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1 Introduction

Understanding the properties of extended operators in gauge field theories is important
as they can encode aspects of the strong coupling dynamics, such as the emergence of
confinement or other phases of the theory. One prominent example is the Wilson line,
supported on a line C, which is the trace in a certain representation R of the gauge group
of the holonomy of the gauge field along C. Wilson line operators can probe fine details of
the theory, including global properties of the gauge group.

Wilson loop operators may as well be regarded as defects in the ambient gauge theory.
From this point of view, they define defect quantum field theories and can be studied by
standard tools. One such tool is the large charge expansion (see [1] for an introduction and
references). In the particular case of 4d gauge theories with N = 2 supersymmetry, the sector
of chiral primary operators (CPO’s) with large R-charge k enjoys special simplifications in
a double-scaling limit, where k →∞ and the Yang-Mills (YM) coupling g → 0, with fixed
g2k [2] (see also [3–5]). The existence of this limit is not obvious a priori, since it requires a
specific, dominant dependence kL for any given loop order L in correlation functions. It was
later shown in [6] that this limit can be viewed as a ’t Hooft limit of an auxiliary matrix model.
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Some of the large charge techniques have been recently imported to the study of defect
QFT’s in [7], where RG flows on defects in the Wilson-Fisher theory near 4d and 6d have
been studied. Morally speaking, the idea is to consider a large number of coincident defects,
so that some of the large charge methods can be deployed. This defect may be regarded as
an effective description of a large spin impurity [8, 9].

The Wilson loop computes a phase in the partition function induced by the sweep of a
charged particle in a representation R along a line C. In view of the previous discussion, it is
natural to wonder whether Wilson loops in large representations enjoy special simplifications
in very much the same spirit. Motivated by this, here we will study circular supersymmetric
Wilson loops in large k-symmetric representations in N = 2 theories with gauge group
U(N) and SU(N). The insertion of these operators admits a description in terms of a
defect QFT, as discussed in [10–13]. In particular, in [13] a k-symmetric representation
non-supersymmetric Wilson loop was considered in the double-scaling limit of large k and
fixed g2k to study the RG flows in the defect theory. Other interesting aspects of the defect
theory associated with non-supersymmetric Wilson loops are discussed in [14–17]. The
double-scaling limit was also considered very recently in [8] to study k-symmetric Wilson
loops in SU(2) N = 2 superconformal QCD.

2 Wilson loops in the Symk(�) representation and localization

We are interested in circular Wilson loops in the Symk(�) representation in N = 2
supersymmetric gauge theories in four spacetime dimensions, with unitary (U(N) or SU(N))
gauge group. In general N = 2 gauge theories, these loops can be computed through
supersymmetric localization [18]. The vacuum expectation value of a Wilson loop in a
representation R, placed on the equator of S4, is then obtained by

〈WR〉 = 〈TrR e2πφ〉 , (2.1)

where φ = diag(a1, . . . , aN ) parametrizes the Coulomb moduli. For a gauge group U(N),
the average is computed by the integral

〈WR〉 = 1
ZU(N)

∫
dNa

∏
i<j

(ai − aj)2 Z1-loop Zinst e
− 8π2

g2
∑N

i=1 a
2
i WR , (2.2)

with

ZU(N) =
∫
dNa

∏
i<j

(ai − aj)2 Z1-loop Zinst e
− 8π2

g2
∑N

i=1 a
2
i . (2.3)

When the gauge group is SU(N), one needs to take into account the extra constraint∑
i ai = 0, as usual.
In the above expressions, Z1-loop is the one-loop determinant and Zinst is the factor

that contains the instanton contributions (it is worth recalling that Z1-loop and Zinst are
symmetric under the permutations of the ai’s). Both factors depend on the specific N = 2
theory. In this note we will focus on N = 4 and N = 2∗ theories (the generalization of

– 2 –



J
H
E
P
0
8
(
2
0
2
2
)
2
5
3

our results to any other N = 2 theory with unitary gauge group is straightforward). In
particular, for the N = 4 theory,

ZN=4
1-loop = ZN=4

inst = 1 . (2.4)

For the N = 2∗ theory, obtained as usual by adding a mass term for the hypermultiplet,
one has

ZN=2∗
1-loop =

N∏
i<j

H(ai − aj)2

H(ai − aj +M)H(ai − aj −M) , (2.5)

where

H(x) ≡ e−(1+γ)x2
G(1 + ix)G(1− ix) =

∞∏
n=1

(
1 + x2

n2

)n
e−

x2
n , (2.6)

where G(x) is the Barnes G-function.
In the case of the N = 4 theory, the partition function reduces to that of the Gaussian

matrix model and one obtains [20]

ZU(N) = gN
2

2N2(2π)
1
2N(2N−1)

G(N + 2) , (2.7)

ZSU(N) = 2
√

2πN gN
2−1

2N2(2π)
1
2N(2N−1)

G(N + 2) . (2.8)

Lastly, we need to specify the insertion WR corresponding to the Wilson loop in the
desired representation (e.g. [21–25]), which basically corresponds to its the character. In
our case, let us denote by Wk the Wilson loop in the k-symmetric representation. To find
that, note that the maximal torus of U(N) is U(1)N . Denoting by zi the fugacity associated
to the i-th torus, the character of the fundamental representation of U(N) is

∑N
i=1 zi. The

generating function for the symmetrized products is then

FS(t) = PE
[
t
N∑
i=1

zi

]
=

N∏
i=1

1
1− t zi

, (2.9)

where PE is the plethystic exponential.1 By definition, the coefficient of tk in the expansion
of FS is the character of the k-fold symmetrized product of fundamental representations.
One can extract Wk by using the formula

Wk = 1
2πi

∫
dt

tk+1 FS(t) . (2.10)

Computing the integral, one obtains (zi = e2πai)

Wk =
N∑
i=1

e2π(N−1) ai+2kπai∏
j 6=i
(
e2πai − e2πaj

) . (2.11)

1The plethystic exponential is defined as PE[f(x1, x2, · · · )] = e

∑∞
k=1

f(xk
1 ,xk

2 ,··· )
k .
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This formula is equivalent to the expected result (see e.g. [22, 24])

Wk =
∑

1≤i1≤i2···≤ik≤N
e2πai1+2πai2+···+2πaik . (2.12)

The dimension of the k-symmetric representation is

dk = dim Sk = (N − 1 + k)!
(N − 1)! k! .

A natural choice of normalization is to define the operator Wk by adding the extra factor
1/dk. Here we will follow the conventions of [19] and normalize by adding a factor 1/N .
Thus, using (2.11), the VEV of Wk (2.2) takes the form

〈Wk〉 = 1
N ZN

N∑
i=1

∫
dNa

∏
k<l

(ak − al)2 Z1-loop Zinst e
− 8π2

g2
∑N

m=1 a
2
m e2π(k+N−1) ai∏

j 6=i
(
e2πai − e2πaj

) .
By symmetry, the N terms in the sum are equal, therefore we get

〈Wk〉=
1

ZU(N)

∫
dNa

∏
k<l

(ak−al)2Z1-loopZinst e
− 8π2

g2
∑N

m=1 a
2
m e2π(k+N−1)aN∏

j 6=N
(
e2πaN−e2πaj

) . (2.13)

When the gauge group is SU(N), the same formula applies upon imposing the constraint∑N
i=1 ai = 0 in the integral.
Our goal is to study the formula (2.13) in the double-scaling limit

g → 0 , k →∞ , g2k = κ = fixed . (2.14)

We shall see below that in this limit the integral can be computed exactly by the saddle point
method. An important simplification is that instanton contributions vanish exponentially in

this limit, since they are proportional to e−
8π2n
g2 = e−k

8π2n
κ . Since the instanton moduli space

does not depend on k, there can be no compensating effect to the exponential suppression
of the instanton action. This is the same mechanism as in the large charge limit of [2].
Therefore, upon taking the limit one can set Zinst = 1.

3 〈Wk〉 in the N = 4 theory with SU(2) and U(2)

Let us start with the SU(2) case, where a ≡ a1 = −a2. From (2.11) we get

Wk = e2π(k+1)a − e−2π(k+1)a

e2πa − e−2πa =
sinh

(
2π(k + 1)a

)
sinh(2πa) . (3.1)

We shall first consider the computation of 〈Wk〉 in the N = 4 theory. As mentioned, in this
case Z1-loop = 1 and Zinst = 1. The VEV of the loop in the k-symmetric representation is,
therefore,

〈Wk〉 = 1
2ZSU(2)

∫
da 4a2 e

− 16π2
g2 a2

Wk . (3.2)
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Substituting the explicit form of Wk, we obtain

〈Wk〉 = 2Ik+1
ZSU(2)

, (3.3)

where
Ik ≡

∫ ∞
−∞

da
a2 sinh(2πka)

sinh(2πa) e−ba
2
, b = 16π2

g2 . (3.4)

Remarkably, the integral Ik can be carried out exactly for any integer k in terms of
elementary functions. We obtain

k = 2n+ 1 , I2n+1 =
√
π

2b
5
2

(
b+ 2

n∑
r=1

e
4r2π2
b (b+ 8r2π2)

)
, (3.5)

k = 2n+ 2 , I2n+2 =
√
π

b
5
2
e
π2
b

n∑
r=0

e
4r(r+1)π2

b

(
b+ 2(2r + 1)2π2

)
, (3.6)

with n = 0, 1, 2, . . .. Then

〈W2n〉 = 1
2 +

n∑
r=1

e
r2g2

4

(
1 + r2g2

2

)
, (3.7)

〈W2n+1〉 = e
g2
16

n∑
r=0

e
r(r+1)g2

4

(
1 + (2r + 1)2 g

2

8

)
, (3.8)

where we used ZSU(2) = g3/(32π
5
2 ). In particular,

〈W1〉 = e
g2
16

(
1 + g2

8

)
. (3.9)

As a check, 〈W1〉 can be compared with the known formula for the circular Wilson loop
computed by Drukker and Gross in [26]. For SU(N),

〈W1〉DG = 2e−
g2(1+N)

8N

N !g

∫ ∞
0

dte−ttN−
1
2 I1(
√
tg) = e−

g2(N+1)
8N

N
L1
N−1(−g2/4) . (3.10)

For N = 2, we get

〈W1〉DG = e−
3g2
16

g

∫ ∞
0

dte−tt
3
2 I1(
√
tg) = e

g2
16

2 L1
1(−g2/4) = e

g2
16

(
1 + g2

8

)
(3.11)

in agreement with our result (3.9).
Correlation functions of Wilson loops have been investigated in different contexts

(see e.g. [28, 29]). These typically contain information about Wilson loops in arbitrary
representations through combinatorial identities [28]. A simple relation can be found in the
present case. Owing to the identity

sinh(2π(n+ 1)a)
sinh(2πa)

sinh(2π(m+ 1)a)
sinh(2πa) =

n+m
2∑

k= |n−m|2

sinh
(
2π(2k + 1)a

)
sinh(2πa) , (3.12)
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it follows that correlation functions between two Wilson loops satisfy

〈WnWm〉 =
n+m

2∑
k= |n−m|2

〈W2k〉 , (3.13)

where we formally denote 〈W0〉 = 1.

3.1 The large k limit

We now consider the double-scaling limit (2.14). In this large k limit, the integral can be
computed by the saddle-point method. We have

〈Wk〉SU(2) = 2
ZSU(2)

∫ ∞
−∞

da
a2

sinh(2πa) e
− 16π2

g2 a2+2πa(k+1)
. (3.14)

There is a saddle point at

a∗ = g2(k + 1)
16π . (3.15)

Using

ZSU(2) = κ
3
2

32π
5
2 k

3
2
, (3.16)

we find
log〈Wk〉SU(2) = k κ

16 + log k κ16 + κ

8 − log
(

sinh κ8

)
+O

(
k−1

)
. (3.17)

It is worth pointing out some salient aspects of the expansion in powers of 1/k. Introduce
a new integration variable, x = a− a∗,

Ik = e
kκ
16

∫ ∞
−∞

dx
(x+ a∗)2

sinh(2π(x+ a∗))
e−

16π2k
κ

x2
. (3.18)

The 1/k series is generated by expanding the factor multiplying the exponential in powers of
x. With the change of variable, x2 = t, one may put this integral in the familiar form used
in the Borel analysis. The convergence properties of the 1/k expansion can be deduced by
studying the singularities of the integrand. The integrand has poles in the complex plane at

x = −a∗ + in

2 , n = ±1,±2, . . . (3.19)

This implies that the series expansion of 1/sinh
(
2π(x+ a∗)

)
around x = 0 has a finite

radius of convergence, given by r0 =
√
a2
∗ + 1/4, corresponding to the value of |x| where

the integrand has the first poles at n = ±1. The integral over x in each term of the series is
of the form

∫
dxxn−1e−bx

2 and gives an extra n! for the n-th term. This proves that the
1/k series is asymptotic.

It is interesting to contrast the asymptotic series representation with the compact form
given by the exact integration given in (3.7), (3.8). The compact form, though it involves
a finite number of terms, is not in the form of a 1/k series, because the summation limit
involves k itself.
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In resurgence theory, asymptotic series may indicate missing non-perturbative contribu-
tions. In the present case of the N = 4 theory, instanton sectors are not responsible of the
asymptotic behavior of the perturbation series because in this case there are no instantons.
The semiclassical field configurations contributing to discontinuities across the Stokes lines
are in correspondence with semiclassical solutions for the constant part of the scalar field of
the vector multiplet in the one-loop effective action [30].

In the N = 2∗ theory, there are instanton contributions of order e−8π2|n|/g2 = e−8π2|n|k/κ.
On the other hand, the 1/k series is now different, and much more complicated, since
the integrand gets corrected by the 1-loop determinant factor, which itself leads to new
singularities in the Borel plane. It would be interesting to understand how the resurgence
analysis works in this case, and the interplay between instanton contributions and the
new singularities, in particular, whether instanton contributions may resurge by a proper
treatment of the 1/k expansion.

3.2 The U(2) case

When the gauge group is U(2), the relevant VEV of the Wilson loop operator in the
k-symmetric representation is obtained by setting N = 2 in (2.13). This gives

〈Wk〉 = Jk
2ZU(2)

, (3.20)

where
Jk = 2

∫
da1da2 (a1 − a2)2 e

− 8π2
g2 (a2

1+a2
2) e2π(k+1)a2

e2πa2 − e2πa1
. (3.21)

By introducing new integration variables, a1 = x− y, a2 = x+ y, Jk takes the form

Jk = 8
∫
dy y2 e

−2π(k+1)y

sinh(2πy) e
− 16π2

g2 y2
∫
dx e

− 16π2
g2 x2

e2πkx . (3.22)

Computing the Gaussian integral in x, we obtain

Jk = Ik+1
2 ge

g2k2
16

√
π

. (3.23)

Using that
ZU(2) = ZSU(2)

g

2
√
π
, (3.24)

we arrive at
〈Wk〉U(2) = e

g2k2
16 〈Wk〉SU(2) . (3.25)

Substituting into this formula the expression (3.17) for 〈Wk〉SU(2), we obtain the large k,
fixed κ asymptotics, which reads (modulo 1/k corrections)

〈Wk〉U(2) = k κ

16
e
k κ
8 e

κ
16

sinh κ
8
. (3.26)

One can reproduce the same result from a saddle-point evaluation of (3.22).
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4 〈Wk〉 in the N = 4 theory with U(N) and SU(N)

4.1 〈Wk〉 in the U(N) gauge theory

It is convenient to write the formula (2.13) for the VEV of the loop as follows:

〈Wk〉 = e
kκ
8 (1+N−1

k
)2

ZU(N)

∫
dNa

∏
k<l

(ak − al)2 e−k
8π2
κ

∑N−1
i=1 a2

i

 e−k
8π2
κ

(
aN−a∗N

)2
∏
j 6=N

(
e2πaN − e2πaj

)
 ,

(4.1)
where κ = g2 k and

a∗N ≡
κ

8π

(
1 + N − 1

k

)
. (4.2)

Let us now take the double-scaling limit (2.14) involving g → 0 and k → ∞. There is a
saddle point for aN at

a∗N = κ

8π . (4.3)

In order to compute the integrals over ai, with i = 1, . . . , N − 1, it is convenient to
introduce new coordinates xi = ai/g, and expand the integrand in powers of g. Because
only even powers of xi survive the integration, the next to leading contribution is of order
O(g2) = O(1/k) and can be ignored in the limit k → ∞. In this limit, 〈Wk〉 is exactly
determined by the leading term, given by

〈Wk〉=
e
kκ
8 (1+N−1

k
)2

ZU(N)

∫
dN−1a

∏
k<l<N

(ak−al)2 e−k
8π
κ

∑N−1
i=1 a2

i

∫
daN a

2(N−1)
N

e−k
8π2
κ

(aN− κ
8π )2

(e2πaN−1)N−1 ,

(4.4)
where we have restored the ai variables. Note that, in the Vandermonde determinant, we
have replaced |aN − ai|2 by |aN |2, since the difference is an O(1/k) contribution. This
approximation assumes finite N . In the infinite N , ’t Hooft limit, the Vandermonde
determinant provides a repulsion between the eigenvalues and the scale for ai is of order√
λ = g

√
N , which is finite in the ’t Hooft limit. Thus, (a∗N )2 � a2

i requires κ� N/k at
large N . We shall discuss the case of large N below.

We have kept a term of order N−1
k in the exponential factor outside the integral. This

is because it is multiplied by k; it will lead to a finite contribution in the final formula for
log〈Wk〉.

The integral over the ai’s factorizes from the integral over aN , giving a factor ZU(N−1),
so we get

〈Wk〉 =
ZU(N−1)
ZU(N)

e
kκ
8 (1+N−1

k
)2
∫
daN

(
a2
N

e2πaN − 1

)N−1

e−k
8π2
κ

(aN− κ
8π )2

. (4.5)

Using (2.7) and computing the integral by saddle point, we obtain the following formula for
the large k asymptotics of 〈Wk〉:

〈Wk〉 = 1
N !

(
k κ

4

)N−1
e
kκ
8 (1+N−1

k
)2
e−

κ (N−1)
4

(
1− e−

κ
4
)1−N

, (4.6)
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where we used the fundamental property of the Barnes G-function, N !G(N +1) = G(N +2).
Thus the first terms in the large k expansion for log〈Wk〉 are

log〈Wk〉= k

(
κ

8 + (N−1)
k

log kκ4 −
1
k

logN !− (N−1)
k

log
(
1−e−

κ
4
)

+O(k−2)
)
. (4.7)

When N � 1, in the O(k−2) terms, one must take into account an enhancement factor
N2, which renders the correction O(N2/k2). One such term comes from the exponent
in (4.6). Other corrections come from the Vandermonde determinant, as explained above
(there are N − 1 terms a2

i /a
2
N , giving rise to a correction of order O(N2/k), which becomes

O(N2/k2) after k is put as a common factor). Therefore, for N � 1, the above formulas
apply provided k � N .

The multiply wound loop. It is of interest to compare 〈Wk〉 with the VEV of the
k-wound circular Wilson loop in the fundamental representation. This corresponds to the
insertion of

WF
k =

∑
ek 2πai , (4.8)

instead of Wk. It is clear that upon defining a′i = kai, the computation is just analogous to
that of the circular Wilson loop upon replacing g by gk [26]. Thus

〈WF
k 〉 = 1

N
L1
N−1

(
−kκ4

)
e
kκ
8 , (4.9)

where we have conveniently re-written the result in terms of κ = g2k. Let us now consider
the large k limit at fixed κ and N (we stress that this is a different regime than the one
studied in [19]). We obtain

〈WF
k 〉 = 1

N !

(
k κ

4

)N−1
e
kκ
8 (1+N−1

k
)2
e−

κ (N−1)
4

[
1−

(N − 1)
(
(N − 1)κ2 − 32N

)
8kκ + · · ·

]

= 1
N !

(
k κ

4

)N−1
e
kκ
8 (1+N−1

k
)2
e−

κ (N−1)
4

(
1 +O(k−1)

)
. (4.10)

This is to be compared with (4.6). Therefore, modulo corrections that vanish in the infinite
k limit, one finds the relation

〈Wk〉 =
(
1− e−

κ
4
)1−N

〈WF
k 〉 , k � 1 . (4.11)

In a small κ expansion, one has 〈WF
k 〉 ≈

(
κ
4
)N−1 〈Wk〉. In a large κ expansion, 〈WF

k 〉 and
〈Wk〉 differ in an infinite series of exponentially small terms e−nκ/4. We shall return to the
interpretation of these exponential terms below.

4.2 Comparing with holography

The formula (4.7) for log〈Wk〉 can be extended to N � 1 provided that k � N . Define Sk by

〈Wk〉 = e−Sk√
2πN

. (4.12)
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Using Stirling’s approximation in (4.7), one obtains

Sk = −kκ8 −N log
(
k κ

4N

)
−N +N log

(
1− e−

κ
4
)

+O
(
k−1

)
. (4.13)

In terms of the standard ’t Hooft coupling λ ≡ g2N ,

κ = λ
k

N
. (4.14)

We will assume large k and large N with fixed and very small Nk . In this case the super-
gravity regime λ � 1 implies κ � 1 and we can neglect exponentially suppressed terms
O(e−κ/4), so 〈Wk〉 → 〈WF

k 〉. Therefore, in the supergravity regime we get

〈Wk〉 = e−Sk√
2πN

, Sk = −kκ8 −N log
(
k κ

4N

)
−N +O

(
k−1

)
+O(e−κ/4) . (4.15)

This result may be compared against the holographic computation in [19], which predicts

SDF
k = −2N

[
κ̃
√

1 + κ̃2 + arcsinh
(
κ̃
)]
, (4.16)

where
κ̃ = k

√
λ

4N  κ̃2 = κ
k

16N . (4.17)

This formula is obtained by using the fact that the Wilson loop in the k-symmetric
representation corresponds to D3 branes with k units of electric flux, or, equivalently, with k
non-interacting strings. Note that it assumes fixed κ̃ and N � 1, k � 1. In this regime, in a
1/N expansion, both the k-symmetric and k-wound loops give the same result (4.16) [10, 22].2

A priori, it is not guaranteed that gauge theory and supergravity results should
match, since the formula (4.15) requires k � N � 1, a regime where back-reaction
effects on the AdS5 × S5 geometry could be important. Nonetheless, we can examine the
holographic formula (4.16) in the limit κ̃� 1, although aware of this possible limitation.
Expanding (4.16) for κ̃� 1 and writing the result in terms of κ, one finds

SDF
k ∼ −kκ8 −N log

(
k κ

4N

)
−N . (4.18)

Notably, this coincides with the gauge theory result (4.15). The coincidence is surprising,
since in the fixed κ̃ limit of [19], k

N = 4κ̃√
λ
is assumed to be small, because λ is large. Extrap-

olating this formula to a regime with k � N implies κ̃ �
√
λ � 1. It is interesting that

the formulas still match in this regime, despite the aforementioned back-reaction problem.

4.3 The SU(N) case

In order to compute the VEV of the Wilson loop Wk in the theory with gauge group SU(N)
it is convenient to begin with the U(N) case, where

〈Wk〉 = 1
ZU(N)

∫
dNa

∏
k<l

(ak − al)2 e
− 8π2

g2
∑N

m=1 a
2
m e2π(k+N−1) aN∏

j 6=N
(
e2πaN − e2πaj

) . (4.19)

2In fact, even the first 1/N correction agrees between both loops for N � k � 1 at fixed small
√
λ k
N

[27].
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Using that
N∑
i=1

a2
i =

N∑
i=1

â2
i + 1

N

(
N∑
i=1

ai

)2

, âi ≡ ai −
1
N

N∑
i=1

ai , (4.20)

〈Wk〉 can be written as

〈Wk〉 = 1
ZU(N)

∫
dNa

∏
k<l

(âk − âl)2 e
− 8π2

g2
∑N

m=1 â
2
m e
− 8π2N

g2 x2−2πkx e2π(k+N−1) âN∏
j 6=N

(
e2πâN − e2πâj

) ,
(4.21)

where x = 1
N

∑N
i=1 ai and

∑N
i=1 âi = 0. This leads to

〈Wk〉 = 1
ZU(N)

∫
dN â

∏
k<l

(âk − âl)2 e
− 8π2

g2
∑N

m=1 â
2
m e2π(k+N−1) âN∏

j 6=N
(
e2πâN − e2πâj

) δ( N∑
i=1

âi

)

×
(∫

dx e
− 8π2N

g2 x2−2πkx
)
. (4.22)

Thus

〈Wk〉U(N) =
(
ZSU(N)
ZU(N)

∫
dx e

− 8π2N
g2 x2−2πkx

)
〈Wk〉SU(N) . (4.23)

Computing the integral, we find

〈Wk〉U(N) = e
κ k
8N 〈Wk〉SU(N) . (4.24)

One can check this formula in two different ways: setting N = 2 we recover our result above
with k arbitrary; setting k = 1 and arbitrary N we recover a formula given in [26].

It should be noted that even for arbitrarily large N (while still much smaller than k so
that the approximation holds), the loops in the SU(N) and U(N) theory do not coincide.
To understand this, let us look to the prefactor in (4.23). It can be written as follows

ZSU(N)
ZU(N)

∫
dx e

− 8π2N
g2 x2−2πkx =

∫
da e

− 8π2
g2 a2−2π k√

N
a

∫
da e

− 8π2
g2 a2

. (4.25)

Thus, the prefactor corresponds to the contribution of a Wilson loop of the U(1) theory with
charge k√

N
.3 As this is much larger than 1 in our limit, we see that the Symk(�) Wilson

loop has an overall factor originating from the extra U(1) that cannot be neglected even if
N � 1. As a consequence, the loops in the U/SU theories are different already to leading
order in the large k expansion. This produces an intriguing mismatch with the holographic
formula when the gauge group is SU(N). One may therefore view 〈Wk〉 with k � N as an
observable that distinguishes the large N SU(N) theory from the large N U(N) theory.

3Note that the generator in U(1) ∈ U(N) must be normalized with a N− 1
2 so that TrT 2 ∼ 1.
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5 Correlation functions of Symk(�) Wilson loops with CPO’s

As discussed in [31–33], computing correlation functions in R4 from the matrix model
involves a conformal map from S4 into R4. The R-charge is not conserved in correlation
functions in S4. This is possible because the theory on S4 breaks the U(1)R symmetry. These
mixtures are a reflection of the conformal anomaly in S4. The four-sphere introduces a scale,
the radius, which leads to a mixture of operators of different dimensions. The standard
correlation functions of the theory in flat space can be recovered by a Gram-Schmidt
procedure introduced in [31] (see appendix A for a lightning review), by which one can find
orthogonalized operators in the sphere matrix model which map to the R4 operators. As
shown in [33], the obtained operators can then be used to compute correlation functions
of the CPO’s with circular Wilson loops (for a closely related approach, see [34]). We
are now interested in applying this method to the correlator of CPO’s with Wilson loops
in the k-symmetric representation. As a first step, consider, in the S4 matrix model, the
correlation function

〈Trφn1 · · ·TrφnmWk〉 = 1
ZU(N)

∫
dNa

∏
k<l

(ak − al)2 Z1-loop Zinst e
− 8π2

g2
∑N

m=1 a
2
m

× e2π(N−1) aN+2kπaN∏
j 6=N

(
e2πaN − e2πaj

) ( N∑
i=1

an1
i

)
· · ·
(

N∑
i=1

anmi

)
. (5.1)

For large k, exactly the same argument as in section 4 can be used: the ai’s with i 6= N will
only contribute in the integration region very close to zero whereas the main contribution
of the integral over aN will come from the region aN ∼ κ/8π. In the double-scaling limit,
this approximation becomes exact. Therefore, we are led to

〈Trφn1 · · ·TrφnmWk〉 =
ZU(N−1)
ZU(N)

e
kκ
8 (1+N−1

k
)2
∫
daN

(
a2
N

e2πaN − 1

)N−1

× an1+···+nm
N e−k

8π2
κ

(aN− κ
8π )2

. (5.2)

This gives the simple result

〈Trφn1 · · ·TrφnmWk〉 =
(
κ

8π

)n1+···+nm
〈Wk〉 . (5.3)

The formula becomes exact in the k →∞ limit at finite N (the structure of corrections is
as in section 4 and at finite N they are O(1/k)).

We now consider the orthogonalization process. The first few operators, using Gram-
Schmidt, are

O1 = Trφ− 〈Trφ〉
〈 l1〉 l1 , O2 = Trφ2 − 〈Trφ2〉

〈 l1〉 l1 · · · . (5.4)

Here O∆ refers to the R4 operator. Then

〈O1Wk〉 =
[
κ

8π −
〈Trφ〉
〈 l1〉

]
〈Wk〉 , 〈O2Wk〉 =

[(
κ

8π

)2
− 〈Trφ2〉
〈 l1〉

]
〈Wk〉 · · · . (5.5)
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Now, the VEV’s 〈Trφn〉
〈 l1〉 in the matrix model without the insertion of Wk is proportional to

gn. Expressed in terms of k, this is equal to κ
n
2 k−n. Thus, in limit of large k with fixed κ,

this is suppressed.
It is clear that this argument will hold true for arbitrary operators: the S4 mixing with

lower operators arises through terms with 〈Trφ∆1 · · ·Trφ∆l〉, which have no insertion of
Wk and are similarly suppressed in the large k limit (here we assume ∆i � k). Hence we
obtain the remarkably simple formula

〈O∆Wk〉 =
(
κ

8π

)∆
〈Wk〉 , (5.6)

for any CPO of dimension ∆. As a sanity check of this formula, one may compute

〈O2Wk〉 = ∂

∂x
(ZN 〈Wk〉) =

(
κ

8π

)2
〈Wk〉 , x = −8π2

g2 . (5.7)

It should be noted that O∆ in (5.6) is normalized such that (see e.g. [32])

〈O∆(x)O∆(0)〉 = C∆
|x|2∆ , C∆ ≡

∆λ∆

(2π)2∆ . (5.8)

Introduce now Ô∆ = C
− 1

2
∆ O∆, so that the CPO’s have a “canonical” normalization

〈Ô∆(x) Ô∆(0)〉 = 1
|x|2∆ .

Then, we obtain the formula

〈Ô∆Wk〉 = 1√
∆

(
kκ

16N

)∆
2
〈Wk〉 , (5.9)

up to O(1/k) corrections.
This can be compared with the similar formula derived for the multiply wound fun-

damental Wilson loop in [21, 35]. For large λ, the k-wound fundamental Wilson loop
should give rise to the same correlation functions as the Wilson loop in the k-symmetric
representation. Indeed, taking λ� 1 in the formulas of [35], we find agreement with (5.9).4

6 N = 2∗ theory

The method for computing 〈Wk〉 at large k, fixed N , used in the previous sections for the
N = 4 theory can be extended to any N = 2 theory. As an example, here we shall consider
the N = 2∗ theory, defined as usual by giving a mass M to the hypermultiplet. In this
theory the coupling constant does not run and it is a parameter that characterizes the
theory. The N = 2∗ theory was thoroughly studied using supersymmetric localization in a
series of papers, starting with [36, 37]. It was found that, in the decompactification limit

4See (5.9) and (5.10) in [35], taking into account the different definition of the parameter κ. In [35],
κ ≡ k

√
λ

4N , which, in our notation, corresponds to
√
k
√
κ

4
√
N

.
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where the radius R of S4 goes to infinity, the large N theory undergoes an infinite number
of phase transitions as the ’t Hooft coupling is varied from 0 to infinity.

The first phase transition occurs at λc ∼= 35.4; then there is a second phase transition
occurring at λ ∼= 83, a third phase transition at λ ∼= 150, followed by an infinite sequence of
phase transitions, which for large λ occur at critical values λ ≈ n2π2, with integer n� 1.
The SU(2) theory does not have phase transitions [38]. However, for any finite N > 2, there
is evidence that at least the first transition must occur at the same λc ∼= 35.4 [39]. Similar
phase transitions are generically expected in massive N = 2 theories. Another example is
provided by massive SQED with Nf < 2N at large N [37] as well as for any SU(N) gauge
group with N ≥ 2 [38, 40, 41].

In the limit considered in this paper, with g → 0 and N fixed, the ’t Hooft coupling
λ = g2N vanishes. Therefore the above phase transitions do not occur. An interesting
question is whether there could still be phase transitions for the one-dimensional defect
theory defined by the insertion of Wk, at critical values of the parameter κ ≡ kg2.

The VEV of the Wilson loop for gauge group U(N) is now

〈Wk〉N=2∗ = 1
ZN=2∗

∫
dNa

∏
k<l

(ak − al)2 Z1-loop e
− 8π2

g2
∑N

m=1 a
2
m e2π(k+N−1) aN∏

j 6=N
(
e2πaN − e2πaj

) ,
(6.1)

where we have omitted the instanton factor as this is suppressed in the double-scaling
limit (2.14). The one-loop factor is given by (2.5). The integrals can be computed by
following the same procedure as in the N = 4 case. We first separate the factors with aN
dependence. Then (6.1) becomes

〈Wk〉N=2∗ = 1
ZN=2∗

∫
dNa

N−1∏
i<j

(ai−aj)2H(ai−aj)2

H(ai−aj+M)H(ai−aj−M) e
− 8π2

g2
∑N−1

m=1 a
2
m

×e
k2g2

8

(
1+N−1

k

)2 N−1∏
i=1

(ai−aN )2H(ai−aN )2

H(ai−aN+M)H(ai−aN−M)
e
− 8π2

g2 (aN−a∗N )2∏
j 6=N

(
e2πaN−e2πaj

) ,
(6.2)

where a∗N = κ/(8π) just as in the N = 4 case. Next, we introduce new integration variables
xi = ai/g, i = 1, . . . , N − 1 and expand the factors in the integrand depending on xi in
powers of g. In the limit g → 0, we are left with the leading term, which, in terms of the
original variables ai, reads

〈Wk〉N=2∗ = e
kκ
8

(
1+N−1

k

)2
ZN=2∗

∫
dN−1a

N−1∏
i<j

(ai−aj)2H(ai−aj)2

H(ai−aj+M)H(ai−aj−M) e
− 8π2k

κ

∑N−1
m=1 a

2
m

×
∫
daN

(
H(aN )2

H(aN+M)H(aN−M)

)N−1 (
a2
N

e2πaN−1

)N−1

e−k
8π2
κ

(aN−a∗N )2
,

(6.3)

where κ ≡ g2k. In the first line we recognize the partition function for the N = 2∗ theory
with gauge group U(N − 1). In turn, the integral in the second line can be easily done
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through saddle point. Collecting all factors

〈Wk〉N=2∗ = Z
U(N−1)
N=2∗

Z
U(N−1)
N=4

Z
U(N)
N=4

Z
U(N)
N=2∗

(
H(a∗N )2

H(a∗N +M)H(a∗N −M)

)N−1

〈Wk〉N=4 . (6.4)

Similarly, in the g → 0 limit, one has

Z
U(N)
N=2∗ =

N∏
i<j

1
H(M)2

∫
dNa

N∏
i<j

(ai − aj)2 e−
8π2k
κ

∑N

m=1 a
2
m = Z

U(N)
N=4

H(M)N(N−1) . (6.5)

Thus we finally obtain

〈Wk〉N=2∗ =
(

H(a∗N )2H(M)2

H(a∗N +M)H(a∗N −M)

)N−1

〈Wk〉N=4 . (6.6)

This is the main result of this section.
Note that f ≡ − log〈Wk〉N=2∗ represents the free energy of the one-dimensional defect

theory on S1. An interesting question regards the behavior of f as a function of κ. In
particular, whether f(κ) exhibits non-analytic behavior in the infinite volume theory.

The decompactification limit corresponds to sending MR → ∞, R being the radius
of the four-sphere. The dependence on R is restored by M → MR, a∗N → Ra∗N , i.e.
a∗N = κ/(8πR). The expansion of the function H(x) for large argument is derived from the
asymptotic expansion of the Barnes G-function. One finds

logH(x) = −1
2x

2 log x2 +
(1

2 − γ
)
x2 +O(log x2) . (6.7)

Thus

log〈Wk〉N=2∗ ≈ log〈Wk〉N=4 + 2(N − 1) logH(a∗N )− 1
2(N − 1)R2

[
2M2 log(MR)2

− (M − a∗N )2 log(M − a∗N )2R2 − (M + a∗N )2 log(M + a∗N )2R2
]

+ (1− 2γ)(N − 1)(Ra∗N )2 . (6.8)

A potential non-analytic behavior is at a∗N = ±M , that is, κ = 8πMR. Since R→∞,
this point is not reached for any finite κ. Indeed, at large R, a∗ is small compared to M , so
in R4 we effectively have

log〈Wk〉N=2∗ −→ log〈Wk〉N=4 + (N − 1)
(

2 logH
(
κ

8π

)
+ κ2

32π2

[
2− γ + log

(
MR

)])
,

(6.9)
where log〈Wk〉N=4 is the function of κ given in (4.7). Note the logarithmic infrared
divergence, which is due to the presence of massless particles. The resulting “free energy” f
of the defect theory is a smooth function of κ.

In conclusion, we have computed 〈Wk〉 in the large k limit for the N = 2∗ U(N) theory
on S4. The resulting expression (6.6) exhibits an interesting interplay between the two
scales a∗N = κ/(8πR) and M . At infinite volume, one has a∗/M → 0 and the VEV of the
loop becomes identical to the case of the N = 4 theory computed in previous sections.
Consequently, the associated free energy f(κ) = − log〈Wk〉N=2∗ of the defect theory does
not exhibit non-analytic behavior.
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7 Discussion

In this note we have studied circular Wilson loops in the k-symmetric representation in 4d
N = 2 theories with gauge group U(N) or SU(N) using a double-scaling limit. This limit
gives rise to exact results for any finite N , which include all perturbative contributions.
Gauge instanton contributions exponentially vanish in the limit. The VEV of the Wilson
loop contains contributions from the 1-loop determinant, which is generically expressed in
terms of Barnes G-functions (see (6.6) for the case of the N = 2∗ theory). The resulting
formula represents the resummation of infinitely many Feynman diagrams in standard
perturbation theory.

The limit studied here corresponds to k →∞ while κ ≡ g2k fixed at finite N . Effectively,
this implies k � N . Clearly, this is different from taking the large N limit at fixed k/N ,
but there is a region of overlapping. Indeed, one can study the large N behavior of the
expressions obtained by the double-scaling limit (2.14), as long as N

k � 1. For the U(N)
N = 4 SYM theory, we have found agreement with the most familiar large N limit at
fixed k/N , which has been studied in the literature, both from the QFT matrix model
perspective and holographically.

An interesting aspect of the limit at fixed N discussed here is that it distinguishes
between the U(N) and the SU(N) theory, even if N � 1; see (4.24). This result opens the
door to new precision tests of holography, as it can be used to probe holographic properties
of the diagonal U(1) in U(N). In particular, it would be very interesting to see if the SU(N)
result, including the (leading!) prefactor in (4.24), can be recovered using holography, upon
adding the suitable boundary conditions. The idea is as follows. Recall that the global
properties of the gauge group are encoded in the topological sector of Type IIB supergravity
on AdS5 after reduction on the S5. This results on a BF theory in the bulk with

S = (2π)−1N

∫
AdS5

C2 ∧ dB2 ,

where C2 and B2 are the RR and NS 2-form potentials respectively. As discussed in [42],
this action has to be supplemented with appropriate boundary terms to impose the desired
boundary conditions that define the U(N) or SU(N) theory (or other quotients by the
center). To make contact with our discussion, recall that the Wilson loop in the k-symmetric
representation is holographically represented by a D3 brane with electric flux dissolving k
fundamental strings [19]. This is a source for the RR 2-form potential C2 entering in the
BF topological theory controlling the global properties of the gauge group. Therefore, we
expect that one can match the SU(N) gauge theory result by adding suitable boundary
terms. While these boundary contributions should be negligible for k

N � 1, they should be
relevant in the limit k

N � 1.
The formula (4.7) for log〈Wk〉 exhibits some features that are inherent to the k-

symmetric representation, such as the presence of an infinite series of exponentially terms
of the form e−nκ/4 in a large κ expansion. These contributions are associated with the
massive particles at the point in moduli space that dominates the path integral, i.e. at the
saddle point [43]. One can understand this feature from the spectrum. In general, for any
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N = 2 SYM, the spectrum contains massive vector multiplets with masses

MV
ij = |ai − aj | . (7.1)

At the saddle point, there are N − 1 vector multiplets with masses

MV
ij = |a∗| . (7.2)

In addition, there are massive hypermultiplets at the saddle point. The masses depend
on the case. For the N = 4 theory, because of supersymmetry, their masses coincide with
the above mass spectrum of the vector multiplets. The action of a particle with mass
m = |a∗| = κ/8π circulating around the equator of S4 is S = 2πm = κ/4. In addition, there
are BPS electric particles of masses n|a∗| corresponding to BPS bound states. Thus one
expects an infinite series of contributions e−nκ/4, which indeed appear in the formula for
log〈Wk〉, multiplied by N − 1, which is the correct degeneracy.

Alternatively, one can interpret 〈Wk〉 in terms of degrees of freedom on the 1d defect
theory on S1. From (4.7), we have

〈Wk〉 = 1
N ! e

πmk (Zm)N−1 , Zm = 2πmk
1− e−2πm , m ≡ κ

8π , (7.3)

where (Zm)N−1 is to be interpreted as the partition function for N − 1 bosons on the
one-dimensional defect S1 (see similar discussions in [11–13]).

Here we have focused on N = 4 SYM with unitary gauge group and its massive
deformation –the N = 2∗ theory–, even though a similar limit exists for other N = 2
theories and other gauge groups (see [8] for a study of SU(2) SQCD). In particular,
it would be interesting to study the double-scaling limit for Wilson loops in symmetric
representations in quiver gauge theories, also including correlation functions involving
CPO’s. Such correlation functions can be computed from a matrix model [44] and it would
be interesting to study its potential applications to Wilson loops.

A more ambitious goal would be to study Wilson loops in large representations in
non-supersymmetric Yang-Mills theory, by a similar double-scaling limit at fixed N in the
UV, where g is small. Obtaining exact results for these observables could reveal interesting
new features of Yang-Mills theory.
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A Correlation functions for CPO’s using localization

In this appendix we briefly review the computation of correlation functions for chiral primary
operators (CPO’s) through supersymmetric localization following the construction in [31].
Recall that, in Lagrangian theories, CPO’s correspond to operators O∆ made out of scalar
fields in vector multiplets. Conformal invariance dictates that 2-point functions in R4 must
be of the form

〈O∆1(x)O∆2(0)〉 =
g∆1,∆2

|x|2
δ∆1,∆2 . (A.1)

Thus, all the non-trivial information resides in the Zamolodchikov metric g∆1,∆2 , which in
general depends on the marginal couplings. To further proceed, one notes that one can
extract g∆1,∆2 by considering

4∆1 〈 lim
|x|→∞

(
1 + |x|

2

4

)∆1

O∆1(x)O∆2(0) 〉 = g∆1,∆2 δ∆1,∆2 . (A.2)

We recognize the conformal factor mapping the plane into the sphere. Therefore, the
relevant information of correlation function in R4 can be computed through a correlation
function in the sphere, where the CPO’s are inserted in the North/South poles:

〈O∆1(N)O∆2(S)〉S4 = 4−∆1 g∆1,∆2 δ∆1,∆2 ; (A.3)

As shown in [31], due to the supersymmetric properties of the CPO’s, this correlation
function coincides with the one corresponding to the insertion of the integrated (super)
field. This justifies the use of supersymmetric localization to compute the sphere 2-point
functions through the corresponding matrix model. The construction is as follows. We
begin by defining operators O∆ on S4 as

O∆ ≡ Trφp1 · · ·TrφpP ,
P∑
i=1

pi = ∆ ,

where φ is the adjoint scalar field of the N = 1 vector multiplet. Localization reduces the
functional integral of N = 2 U(N) gauge theories to a finite N -dimensional integral over
the moduli space parametrized by the diagonal expectation value φ = diag(a1, . . . , aN ) [18].
Correlation functions of operators O∆i

can then be computed by

〈O∆1(N)O∆2(S)〉S4 = 4−∆1

∫
dNa

N∏
i<j

(ai − aj)2 e
− 8π2

g2
∑N

i=1 a
2
i (A.4)

×
[(

N∑
i=1

ap1
i

)
· · ·
(

N∑
i=1

apPi

)] [(
N∑
i=1

aq1i

)
· · ·
(

N∑
i=1

a
qQ
i

)]
.

This correlation function is non-zero for operators O∆i
of different dimensions, which shows

that the O∆i
cannot be identified with the operators O∆i

in (A.3). The underlying reason
for why the correlation functions of the operators of different dimensions can be nonzero
is the conformal anomaly of the theory on the four-sphere. The sphere has an intrinsic

– 18 –
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scale –its radius R. When mapping R4 operators to S4 operators, operators of different
dimensions get mixed. On general grounds, one obtains a relation of the form

OR4
∆ = OS4

∆ + α∆
2
R2 O

S4
∆−2 + α∆

4
R2 O

S4
∆−4 + · · · . (A.5)

The key insight of [31] is that the standard two-point correlation functions in R4 proportional
to δ∆1,∆2 can be recovered by a Gram-Schmidt orthogonalization procedure. For instance,
for U(2) N = 4, on R4 one has the CPO’s OR4

1 = Trφ and OR4
2 = Trφ2 (at larger dimensions

there are only multitraces), while in the sphere the relevant operators are l1, TrφS4 and
Trφ2

S4 . One then has

OR4
1 → TrφS4 −

〈TrφS4〉
〈 l1〉 l1 , (A.6)

OR4
2 → Trφ2

S4 −
〈Trφ2

S4〉
〈 l1〉 l1 ; (A.7)

where the 〈·〉 is to be computed in the matrix model. Since in the matrix model only mixtures
between operators of dimensions differing by an even number can be non-zero (by symmetry
of the integral), one has 〈TrφS4〉 = 0, thus recovering the structure in (A.5). Finally, once
the correct — i.e. orthogonalized — candidates for OR4

∆ have been identified, the different
entries of the Zamolodchikov metric g∆1,∆2 are obtained by computing 〈OR4

∆1
OR4

∆2
〉 in the

matrix model.
A by-product of having identified the correct OR4

∆1
in terms of matrix model operators

is that one can then also compute correlation functions between CPO’s and circular Wilson
loops [33]. To that matter one simply evaluates 〈OR4

∆1
W 〉 in the matrix model using the

properly orthogonalized OR4
∆1

.
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