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1 Introduction

We are interested in finding computable models of boundary and defect conformal field
theories. These are d-dimensional quantum field theories where a p-dimensional defect
reduces the (Euclidean) conformal symmetry group from SO(d + 1, 1) to SO(p + 1, 1) ×
SO(d − p). These types of field theories find applications in a variety of contexts, from
critical systems in condensed matter, to entanglement phenomena in many-body physics, to
D-branes in string theory. One of us [1] proposed that theories with interactions confined
to the boundary but that were free in the bulk might be a nontrivial yet tractable set
to investigate. Since that proposal, there has been an enormous amount of work that
has greatly illuminated the situation, both by finding new results and also by uncovering
relations to earlier research, in some cases decades earlier.

One of the most interesting free-in-the-bulk theories proposed in [1], sometimes called
reduced quantum electrodynamics (reduced QED), was a free Maxwell field in four di-
mensions interacting with charged matter confined to a three dimensional surface. In this
case, a combination of gauge invariance and bulk locality sets the beta function for the
electromagnetic coupling to zero, as was first noticed perturbatively [2, 3] and then later
argued to hold at all loops [1, 4]. The theory is interesting in part because of a rich history
that predates the publication of [1]. A careful treatment can be found already in [5] in the
context of dynamical symmetry breaking and spontaneous mass generation for fermions.
The theory also has a close relation to the large N limit of three dimensional QED [6].
Probably the most interesting fact about this mixed dimensional QED theory is that, in an
idealized sense, it is the infrared renormalization group fixed point of graphene [3]. See [7]
for a recent in depth discussion of this relation, and a more careful treatment of the history.

At this point, reduced QED is the poster child for computable models of boundary
and defect CFT that are free in the bulk. SL(2,Z) duality allows one access to strong
coupling [8–10]. There are supersymmetric versions, dubbed supergraphene [11–14]. In-
deed, the N = 2 supersymmetric version allows for a localization approach where one can
compute transport quantities exactly at any value of the coupling [13, 14].

Theories with free scalars or fermions in the bulk have thus far presented additional
difficulties. The main issue is that the boundary couplings tend to run, and the fixed points
are not under fine control. The earliest example we found was from 35 years ago [15], where
a free scalar field in three dimensions interacts via a classically marginal φ4 coupling on a
two dimensional boundary. More recent work utilizing ε and large N expansions to study
boundary interactions includes [16–21].

We have focused in this discussion thus far on the codimension one or boundary case.
It is natural to wonder what happens then in higher codimension. An important recent
result [22] shows that scalar field theories that are free in the bulk must be “trivial” in
codimension higher than one. “Trivial” here means that all of the defect operators that
have a nonzero three point function with the bulk scalar must satisfy a “double twist”
condition on their spectrum. Moreover, correlation functions involving fields that appear
in the defect operator product expansion (OPE) of the scalar can be computed from their
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two-point functions via Wick’s Theorem. “Double twist” means that if two of the operators
in the three-point function are Ô1 and Ô2, and at least one of Ô1 or Ô2 appears in the defect
OPE of the scalar, the third operator must take the schematic form Ô1∂

nÔ2. The authors
restricted their result to scalars for simplicity. The steps of their argument, however, can
be applied more generally. In this paper, we extend their result to the case of a Maxwell
field in four dimensions interacting with a two dimensional defect. (We limit ourselves to
the codimension two case because of the proliferation of tensor structures that appear in
codimension three.)

There have been investigations of a Maxwell field in higher codimension interacting
with charged matter on the defect [5, 23]. Indeed, from their work, it is already suggestive
what goes wrong. In perturbation theory, it is convenient to work in a partially Fourier
transformed setting where we replace the coordinates along the defect with their corre-
sponding momenta. However, having done that, the photon propagator along the defect
will have a logarithmic dependence on the momentum, log(p), requiring the introduction
of a scale, even at tree level, in the computation of Feynman diagrams. The task of the
work below is to replace this perturbative argument with something more rigorous based
purely on symmetry and unitarity.

Another output of the work here is a technical advance — formalism for dealing with
mixed symmetry correlation functions in defect CFT. In [24], developing the boundary
CFT technology of [25, 26], we proposed a method for writing down two-point functions
in defect CFT involving operators transforming in arbitrary representations of the Lorentz
group. In this paper, we necessarily need to push that formalism a little further, in order
to be able to write down a bulk-defect-defect three-point function involving a Maxwell
field Fµν . There is a competing product on the market available for defect CFT, based
on the embedding space formalism, that was developed in a series of papers [27–29] and
later further elaborated [30, 31]. While we are fans of embedding space for symmetric
representations of the Lorentz group, we prefer the methods here for antisymmetric tensors
such as Fµν .

The outline of the rest of this work is as follows. In section 2, we calculate the
〈Fµν(x)Fλρ(x′)〉 two point function and make some side remarks about the stress tensor
for orbifold theories. In section 3, we compute bulk-defect two-point functions involving
the Maxwell field Fµν . In section 4, we reconstruct the defect OPE of Fµν from the bulk-
defect two-point functions, and then re-express 〈Fµν(x)Fλρ(x′)〉 as a sum over conformal
blocks. At the end of these three exercises, we discover that only vectors of conformal
weight ∆ = 1 + |s| and a pair of complex scalars of weight ∆ = 2 contribute to the defect
OPE of Fµν . Here s is the transverse spin of the defect operators. Section 5 computes
the bulk-defect-defect three-point function and from it extracts severe restrictions on the
spectrum of defect operators. Section 6 uses these restrictions on the spectrum to prove
the “triviality” of the theory. We conclude with a short discussion, and various appendices
contain auxiliary results.
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2 Field strength two point function

In this section, we constrain the form of the 〈Fµν(x)Fλρ(x′)〉 two-point function for a
Maxwell theory in four dimensions in the presence of a codimension two defect. While not
strictly needed for the central arguments of the work, 〈Fµν(x)Fλρ(x′)〉 gives us an opportu-
nity to set up needed notation and is also an important correlation function in the theory.
We assume that the defect breaks the SO(5, 1) conformal symmetry of the (Euclidean)
Maxwell theory to SO(3, 1)× SO(2). In ref. [24], we developed a formalism for construct-
ing precisely this type of correlation function. The formalism begins with the construction
of cross ratios which are invariant under the residual SO(3, 1)× SO(2) conformal group.

To fix notation, we insert the two Maxwell fields at points x and x′ ∈ R4. The defect
sits at y = 0 where y ∈ R2 is a point in the space transverse to the defect while x ∈ R2 is
a point on the defect. The two cross ratios which took pride of place in ref. [24] are

ξ1 = (x− x′)2

4|y||y′| , ξ2 = y · y′

|y||y′|
. (2.1)

To solve the free field constraints on 〈Fµν(x)Fλρ(x′)〉, it is convenient to alter the
formalism [24] in a way that will allow us at a later stage to perform a separation of
variables into a radial coordinate r and angular coordinate θ. The cross ratio ξ2 = cos θ
depends only on the angle between the vectors y and y′. ξ1 on the other hand depends on
both θ and the magnitudes of y and y′. By replacing ξ1 with the quantity [28]

χ = 2ξ1 + ξ2 = (x− x′)2 + y2 + y′2

2|y||y′| , (2.2)

we find a new cross ratio which depends only on the magnitudes of y and y′.
The radial coordinate r is then defined as

χ ≡ 1 + r2

2r . (2.3)

This coordinate has a simple geometric interpretation. Splitting x = (x, y), we use the
conformal transformations to fix x = x′ = 0 and y′ = (1, 0). The remaining two-vector y
we can write in complex notation as reiθ. Note that the map from r to χ is not injective:
for every r in the range (0, 1), there is a second r > 1 that maps to the same value of χ.

In ref. [24], we introduced tensor building blocks from which to construct the correlation
functions. Among the vectors, we have

Ξ(1)
µ (x, x′) = |y|

ξ1

∂ξ1
∂xµ

,

Ξ(2)
µ (x, x′) = |y|

ξ2

∂ξ2
∂xµ

,

Ξ′(1)
µ (x, x′) = |y

′|
ξ1

∂ξ1
∂x′µ

,

Ξ′(2)
µ (x, x′) = |y

′|
ξ2

∂ξ2
∂x′µ

.

(2.4)

In view of the separation of variables into r and θ, we find it convenient to replace Ξ(1)

and Ξ′(1) with

Xµ = |y| ∂χ
∂xµ

, X ′µ = |y′| ∂χ
∂x′µ

, (2.5)

such that X = 2ξ1Ξ(1) + ξ2Ξ(2) and similarly for X ′.1
1Note X was used to indicate a different tensor structure in [24].
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The last tensor structure we need is a bivector, constructed by taking both an x and an
x′ derivative of the invariant cross ratios. The double derivative of ξ2 can be reconstructed2

from a product of Ξ(2) and Ξ′(2) and does not give us anything new. The double derivative
of ξ1 on the other hand is the inversion tensor:

Iµν(x− x′) = −2ξ1|y|
∂

∂xµ
Ξ′(1)
ν = −2ξ1|y′|

∂

∂x′µ
Ξ(1)
ν , (2.6a)

where Iµν(x) = δµν− 2xµxν
x2 . This tensor plays an important role in conformal field theories

without boundaries and defects. As it happens, we find it simpler in what follows to use
the double derivative of χ instead

Iµν = |y′| ∂
∂x′ν
Xµ = |y| ∂

∂xµ
X ′ν , (2.7)

even though Iµν is a more complicated object than Iµν . For one, it is not symmetric in its
indices. Note that

Iµν = −Iµν + 2ξ1Ξ(1)
µ Ξ′(1)

ν − ξ3
2

1− ξ2
2

Ξ(2)
µ Ξ′(2)

ν .

With these structures in hand, the general form of the Maxwell field strength two-point
function, consistent with defect conformal symmetry, can be written as a sum of parity
even and parity odd terms3

〈Fµν(x)Fαβ(x′)〉 = 1
|y|2|y′|2

[
2g1Iµ[αIβ]ν + 4g2X[νIµ][αX

′
β] + 4g3

(
X[νIµ][αΞ′(2)

β] + Ξ(2)
[ν Iµ][αX

′
β]

)
+ 4g4Ξ(2)

[ν Iµ][αΞ′(2)
β] + 4g5X (1)

[µ Ξ(2)
ν] X

′
[αΞ′(2)

β]

]
+ 2
|y|2|y′|2

εαβ
γδ
[
2g̃1Iµ[γIδ]ν + 4g̃2X[νIµ][γX

′
δ]

+ 4g̃3
(
X[νIµ][γΞ′(2)

δ] + Ξ(2)
[ν Iµ][γX

′
δ]

)
+ 4g̃4Ξ(2)

[ν Iµ][γΞ′(2)
δ] + 4g̃5X (1)

[µ Ξ(2)
ν] X

′
[γΞ′(2)

δ]

]
. (2.8)

Additionally, the parity odd terms are further constrained by Bose symmetry associated
with identical operators appearing in the two-point function,

g̃3 = 0 , g̃4 = cot2 θ
(
χg̃1 + (χ2 − 1)g̃2

)
, g̃5 = − cot2 θ (g̃1 + χg̃2) , (2.9)

and hence there are only two independent parity odd structures.
Assuming that Fµν is free in the bulk, we can apply Maxwell’s equations to the two-

point function:
∂µ〈Fµν(x)F λρ(x′)〉 = 0 , ∂µ〈F̃µν(x)F̃ λρ(x′)〉 = 0 , (2.10)

2This is true when q = 2, see [24].
3The parity odd structures can only appear when the parity symmetry is broken since the two-point

function between identical operators is parity even. Note, the factor of 2 has been added with the ε terms
in anticipation of complex coordinates we use throughout the paper.
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where F̃µν(x) = 1
2ε
µνλρFλρ(x). By contracting the result with the tensor structures Ξ(2),

X , and Iµν along with the epsilon symbol to make scalar quantities, we can construct a set
of coupled linear partial differential equations for the functions gi and g̃i in the cross ratios
ξ2 and χ. We find eight coupled equations for the gi and another independent but identical
set of equations for the g̃i.4 Focusing on the gi, the four equations ∂µ〈F̃µν(x)F̃ λρ(x′)〉 = 0
allow us to solve for g2, g3, and g5 in terms of g1 and g4. The remaining four equations
∂µ〈Fµν(x)F λρ(x′)〉 = 0 allow us to solve for g1 and g4. The result is that

g2 = 1
2
∂g1
∂χ

, g3 = ξ2
2
∂g1
∂ξ2

, (2.11)

g4 = cot2 θ

2

(
− ∂

∂χ
(χ2 − 1)g1 +H(χ)

)
,

g5 = cot2 θ

2

( 1
χ

∂

∂χ
χ2g1 +H ′(χ)

)
,

where H(χ) and g1(χ, θ) satisfy the differential equations

(1− χ2)H ′′(χ)− 5χH ′(χ)− 3H(χ) = 0 , (2.12)[
(1− χ2)∂2

χ − ∂2
θ − 5χ∂χ − 4

]
g1(χ, θ) = 0 . (2.13)

We note in passing that in the parity odd sector, the tilde’ed version of this set of equa-
tions along with (2.9) restricts g̃1(χ, θ) to be a function of χ only and further sets H̃ =
2∂χ[(χ2 − 1)g̃1].

The two differential equations (2.12) and (2.13) are straightforward to solve. Let us
start with the partial differential equation for g1(χ, θ), which succumbs to a separation of
variables approach. Setting g1 ∼ eisθ and s 6= 0 or 1, we find

g1 = eisθ
r2

(1− r2)3

(
c−r

s(1 + s+ r2(1− s)) + c+r
−s(1− s+ r2(1 + s))

)
. (2.14)

In the two special cases s = 0 and 1, the two independent solutions become degenerate,
and we find instead extra logarithmic solutions. For s = 0, we find

g1 = r2

(1− r2)3

(
c(1 + r2) + c′(2 + (1 + r2) log r)

)
, (2.15)

while for s = 1, we find instead

g1 = eiθ
r2

(1− r2)3

(
cr + c′

r
(−1 + r4 − 4r2 log r)

)
. (2.16)

Intriguingly, H satisfies the same differential equation as g1 in the cases s = ±1. As we are
dealing with a conformal field theory without extra scales, we should set the logarithmic
solutions to zero, i.e. c′ = 0.

Moving forward, let us define the mode function

Gs(r) = r2−s

(1− r2)3 (1− s+ r2(1 + s)) . (2.17)

4g̃i’s are further constrained by (2.9).
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The most general solution for g1 can thus be written

g1 = c0G0(r) + (c1e
iθ + c−1e

−iθ)G1(r) +
∑
s 6=0,1

eisθ(cs+G|s|(r) + cs−G−|s|(r)) . (2.18)

The remaining gi can then be reconstructed from the relations (2.11), where we must also
make a choice of integration constant ch in the solution for H = chG1(r) that appears in
the expressions for g4 and g5. If we insist on periodicity under θ → θ + 2π, then we can
restrict the sum to integer s.5

The scaling behavior of the mode function Gs(r) in the limits r → 0, r → ∞, and
r → 1 has physical meaning. In the limit r → 0, the point x is much closer to the defect
than x′. In contrast, in the limit r → ∞, the point x is much further away. In the first
instance, we can replace Fµν(x) with a defect operator product expansion (defect OPE),
while in the second instance, Fαβ(x′) can be replaced. In the limit r → 1, x and x′ become
approximately coincident, and the mode functions diverge. Because of the singularity at
r = 1, we can choose different mode functions in the two regions, 0 < r < 1 and r > 1,
independently adapted to the boundary conditions in the limits r → 0 and r →∞.6

The point of the next two sections is to elucidate the defect OPE in much greater
detail. At this point, let us instead state the result. Note that G|s|(r) is well behaved in
the limit r → ∞ while G−|s|(r) is well behaved in the limit r → 0. There is a two part
claim, one for s 6= 0 and one for s = 0. For s 6= 0, in the region r > 1, G|s|(r) corresponds
to the contribution of a defect vector of dimension ∆ = 1+|s| while in the region 0 < r < 1,
G−|s|(r) represents the same contribution. For s = 0, G0(r), H(r), and g̃1(r) correspond
to the contributions of defect scalars of dimension 2.

This two point function building block g1 (2.18) is similar in structure to the full two-
point function of a massless free scalar in the presence of a defect. It was stressed in ref. [22]
that for a free scalar field, the existence of a nontrivial defect was closely correlated with the
ability to have both cs+ and cs− simultaneously be nonzero, a freedom we do not have here
except possibly in the s = 0 case. From both the small r and large r scaling of Gs(r), we
can deduce the existence of a defect vector with dimension ∆ = 1± s. Since the unitarity
bound for such an operator is one, for unitary defects we must set either cs+ or cs− to
zero, depending on which region we are in, r > 1 or 0 < r < 1. If we are to extrapolate
the lessons of [22], the dimension two scalars associated with s = 0 would seem to provide
the only flexibility to have a nontrivial defect and will need careful consideration in what
follows. First though we would like to discuss the one-point function of the stress-tensor.

5More generally, we may have a monodromy type defect with a phase factor e2πiβ associated with going
around the circle. In this case, we could restrict to s ∈ Z + β.

6The mode function can be given a more uniform description in the χ variable:

Gs(χ) = −1
4(χ+

√
χ2 − 1)−s(χ+ s

√
χ2 − 1)(χ2 − 1)−3/2 .

Because of the branch cut at χ = 1, the mode function will simplify alternately to Gs(r) or −G−s(r)
depending on whether r > 1 or 0 < r < 1.
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2.1 Stress tensor

From these differential equations, we can deduce that

〈Fµν(x)Fµν(x′)〉 = 1
|y|2|y′|2

(
(χ+ 2ξ2)H + (χ2 − 1)H ′ +

−(x− x′)2

|y||y′|
(H + (χ− ξ2)H ′)

)
(2.19)

The stress tensor Tµν = FµρFν
ρ− 1

4δµνFλρF
λρ can be constructed from the coincident limit

of the Green’s function. We find, evaluating g1(χ, ξ2) and H(χ) at specific points,

〈Tµν(x)〉 =
g1(1, 1)− 1

4H(1)
y4 (−4Jµν + δµν) , (2.20)

where Jµν ∼ Ξ(2)
µ Ξ(2)

ν is the bitensor

Jµν =

δij − ninj µ = i, ν = j

0 otherwise
(2.21)

where i and j index directions normal to the defect and nµ ≡ yµ/|y|. The g̃i do not
contribute to 〈Fµν(x)Fµν(x′)〉 nor to 〈Tµν(x)〉.

The functions Gs(r), into which g1(χ, θ) and H(χ) can be decomposed, are divergent
at χ = 1 (equivalently r = 1) and so we need to be careful with this expression for the
stress tensor expectation value. The simplest theory — Maxwell theory in the absence of
a defect — has [24]

g1(χ, ξ2) = c ξ−2
1 = c

16
(χ− ξ2)2 = c

( 4r
1 + r2 − 2r cos(θ)

)2
, (2.22)

where we set c = 1 in what follows. (Note also H = 0 and g̃1 = 0.) Clearly g1(1, 1) is
divergent, while based on Lorentz invariance, we expect the stress-tensor expectation value
to vanish.

The situation suggests a minimal subtraction prescription. Whenever we compute
〈Tµν〉, we regulate by subtracting the 〈Tµν〉 of the no defect theory. Note that the no
defect g1 has the following mode decomposition:

ξ−2
1 = −16

∑
j∈Z

eijθG|j| . (2.23)

Decomposing g1(χ, ξ2) into a mode sum, one possible generalization of the no defect theory
with a finite stress tensor involves introducing H and keeping c1 + c−1 − 1

4ch = −32.
In the next subsection, we consider some simple orbifold theories to understand how

this minimal subtraction works in an example.
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2.2 Orbifold theories

For a Zm orbifold theory, we can obtain the Green’s function as a sum over no defect theory
images (see [24]), where we not only have an insertion of Fµν(x) at θ but also at θ + 2πk

m

for k = 1, 2, . . . ,m − 1. For each of these images, we have a contribution to the Green’s
function from a g1 of the form

g
(α)
1 =

( 4r
1 + r2 − 2r cos(θ + α)

)2
(2.24)

where α = 2πk
m . Each such g(α)

1 admits a mode decomposition

g
(α)
1 = −16

∑
j∈Z

eij(θ+α)G|j| . (2.25)

The full orbifold theory is then a sum over the appropriate g(α)
1 :

g
〈m〉
1 =

m−1∑
k=0

g
( 2πk
m )

1 = −16
∑
s∈Z

eis(π−
π
m

+θ) sin πs
sin
(
πs
m

)G|s| = −16m
∑
s∈mZ

eisθG|s| , (2.26)

where all the s not divisible by m get removed from the sum, making the function periodic
under θ → θ + 2π

m .
Returning to the issue of the finiteness of the stress tensor, we see that g(α)

1 will in
general be finite in the coincident limit θ = 0 and r = 1. The one exception is the defect free
case, where α = 0. As discussed above, we can regulate the orbifold result by subtracting
the no defect result. The stress tensor expectation value is then obtained by summing over
all the α 6= 0. The result for the Zm orbifold theory is

〈Tµν〉 = (m2 + 11)(m+ 1)(m− 1)
45y4 (−4Jµν + δµν) . (2.27)

3 Two point functions involving defect operators

We show that the only defect operators with which a Maxwell field can have a nonzero
two-point function are a scalar of dimension two or an operator with spin one along the de-
fect. To obtain correlation functions involving defect operators, we will follow the strategy
outlined in [24], and take boundary limits of the bulk tensor structures described above.
In particular, we use the following tensor building blocks (see appendices B and C)

Ξ(1)
µ , Iµν ≡ Iµν − ξ2Ξ(1)

µ (Ξ′(1)
ν − Ξ′(2)

ν ) , Jµν , δµν . (3.1)

We then take the boundary limit of the x′ insertion, leading to the structures

Ξ̂(1)
µ = lim

y′→0
Ξ(1)
µ , Îµν = lim

y′→0
Iµν , (3.2)

while the tensors Jµν and δµν are untouched by this limiting procedure. We claim that
this list is sufficient to construct the two-point functions of interest. Finally, we work in
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Bulk-Defect U(1) Structures
At x At x′

` = s = 0 ` = −1 ` = 1 ` = 0, s

Ξ̂(1)
µ , z̄|z| Îµz̄, Î[µ|wÎ|ν]w̄ Îµw Îµw̄

(
z
|z|

)s
Table 1. The tensor structures necessary for building bulk-defect two-point functions, along with
their transformation properties with respect to the parallel and transverse SO(2) rotation groups;
` is used for the parallel directions and s for the transverse ones. The bulk indices are µ and ν.
The defect indices are w and w̄ along the defect and z and z̄ transverse to it. More details on the
tensor structures can be found in (B.1).

complex coordinates, replacing y1 and y2 with z = y1 + iy2 and z̄ = y1− iy2, and similarly
for x→ (w, w̄). This change of variable will make the representation of the boundary fields
under the transverse and parallel SO(2) rotation groups plain. Indeed, it is sufficient to
include a factor of (z/|z|)s to give an operator spin s in the transverse directions. Table 1
summarizes the transformation properties of these tensor building blocks.

3.1
〈
F Ô(s)

(∆)

〉
We consider a defect scalar Ô(s)

(∆) with transverse spin s and dimension ∆.

〈Fµν(x)Ô(s)
(∆)(x

′)〉 = 2
|x− x′|2∆|z|2−∆

[
cFOÎ[µ|wÎ|ν]w̄

(
z

|z|

)s
+ c′FOΞ̂(1)

[µ Îν]z̄

(
z

|z|

)s−1 ]
,

(3.3)
where |x − x′|2 = |w − w′|2 + |z|2. Applying the equation of motion gives the constraints
(−2 + ∆ + s)c′FO = 0, (−2 + ∆− s)c′FO = 0 and sc′FO = 0. Further applying the Bianchi
identity gives the constraints (−2 + ∆ + s)cFO = 0, (−2 + ∆ − s)cFO = 0 and scFO = 0.
The simplest solution is s = 0 and ∆ = 2. We could also solve all the equation of motion
constraints by setting c′FO = 0. However now solving the Bianchi identity constraints
requires either cFO = 0 where the correlator vanishes completely or s = 0 and ∆ = 2,
i.e. the solution we had mentioned first. So in general a free Maxwell field only has non-
zero correlator with a defect scalar with dimension ∆ = 2 and s = 0.

3.2
〈
FŴ(s)

(∆,`)

〉
Next we consider a defect vector Ŵ(s)

(∆,`) with parallel spin ` = 1, dimension ∆, and trans-
verse spin s:〈

Fµν(x)Ŵ(s)
(∆,1)(x

′)
〉

= 2
|x− x′|2∆|z|2−∆

[
cFW Ξ̂(1)

[µ Îν]w̄

(
z

|z|

)s
c′FW Î[µ|w̄Î|ν]z̄

(
z

|z|

)s−1 ]
.

(3.4)
Applying the equation of motion gives the constraint 2(−1 + ∆)cFW − sc′FW = 0. Further
applying the Bianchi identity gives the constraint (−1 + ∆)c′FW − 2scFW = 0. These
coupled equations can be solved to give the following two sets of solutions:

{∆ = 1− s, c′FW = −2cFW}, {∆ = 1 + s, c′FW = 2cFW}. (3.5)
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These solutions indicate two series of parallel spin ` = 1 and transverse spin s defect
primaries ψ̂(s)

± with dimension ∆± = 1±s. Reflection positivity requires that ∆ ≥ p+ |`|−
2 = 1 which gives us the constraints,ψ̂

(s)
+ =⇒ s ≥ 0,

ψ̂
(s)
− =⇒ s ≤ 0.

(3.6)

It is convenient to separate out the spin s = 0 case and combine the remaining two sets of
operators: ψ̂(s)

+ and ψ̂(−s)
− for s > 0 with dimension ∆ = 1 + s, alongside ψ̂(0)

+ and ψ̂(0)
− with

dimension 1. The non-zero defect two-point function is then 〈ψ̂(s)
+ ψ̂

(−s)
− 〉 for s > 0. While

any of the s = 0 vector modes can have a non-zero two-point function, we will show in
section 4 that they decouple from the defect OPE of Fµν and only the scalar with ∆ = 2
contributes when s = 0.

The correlator with a spin ` = −1 vector is given by,

〈
Fµν(x)Ŵ(s)

(∆,−1)(x
′)
〉

= 2
|x− x′|2∆|z|2−∆

[
cFW Ξ̂(1)

[µ Îν]w

(
z

|z|

)s
+ c′FW Î[µ|wÎ|ν]z̄

(
z

|z|

)s−1 ]
.

(3.7)
Applying the equation of motion and Bianchi identity gives the exact same solution as (3.5)
and hence there again exists two sets of operators: φ̂(s)

+ and φ̂(−s)
− for s > 0 with spin ` = −1

and ∆ = 1 + s, alongside φ̂(0)
± . An important relation is the identification φ̂(∓s)

∓ = (ψ̂(±s)
± )∗,

where ∗ is complex conjugation.
Lastly, the correlation functions

〈
Fµν(x)Ŵ(s)

(∆,`)(x
′)
〉
with parallel spin operators |`| ≥ 2

vanish.

3.3 Parity odd structures

We claim our bulk-defect tensor structures are the most general possible and allow us
to reproduce correlation functions of arbitrary parity. We expect contracting parity even
tensor structures with εµνρσ will generate parity odd structures, and vice versa. Contracting
εµνρσ with our bulk-defect tensor structures does not generate new structures, however.
Instead, the contraction interchanges the structures we have. As shown in section 4, the
defect OPE obtained using these give rise to both the parity odd and parity even conformal
blocks contributing to 〈Fµν(x)Fαβ(x′)〉.

3.4 Defect two-point function

If we have two defect operators Ŵ(s)
(∆,`)(x) and Ŵ(s′)

(∆′,`′)(x
′), the conformal Ward identities

constrain the two point function to have the form

〈Ŵ(s)
(∆,`)(x)Ŵ(s′)

(∆′,`′)(x
′)〉 = c

δ`,`′δs,−s′δ∆,∆′

(w − w′)∆−`(w̄ − w̄′)∆+` , (3.8)

where c is an over-all normalization constant. The s = 0 = s′ case is familiar from
two dimensional conformal field theory. The extra information here is that the two-point
function will vanish unless s+ s′ = 0.
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4 Defect OPE and conformal blocks

Here, we use the bulk-defect two-point functions from section 3 to deduce the defect
OPE of Fµν . The defect OPE then allows us to recognize the mode decomposition of
〈Fµν(x)Fαβ(x′)〉 that we had earlier as a decomposition into conformal blocks. The defect
OPE will also be crucial information for our calculation of the bulk-defect-defect three-point
function in section 5.

4.1 Defect OPE: vectors

Let us begin by considering the contribution of ` = ±1 defect operators ψ̂(±s)
± (x) and

φ̂
(±s)
± (x) discussed in section 3.2 to the defect OPE of Fµν :

Fµν(x)
∣∣
`=±1 =

∑
s≥0

(
A(s)
µν (z, z̄, ∂x)ψ̂(s)

+ (x) + B(s)
µν (z, z̄, ∂x)ψ̂(−s)

− (x)

+ C(s)
µν (z, z̄, ∂x)φ̂(s)

+ (x) +D(s)
µν (z, z̄, ∂x)φ̂(−s)

− (x)
)
.

(4.1)

It will be enough to focus on just a few specific tensorial components of the defect OPE.
The corresponding bulk-defect two point functions for ` = 1 are

〈Fww̄(x)ψ̂(s)
+ (x′)〉 =

c
(s)
F+
2

zs(w′ − w)
|x− x′|4+2s , 〈Fzz̄(x)ψ̂(s)

+ (x′)〉 =
c

(s)
F+
2

zs(w − w′)
|x− x′|4+2s ,

〈Fww̄(x)ψ̂(−s)
− (x′)〉 =

c
(s)
F−
2

z̄s(w′ − w)
|x− x′|4+2s , 〈Fzz̄(x)ψ̂(−s)

− (x′)〉 =
c

(s)
F−
2

z̄s(w′ − w)
|x− x′|4+2s ,

(4.2)

and for ` = −1 are

〈Fww̄(x)φ̂(s)
+ (x′)〉 =

d
(s)
F+
2

zs(w̄ − w̄′)
|x− x′|4+2s , 〈Fzz̄(x)φ̂(s)

+ (x′)〉 =
d

(s)
F+
2

zs(w̄ − w̄′)
|x− x′|4+2s ,

〈Fww̄(x)φ̂(−s)
− (x′)〉 =

d
(s)
F−
2

z̄s(w̄ − w̄′)
|x− x′|4+2s , 〈Fzz̄(x)φ̂(−s)

− (x′)〉 = −
d

(s)
F−
2

z̄s(w̄ − w̄′)
|x− x′|4+2s .

(4.3)

It can be shown that d(s)
F± = (c(s)

F∓)∗ using the fact that Fµν is a real irrep of SO(4) in
Cartesian coordinates. For systems with degeneracies, one expects to be able to pair up
the ` = ±1 operators as a field and its complex conjugate, such that the contribution to
the defect OPE is ‘block diagonalized’.

Using the bulk-defect two point functions and (A.2), we can present a more explicit
form for the differential operators in the defect OPE (4.1):

A(s)
ww̄ = A(s)

zz̄ = z̄s

2

∞∑
m=0

(−|z|2)m
m!(s)m+1

∂mw̄ ∂
m+1
w ,

B(s)
ww̄ = −B(s)

zz̄ = zs

2

∞∑
m=0

(−|z|2)m
m!(s)m+1

∂mw̄ ∂
m+1
w ,

(4.4)
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and for ` = −1,

C(s)
ww̄ = −C(s)

zz̄ = − z̄
s

2

∞∑
m=0

(−|z|2)m
m!(s)m+1

∂m+1
w̄ ∂mw ,

D(s)
ww̄ = D(s)

zz̄ = −z
s

2

∞∑
m=0

(−|z|2)m
m!(s)m+1

∂m+1
w̄ ∂mw .

(4.5)

Note we have used the freedom to rescale the fields to fix the normalization of these
differential operators. As a result, the defect two-point function may have a non-canonical
normalization:

〈ψ̂(s)
+ (x)ψ̂(−s)

− (x′)〉 = c
(s)
+−

(w − w′)2

|x− x′|2s+4 , (4.6)

and the complex conjugate for φ(±s)
± . Consistency of (4.2), (4.3), (4.4), (4.5) and (4.6) then

requires
c

(s)
F+ = c

(s)
F− = c

(s)
+−, d

(s)
F+ = d

(s)
F− = c̄

(s)
+−, (4.7)

where c̄(s)
+− is the complex conjugate of c(s)

+−.
Certain components of these bulk-defect two-point functions 〈Fµνψ̂(s)

± 〉 and 〈Fµν φ̂
(s)
± 〉

vanish, which means that certain components of the tensorial differential operators A(s)
µν ,

B(s)
µν , C(s)

µν , and D(s)
µν must vanish as well. We will have occasion to make use of these

conditions in the next section, when we consider the bulk-defect-defect three-point function
〈FµνŴ1Ŵ2〉. These conditions are that

A(s)
wz̄ = 0 = A(s)

w̄z , B(s)
wz = 0 = B(s)

w̄z̄ , (4.8)

C(s)
wz = 0 = C(s)

w̄z̄ , D(s)
wz̄ = 0 = D(s)

w̄z .

Note that the s = 0 defect-defect two-point function 〈ψ̂(0)
+ ψ̂

(0)
− 〉 is purely anti-holomor-

phic and equal to (w̄ − w̄′)−2 while the bulk-defect two-point function contains an over-
all factor of ((w − w′)(w̄ − w̄′) + |z|2)−2. It is not possible to act on the s = 0 defect
vector two-point function with A(s)

µν or B(s)
µν and get the corresponding bulk-defect two-

point function. Indeed, because of an extra holomorphic derivative ∂w, A(s)
µν or B(s)

µν will
annihilate 〈ψ̂(0)

+ ψ̂
(0)
− 〉. In fact A(s)

µν or B(s)
µν are not even well-defined at s = 0 because of a

divergent 1/(s)m+1 factor. Similar argument holds for the ` = −1 case. We conclude that
the s = 0 boundary vectors, which are in fact boundary conserved currents, are absent
from the boundary OPE of Fµν . Any s = 0 contribution to correlation functions of Fµν
with other operators must come from the ∆ = 2 boundary scalars, which we come to next.

4.2 Defect OPE: scalars

It remains to consider the OPE contribution of a defect scalar Ô(s)
(∆). As we saw previously,

the free field constraints mean
〈
FµνÔ(s)

(∆)

〉
= 0 unless s = 0 and ∆ = 2. Therefore we

expect only defect operators of type Ô(0)
(2) to appear in the defect OPE of Fµν . Because
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s = ` = 0, it is simplest to work with real scalars. Writing directly in Cartesian coordinates,
the two-point function is,

〈Fµν(x)Ô(0)
(∆)(x

′)〉 = 2
|x− x′|2∆|y|2−∆

[
cF ÔÎµaÎνbε

ab + c′
F ÔΞ̂(1)

[µ| Î|ν]iŶ ′jεij
]
,

= cFOT (1)
µν + c′FOT (2)

µν ,

(4.9)

where Y ′µ = ξ2
(
Ξ
′(1)
µ − Ξ

′(2)
µ

)
.7 Appearance of the ε’s makes it clear that T (1)

µν and T (2)
µν

are parity odd structures with respect to parity parallel and transverse to the defect, re-
spectively. Using this we postulate the existence of two pseudo-scalars, π̂ and τ̂ , associated
with parity parallel and transverse to the defect respectively.

More precisely, we define π̂ and τ̂ to be the defect scalars that appear in the defect
OPE of Fµν in the fashion

Fµν(x)|s=0 = D(π)
µν (z, z̄, ∂x)π̂(x) +D(τ)

µν (z, z̄, ∂x)τ̂(x) , (4.10)

where D(π)
µν and D(τ)

µν acting on |w − w′|−4 produce T (1)
µν and T (2)

µν respectively. We will be
more specific about the form of the D(π)

µν and D(τ)
µν presently.

Now because we have defined π̂ and τ̂ via (4.10), we are not guaranteed that they are
canonically normalized or even orthogonal. In general we will have

〈π̂(x)π̂(x′)〉 = cππ
|x− x′|4 , 〈π̂(x)τ̂(x′)〉 = cπτ

|x− x′|4 , 〈τ̂(x)τ̂(x′)〉 = cττ
|x− x′|4 . (4.11)

In the special case of a parity preserving theory, indeed symmetry sets cπτ = 0.
Returning to the D(π)

µν and D(τ)
µν , they are constructed to reproduce the form of the

bulk-defect two-point function. In components, we have that8

〈Fww̄(ω)Ô(0)
(2)(x

′)〉 = − icFO2

(
|w − w′|2 − |z|2

|x− x′|6

)
,

〈Fzz̄(ω)Ô(0)
(2)(x

′)〉 = − ic
′
FO
2

(
|w − w′|2 − |z|2

|x− x′|6

)
.

(4.12)

Thus, we set

D(π)
ww̄ = −iD2 , D(π)

zz̄ = 0, D(τ)
ww̄ = 0, D(τ)

zz̄ = −iD2 . (4.13)

The operator D is then defined such that

|w − w′|2 − |z|2

|x− x′|6
=
∞∑
m=0

(−|z|2)m
(m!)2 ∂mw̄ ∂

m
w

[ 1
|w − w′|4

]
≡ D

[ 1
|w − w′|4

]
. (4.14)

Consistency of the defect OPE with the bulk-defect two-point functions now requires that

cFπ = cππ, c′Fπ = cFτ = cπτ , c′Fτ = cττ . (4.15)
7Y ′ is the same as X ′ in ref. [24] and we use a, b for indices on the defect while i, j are transverse to the

defect.
8We go back into complex coordinates to simplify calculations.
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Reflection positivity puts nontrivial constraints on the 2×2 matrix of π̂ and τ̂ two-point
functions. Picking a plane orthogonal to the defect, the reflection action will flip the sign
of π̂ but not of τ̂ . The following matrix must then have strictly non-negative eigenvalues:(

−cππ −cπτ
cπτ cττ

)
. (4.16)

In other words, the trace cττ − cππ ≥ 0 and the determinant c2
πτ − cππcττ ≥ 0 must be non-

negative. In the particular case of a parity symmetric theory, where cπτ = 0, we find that
the π̂ two-point function must be negative cππ ≤ 0 and the τ̂ two-point function positive
cττ ≥ 0.

4.3 Conformal blocks

Here we compute the conformal block contribution of Ô(0)
(∆=2) and Ŵ(s)

(∆,±1) to the two-
point correlation function 〈Fµν(x)Fαβ(x′)〉. Since Fµν is antisymmetric, we only have
six independent components in four dimensions, namely Fww̄, Fwz, Fwz̄, Fw̄z, Fw̄z̄, Fzz̄. We
will focus on the components 〈Fww̄(x)Fww̄(x′)〉 and 〈Fzz̄(x)Fzz̄(x′)〉 which are enough to
determine the contribution of the conformal block to both g1(χ, ξ2) and H(χ). Then by
applying (2.11), we can figure out the contributions to g2, g3, g4 and g5, and hence to the
complete 〈Fµν(x)Fαβ(x′)〉 two-point function.

Focusing then on these two components, we find

〈Fww̄(x)Fww̄(x′)〉 = − 1
4|z|2|z′|2 g1 −

|w − w′|2

8|z|3|z′|3
∂g1
∂χ

, (4.17)

〈Fzz̄(x)Fzz̄(x′)〉 = 1
4|z|2|z′|2 g1 + |w − w

′|2

8|z|3|z′|3
∂g1
∂χ

(4.18)

+ |w − w
′|2 − |z|2 − |z′|2

16|z|3|z′|3 H + |w − w
′|4 − (|z|2 − |z′|2)2

32|z|4|z′|4 H ′ .

Interestingly H(χ), because it lacks θ dependence, can only contribute to conformal blocks
with s = 0. In fact, the G0 mode of g1 and H(χ) contribute in a linearly depen-
dent way to 〈Fzz̄(x)Fzz̄(x′)〉. For the s 6= 0 modes, we find that 〈Fzz̄(x)Fzz̄(x′)〉|s 6=0 =
− 〈Fww̄(x)Fww̄(x′)〉|s 6=0, something we will see born out by the conformal block contribu-
tions to these components of the correlation function.

Likewise, the component 〈Fww̄(x)Fzz̄(x′)〉 is enough to determine the contribution of
the conformal block to the parity odd function g̃1(χ). Combining the solution to the
PDE’s (2.11) (with the replacement gi → g̃i) and Bose symmetry (2.9) we find that H̃(χ)
is fixed,

H̃(χ) = 2∂χ
(
(χ2 − 1)g̃1(χ)

)
. (4.19)

The required component is

〈Fww̄(x)Fzz̄(x′)〉 = 1
4|z|2|z′|2 g̃1 + |w − w

′|2

8|z|3|z′|3
∂g̃1
∂χ

. (4.20)
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Vector contributions. The expectation, which will be born out, is that the conformal
block contributions of ψ̂(±s)

± and φ̂(±s)
± correspond to the modes Gs in the decomposition

of g1.
We start by looking at 〈Fww̄(x)Fww̄(x′)〉. Applying both the operators Aµν and Bµν

to the two point function 〈ψ̂(s)
+ ψ̂

(−s)
− 〉 and both Cµν and Dµν to 〈φ̂(s)

+ φ̂
(−s)
− 〉, we can write

the contribution of ψ̂(s)
± and φ̂(s)

± to the 〈FF 〉 two point function as

〈Fww̄(ω)Fww̄(ω′)〉
∣∣
s =

[
− 1

4
(
c

(s)
+− + c̄

(s)
+−

)
[(zz̄′)s + (z̄z′)s]

∑
m,n

(−|z|2)m(−|z′|2)n
m!n!(s)m+1(s)n+1

(2 + s)m+n(s)m+n+2
(|w − w′|2)2+s+m+n

]
.

(4.21)

(Note this expression is the contribution from both +s and −s modes, assuming s > 0.)
With some care, this double sum evaluates to a hypergeometric function (see (A.6)):

〈Fww̄(ω)Fww̄(ω′)〉
∣∣
s = −c

(s)
R cos(sθ)
s(s+ 1)

∂w∂w̄
|z||z′|

2F1
(

1+s
2 , 2+s

2 ; 1 + s; 1
χ2

)
(2χ)1+s , (4.22)

where c(s)
R = Re[c(s)

+−]. The fact that the s = 0 defect vectors do not contribute to the
conformal block decomposition of 〈FF 〉 is reflected here in the divergence of the expression
at s = 0.

We need now to compare this expression (4.22) with (4.17). To that end, note that a
general function of χ expands out under the operation of ∂w∂w̄ as

∂w∂w̄F (χ) = ∂F

∂χ

1
2|z||z′| + ∂2F

∂χ2
|w − w′|2

4|z|2|z′|2 . (4.23)

We deduce that

g1|s = 2c(s)
R cos(sθ)
s(s+ 1) ∂χ

2F1
(

1+s
2 , 2+s

2 ; 1 + s; 1
χ2

)
(2χ)1+s

 ,
= 4c(s)

R cos(sθ)
s(s+ 1) Gs(χ) .

(4.24)

A similar calculation looking at 〈Fzz̄(x)Fzz̄(x′)〉 gives the same result for g1, with no added
contribution from H, as expected. In the language of conformal blocks, the Zm orbifold
theory considered in section 2.2, in the region r > 1, would have c(s)

R = −8ms(s + 1) if
s ∈ mZ and zero otherwise.

To determine the parity odd sector and the g̃i functions, we start by looking at
〈Fww̄(x)Fzz̄(x′)〉. Following similar steps as for the parity even case, we can write the
contribution from ψ̂

(±s)
± and φ̂(±s)

± to the two point function as

〈Fww̄(x)Fzz̄(x′)〉|s ∼
c

(s)
I sin(sθ)
s(s+ 1)

∂w∂w̄
|z||z′|

2F1
(

1+s
2 , 2+s

2 ; 1 + s; 1
χ2

)
(2χ)1+s , (4.25)
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where c(s)
I = Im[c(s)

+−]. Comparing with (4.20) gives the conformal block contribution to
the parity odd function g̃1,

g̃1|s ∼
2c(s)

I sin(sθ)
s(s+ 1) Gs(χ). (4.26)

However, Bose symmetry (2.9) requires that g̃3 = 0 and hence combining with (2.11) we
find c(s)

I = 0 for each s > 0. Thus, the contribution from a defect vector to g̃1|s vanishes
completely. Only the s = 0 scalars have the possibility to contribute to g̃1 and the parity
odd sector.

Scalar contributions. To compute the scalar conformal block contribution to 〈FF 〉,
we first need to compute the action of the differential operator D2 on the defect scalar
two-point functions. Using the result (A.5), we can reduce the double sum D2 to a single
sum, which in turn can be expressed as a hypergeometric function. In fact, we find the
s = 0 version of (4.22) but without the leading divergent 1/s(s+ 1) coefficient:

D
[
D′
[ 1
|w − w′|4

]]
= 1

2|z||z′|∂w∂w̄
1√

−1 + χ2 . (4.27)

As for the defect vector case, we can study the components 〈Fww̄Fww̄〉, 〈Fzz̄Fzz̄〉, and
〈Fww̄Fzz̄〉 to find the conformal block contribution from the defect scalars to the 〈FF 〉
two-point function. We deduce that the scalar s = 0 contribution to g1, H, and g̃1 is

g1|s=0 = −χ cππ

4(χ2 − 1) 3
2
, H(χ) = cππ + cττ

4(χ2 − 1) 3
2
, g̃1|s=0 = χ

cπτ

4(χ2 − 1) 3
2
. (4.28)

Note that in terms of the mode functions g1|s=0 = cππG0(χ) and H(χ) = −(cππ+cττ )G1(χ)
(see footnote 6). We see directly that breaking of the parity symmetry (non-zero cπτ ) is
required to obtain a contribution to g̃1.

5 Bulk-defect-defect correlation functions

In this section, by applying the free field constraints and the defect OPE to the bulk-defect-
defect correlation function of Fµν and two defect operators, we place strong constraints on
the defect operator spectrum of the theory. A defect operator Ŵi(x) will have quantum
number si, `i, and ∆i. As the defect operators live in two dimensions, it will be useful to
introduce the conformal weights h′ + h = ∆ and h′ − h = `.

Our principal character is 〈
Fµν(x1)Ŵ2(x2)Ŵ3(x3)

〉
. (5.1)

This bulk-defect-defect three-point function picks out the operators in the defect OPE of
Fµν which have spin s1 = −s = −s2 − s3, by angular momentum conservation. Because of
the free field constraints, there are exactly two operators which contribute. When s < 0,
they are ψ̂(−s)

+ and φ̂(−s)
+ . When s > 0, they are correspondingly ψ̂(−s)

− and φ̂(−s)
− . Finally,

when s = 0, we have scalar contributions from π̂ and τ̂ . We label by h1 and h′1 the
conformal weights of the operators {ψ̂(s1)

± , φ̂
(s1)
± , π̂, τ̂} in the defect OPE of Fµν .
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The end result of this section is that for the bulk-defect-defect three point function to
be well behaved, the weights hi and h′i must satisfy a “double twist” condition. Without
loss of generality, let us assume h3 ≥ h2.9 Then we find

h3 = h1 + h2 + n , h′3 = h′1 + h′2 + n′ , (5.2)

where n and n′ are non-negative integers. A further corollary is that for Ŵ1 ∈ {ψ̂(s1)
± , φ̂

(s1)
± ,

π̂, τ̂} the corresponding three point functions,〈
Ŵ1(x1)Ŵ2(x2)Ŵ3(x3)

〉
, (5.3)

must vanish unless this double twist condition (5.2) is satisfied (along with the constraint
s1 + s2 + s3 = 0).

5.1 Sketch of the approach

The obvious approach to a proof would be to apply the differential operators Aµν , Bµν ,
Cµν , Dµν , D(τ)

µν and D
(π)
µν (partially defined in (4.4), (4.5), and (4.14)) to a defect three-

point function to generate the corresponding contributions to 〈FµνŴ2Ŵ3〉. We ran into
technical obstacles with this approach, however. A trivial objection is that the differential
operators Aµν etc. were made explicit only for the zz̄ and ww̄ components of the three-point
function. In fact, we can easily generate the operators that give us the remaining tensorial
components of 〈FµνŴ2Ŵ3〉, but have spared the reader the details. A more substantial
obstacle is that we were not able to perform the sum in full generality. In the scalar case,
the authors of [22] get around this obstacle by evaluating the sum in a particular limit
and recovering the general result using conformal invariance. Unfortunately, because of
the tensorial nature of our three-point function, the constraints from conformal invariance
are less trivial and need to be understood in detail to use this approach.

As a first step, we find the most general form for 〈FµνŴ2Ŵ3〉 consistent with conformal
invariance. Then instead of returning to the defect OPE, we apply the free field constraints
directly to the full 〈FµνŴ2Ŵ3〉 to constrain its form. In effect, the equation of motion and
Bianchi identity convert the computation of the defect OPE sum to the solution of a set
of differential equations. The boundary conditions are then fixed by the defect OPE.
Thus in a final step, we return to the approach of [22]. We complete the calculation of
〈FµνŴ2Ŵ3〉 by comparing the result from the free field constraints with the action of the
differential operators Aµν , Bµν , Cµν and Dµν on the defect three-point function, evaluated in
a particular limit where we can perform the sum, but where now the system is constrained
enough that this limit uniquely determines the form of 〈FµνŴ2Ŵ3〉.

5.2 Conformal invariance and free field constraints

This three-point function 〈FµνŴ2Ŵ3〉 can depend on functions of a cross ratio u [28], which
we can write as

u = (x2 − x1)2(x3 − x1)2

(x2 − x3)2|y1|2
= (w21w̄21 + z1z̄1)(w31w̄31 + z1z̄1)

w23w̄23z1z̄1
. (5.4)

9We make this assumption for the simplicity of stating the result. No such assumption is used in the
analysis presented in this section.
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Note the u → ∞ limit is both the limit in which x2 and x3 become coincident and also
separately the limit in which x1 approaches the defect. The undetermined functions fA(u)
are summed over a finite number of tensor structures. As we discuss in more detail in
appendix B.2, there are six tensor structures that contribute to the correlation function,

〈
Fµν(x1)Ŵ2(x2)Ŵ3(x3)

〉
= N

6∑
A=1

fA(u)SAµν(x1,x2,x3) , (5.5)

where the prefactor

N =

(
z1
|z1|

)s
|z1|∆2+∆3−2 T `22 T `33

(w12w̄12 + z1z̄1)∆2(w13w̄13 + z1z̄1)∆3
(5.6)

encodes the angular momentum s and `i dependence of the defect operators Ŵ(si)
(∆i,`i)(xi).

Note s = s2 + s3. The denominator in the prefactor along with the |z1| dependence in
the numerator guarantee that the overall expression has the correct ∆2 + ∆3 + 2 scaling
weight under dilatations. The weight zero tensor structures SAµν (see (B.5)) are formed
by the antisymmetric product of the basis vectors V̂(i)

µ which are described in detail in
appendix B.2. The tangential angular momentum “tensors” are

T2 = w12
4|z1|

− w12w̄12 + z1z̄1
4|z1|w23w̄23

w32 , T3 = w13
4|z1|

− w13w̄13 + z1z̄1
4|z1|w23w̄23

w23 . (5.7)

To apply constraints on this three-point function, we assume that Fµν obeys the
Maxwell equations of motion and the Bianchi identity. These eight equations are not
all linearly independent, but allow us to solve for the fA up to several integration con-
stants. The precise details of the solution depend sensitively on the choice of parameters
∆i, `i, and s. We treat the main cases s 6= 0 and s = 0 below. Several special cases are
treated separately in appendix D.

Case: s 6= 0 and `2 6= `3. To begin, consider the case `2 6= `3 and s 6= 0. Solving
the four equations of motion ∂µF

µν = 0 lets us solve for f3, f5 and f6 in terms of the
remaining fA:

f3 = − 1
2us

(
8(1 + ∆2 − (h2 + h3)u)f1 + (1 + ∆2 − 2h2u)f2 + u(u− 1)(8f ′1 + f ′2)

)
,

f5 = 1
2us(8(1 + ∆3 − (h2 + h3)u)f1 + f2 + (u(2h2 − 1)−∆2)f4

−uf2 + u(u− 1)(8f ′1 − f ′4)) , (5.8)

f6 = 4
us

(
(∆3 − (h2 + h3 − 1)f2 + (∆2 + u− (h2 + h3)u)f4 + u(u− 1)(f ′2 + f ′4)

)
.

The Bianchi identity ∂µFλρελρµν = 0 then produces a relation

f1 = 1
8(`3 − `2)

(
(`2 + 2h3(1− u) + u)f2 − (∆2 + (1− 2h2)u)f4

+u(u− 1)(f ′2 − f ′4)
)
. (5.9)
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Note in particular the denominators s and `2− `3 which will force us to consider the cases
s = 0 and `2 = `3 separately. That the case s = 0 needs to be considered separately is
perhaps not surprising because in this case scalars in the defect OPE of Fµν , not vectors,
contribute to the three point function.

The four relations (5.8) and (5.9) can be used to simplify the original set of ODEs to
a pair of decoupled second order ODE’s, one for f2 and one for f4. Defining a new variable
v = 1

1−u , these two ODE’s have hypergeometric solutions:10

f2 = (1− v)∆2+1

vh2+h3−1

(
c1v
− s2 2F1

(
1 + h2 − h3 −

s

2 , 1 + h′2 − h′3 −
s

2 , 1− s, v
)

+

+ c2v
s
2 2F1

(
1 + h2 − h3 + s

2 , 1 + h′2 − h′3 + s

2 , 1 + s, v

))
,

f4 = (1− v)∆3+1

vh2+h3−1

(
c3v
− s2 2F1

(
1 + h3 − h2 −

s

2 , 1 + h′3 − h′2 −
s

2 , 1− s, v
)

+

+ c4v
s
2 2F1

(
1 + h3 − h2 + s

2 , 1 + h′3 − h′2 + s

2 , 1 + s, v

))
.

(5.10)

In order to have good behavior in the defect limit v → 0, we expect to be able to set
c1 = 0 = c3 when s > 0. Indeed, a more careful comparison with the defect OPE justifies
this choice a posteriori. Allowing c1 and c3 to be nonzero would be equivalent to allowing
operators below the unitarity bound into the defect OPE of Fµν . Note when s < 0, we
could use the opposite pair of solutions and set c2 = 0 = c4 instead. In general, then, we
expect the two solutions

f2 = c2
(1− v)∆2+1

(−v)h2+h3−1− |s|2
2F1

(
1 + h2 − h3 + |s|2 , 1 + h′2 − h′3 + |s|2 , 1 + |s|, v

)
,

f4 = c4
(1− v)∆3+1

(−v)h2+h3−1− |s|2
2F1

(
1 + h3 − h2 + |s|2 , 1 + h′3 − h′2 + |s|2 , 1 + |s|, v

)
.

(5.11)

We can give physical meaning to the integration constants c2 and c4 by analyzing
the defect OPE of Fµν . Angular momentum conservation means only operators in the
defect OPE with transverse spin −s = −s2− s3 will contribute to the three point function.
Restricting to the case s 6= 0, only the operators with parallel spin ` = ±1 contribute:〈

Fµν(x1)Ŵ2(x2)Ŵ3(x3)
〉

= (5.12)
〈(
A(s)
µν ψ̂

(−s)
+ + C(s)

µν φ̂
(−s)
+

)
(x1) Ŵ2(x2)Ŵ3(x3)

〉
s < 0〈(

B(s)
µν ψ̂

(−s)
− +D(s)

µν φ̂
(−s)
−

)
(x1) Ŵ2(x2)Ŵ3(x3)

〉
s > 0

.

We can isolate the contributions from the ` = 1 and ` = −1 modes by looking at specific
tensorial components of the three-point function. For example, from (4.8), we see that
the ` = 1 and s < 0 modes are the only contribution to the Fwz component, while the
` = −1 and s < 0 are the only contribution to the Fwz̄ component. In general, the

10The identity 2F1 (a, b, c, v) = (1− v)c−a−b2F1 (c− a, c− b, c, v) is useful in solving these ODEs.

– 20 –



J
H
E
P
0
8
(
2
0
2
2
)
2
8
2

integration constants c2 and c4 map to specific linear combinations of the three point
function coefficients cψ23 and cφ23. Through evaluating the defect OPE in the large w2 and
large w3 limits, it is possible to establish that

c2 = (−1)−`322(`3−`2+1)

|s|

(
cψ23

(
h2 − h3 + |s|2

)
− cφ23

(
h′2 − h′3 + |s|2

))
,

c4 = (−1)−`222(`3−`2+1)

|s|

(
cψ23

(
h2 − h3 −

|s|
2

)
− cφ23

(
h′2 − h′3 −

|s|
2

))
.

(5.13)

Now there remains a subtle issue with this three point function, which is that it is
not well behaved everywhere it should be. The hypergeometric functions have singular
behavior at three special points, u = 0, 1 and ∞. In our case, u = 0 is not achievable for
physical locations of the insertions, and we thus have no intuition of a condition to impose
there. On the other hand u → ∞ corresponds both to the coincident limit w2 → w3
and the defect limit |z1| → 0. Here, it makes sense that the behavior can be singular,
but we have already selected boundary conditions to make sure f2 and f4 are compatible
with the defect OPE. Finally, u = 1 corresponds to a whole locus of points where x1 lies
on a semicircle perpendicular to the boundary with the line joining the boundary points
x2 and x3 as the diameter. For this set of points, we do not generically expect singular
behavior in the correlation function even though the hypergeometric functions may well be
singular there.

Let us examine in more detail configurations with u ≈ 1. More specifically, we set
w2 = −w3 = 1, w1 = 0, and z1 = 1 + ε with ε ∈ R. Schematically, we find for s > 0,

〈Fwz(x1)Ŵ2(x2)Ŵ3(x3)〉 ∼ (u− 1)
`3−`2−1

2
cφ23Γ(1 + `2 − `3)Γ(|s|+ 1)

Γ
(
1 + h3 − h2 + |s|

2

)
Γ
(
h′2 − h′3 + |s|

2

)
+ (u− 1)

`2−`3−1
2

cφ23Γ(1 + `3 − `2)Γ(|s|+ 1)
Γ
(
1 + h2 − h3 + |s|

2

)
Γ
(
h′3 − h′2 + |s|

2

) ,
(5.14)

〈Fwz̄(x1)Ŵ2(x2)Ŵ3(x3)〉 ∼ (u− 1)
`3−`2−1

2
cψ23Γ(1 + `2 − `3)Γ(|s|+ 1)

Γ
(
h3 − h2 + |s|

2

)
Γ
(
1 + h′2 − h′3 + |s|

2

)
+ (u− 1)

`2−`3−1
2

cψ23Γ(1 + `3 − `2)Γ(|s|+ 1)
Γ
(
h2 − h3 + |s|

2

)
Γ
(
1 + h′3 − h′2 + |s|

2

) .
(5.15)

(For s < 0, the expansion is the same, but Fwz and Fwz̄ change places.) To get this
expansion, it is important to recognize that the factors T2 and T3 are also potentially
singular in the u → 1 limit, as can be seen from the fact that TiT̄i = 1

16(u − 1). The
expression is schematic in nature. The hypergeometric functions expand as double power
series in (u− 1), and we have given only the leading term in each respective power series.

Clearly either `2− `3 or `3− `2 is negative, which will mean that generically one of the
two terms in the u = 1 expansions above will diverge because of its u ≈ 1 behavior. In our
particular case `2 − `3 is an integer. Given that `2 6= `3 (the special case `2 = `3 will be
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treated below), the −1/2 in the exponent is not sufficient to render the other term singular.
There is a further consequence from `2−`3 being integer: the two power series will overlap,
and there will be logarithms in the expansion near u = 1 that start at order |`2−`3|2 . The
diverging Γ function in the supposedly finite term is an indication that there are logarithms
present at this order in the actual power series expansion in this case. Nevertheless, we
can learn something from a consideration of this schematic expression.

To remove the leading divergent term, the expressions (5.14) and (5.15) suggest that
one of the Γ-functions in the denominator be evaluated at a pole. In fact, choosing the
argument of any of these Γ-functions to be a negative integer means that the hypergeo-
metric functions (5.11) will have a polynomial type form, that the leading divergent series
expansion will be completely absent, and that the logarithms that start at order |`2−`3|2 will
be removed, saving the situation and rendering the u = 1 limit of the correlation function
finite.11 The only other option is to set the constants cφ23 and cψ23 to zero, which sets
〈FµνŴ2Ŵ3〉 to zero as well.

We argue that these four possible conditions on the Γ-functions in the denominator
imply a “double twist” condition on defect operators. In particular, let h1 and h′1 be the
conformal weights of one of the ψ̂(s1)

± or φ̂(s1)
± operators in the defect OPE of Fµν . Then

h2 = h1 + h3 + n and h′2 = h′1 + h′3 + n′ where n and n′ are non-negative integers, or
alternatively h3 = h1 + h2 + n and h′3 = h′1 + h′2 + n′.

A more detailed argument follows.

• For the ` = −1 case, we have h1 = |s|
2 + 1 and h′1 = |s|

2 . In the case `3 < `2 or
equivalently h2 − h′2 < h3 − h′3, then h3 − h2 + |s|

2 + 1 = −n or h′2 − h′3 + |s|
2 = −n′.

Equivalently h2 = h1 + h3 +n or h′3 = h′1 + h′2 +n′. Now given a condition on h′3, we
want to see if there is any implication for h3. Using that h′3 = h′1 + h′2 + n′, we find
that h3 > h′1 + h2 +n′ = h1 + h2 +n′− 1. In other words h3 = h1 + h2 +n− 1 where
in order for `2 and `3 to be integer, n must be an integer such that n > n′. Using
instead that h2 = h1 + h3 + n, we find that h′2 > h1 + h′3 + n = h′1 + h′3 + n+ 1. In
other words, h′2 = h′1 + h′3 + n′ + 1 where n′ is an integer such that n′ > n.

For `3 > `2, we have the same argument with 2↔ 3.

• For the ` = 1 case, we have h1 = |s|
2 and h′1 = |s|

2 + 1. In the case `3 < `2 or
equivalently h2 − h′2 < h3 − h′3, then h3 − h2 + |s|

2 = −n or h′2 − h′3 + |s|
2 + 1 = −n′ .

Equivalently h2 = h1 + h3 +n or h′3 = h′1 + h′2 +n′. Using that h′3 = h′1 + h′2 +n′, we
find that h3 > h′1 + h2 + n′ = h1 + h2 + n′ + 1. In other words h3 = h1 + h2 + n+ 1
where n is an integer such that n > n′. Using that h2 = h1 + h3 + n, we find that
h′2 > h1 + h′3 + n = h′1 + h′3 + n − 1. In other words h′2 = h′1 + h′3 + n′ − 1 where
n′ > n.

For `3 > `2, we have the same argument with 2↔ 3.
11Recall that a hypergeometric function 2F1(−n, b, c, z) with a negative integer index n = 0, 1, 2, . . . has

a polynomial form. Further, a hypergeometric of the form 2F1(a, b, b− n, z) can be reduced to polynomial
form through the identity in footnote 10.
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The scalar case: s = 0. When s = 0, the system of constraints on the bulk-defect-
defect correlation function breaks apart into separate sets of equations for f1, f2, f4 and
for f3, f5, f6.

For the f3, f5, f6 system, it is convenient to introduce the combination f35(u) =
f3(u)− f5(u). One finds

f5 = (−`2 + 2h3(u− 1))f35(u) + (1− u)uf ′35(u)
2(h2 − h3)(u− 1) , (5.16)

f6 = 4(`3 − `2)f35(u)
(h3 − h2)(u− 1) . (5.17)

along with a second order differential equation for f35(u), whose solution is

f35(u) = (u− 1)−`2(c35u
∆22F1(h2 − h3, 1 + h2 − h3, 1 + h2 − h3 + h′2 − h′3, u)

+c′35u
∆32F1(h′3 − h′2, 1 + h′3 − h′2, 1− h2 + h3 − h′2 + h′3, u)) . (5.18)

To eliminate logarithms from the solution in the defect limit u→∞, the constants c35 and
c′35 can be adjusted to give

f35 = c̃35(u− 1)−`2uh3+h′2−1
2F1

(
1− h′2 + h′3, 1 + h2 − h3, 2,

1
u

)
. (5.19)

For the f1, f2, f4 system, we find instead

f1 = (`3 − `2 + h2(u− 1)− h3u)f2 + (h2 − h3)uf4
8(∆2 −∆3) (5.20)

f4 = ∆2 −∆3
(h2 − h3)(h′2 − h′3)u

((
−∆3 +

(
2h3 − 1 + (h2 − h3)2

∆2 −∆3

)
u

)
f2

−(u− 1)uf ′2

)
. (5.21)

Now f2 satisfies a second order ODE whose general solution is a hypergeometric function

f2 = (u− 1)−1−`3
(
c2u

∆32F1(h3 − h2, h3 − h2, h3 − h2 + h′3 − h′2, u)

+c′2u1+∆22F1(1 + h′2 − h′3, 1 + h′2 − h′3, 2 + h2 − h3 + h′2 − h′3, u)
)
. (5.22)

Again to eliminate logarithms from the solution in the defect limit u→∞, one finds

f2 = c̃2(u− 1)−1−`3uh2+h′32F1

(
h3 − h2, 1 + h′2 − h′3, 1,

1
u

)
. (5.23)

To separate out the τ̂ and π̂ contributions to the three-point function, we can exam-
ine particular tensor components to which one or the other scalar do not contribute. In
particular, comparing with (4.13), it is clear that τ̂ contributes only to the zz̄ component
and π̂ contributes only to the ww̄ component. Comparing with the large w2 and w3 limits
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of the defect OPE, it is possible to establish that c̃2 ∼ cπ23 while c̃35 ∼ (h2 − h3)cτ23. We
find for s = 0 and `2 6= `3 that near u = 1,

1
cτ23
〈Fzz̄(x1)Ŵ2(x2)Ŵ3(x3)〉 ∼ 1

cπ23
〈Fww̄(x1)Ŵ2(x2)Ŵ3(x3)〉 (5.24)

∼ (u− 1)
`3−`2−1

2
Γ(`2 − `3 + 1)

Γ (h3 − h2 + 1) Γ (h′2 − h′3 + 1)

±(u− 1)
`2−`3−1

2
Γ(`3 − `2 + 1)

Γ (h2 − h3 + 1) Γ (h′3 − h′2 + 1) ,

which leads to the same double twist condition on the defect spectrum.
In more detail:

• For the scalar, we have h1 = h′1 = 1. In the case `3 < `2 or equivalently h2 − h′2 <
h3− h′3, then h3− h2 + 1 = −n or h′2− h′3 + 1 = −n′. Equivalently, we can write this
constraint as h2 = h1 + h3 + n or h′3 = h′1 + h′2 + n′. Now given a condition on h′3,
we want to see if there is any implication for h3. Note that since h3 − h2 > h′3 − h′2,
we find that h3 > h′1 + h2 + n′ = h1 + h2 + n′. If we further assume an integer spin
condition, i.e. that hi − h′i is integer, then we find that h3 = h1 + h2 + n for n some
non-negative integer n > n′. We can play the same game with h′2 and the condition
h2 = h1 + h3 + n.
In the case `3 > `2, we apply the same argument as above with 2↔ 3.

There unfortunately remain a number of special cases which need separate analysis
to finish the proof. These are choices of parameters where the set of equations we solved
above become singular. When `2 = `3, the equation (5.9) for f1 becomes singular and
needs special treatment. In looking at the `2 = `3 case in greater detail, we will find
further that the subcase ∆2 −∆3 = ±s needs special treatment as well. When s = 0 and
∆2 = ∆3, the equation (5.20) for f1 becomes singular. When either h2 = h3 or h′2 = h′3,
the equations (5.16) and (5.21) for f4 and f5 become singular. Indeed the cases h2 = h3,
h′2 = h′3 and ∆2 −∆3 = ±s are particularly troublesome because the free field constraints
seem to lead to solutions which are well behaved at u = 1, which naively would require
a relaxation of the double twist constraint to include some negative integers. A careful
analysis of the defect OPE constraint rules out these possibilities, however. We describe
these cases in appendix D. At the end of the day, we find the double twist conditions that
h3 = h1 + h2 + n and h′3 = h′1 + h′2 + n′ where n and n′ are non-negative integers and we
have assumed h3 > h2.

To sum up, the analysis presented in this section (and in appendix D) shows that
the finiteness of 〈Fµν(x1)Ŵ2(x2)Ŵ3(x3)〉 as u → 1 implies either {Ŵ2 is a double twist
combination of Ô and Ŵ3} OR {Ŵ3 is a double twist combination of Ô and Ŵ2}, where Ô
is any operator appearing in the defect OPE of Fµν . Since we can isolate12 the contribution
from the operators Ô appearing in the defect OPE of Fµν , this condition further implies
that the defect three-point function,

〈Ô(x1)Ŵ2(x2)Ŵ3(x3)〉,
12For example, see (5.14) and (5.15) for vectors and (5.24) for scalars.
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is non-zero only if {Ŵ2 is a double twist combination of Ô and Ŵ3} OR {Ŵ3 is a double
twist combination of Ô and Ŵ2} for any Ô in the defect OPE. From this result, we have
the following claim.

Claim. The Operator Product Expansion between any two operators Ô1, Ô2 appearing
in the defect OPE of Fµν has to be of the form,

Ô1 × Ô2 ∼ 1 + {Ŵk |hk = h1 + h2 + n, h′k = h′1 + h′2 + n′ |n, n′ ∈ N}. (5.25)

Proof. Here we will write Ŵ|Ô1Ô2
to mean that Ŵ is a double twist combination of

Ô1 and Ô2. Then, let’s consider the special case where the defect three-point function,
〈Ô1(x1)Ô2(x2)Ŵ(x3)〉, has two operators Ô1 and Ô2 that are in the defect OPE of Fµν .
Since both Ô1 and Ô2 appear in the defect OPE, we now have two sets of conditions.
These are {Ŵ|Ô1Ô2

OR Ô2|Ô1Ŵ } AND {Ŵ|Ô1Ô2
OR Ô1|Ô2Ŵ}. Out of the four possible

conditions we see that only Ŵ|Ô1Ô2
is allowed and thus conclude the OPE Ô1 × Ô2 must

only contain double twist operators. Since Ô1 and Ô2 are arbitrary, the result holds for any
pair of operators in the defect OPE of Fµν . The other conditions lead to the requirement
of double twist on more than one operator and hence lead to a contradiction. For example,
consider Ŵ|Ô1Ô2

AND Ô1|Ô2Ŵ . This means h3 = h1 +h2 +m and h1 = h2 +h3 +n, which
implies h2 + m + n = 0 (same for h′). Since reflection positivity demands h2 ≥ 0 and as
m,n ∈ N, this condition cannot be satisfied (expect for the identity).

6 Triviality of the defect

The result and proof in this section are a variant of the result and proof of ref. [22], where
the authors consider a set of scalar operators in a conformal field theory in more than one
dimension. They show that if the scalar operators have a generalized free field spectrum,
then all the n-point functions are of generalized free fields as well. Here, we specialize to a
two dimensional conformal field theory but consider operators of any spin. In particular,
we assume that in the operator product expansion,

W1W2 = δh1,h2δh′1,h′21 +
∑
k

Wk , (6.1)

we find only operators with conformal weights hk = h1 +h2 +n and h′k = h′1 +h′2 +n′ with
n, n′ ∈ N. In the context of the earlier sections, we are working here purely on the two
dimensional defect, ignoring the rest of the space-time. Thus these operators Wi would be
defect operators Ŵi in earlier sections although we drop the ‘hat’ here.

The main ingredient of the proof is this restriction on the operator product expansion of
two such generalized free fields:

W1(x)W2(0, 0) =
δh1,h2δh′1,h′2

wh1+h2w̄h
′
1+h′2

1 +
∑
k

λ12k

wh1+h2−hkw̄h
′
1+h′2−h′k

Wk . (6.2)
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Due of the restriction of hk − h1 − h2 and h′k − h′1 − h′2 to non-negative integer values, the
three-point function reduces to,

〈W1(x1)W2(x2)Wk(x3)〉 = λ12kw
n
12w̄

n′
12

wh1+hk−h2
13 w̄

h′1+h′
k
−h′2

13 wh2+hk−h1
23 w̄

h′2+h′
k
−h′1

23

, (6.3)

and by Bose symmetry we find,

λ12k = (−1)n+n′λ21k, (6.4)

without any branch point issues since n and n′ are in N. The identity term on the op-
erator product expansion vanishes if 〈W1W2〉 = 0 while it picks up a discontinuity when
〈W1W2〉 6= 0, associated with the branch point at w = w̄ = 0 for non-integer exponents
h1 + h2 and h′1 + h′2. Combining with the double twist condition, we find that the commu-
tator trivializes,

[W1(x),W2(0, 0)] =

Disc
[

δh1,h2δh′1,h
′
2

wh1+h2 w̄
h′1+h′2

]
1 〈W1W2〉 6= 0,

0 〈W1W2〉 = 0.
(6.5)

The proof of triviality proceeds inductively. We know that 〈Wi(zi, z̄i)〉 vanishes while
conformal invariance fixes 〈Wi(zi, z̄i)Wj(zj , z̄j)〉 up to normalization. If we assume Wick’s
Theorem holds for (n − 2)-point functions, it suffices then to show it holds for n-point
functions. To that end, consider the n-point function

Gn(τ) = 〈W1(w1, w̄1)W2(w2, w̄2) · · ·Wn(wn, w̄n)〉 . (6.6)

It is convenient to begin by choosing special locations for the points (wi, w̄i). We place all
but the first operator on the real line, w̄k = wk = τk ∈ R for 2 ≤ k ≤ n, and we order
them such that τk−1 > τk. The first operator we place at (w1 = τ + iy, w̄1 = τ − iy) where
τ ∈ C. The correlation function is analytic except along cuts starting at τ = τk ± iy and
running off to ±i∞. We then write the correlation function as a dispersion relation:

Gn(τ) =
∮
dτ ′

2πi
Gn(τ ′)
τ ′ − τ

=
∫ ∞
−∞

dt′

2π × (6.7)

×
( 1
τ − τ2 − it′

〈[W1(τ2 + it′+ iy, τ2+ it′− iy),W2(τ2, τ2)]W3(τ3, τ3) · · ·Wn(τn, τn)〉

+ 1
τ − τ3 − it′

〈W2(τ2, τ2)[W1(τ3 + it′+ iy, τ3 + it′− iy),W3(τ3, τ3)] · · ·Wn(τn, τn)〉

+ · · ·

+ 1
τ − τn − it′

〈W2(τ2, τ2)W3(τ3, τ3) · · · [W1(τn + it′+ iy, τn+ it′− iy),Wn(τn, τn)]〉
)

Expanding the original small contour around τ to instead run up and down the cuts that
start at τj ± iy, we have dropped pieces of the contour at large |τ | (see figure 1). Dropping
these pieces relies on an assumption of cluster decomposition. If we insert the result for
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Figure 1. The deformation of the contour used to produce the dispersion relation for a five-point
function. We start with the small purple circle about the point τ , then puff up the contour into the
red caterpillar shape, avoiding the branch cuts that start at τk± iy, and finally trade the caterpillar
for the series of vertical blue lines, one on each side of the branch cuts, assuming, because of cluster
decomposition, that we can discard the portions of the contour at infinity.

the commutator (6.5) into this expression, some standard contour integral manipulations
reduce the integrals to a sum over n− 1 (n− 2)-point functions:

Gn(τ) =
δh1,h2δh′1,h′2

zh1+h2
12 z̄

h′1+h′2
12

〈W3(τ3, τ3)W4(τ4, τ4) · · ·Wn(τn, τn)〉 (6.8)

+
δh1,h3δh′1,h′3

zh1+h3
13 z̄

h′1+h′3
13

〈W2(τ2, τ2)W4(τ4, τ4) · · ·Wn(τn, τn)〉+ . . .

+
δh1,hnδh′1,h′n

zh1+hn
1n z̄

h′1+h′n
1n

〈W2(τ2, τ2)W3(τ3, τ3) · · ·Wn−1(τn−1, τn−1)〉 .

The argument so far is for a particular choice of insertion points zi and z̄i. To loosen this
constraint, one can generalize the above proof to include not just primary operatorsWi(z, z̄)
but their descendants as well, including potentially arbitrary numbers of derivatives acting
on the primaries. Thinking of Wi(z, z̄) as a Taylor series expansion around Wi(τi, τi), this
extension of the proof to descendant operators allows us to consider general locations for
the operator insertions.

Starting with the vanishing of 〈Wi(w, w̄)〉 and a choice of normalization for the two-
point functions 〈Wi(wi, w̄i)Wj(wj , w̄j)〉, we can build up arbitrary n-point functions in-
ductively, using the relation (6.8). We find any (2n+ 1)-point function vanishes while any
2n-point function follows from Wick’s Theorem.

Let us pause for a minute to consider what this result means for our Maxwell theory.
Let Ôi be defect operators that are present in the defect OPE of Fµν and Ŵ be any other
defect operator in the theory. We can conclude that 〈Ô1(w1, w̄1) · · · Ôn(wn, w̄n)〉 follows
from Wick’s Theorem since our double twist result implies that in any nonzero three-point
function 〈Ô1Ô2Ŵ〉, the operator Ŵ must satisfy the double twist condition. However,
the moment we insert an operator Ŵ that is not in the defect OPE of Fµν , we can no
longer conclude that 〈Ô1(w1, w̄1) · · · Ôn(wn, w̄n)Ŵ(w, w̄)〉 follows from Wick’s Theorem.
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We must be able to assume the double twist condition for the OPE of any two operators
in this correlation function, and we cannot necessarily conclude it for the pair Ôi and
Ŵ. This exception is exploited by free scalar fields and allows for example the correlator
〈φ(x1)φ(x2):φ2(x3):〉 to be nonzero.

We learn that the three point function 〈Ô1Ô2Ô3〉 must vanish, and hence, summing
over descendants, so must

〈Fµν(x1)Ô2(w2, w̄2)Ô3(w3, w̄3)〉 . (6.9)

By this argument, of the bulk-defect-defect three point functions considered in section 5,
only 〈Fµν(x1)Ŵ2(w2, w̄2)Ŵ3(w3, w̄3)〉 and 〈Fµν(x1)Ô2(w2, w̄2)Ŵ3(w3, w̄3)〉 will be nonzero,
where Ôi is in the defect OPE of Fµν but the Ŵj are not.

7 Discussion

A motivation behind this work was to understand what happens when charged matter on
a surface defect is coupled to a free Maxwell field in the bulk. The conclusion here is that
such a theory cannot preserve SO(3, 1) × SO(2) defect conformal invariance (Euclidean).
We saw that the coupling between any defect charge current and the bulk Maxwell field
must vanish, 〈Fµν(x)Ŵ(0)

(1,±1)(x
′)〉 = 0. Indeed, to be consistent with defect conformal

invariance, Fµν can only couple on the defect to a dimension two scalar or a vector of
dimension ∆ = 1 + |s| for |s| > 0. Moreover, these defect operators in turn can only couple
to other defect operators whose spectrum obeys a ‘double twist’ condition and hence behave
like generalized free fields.

This result is in line with the heuristic argument given in the introduction, that having
coupled the bulk photons to defect charged matter, the effective propagator for the photon
is a logarithm and thus automatically introduces a scale dependence to the physics. There
remains however an interesting physical problem: what are the correlation functions and
transport properties of charged matter on a surface defect coupled to a bulk photon? If the
coupling is weak, the theory should have some remnant of conformal invariance, and the
structures uncovered in this discussion may help in gaining control over the renormalization
group flow away from the decoupled limit. It would be interesting to see if the scale
dependence of the logarithmic solutions associated with the G0 and G1 conformal blocks,
for example, might be related to the scale dependence of the effective photon propagator.

One curiosity about the Maxwell field Fµν compared with free scalars φ and fermions
ψ is that the unitarity condition appears to place more stringent constraints on the bulk-
defect function 〈Fµν(x)Ŵ(s)

(∆,`)(x
′)〉 than on 〈φ(x)Ŵ(s)

(∆,`)(x
′)〉 or 〈ψ(x)Ŵ(s)

(∆,`)(x
′)〉. Applying

the equations of motion to Fµν , we found the Maxwell field can only couple to a boundary
scalar of ∆ = 2 or a vector of dimension ∆ = 1±|s|. The unitarity bound for such a vector
is ∆ ≥ 1, giving just one choice of ∆ for a given s.

In comparison, for a free bulk scalar in this 2d/4d setting, 〈φ(x)Ŵ(s)
(∆,`)(x

′)〉 is non-zero
for ` = 0 and ∆ = 1 ± s [22]. Here however the unitarity bound is ∆ ≥ 0, which means
that for transverse spin in the range −1 < s < 1, there is a possibility of having two
defect fields with the same transverse spin but different dimension, provided we allow for
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non-integer s. Similarly, for the bulk free fermion, one anticipates [32] that it can couple
to boundary ` = ±1

2 fermions with dimension ∆ = 3
2 ± s while the unitarity bound would

imply ∆ ≥ 1
2 , again allowing for two defect operators with the same transverse spin but

different dimension in the range −1 < s < 1. Ref. [22] argued that having the possibility
of these two different dimension operators was key to being able to construct a nontrivial
defect theory. In the defect-defect-bulk three-point function, these extra conformal blocks
allow for some extra freedom in avoiding the spurious singularity at u = 1. Recall it was
this singularity that forced us to restrict the spectrum to that of generalized free fields.
For the Maxwell field in this 2d/4d setting, it would seem to be impossible to have these
extra solutions, even for noninteger s.
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A Conformal blocks

We start with a series expansion result that is useful for deriving the differential operators
that generate the conformal blocks:

1
(|w|2 + |z|2)α = 1

|w|2α
∞∑
j=0

(α)j
j!

(
−
∣∣∣∣ zw
∣∣∣∣2
)j

. (A.1)

We can use this result to rewrite the rational expression w(|w|2 + |z|2)−s−2 that shows up
in the zz̄ and ww̄ components of the 〈Fµν(x)ψ̂(s)

± 〉 bulk-defect two point functions:

w

(|w|2 + |z|2)s+2 = −
∞∑
j=0

1
j!(s)j+1

∂j+1
w ∂jw̄

(−|z|2)j
wsw̄s+2 . (A.2)

From this expression, we can construct the differential operators A(s)
zz̄ , A

(s)
ww̄, B

(s)
zz̄ and B(s)

ww̄

in (4.4) in the text.
The next step is to consider the action of two of these differential operators

L ≡ −(−|z|2)j
∞∑
j=0

1
j!(s)j+1

∂j+1
w ∂jw̄ (A.3)

on a defect two point function 〈ψ̂(s)
+ (w)ψ̂(−s)

− (0)〉 = w−sw̄−s−2:

LL′ (w − w′)2

|w − w′|2s+4 =
∑
m,n

(−|z|2)m(−|z′|2)n(2 + s)m+n(s)m+n+2
m!n!(s)m+1(s)n+1|w − w′|2(2+s+m+n) . (A.4)

To convert the double sum into a single sum, we make use of (B.8) of [33]:∑
m,n=0

1
m!n!

(λ)m+n(κ)m+n
(κ)m(κ)n

AmBn

z2(λ+m+n) = 1
Cλ

∑
m=0

(λ)2m
m!(κ)m

(
AB

C2

)m
, (A.5)
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where z2 = A+B + C. The final result is

LL′ (w − w′)2

|w − w′|2s+4 = (2|zz′|)−(s+1)

s(1 + s) ∂w∂w̄

[
χ−(s+1)

2F1

(1 + s

2 ,
2 + s

2 , 1 + s,
1
χ2

)]
(A.6)

where
χ = |w − w

′|2 + z2 + z′2

2|z||z′| .

A similar calculation holds for the ` = −1 vectors and the defect scalars.

B U(1) tensor structures

Here we present in more detail the independent structures required for bulk-defect two-
point functions and bulk-defect-defect three-point functions.

B.1 Bulk-defect structures

Consider a bulk point x = (w, w̄, sz, z̄) and a defect point x′ = (w′, w̄′). Then the U(1)
structures presented in table 1 are given by,

Ξ̂(1)
µ = |z|

|δw|2 + |z|2

(
δw̄, δw,

z̄(−|δw|2 + |z|2)
2|z|2 ,

z(−|δw|2 + |z|2)
2|z|2

)
,

Îµw = −1
2

1
|δw|2 + |z|2

(
δw̄2,−|z|2, δw̄z̄, δw̄z

)
, Îµz̄ = 1

4

(
0, 0, 1,−z

z̄

)
Îµw̄ = −1

2
1

|δw|2 + |z|2
(
−|z|2, δw2, δwz̄, δwz

)
,

(B.1)

where δw = w − w′ etc. Writing z̄
|z| Îµz̄ = V̂(4)

µ , all possible contractions yield

Ξ̂(1)
µ Ξ̂(1)µ = 1, V̂(4)

µ V̂(4)µ = −1
4 , ÎµwÎµw̄ = 1

2 ,

ÎµwÎνw̄ = 1
4gµν −

1
4Ξ̂(1)

µ Ξ̂(1)
ν + V̂(4)

µ V̂(4)
ν + Î[µ|wÎ|ν]w̄,

(B.2)

where the rest of the contractions yield zero and we had to introduce a new defect spin
zero, bulk rank 2 tensor which is fully anti-symmetric, namely Î[µ|wÎ|ν]w̄ to ensure the set
of tensor structures is closed under contractions and U(1) product.

B.2 Bulk-defect-defect structures

Consider a bulk point x1 = (x1, z, z̄) and two defect points x2,x3. Then the U(1) structures
presented in table 2 are given by,

V̂(1)
µ = |z|

|w12|2 + |z|2

(
w̄12, w12,

z̄(−|w12|2 + |z|2)
2|z|2 ,

z(−|w12|2 + |z|2)
2|z|2

)
,

V̂(2)
µ = |z|

|w13|2 + |z|2

(
w̄13, w13,

z̄(−|w13|2 + |z|2)
2|z|2 ,

z(−|w13|2 + |z|2)
2|z|2

)
,

V̂(3)
µ = w12w̄13 + |z|2

8|z|w23(|w13|2 + |z|2)
(
−|z|2, w2

13, w13z̄, w13z
)
,

V̂(4)
µ =

(
0, 0,− z̄

4|z| ,
z

4|z|

)
,

(B.3)
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Bulk-Defect-Defect U(1) Structures
At x1 At x2 At x3

`k = sk = 0 `2 s2 `3 s3

V̂(1)
µ , V̂(2)

µ , V̂(3)
µ , V̂(4)

µ T `22

(
z
|z|

)s2
T `33

(
z
|z|

)s3
Table 2. A table containing all the independent tensor structures appearing in a Bulk-Defect-
Defect three-point function. Here `k and sk are the parallel and transverse spin respectively of a
defect operator inserted at xk and all the bulk structures have zero defect spin. The definition of
each of these structures can be found in (B.3). There is also trace removing Kronecker delta.

where we have already defined T2, T3 in (5.7). All the possible contractions and U(1)
products are given by,

V̂(m)
µ V̂(n)µ =


1 1− 2

u
1
4

(
1− 1

u

)
0

1− 2
u 1 0 0

1
4

(
1− 1

u

)
0 0 0

0 0 0 −1
4

 , TrT̄r = u− 1
16 , (B.4)

where r ∈ {2, 3}. Since we are in d = 4 dimensions, the set of bulk vectors also forms a
four dimensional vector space. As we have found four linearly independent bulk vectors,
we conclude that it is a maximal basis set. Likewise, a correlation function involving a
single Fµν is constructed by antisymmetrising the product of these bulk vectors,

SAµν =
∑

(i,j)∈A

(
V̂(i)
µ V̂(j)

ν − V̂(i)
ν V̂(j)

µ

)
, (B.5)

where A = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} and A ∈ {1, . . . , 6} labels the elements
in the order they appear in A. This gives a total of six independent structures and again
we have a maximal basis set as the dimension of 4 × 4 antisymmetric matrices is six. To
explain how to derive these higher-point function tensor structures using the methods in
ref. [24], we have to take a detour and set up a more generalised approach, which will be
the subject of appendix C.

C Bulk n-point function

Given n bulk points xr = (xr, yr), we can construct a maximum (for large enough dimen-
sion) of n(n− 1) independent cross-ratios,

ξ
(xr,xs)
1 = x2

rs

4|yr||ys|
, ξ

(xr,xs)
2 = yr · ys

|yr||ys|
, (C.1)

where xrs = xr − xs. Then using the method outlined in ref. [24], we find the following set
of independent tensor structures,

Ξ(1)(∂xr,xs)
µ = 2|yr|

x2
rs

(xrs)µ − (nr)µ, Ξ(2)(∂xr,xs)
µ = (ns)µ

ξ
(xr,xs)
2

− (nr)µ,
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I(∂xr,∂xs)
µν = δµν −

2(xrs)µ(xrs)α
x2
rs

, J ′(∂xr,∂xs)µν =

δij −
(yr)j(ys)i
yr·ys µ = i, ν = j

0 otherwise
, (C.2)

J (∂2xr)
µν =

δij − (nr)i(nr)j µ = i, ν = j

0 otherwise
,

where we use the notation ∂mxr to indicate the object transforms like a SO(d) rank-m
tensor at xr and the order of indices match the order of points appearing for non-symmetric
objects. Although the algebra has been omitted, it can be shown that the set of bulk n-
point tensor structures is closed under contractions (similar to the two-point case [24]).
We also introduce structures which have a finite defect limit and will be used in obtaining
bulk-defect-defect tensor structures,

Π(xr,xs,∂xt)
µ = ξ

(xr,xt)
1

(
Ξ(1)(xs,∂xt)
µ − Ξ(1)(xr,∂xt)

µ

)
,

X (xr,∂xs)
µ = ξ

(xr,xs)
2

(
Ξ(1)(xr,∂xs)
µ − Ξ(2)(xr,∂xs)

µ

)
,

I(∂xr,∂xs)
µα = I(∂xr,∂xs)

µα − Ξ(1)(∂xr,xs)
µ X (xr,∂xs)

α .

(C.3)

We should emphasise that Π(xr,xs,∂xt)
µ , which is finite in the double limit ys, yt → 0, was

not presented in ref. [24] since it is constructed using three points.
For a bulk-defect-defect three-point function, we need to take the boundary limit

of several of the structure above. In this case we find the following set of generically
independent tensor structures in general dimension,

Ξ̂(1)(∂x1,x2)
µ , Ξ̂(1)(∂x1,x3)

µ , X̂ (x1,∂x2)
i , X̂ (x1,∂x3)

i , Π̂(x1,∂x2,x3)
a , Π̂(x1,x2,∂x3)

a ,

Î(∂x1,∂x2)
µa , Î(∂x1,∂x2)

µi , Î(∂x1,∂x3)
µa , Î(∂x1,∂x3)

µi , Î
(∂x2,∂x3)
ab , J (∂2x1)

µν .

(C.4)
We also can use Kronecker delta functions to remove traces. The ‘hat’ notation indicates
the defect limit of the bulk tensor structure. The number of total structures and of each
individual type matches the embedding space result in ref. [30]. Next we will explain how
to simplify the notation by taking advantage of the fact that SO(p)×SO(q) = U(1)×U(1)
in the special case where p = q = 2.

U(1) defect primary. Let φ be a (continuous) conformal map on a d-dimensional Eu-
clidean space with a p-dimensional flat defect. Then using φ, we can obtain a position de-
pendent SO(d) element (Rφd)µν (x) = Ωφ(x)(∂νφµ)(x) in the bulk. Likewise, we can construct
position dependent SO(p) and SO(q) elements (Rφd)ab (x, 0) and (Rφd)ij(x, 0) respectively, on
the defect. These elements enable us to define bulk primary fields as irreducible represen-
tations of SO(d), and also to define defect primaries with parallel and transverse spin.

In the special case when d = 4 and p = q = 2, the bulk primaries are real irreps of
SO(4) while the defect primaries are real irreps of SO(2). However, since SO(2) ∼ U(1)
we can instead consider the defect primaries to be complex irreps of U(1), all of which
are one dimensional and parametrised by integers.13 We write the parallel spin as ` and

13There can be situations where the periodicity constraints should be loosened and rational or even real
weights should be used, for example if there is a magnetic flux line threading the defect.
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the transverse spin as s. Since these are complex irreps, it is best to work in complex
coordinates. So we change into the coordinate x = (w, w̄, z, z̄) with the transition map
x(x1, x2, y1, y2) = (x1 + ix2, x1 − ix2, y1 + iy2, y1 − iy2). Now the defect lies at z = z̄ = 0.

SO(2) to U(1) tensor structures. A straightforward way to find the U(1) tensor
structures is by starting with the SO(2) structures and changing into complex coordinates.
The parallel or transverse SO(2) index will transform into a diagonal U(1) index. Without
loss of generality, let’s consider a defect vector Ŵµ in Cartesian coordinates with µ ∈ {a, i}
(either parallel a ∈ {1, 2} or transverse i ∈ {3, 4}). After changing into complex coordinates
we claim and use the convention that Ŵw is a spin ` = −1 parallel U(1) vector, Ŵw̄ is a
spin ` = +1 parallel U(1) vector, Ŵz is a spin s = −1 transverse U(1) vector and Ŵz̄ is a
spin s = +1 transverse U(1) vector, at the point which the transformed index is associated
with. With this procedure, we can find a complete set of U(1) tensor structures starting
with the SO(2) structures.

C.1 Bulk-defect-defect

Let us now consider the bulk-defect-defect three-point function. Starting with (C.4) and
using the method just explained, we find the following list of U(1) structures which, because
of the reduced dimensionality, might no longer all be independent:

Ξ̂(1)(∂x1,xr)
µ , X̂ (x1,∂xr)

z → −1
2
z̄

|z|
, Π̂(x1,∂x2,x3)

w → T̄2, Π̂(x1,x2,∂x3)
w → T̄3,

Î(∂x1,∂xr)
µw , Î(∂x1,∂xr)

µw̄ , Î(∂x1,∂xr)
µz , Î(∂x1,∂xr)

µz̄ , Î(∂x2,∂x3)
ww → 8T̄2T̄3

u− 1 ,
(C.5)

where r ∈ {2, 3} and we also have J (∂2x1)
µν . Note that the bar component is given simply

by the complex conjugate of the component without bar. Note Îww̄ = 0.

So far the structures with bulk indices all have different defect spin at different points. As
a remedy, we rescale the structures using either T2, T3, z

|z| or
z̄
|z| to make them defect spin

zero. (Note J is already defect spin zero.) Rescaling yields the following set of defect spin
zero bulk vectors,

Ξ̂(1)(∂x1,wr)
µ , Î(∂x1,∂wr)

µw Tr, Î(∂x1,∂wr)
µw̄ T̄r,

z

|z|
Î(∂x1,∂wr)
µz ,

z̄

|z|
Î(∂x1,∂wr)
µz̄ , (C.6)

where r ∈ {2, 3} and hence we have ten different bulk vectors. However, as expected in four
dimensions d = 4, not all of these are linearly independent. As mentioned earlier (B.3), we
can choose a basis set with four independent vectors,

V̂(1)
µ := Ξ̂(1)(∂x1,w2)

µ , V̂(3)
µ := Î(∂x1,∂w3)

µw̄ T̄3,

V̂(2)
µ := Ξ̂(1)(∂x1,w3)

µ , V̂(4)
µ := z

|z|
Î(∂x1,∂w3)
µz ,

(C.7)

using which any other bulk vector can be written as a linear combination. In fact, even
the rank-2 tensor J is not independent,

J (∂2x1)
µν = −4V̂(4)

µ V̂(4)
ν . (C.8)
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Since the set of independent tensor structures are closed under contraction and U(1) prod-
uct (B.4), we cannot form any new structures and hence have a complete set of basis
structures required for constructing any bulk-defect-defect three-point correlation function.

C.2 Bulk-defect

Here we can start with the bulk-to-defect tensor structures in ref. [24]. Then following a
similar approach to the bulk-defect-defect case, we find the following U(1) structures:

Ξ̂(1)
µ , X̂ ′z → −

1
2
z̄

|z|
, Îµw, Îµw̄, Îµz, Îµz̄, Jµν . (C.9)

For this case, we do not have a parallel spin object such as Tr — which was used to rescale
and remove spin `— and hence Îµw and Îµw̄ are bi-vector type structures with parallel spin
` = −1 and ` = 1 respectively. We can still rescale the transverse spin however, and find

z̄

|z|
Îµz̄ = − z

|z|
Îµz, Jµν = −4z2

|z|2
ÎµzÎνz, (C.10)

leaving us with just two linearly independent bulk vectors Ξ̂(1)
µ and z̄

|z| Îµz̄. One subtlely
here is that the product ÎµwÎνw̄ is a bulk rank-2 tensor with zero defect spin. It turns
out that Î[µ|wÎ|ν]w̄ is linearly independent and cannot be written as the antisymmetrised
product of the bulk vectors, and hence we have to add it to the set of tensor structures to
form a set closed under U(1) product and complete the basis set. A similar story happened
for the bulk structures for two-point functions in ref. [24], where the contraction of a bi-
vector with itself yielded the independent rank-2 tensor Jµν . In any event, since the set
of independent tensor structures are closed under contraction and U(1) product (B.2), we
cannot form any new structures and have a complete basis set required for constructing
bulk-defect two-point correlation functions.

D Special cases of the bulk-defect-defect correlation function

D.1 Case: s 6= 0: `2 = `3

The special case `2 = `3 and s 6= 0 requires some extra care. The relations for f3, f5, and
f6 remain the same as in the s 6= 0, `2 6= `3 case. The relation for f1 becomes a constraint
on f2 and f4 leading to the solution

f4 = ∆2 −∆3
u((∆2 −∆3)2 − s2)

(
−4(u− 1)uf ′2 + (D.1)

+
(
− 4∆3 + (−4 + ∆2 + 3∆3 − 4`)u− us2

∆2 −∆3

)
f2

)
,

and

f2 = c2
(v − 1)∆3

v
∆2+∆3

2 −1−`− |s|2
2F1

(∆3 −∆2 + |s|
2 ,

∆3 −∆2 + |s|
2 , 1 + |s|, v

)
. (D.2)
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Finally f1 can be solved as a second order ODE with a source term

f ′′1 + p(v)f ′1 + q(v)f1 = − f ′2
8v(1− v) −

(∆2 + `(v − 1) + v)f2
8(v − 1)2v2 , (D.3)

where the homogeneous (f2 = 0) solutions are

f1 = (1− v)1+∆2

v
∆2+∆3

2 −`

(
c1v
− s2 2F1

(∆2 −∆3 − s
2 ,

2 + ∆2 −∆3 − s
2 , 1− s, v

)
+c′1v

s
2 2F1

(∆2 −∆3 + s

2 ,
2 + ∆2 −∆3 + s

2 , 1 + s, v

))
. (D.4)

Without solving for f1, we note that there is already an issue associated with f2, that
it has logarithms near u = 1:

f2 ∼ c
(u− 1)−1−` log(u− 1)

Γ
(
1 + ∆2−∆3+|s|

2

)
Γ
(
1 + ∆3−∆2+|s|

2

) . (D.5)

Observe that ∆2−∆3
2 = h2 − h3 = h′2 − h′3 when `2 = `3. The condition for the vanishing

of these logarithms is then the same double twist condition that we found in the `2 6= `3
case above.

Instead of solving (D.3) directly, the solution of interest can be isolated by studying
the constraints from the defect OPE. One finds

f1 = 1
16

(
u− 1 + (2α− 1)u|s|

∆2 −∆3

)
f2 + u

16

(
1− (2α− 1)|s|

∆2 −∆3

)
f4 , (D.6)

where

α = cφ23
cφ23 + cψ23

(D.7)

for s < 0 and we swap cφ23 and cψ23 for s > 0. The integration constant c2 ∼ (cφ23 +
cψ23)(∆2 −∆3 + |s|) on the other hand. We find that for s < 0 and u ≈ 1,

〈FwzŴ2Ŵ3〉
cφ23

∼ 〈Fwz̄Ŵ2Ŵ3〉
cψ23

∼ s!(u− 1)−1/2

Γ
(

∆2−∆3+|s|
2 + 1

)
Γ
(

∆3−∆2+|s|
2 + 1

) . (D.8)

Thus the logarithm disappears at leading order (but will show its head at subleading order),
and finiteness does indeed require the double twist condition. (There is a similar expression
for s > 0, but with the wz and wz̄ components swapped.)

D.2 Case: `2 = `3, ∆2 −∆3 = s > 0

This case corresponds to h2 = h3 + s
2 and h′2 = h′3 + s

2 . While the free field constraints
suggest that there is a solution with the right boundary conditions, we will find this solution
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is incompatible with the defect OPE. The solution from the free field constraints is

f1 = c1
u∆3+1

(u− 1)`+1 + c′1
u∆2+1

(u− 1)`+1 −
c2
8

u∆3

(u− 1)`+1 , (D.9a)

f2 = c2
u∆3

(u− 1)`+1 , (D.9b)

f3 = −2c′1
u∆2+1

(u− 1)`+1 + c2 + 8c1(u− 2)
4

u∆3

(u− 1)`+1 , (D.9c)

f4 = c4
u∆2

(u− 1)`+1 , (D.9d)

f5 = 2c′1(u− 2) u∆2

(u− 1)`+1 + c2 − 8c1u

4
u∆3

(u− 1)`+1 , (D.9e)

f6 = −2c2
u∆3

(u− 1)`+1 + 2c4
u∆2

(u− 1)`+1 . (D.9f)

From the defect OPE point of view, there are two defect three point functions which
will contribute to 〈FµνŴ2Ŵ3〉:〈

ψ̂
(−s)
− (x1)Ŵ2(x2)Ŵ3(x3)

〉
= cψ23

ws12w
∆3−`
23 w̄s+1

12 w̄13w̄
∆3+`−1
23

, (D.10)〈
φ̂

(−s)
− (x1)Ŵ2(x2)Ŵ3(x3)

〉
= cφ23

ws+1
12 w13w

∆3−`−1
23 w̄s12w̄

∆3+`
23

. (D.11)

To generate the bulk-defect-defect function, we then act on the first one with B(s)
µν and the

second with D(s)
µν . Let us examine the action of these differential operators in the limits |w2|

large and |w3| large, in turn. In the limit |w3| large, the result should be O(w−∆3+`
3 w̄−∆3−`

3 ).
In contrast, because of the vanishing factors of w13 and w̄13 in the denominators, in the
limit |w2| large, the result instead will be order O(w−∆3+`−s−1

2 w̄−∆3−`−s
2 ) from the ψ̂(−s)

−
term and O(w−∆3+`−s

2 w̄−∆3−`−s−1
2 ) from the φ̂(−s)

− term.
While the free field constraints give the same behavior in the large |w3| limit, they

are instead less suppressed, O(w−∆3+`−s
2 w−∆3−`−s

2 ), in the large |w2| limit. The only way
to accommodate this difference is to set c4 = 0. A more detailed comparison reveals
furthermore that c′1 = 0, c1 ∼ cφ23 and c2 ∼ 8(cψ23 + cφ23).

Finally, we invoke finiteness at u = 1, which requires that c2−8c1−8c′1 and c4−8c1−8c′1
both vanish. Compatibility with the defect OPE then sets cφ23 and cψ23 and the entire
three-point function to zero. One could imagine obtaining a consistent large |w2| scaling if
the missing factors of w13 and w̄13 were replaced with logarithms in the defect three point
function. Such a replacement, however, would be incompatible with conformal symmetry.

The analysis for s < 0 follows analogously.

D.3 Case: s = 0, ∆2 = ∆3

f1 = 1
8(`2 − `3)

(
(`3 − `2 + 2∆(u− 1)− (2 + `2 + `3)u)f2 − 2u(u− 1)f ′2

)
, (D.12a)

f4 = −f2 , (D.12b)
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f5 = 1
u(`2 − `3 − 2)

(
(−4∆(u− 1) + (2 + `2 + 3`3)u)f3 + 4(u− 1)uf ′3

)
, (D.12c)

f6 = − 8
u− 1(f3 − f5) . (D.12d)

The remaining second order ODEs for f2 and f3 can be solved to give

f2 = c2
u∆

(u− 1)1+ `2+`3
2

2F1

(
`2 − `3

2 ,
`3 − `2

2 , 1, 1
1− u

)
, (D.13)

f3 = c3
u∆

(u− 1)1+ `2+`3
2

2F1

(
`2 − `3

2 ,
`3 − `2 + 2

2 , 2, 1
1− u

)
. (D.14)

Matching to the defect OPE, we find that c2 ∼ cπ23 while c3 ∼ (2− `2 + `3)cτ23. Near
u = 1, we find

1
cπ23
〈Fww̄(x1)Ŵ2(x2)Ŵ3(x3)〉 ∼ 1

cτ23
〈Fzz̄(x1)Ŵ2(x2)Ŵ3(x3)〉 (D.15)

∼ (u− 1)
`3−`2−1

2
Γ(1 + `2 − `3)

Γ
(
1 + `2−`3

2

)2 ± (u− 1)
`2−`3−1

2
Γ(1 + `3 − `2)

Γ
(
1 + `3−`2

2

)2 ,

When ∆2 = ∆3, we have (`3− `2)/2 = h′3− h′2 = h2− h3, giving us again the same double
twist condition.

D.4 Case: s = 0, h2 = h3

f1 = −c2
8 (u− 1)−1−`3u∆3 , (D.16a)

f2 = c2(u− 1)−1−`3u∆3 , (D.16b)
f3 = c3(u− 1)−1−`3u∆3 , (D.16c)
f4 = c4(u− 1)−1−`2u∆2 , (D.16d)
f5 = c3(u− 1)−1−`3u∆3 , (D.16e)
f6 = c6(u− 1)−1−`2u∆2 − 8c3(u− 1)−1−`3u∆3 . (D.16f)

In the case `2 6= `3, we should then set either (c4 and c6) or (c2 and c3) to zero depending
on whether `2 − `3 is respectively positive or negative.

However, such a choice is not consistent with the defect OPE. Let us examine the
defect OPE:〈

Fzz̄(x1)Ŵ(s)
(h2,h′2)(x2)Ŵ(−s)

(h3,h′3)(x3)
〉

= (D.17)

= − i2D
〈
τ̂(x1)Ŵ(s)

(h2,h′2)(x2)Ŵ(−s)
(h3,h′3)(x3)

〉
= − i2

∞∑
n=0

(−|z|2)n
n!2 ∂nz1∂

n
z̄1

cτ23

wh1
12w

2h2−h1
23 wh1

31 w̄
h′1+h′2−h′3
12 w̄

h′2+h′3−h′1
23 w̄

h′3+h′1−h′2
31

.

We consider two separate limits, w2 →∞ and w3 →∞. In the first case, we can write the
result as〈
Fzz̄(x1)Ŵ(s)

(h2,h′2)(x2)Ŵ(−s)
(h3,h′3)(x3)

〉
→ − i2

cτ23

w2h2
2 w̄

2h′2
2 w13w̄

1+h′3−h′2
13

(
1 +

∣∣∣∣ zw13

∣∣∣∣2
)−1+h′2−h′3

.

(D.18)
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In the second, we get instead the same result with 2 ↔ 3. This is to be compared with
the constraint from the free field equations of motion, where in the first case, we find the
same result but proportional to c6 and in the second the same result but proportional to
c3. The results are mutually consistent only if c6 = 8c3 ∼ cτ23.

One can repeat the same exercise for the ww̄ component in which case we find from
the defect OPE a result proportional to the three point function coefficient cπ23 while from
the free field constraints either c4 or c2. The results are consistent only if c4 = −c2 ∼ cπ23.
This correlation between c6 and c3 in the first case and c4 and c2 in the second makes
it impossible to render the solution finite at u = 1 in general. Thus we can rule out the
situation where h2 = h3 (and h′2 6= h′3).

D.5 Case: s = 0, h′2 = h′3

f1 = c4
8 (u− 1)−1−`3u1+∆2 + c2

8 (u− 1)−`2u∆3 , (D.19a)

f2 = c2(u− 1)−1−`2u∆3 , (D.19b)
f3 = c′3(u− 1)−1−`3u1+∆2 + c3(u− 1)−`2u∆3 , (D.19c)
f4 = c4(u− 1)−1−`3u∆2 , (D.19d)
f5 = −c′3(u− 2)(u− 1)−1−`3u∆2 − c3(u− 1)−1−`2u∆3 , (D.19e)
f6 = −8c′3(u− 1)−1−`3u∆2 − 8c3(u− 1)−1−`2u∆3 . (D.19f)

In the case `2 6= `3, we should then set either (c2 and c3) or (c′3 and c4) to zero depending
on whether `2 − `3 is respectively positive or negative.

Similar to what happens in the h2 = h3 situation, this case is also incompatible with
the defect OPE. To be compatible, c2 = −c4 ∼ cπ23 and c3 = −c′3 ∼ cτ23, which yields a
solution which diverges at u = 1. Thus we can rule out cases where h′2 = h′3 (and h2 6= h3).

D.6 Case: s = 0, `2 = `3, ∆2 = ∆3

The most general solution involves six integration constants:

f1 = u∆

(u− 1)`+1

(
−c2

8 + uc1

)
, (D.20a)

f2 = c2u
∆

(u− 1)`+1 , (D.20b)

f3 = u∆

(u− 1)`+1
(
c3 + uc′3

)
, (D.20c)

f4 = c4u
∆

(u− 1)`+1 , (D.20d)

f5 = u∆

(u− 1)`+1
(
c3 − (u− 2)c′3

)
, (D.20e)

f6 = c6u
∆

(u− 1)`+1 . (D.20f)
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Eliminating the singularity at u = 1 requires setting c1 = c2/8, c4 = c2, c′3 = −c3, and
c6 = 0. The solution reduces to

f2 = f4 = 8f1
u− 1 = c2u

∆

(u− 1)`+1 , f5 = −f3 = c3u
∆

4(u− 1)` , f6 = 0 . (D.21)

However this result is inconsistent with the defect OPE. The defect OPE solution is
c1 = c′3 = c6 = 0 and c2 = −c4 ∼ cπ23 and c3 ∼ cτ23, each branch of which gives a result
which diverges at u = 1,〈

Fzz̄(x1)Ŵ(s)
(h,h′)(x2)Ŵ(−s)

(h,h′)(x3)
〉

= cτ23
|w12w13|2 − |z|2

|w23|2∆+2|z|2
1

u(u− 1) , (D.22)

and a similar result for Fww̄ proportional to cπ23, suggesting that both cτ23 = cπ23 = 0 and
ruling out the last special case h2 = h3 and h′2 = h′3.
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