 in a thermal medium. The physical, propagating, degrees of freedom
are still the transverse and longitudinal modes, and this is not changed by the newly
non-vanishing self-energy components. The transverse propagator spans a two-dimensional
subalgebra corresponding to two nontrivial modes, and the remaining three propagators,
which are not linearly independent, span a two-dimensional subalgebra corresponding to the
longitudinal mode and a non-propagating massless mode K2 = 0 which is purely a gauge
artifact. Together, these span the four-dimensional algebra of rank two symmetric tensors
with one external scale at finite temperature.

As a self-consistency check, we have explicitly verified that within our computation
(Rξ gauges with full kinematics) eq. (3.21) holds perturbatively to the first non-trivial
order in gs, i.e. at O(g4

s) we obtain Π2-loop
D = −(Π1-loop

C )2/K2. However, in the HTL limit it
turns out that the self-energy component ΠD vanishes at order O(g4

s). Still, according to
eq. (3.21) it has to become nonzero at O(g6

s) for general values of ξ due to the finite HTL
contributions to ΠC and ΠL at O(g4

s) and O(g2
s) respectively, and the form of this term can

already be determined.

3.2 HTL limit

We discuss now the HTL limit in some generality. Consider an expansion of the gluon
self-energy, with both vacuum and matter parts included, in small coupling and external

– 8 –
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momentum. In general, this expansion takes the form

Πµν(K) ≡
∞∑
j=1

Πµν
j-loop ≡

∞∑
j=1

∞∑
p=0

Πµν
j,p = m2

E

∞∑
j=1

∞∑
p=0

(
K2

m2
E

)p
g2(j+p−1)
s Cµνj,p(µ/T, k0/k),

(3.22)
where the parameter m2

E is an O(g2
sT

2) effective thermal mass scale and the Cµνj,p are
dimensionless functions. Here, the index j represents the number of loops in a diagram
with j = 1 corresponding to the one-loop case, and the index p represents the degree of
power corrections, with p = 0 corresponding to the strict HTL limit [1]. For example, in a
notation adapted from [27] for the first three:

Πµν
1,HTL ≡ Πµν

1,0 = m2
EC

µν
1,0 ∼ m

2
E,

Πµν
2,HTL ≡ Πµν

2,0 = m2
Eg

2
sC

µν
2,0 ∼ m

2
Eg

2
s ,

Πµν
1,Pow ≡ Πµν

1,1 = K2g2
sC

µν
1,1 ∼ K

2g2
s .

(3.23)

The latter two terms are what we focus on in this work.
In practice, computing the above terms in the HTL expansion of the gluon self-energy

within a diagrammatic calculation can be implemented using the following steps:

1. The contributions to the self-energy Πµν is first written as a sum over diagrams Gi.

2. The contribution to Πµν from each single diagram Gi is contracted with the four basis
tensors to obtain tensor components {Πµν

T ,Πµν
L ,Πµν

C ,Πµν
D }i for each diagram.

3. For each of the tensor components, the internal zero-component integrals are performed
with the help of the ∆d

n-propagators, which set the loop momenta on shell [see
eq. (2.12)].

4. The remaining spatial integration momenta are scaled by the temperature T , which is
present as a scale in each term. The projectors in eqs. (3.6)–(3.9) are independent of
the magnitude K, so a simple expansion in powers of K/T of the tensor components
is possible and produces the K-independent term, the first power correction, and so
on in a simple manner, following [27].

5. Following the expansion, the d-dimensional k-integrals typically simplify significantly,
in particular factorizing into an angular and a radial part, and can be performed with
standard methods (see [27] and appendix B).

The exact steps depend on the problem at hand, but we have found the above procedure
convenient for the case considered here.

4 Evaluation of the gluon self-energies

In this section, we provide the details of our general steps above for computing the power
corrections Πµν

1,Pow and two-loop HTL corrections Πµν
2,HTL [see eq. (3.23)] for the HTL

gluon self-energy. We first show the power corrections and then proceed to the two-loop
HTL corrections.
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Figure 2. (Top) The diagrammatic contributions to the one-loop gluon self-energy. (Bottom)
diagrammatic contributions to the one-loop fermionic and ghost self-energies. All of these appear as
inserts within the two-loop gluon self-energy below.

4.1 One-loop gluon self-energy: the HTL and power correction contributions

At the one-loop level in QCD with general kinematics, there are four diagrams contributing
to the self-energy of the gluon. They are shown in the top row of figure 2. The resulting
self-energy can be divided into quark and gluonic (or Yang-Mills) contributions

Π1−loop
µν = Π1−loop

µν,qu + Π1−loop
µν,gl , (4.1)

where the quark contribution arises from the first diagram of figure 2, and the gluonic
contributions from the remaining three. The quark contribution is, up to a representation-
theoretical factor, identical to that encountered in QED [24–27]. Using the r/a-basis and
following the same steps as presented in [27], one obtains the following expression for the
quark contribution

−iΠ1−loop
µν,qu (K)δab = −Nf

= −g2
sNf

δab

2

∫
P

∆d(P )F qu
µν

{
N−F (P ) +N+

F (P )
}

∆R(K + P ),

(4.2)

where the function F qu
µν is defined via the relation

g2
s

δab

2 F qu
µν ≡ Tr

[(
iV a
µ

)
/P
(
iV b
ν

)
( /K + /P )

]
, (4.3)

with the quark-gluon vertices given in appendix A. The corresponding Π1−loop
T,qu ,Π1−loop

L,qu ,Π1−loop
C,qu

and Π1−loop
D,qu components are then projected out from the full µν-tensor by using eq. (3.15).

We note that the contributing integrals in quark self-energy components C and D vanish
due to symmetries.

Following the steps introduced in the previous section 3.2, we obtain the well-known
HTL-limit

Π1,HTL
T,qu = g2

sNfT
2

12
(
1 + 12µ̄2

)
A(K) +O(ε), (4.4)

Π1,HTL
L,qu = g2

sNfT
2

6
(
1 + 12µ̄2

)
B(K) +O(ε), (4.5)
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where we have introduced the following compact notation:

µ̄ ≡ µ

2πT , (4.6)

A(K) ≡ k2
0
k2 +

(
1− k2

0
k2

)
L(K), (4.7)

B(K) ≡
(

1− k2
0
k2

)(
1− L(K)

)
, (4.8)

with

L(K) ≡ k0

2k ln
(
k0 + k

k0 − k

)
. (4.9)

We can also obtain the UV-divergent power correction [27]

Π1,Pow
T,qu = − g

2
sNf

(4π)2
4K2

3

{
− 1

2ε − ln Λ
4πT − L(K) + A(K)

4 + ℵ(w)
2

}
+O(ε), (4.10)

Π1,Pow
L,qu = − g

2
sNf

(4π)2
4K2

3

{
− 1

2ε − ln Λ
4πT − L(K) + B(K)

2 + ℵ(w)
2

}
+O(ε), (4.11)

where the definition of the function ℵ(w) and its argument w are given in eqs. (E.1) and (E.2),
respectively. The divergence is canceled by the wavefunction renormalization counterterm
given in appendix A.

A similar calculation for the gluonic diagrams (simplified by the absence of the chemical
potential µ) leads to

−iΠ1−loop
µν,gl δab = −1 + 1

2 + 1
2

= −iΠ1−loop
µν,gl,0 δ

ab + (−i)Π1−loop
µν,gl,ξ̂ δ

ab,

(4.12)

where the gluonic part is further subdivided into parts independent of ξ̂ ≡ 1− ξ (denoted
by the subscript 0) and parts proportional to ξ̂ (denoted by the subscript ξ̂), which vanish
in Feynman gauge. In the r/a-basis, the sum of three gluonic diagrams yields the following
expressions,

−iΠ1−loop
µν,gl,0 δ

ab = g2
sCAδ

ab

2

∫
P

∆rr
B,1(P )

{
2
(
F 3g
µν − 2F gh

µν

)
∆R(K + P ) + F 4g

µν

}
, (4.13)

and

−iΠ1−loop
µν,gl,ξ̂ δ

ab = −iξ̂g
2
sCAδ

ab

2

∫
P

{
∆rr
B,2(P )F

3gξ1
µν ∆R(K + P ) + ∆rr

B,1(P )F
3gξ2
µν [∆R(K + P )]2

− 2iξ̂∆rr
B,2(P )F

3gξ3
µν [∆R(K + P )]2 + ∆rr

B,2(P )F 4gξ
µν

}
,

(4.14)
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where the symmetric scalar propagator ∆rr
B,n with n = 1, 2 is defined in eq. (2.9). The

functions F 3g
µν , F

gh
µν and F 4g

µν in eq. (4.13) are defined via relations:

g2
sCAδ

abF 3g
µν ≡

(
iV acd
µρλ(−K,−P,K + P )

) (
iV bcd
νσγ(K,P,−K − P )

)
gρσgγλ,

g2
sCAδ

abF gh
µν ≡

(
iV dac
µ (K + P )

) (
iV cbd
ν (P )

)
,

g2
sCAδ

abF 4g
µν ≡

(
iV abcc
µνρσ

)
gρσ.

(4.15)

Similarly, the ξ̂-dependent functions F
3gξ1
µν , F

3gξ2
µν , F

3gξ3
µν and F 4gξ

µν in eq. (4.14) are defined
as:

g2
sCAδ

abF
3gξ1
µν ≡

(
iV acd
µρλ(−K,K+P,−P )

)(
iV bcd
νσγ(K,−K−P,P )

)
gρσP γP λ

+
(
iV acd
µρλ(−K,−P,K+P )

)(
iV bcd
νσγ(K,P,−K−P )

)
gγλP ρP σ,

g2
sCAδ

abF
3gξ2
µν ≡

(
iV acd
µρλ(−K,−P,K+P )

)(
iV bcd
νσγ(K,P,−K−P )

)
gρσ(K+P )γ(K+P )λ

+
(
iV acd
µρλ(−K,K+P,−P )

)(
iV bcd
νσγ(K,−K−P,P )

)
gγλ(K+P )ρ(K+P )σ,

g2
sCAδ

abF
3gξ3
µν ≡

(
iV acd
µρλ(−K,−P,K+P )

)(
iV bcd
νσγ(K,P,−K−P )

)
×P ρP σ(K+P )γ(K+P )λ,

g2
sCAδ

abF
4gξ
µν ≡

(
iV abcc
µνρσ

)
P ρP σ.

(4.16)

In the end, the gluonic diagrams give for the HTL and first power corrections

Π1,HTL
T,gl = g2

sCAT
2

6 A(K) +O(ε), (4.17)

Π1,HTL
L,gl = g2

sCAT
2

3 B(K) +O(ε), (4.18)

and

Π1,Pow
T,gl = −g

2
sCA

(4π)2
K2

12

{
4 + 4

(
10 + 3ξ̂

)( 1
2ε + ln e

γEΛ
4πT

)
+ 4

(
10− 3ξ̂

)
L(K)

−
(
4− 3ξ̂2

)
A(K)

}
+O(ε),

(4.19)

Π1,Pow
L,gl = −g

2
sCA

(4π)2
K2

12

{
4 + 4

(
10 + 3ξ̂

)( 1
2ε + ln e

γEΛ
4πT

)
− 6ξ̂

(
2 + ξ̂

)
+ 2

(
20 + 3ξ̂2

)
L(K)− 2

(
4− 3ξ̂2

)
B(K)

}
+O(ε),

(4.20)

Π1,Pow
C,gl = −g

2
sCA

(4π)2
K2

12
k0

k

(
6ξ̂
) (

1− L(K)
)

+O(ε), (4.21)

Π1,Pow
D,gl = 0, (4.22)
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Figure 3. The diagrammatic contributions to the two-loop gluon self-energy, with one-loop gluonic
and fermionic insertions as in figure 2.

respectively. Again, the UV-divergences in the power corrections are canceled by wave-
function renormalization. Notably, as discussed earlier in the Introduction, the component
∝ PC vanishes only in specific cases, eg. in the HTL limit or in Feynman gauge, but is
generally nonzero.

4.2 Two-loop gluon self-energy: the HTL contribution

There are 23 two-loop diagrams that contribute to the gluon HTL self-energy at NLO (see
e.g. [34]). We have grouped the diagrams with a one-loop self-energy insertion together in
figure 3, with the one-loop self-energy diagrams that appear as inserts displayed in figure 2.
Note that some diagrams come with mirrored counterparts, and for those for which they
are not equal, we show them explicitly in what follows.

We again split the two-loop part of the NLO HTL gluon self-energy into two terms

Π2−loop
µν = Π2−loop

µν,qu + Π2−loop
µν,gl , (4.23)

where Π2−loop
µν,qu =

∑
i Π2−loop

µν,qui contains the two-loop fermionic self-energy diagrams qui
(linearly proportional to Nf ) and Π2−loop

µν,gl =
∑
i Π

2−loop
µν,gli contains all the gluonic two-loop

self-energy diagrams gli.
In the r/a-basis of the real-time formalism, each diagram is associated with a causal

labeling (coloring) of the lines, encoded as C = {ci}Ei=1 where E is the number of (internal)
lines in the diagram, and each ci determines the r/a-designation associated with a given
line. The admissible causal labelings for each topology of the two-loop self-energy are shown
in appendix C, and the complete contribution of a standard Feynman diagram as drawn
here is obtained by summing over the causal labelings [4], which we denote by

∑
C .
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We start by employing the Feynman rules found in appendix A and writing the fermionic
contributions as

−iΠ2−loop
µν,qu1

δab ≡ −Nf

= −Nf

∑
C

∫
PQ

Dρσ
c1 (Q)Tr

[(
iV a
µ

)
Sc2(P )

(
iV c
ρ

)
Sc3(PQ)

×
(
iV b
ν

)
Sc4(KPQ)

(
iV c
σ

)
Sc5(KP )

]
,

(4.24)

−iΠ2−loop
µν,qu2a

δab ≡ −Nf

= −Nf

∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dρλ
c1 (P )Dσγ

c2 (KP )

× Tr
[(
iV c
λ

)
Sc3(PQ)

(
iV b
ν

)
Sc4(KPQ)

(
iV d
γ

)
Sc5(Q)

]
,

(4.25)

−iΠ2−loop
µν,qu2b

δab ≡ −Nf

= −Nf

∑
C

∫
PQ

(
iV bcd
νρσ(K,−KP,P )

)
Dρλ
c1 (KP )Dσγ

c2 (P )

× Tr
[(
iV a
µ

)
Sc3(PQ)

(
iV d
γ

)
Sc4(Q)

(
iV c
λ

)
Sc5(KPQ)

]
,

(4.26)

−iΠ2−loop
µν,qu3a

δab ≡ −Nf

= −Nf

∑
C

∫
PQ

Dρσ
c1 (Q)Tr

[(
iV a
µ

)
Sc2(P )

(
iV b
ν

)
Sc3(KP )

×
(
iV c
ρ

)
Sc4(KPQ)

(
iV c
σ

)
Sc5(KP )

]
,

(4.27)

−iΠ2−loop
µν,qu3b

δab ≡ −Nf

= −Nf

∑
C

∫
PQ

Dρσ
c1 (Q)Tr

[(
iV a
µ

)
Sc2(P )

(
iV c
ρ

)
Sc3(PQ)

×
(
iV c
σ

)
Sc4(P )

(
iV b
ν

)
Sc5(KP )

]
,

(4.28)

−iΠ2−loop
µν,qu4

δab ≡ −Nf

= −Nf

∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dρλ
c1 (P )

(
iV bce
νλγ(K,P,−KP )

)
×Dβγ

c2 (KP )Dασ
c3 (KP )Tr

[(
iV d
α

)
Sc4(Q)

(
iV e
β

)
Sc5(KPQ)

]
,

(4.29)
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−iΠ2−loop
µν,qu5

δab ≡ −Nf

2

= −Nf

2
∑
C

∫
PQ

(
iV abcd
µνρσ

)
Dρλ
c1 (Q)Dγσ

c2 (Q)Tr
[(
iV c
λ

)
Sc3(P )

(
iV d
γ

)
Sc4(PQ)

]
,

(4.30)

where we have abbreviated KPQ = K + P + Q etc., and the trace is taken over both
Dirac and fundamental color indices. The color factors associated with these diagrams are
given by

qu1 : CA − 2CF , qu2 : CA, qu3 : CF , qu4 : CA, qu5 : CA. (4.31)

Before proceeding into the evaluation of the integrals in eqs. (4.24)–(4.30), one must
take care of intermediate pinch singularities [27]. They arise when an integration contour
gets squeezed between two poles; this happens when η → 0 in terms containing products of
retarded and advanced propagators with the same arguments, i.e. ∆R(P )∆A(P ). In our
case, such terms cancel when applying the relation

N±F (P1)N∓F (P2) +N∓F (P2)NB(P3) +NB(P3)N±F (P1) + 1
4 = 0, (4.32)

where
∑
i Pi = 0. Once the pinch singularities have been cleared out, we carry on by rewriting

the rest of the terms in such a way that each distribution function Ni(P ) multiplies a
∆d
n(P )-propagator with the same argument P , ensuring that distributions depend only on

radial variables after 0-component integration. Finally, before evaluating the integrals, it
is convenient to shift the integration variables so that ∆d

n-propagators depend only on a
single loop momentum.

From this point on, we follow the list of steps outlined in section 3.2 to obtain the HTL
limit of the fermionic integrals. In the final step, where we evaluate the angular integrals, it
is noteworthy that — just like in QED — all collinear divergences cancel3 after applying
the reduction formulas in appendix B. The unrenormalized results for the fermionic part of
the self-energy components in the HTL limit then read

Π2,HTL
T,qu = g4

sNf

(4π)2
T 2

24

{
CA
(
1 + 12µ̄2

)[
2
(
4− ξ̂

)( 1
2ε + 1 + 2 ln e

γE/2Λ
4πT

)
A(K)

−
(
4− ξ̂

)
H(K) + 2

{
4 +

(
4 + ξ̂

)
A(K)

}
L(K)− ξ̂2A2(K)

]

+ 24CA
(
4− ξ̂

)
ℵ(1, w)A(K)− 24CF

(
1 + 4µ̄2

)
L(K)

}
+O(ε),

(4.33)

3In fact, all type-Ã integrals cancel.
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Π2,HTL
L,qu = g4

sNf

(4π)2
T 2

24

{
2CA

(
1 + 12µ̄2

)[
4 + 2

(
4− ξ̂

)( 1
2ε + 1

2 + 2 ln e
γE/2Λ
4πT

)
B(K)

+
(
4− ξ̂

)
H(K) + 2ξ̂

(
1 + ξ̂

)
B(K)

+ 2
(
4− ξ̂2

)
B(K)L(K)− 2ξ̂2B2(K)

]

+ 48CA
(
4− ξ̂

)
ℵ(1, w)B(K) + 96

(
CA − 2CF

)
µ̄2B(K)

(
1− L(K)

)
− 24CF

(
1 + 4µ̄2

)}
+O(ε),

(4.34)

Π2,HTL
C,qu = g4

sNf

(4π)2
T 2

24
k0

k
CA
(
1 + 12µ̄2

)(
−2ξ̂B(K)

)(
1− L(K)

)
+O(ε), (4.35)

Π2,HTL
D,qu = 0, (4.36)

where

H(K) ≡ K2

k2

{(
2 + ln K2

4k2

)
L(K)− k0

2k

(
Li2

k0 + k

k0 − k
− Li2

k0 − k
k0 + k

)}
. (4.37)

The 1/ε divergences in the T and L components above are removed by renormalization,
and the appropriate counterterm contributions are obtained by using the Feynman rules in
appendix A,

Π2,HTL
T,qu,ct = − g

4
sNf

(4π)2
T 2

24

{
CA
(
1 + 12µ̄2

)[
2
(
4− ξ̂

)( 1
2ε + 1 + ln Λ

4πT

)
A(K)

−
(
4− ξ̂

)
H(K)

]
+ 24CA

(
4− ξ̂

)
ℵ(1, w)A(K)

}
+O(ε),

(4.38)

Π2,HTL
L,qu,ct = − g

4
sNf

(4π)2
T 2

24

{
2CA

(
1 + 12µ̄2

)[
2
(
4− ξ̂

)( 1
2ε + 1

2 + ln Λ
4πT

)
B(K)

+
(
4− ξ̂

)
H(K)

]
+ 48CA

(
4− ξ̂

)
ℵ(1, w)B(K)

}
+O(ε),

(4.39)

which clearly cancel the UV-divergences in eqs. (4.33)–(4.36).
Next, we continue to the evaluation of the gluon contributions Π2−loop

µν,gl in the HTL
limit. To this end, we follow the same procedure as in the fermionic case above, starting
with the 16 gluonic two-loop contributions listed in appendix D. They all share the same
color factor, namely C2

A. As in the fermionic counterpart, the starting expressions contain
pinch singularities, which in this case can be shown to cancel by making use of the purely
bosonic relation [cf. eq. (4.32)]

NB(P1)NB(P2) +NB(P2)NB(P3) +NB(P3)NB(P1) + 1
4 = 0, (4.40)

where
∑
i Pi = 0. After the pinch singularities have been sorted out, the rest of the compu-

tation follows the recipe established in the fermionic case, leading to the unrenormalized

– 16 –



J
H
E
P
0
8
(
2
0
2
3
)
0
2
1

results

Π2,HTL
T,gl = g4

sC
2
A

(4π)2
T 2

12

{
2
(
4− ξ̂

)( 1
2ε + 1

2 + ζ ′(−1)
ζ(−1) + 2 ln e

γE/2Λ
4πT

)
A(K)

−
(
4− ξ̂

)
H(K) + 2

{
4 +

(
4 + ξ̂

)
A(K)

}
L(K)− ξ̂2A2(K)

}
+O(ε),

(4.41)

Π2,HTL
L,gl = g4

sC
2
A

(4π)2
T 2

12

{
8 + 4

(
4− ξ̂

)( 1
2ε + ζ ′(−1)

ζ(−1) + 2 ln e
γE/2Λ
4πT

)
B(K)

+ 2
(
4− ξ̂

)
H(K) + 4ξ̂

(
1 + ξ̂

)
B(K)

+ 4
(
4− ξ̂2

)
B(K)L(K)− 4ξ̂2B2(K)

}
+O(ε),

(4.42)

Π2,HTL
C,gl = g4

sC
2
A

(4π)2
T 2

12
k0

k

(
−2ξ̂B(K)

)(
1− L(K)

)
+O(ε), (4.43)

Π2,HTL
D,gl = 0. (4.44)

The UV-divergences in the T and L components are again canceled by the counterterm
contributions which read

Π2,HTL
T,gl,ct = −g

4
sC

2
A

(4π)2
T 2

12

{
2
(
4− ξ̂

)( 1
2ε + 1

2 + ζ ′(−1)
ζ(−1) + ln Λ

4πT

)
A(K)

−
(
4− ξ̂

)
H(K)

}
+O(ε),

(4.45)

Π2,HTL
L,gl,ct = −g

4
sC

2
A

(4π)2
T 2

12

{
4
(
4− ξ̂

)( 1
2ε + ζ ′(−1)

ζ(−1) + ln Λ
4πT

)
B(K)

+ 2
(
4− ξ̂

)
H(K)

}
+O(ε).

(4.46)

5 Results and discussion

Following the computations discussed in the previous sections, we are left with the renor-
malized NLO HTL gluon self-energies at finite temperature and chemical potential and
in an arbitrary Rξ gauge:4 First, the contributions from two-loop diagrams with a strict
HTL limit:

Π2,HTL
T = g4

s(Λ)
(4π)2

T 2

24

{[
2C2

A + CANf

(
1 + 12µ̄2

)] [
2
(
4− ξ̂

)
A(K) ln e

γEΛ
4πT

+ 2
{

4 +
(
4 + ξ̂

)
A(K)

}
L(K)− ξ̂2A2(K)

]

− 24CFNf

(
1 + 4µ̄2

)
L(K)

}
+O(ε),

(5.1)

4In all cases, the D-component of the self-energy, proportional to KµKν , vanishes, and we do not write
it explicitly.
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Π2,HTL
L = g4

s(Λ)
(4π)2

T 2

24

{[
2C2

A + CANf

(
1 + 12µ̄2

)] [
8 + 4

(
4− ξ̂

)
B(K) ln e

γEΛ
4πT

+ 4ξ̂
(
1 + ξ̂

)
B(K) + 4

(
4− ξ̂2

)
B(K)L(K)− 4ξ̂2B2(K)

]

+ 96
(
CA − 2CF

)
Nf µ̄

2B(K)
(
1− L(K)

)
− 24CFNf

(
1 + 4µ̄2

)}
+O(ε),

(5.2)

Π2,HTL
C = g4

s(Λ)
(4π)2

T 2

24
k0

k

[
2C2

A + CANf

(
1 + 12µ̄2

)] (
−2ξ̂B(K)

)(
1− L(K)

)
+O(ε), (5.3)

where ξ̂ ≡ 1 − ξ and the functions A, B and L are given in eqs. (4.6)–(4.9). Next, the
contributions from one-loop diagrams where the first power corrections are considered:

Π1,Pow
T = −g

2
s(Λ)

(4π)2
K2

12

{[
4CA

(
10 + 3ξ̂

)
− 16Nf

]
ln e

γEΛ
4πT

+ CA
[
4 + 4

(
10− 3ξ̂

)
L(K)−

(
4− 3ξ̂2

)
A(K)

]
+ 4Nf

[
4γE − 4L(K) +A(K) + 2ℵ(w)

]}
+O(ε),

(5.4)

Π1,Pow
L = −g

2
s(Λ)

(4π)2
K2

12

{[
4CA

(
10 + 3ξ̂

)
− 16Nf

]
ln e

γEΛ
4πT

+ 2CA
[
2− 6ξ̂ − 3ξ̂2 +

(
20 + 3ξ̂2

)
L(K)−

(
4− 3ξ̂2

)
B(K)

]
+ 8Nf

[
2γE − 2L(K) +B(K) + ℵ(w)

]}
+O(ε),

(5.5)

Π1,Pow
C = −g

2
s(Λ)

(4π)2
K2

12
k0

k

(
6CAξ̂

)(
1− L(K)

)
+O(ε). (5.6)

Let us begin with a few cross-checks of the above results. First, our results reproduce
the know QED ones in the limit CA → 0 [24–27]. Furthermore, they match with the recent
results obtained in a kinetic-theory approach in Feynman gauge [29, 35], although a direct
comparison requires a field redefinition [36]. As a further cross-check, we also see agreement
at specific known kinematic limits, in particular with the matching coefficient αE6 of the
dimensionally reduced theory of Electrostatic QCD [37, 38] and the associated generalization
of the physical Debye screening mass. The specific kinematic limit used here corresponds to
setting k0 = 0 and then taking the limit k → 0, and the gauge-dependence of the individual
terms cancel as the quantity considered is a combination of the power correction and the
two-loop correction (specifically, Π2,HTL −Π1,HTLΠ1,Pow, which is a natural combination
appearing after turning the kinetic term canonical [35]).

We turn now to a discussion of the results. We find that the computed pieces of the NLO
HTL gluon self-energy at O(g4

s) contain T, L, and C tensor components, with a vanishing
D component. Each of these components is finite after UV-renormalization, which indicates
that the sum of the corresponding (soft) resummed O(g4

s) one- and two-loop contributions
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must be UV-finite, as any remaining divergence would cancel with IR-divergences of the
NLO HTL contributions computed here.

Beyond that, we observe that unlike the well-known leading-order HTL results, the
individual components are gauge-dependent, with the C component directly vanishing in
Feynman gauge. Here, we remind the reader that there is a missing soft component that
must be computed to obtain the complete NNLO soft gluon self-energy (or NLO at small T ),
and it is not clear whether this complete result will be gauge-dependent or not. Naturally,
all physical quantities derived from it must be gauge-invariant, but it is not obvious whether
the gauge-independence is manifest on the level of the complete (soft) self-energy itself, or
in the various combinations and limits in which it appears.

Finally, we close with a small outlook. Computing the remaining soft component of
the gluon self-energy is clearly of interest, as it will enable calculating, e.g. higher-order
corrections to the plasmon frequency and other physical quantities. One way of tackling
this missing piece would be to generalize our automated code to include the real-time HTL
Feynman rules derived in [39]. Another interesting direction would be to generalize our
present results to zero temperature to compute the mixed pressure of cold quark matter at
N3LO, following [22]. Such work is ongoing [40].
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A QCD Feynman rules in covariant Rξ-gauges

The renormalized gauge-fixed QCD Lagrangian with massless quarks reads

LQCD = 1
2Z3A

µa
(
∂2gµν − ∂µ∂ν

)
Aνa + 1

2ξA
µa∂µ∂νA

νa + Z3cc̄
a∂2ca + iZ2ψ̄i/∂ψi

− gsZA3fabc(∂µAaν)AµbAνc − g2
s

4 ZA4fabcfadeAaµA
b
νA

µdAνe

− gsZ1cf
abc(∂µc̄a)Aµbcc + gsZ1A

a
µψ̄iγ

µT aijψj ,

(A.1)

where ξ is the gauge-fixing parameter in the Rξ-class of (covariant) gauges, and the
counterterms are defined as δi ≡ Zi − 1. Next, we write the momentum space Feynman
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rules corresponding to eq. (A.1). Given the scalar function ∆(P ) = −i/P 2 (suppressing the
pole prescription iη in this appendix, see section 2.2 for the r/a basis rules), the propagators
for the gluon, ghost, and quark read

Dab
µν(P ) = gµνδ

ab∆(P )− i(1− ξ)PµPνδab∆(P )2, (A.2)
D̃ab(P ) = δab∆(P ), (A.3)
Sij(P ) = −/Pδij∆(P ), (A.4)

respectively. The 3-gluon and 4-gluon interaction vertices are given by

iV abc
µνρ(P,Q,R) = gsf

abc[(Q−R)µgνρ + (R− P )νgρµ + (P −Q)ρgµν
]

= a
µ

ρ
c

b
ν

P
R

Q

,
(A.5)

and

iV abcd
µνρσ = −ig2

s

[
fabef cde(gµρgνσ − gµσgνρ)

+ facefdbe(gµσgρν − gµνgρσ)
+ fadef bce(gµνgσρ − gµρgσν)

]

=

aµ

bν

dσ

c
ρ

.

(A.6)

The ghost-gluon vertex is

iV abc
µ (P ) = −gsfabcPµ = Pb

µ

a

c

, (A.7)

while the quark-gluon vertex reads

iV a
µ,ij = igsγµT

a
ij =

a
µ

i

j

, (A.8)
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using the convention that particle flow is aligned with momentum. The rules for the
propagator counterterms are given by

iCabµν(P ) = −iδ3δ
ab(P 2gµν − PµPν), (A.9)

iCab(P ) = −iδ3cδ
abP 2, (A.10)

iCij(P ) = −iδ2δij /P , (A.11)

and respectively for the vertices read

iCabcµνρ(P,Q,R) = gsδA3fabc
[
(Q−R)µgνρ + (R− P )νgρµ + (P −Q)ρgµν

]
, (A.12)

iCabcdµνρσ = −ig2
sδA4

[
fabef cde(gµρgνσ − gµσgνρ)

+ facefdbe(gµσgρν − gµνgρσ)
+ fadef bce(gµνgσρ − gµρgσν)

]
,

(A.13)

iCabcµ (P ) = −gsδ1cf
abcPµ, (A.14)

iCaµ,ij = igsδ1γµT
a
ij . (A.15)

In the MS renormalization scheme, the values of the 1-loop counterterms are found to
be [41]:

δ3 = 1
2ε

g2
s

(4π)2

[10
3 CA −

4
3Nf + (1− ξ)CA

]
, (A.16)

δ3c = 1
2ε

g2
s

(4π)2

[
CA + 1

2(1− ξ)CA
]
, (A.17)

δ2 = 1
2ε

g2
s

(4π)2 [−2CF + 2(1− ξ)CF ] , (A.18)

δA3 = 1
2ε

g2
s

(4π)2

[4
3CA −

4
3Nf + 3

2(1− ξ)CA
]
, (A.19)

δA4 = 1
2ε

g2
s

(4π)2

[
−2

3CA −
4
3Nf + 2(1− ξ)CA

]
, (A.20)

δ1c = 1
2ε

g2
s

(4π)2 [−CA + (1− ξ)CA] , (A.21)

δ1 = 1
2ε

g2
s

(4π)2

[
−2CF − 2CA + 2(1− ξ)CF + 1

2(1− ξ)CA
]
. (A.22)

B Reduction of angular integrals

In the HTL limit, two-loop integrals factorize into angular and radial parts. Let us recall
that the d-dimensional spatial integration measure can be correspondingly split as∫ ddp

(2π)d = 1
(2π)d

∫
dΩd(vp)

∫ ∞
0

dp pd−1 ≡
∫

vp

∫ ∞
0

dp pd−1, (B.1)

where vp ≡ p/p and
∫

vp denotes angular integration over the (d − 1)-sphere. With an
on-shell loop momentum Vp ≡ (1,vp) and external momentum K, the most general angular
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integral that we encounter in our two-loop (HTL) self-energy calculation reads

Aabc ≡
∫

vpvq
(K · Vp)a(K · Vq)b(Vp · Vq)c. (B.2)

In the cases where at least one of the indices {a, b, c} is a non-negative integer, we may
exploit the d-dimensional rotational symmetry to reduce eq. (B.2) into a linear combination
of factorized angular integrals. Let us first consider the case c = 0. Then vp and vq decouple
trivially in eq. (B.2), leading to a product of the integrals of the type

Aa ≡
∫

vp
(K · Vp)a = Cd

∫ 1

−1
dz(1− z2)

d−3
2 (−k0 + kz)a

= Cd(−k0)a
Γ
(

1
2

)
Γ
[

1
2(d− 1)

]
Γ
(
d
2

) 2F1

(
1− a

2 ,−a2 ; d2 ; k
2

k2
0

)
,

(B.3)

where the factors coming from integrating over the trivial angles have been absorbed into

Cd ≡
4

(4π)
d+1

2 Γ
(
d−1

2

) . (B.4)

Also, the cases a = 0 and b = 0 factorize in a similar fashion, leading us to evaluate the
integral

Ãa ≡
∫

vp
(Vq · Vp)a = Cd

∫ 1

−1
dz(1− z2)

d−3
2 (−1 + z)a

= Cd(−1)a+12d+a−2
π sec

[
π
2 (d+ 2a)

]
Γ
[

1
2(d− 1)

]
Γ
[

1
2(3− d− 2a)

]
Γ(d+ a− 1)

.

(B.5)

Next, consider the case where one of the indices in eq. (B.2) is a positive integer. Now we
can employ rotational symmetry to reduce tensor subintegrals into linear combinations of
the scalar integrals in eqs. (B.3) and (B.5). For instance, if c = 1 we may use∫

vp
vp(K · Vp)a = vk

∫
vp

(vk · vp)(K · Vp)a = vk
k

(
k0Aa +Aa+1

)
. (B.6)

Applying relations such as the one above, we obtain

A0bc = AbÃc, (B.7)
Aab0 = AaAb, (B.8)
A1bc = k0AbÃc+1 +Ab+1Ãc +Ab+1Ãc+1, (B.9)

Aab1 = 1
k2

(
−K2AaAb + k0AaAb+1 + k0Aa+1Ab +Aa+1Ab+1

)
, (B.10)

A2bc = 1
d− 1

(
−2K2AbÃc+1 + (dk2

0 − k2)AbÃc+2 + 2(d+ 1)k0Ab+1Ãc+1

+ 2dk0Ab+1Ãc+2 + (d− 1)Ab+2Ãc + 2dAb+2Ãc+1 + dAb+2Ãc+2
)
,

(B.11)

Aab2 = 1
d− 1

1
k4

(
dK4AaAb − 2dk0K2AaAb+1 + (dk2

0 − k2)AaAb+2

− 2dk0K2Aa+1Ab + 2(2dk2
0 − (d− 1)k2)Aa+1Ab+1 + 2dk0Aa+1Ab+2

+ (dk2
0 − k2)Aa+2Ab + 2dk0Aa+2Ab+1 + dAa+2Ab+2

)
.

(B.12)
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It turns out that every angular integral we need in our two-loop calculation can be reduced
using the above formulas.

C r/a assignments

Below, we list the r/a labelings for each topology required in the computation. Note that
the nature of any given line (i.e. gluonic or fermionic) is not relevant for these labelings.

= +

=

= +

+ +

+ +

+ +

=

+ +

+ +

+ +
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=

+ +

+ +

=

+ +

+ +

=

+ +

+ +

= +

+ +
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=

+ +

=

+ +

= +

D Gluon contributions to the two-loop self-energy

With the notation introduced in section 4.2 the gluon contributions to the two-loop gluon
self-energy read

−iΠ2−loop
µν,gl1 δ

ab ≡ −1

= −
∑
C

∫
PQ

(
iV gac
µ (KP )

)
D̃c1(P )

(
iV ced
ρ (P )

)
D̃c2(PQ)

(
iV dbf
ν (PQ)

)
× D̃c3(KPQ)

(
iV feg
σ (KPQ)

)
D̃c4(KP )Dρσ

c5 (Q),

(D.1)

−iΠ2−loop
µν,gl2aδ

ab ≡ −1

= −
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dρλ
c1 (P )Dσγ

c2 (KP )
(
iV gce
λ (Q)

)
× D̃c3(PQ)

(
iV ebf
ν (PQ)

)
D̃c4(KPQ)

(
iV fdg
γ (KPQ)

)
D̃c5(Q),

(D.2)
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−iΠ2−loop
µν,gl2b δ

ab ≡ −1

= −
∑
C

∫
PQ

(
iV eaf
µ (KPQ)

)
D̃c1(PQ)

(
iV fdg
γ (PQ)

)
D̃c2(Q)

(
iV gce
λ (Q)

)
× D̃c3(KPQ)Dσγ

c4 (P )Dρλ
c5 (KP )

(
iV bcd
νρσ(K,−KP,P )

)
,

(D.3)

−iΠ2−loop
µν,gl3aδ

ab ≡ −1

= −
∑
C

∫
PQ

(
iV dac
µ (KP )

)
D̃c1(P )

(
iV cbg
ν (P )

)
D̃c2(KP )

(
iV gfe
ρ (KP )

)
× D̃c3(KPQ)

(
iV efd
σ (KPQ)

)
D̃c4(KP )Dρσ

c5 (Q),

(D.4)

−iΠ2−loop
µν,gl3b δ

ab ≡ −1

= −
∑
C

∫
PQ

(
iV dac
µ (KP )

)
D̃c1(P )

(
iV cef
σ (P )

)
D̃c2(PQ)

(
iV feh
ρ (PQ)

)
× D̃c3(P )

(
iV hbd
ν (P )

)
D̃c4(KP )Dρσ

c5 (Q),

(D.5)

−iΠ2−loop
µν,gl4 δ

ab ≡ −1

= −
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dρλ
c1 (P )

(
iV bce
νλγ(K,P,−KP )

)
×Dβγ

c2 (KP )
(
iV feg
β (Q)

)
D̃c3(KPQ)

(
iV gdf
α (KPQ)

)
D̃c4(Q)Dασ

c5 (KP ),
(D.6)

−iΠ2−loop
µν,gl5 δ

ab ≡ −1
2

= −1
2
∑
C

∫
PQ

(
iV abcd
µνρσ

)
Dσγ
c1 (P )

(
iV edf
γ (PQ)

)
D̃c2(Q)

(
iV fce
λ (Q)

)
× D̃c3(PQ)Dλρ

c4 (P ),

(D.7)

−iΠ2−loop
µν,gl6 δ

ab ≡ 1
2

= 1
2
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dρλ
c1 (P )

(
iV cfg
λδτ (P,−PQ,Q)

)
Dδα
c2 (PQ)

×
(
iV bfe
ναβ(K,PQ,−KPQ)

)
Dβη
c3 (KPQ)

(
iV egd
ηκγ (KPQ,−Q,−KP )

)
×Dγσ

c4 (KP )Dκτ
c5 (Q),

(D.8)
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−iΠ2−loop
µν,gl7 δ

ab ≡ 1
2

= 1
2
∑
C

∫
PQ

(
iV acde
µρσγ

)
Dρλ
c1 (P )

(
iV bfc
ναλ(K,−KP,P )

)
Dαβ
c2 (KP )

×
(
iV fed
βτδ (KP,−KPQ,Q)

)
Dγτ
c3 (KPQ)Dδσ

c4 (Q),

(D.9)

−iΠ2−loop
µν,gl8 δ

ab ≡ 1
2

= 1
2
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dρλ
c1 (P )

(
iV befc
ναγλ

)
Dαβ
c2 (KPQ)

×
(
iV edf
βτδ(KPQ,−KP,−Q)

)
Dστ
c3 (KP )Dδγ

c4 (Q),

(D.10)

−iΠ2−loop
µν,gl9 δ

ab ≡ 1
4

= 1
4
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dργ
c1 (P )Dσλ

c2 (KP )
(
iV cefd
γβαλ

)
×Dβδ

c3 (PQ)Dατ
c4 (KPQ)

(
iV bfe
ντδ (K,−KPQ,PQ)

)
,

(D.11)

−iΠ2−loop
µν,gl10

δab ≡ 1
6

= 1
6
∑
C

∫
PQ

(
iV acde
µρσλ

)
Dργ
c1 (P )Dσα

c2 (KPQ)Dλβ
c3 (Q)

(
iV bedc
νβαγ

)
,

(D.12)

−iΠ2−loop
µν,gl11

δab ≡ 1
2

= 1
2
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dργ
c1 (P )

(
iV bec
νλγ(K,−KP,P )

)
×Dλα

c2 (KP )
(
iV efg
αδη (KP,−KPQ,Q)

)
Dδτ
c3 (KPQ)

×
(
iV fdg
τβκ (KPQ,−KP,−Q)

)
Dηκ
c4 (Q)Dσβ

c5 (KP ),

(D.13)

−iΠ2−loop
µν,gl12

δab ≡ 1
2

= 1
2
∑
C

∫
PQ

(
iV acd
µρσ(−K,−P,KP )

)
Dργ
c1 (P )

(
iV bec
νλγ(K,−KP,P )

)
×Dλα

c2 (KP )
(
iV effd
ατδβ

)
Dδτ
c3 (Q)Dσβ

c4 (KP ),

(D.14)
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−iΠ2−loop
µν,gl13

δab ≡ 1
4

= 1
4
∑
C

∫
PQ

(
iV abcd
µνρσ

)
Dρλ
c1 (P )

(
iV cef
λαβ(P,−PQ,Q)

)
Dτα
c2 (PQ)

×
(
iV edf
τγδ (PQ,−P,−Q)

)
Dδβ
c3 (Q)Dσγ

c4 (P ),

(D.15)

−iΠ2−loop
µν,gl14

δab ≡ 1
4

= 1
4
∑
C

∫
PQ

(
iV abcd
µνρσ

)
Dρλ
c1 (P )

(
iV ceed
λαβγ

)
Dαβ
c2 (Q)Dσγ

c3 (P ).

(D.16)

E Special functions

We follow [37] and define

w ≡ 1
2 − iµ̄, (E.1)

where µ̄ ≡ µ/(2πT ) as in the main text, and define shorthands for some frequently occurring
combinations of special functions

ℵ(z) ≡ Ψ(z) + Ψ(z∗),

Ψ(z) ≡ Γ′(z)
Γ(z) ,

ℵ(s, z) ≡ ζ ′(−s, z) + (−1)sζ ′(−s, z∗),
ζ ′(s, z) ≡ ∂sζ(s, z),

(E.2)

where s, z ∈ C, Ψ(z) is the digamma function, and ζ(s, z) the Hurwitz zeta function. We
find it convenient to express the derivative of the polylogarithm Lis(z) in terms of the zeta
function and its derivatives:

Li(1)
s (−e2πµ̄) + 2(−1)s

1 + (−1)2sLi(1)
s (−e−2πµ̄) =

tan(πs)e−i
π
2 s

(2π)1−s Γ(1− s)
{
− iπeiπsζ (1− s, w∗) +

[
ln(2π) + i

π

2 + π cot (πs)−Ψ(1− s)
]

× [ζ(1− s, w) + (−1)sζ(1− s, w∗)]− ℵ(s− 1, w)
}
, (E.3)

where Li(1)
s (z) ≡ ∂

∂sLis(z), and the relation holds for µ̄ ∈ R and general s.
As we have been unable to find such a relation in the literature, we note that the relation

follows for Re s > 0 simply by writing the polylogarithm in terms of the zeta function and
is readily generalized by analytic continuation. For values of s for which the right-hand
side diverges, the relation is taken to hold in a limiting sense; in particular, the pole of the
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gamma function cancels directly for positive integer s. The nontrivial limit s→ 0 can be
taken by using “Bose-like” integral representations of the zeta and digamma functions:

ζ(1− s, z) = 1
Γ(1− s)

∫
R+

t−se−zt

1− e−t dt, Ψ(z) =
∫
R+

(
e−t

t
− e−zt

1− e−t

)
dt. (E.4)

For the particular values of s necessary in the present computation we have

Li(1)
0 (−e2πµ̄) + Li(1)

0 (−e−2πµ̄) = − ln(2πeγE)− ℵ(w)
2 ,

Li(1)
2 (−e2πµ̄) + Li(1)

2 (−e−2πµ̄) = −2π2
[
ln
(
2πeγE−1

)(
µ̄2 + 1

12

)
− ℵ(1, w)

]
.

(E.5)

Open Access. This article is distributed under the terms of the Creative Commons
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