
J
H
E
P
0
8
(
2
0
2
2
)
2
2
7

Published for SISSA by Springer

Received: January 29, 2022
Revised: June 7, 2022

Accepted: July 20, 2022
Published: August 23, 2022

On the questions of asymptotic recoverability of
information and subsystems in quantum gravity

Steven B. Giddings
Department of Physics, University of California,
Santa Barbara, CA 93106, U.S.A.

E-mail: giddings@ucsb.edu

Abstract: A longstanding question in quantum gravity regards the localization of quantum
information; one way to formulate this question is to ask how subsystems can be defined
in quantum-gravitational systems. The gauge symmetry and necessity of solving the
gravitational constraints appear to imply that the answers to this question here are different
than in finite quantum systems, or in local quantum field theory. Specifically, the constraints
can be solved by providing a “gravitational dressing” for the underlying field-theory operators,
but this modifies their locality properties. It has been argued that holography itself may be
explained through this role of the gauge symmetry and constraints, at the nonperturbative
level, but there are also subtleties in constructing a holographic map in this approach. There
are also claims that holography is implied even by perturbative solution of the constraints.
This short note provides further examination of these questions, and in particular investigates
to what extent perturbative or nonperturbative solution of the constraints implies that
information naïvely thought to be localized can be recovered by asymptotic measurements,
and the relevance of this in defining subsystems. In the leading perturbative case, the
relevant effects are seen to be exponentially suppressed and asymptotically vanishing, for
massive fields. These questions are, for example, important in sharply characterizing the
unitarity problem for black holes.
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It has long been believed that localization of information in quantum gravity may behave
differently than in local quantum field theory (LQFT). Certainly this has been one of the
themes of the proposal of holography [1–3], and is also motivated by consideration of the
diffeomorphism gauge symmetry of classical and perturbative quantum general relativity
(GR). In trying to understand this localization, there has been increasing focus on the role
of the constraints of perturbative GR and its possible nonperturbative generalization, and
on properties of the gauge-invariant states and operators annihilated by the constraints. A
particularly important question to answer, underlying a description of many information-
theoretic aspects of quantum gravity, is in what sense one can precisely define quantum
subsystems in the theory. For finite or locally finite quantum systems, subsystems are
defined in terms of factorization of Hilbert spaces, and for LQFT systems they are defined
in terms of commuting subalgebras of observables. But in perturbative GR, the situation is
more subtle; the constraints can be solved by dressing underlying states or operators of
LQFT [4–6]1 (for some further development see [9–12]), and this dressing obstructs naïve
extensions of such factorization or subalgebras.

Indeed, perhaps the leading candidate for an explanation of holography is that it arises
precisely from the gauge symmetry and constraints of gravity; arguments in this direction
have been given in [13–16]. There are certain subtleties [17, 18] in these arguments, so this
remains an actively investigated question.

In trying to make the question of localization of information more concrete, a specific
goal is to understand how to define subsystems in gravity, since in other quantum systems
such a definition is at the basis of explaining how information can be localized. This
question has in particular been preliminarily discussed in gravity, taking into account the
preceding considerations, in [4, 10, 12]. It is also an important question in addressing
concrete problems for quantum gravity such as that of explaining the reconciliation of black
hole evolution with quantum mechanics; for example the assumption of the (approximate)
existence of subsystems is one of the underlying assumptions in a “black hole theorem [19]”
that sharply constrains the possible avenues for unitary evolution.

This short paper will examine some aspects and subtleties regarding the question of
defining subsystems, in view of the constraints and properties of the dressing. One way
to begin to address these is to ask a question: to what extent is information “recoverable”
asymptotically in gravity, in situations where it would not be recoverable in LQFT, by
making observations or performing experiments in an asymptotic region far from a region
where a naïve field theory analysis would tell one it is localized?

The formal arguments for holography [13] do suggest that information is asymptotically
recoverable, although these do ultimately seem to be based on assuming a non-perturbative
solution of the constraints, among other subtleties [18]. A related argument was given
in [9] (see below), that given a full solution of the constraints, one can use the fact that the

1Earlier related work includes [7] and [8]. The former exhibited nontrivial commutators arising from the
constraints but did not describe the dressed operators; the latter was focused on finding bulk operators that
commute, and did not exhibit the bulk dressing described below.
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translation operator is a boundary operator to translate a state to an asymptotic region,
where it can be measured. There are also recent claims [20] that based on perturbative
construction of dressings that solve the constraints, even at the perturbative level information
is recoverable asymptotically. This paper will specifically explore some aspects of this
perturbative vs. nonperturbative recoverability of information.

As a test case, consider perturbative quantization of two scalar fields, φa, a = 1, 2,
coupled to gravity, preserving the global symmetry distinguishing them.2 We will begin
with the case of a spacetime M with general asymptotics (e.g. Minkowski or AdS), with
simplifying restrictions in later examples.

To test recoverability of information, consider the two states

|J〉a = e−i
∫
J(x)φa(x)|0〉 = UJa|0〉 , (1)

where J(x) is a source function with compact support in some neighborhood U of M , or
consider the dressed version of these states in the full gravitational theory.

First, in LQFT, we know that information about which state we choose is not recoverable
at spacelike separation to U , through any measurements. To review the argument, if we
consider measuring a correlator of some collection OA of operators spacelike to U , then

a〈J |
∏
A

OA|J〉a = 〈0|
∏
A

OA|0〉 , (2)

due to the operators OA commuting with φ(x) at spacelike separation. Thus such ob-
servations cannot distinguish the states |J〉a, and cannot even distinguish them from
vacuum.

The situation changes in gravity, once we solve the constraints to determine a grav-
itational dressing for the state; this is because in general this dressing must extend to
infinity [6], affecting measurements there. In particular, if we consider a collection of
Poincaré charges Qα, we can use asymptotic measurements to determine a〈J |

∏
αQα|J〉a.

Such measurements do distinguish |J〉a from vacuum, but do not distinguish the |J〉a, with
a = 1, 2, from each other.

To see how this works, minimally couple the fields φa to gravity with the Einstein
action. With a choice of time slicing, the constraints take the form

Cµ(x) = 1
8πGG0µ(x)− T0µ(x) = 0 , (3)

where in the AdS case T includes the cosmological term. The quantum version of these
generalize the Wheeler-DeWitt equation, which corresponds to the µ = 0 component. These
may be solved by working with quantum deformations of a fixed background metric gµν

g̃µν = gµν + κhµν , (4)

with κ2 = 32πG. At the quantum level, diffeomorphism-invariant operators are those
commuting with the constraints, and states solving the constraints are annihilated by the

2There are arguments that such global symmetries are spoiled nonperturbatively in gravity, but this is
not obviously true in the perturbative setting, and so let’s remain agnostic on this point.
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Cµ.3 For example, the states (1) may be promoted to such solutions,

|J〉a = UJa|0〉 → |Ĵ〉a = ÛJa[φ, h]|0〉 , (5)

where the operators ÛJa[φ, h] now depend also on the metric perturbation, and are to
be determined.

Finding complete solutions is a challenging problem, but perturbative solutions to
linear order in κ have been studied in [4–6, 9, 10, 12, 22].4 These take the form

|Ĵ〉a ' ei
∫
d3xV µ(x)T0µ(x)|J〉a , (6)

where V µ(x) are functionals of h that are linear at first order in κ, and are also a function
of position x. Under a diffeomorphism transforming δhµν = −∂µξν − ∂νξµ +O(κ), these
vary according to the key relation

δV µ(x) = κξµ(x) , (7)

but the V µ are not uniquely fixed, and indeed differences correspond to adding a source
free radiation field h to a given dressing.5 Working about Minkowski space, a broad class
of these takes the form [12] (specified, say, at t = 0)

Vµ(0, ~x) =
∫
d3x′ȟij~x (~x′)γµ,ij(0, ~x′) (8)

with
γµ,ij = κ

2 (∂ihµj + ∂jhµi − ∂µhij) (9)

the linearized Christoffel symbol, and with a classical tensor field ȟij~x satisfying

∂i∂j ȟ
ij
~x (~x′) = −δ3(~x′ − ~x) . (10)

A special case is the line dressing of [5, 22],

VLµ(x, y) = −κ2

∫ x

y
dx′ν

{
hµν(x′)−

∫ x′

y
dx′′λ

[
∂µhνλ(x′′)− ∂νhµλ(x′′)

]}
, (11)

with y =∞, giving a gravitational line running to infinity.
Properties of the dressing can be illustrated by calculating the expectation value of the

leading order metric perturbation, using (6)

a〈Ĵ |hµν(z)|Ĵ〉a ' i
∫
d3x[hµν(z), V λ(x)] a〈J |T0λ(x)|J〉a . (12)

3As in Gupta-Bleuler quantization [21], one actually requires that only half of the Cµ annihilate the
state, as noted in [10].

4Ref. [20] likewise described perturbative solution of the constraints, but failed to note the direct relation
of their perturbative analysis to this construction; one can see that the dressing constructions are in many
respects simpler than their analysis. Ref. [23] also discussed implications of dressing for the “islands”
discussion [24, 25].

5This corresponds to the dependence on hTT described in [20].
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This is clearly independent of a. The different choices of dressings lead to different values
for the commutator and hence for the expectation value. However, much of this freedom
arises precisely from adding the different free radiation fields on top of a dressing necessary
to solve the constraints, e.g. by shifting ȟij~x by a source-free solution. Any such dressing
and expectation value must however give the correct values (to leading order in κ) for the
asymptotically-measured Poincaré charges, Pµ, Mµν .

To see that this is the only necessary correlation with the choice of matter state,6 one
can use the “standard dressing” construction as in [10, 12]. Suppose we choose a point
y ∈ U and some dressing V µ

S (y) satisfying the key relation (7). Then, for general x ∈ U ,
define the dressing

V µ(x) = V µ
L (x, y) + V µ

S (y) + 1
2(x− y)ν [∂νV µ

S (y)− ∂µV ν
S (y)] . (13)

Given the commutator
i[hµν(z), V λ

S (y)] = −hSλµν (z, y) , (14)

for z outside U , the commutator in (12) becomes

i[hµν(z), V λ(x)] = −hSλµν (z, y)− 1
2(x− y)σ

[
∂σy h

Sλ
µν (z, y)− ∂λyhSσSµν(z, y)

]
, (15)

since the metric perturbation outside U commutes with the line dressing connecting x and
y. Then, the expectation value (12) becomes

a〈Ĵ |hµν(z)|Ĵ〉a ' hSλµν (z, y) a〈J |Pλ|J〉a + 1
2∂

σ
y h

Sλ
µν (z, y) a〈J |Mσλ|J〉a , (16)

in terms of the total Poincaré charges Pµ and Mµν , with the latter defined with respect to
an origin at y. This metric expectation value thus depends on the choice of point y and
standard dressing V µ

S , and on the total Poincaré charges of the matter configuration.
If one instead considers an n-point function a〈Ĵ |hµ1ν1(z1) · · ·hµnνn(zn)|Ĵ〉a, then com-

muting the exponential in (6) through the hµν(zA) yields a leading order contribution [12]
from a product of terms like (16),

a〈Ĵ |hµ1ν1(z1) · · ·hµnνn(zn)|Ĵ〉a = a〈J |
n∏

A=1

[
hSλAµAνA

(zA,y)PλA+ 1
2∂

σA
y hSλAµAνA

(zA,y)MσAλA

]
|J〉a ,

(17)
now depending on the state |J〉a only through moments of its Poincaré charges. A special
case of these expressions, where one computes soft charges from integrating the asymptotic
hµAνA(zA), was in [12] argued to show that the only required correlation of the soft charges
with the state is likewise through the moments of the Poincaré charges.

While this shows that at the perturbative level measurements of the metric asymptotics
are only sensitive to Poincaré charges, arguments have been given that more general
asymptotic measurements can be used to determine the state given the full, rather than
leading order, dressing. One is the argument of [13] (for further discussion see [16] and [18]),

6Perturbative gravitons can also be included.
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and an even simpler one was given in [9]. These rely on the fact that in gravity the total
momentum can be written as

Pµ = PADM
µ [h(∞)] +

∫
d3x Cµ(x) , (18)

with PADM
µ the ADM expressions given in terms of surface integrals at infinity, and so for

a solution of the constraints is given by just these ADM terms. So, following [9] we can
consider the expectation value of the asymptotic operators

a〈Ĵ |φb(y) eiPADM
i ci |Ĵ〉a (19)

where y is now in the asymptotic region, and ci describes a large translation that moves the
support of J into the asymptotic region overlapping y. For a solution of the constraints the
exponential in (19) is equivalent to one with the full momentum Pi, and this has the effect
of translating the state |Ĵ〉a to this asymptotic region, where the operator φb(y) can then
“register” the state with a result ∝ δab and distinguish the two possible states (1). This,
thus, describes asymptotic recoverability of information, for a full nonperturbative solution
of the constraints.

While these arguments have been illustrated in a Minkowski background, one expects
them to straightforwardly generalize to the context of anti de Sitter space, with the same
structure, using constructions of AdS dressings solving the constraints like those given in [11].
Thus, for example, one can construct a formal argument that by measuring combinations
of matter and gravitational operators analogous to (19) at the AdS boundary, given a
nonperturbative solution of the constraints, one can asymptotically recover information
about the state.

Ref. [20] has recently argued that this asymptotic accessibility of information also
extends to the perturbative context. Specifically, suppose we have perturbatively solved
the constraints, to determine a dressing. Working again with the example of a Minkowski
background, and generalizing eq. (17), or the preceding argument, one might expect that
asymptotic measurements allow determination of the correlators

a〈J |
∏
A

OA
∏
α

Qα|J〉a (20)

where again Qα are Poincaré charges, and OA are asymptotic operators, e.g. corresponding
to matter operators. Let’s suppose that we can indeed measure such correlators via
asymptotic measurements. Does that allow us to determine the difference between the
|J〉a? We emphasize that, once we have taken into account the use of the dressing in
providing the means to make the asymptotic measurements, (20) is then regarded as an
expression on a fixed background metric, e.g. AdS or Minkowski. Once again using the
definition (1) of the state, and the commutativity of the asymptotic operators OA with UJi,
the correlator (20) becomes

a〈J |
∏
A

OA
∏
α

Qα|J〉a = 〈0|
∏
A

OA
∏
α

(
U†JaQαUJa

)
|0〉 . (21)
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To understand the dependence of the latter expression on the state |J〉a, consider the
special case where the charge is the hamiltonian, as was considered in [20]. In this case, for
free scalar fields, one finds

U†JaHUJa = H +
∫
d3x

(
φ̇J φ̇a + ~∂φJ · ~∂φa

)
+ EJ , (22)

where φJ is the classical solution with source J ,

�φJ = J(x) , (23)

which has support only in the future lightcone of U , and EJ is the energy of this solution.
We now find that there can be dependence of the correlators (20), (21) on the choice of

a. Once again, to take a simple example, consider the correlator

a〈J |φb(y)H|J〉a (24)

where y is in a region asymptotically far from U . The preceding steps then yield

a〈J |φb(y)H|J〉a = 〈0|φb(y)
∫
d3x

(
φ̇J φ̇a + ~∂φJ · ~∂φa

)
|0〉 , (25)

which is proportional to δab, seemingly registering the difference between the two states (1).
However, for massive fields the result (25) is exponentially small [19] and vanishes

asymptotically. Specifically, let m be the mass of the fields φa, and let y be spatially
separated from U with distance L, in the Minkowski example. Since φJ only has support
in the future lightcone of U , we have

a〈J |φb(y)H|J〉a ∼ δab e−mL , (26)

The recoverable distinction between the states is thus exponentially tiny in the asymptotic
separation [19], and vanishes at infinity. A similar result holds with asymptotics of large-
radius R AdS, with a suppression ∼ e−mR near the boundary for fields with R � 1/m.
From the expressions (21) and (22), we clearly expect similar exponential suppression for
more general correlators.

Ref. [20] has alternately suggested using arbitrary powers of H in (21) to construct
energy projectors. This has a similar result. Suppose we likewise assume that it is possible
to make boundary measurements of such projected correlators. An example would be

a〈J |φb(y)|0〉〈0|J〉a . (27)

But, such a correlator, while proportional to δab, is again exponentially small in mL, or in
mR in AdS.

It is an interesting property of gravity that there is such an in-principle asymptotic
distinction between the states |J〉a also at the perturbative level discussed here. One way
of describing what has happened is that access to measurements of local operators and
Poincaré charges has given sensitivity to the small field correlations between the field in
a neighborhood, and that in its complement. What is not clear is that such small effects

– 6 –
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lead to a meaningful perturbative recoverability of the information about the identity of
the state by asymptotic measurements.

For one thing, if one performs asymptotic measurements, e.g. by interacting or scattering
of some system with the asymptotic gravitational field, one needs corresponding exponential
sensitivity to register an effect with a probability that is not exponentially suppressed.
This does not appear to indicate that the information is well recoverable asymptotically.
Likewise, for example, transfer of entanglement associated with such information from the
original system to a measuring system would be exponentially suppressed.

Moreover, the argument that the correlators (20) could be determined via asymptotic
measurements relied on solving the constraints to determine the gravitationally-dressed
state. If one only has a perturbative construction of the dressing solving the constraints, at
some order, it is not clear that it will lead to precise enough determination of the correlators
to distinguish exp{−mL} from zero. The question of perturbative solution of the constraints
to determine the higher-order dressings, generalizing [5], and its accuracy and role in such
arguments, is left to work in progress.

Similar arguments have been made for massless fields in [26]. Here, the correlators
in (26) or (27) would only be power-law suppressed in the distance. With a nonperturbative
construction of the dressing, enabling one to use asymptotic operators to exactly project
on the vacuum, as assumed in [26], that appears to possibly allow asymptotic access to
information, similarly to the case described in (19). However, if one only has a perturbatively-
calculated dressing, there will be errors in its determination of the energy (e.g. proportional
to the gravitational binding energy) which appear able to compete with even a power falloff
∼ 1/xp in correlators at asymptotic distances, although detailed analysis of this question
will be left for future work.

The preceding arguments are amplified by another argument [19] that, in the general
situation, one needs a nonperturbative solution of the constraints if one hopes to recover
information in asymptotic regions: the states (1) could differ by operators analogous to UJa
that act only within a black hole. This also suggests the need for a nonperturbative dressing,
although one could try to formally run the preceding argument by constructing perturbative
dressings, like those studied in [27], on the background geometry of the black hole.

In short, if there are indeed exponentially tiny (or even power law) effects by which
information is delocalized, that leaves the question regarding to what extent one can still
define an approximate notion of subsystem, in which information is for example dominantly
localized. The preceding arguments suggest that standard measurements or scattering
experiments don’t necessarily have access to such information.

We can specifically return to the question of black holes, and to what extent a black
hole is a subsystem, in which for example information can be localized. A black hole is
such a system in the LQFT approximation, and that localization lies at the center of the
problem of unitarity. It is certainly true that the small effects we have discussed make this
picture more subtle, and in particular for example raise an additional subtlety in defining
entropies of black holes or other candidate subsystems in gravity, but that is not clearly yet
the resolution of the unitarity problem advocated in recent work (see, e.g., [20]).
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Of course, the observation that effective couplings of the black hole state to its environ-
ment [28, 29] that are exponentially small in the black hole entropy can in principle restore
unitarity is also suggestive, in the context of discussing an exponentially small delocalization
of quantum information. But, it remains to be seen whether these effects are connected,
and it is not clear that the latter provide the modifications to evolution necessary for
unitarity. It would be very useful to more clearly understand the (approximate) localization
of information in quantum gravity, and also the full evolution of that information, for
which a nonperturbative completion may well be needed. Again the formal arguments for
holography of [6, 13] appear to rely on a nonperturbative solution of the constraints, which
is tantamount to starting with a nonperturbative description of evolution [18], suggesting
that this doesn’t lead to a direct solution to the problem.
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