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1 Introduction

Since the Standard Model (SM) of particle physics is known to be incomplete, the search
for physics beyond the Standard Model, and in particular for new particles, is an integral
part of modern high energy physics. Focusing on searches at collider and fixed target
experiments, the phenomenology of candidate particles crucially depends on whether or
not they are light enough to be produced at current generation experiments. Light new
particles are more strongly constrained, and they can only couple very feebly to the SM.

In recent years, a significant program of searches for such feebly interacting new particles
has begun to emerge [1–4]. Relevant constraints can be obtained from high intensity data
sets of CMS [5–7] and ATLAS [8], from flavour physics experiments such as LHCb [9–15] or
Belle-II [16–18], and from high luminosity runs of the Large Hadron Collider [19]. There is
also a number of ongoing and proposed searches at low-energy fixed target experiments such
NA62 [20–26], KOTO [27, 28], SeaQuest [29, 30], or SHiP [1], and further complimentary
constraints can be obtained from searches at dedicated long-lived particle experiments [31]
such as MATHUSLA [32, 33], FASER [34, 35] and CODEX-b [36].

In spite of these searches, numerous viable hidden sector models still predict a large
variety of hidden particle candidates. Examples include axion-like particles (ALPs) [37–
44], heavy neutral leptons (HNLs) [1, 3, 45], and new vector Bosons [44, 46, 47]. Since
standard perturbative methods of computing predictions for the relevant observables (i.e.
hidden particle production, scattering, and decay rates) depend on detailed knowledge of
the number and the properties of the hidden fields that are presumed to exist as well as
their interactions, this poses a challenge for the model independent interpretation of the
experimental constraints.

In recent years, effective field theories (EFTs) such as Standard Model effective field
theory [48, 49] and Higgs effective field theory [50–53] have become a standard tool for

– 1 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
5

extracting model independent constraints on the SM coupling to heavy new particles [54–59].
Due to this success, some effort has been put towards constructing EFTs that also account
for light new particles. For instance, there are a number of EFTs that couple the SM
to specific candidate particles such as ALPs [60], HNLs [61, 62], or dark photons [63], as
well as generic dark matter candidates [64–68]. EFTs are also commonly used to describe
non-relativistic interactions between the SM and dark matter candidates [69–77]. Finally,
there has been significant work to create a comprehensive framework for constructing
portal effective theories (PETs) that systematically extend EFTs of the SM by coupling
them to generic hidden particles while making only a minimal number of assumptions [78].
Another approach for extracting model independent bounds consists in constructing so-
called “simplified models”, which are designed to capture certain features of realistic SM
extensions in a minimalist and therefore more generic setup. Simplified models have become
popular e.g. within the context of searches for particles that are on the cusp of being
collider accessible [79, 80] and dark matter candidates [66, 81]. However, while both EFTs
and simplified models are useful for studying generic features of hidden sectors, it is not
always straightforward to translate the resulting constraints into hard constraints that are
applicable to realistic SM extensions.

In this work, we focus on the computation of hidden particle production rates. We argue
that some of the challenges associated with establishing model independent constraints
can be ameliorated by factorizing these production rates into a product of i) model-
independent “reduced matrix elements” that depend only on SM interactions and ii)
observable-independent “hidden current correlation matrices” that capture the impact of
general hidden sectors. As we will show, this factorization is completely generic and relies
only on a minimal set of assumptions.

Using the reduced matrix elements, it is possible to derive model-independent “master
formulae” for a wide range of observables that parametrize the impact of general hidden
sectors via a number of generic form factors. The master formulae can be fitted to
experimental data in order to extract model-independent constraints on the form factors.
In addition, it is possible to use the hidden current correlation matrices in order to translate
the form-factor constraints into more specific constraints on the individual parameters of
a given hidden sector model. One major advantage of this two-step procedure is that it
divides the workload required for computing hidden particle production rates into two
largely independent packages: on the one hand, the hidden current correlation matrices
depend only on hidden sector physics and can be computed without having to account
for the intricacies of SM model physics or collider phenomenology. On the other hand,
the master-formulae depend only on SM physics, and can be computed without having to
specify the feature of the hidden sector. This division also makes it possible to mix and
match results in a more transparent and systematic way while minimizing the need for
re-doing computations in order to adapt a given result to a new model.

In order to make use of the factorization procedure, it is necessary to supply a com-
prehensive list of relevant portal operators that can mediate a given production process.
In principle, any EFT that accounts for the presence of light hidden particles can be used
to provide such a list. However, the PET framework is particularly well suited for this
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task, since it makes only minimal assumptions about the symmetries obeyed by the portal
interactions and about the internal structure of the hidden sector, while also accounting for
the presence of any additional heavy new particles. When combined with an approriately
constructed list of portal operators, the factorization approach is a powerful tool for estab-
lishing model independent constraints on hidden sectors. It effectively extends the EFT
approach by providing a description that accounts for both light and heavy new particles.

The remainder of this paper is structured as follows: in section 2, we provide a short
proof of the factorization rule, and derive the general recipes for computing the reduced
matrix elements and correlation matrices. In section 3, we illustrate the procedure by
considering the example of charged Kaon decays K+ → `+X into a charged lepton and a
number of hidden sector particles. To do so, we first compute a model-independent master
amplitude that encodes the impact of generic hidden sectors using a single form factor F`,
and then show how to compute this form factor for an example model that couples the SM
to a number of hidden Fermions. We also extract model-independent upper bounds on the
form factor Fe that governs charged kaon decays K+ → e+X into a positron and a number
of hidden particles. Section 4 concludes the paper.

2 Inclusive production rates

In this section, we demonstrate the factorization of inclusive hidden sector production rates
into a product of reduced matrix elements Md and hidden sector correlation matrices Jde.
Although the proof is not complicated, it also serves as a derivation of the diagrammatic
expressions for both quantities. In the interest of full generality, we consider a generic
theory that is composed of a visible sector A and a hidden sector B,

L = LA + LB + Lportal , Lportal =
∑
d

εAd Bd . (2.1)

The two sectors are linked by a number of weak portal interactions whose strength is
measured by a small parameter ε. Each portal operator is the product of a local operator
Ad = Ad[{φa}](x) constructed from a collection of visible fields {φa} and a conjugated local
operator Bd = Bd[{ξc}](x) constructed from a collection of hidden fields ξb.

We are interested in computing inclusive rates for the production of hidden particles in
experimental setups where the hidden particles cannot be observed directly. In this case,
only the number and the properties of the visible particles in the final state are known, and
the resulting transition rates involve a sum over an infinite number of viable final states,

|M |2 =
∞∑
k=1
|Mk|2 , |Mk(K → P)|2 =

∫
d3
kQ δ̄4(K − P −Q) |M(K → P;Q)|2 , (2.2)

where the index k denotes the total number of hidden particles in the final state. The
matrix elements

δ̄4(K − P −Q)M(K → P;Q) = 〈P ;Q| i T |K〉 , δ̄4(K) = (2π)4δ4(K) (2.3)
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encode the likelihood of transitioning from an initial state

|K〉 = |ks1
1 . . . ksnn 〉 (2.4)

that consists of n visible particles si with four-momenta ki = (κi,ki) into a given final state

〈P ;Q| = 〈P| ⊗ 〈Q| , 〈P| = 〈pt11 . . .ptmm | , 〈Q| = 〈qr1
1 . . .q

rk
k | (2.5)

that consists of m visible particles tj with four-momenta pj = (πj ,pj) and k hidden particles
rl with four-momenta ql = (ωl,ql). Here and in the following, we use the multi-indices
s = (s1, . . . , sn), t = (t1, . . . , tm), and r = (r1, . . . , rk) to collectively denote the species and
the helicity of each particle. The integration measure

d3
kQ =

k∏
l=1

d3ql
(2π)3

1
2ωl

∑
rl

(2.6)

includes a sum over both the species and the helicity of each hidden particle as well as an
integral over its associated phase space. Finally, the sums

K =
∑
i

ki , P =
∑
j

pj , Q =
∑
l

ql = K − P (2.7)

denote the total momentum of the visible particles in the initial and final states as well as
the corresponding missing momentum.

Most of the relevant production modes for hidden particles involve either decays or
scatterings of visible particles. The general sum (2.2) determines the overall rates for hidden
particle production in both of these cases, yielding

dΓ = 1
2κ1
|M(k1→P)|2

m∏
j=1

d3pj
(2π)3

1
2πj

, dσ= 1
4κ1κ2v12

|M(k1,k2→P)|2
m∏
j=1

d3pj
(2π)3

1
2πj

,

(2.8)

where v12 = |v1 − v2| is the relative velocity of the two initial state particles in the scattering
process. Our aim is to show that the inclusive rate M(K → P) factorizes according to

|M(K → P)|2 = ε2MdM
†
eJ

de +O
(
ε3
)
, (2.9)

where the reduced matrix elements Md encode the dynamics of the visible sector while the
hidden current correlation matrix Jde encodes the impact of hidden sectors. We note that,
although equation (2.9) is completely general, its usefulness crucially depends on the size of
the small parameter ε. However, this is of no concern within the context of hidden sector
searches, since higher order corrections are almost always negligible due to the required
smallness of the portal coupling. In this case, the factorization equation (2.9) becomes a
very good approximation.
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2.1 Factorization

The factorization of the inclusive rate (2.9) is a corollary of an equivalent factorization of
the time-ordered, connected correlation functions

Ĝabc(X ,Y,Z) = 〈0|T{Φ̂a(X )Φ̂†b(Y)Ξ̂†c(Z)}|0〉conn. (2.10)

that capture the dynamics of hidden particle production. Here and in the following, the
average 〈0| ◦ |0〉conn. is defined to include only connected diagrams. In order to avoid
superfluous notational clutter, we have defined the multi-field operators

Φ̂a(X ) =
n∏
i=1

φai(xi) , Ξ̂a(X ) =
k∏
l=1

ξai(xi) , a = (a1, . . . , an) ,X = (x1, . . . , xn) .

(2.11)

We also define the corresponding momentum-space operators

Φa(K) =
∫

d4
nX eiXKΦ̂a(X ) , d4

nX =
n∏
i=1

d4xi , XK =
n∑
i=1

xiki . (2.12)

Expanding the path-integral of the full theory to leading order in ε, one immediately finds
that the above correlation functions factorize according to

Ĝabc = − i ε
∫

d4x Ĝab;dF̂c;d +O
(
ε2
)
, Ĝab;d = i〈0|T{Φ̂a(X )Φ̂†b(Y)Ad(x)}|0〉ε→0

conn. ,

(2.13)

where the reduced correlation function Ĝab;d only depends on physics of the visible sector,
while the form factor

F̂c;d = i〈0|T{Ξ̂†c(Z)Bd(x)}|0〉ε→0
conn. (2.14)

encodes the impact of hidden sectors. Moving on to momentum space, this gives

Gabc = 〈0|T{Φa(K)Φ†b(P)Ξ†c(Q)}|0〉conn. = − i εGab;d (K,P)Fc;d (Q) +O
(
ε2
)
, (2.15)

where the momentum space versions of the reduced Greens functions and the hidden sector
form factors are

δ̄4(K − P − q)Gab;d =
∫

d4x d4
nX d4

mY ei(KX−PY−qx)Ĝab;d , (2.16a)

δ̄4(q −Q)Fc;d =
∫

d4x d4
kZ ei(qx−QZ)F̂c;d . (2.16b)

In order to translate the factorization equation (2.15) into a statement about the inclusive
transition rate (2.2), we apply the Lehmann-Symanzik-Zimmermann (LSZ) reduction
formula to (2.3). Using the multi-field notation, this gives

iM(K → P;Q) = EaEbEcGabc , Ea =
∏
i

Z−
1/2

ai εbiG−1
biai

, Ea =
∏
i

Z−
1/2

ai εbiG−1
biai

,

(2.17)
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where the amputating factors Ea = Ea(s,K) and Ea = Ea(s,K) consist of the standard
wave-function renormalization factors Zai , the initial and final state polarization vectors
εai = εai(si, ki) and εai = εai(si, ki), and the inverse propagators G−1

biai
(ki).1 With these

definitions in place, inserting equations (2.15) and (2.17) into equation (2.2) finally yields
equation (2.9), where

iMd = EaEbGab;d , Jde =
∞∑
k=1

∫
DkQ δ̄4(q −Q)JdJ†e , i Jd = i Jd(Q, r) = EcFc;d .

(2.18)

The external current correlation matrix Jde fully encodes the impact of hidden sectors.
Since the integration

∑
k

∫
DkQ in the definition of Jde includes a sum over the species and

the helicities of the hidden particles in the final state, the correlation matrix

Jde =
∞∑
k=1

∑
r

Jrde (2.19)

can be written as an infinite sum of terms Jrde = Jrde(Q) that capture the contribution
associated with each individual final state. Notice also that Md and Jd (and with them
Jde) can, depending on the precise structure of the corresponding portal operator, carry
free Lorentz and spinor indices. For example, if the theory contains a portal operator
AµBµ = ψσµψ

†vµ that couples a pair of visible Fermions Aµ = ψσµψ
† to a hidden vector

particle Bµ = vµ, then the corresponding reduced matrix element Mµ and hidden currents
Jµ carry free Lorentz indices that are to be contracted with each other.

2.2 Feynman rules

The expressions (2.16)–(2.18) define series of Feynman diagrams that can be used to compute
the reduced matrix elements Md as well as the hidden currents Jd(r,Q) associated with
each viable hidden sector final state.

Figure 1 shows the diagrammatic expansions for both Md and Jd. As in the case
standard S-matrix element computations, they are given as a sum of all available connected
and amputated Feynman diagrams with the appropriate number and kind of particles in the
initial and final states, where Md diagrams only contain vertices and propagators associated
with visible fields and interactions while Jd diagrams only contain vertices and propagators
associated with hidden fields and interactions. The main difference compared to the recipe
for standard S-matrix elements is that all relevant diagrams have to contain exactly one
portal vertex that is constructed from either the “visible” part Ad (in the case of Md) or
the “hidden” part Bd (in the case of Jd) of the corresponding portal operator.

The rules for constructing these portal vertices are largely the same as those for
constructing standard vertices. (i.e. symmetrize the operator under exchange of identical

1Recall that the multi-indices s = (s1, . . . , sn) collectively denote the species and the helicity of each
particle, while the multi-indices a = (a1, . . . , an) collectively denote the type of each field. Each ai runs over
all available fields present in the theory, and the polarization vectors are defined such that εai (si, ki) = 0 in
cases where si denotes a particle that is not produced by the field associated with the index ai.
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iMd(K → P) = K


d

q = K − P  P

(a) Reduced matrix elements.

i Jd(Q) =
d

q

 Q

(b) Hidden currents.

Figure 1. Diagrams for computing the reduced matrix elements Md and the hidden currents Jd.
Both are given as the sum of all available connected and amputated Feynman diagrams with the
appropriate number and kind of particles in the initial and final states. The crossed dot denotes the
required portal vertex, and the dashed line denotes the relevant missing momentum in- and outflow.
Aside from this portal vertex, diagrams for Md diagrams only contain vertices and propagators
associated with visible fields and interactions, while diagrams for Jd only contain vertices and
propagators associated with hidden fields and interactions.

fields, go to momentum space, strip away all fields, and multiply by an overall factor of
i.) However, there are two differences: first, and in complete analogy to the composite
operators Ad and Bd, the portal vertices may carry free Lorentz and spinor indices, which
result in Md and Jd likewise carrying such free indices. Second, both portal vertices do not
conserve four-momentum in the strict sense. Rather, the appropriate sum of all ingoing
and outgoing momenta has to be equal to some missing momentum q. This is depicted
symbolically using a dashed line (cf. figure 2). The missing momentum is outflowing for
Md, so that q = K − P , and it is inflowing for Jd, so that q = Q.

3 Illustrative example: inclusive K+ → `+ decays

To illustrate the factorization procedure as well as the computation of the reduced matrix
elements and hidden currents, we consider the production of hidden particles in inclusive
K+ → `+X decays, where X denotes any collection of hidden particles. There already exists
a model-independent master-formula for the production rate of generic spin 1

2 particles
in this type of charged kaon decay [78], and the present computation improves this result
by accounting for the production of hidden particles with different spins as well as the
production of multiple hidden particles via the same decay process.

3.1 Reduced matrix elements

The primary input required to factorize inclusive matrix elements according to (2.9) is an
exhaustive list of all relevant portal operators. Here, we use the list compiled in [78], which
encompasses all leading operators that couple the SM to a single hidden particle of spin
0, 1/2, or 1 at the strong scale. The sector of the portal Lagrangian that is relevant for
K+ → `+X decays is

Lportal ⊃ −vνΞν + Vus
v2 QµΞ†`σ

µ` , Qµ = s†σµu , (3.1)
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K+

`+

`

k

p

q

= Vusf0
v2 kµσ

µ

(a) Kaon portal vertex.

ν
ν

k q

= i v

(b) Neutrino portal vertex.

ξi

q qi

x
= i cxi

(c) Hidden fermion portal vertex.

Figure 2. Feynman rules for portal vertices that appear in the example computation of inclusive
K+ → `+ decay rates. The first vertex figure 2(a) determines the size of the reduced matrix element
M `, while the second vertex figure 2(b) determines the size of Mν . Both contribute at the same
order because Mν is also suppressed by the smallness of the required additional Fermi-theory vertex
associated with K+ → `+ν decays. The third vertex figure 2(c) determines the size of the hidden
currents J` and Jν , and is used in section 3.2.

where u and s are the up- and strange quark fields, ` = e, µ is a charged lepton field, and
ν is the corresponding SM neutrino field. Following two-component notation of [82], the
SM Fermion fields are taken to be left-handed Weyl spinors. v = 174.10358± 0.00004 GeV
is the vacuum expectation value of the Higgs Boson and |Vus| = 0.2252 ± 0.0008 is the
u-s element of the Cabibbo-Kobayashi-Maskawa matrix [83]. The small parameter ε has
been re-absorbed into the operators Ξν ,Ξ`, which now take on the role of the generic local
operators εBd. It is not necessary to specify their detailed shape in order to compute the
reduced matrix elements. However, we note that, although the master formula that results
from using the portal Lagrangian (3.1) is largely model-independent, the factorization
procedure outlined here can also be used to obtain an even more general master formula by
including additional sub-leading portal operators. A collection of the relevant interactions
is given e.g. in [61, 62].

Given the portal Lagrangian (3.1), the resulting coupling of hidden sectors to the
pseudoscalar mesons is captured by the portal chiral perturbation theory (χPT) action
constructed in [78]. We work at leading order in the χPT power counting, at tree-level,
and neglect electromagnetic corrections. At this level of accuracy, the coupling of the
operator Ξ` to charged kaons can be obtained by replacing the quark bilinears according
to [78, 83, 84]

Qµ → f0∂µK
+ , f0 = 77.85± 0.15 MeV , (3.2)

where f0 is the kaon decay constant. This replacement yields the “visible” portal vertex
depicted in figure 2(a), while neutrino portal operator in (3.1) yields the additional vertex
depicted in figure 2(b).

In general, there is one reduced matrix element for each portal operator. Since there
are two relevant portal operators, there are also two reduced matrix elements M` and Mν .
Using the Feynman rules for two-component spinors given in [82, 85], one finds the leading
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order expression2

Mα
ν = i f0Vus

vq2 (σνσµ)αβy`β(p, t)qνkµ , M α̇
` = − i f0Vus

v2 (σµ)α̇βy`β(p, t)kµ , (3.3)

where y` is the two-component polarization vector of the final state lepton, k = (κ,k) is
the kaon four-momentum, p = (π,p) is the lepton four-momentum, and q = k − p is the
missing momentum. The free spinor indices α and α̇ are to be contracted with the external
current correlation matrices. Summing over the available `+ spin polarizations, the resulting
inclusive rate for K+ → `+ decays is∑

t

|M(k → p)|2 =
∑
t

(
M α̇
` M

†β
` J ``βα̇ +Mα

νM
†β̇
ν Jνν

β̇α
+ 2 ReMα

νM
†β
` J `νβα

)
(3.4a)

=
∣∣∣∣f0Vus
v2

∣∣∣∣2 2(pk)(qk)− (pq)k2

k2 F`(xq) . (3.4b)

The impact of hidden sector contributions is encoded by the form factor

xqF` (xq) = trD

{
qνσνJ

`` − 2v
q

Re qJ `ν + v2

q2 q
ρσρJ

νν

}
, xq = q2

m2
K

, (3.5)

where trD is the trace taken with respect to the (un)dotted spinor indices. Since the
Levi-Civita tensor is used to raise and lower indices associated with the same chirality,
V α = εαβVβ , one has trD

{
J `a
}

= εαβJ `aβα. This gives the partial decay width

dΓ`
dxq

= 4πmK |Vus|2
(
εEW

mK

4πf0

)2
ρ(x`, xq)

F`(xq)
2π , εEW = f2

0
v2 , (3.6)

where

ρ(x`, xq) = 1
2
(
x` + xq − (x` − xq)2

)√(1− x` − xq
2

)2
− x`xq , x` = m2

`

m2
K

(3.7)

is a phase-space factor, mK = 493.636± 0.007 MeV is the charged kaon mass, and m` is
the mass of the relevant charged lepton [83]. Comparing equation (3.6) with the known
partial width for K+ → `+ν decays [86], one finally obtains the ratio of branching ratios

R`(xq) = dB`/dxq
B(K+ → `+ν) = dΓ`/dxq

Γ(K+ → `+ν) = ρ(x`, xq)
ρ(x`, 0)

F`(xq)
2π . (3.8)

Since the master formula (3.6) only depends on the overall shape of the portal La-
grangian (3.1), but not on the specifics of the portal interactions or on the internal
structure of the hidden sector, formula (3.8) is almost completely model independent. In
particular, it captures the production of an arbitrary number of hidden particles with
arbitrary masses, spins, and interactions. Since we have also allowed for the possibility of

2The leading contribution to M` is generated by the tree-level diagram that contains only the portal
vertex in figure 2(a), and the leading contribution to Mν is generated by the tree-level diagram that contains
the SM three-point vertex that mediates K+ → `+ν` decays as well as the portal vertex in figure 2(b).
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higher dimensional SM and portal operators, formula (3.8) even accounts for the presence
of heavy new particles.

Formula (3.8) can be used to extract model-independent constraints on the size of
the form factors F`(xq). To illustrate how this can be done in practice, we re-interpret
the analysis in [25], which uses a missing mass search to establish upper bounds for the
branching ratio of charged kaon decays into a positron and a HNL from NA62 data. The
HNLs were assumed to decay outside the detector, and the search was hence directed at
finding events with a single visible positron in the final state and some finite missing mass
q2 = m2

miss = (k − p)2. This setup is a special case of the generic setup that we have
considered in this work, where the number and the type of visible particles in the final state
is known, while any produced hidden particles are not observed directly.

The analysis in [25] sampled a large number of missing masses in the range 122 MeV <

mmiss < 465 MeV, searching for candidate events in a bin of width 2∆m = 0.3 MeV centered
around the sampled missing mass. For each bin, they extracted an upper bound on the
corresponding branching ratio. This upper bound is roughly constant over the entire mass
range, and comes out to B(K+ → e+N) . 4 · 10−9. In the following, we interpret this
number as a bound on the fractional branching ratio ∆Be = ∆xq · dBe/dxq , which captures
the likelihood of producing a positron and a collection of generic hidden particles with an
aggregate missing mass in the range [xq −∆xq, xq + ∆xq], where 2∆xq = x

1/2
q · 4∆m/mK .

Using the known values of B(K+ → e+νe) = (1.582 ± 0.007) · 10−5 and xe = m2
e

/
m2
K ≈

1.07 · 10−6 [83], this gives the constraint

ρ(xe, xq)
〈Fe〉∆xq 2∆xq

2π . 7 · 10−11 , 2∆xq ≈ x1/2
q × 1.2 · 10−3 , 0.06 < xq < 0.89 ,

(3.9)

where 〈Fe〉∆xq is the average of Fe(xq) taken over the range [xq −∆xq, xq + ∆xq]. To
understand how to interpret this constraint, recall that the form factor captures the
production of an arbitrary number of hidden particles. Generically, a contribution associated
the production of a single hidden particle will include the delta distribution δ(q2 −m2

i ),
where mi is the mass of the relevant hidden particle, to ensure that only on-shell particles
are produced. In contrast, the phase-space integral

∫
dkQ in equation (2.18) is sufficient to

evaluate any delta distributions that appear in contributions associated with the production
of two or more hidden particles. Hence, the form factor is of the general shape

Fe(xq)
2π =

∑
i

Aiδ(xq − xi) +B(xq) , xi = m2
i

m2
K

, (3.10)

where the Ai are amplitudes for single particle production and B(xq) is a continuous, but
not necessarily smooth, function that captures the production of multiple hidden particles3

3Generically, B(xq) is not smooth because threshold effects can result in contributions Bi(xq) ∝ Θ(xq−xt),
where xi is some missing mass threshold. The terms Bi(xq) are phase-space suppressed for xq → xi, which
ensures that each Bi(xq) is still continuous.
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Averaging (3.10) over the width of each bin, one finds

〈Fe〉∆xq 2∆xq
2π =

∑
i

AiΘ (∆xq − |xi − xq|) +B(xq)2∆xq , (3.11)

where we have used that B(xq) is continuous, which implies that 〈B(xq)〉∆xq ≈ B(xq)
for sufficiently small bins. Combining this decomposition with the general expres-
sion (3.9), one now obtains separate constraints on the single-particle amplitudes Ai
and the multi-particle amplitude B(xq). The single-particle amplitudes have to obey the
model-independent constraint

ρ(xe, xi)Ai . 7 · 10−11 , 0.06 < xi < 0.89 , (3.12)

while the constraint on the multi-particle amplitude is less stringent,

x
1/2
q ρ(xe, xq)B(xq) . 5.8 · 10−8 , 0.06 < xq < 0.89 . (3.13)

B(xq) itself can vary significantly over the accessible missing-mass range, but this upper
bound on B turns out to be approximately constant, because the standard model background
in the relevant missing mass range is also approximately constant [25]. It is potentially
not intuitive that the B(xq) constraint is much weaker than the corresponding constraints
on the Ai. This is the case because a signal for the production of a single hidden particle
would appear as a sharp peak that is concentrated into a single bin, while a signal for
the production of multiple particles would be spread over a whole range of viable missing
masses. While the peak is relatively easy to observe, and therefore constrain, this is more
difficult to do in case of the spread-out signal.

3.2 Hidden current matrices

In order to translate constraints on the form factors F`(xq) into more specific constraints, it is
necessary to plug in appropriate expressions for the hidden current correlation matrices Jde.
In this section we demonstrate how to compute general correlation matrices by considering
an example case in which the SM couples to a number of left-handed Weyl Fermions
ξi. Since both Dirac and Majorana Fermions can always be written as a combination of
Weyl Fermions, this setup remains quite general. The leading contributions to the portal
operators are

Ξd =
∑
i

cdiξi , d = ν, ` , (3.14)

where the constants cν,` are model-dependent coupling constants. The corresponding
“hidden” portal vertices are depicted in figure 2(c).

In general, there is one collection of hidden currents Jd = Jd(Q, r) for each viable
hidden sector final state r = (r1, . . . , rk), and each of these collections contains one current
for each available portal operator. In the concrete case of K+ → `+X decays this means
that there are two hidden currents Jν(Q, r) and J `(Q, r) for each final state. Assuming
that the hidden sector interactions are perturbatively small, the leading contributions are
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generated by diagrams without any hidden sector vertices. Since the portal operators in
equation (3.14) contain only a single field operator, the only final states that are viable at
this order of accuracy (i.e. neglecting hidden sector interactions) are those with a single
hidden Fermion, and no additional hidden particles. The two hidden currents that are
associated with this type of final state are given as

Jνα(q1, r1) = cνiy
i
α(q1, r1) , J `α̇(q1, r1) = c`ix

i†
α̇ (q1, r1) , (3.15)

where the index i = i(r1) denotes that ξi creates the single-particle final state (r1) and
is not being summed over. Executing the sum over all single-particle final states as well
as the spin sum and the phase-space integration in the definition (2.18), one obtains the
correlation matrices

Jνν
β̇α

=
∑
i

c†νicνi
2ωi

(qµi σµ)β̇α 2πδ (q0 − ωi) , J `νβα =
∑
i

c†`icνi
2ωi

miεβα2πδ (q0 − ωi) , (3.16a)

J ``βα̇ =
∑
i

c†`ic`i
2ωi

(qµi σµ)βα̇ 2πδ (q0 − ωi) , (3.16b)

where qµ = (q0, q) is the total missing four-momentum transferred into the hidden sector
while qµi = (ωi, q) is the on-shell four-momentum of the hidden Fermion ξi. The distribution
δ(q0 − ωi) ensures overall conservation of energy. Inserting the correlation matrices into the
form factor equation (3.5), one finds4

F`(xq)
2π =

∑
i

U2
i Θ(q0)δ

(
x2
q − x2

i

)
, xi = m2

i

m2
K

, U2
i =

∣∣∣∣c`i − vcνi
mi

∣∣∣∣2 . (3.17)

When combined with the master formula (3.4b), this result is consistent with the model-
independent formula given in [section 6 of 78].

This computation exemplifies a second use of the factorization procedure: in addition
to facilitating model-independent constraints on the coupling to hidden sectors, it can
also help streamline the derivation of more specific model-dependent constrains. Once the
master-formula associated with a given observable has been computed, it does not need to
be adjusted anymore, and in order to adapt the result for a new model, it is sufficient to
recompute the form-factors F`(xq). As a final remark, we note that while the form factors
F`(xq) depends on the observable in question, the hidden current correlation matrices in
equation (3.16) do not. They can be provided once and for all, and re-used to compute a
wide array of form factors associated with different observables, further reducing the need
for re-computing ingredients in order to adapt a known result for a new model or observable.

4 Conclusion and outlook

In this work, we have shown that inclusive hidden particle production rates approximately
factorize according to relation (2.9), and derived recipes for computing the reduced matrix

4The factor Θ(q0) results from using the identity δ(q0 − ωi) = 2ωiΘ(q0)δ(q2 − m2
i ). It ensures that

contributions associated with incoming (rather than outgoing) hidden particles are not included.

– 12 –



J
H
E
P
0
8
(
2
0
2
2
)
2
6
5

elements Md and the hidden currents Jd as series of Feynman diagrams. We illustrated
the factorization procedure by considering decays K+ → `+X of charged koans into
charged leptons and a number of hidden particles. The resulting model-independent master
formula (3.6) improves the model-independent formula given in [78] and parametrizes the
impact of hidden sectors in terms of a single form factor F`(xq) that can be constrained
in a largely model-independent fashion. To illustrate how to constrain the form factor in
practice, we have re-interpreted the analysis of [25] and derived the model-independent
bounds (3.12)–(3.13).

If the factorization approach is combined with an appropriately general list of portal
operators, which can be constructed in a systematic and consistent fashion using e.g. the
PET framework [78], it correctly accounts for both light and heavy new particles. In this
case, the factorization approach is strictly more general than the EFT approach, and we
have argued that it provides a powerful tool for the model-independent interpretation of
hidden sector searches.

Using the present work as a foundation, there are many potentially interesting avenues
for future investigation.

Since the factorization approach relies on lists of portal operators being provided as a
necessary input, it will profit greatly from further efforts of extending the EFT approach to
also account for light new particles. In particular, the PET framework is well suited for
providing the needed lists of portal operators, and constructing further PETs will allow the
factorization approach to be applied to a significantly larger variety of observables. At this
time, there are PETs that extend the full SM, light effective field theory, which describes
the physics of the light SM fields [87–90], and χPT, which describes the physics of the light
pseudoscalar mesons [91–97], by coupling them to a single light new particle of spin 0, 1

2 , or
1 [78]. These PETs also account for the possibility of SM fields coupling to multiple hidden
fields with the same spin, but they are not sufficient for describing a situation in which the
SM couples to multiple hidden particles with different spins. Hence, it would be useful to
construct a corresponding set of PETs that include the relevant additional portal operators.

Likewise, it would be interesting to construct PETs that extend EFTs that capture
different regimes of the SM. For instance, constructing PETs that extend heavy quark
effective theory, which captures the physics of heavy non-relativistic quarks [98–103], and
soft-collinear effective theory, which captures the physics of light but highly energetic
particles [104–110], would make it possible to apply the factorization approach to hidden
particle production in B and D meson decays, where B meson decays are of particular
interest due to the persistent B anomalies [111–115].

On the hidden current side, it would be of great use to tabulate hidden current
correlation matrices for a number of popular hidden sector models that include particles
such as ALPs, HNLs, and dark photons. Since the expressions for the hidden current
correlation matrices are observable independent, these tabulated expressions can be used as
input for a wide array of master formulae, and could help facilitate e.g. global parameter
scans that combine constraints from a wide range of observables. Finally, it would be
interesting the study the renormalization scale dependence of the reduced matrix elements
Md and the hidden currents Jd, since a robust understanding of this running is necessary
in order to combine constraints from observations at multiple characteristic energy scales.
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