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Abstract: We compute the hadronic running of the electromagnetic and weak couplings in
lattice QCD with Nf = 2 + 1 flavors of O(a) improved Wilson fermions. Using two different
discretizations of the vector current, we compute the quark-connected and -disconnected
contributions to the hadronic vacuum polarization (HVP) functions Π̄γγ and Π̄γZ for
Euclidean squared momenta Q2 ≤ 7 GeV2. Gauge field ensembles at four values of the
lattice spacing and several values of the pion mass, including its physical value, are used
to extrapolate the results to the physical point. The ability to perform an exact flavor
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decomposition allows us to present the most precise determination to date of the SU(3)-
flavor-suppressed HVP function Π̄08 that enters the running of sin2 θW . Our results for
Π̄γγ , Π̄γZ and Π̄08 are presented in terms of rational functions for continuous values of Q2

below 7 GeV2. We observe a tension of up to 3.5 standard deviation between our lattice
results for ∆α(5)

had(−Q2) and estimates based on the R-ratio for space-like momenta in the
range 3–7 GeV2. The tension is, however, strongly diminished when translating our result
to the Z pole, by employing the Euclidean split technique and perturbative QCD, which
yields ∆α(5)

had(M2
Z) = 0.02773(15) and agrees with results based on the R-ratio within the

quoted uncertainties.

Keywords: Hadronic Spectroscopy, Structure and Interactions, Standard Model
Parameters
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1 Introduction

Precision observables play a crucial role in the search for physics beyond the Standard
Model (BSM). They allow for exploring the limits of the Standard Model (SM) and constrain
possible extensions in a way that is complementary to direct searches in experiments at
high-energy colliders. This requires both the theoretical prediction and the corresponding
experimental result to be determined to a high level of precision. The evaluation of the
SM prediction is particularly challenging when the quantity of interest receives significant
contributions from hadronic effects. Indeed, because of the growth of the strong coupling
in the low-energy domain, perturbative methods fail to describe the strong interactions at
typical hadronic scales, in contrast to the high-energy regime and the electroweak sector.
Lattice QCD has emerged as one of the leading methods to compute these non-perturbative
QCD contributions from first principles. Lattice calculations have reached sub-percent
precision for many observables that are now routinely used in precision tests of the SM [1, 2].

The prominent example of the muon anomalous magnetic moment, aµ, is an apt
illustration of the importance of precision observables. The measurement of aµ by the E989
experiment at Fermilab [3], when combined with the earlier experimental determination at
BNL [4], produces a tension of 4.2σ with the theoretical prediction summarized in the 2020
White Paper [5] by the Muon g− 2 Theory Initiative. Given that the uncertainty of the SM
prediction is dominated by the hadronic vacuum polarization (HVP) and, to a lesser extent,
the hadronic light-by-light scattering (HLbL) contribution, it is clear that efforts to reduce
the theoretical error must focus on hadronic effects. In fact, the recent lattice calculation
of the HVP contribution by the Budapest-Marseille-Wuppertal collaboration (BMWc) [6]
suggests a strongly reduced tension of the SM prediction for aµ with the experiment, and
further lattice calculations are underway to confirm or refute these findings.

In this paper, we present results for two closely related observables that play a central
role in SM tests, namely the energy dependence (running) of the electromagnetic coupling,
α, as well as that of the electroweak mixing angle, sin2 θW. The former is an important
input quantity for electroweak precision tests, while the running of the mixing angle is
susceptible to the effects of BSM physics, particularly at low energies [7]. As in the case of
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aµ, the overall precision of both quantities is limited by hadronic effects. We employ the
same methodology as in our earlier lattice QCD calculation of aHVP,LO

µ [8], to compute the
hadronic vacuum polarization functions Π̄γγ and Π̄γZ that are relevant for the running of α
and sin2 θW, respectively. A key advantage of the lattice approach is the ability to perform
an exact valence flavor decomposition of the various contributions. This has allowed us to
determine the isoscalar (I = 0) contribution Π̄08 to the vacuum polarization function Π̄γZ

with much higher accuracy compared to the standard approach based on dispersion theory
and experimentally determined hadronic cross sections.

We present our main results for the HVP functions Π̄γγ , Π̄γZ and Π̄08 as continu-
ous rational functions in the Euclidean squared momentum Q2 up to Q2 ≤ 7 GeV2 (see
eqs. (4.11), (4.13) and (5.7)), together with the corresponding correlation matrices. By
employing the Euclidean split technique (or Adler function approach) [9, 10] we can combine
our lattice result for the hadronic running of the QED coupling with perturbative QCD to
translate it to the time-like momentum region. At the scale of the Z boson mass we obtain

∆α
(5)
had

(
M2
Z

)
= 0.027 73(15) , (1.1)

which agrees with corresponding results derived from dispersion theory and the experimen-
tally measured R-ratio [11–13] within errors.

This paper is organized as follows: in section 2 we review the main definitions relating
to the running of the electromagnetic and weak couplings. Our methodology to compute
the HVP contribution to the running of α and sin2 θW in lattice QCD, including the
treatment of the different sources of systematic errors, is discussed in section 3, with
section 3.8 describing the details of the lattice computation and the results on individual
gauge ensembles. In section 4 we discuss the extrapolation of our lattice results to the
continuum limit and physical pion and kaon masses for a range of values of Q2, quoting
the complete statistical and systematic error estimate. A detailed discussion of our results,
including their comparison with phenomenological estimates is presented in section 5. We
end with a short summary and conclusions. Further details on the auxiliary calculation
of pseudoscalar meson observables, error estimation, phenomenological models, as well as
extended tables of results at the physical point are relegated to several appendices. Readers
who are not interested in the technical aspects of the lattice calculation can skip section 3
and go directly to sections 4.2 and 5.

2 The running of electroweak couplings

2.1 The electromagnetic coupling

The first quantity that we consider is the electromagnetic coupling α ≡ e2/(4π). The value
that is relevant for interactions at energies much smaller than the electron mass, such as
in Thomson scattering, is the fine-structure constant, which is one of the most precisely
known quantities in experimental physics, with a precision of up to 81 parts per trillion in
the most recent measurement [14]. In the rest of this paper we use as reference value in the
Thomson limit (that is, for q2 → 0) the current world average, slightly less precise but still
better than a part per billion, of α = 1/137.035 999 084(21) [7].
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This contrasts with the 7 % larger value that is relevant for physics at or around
the Z pole. This value can both be measured in collider experiments and predicted
from the fine-structure constant using the theoretical knowledge of the renormalization
group (RG) running with energy. Choosing to work in the ms scheme, RG running predicts
α̂(5)(MZ) = 1/127.952(9) [7]. Alternatively, an effective coupling can be defined at any
time-like momentum transfer q2 in the on-shell scheme,

α
(
q2
)

= α

1−∆α (q2) , (2.1)

in terms of the function ∆α(q2). While the leptonic contribution to ∆α(q2) can be computed
in perturbation theory, the contribution from the quarks at low energies is non-perturbative
and encoded in the subtracted HVP function,1

∆αhad
(
q2
)

= 4παRe Π̄
(
q2
)
, Π̄

(
q2
)

= Π
(
q2
)
−Π(0) . (2.2)

The standard approach to determine ∆αhad proceeds by invoking the optical theorem,
which links the HVP function to the R-ratio, i.e. the total hadronic cross section σ(e+e− →
hadrons) normalized by σ(e+e− → µ+µ−), and evaluating a dispersion integral. A com-
pilation of precise experimental data for the R-ratio R(s) as a function of the squared
center-of-mass energy s = q2 has been used in the most recent efforts [11–13], resulting in
∆α

(5)
had(M2

Z) = 0.027 66(7) [7], which constitutes the main uncertainty in the value of α(M2
Z).

Lattice QCD allows for an ab initio, non-perturbative calculation of ∆αhad that avoids
the dependence on experimental R-ratio data. Since the lattice formulation realizes only
space-like momenta in a straightforward manner, the link to ∆αhad is provided by the
Adler function D(Q2) [16], as advocated in refs. [9, 10, 17, 18]. It is defined in terms of the
derivative of Π̄(−Q2) with respect to the space-like squared four-momentum Q2 = −q2 and
can also be written as a dispersion integral over the R-ratio, i.e.

D
(
Q2
)

= 12π2Q2 dΠ
(
−Q2)

dQ2 = Q2
∫ ∞

0
ds R (s)

(s+Q2)2 , (2.3)

On the other hand, the HVP function Π̄(−Q2) can be represented in terms of a current
correlator [19–21],(

QµQν − δµνQ2
)
Π
(
−Q2

)
= Πµν (Q) =

∫
d [4]xeiQ·x

〈
jγµ (x) jγν (0)

〉
, (2.4)

with the electromagnetic current jγµ of the quarks given by

jγµ = 2
3 ūγµu−

1
3 d̄γµd−

1
3 s̄γµs+ 2

3 c̄γµc+ . . . . (2.5)

1The conventional choice of taking the real part of Π̄(q2) and discarding the imaginary part simplifies
the conversion between the on-shell scheme and the ms one, given by eq. (10.10) of ref. [7]. However, to
define α(q2) as a physical observable also the subleading imaginary part should be included [5]. See also the
discussion around eq. (2.11) in ref. [15]. For space-like q2 < 0 accessible on the lattice, Π̄(q2) is real and
there is no issue around the imaginary part.
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The determination of ∆αhad is closely related to that of the leading HVP contribution to the
anomalous magnetic moment of the muon, aHVP,LO

µ . Both quantities can be evaluated either
via a dispersion integral using experimental data for the R-ratio or via a first-principles
approach based on a lattice calculation of the HVP function Π̄(−Q2).

The correlation between ∆αhad and aHVP,LO
µ implies that any evaluation of aHVP,LO

µ

also provides a constraint on ∆αhad. While enormous progress has been achieved in
recent years concerning ab initio calculations of aHVP,LO

µ in lattice QCD [5, 8, 21–29], the
current SM estimate is based on dispersion theory using the experimentally measured
R-ratio [5, 11, 12, 15, 30–32], which achieves an overall uncertainty at the level of 0.6 %.
However, the recent lattice determination by BMWc [6], which is the first to claim a level
of precision similar to that obtained from the R-ratio, favors a larger value for aHVP,LO

µ

compared to the phenomenological estimate. While such a higher value for aHVP,LO
µ would

reduce the tension between the SM and the experimental measurement, it would, via the
correlation with ∆αhad, further increase the already observed slight tension with global
electroweak fits [33–37]. Recent investigations, considering also the global fit predictions
of MW and the electroweak mixing angle, have concluded that an increase in the values
of aHVP,LO

µ and ∆αhad(M2
Z) is still compatible with global electroweak fits, provided that

the R-ratio is enhanced by 9 % in the region below ≈ 0.7 GeV [35]. This seems an unlikely
possibility, given the high precision that hadronic cross sections have been measured with.

The precise size of the increase on ∆αhad(M2
Z) which would correspond to the lattice

result in ref. [6] has not been precisely estimated. An independent lattice determination of
∆αhad(−Q2) over an interval of Q2 in the low-energy regime, as described in this paper,
can help to resolve this puzzle. We will return to an in-depth discussion of this issue in
section 5.

2.2 The electroweak mixing angle

The electroweak sector of the SM is characterized by two gauge couplings, g and g′, for the
SU(2)L weak isospin and U(1)Y weak hypercharge gauge interactions, respectively. The
electromagnetic coupling α = e2/(4π) is a linear combination of g and g′ parametrized by
the electroweak mixing angle (or Weinberg angle) θW defined through [7, 38]

e = g sin θW = g′ cos θW , sin2 θW = g′2

g2 + g′2
. (2.6)

Just as the couplings in the interacting quantum field theory are renormalization scheme
and energy dependent, so is the precise definition of sin2 θW beyond tree level. For instance,
since the angle enters the W and Z boson mass ratio, which is known precisely from collider
experiments, one choice of scheme employs the tree-level formula sin2 θW = 1−M2

W /M
2
Z to all

orders of perturbation theory, which results in the on-shell value of sin2 θW = 0.223 37(10) [7].
Another widely used convention is the effective coupling sin2 θfeff for the Z-boson coupling to
the fermion f , which is an input to the global electroweak fit mentioned in section 2.1. Finally,
in the ms definition of sin2 θ̂W(µ), one substitutes the ms couplings ĝ(µ), ĝ′(µ) at µ = MZ

into eq. (2.6), which gives the sub-permil precision value sin2 θ̂W(MZ) = 0.231 21(4) [7].
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There is a growing interest in experiments that probe precision electroweak observables
at momentum transfers q2 � M2

Z , such as measurements of cross sections of neutrino
scattering and parity-violating lepton scattering, as well as nuclear weak charges in atomic
parity violation experiments. These experiments are sensitive to modifications of the RG
running of the mixing angle by BSM physics. A q2-dependent definition of the mixing angle
that is appropriate for low-energy experiments is obtained by applying a form factor κ̂ to
the ms Z-pole value [39–44]

sin2 θW
(
q2
)

= κ̂
(
q2, µ

)
sin2 θ̂W(µ) , (2.7)

such that the Thomson limit results in the process-independent physical observable sin2 θW ≡
sin2 θW(0), the electroweak analog of the fine-structure constant α. The value κ̂(0,MZ) ≈
1.03 results in sin2 θ̂W = 0.238 57(5), quoted by ref. [7] as the average of different results [42,
44–46], which is 3 % larger than the Z-pole value used as input. Excluding uncertainties
from experimental input, the error on the theory prediction of sin2 θ̂W at q2 = 0 is dominated
by the non-perturbative hadronic contributions.

Experimental determinations of sin2 θW from current low-energy experiments are much
less precise [47–49] compared to α, with the current most precise value resulting from the
determination of the weak charge of the proton QpW by the Qweak experiment at JLab [50],
obtained at Q2 = 0.024 8 GeV2. However, future new and upgraded experiments have the
potential of changing the situation. The P2 experiment at MESA [51], which is expected to
start data taking in 2025, targets 0.15 % precision on sin2 θW at a momentum transfer of
4.5× 10−3 GeV2 [51], and the MOLLER and SoLID experiments at JLab have comparable
precision goals [52–54].

Following refs. [13, 55–57], the relation between sin2 θW(−Q2) and its value in the
Thomson limit can be written as

sin2 θW
(
−Q2

)
=
(

1−∆α2
(
−Q2)

1−∆α (−Q2) +∆κb
(
Q2
)
−∆κb(0)

)
sin2 θW(0) , (2.8)

where the bosonic contribution ∆κb is given in ref. [42], ∆α is the contribution to the
running of α in eq. (2.1) and ∆α2 is the contribution to the running of the SU(2)L gauge
coupling α2 ≡ g2/(4π), defined as

α2
(
q2
)

= α2
1−∆α2 (q2) . (2.9)

Similarly to ∆α, ∆α2 receives the leading hadronic contribution from the HVP
mixing function

∆α2,had
(
q2
)

= 4πα
sin2 θW

Π̄T3γ
(
q2
)

(2.10)

of the electromagnetic current jγµ with the vector part of the weak isospin third component
T3 current, i.e.

jT3
µ

∣∣
vector = 1

4 ūγµu−
1
4 d̄γµd−

1
4 s̄γµs+ 1

4 c̄γµc+ . . . . (2.11)
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At leading order, the hadronic contribution to the running of sin2 θW is given by [19, 55, 58]

∆had sin2 θW
(
q2
)

= ∆αhad
(
q2
)
−∆α2,had

(
q2
)

= − 4πα
sin2 θW

Π̄Zγ
(
q2
)
, (2.12)

where Π̄Zγ(q2) is the HVP mixing of the electromagnetic current jγµ and the vector part of
the neutral weak current

jZµ
∣∣
vector = jT3

µ

∣∣
vector − sin2 θWj

γ
µ . (2.13)

As for the running of α, the standard approach is based on a phenomenological estimate
of the hadronic contribution from experimental data [45, 46]. However, R(s) alone is not
sufficient in this case, as the total cross section couples only to the electromagnetic current
jγµ. The process of assigning individual channels in the hadronic cross section to the different
quark flavor contributions, in order to reweight them according to the weak isospin charge
factors, is called flavor separation and a source of systematic uncertainty.

In the next section we show that Π̄Zγ(−Q2) admits a decomposition into valence
flavor components that can all be determined directly from suitable correlation functions
computable in lattice QCD [19, 20, 59, 60]. This paves the way for ab initio estimates that do
not rely on experimental cross-section data and a reweighting of individual hadronic channels.

3 Methodology

3.1 The TMR method

The main primary observable that we compute in our lattice QCD simulations is the
correlation function, Gµν(x), of two generic vector currents jµ(x), defined by Gµν(x) =
〈jµ(x)jν(0)〉. By supplying the appropriate currents, i.e. jγµ or jZµ , we can compute the
electromagnetic HVP function Π̄γγ and its Z−γ counterpart Π̄Zγ as functions of Q2 in terms
of these correlators. In this work, we employ the time-momentum representation (TMR),
defined in [61, 62], which has emerged as the standard method to compute the HVP in lattice
QCD and which is well suited to open boundary conditions in the time direction, which
are employed on a large subset of our gauge ensembles (see section 3.4). For concreteness,
we consider the correlator of two electromagnetic currents, Gγγµν =

〈
jγµ(x)jγν (0)

〉
. In the

continuum and infinite-volume limits, the corresponding subtracted HVP function Π̄γγ(−Q2)
is given by the integral over Euclidean time

Π̄γγ
(
−Q2

)
=
∫ ∞

0
dtGγγ (t)K

(
t, Q2

)
(3.1)

of the product of the zero-momentum-projected correlator

Gγγ(t) = −1
3

∫
d3x

3∑
k=1

〈
jγk (t, ~x)jγk (0)

〉
(3.2)

multiplied by a Q2-dependent kernel function

K
(
t, Q2

)
=
[
t2 − 4

Q2 sin2
(
Qt

2

)]
. (3.3)
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Figure 1. Left: the kernel K(t, Q2) of the TMR integral in eq. (3.1) for different values of Q2,
compared to the kernel w(t) for aHVP,LO

µ [61, 63] (blue line), as a function of time t. All kernels are
divided by t3 in the plot, such that they tend to zero at t→∞ while being still zero at t = 0. Right:
contribution of G(t)K(t, Q2) to the TMR integral normalized to the value of the integral, comparing
different kernels. The light colored lines are drawn using a model for the Euclidean-time correlator
G(t) [61], that is also used for the integral, while the data points with error bars are obtained using
actual lattice correlator data at the physical pion mass.

The corresponding integral representation of Π̄γZ(−Q2) is obtained by replacing one of the
electromagnetic currents by jZµ . After inserting the definitions of the currents in eqs. (2.5)
and (2.11) and performing the Wick contractions of the quark fields, one can perform
explicit flavor decompositions of both Π̄γγ and Π̄γZ , as described in section 3.2.

The properties of the kernel significantly influence the integral and its systematics: in
the left panel of figure 1, we plot the kernel function K(t, Q2) for several different values
of Q2 versus Euclidean time. Also shown is the kernel w(t) that appears in the TMR
expression for aHVP,LO

µ , which is given explicitly in eq. (84) of ref. [61]. Despite the fact
that both K(t, Q2) and w(t) behave like t2 at long distances, it is evident that w(t) gives a
much higher weight to long distances compared to K(t, Q2). This has several consequences
for our calculation: on the one hand, since the signal-to-noise ratio of the vector correlator
lattice data degrades severely with time, the stronger suppression of the long-distance
contribution by the kernel K(t, Q2) makes it easier to achieve good statistical precision for
Π̄(−Q2) in our range of interest for Q2, compared to aHVP,LO

µ . Moreover, finite-size effects
that affect the correlator mostly at long distances are more strongly suppressed by K(t, Q2)
relative to w(t), even though they are still relevant at our target precision, as explained in
section 3.7. On the other hand, the peak of the kernel K(t, Q2) occurs at increasingly short
distances t for larger values of Q2, which results in larger discretization effects, both from
the correlator itself and from the approximation of the integral in eq. (3.1) as a discrete
sum.2 Therefore, lattice discretization effects and our ability to estimate and control the
associated systematic error ultimately limit the upper end of the range of Q2 values.

2In this work, we employ the trapezoidal rule to approximate the TMR intregral, which has a O(a2)
error that is consistent with the use of O(a)-improved action and operators, see section 3.4.
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3.2 Flavor decomposition

As already mentioned, the HVP functions Π̄γγ and Π̄Zγ differ only in their flavor content.
For the following discussion, we assume exact strong-isospin symmetry and neglect charm
disconnected contributions. It is convenient to introduce a strong isospin and SU(3)-flavor
basis for the quark triplet q = (u, d, s)T, starting from the vector currents jaµ = q̄γµ(λa/2)q
where λ3, λ8 are Gell-Mann matrices and λ0 = Id3,

I = 1: j3
µ = 1

2
(
ūγµu− d̄γµd

)
, (3.4a)

I = 0:
j8
µ = 1

2
√

3

(
ūγµu+ d̄γµd− 2s̄γµs

)
, (3.4b)

j0
µ = 1

2
(
ūγµu+ d̄γµd+ s̄γµs

)
, (3.4c)

such that, with the addition of the charm current jcµ = c̄γµc, the currents jγµ and jZµ are
represented by

jγµ = j3
µ + 1√

3
j8
µ + 2

3j
c
µ , jT3

µ

∣∣
vector = 1

2

(
jγµ −

1
3j

0
µ −

1
6j

c
µ

)
, (3.5a)

jZµ
∣∣
vector = jT3

µ

∣∣
vector − sin2 θWj

γ
µ =

(1
2 − sin2 θW

)
jγµ −

1
6j

0
µ −

1
12j

c
µ . (3.5b)

The correlators of interest are

Gγγµν(x) = G33
µν(x) + 1

3G
88
µν(x) + 4

9G
cc
µν(x) , (3.6a)

GZγµν (x) =
(1

2 − sin2 θW

)
Gγγµν(x)− 1

6
√

3
G08
µν(x)− 1

18G
cc
µν(x) , (3.6b)

which can be obtained by computing the building blocks G33
µν , G88

µν , G08
µν and Gccµν . In this

paper we will present as intermediate results, extrapolated to the physical point, the I = 1
HVP function Π̄33, the I = 0 ones Π̄88 and Π̄08, with the latter being relevant for the
running of sin2 θW case only, and the charm HVP function of Π̄cc.

Up to lattice renormalization and O(a) improvement, the flavor SU(3) contributions
are defined as3

G33
µν(x) = 1

2C
`,`
µν (x) , (3.7a)

G88
µν(x) = 1

6
[
C`,`µν (x) + 2Cs,sµν (x) + 2D`−s,`−s

µν (x)
]
, (3.7b)

G08
µν(x) = 1

2
√

3

[
C`,`µν (x)− Cs,sµν (x) +D2`+s,`−s

µν (x)
]
, (3.7c)

where the flavor labels ` and s denote the (isospin averaged) light and strange quarks,
respectively, while Cf1,f2

µν and Df1,f2
µν are, respectively, the connected and disconnected Wick

contractions, schematically given by

Cf1,f2
µν = −

〈
f2f2

γµγµ
f1f1 γνγν

〉
, Df1,f2

µν =
〈
γµγµ
f1f1

γνγν

f2f2

〉
. (3.8)

3In the usual lattice notation, G`con = 2G33 and Gscon = 3G88
con−G33. Moreover, G08

con =
√

3(G33−G88
con)/2.
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Section 3.8 explains the lattice computation of the connected and disconnected contractions
in more detail.

3.3 Renormalization and O(a) improvement

We use the vector correlators computed in ref. [8], with updated statistics and ensemble
coverage as listed in table 1. At the sink, we employ both the local (labeled by the superscript
labeled “L”) and conserved discretizations (labelled “C”) of the vector current, i.e.

ja,Lµ (x) = q̄(x)γµ
λa
2 q(x) , (3.9a)

ja,Cµ (x) = 1
2

[
q̄(x+ aµ̂)(1 + γµ)U †µ(x)λa2 q(x)− q̄(x)(1− γµ)Uµ(x)λa2 q(x+ aµ̂)

]
,

(3.9b)

while only the local current is used at the source. The O(a)-improvement and renormalization
of the vector currents in the flavor basis is complicated by the fact that flavor singlet and
non-singlet contributions renormalize differently: it is more convenient to work in the basis
introduced in section 3.2. For the local discretization, the renormalized (“R”) currents
read [64]

j3,L
µ,R = ZV

(
1 + 3b̄V amav

q + bV amq,`

)
j3,I,L
µ , (3.10a)

(
j8
µ

j0
µ

)L

R

= ZV

1 + 3b̄V amav
q + bV

a(mq,`+2mq,s)
3

(
bV
3 + fV

) 2a(mq,`−mq,s)√
3

rV dV
a(mq,`−mq,s)√

3 rV + rV (3d̄V + dV )amav
q

(j8
µ

j0
µ

)I,L

,

(3.10b)

where the improved (indicated by the label “I”) non-singlet and singlet local currents are

ja,I,Lµ = ja,Lµ + acL
V ∂̃νΣ

a
νµ , j0,I,L

µ = j0,L
µ + ac̄L

V ∂̃νΣ
0
νµ , (3.11)

with the antisymmetric tensor current Σa
µν = −(1/2)q̄[γµ, γν ](λa/2)q, and the breaking

of flavor SU(3) symmetry introduces a mixing between the singlet and non-singlet I = 0
components. Here, mq,` and mq,s are the bare subtracted light and strange quark masses,
with mav

q ≡ (2mq,` + mq,s)/3 denoting their average, and ∂̃µ is the symmetric lattice
derivative. The conserved current is automatically renormalized, and its O(a)-improved
version reads

ja,Cµ,R = ja,Cµ + acC
V ∂̃νΣ

a
νµ , j0,C

µ,R = j0,C
µ + ac̄C

V ∂̃νΣ
0
νµ . (3.12)

We have used the non-perturbative determination of the renormalization and improvement
coefficients ZV , bV , b̄V and cV from ref. [65]. Although a non-perturbative determination of
the renormalization coefficient rV is not available, one can avoid relying on the renormalized
singlet local current j0,L

µ,R by inserting the conserved singlet current (and thus jZµ ) at the
sink. Moreover, fV and c̄C,L

V are also not known. We set fV = 0 and c̄C,L
V = cC,L

V , which is
valid up to O

(
g6

0
)
corrections and introduces a negligible error.4 We propagate the error

4Both fV and c̄C,LV − cC,LV arise from disconnected diagrams in which at least three gluons are exchanged.
Thus, in perturbation theory this contribution is of O

(
g6

0
)
, see the discusssion after eq. (27) in ref. [65].
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T/a L/a tsym
0 /a2 a [fm] L [fm] mπ, mK [MeV] mπL ncfg (con., dis.)

H101 96 32 2.860 0.086 2.8 415 5.8 2 000 -
H102 96 32 2.8 355 440 5.0 1 900 1 900
H105 96 32 2.8 280 460 3.9 1 000 1 000
N101 128 48 4.1 280 460 5.8 1 155 1 155
C101 96 48 4.1 220 470 4.6 2 000 2 000

B450 64 32 3.659 0.076 2.4 415 5.1 1 600 -
S400 128 32 2.4 350 440 4.3 1 720 1 720
N451 128 48 3.7 285 460 5.3 1 000 1 000
D450 128 64 4.9 215 475 5.3 500 500

H200 96 32 5.164 0.064 2.1 420 4.4 1 980 -
N202 128 48 3.1 410 6.4 875 -
N203 128 48 3.1 345 440 5.4 1 500 1 500
N200 128 48 3.1 285 465 4.4 1 695 1 695
D200 128 64 4.1 200 480 4.2 2 000 1 000
E250 192 96 6.2 130 490 4.1 485 485

N300 128 48 8.595 0.050 2.4 420 5.1 1 680 -
N302 128 48 2.4 345 460 4.2 2 190 2 190
J303 192 64 3.2 260 475 4.2 1 040 1 040
E300 192 96 4.8 175 490 4.3 600 600

Table 1. List of CLS ensembles employed in this work, with approximate lattice spacings, spatial
volume and pion and kaon masses. All ensembles realize open boundary conditions in time, except
for B450, D450 and E250 on which the temporal boundary conditions are periodic. Values of tsym

0
and a are taken from ref. [66]. The number of configurations used for connected and disconnected
vector correlator measurements is listed in the last two columns.

on the renormalization coefficients ZV , bV , b̄V quoted in ref. [65] to our estimate of the
renormalized vector correlator. The values of the improvement coefficients are taken as
a definition of the O(a)-improved theory and no error on cV and c̄V is propagated. In
our continuum extrapolations, described in section 4, we have not found any evidence for
residual O(a) discretization effect.

Since our gauge ensembles do not include a dynamical charm quark, the charm con-
tribution to the vector correlator is computed in the quenched approximation, with the
charm-quark mass tuned using the experimental Ds meson mass and the local current
renormalized using the mass-dependent ZcV , as explained in ref. [8].

3.4 Lattice setup

Our calculations are performed on a set of Nf = 2+1 ensembles from the Coordinated Lattice
Simulations (CLS) initiative [67], with tree-level O

(
a2)-improved Lüscher-Weisz gauge action

and non-perturbatively O(a)-improved Wilson fermions [68]. A list of ensembles is shown
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Figure 2. Landscape of the ensembles from the CLS initiative employed in this work.

in table 1. While boundary conditions (BCs) in the spatial directions are always periodic,
most ensembles are characterized by open BCs in the time direction, which alleviates the
issue of topological charge freezing at small lattice spacings [69]. Only ensembles B450,
D450, and E250 are characterized by periodic (anti-periodic for fermions) BCs in time. We
use four lattice spacings, ranging from a ≈ 0.086 fm to ≈ 0.050 fm. The masses of the u
and d quarks are taken to be degenerate in the calculation, and the pseudoscalar meson
masses span the interval from mπ = mK ≈ 415 MeV at the SU(3)-symmetric point to the
physical ones along a trajectory on which the sum of the bare u, d and s quark masses is
kept constant. We set the scale using the value of the gradient flow scale t0 [70], which
has been determined as (8tphys

0 )1/2 = 0.415(4)(2) fm in ref. [66], using the pion and kaon
decay constants.

The ensembles have been generated with a small twisted mass applied to the light
quark doublet for algorithmic stability. The correct Nf = 2 + 1 QCD expectation values are
obtained after including the reweighting factors for the twisted mass and for the RHMC
algorithm used to simulate the strange quark, inclusive of the sign of the latter [71]. A
negative reweighting factor associated with the simulation of the strange quark is found
on less than 0.5 % of the total gauge field configurations employed in this work, and on
3.6 % of the configurations of C101, the most affected ensemble. The numerical impact
of including the sign of the reweighting factor on the HVP function Π̄ and on the meson
masses is negligible with respect to the statistical error. On the most affected ensembles, a
few percent increase in the statistical error is observed, compatible with the loss in statistics
due to the negative weight of some configurations. A few ensembles that had a larger
fraction of configurations with negative weight were excluded entirely from this work.

In this work we use the connected Wick contractions of the vector-current two-point
function that has been computed in ref. [8], albeit with significantly increased statistics,
especially on the ensembles closer to the physical point. For more details on the connected
correlator computation, we refer to ref. [8].

– 11 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
0

3.5 Quark-disconnected diagrams

The determination of quark-disconnected contributions (see eq. (3.8)) requires the evaluation
of quark loops

LOf (~p, t) =
∑
~x

ei~p·~x 〈Of (~x, t)〉F , (3.13)

for some operator Of (~x, t) involving a single quark flavor f , where 〈· · ·〉F denotes the
fermionic expectation value (in a given gauge-field background). Our computation of
quark-disconnected loops has been performed using a variant of the method introduced
in ref. [72] combining the one-end trick (OET) [73] which is commonly used with twisted-
mass fermions [73–75] with a combination of the generalized hopping parameter expansion
(gHPE) [76] and hierarchical probing (HP) [77]. The difference of two quark-disconnected
loops can be written as a product

tr
[
Γ (D−1

1 −D
−1
2 )

]
= (m2 −m1) tr

[
ΓD−1

1 D−1
2

]
, (3.14)

where D−1
f denotes the inverse of the Dirac operator for a given quark flavor labeled f = 1, 2

with masses m1 6= m2 and Γ is the desired combination of Dirac matrices. The OET
yields a very efficient estimator of the r.h.s. of eq. (3.14) by inserting all-volume stochastic
noise at the “one end” of the trace of the product ΓD−1

1 D−1
2 , where the identity (one)

matrix in Dirac space is inserted. This estimator has a lower variance than the standard
one that inserts the noise at the “Γ end” of either side of eq. (3.14) [72], see appendix C
for more details. In order to derive estimators for loops of a single, individual quark
flavor, an efficient scheme has been proposed in ref. [72] that relies on computing the OET
estimator for a chain of f = 1, . . . , N different quark flavors with m1 < m2 < . . . < mN and
evaluating the single flavor trace for the heaviest flavor explicitly, from which it is possible
to recursively reconstruct single-flavor traces for all other quark flavors. To this end, the
hopping parameter expansion is used, which is known to be very efficient at large quark
masses. It is based on a decomposition of D−1

N into two terms [72]

D−1
N = M2n,m +D−1

N H2n
m , (3.15)

where

M2n,m = 1
Dee +Doo

2n−1∑
i=0

H i
m , Hm = −

(
DeoD

−1
oo +DoeD

−1
ee

)
, (3.16)

and Dee, Deo, Doe, Doo denote the blocks of the even-odd decomposition of the Dirac
operator. In ref. [72] a probing scheme has been introduced that yields an exact result
for the (sparse) first term in eq. (3.15) for disconnected loops involving local operators.
However, since we are also interested in computing observables involving point-split currents,
a more general method is required. Therefore, we evaluate the first term, M2n,m, using
hierarchical probing on spin and color diluted stochastic volume sources. For the second
term it is sufficient to use naive stochastic volume sources, and the required inversion
can be reused in the evaluation of tr

[
Γ (D−1

N−1 −D
−1
N )

]
, i.e. the last term of the chain of

OET estimators.
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We find that this method is significantly more efficient than e.g. plain hierarchical
probing, which we have applied in previous studies in refs. [8, 78]. For the local and conserved
vector currents, which are of interest for the present study, a minor reduction in the resulting
errors is already observed for the case of a single light quark, while a much more significant
improvement is observed when the OET is applied to the l−s combination. In the case of the
conserved vector current, the errors from the plain hierarchical probing with 512 Hadamard
vectors on two stochastic volume sources exceeds the one from the (OET+gHPE+HP)-based
method by a factor of ≈ 2, indicating that even with 512 Hadamard vectors the gauge
noise had not nearly been reached for this observable. Using OET estimators, we reach the
gauge noise for all the disconnected quark loops relevant to this work. However, even more
striking is the difference in computational cost which is improved by at least a factor five.

Within this study we observe a large gain in precision on the disconnected contribution
to Π̄88, since it is the product of two λ8 currents that requires the estimation only of the
first loop difference, proportional to ms−m`. The disconnected contribution to Π̄08 instead
has only one factor of λ8, and another factor of the SU(3)-singlet current that requires the
evaluation of the full telescopic sum and is inherently more noisy. This is clearly visible in
the different size of the error band of the two disconnected contributions in figure 5.

Finally, we remark that the disconnected contribution to both HVP functions considered
here vanishes for ms = m`, i.e. at the SU(3)-symmetric point.

3.6 Signal-to-noise ratio and bounding method

The vector correlator is affected by the well-known exponential deterioration of the signal-to-
noise ratio (S/N) with Euclidean time t [79, 80]. In the case of the connected contribution,
the S/N deteriorates roughly like exp{−(E0 −mπ)t}, where E0 is the lowest energy level
in the vector channel. The problem worsens at lower pion masses. Moreover, for the
quark-disconnected contribution, the statistical error is independent of the source-sink
separation. This is significant, since the kernel K(t, Q2) behaves like t2 at long distances. In
order to have a bounded error on the disconnected contribution to the vector correlator it
is necessary to truncate the TMR integration, if one wants to avoid having to increase the
Monte Carlo (MC) sampling statistics exponentially with time. Solving the S/N problem
is an active field of research. One promising direction is multi-level MC sampling [81–85]
which has recently been applied to the closely related problem of computing the HVP
contribution to (g − 2)µ [86]. To use multi-level MC sampling efficiently, it is crucial that
the estimators of connected and disconnected diagrams are in a regime dominated by the
gauge noise. As explained in section 3.5, this is indeed the case for disconnected diagrams
calculated using the OET estimator. In turn, this strengthens the case for improving the
estimator of connected diagrams to reach the gauge noise, as a first step towards a future
application of multi-level MC methods.

The bounding method has established itself as the primary method to alleviate the
S/N problem in HVP computations using the TMR [21, 24, 87]. The method consists
of substituting the correlator G(t) at t > tcut with G(tcut) multiplied by an exponential
function that decays with the time distance. By giving the appropriate exponents to this
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Figure 3. Bounding method on the I = 1 (left) and I = 0 (right) components for ensemble D200 at
Q2 = 0.5 GeV2. The upper bound (orange points and band) is chosen as the ground state obtained
from the finite volume analysis (left) or as the ρ meson mass (right). The lower bound (green points
and band) is computed using the effective mass at every time slice. The time slices on which the
upper and lower bound are averaged are indicated by the limits of the average lines and error boxes.
The less stringent lower bound given by the integral truncated up to t is also given (blue points
and band).

product, we can obtain either a lower or an upper bound of the correlator,

0 ≤ G(tcut)e−Eeff(tcut)(t−tcut) ≤ G(t) ≤ G(tcut)e−E0(t−tcut), t ≥ tcut , (3.17)

with the effective mass aEeff(t) = log(G(t)/G(t+ a)) and the ground state in a given
channel E0. Once both bounds are saturated within errors, the corresponding estimate
HVP contribution can be computed as a function of tcut. An improved estimate of the
HVP function is obtained by averaging both bounds over an interval of about 0.8 fm in
tcut, starting from a timeslice where the two innermost bounds coincide at least within
half the combined uncertainty. An example is given in figure 3 for the I = 1 and I = 0
components. We select the bounding method interval for fixed Q2 = 0.5 GeV2, where, as
noted in section 3.1, the weight of the correlator tail is relatively high, and use the same
interval at all Q2 values, since the results depend only weakly on Q2.

A dedicated spectroscopy analysis that yields the energy levels in finite volume is not
available for all ensembles used in this work. In the absence of a precise estimate for E0, we
note that any energy level ≤ E0 provides a valid, albeit less stringent upper bound. Thus,
when applying the bounding method, we may supply any realistic estimate for E0, as long
as it does not exceed the true ground state energy. Our specific values of E0 depend on
the isospin and ensemble studied. In the I = 1 channel Π̄33, we substitute either the ρ
meson mass mρ or the two-pion state Eππ for E0, depending on the pion mass and box
size of the ensemble. Their respective estimates are obtained from our finite-size effects
analysis. For some ensembles we can employ the spectroscopy computation of ref. [88] to
obtain a precise estimate of mρ while keeping our own bootstrap distribution to propagate
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the errors correctly. The ensembles where Eππ is the ground state are C101, D200, E250
and E300. We could confirm that the two-pion state used is lighter than its non-interacting
counterpart 2

√
m2
π + (2π/L)2.

When applying the bounding method to the I = 0 contribution Π̄88, we have identified
E0 with mρ, which is motivated by several observations. First, since mρ . mω, this is a
more conservative choice. Second, while we have computed the I = 0 correlator including
quark-disconnected diagrams on some ensembles, the results are too noisy for applying the
finite-volume analysis to determine the spectrum. Thirdly, while we could also consider
the lightest three-pion state with vector isoscalar quantum numbers in the non-interacting
case [89], i.e.

E3π = 2
√
m2
π + (2π/L)2 +

√
m2
π + 2(2π/L)2 . (3.18)

we find that mρ < E3π on our ensembles, mainly due to the extra energy coming from the
momenta needed to get the correct quantum numbers.

While the effective mass Eeff that provides the lower bound can be obtained from the
asymptotic behavior of the correlator, its determination is hampered by the S/N problem at
long distances. In these cases we substitute it by the effective mass computed on a earlier
timeslice, which is in fact larger and therefore a more conservative choice.

Besides the Π̄33 and Π̄88 contributions, we apply the method to the quark-connected
Π̄88

con, assuming that asymptotically it behaves like the Π̄33 contribution. This allows us to
obtain a more precise estimate of the quark-disconnected contribution Π̄88

dis, by subtracting
the bounding method estimate of Π̄88

con from the one of Π̄88.
It is possible to apply the bounding method also to the Π̄08 contribution, with some

additional caveats. Indeed, the G08 correlator does not have the positive-definite spectral
representation that is needed for eq. (3.17) to be valid in general. We know, however,
that G08 has the same E0 as G88 and that the corresponding amplitude a0 is positive.
Furthermore, the correlator G08 approaches its asymptotic behavior ∼ a0 exp{−E0t} from
below. Likewise, Eeff approaches E0 from below. It follows that, for any t ≥ tcut, the
correlator G08(t) is bounded by G08(tcut)e−Eeff(tcut)(t−tcut) and G08(tcut)e−E0(t−tcut) from
above and below, respectively, which is opposite to eq. (3.17). We exploit this fact to apply
the bounding method to the Π̄08 contribution, choosing to average the bounds in the same
interval of tcut values used for Π̄88, which, as direct inspection shows, is a conservative
choice. Similarly to the case of Π̄88, we apply the bounding method also to the connected
contribution Π̄08

con and, after taking the difference with Π̄08, obtain a more precise estimate
of Π̄08

dis.
Finally, we note that the charm correlator does not require any specific treatment of

the tail since it has a very fast exponential decay and higher precision. The pion masses
and energy levels that enter the bounding method are listed for each ensemble in table 2.

3.7 Correction for finite-size effects

Lattice QCD simulations are performed in a periodic box of finite volume L3 and finite
Euclidean time extent T . In order to obtain reliable estimates for ∆αhad, the results must
be corrected for finite-size effects. The leading effect is a shift of the vector correlator that,
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amπ aE2π aE3π amρ

H101 0.183 6(5) 0.537 6(7) 0.870 4(9) 0.375(2)
H102 0.154 6(6) 0.499 8(7) 0.817 6(10) 0.358(3)
H105 0.123 5(13) 0.463 9(14) 0.767 9(19) 0.338(11)
N101 0.122 4(5) 0.358 4(6) 0.580 3(9) 0.340(4)
C101 0.096 2(6) 0.324 8(8) 0.533 5(11) *0.326(3)

B450 0.161 1(4) 0.507 9(6) 0.829 0(8) 0.337(1)
S400 0.135 9(4) 0.477 6(5) 0.786 8(7) 0.312(4)
N451 0.110 9(3) 0.343 1(4) 0.558 9(5) 0.302(4)
D450 0.083 6(4) 0.257 9(5) 0.420 0(7) 0.303(8)

H200 0.136 3(5) 0.478 1(5) 0.787 4(8) 0.286(3)
N202 0.134 2(3) 0.375 0(4) 0.603 6(6) 0.280(3)
N203 0.112 7(2) 0.345 4(3) 0.562 1(4) *0.268(1)
N200 0.092 3(3) 0.320 4(3) 0.527 3(4) *0.252(2)
D200 0.065 1(3) 0.235 7(3) 0.389 0(4) *0.250(2)
E250 0.042 2(3) 0.155 7(3) 0.257 4(4) *0.251(4)

N300 0.106 2(2) 0.337 1(3) 0.550 5(4) 0.222(3)
N302 0.087 2(3) 0.314 6(4) 0.519 3(5) 0.216(3)
J303 0.064 8(2) 0.235 3(2) 0.388 5(3) *0.200(2)
E300 0.043 7(2) 0.157 4(2) 0.259 7(2) 0.198(2)

mρ/mπ gρππ

2.04(1) 4.81(2)
2.32(2) 4.85(4)
2.74(9) 5.00(19)
2.78(4) 4.91(6)
3.48(4) 4.81(4)

2.09(1) 4.82(1)
2.29(3) 5.02(5)
2.73(4) 4.97(7)
3.63(10) 4.72(19)

2.10(2) 4.86(4)
2.08(2) 4.87(6)
2.39(2) 4.91(4)
2.82(5) 4.92(9)
3.92(5) 4.86(5)
5.74(13) 4.99(9)

2.09(3) 4.98(6)
2.47(4) 4.96(9)
2.99(4) 5.12(7)
4.54(5) 4.77(2)

Table 2. From left to right, label of the CLS ensemble, pion mass, energy of the two- and three-pion
non-interacting finite-volume states, and rho meson mass used in the bounding method. E3π
is obtained employing eq. (3.18). The estimate of mρ is obtained from a fit to the local-local
discretization of the correlator G33 as described in section 3.7.1, except when a value is available
from a dedicated study [88]. In this case, the entry is marked by an asterisk (see also table VII in
ref. [8]). In the last two coloumns we list mρ/mπ and gρππ which serve as input parameters for
the Gounaris-Sakurai model used in the MLL-GS method to correct for finite-size effect. For this
purpose, we always use the parameters obtained from the fit to G33.

for the volumes and pion masses considered here, is of order exp{−mπL} and dominated by
the ππ channel. It follows that the I = 1 contribution Π̄33 is mostly affected by finite-size
effects. To correct for this, we follow a strategy similar to refs. [8, 62, 63]. To this end, we
compute the difference between the I = 1 vector correlator in infinite and finite volume
as a function of Euclidean time t. Depending on the value of t in physical units, different
methods are considered to determine the finite-size correction reliably.

The ππ contribution to the I = 1 vector correlator can be computed in Chiral Pertur-
bation Theory (χPT), both in finite and infinite volume. In our earlier works [8, 63, 90],
we used χPT at next-to-leading order (NLO) to correct the correlator at short Euclidean
times for finite-size effects, applying the formula given in eq. (C.4) of ref. [63] (see also
ref. [62]). This very simple model corresponds to the correction from noninteracting pions
and is known to only account for a fraction of the finite-volume correction to Π̄(−Q2) at
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Figure 4. Comparison of the TMR integral at Q2 = 1 GeV2 of the finite-size correction to the
G33 correlator on the D200 ensemble as a function of the TMR integration time. The MLL-GS
method discussed in section 3.7.1 (blue points and band) agrees well with the HP method discussed
in section 3.7.2 (green line and band), while the NLO χPT result using eq. (C.4) from ref. [63]
(orange points and line) underestimates the finite-size correction except at very short time distances.
The vertical gray line is at ti = (mπL/4)2/mπ. For comparison, the gray shaded area indicates the
statistical error on the G33 correlator.

Q2 values of O(1 GeV2) [91]. A better estimate of the correction can be obtained using χPT
at next-to-next-to-leading order (N2LO) [28, 92], or using the Hansen-Patella (HP) method
described in section 3.7.2. We choose to employ the latter for the finite-size correction on
the correlator at short time distances. For the correction at long time distances, we use
either the HP method or the same method as in refs. [8, 63], described in the next section.

3.7.1 Meyer-Lellouch-Lüscher formalism with Gounaris-Sakurai
parametrization

An accurate description of the finite-size correction on the correlator tail is obtained making
use of a more realistic model for the time-like pion form factor Fπ(ω). In infinite volume
the ππ contribution to the I = 1 correlator has the spectral function representation [93, 94]

G33(t,∞) =
∫ ∞

0
dω ω2ρ(ω2)e−ωt, ρ

(
ω2
)

= 1
48π2

(
1− 4m2

π

ω2

) 3
2

|Fπ(ω)|2, (3.19)

while the finite volume correlator is a sum of exponentials

G33(t, L) =
∑
n

|An|2e−ωnt, (3.20)

with the finite-volume energies ωn and amplitudes An. In ref. [95] it was realized that
the amplitudes An are proportional to the timelike pion form factor Fπ(ω), with the
proportionality given by a Lellouch-Lüscher factor [96, 97]. Thus, knowledge of the pion
form factor allows one to work out the finite-size correction. As in our earlier work [8, 63],
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we use the Gounaris-Sakurai (GS) parametrization [98] of Fπ(ω), which depends on only
two parameters mρ/mπ and gρππ, and refer to this approach as the Meyer-Lellouch-Lüscher
Gounaris-Sakurai (MLL-GS) method. The two parameters are determined empirically from
a fit to our correlator data. In the absence of a better way to isolate its ππ contribution, we
restrict the fit to the tail of the correlator, and we cut off, using a smoothed step function,
the spectral function representation in eq. (3.19) at some energy corresponding to the
inelastic threshold. Correspondingly, the sum over Lüscher energies and Lellouch-Lüscher
amplitudes in eq. (3.20) is limited to the same cut-off energy. Non-elastic interactions
become important around the heuristic value mρ +mπ [61], which we use in the smooth
cut-off function. The parameters that we obtain in this way are tabulated in table 2.

We emphasize that we do not assume that the GS parametrization can be used to
accurately model the tail of the correlator. Instead, we use the model only to correct for
the relatively small finite-volume effect on the correlator. In the future, we plan to further
reduce the model dependence, employing, where available, a full lattice determination of
Fπ(ω) [88, 99] instead of the GS parametrization. The Fπ(ω)-based model provides a good
spectral representation of the correlator up to the inelastic threshold, thus we use it for the
correlator correction at t > ti, with ti = (mπL/4)2/mπ, as in refs. [8, 63].

3.7.2 Hansen-Patella method

An alternative method to correct for the finite-size effect on the correlator has been proposed
by Hansen and Patella [100, 101]. Here the leading finite-volume effects are determined to
all orders with respect to the interactions of a generic, relativistic effective field theory of
pions. Their result is an expansion in the squared momentum vector, |~n|2 = 1, 2, 3, 6, . . . ,
with each term of order exp{−|~n|mπL}, and the first neglected effect arising from a sunset
diagram of order exp{−

√
2 +
√

3mπL} ≈ exp{−1.93mπL}. The coefficient of each term in
the expansion is given by the forward Compton amplitude of the pion, which is decomposed
into a pole and a regular piece. Following ref. [101], the dominant contribution is coming
from the pole, and is expressed in terms of the electromagnetic form factor F (−Q2) of the
pion in the spacelike region Q2 > 0. In this work, we model the latter using the monopole
representation that describes the data in ref. [102],

F
(
−Q2

)
= 1

1 +Q2/M2 (m2
π) , M2

(
m2
π

)
= 0.517(23) GeV2 + 0.647(30)m2

π ,

(3.21)
albeit in Nf = 2 QCD. The remaining regular piece, which is independent of the pion form
factor, is at most 1 % of the pole contribution and can be safely neglected. As in the case
of the MLL-GS method, this relatively crude modelling is sufficient, given that it is only
used to estimate the finite-size correction.

While the expansion converges to the leading-order finite-size correction to the correlator
at any Euclidean time t, the convergence is faster at short time distances. Therefore, we use
the sum of the first three terms, ~n2 = 1, 2 and 3, to estimate the finite-size correction to
the TMR integrand for either the whole t-range, or for t < ti. The ~n2 = 3 term is the last
term that we can compute that is parametrically larger than the unknown sunset diagram
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whole t range ti t < ti t > ti
×105

χPT HP MLL-GS [fm] HP MLL-GS combined

H101 3.37 12.0(5) 10.5(2) 1.01 4.91(10) 5.7(1) 11.3(1.6)
H102 8.23 26.9(1.4) 23.9(5) 0.85 6.44(18) 17.5(4) 25.4(3.4)
H105 21.30 61.6(5.0) 57.3(3.2) 0.68 6.74(36) 50.7(3.1) 59.5(5.6)
N101 4.27 8.6(3) 8.2(2) 1.52 5.38(15) 2.9(1) 8.5(5)
C101 13.78 25.2(1.4) 23.9(7) 1.20 9.29(34) 15.1(5) 24.8(1.6)

B450 6.10 24.3(1.1) 21.0(4) 0.79 4.72(11) 16.1(3) 22.5(3.8)
S400 13.37 49.8(3.0) 45.6(1.2) 0.66 6.22(21) 39.1(1.1) 47.6(5.2)
N451 6.79 15.2(6) 14.1(3) 1.22 6.77(16) 7.6(2) 14.8(1.2)
D450 7.34 12.2(5) 11.6(3) 1.63 6.66(21) 5.0(2) 11.9(7)

H200 11.36 59.9(3.7) 49.3(1.1) 0.56 4.81(17) 44.2(1.0) 54.4(12.2)
N202 2.11 6.6(2) 5.8(1) 1.24 3.57(8) 2.3(1) 6.2(8)
N203 5.70 16.2(7) 14.3(2) 1.04 5.78(13) 8.7(2) 15.3(2.1)
N200 14.40 37.1(2.2) 33.5(8) 0.85 6.94(23) 26.7(7) 35.4(4.1)
D200 20.73 36.1(2.4) 34.1(6) 1.07 10.26(39) 24.6(4) 35.5(2.3)
E250 25.26 31.7(2.5) 34.1(8) 1.56 11.11(50) 22.3(6) 32.6(2.7)

N300 6.34 26.4(1.2) 22.5(6) 0.76 4.75(11) 17.6(5) 24.4(4.5)
N302 15.37 58.2(3.8) 48.2(1.4) 0.62 5.96(22) 42.2(1.3) 53.2(11.4)
J303 19.16 45.3(3.1) 42.6(1.0) 0.83 8.38(32) 34.5(9) 44.1(3.3)
E300 21.17 32.3(2.2) 31.3(4) 1.25 10.42(40) 21.4(3) 32.1(1.6)

Table 3. Finite-size corrections to the I = 1 HVP function Π̄33(−Q2) × 105 at Q2 = 1 GeV2 for
each individual gauge ensemble. Columns 2–4 show the finite-size effects estimated using NLO χPT,
the Hansen-Patella (HP) method and the Meyer-Lellouch-Lüscher Gounaris-Sakurai (MLL-GS)
formalism, respectively. In the following columns we list the corrections for time distances shorter
than ti, estimates using the HP method, as well as for distances greater ti obtained via the MLL-GS
formalism. In the last column we specify the chosen combination to correct for finite-size effects on
Π̄33, obtained from the HP method at t < ti, and the average of the HP and MLL-GS values, with
the difference added to the error as an additional systematic, at t > ti.

contribution, and its size is thus taken as a conservative systematic error from the series
truncation. This has a comparable size to the statistical error from our measurement of mπ.

The finite-size correction to the TMR integrand of Π̄33(1 GeV2) on the D200 ensemble
as a function of t is shown in figure 4 for the three different methods considered here,
including the HP partial series for different values of |~n|, and compared to the statistical
error on the I = 1 correlator multiplied by the TMR kernel. It is important to recall
that the MLL-GS and HP methods rely on very different input for the pion form factor
in the time-like and space-like regimes, respectively. Thus, the good agreement between
the MLL-GS approach and the HP method for ~n2 ≤ 3, especially for t & 2 fm demonstrates
the robustness of the evaluation of finite-volume corrections based on these two procedures.
By contrast, the correction obtained from χPT is significantly smaller. The integral of
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the correction, at Q2 = 1 GeV2, computed using χPT, the HP method and the MLL-GS
approach is listed for each ensemble in table 3. Regarding the finite-size correction over
the whole range of t, one observes that the MLL-GS and the HP methods produce similar
results, while the χPT estimates are between 25–75 % of the other two. With this in mind,
we define our best estimate for the correction of the finite-volume effects of Π̄33 in the
following way: for short time distances (t <) we use the HP-method estimate, for long
time distances (t >) we take the average between the HP-method and MLL-GS values
including the difference between the two as an additional source of systematic error, added in
quadrature. The χPT estimate is not used at all. These short- and long-distance corrections
are given for each ensemble in table 3, with our best estimate in the last column.

We can directly test the reliability of the finite-size corrections, by comparing the
predictions of the MLL-GS and HP models to results obtained for two different volumes at
otherwise identical simulation parameters. The corresponding pairs of ensembles are H105
and N101 (at mπ ≈ 280 MeV), as well as H200 and N202 (at the SU(3)-symmetric point).
For both sets, we confirmed that the TMR integral contribution, which clearly differs before
correcting for finite-size effects, agrees within errors after the correction is applied.

We do not correct for subleading finite-size effects in the I = 0 contributions Π̄88 and
Π̄08, except for the case of SU(3)-symmetric ensembles, where Π̄88 and Π̄33, and thus the
respective finite-size-effect corrections, coincide. On these ensembles, the Π̄33 and Π̄88

finite-size effects are further enhanced by a factor of 1.5, due to the contribution from kaon
loops. Away from the SU(3)-symmetric point, the long-distance behavior of the partially-
quenched G88

con and G08
con correlators is expected to be dominated by the I = 1 contribution,

with a prefactor of 1/3 and 1/
√

3 respectively. Therefore, we include a finite-size correction
for Π̄88

con, which is equal to 1/3 of that of Π̄33 and which cancels the opposite-sign correction
on Π̄88

dis. The same procedure is applied to Π̄08
con and Π̄08

dis.

3.8 Lattice results

We are now in a position to present our finite-volume corrected results on all our ensembles.
Figure 5 shows the running of different contributions to Π̄(−Q2), defined through the
correlators in eq. (3.6), as a function of Q2 on three different lattices at the same lattice
spacing with increasingly lighter pions. While Π̄(−Q2) is dimensionless, the TMR kernel
K(t, Q2) in eq. (3.3) and Q2 itself are dimensionful quantities, thus scale setting is needed
to translate Q2-values in GeV2 to lattice units. For this purpose, we insert into the kernel
the dimensionless product t0Q2,5 where the gradient flow scale t0 introduced in section 3.4
has been computed on each ensemble, see appendix A and table 8. Results on each ensemble
at Q2 = 1 GeV2 are given in table 4. For Π̄08, both connected and disconnected, only
the results with the conserved-local discretization are available, for the reasons discussed
in section 3.3. At the SU(3)-symmetric point Π̄88

con = Π̄33, and Π̄88
dis as well as both

components of Π̄08 vanish exactly. The corresponding entries in the table are set to zero.
As one moves away from the SU(3)-symmetric point, the Π̄33 contribution increases, while

5With the exception of the charm contribution and its extrapolation for which tsym
0 Q2 is used, see

section 4.1.2.
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×105 Π̄33 Π̄88
con Π̄88

dis Π̄88 Π̄08
con Π̄08

dis Π̄08

H101 2 855(6) 2 855(6) 0 2 855(6) 0 0 0
2 769(7) 2 769(7) 0 2 769(7)

H102 2 985(10) 2 749(7) −12(2) 2 737(6) 209(5) −39(7) 170(8)
2 899(10) 2 663(7) −12(2) 2 651(7)

H105 3 156(21) 2 667(11) −13(8) 2 654(13) 429(12) −50(20) 379(21)
3 069(21) 2 581(11) −15(8) 2 566(13)

N101 3 170(10) 2 683(5) −31(4) 2 652(6) 430(6) −70(15) 360(18)
3 086(10) 2 597(5) −33(4) 2 564(6)

C101 3 349(13) 2 682(7) −60(7) 2 622(9) 588(8) −134(23) 454(24)
3 264(14) 2 597(7) −63(7) 2 534(10)

B450 2 764(9) 2 764(9) 0 2 764(9) 0 0 0
2 696(9) 2 696(9) 0 2 696(9)

S400 2 903(13) 2 659(8) −14(2) 2 645(8) 216(6) −36(9) 180(10)
2 836(14) 2 593(9) −15(2) 2 578(8)

N451 3 096(7) 2 628(3) −22(3) 2 606(4) 412(4) −50(11) 363(11)
3 030(7) 2 562(3) −23(3) 2 539(4)

D450 3 279(10) 2 605(4) −37(6) 2 568(6) 591(6) −76(19) 516(18)
3 214(10) 2 539(4) −41(6) 2 498(6)

H200 2 697(21) 2 697(21) 0 2 697(21) 0 0 0
2 651(21) 2 651(21) 0 2 651(21)

N202 2 736(12) 2 736(12) 0 2 736(12) 0 0 0
2 689(13) 2 689(13) 0 2 689(13)

N203 2 878(9) 2 620(7) −10(2) 2 610(7) 225(5) −26(9) 199(11)
2 830(10) 2 573(7) −10(2) 2 563(7)

N200 3 023(11) 2 549(5) −22(5) 2 527(6) 414(7) −56(19) 359(20)
2 977(11) 2 502(5) −24(5) 2 478(6)

D200 3 248(12) 2 535(5) −53(8) 2 481(9) 621(8) −131(22) 490(23)
3 200(12) 2 487(5) −56(8) 2 432(9)

E250 3 530(21) 2 586(7) −132(14) 2 454(14) 826(14) −257(31) 569(31)
3 482(21) 2 540(7) −136(14) 2 404(14)

N300 2 596(13) 2 596(13) 0 2 596(13) 0 0 0
2 569(13) 2 569(13) 0 2 569(13)

N302 2 737(16) 2 470(8) −12(5) 2 458(8) 234(8) −9(17) 225(16)
2 710(16) 2 442(8) −12(5) 2 430(8)

J303 3 028(18) 2 455(8) −35(5) 2 420(10) 498(10) −96(14) 402(18)
3 002(18) 2 429(8) −37(5) 2 392(10)

E300 3 268(27) 2 462(9) −66(16) 2 396(16) 702(16) −171(48) 530(52)
3 242(27) 2 434(9) −67(16) 2 368(16)

Table 4. Estimate of connected and disconnected contribution to Π̄(−Q2)× 105 at Q2 = 1 GeV2

for the conserved-local (first line) and, when available, local-local (second line) discretization.
Contributions tabulated as 0 vanish exactly due to SU(3)-symmetry. The contributions are estimated
applying the bounding method as explained in section 3.6 and the correction for finite-size effects as
of section 3.7.
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Figure 5. Running with energy Q2 of different contributions to Π̄(−Q2) on three different ensembles
at a ≈ 0.064 fm. The conserved-local discretization is shown and, when available, the local-local
discretization in a lighter color shade. The negative side of the vertical axis of the plot is inflated by
a factor 10 with respect to the positive side.

the Π̄88
conn contribution becomes smaller. The quenched charm contribution turns out to be

relatively independent of the pion mass and increases linearly in the range of Q2 values.
The (negative) quark-disconnected contributions are also shown, on a scale enlarged by a
factor 10. It is worth noting that Π̄88

disc(−Q2) is constant for Q2 & 0.5 GeV2, as predicted
by perturbation theory.

4 Results at the physical point

Thanks to the availability of ensembles with four different lattice spacings and several quark
masses, we can reliably extrapolate our results in section 3.8 to vanishing lattice spacing and
physical values of the pseudoscalar meson masses. We define the target “physical” point in
the isospin limit fixing mπ = mπ0 and m2

K −m2
π/2 = (m2

K+ +m2
K0)/2−m2

π+/2 [103–105],
which results in mπ = 134.976 8(5) MeV and mK = 495.011(10) MeV [7]. The pion mass of
one of our ensembles is slightly below the physical value, which allows us to interpolate
the results.

For Π̄33(−Q2), Π̄88(−Q2) and Π̄08(−Q2), we perform a combined extrapolation, in-
cluding both discretizations of the vector current for Π̄33(−Q2) and Π̄88(−Q2). In the
combined fit, we employ an ansatz that implies the same continuum limit for both dis-
cretizations, and that encodes the constraints Π̄33(−Q2) = Π̄88(−Q2) and Π̄08(−Q2) = 0
at the SU(3)-symmetric point. The charm contribution Π̄cc(−Q2) is treated independently
as described in section 4.1.2.

4.1 Extrapolation strategy

At any fixed value of Q2 we extrapolate each HVP function in the lattice spacing and
the pseudoscalar meson masses to the physical point. We parametrize the lattice spacing
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dependence in terms of the gradient flow time at the SU(3)-symmetric point, tsym
0 /a2, as

determined in ref. [66] and listed in table 1. As discussed in section 3.3, the on-shell quantities
considered in this work are O(a)-improved, and hence we expect leading discretization
effects O

(
a2), up to logarithmic corrections [106, 107]. While our favored ansatz includes

only an O
(
a2) term, we also investigate the influence of higher powers in the lattice spacing,

as well as a term proportional to a2 log a. More details are given in section 4.1.1.
The dependence of the HVP function contributions on the meson masses mπ and mK

is modelled using the proxy quantities φ2 = 8t0m2
π and φ4 = 8t0(m2

K + m2
π/2). At the

isospin-symmetric reference point defined above, the target values of our extrapolation
are φphys

2 = 0.080 6(17) and φphys
4 = 1.124(24), where the conversion to physical units is

performed using (8tphys
0 )1/2 = 0.415(4)(2) fm from ref. [66].6

For the CLS ensembles considered in this work φ4 is approximately constant, with values
between −3.5 % and +5.5 % of the target value φphys

4 . Therefore, we only employ a linear
term in φ4 to model small deviations from the line of constant physics m2

K +m2
π/2 = const.

The interpolation of the pion-mass dependence across a larger range to the target value
φphys

2 is more complex and quantity-dependent. While it is possible to describe the HVP
function in χPT including vector mesons as resonances in the effective theory [109, 110], this
applies only for Q2 . m2

π and is thus of limited relevance in our case. Therefore, we choose
to model the dependence by a polynomial in φ2. However, understanding the behavior of
the various contribution towards the SU(2) chiral limit and the SU(3)-symmetric point
helps constrain the model choice.

The isovector (I = 1) contribution Π̄33 dominates the HVP function, especially on
ensembles that are close to the physical masses. Indeed, Π̄33(−Q2) diverges logarithmically
in mπ in the limit mπ → 0 [111]. Therefore, we model the I = 1 contribution for the
conserved-local discretization with an additional non-polynomial divergent term proportional
to log φ2,

Π̄33,CL
(
a2/tsym

0 , φ2, φ4
)

= Π̄sym + δCL
2 a2/tsym

0

+ γ33
1 (φ2 − φsym

2 ) + γ33
log log φ2/φ

sym
2 + η1 (φ4 − φsym

4 ) ,
(4.1)

and similarly for the local-local discretization, with δCL
2 replaced by δLL

2 . We also considered
other possibilities for the divergent mπ → 0 limit, such as including a 1/φ2 ∼ 1/m2

π term in
addition to or instead of the log φ2 one [112]. However, we observed that on our range of
pion masses including only the log φ2 term results in the best fit to the data.

The isoscalar (I = 0) contribution, Π̄88, has a finite limit for mπ → 0 [111]. Therefore,
we do not include any divergent term and use instead a polynomial quadratic in φ2, since

6We note that the authors of ref. [66] obtain (8tphys
0 )1/2 from an extrapolation to a slightly different

reference point, defined by m̄π = 134.8(3) MeV and m̄K = 494.2(3) MeV [108], which corresponds to
φ̄2 = 0.080 4(18) and φ̄4 = 1.120(24). Using the data in table II of ref. [66], we have translated the published
value of (8tphys

0 )1/2 to the reference point used in this paper, which results in an increase by 0.2 % in φphys
2

and φphys
4 . At our level of precision, the effect on the final results can safely be neglected.
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Figure 6. Plot of Π̄33(−Q2), Π̄88(−Q2) (left) and Π̄08(−Q2) (right) at Q2 = 1 GeV2 on different
ensembles as a function of the pion mass, together with the results of the combined fit. With respect
to the values in table 4, the data points in the plot include a small shift to the same value of φ4.
Filled symbols and dotted lines denote the conserved-local discretization, while open symbols and
dashed lines denote the local-local one.

we observe that a simple linear scaling does not describe the data. This results in

Π̄88,CL
(
a2/tsym

0 , φ2, φ4
)

= Π̄sym + δCL
2 a2/tsym

0

+γ88
1 (φ2 − φsym

2 ) + γ88
2 (φ2 − φsym

2 )2 + η1(φ4 − φsym
4 ) , (4.2)

for the conserved-local discretization, and analogously for the local-local case.
When eqs. (4.1) and (4.2) are considered in isolation, Π̄sym, φsym

2 and φsym
4 define an

arbitrary subtraction point, for which only one of the three parameters can be fixed by
each fit. As the label “sym” suggests, we identify this point with the SU(3)-symmetric
point in the continuum limit, which implies the constraint 2φsym

4 = 3φsym
2 . Moreover,

Π̄33,sym ≡ Π̄88,sym, such that all three parameters Π̄sym, φsym
2 and φsym

4 can be fully
determined in a combined fit.

Finally, the Π̄08,CL contribution includes one SU(3)-singlet current that vanishes linearly
in ms −m` towards the SU(3)-symmetric point. To leading order this is proportional to
m2
K−m2

π or equivalently φ4−3/2φ2, thus we model Π̄08,CL using a simple linear dependence

Π̄08,CL
(
a2/tsym

0 , φ2, φ4
)

= λ1(φ4 − 3/2φ2) . (4.3)

In this case, we fit the only available discretization (conserved-local) without including
a term describing the dependence on the lattice spacing as no discretization effects are
observed within statistical errors. Moreover, we do not observe any significant deviation
from the linear behavior.

The relative errors on the pion and kaon masses, as well as the scale t0 that enter φ2
and φ4, are of the same order as the uncertainties of the Π̄ contributions. Thus, we fit the
quantities φ2, φ4, Π̄33

CL, Π̄33
LL, Π̄88

CL, Π̄88
LL and Π̄08

CL simultaneously, except for ensembles at the
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Figure 7. Plots of Π̄33(−Q2) at Q2 = 1 GeV2 (left) and Π̄88(−Q2) at Q2 = 5 GeV2 (right) on
different ensembles as a function of the lattice spacing, together with the results of the combined fit.
The left panel shows an example in which the O

(
a2) fit model is used, while a term proportional to

a3 has been included in the right plot as well. Different colors distinguish different pion masses from
a set of five reference values. Using the functional form determined by the fit, each data point has
been shifted to the closest value of φ2 matching one of the reference pion masses, and to the same
value of φ4. Filled symbols and dotted lines denote the conserved-local discretization, while open
symbols and dashed lines denote the local-local one.

SU(3)-symmetric point where only the independent quantities φ2 = (2/3)φ4, Π̄33
CL = Π̄88

CL
and Π̄33

LL = Π̄88
LL are fitted. We include the correlations between quantities on the same

ensemble, which limits the size of the covariance matrix Cl on ensemble l to either 7× 7
or 3 × 3 in the SU(3)-symmetric case. Still, we find relatively poor fit quality unless we
use a shrunk estimator of the covariance matrix by scaling the off-diagonal elements of Cl
according to [113, 114]

C̃l(λ) = (1− λ)Cl + λ diag(Cl) . (4.4)

We found that the χ2/dof of the fit as a function of the shrinkage parameter λ is approxi-
mately constant in an interval of small λ values, before increasing for λ → 0. Therefore,
we select λ = 0.05 as a small value in the constant region. The errors on the optimal fit
parameters and the extrapolation results are obtained applying the bootstrap procedure to
the fit, and are thus unaffected by this modification to the covariance matrix.

4.1.1 Study of the fit model systematics

The choice of the fit ansatz introduces a systematic error that we estimate by considering
several variations of the fit model.

The choice of a fit ansatz that constrains both discretizations to have the same continuum
limit is motivated by theory. However, we also check this by performing independent fits
including only one of the two discretizations, and observing that the continuum-extrapolated
results agree well within errors between different discretizations and with the combined fit

– 25 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
0

ones. This further supports our choice for the fit ansatz used for the final fit and all the
variations in the following.

Our main extrapolation model includes only the leading O
(
a2) discretization effects

using two parameters δCL
2 and δLL

2 , one for each discretization of the correlator, common
to all flavor contributions in eqs. (4.1) and (4.2). We observe that this model fits the data
well in the energy range below Q2 between 2–3 GeV2. We also tested a fit model with
independent discretization effects parameters for each flavor contribution, which resulted
in parameters compatible within errors. Fits to Π̄08 were performed without including
terms describing discretization effects (see eq. (4.3)), since no dependence on the lattice
spacing could be detected within statistical errors. Similarly, the fit parameters describing
the mass dependence for both CL and LL discretizations were chosen to be the same.
This is consistent with the choice of not including mass-dependent cut-off effects, and it is
supported by the fact that a fit with independent parameters resulted in compatible results.

For Q2 values larger than 2–3 GeV2, we observe a rapid deterioration of the quality of
the fit. We interpret this as evidence that discretization effects at larger values of Q2 are
not dominated by a2 effects, but that higher powers in the lattice spacing are also relevant.
Indeed, a modification of eqs. (4.1), (4.2) and (4.3) to include both terms proportional to
a2 and to a3 fits the data well on an extended range up to Q2 ≈ 7 GeV2, as was already
observed in ref. [90]. Specifically, we find that an ansatz including δCL

2 and δLL
2 , as well as

two additional parameters δCL
3 and δLL

3 yields the best fit quality for Π̄33, Π̄88 and Π̄08.
However, including a3 discretization effects may lead to overfitting the data at lower values
of Q2, where a term proportional to a2 is found to successfully describe discretization effects.

Therefore, for our final results we switch from the results obtained via a purely O
(
a2)

ansatz at low Q2 to those obtained via an ansatz with both O
(
a2) and O(a3) lattice artifacts

by applying a smoothed step function centered around 2.5 GeV2,

Θ
(
Q2
)

= 1
2 + 1

2 tanh
(
Q2 − 2.5 GeV2

1.0 GeV2

)
. (4.5)

Both fits agree well within one standard deviation below ≈ 3 GeV2, and start to disagree
above that, in accordance with the poor quality of the O

(
a2) fit in the high-energy region.

As a consequence, the values of Π̄ extrapolated to the physical point at Q2 > 2.5 GeV2 are
statistically less precise than values extrapolated at Q2 < 2.5 GeV2, as it is clearly visible
in figure 11.

To test for possible violations of the leading O
(
a2) scaling due to the missing O(a)-

improvement parameters fV and c̄C,L
V we also considered a fit ansatz with both a and a2

terms. We observe that this does not describe the data any better than the O
(
a2) fit, so we

conclude that residual O(a) discretization effects are not significant at our level of precision.
Following ref. [107], we also considered a logarithmically-enhanced term of the form

c̃Π̄(Q2) · (a2/tsym
0 ) log

(
tsym
0 /a2)/2, with the Q2-dependent coefficient fixed to the free-

theory prediction

c̃CL
Π̄

(
Q2
)

= 7
480π2 t

sym
0 Q2 , c̃LL

Π̄

(
Q2
)

= 1
48π2 t

sym
0 Q2 , (4.6)
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Figure 8. Same as figure 6 for the charm contribution Π̄cc(−Q2) at Q2 = 1 GeV2.

for both Π̄33 and Π̄88. Including this term in eqs. (4.1), (4.2) and (4.3), we do not observe
any significant change in the fit quality over the entire range of Q2 values. The HVP
functions extrapolated to the physical point are shifted downwards by less than 0.4 %, which
is always smaller than the statistical error.

We also tested a variation of the fit model ansatz applying a cut on the range of pion
masses, leaving out those ensembles with mπ > 400 MeV. For both the low Q2 and high
Q2 fits we observe a mild deviation with respect to the fit without the mass cut, always
smaller than the statistical error. As was done in ref. [8], we take this as an estimate
of the systematic error due to the chiral and continuum extrapolation and add it to our
error budget.

4.1.2 Extrapolation of the charm contribution

Compared to the isovector and isoscalar channels, the (quenched) charm contribution Π̄cc
con

is smaller and much more precise. We do not include it in the combined fit and extrapolate
it separately instead, neglecting the small correlation between Π̄cc and the other channels.
For the fit to the conserved-local discretization we use a linear model in φ2, i.e.

Π̄cc
con

(
a2/tsym

0 , φ2
)

= Π̄cc,sym
con + δcc,CL

2 a2/tsym
0 + γcc1 (φ2 − φsym

2 ) . (4.7)

The local-local discretization shows a less favorable extrapolation, as there is a ≈ 40 %
difference between the coarsest lattice spacings and the continuum limit, while the conserved-
local only shows a ≈ 10 % difference. As in our previous work [8], we exclude the local-local
discretization from the subsequent analysis and the final results. As in eqs. (4.1), (4.2)
and (4.3), we employ tsym

0 from [66] as a proxy for the size of the discrezation effects for
each Π̄cc

con data point. However, we also use tsym
0 instead of the t0 value computed on each

ensemble to set the Q2 scale input in the TMR kernel, and to determine the φ2 of each
ensemble entering eq. (4.7). While using tsym

0 introduces correlations between ensembles at
the same lattice spacing, we found that it significantly reduces the curvature of the data
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Figure 9. Contributions to the running extrapolated at the physical point as a function of the
momentum transfer squared Q2. The contributions are normalized without including the charge
factors, according to eqs. (3.6).

with respect to φ2 and allows us to use the linear fit model in eq. (4.7) [115]. We take
into account the additional correlations increasing the size of our covariance matrix in a
straightforward manner. For all other aspects, the method used to extrapolate the isovector
and isoscalar contributions is directly carried over to the charm contribution. For this
component we perform a cut at mπ < 400 MeV and < 300 MeV to estimate any systematics
of the fit. The three extrapolations give compatible results.

4.2 The running with energy

The results of the extrapolation of the HVP functions Π̄33, Π̄88, Π̄08 and Π̄cc to the physical
point are plotted as a function of Q2 in figure 9. Furthermore, the corresponding numerical
estimates are listed in table 5 for several values of Q2. These numbers constitute the main
result of this paper. The quoted errors include all statistical and systematic uncertainties
on the result extrapolated to the continuum limit, provided that exact isospin symmetry is
assumed. According to the flavor decomposition described in section 3.2, one can use these
results to construct the hadronic running of α and sin2 θW. The corresponding results for
∆αhad(−Q2) and ∆had sin2 θW(−Q2) are plotted in figure 10 and listed in table 6, including
the uncertainty due to isospin-breaking effects.

The results in tables 5 and 6 for an extended set of 109 values of Q2 between 0.01 GeV2

and 7 GeV2 are given in appendix F.
In the following two subsections we discuss the estimation of the systematic errors due

to scale setting, the quenching of the charm quark and neglecting isospin breaking.

4.2.1 Scale-setting error

To set the relative scale between the ensembles employed in this work, we use t0 [70] which
can be computed to very high precision with a small computing investment, see appendix A
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Q2 [GeV2] t0Q
2 Π̄33 Π̄88

0.1 0.055 3 0.007 64 (9) (8) (4)(0)[13] 0.004 06 (4)(0) (4)(0) [6]
0.4 0.221 2 0.020 61(15)(11)(10)(1)[21] 0.012 59 (8)(1)(11)(1)[14]
1.0 0.553 0.032 87(17)(10)(21)(3)[29] 0.022 51 (9)(3)(19)(3)[21]
2.0 1.106 0.042 9 (2) (1) (3)(1) [4] 0.031 69(17)(5)(27)(5)[33]
3.0 1.659 0.048 8 (5) (0) (4)(1) [6] 0.037 4 (5)(1) (3)(1) [6]
4.0 2.212 0.052 9 (6) (0) (4)(1) [7] 0.041 4 (6)(1) (4)(1) [7]
5.0 2.764 0.056 0 (6) (0) (5)(1) [8] 0.044 5 (6)(1) (4)(1) [8]
6.0 3.317 0.058 6 (6) (0) (5)(2) [8] 0.047 1 (6)(1) (4)(2) [8]
7.0 3.87 0.060 8 (6) (0) (5)(2) [8] 0.049 3 (6)(1) (4)(2) [8]

Q2 [GeV2] t0Q
2 Π̄08 Π̄cc

0.1 0.055 3 0.001 75(4)(0) (7)(0) [8] 0.000 421(2)(1) (9)(–) [9]
0.4 0.221 2 0.004 40(7)(0)(14)(0)[15] 0.001 652(7)(2)(33)(–)[34]
1.0 0.553 0.006 06(8)(0)(15)(0)[17] 0.003 97 (2)(1) (8)(–) [8]
2.0 1.106 0.006 72(8)(0)(15)(0)[17] 0.007 49 (3)(1)(14)(–)[14]
3.0 1.659 0.006 90(8)(0)(15)(0)[17] 0.010 64 (4)(1)(19)(–)[19]
4.0 2.212 0.006 98(8)(0)(15)(1)[17] 0.013 48 (5)(2)(23)(–)[24]
5.0 2.764 0.007 01(8)(0)(15)(1)[17] 0.016 08 (6)(2)(26)(–)[27]
6.0 3.317 0.007 03(8)(0)(15)(1)[17] 0.018 46 (6)(2)(29)(–)[29]
7.0 3.87 0.007 04(8)(0)(15)(1)[17] 0.020 66 (7)(2)(31)(–)[32]

Table 5. Contributions to the running extrapolated to the physical point. The first quoted
uncertainty is the statistical error, the second is the systematic error from varying the fit model
estimated in section 4.1.1, the third is the scale-setting error (see section 4.2.1), and the fourth is
the systematic from missing charm sea-quark loops (see section 4.2.2). The final uncertainty, quoted
in square brackets, is the combination of the previous ones.

Q2 [GeV2] t0Q
2 ∆αhad ∆had sin2 θW

0.1 0.055 3 0.000 842 (9) (7) (4)(0) (2)[13] −0.000 849(10) (8) (5)(0)(1)[14]
0.4 0.221 2 0.002 342(15)(10)(12)(1) (7)[23] −0.002 368(17)(11)(18)(2)(3)[27]
1.0 0.553 0.003 864(17) (8)(22)(4)(12)[32] −0.003 93 (2) (1) (3)(0)(1) [4]
2.0 1.106 0.005 21 (2) (0) (3)(1) (2) [4] −0.005 30 (3) (0) (4)(1)(1) [5]
3.0 1.659 0.006 05 (6) (0) (4)(1) (2) [7] −0.006 14 (6) (0) (5)(1)(1) [8]
4.0 2.212 0.006 66 (7) (0) (4)(1) (2) [9] −0.006 76 (8) (0) (6)(1)(1)[10]
5.0 2.764 0.007 16 (8) (0) (5)(2) (2) [9] −0.007 24 (8) (0) (6)(2)(1)[10]
6.0 3.317 0.007 57 (8) (0) (5)(2) (2) [9] −0.007 64 (8) (0) (6)(2)(1)[11]
7.0 3.87 0.007 93 (8) (0) (4)(2) (2) [9] −0.007 99 (8) (0) (6)(2)(1)[11]

Table 6. Total HVP contribution to the running of α and sin2 θW. After the statistical error and
the fit, scale-setting and charm-sea-quark systematic errors propagated from the Π̄ results in table 5,
the fifth uncertainty is the systematic error from missing isospin-breaking effects (see section 4.2.3).
The final uncertainty quoted is the combination of the previous ones.
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and table 8. In order to convert t0 into physical units, we use (8tphys
0 )1/2 = 0.415(4)(2) fm,

which has been determined in ref. [66] on a subset of ensemble used in this work, using a
combination of the pion and kaon decay constants fπ and fK . Therefore, we have a 1.1 %
error on our absolute scale.

Since the (subtracted) HVP function is a dimensionless quantity, scale setting enters
only indirectly, through the value of Q2 in physical units that appears in the TMR kernel,
and in the extrapolation to the physical point through the definition of the point in the
(mπ, mK) plane that corresponds to an isosymmetric version of the physical world.

In analogy to the case of aHVP,LO
µ considered in section B.2 of ref. [63], the error ∆l0

on the scale l0 = (8t0)1/2 propagates to Π̄ according to

∆Π̄

Π̄
'
∣∣∣∣∣ l0Π̄ dΠ̄

dl0

∣∣∣∣∣∆l0l0 =
∣∣∣∣∣2t0Q2

Π̄

∂Π̄

∂ (t0Q2) + 2φ2

Π̄

∂Π̄

∂φ2
+ 2φ4

Π̄

∂Π̄

∂φ4

∣∣∣∣∣∆l0l0 . (4.8)

The first term in the absolute value on the r.h.s. is proportional to the slope of Π̄ as a
function of Q2. For all contributions, it is positive and monotonically decreasing with Q2,
relatively more important at low Q2, where Π̄ varies faster, than at high Q2. For Π̄γγ ,
it evaluates to ≈ 0.9 at Q2 = 1 GeV2, decreasing to ≈ 0.6 at Q2 = 7 GeV2 and increasing
to ≈ 1.7 at Q2 = 0.1 GeV2. Empirically, we observe that the third term in the r.h.s. of
eq. (4.8) is of the same order and negative, which has the effect of partially cancelling the
Q2 contribution and reducing the scale setting error. Specifically for the Π̄33 contribution,
also the second term in the r.h.s. of eq. (4.8) is non-negligible and negative as the I = 1
contribution at small mπ increases faster with decreasing φ2.

To reliably estimate the scale setting error including cases in which the three terms
nearly cancel, we employ bootstrap sampling, which allows us to go beyond the first-order
error propagation in eq. (4.8). Artificial bootstrap samples with a normal distribution are
generated for (8tphys

0 )1/2 and, in turn, φphys
2 and φphys

4 , which define the physical point in
the fit model, and t0Q

2. The induced distribution of Π̄(Q2) is obtained evaluating the
optimized fit model at (φphys

2 , φphys
4 ) samples from these distributions, and using numerical

derivatives in the case of the t0Q2 distribution to account for the small deviation of the
samples with respect to set of values at which the extrapolation is performed. The resulting
scale setting error is the third error contribution given for each quantity in tables 5 and 6.
The scale-setting error as a function of energy for both Π̄γγ and Π̄Zγ is compared to other
sources of uncertainty in figure 11. In both cases, the systematic error from scale setting is
larger than the statistical for 0.5 GeV2 . Q . 2.5 GeV2, while the statistical error dominates
at Q & 2.5 GeV2.

4.2.2 Charm quark loop effects

Our computation is performed using gauge ensembles with Nf = 2 + 1 flavors of dynamical
quarks, such that the light and strange quarks are present in the “sea”, while for the charm
quark only the connected Wick contraction of the valence contribution is included in the
result. We include the missing contributions from charm sea quarks, as well as disconnected
diagrams involving charm valence quarks as a systematic uncertainty in our error budget.
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As explained in detail in appendix E we quantify the charm quenching effect phe-
nomenologically, by estimating the contributions from D-meson loops to the connected
vector correlator involving (u, d, s) quarks. In particular, we determine the contributions of
D+D−, D0D̄0 and D+

s D
−
s loops to the R-ratio and, in turn, the subtracted HVP function,

by treating the D-meson form factors in scalar QED. Other non-perturbative effects, such
as changes in the ω and φ masses in QCD with Nf = 2 + 1, due to mixing with the J/ψ
and higher charmonium vector resonances are found to be negligible. For Q2 = 5 GeV2

we estimate that the size of the charm sea contribution is only about 3 permil of the
corresponding (u, d, s) quark contribution.

Regarding the charm disconnected valence quark contribution, we note that the BMW
collaboration has reported it to be less than one percent of the light and strange disconnected
contributions to aHVP,LO

µ [21]. We assume that the effect is of similar size for the hadronic
running of the electromagnetic and weak couplings. Since the light and strange disconnected
correlators already contribute at most one percent to the total hadronic running, the
contribution from disconnected charm loops is expected to be 0.01 %. This is subleading
with respect to the quenched charm systematic error already included in table 6.

4.2.3 Isospin-breaking effects

As discussed in section 3.4, our simulations are performed in the limit of strong isospin
symmetry, i.e. we work with degenerate up and down quark masses (mu = md = m`) and
neglect effects caused by quantum electrodynamics (QED). To estimate the systematic
effect due to this assumption, we have evaluated the HVP functions in QCD+QED on a
subset of our isospin-symmetric ensembles based on the techniques described in [116–121].
We use the QEDL prescription [122] to regularize the IR divergence of non-compact lattice
QED. Furthermore, we choose the same boundary conditions for the photon field as for the
QCD gauge field. In a next step, QCD+QED obtained from reweighted isosymmetric QCD
is expanded up to leading order around isosymmetric QCD in terms of the electromagnetic
coupling e2 as well as the shifts in the bare quark masses ∆mu, ∆md and ∆ms, as applied
by the RM123 collaboration [120, 121]. This procedure results in Feynman diagrams
which represent perturbative quark mass shifts and the interaction between quarks and
photons [123–126].

To match both theories we utilize a scheme based on leading-order χPT, including
leading order strong and electromagnetic isospin breaking corrections [105, 123]. On each
ensemble, we match the results for m2

π0 and m2
K+ +m2

K0−m2
π+ in both theories, which serve

as proxies for the average light and strange quark masses, respectively. These conditions
are compatible with the definition of the “physical” point of isosymmetric QCD in section 4.
We extend this scheme by the corresponding proxy for the light quark mass splitting
m2
K+−m2

K0−m2
π+ +m2

π0 [123] and set it to its physical value. As we consider leading-order
effects, the electromagnetic coupling does not renormalize and, hence, is fixed via the
fine-structure constant e2 = 4πα [121]. Isospin-breaking effects in the determination of the
scale are neglected.

We have computed the leading-order QCD+QED quark-connected contribution to Π̄γγ

and Π̄Zγ for the three ensembles D450, N200 and H102 as well as the pseudo-scalar meson
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Figure 10. Total HVP contribution to the running of α (left panel) and sin2 θW (right panel) as a
function of Q2, together with the I = 1, I = 0, charm and, for sin2 θW, Zγ-mixing contributions.

masses required for the above hadronic renormalization scheme. The considered Feynman
diagrams are evaluated by means of stochastic U(1) quark sources with support on a single
time slice and Z2 photon sources that are used to stochastically estimate the all-to-all photon
propagator in Coulomb gauge. To reduce the stochastic noise, covariant approximation
averaging [127] in combination with the truncated solver method [128] is applied. The
noise problem of the vector-vector correlation function at large time separations is treated
via a reconstruction using a single exponential function. A more detailed description of
the computation is given in refs. [123, 124, 129]. Since the renormalization procedure of
the local vector current in our QCD+QED computation is based on a comparison of the
local-local and the conserved-local discretisations of the vector-vector correlation function
and hence differs from the purely isosymmetric QCD calculation [65] we determine the
relative correction by isospin breaking in the QCD+QED setup. We observe that the size
of the relative first-order corrections for Π̄γγ [123] and Π̄Zγ is largest on D450. To rate the
systematic error of disregarding isospin-breaking corrections, which is added to the error
budget of the final result, we multiply the obtained relative correction on D450 by the final
results obtained from the isosymmetric QCD calculation. In figure 11, we compare this
error for both Π̄γγ and Π̄Zγ to other sources of uncertainty as a function of energy. We
find that isospin-breaking effects make a larger contribution to the running of α compared
to sin2 θW. However, this systematic uncertainty makes only a small contribution to the
total error. It is comparable to the statistical error of ∆αhad for Q2 . 2.5 GeV2 but the
scale setting uncertainty presently dominates in this regime.

4.2.4 Rational approximation of the running

In addition to sampling the HVP function at the Q2 values in table 6, we provide an analytic
function of Q2 that can be used to interpolate the HVP function to any value of Q2 in the
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range up to 7 GeV2. For this purpose, we use a rational function

Π̄
(
−Q2

)
≈ RNM

(
Q2
)

=
∑M
j=0 ajQ

2j

1 +
∑N
k=1 bkQ

2k
, (4.9)

where the numerator and the denominator are polynomials of degree M and N respectively,
with b0 = 1 in the denominator. This choice is motivated by the fact that the HVP function
Π(−Q2) can be expressed as a Stieltjes series with a finite radius of convergence through
a once-subtracted dispersion relation [130]. This guarantees the existence of a convergent
series of multi-point Padé approximants with rigorous error bounds [131, 132], which is
particularly useful when the sampling of the HVP function is constrained to the lattice
discrete momenta, see ref. [130]. The TMR method used in this work gives us more flexibility
in the choice of the momenta to sample, and allows for a very straightforward way to obtain
the rational approximation, by solving the over-constrained system [133]

∑
i

1
δΠ̄

(
−Q2

i

)
 M∑
j=0

ajQ
2j −

(
1 +

N∑
k=1

bkQ
2k
i

)
Π̄
(
−Q2

i

) = 0 , (4.10)

via a least-squared fit, weighted by the inverse of the total error δΠ̄ at each Qi and in the
range of energies 0 < Q2 ≤ 7 GeV2. The minimization uses the constraint that RNM (Q2) has
poles at Q2

i < 0. Since the subtracted HVP function Π̄ vanishes by definition at Q2 = 0,
we set a0 = 0.

We observe that a rational function of degree M = 3 and N = 3 describes the data very
well. Using the set of 109 values of Q2 between 0.01 GeV2 and 7 GeV2 that we sampled,
we find that higher-order coefficients are small and poorly determined by eq. (4.10). The
resulting rational approximation for Π̄γγ is

Π̄γγ
(
−Q2

)
≈ 0.109 4(23)x+ 0.093(15)x2 + 0.003 9(6)x3

1 + 2.85(22)x+ 1.03(19)x2 + 0.016 6(12)x3 , x = Q2

GeV2 , (4.11)

where the errors assigned to the coefficients in the numerator and denominator, together
with the correlation matrix

corrγγ



a1
a2
a3
b1
b2
b3


=



1
0.455 1
0.17 0.823 1
0.641 0.946 0.642 1
0.351 0.977 0.915 0.869 1
0.0489 −0.0934 0.0667 −0.044 −0.115 1


(4.12)

reproduce the error band very accurately.7 For Π̄Zγ , the rational approximation is

Π̄Zγ
(
−Q2

)
≈ 0.026 3(6)x+ 0.025(5)x2 + 0.000 89(34)x3

1 + 2.94(29)x+ 1.12(27)x2 + 0.015(8)x3 , x = Q2

GeV2 , (4.13)

7For both eqs. (4.11) and (4.13), we observe that a rational approximation with the same coefficients and
errors except for b3 = 0 approximates the data equally well. We choose to include the b3 since this makes
the extrapolation to higher Q2 better behaved. However, we stress that the rational approximations in
eqs. (4.11) and (4.13) are valid only in the range of Q2 ≤ 7 GeV2 and are not suitable for an extrapolation
outside this range.
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Figure 11. The deviation of the rational approximation of ∆αhad (left) and ∆had sin2 θW (right)
from the data, plotted as a function of Q2 and compared to the statistical error (blue-shaded area)
as well as different sources of systematic uncertainty: fit model (orange-bordered area), scale setting
(green-bordered area) and isospin breaking (red-bordered area). The plots show that statistical
errors increase when a term of O

(
a3) is added to the leading discretization effect of O

(
a2) in the fit

model for Q & 2.5 GeV2. The gray lines represent the total error.

with the correlation matrix

corrZγ



a1
a2
a3
b1
b2
b3


=



1
0.48 1
0.278 0.734 1
0.619 0.964 0.644 1
0.402 0.983 0.815 0.91 1
0.236 0.416 0.882 0.389 0.486 1


. (4.14)

The deviation of the approximation from our measured values is compared to the
different sources of uncertainty in figure 11. We find that the deviation is always much
smaller than the combined error: for instance, for Q2 > 1.5 GeV2 it is less than 1/5 of the
combined error, and less than 0.3 % of that of the actual data.

4.2.5 Dependence on the definition of the physical point

As discussed in section 4, the results quoted in tables 5 and 6 have been obtained by
extrapolation to a reference point in the isospin-symmetric limit. The shift in Π̄γγ(Q2) and
Π̄Zγ(Q2) corresponding to a small change in the choice of convention for the physical point
can be estimated from the derivatives of the extrapolated values with respect to φ2 and
φ4. An effective description of the derivatives as a function of Q2 is given by the rational
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Figure 12. Left, upper panel: ratio of the hadronic running ∆αhad computed by BMWc [21]
divided by our results, for five different momenta. In addition to the total contribution, we show
the isovector (I = 1), isoscalar (I = 0) and charm quark components. Left, lower panel: the total
hadronic running ∆α(5)

had from various phenomenological estimates [12, 31, 134] and the lattice result
of ref. [21], normalized by the result of this work. Right: compilation of results for the four-flavor
∆αhad lattice computations [6, 21] (above) and the five-flavor ∆α(5)

had phenomenological estimates
(below) at selected values of Q2. The gray vertical error band for the result of this work includes
the small bottom quark contribution as an additional systematic error, see section 5.1 for details.

approximations

∂Π̄γγ
(
−Q2)

∂φ2
= − 0.267 6x+ 0.396 0x2

1 + 6.944x+ 12.06x2 ,
∂Π̄γγ

(
−Q2)

∂φ4
= − 0.063 93x

1 + 1.569x , (4.15)

∂Π̄Zγ
(
−Q2)

∂φ2
= −0.063 88x+ 0.089 35x2

1 + 6.880x+ 11.83x2 ,
∂Π̄Zγ

(
−Q2)

∂φ4
= − 0.018 87x

1 + 1.663x , (4.16)

where x = Q2/GeV2.
Combined with the derivatives with respect to the momentum transfer variable t0Q2,

which can be easily obtained from eqs. (4.11) and (4.13), the given rational approximations
can also be used to account for a small variation of the global scale according to eq. (4.8).

5 Comparison and discussion

The main results of this paper are the contributions from u, d, s and c quarks to the
hadronic running of the QED coupling α and the electroweak mixing angle sin2 θW, as a
function of the space-like momentum Q2 > 0, computed in lattice QCD. In this section, we
present a detailed comparison of our results to those from other lattice calculations, and to
phenomenological analyses based on dispersion theory and hadronic cross section data.

5.1 Hadronic running of the electromagnetic coupling

Our estimates for ∆αhad(−Q2) can be directly compared to the lattice calculation results
by BMWc, given in table S3 in the supplementary material of ref. [21], after correcting
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the latter for finite-size effects determined in that same reference. Ratios between results
obtained by BMWc and our estimates are plotted in the upper left panel in figure 12, for
the total contribution as well as for its various components. While there is good agreement
for the isoscalar (I = 0) component, a slight tension at the level of 1–2 standard deviations
is observed in the isovector (I = 1) channel that dominates the total contribution. We note
that estimates by BMWc are smaller by 2–3 % for Q2 . 3 GeV2. For the charm contribution,
our results are up to 2 % larger than BMWc’s, but they are compatible within the errors,
which are dominated by scale setting. The comparison of the absolute values of the two
lattice results is depicted in the right panel of figure 12, which shows the slightly smaller
error of the BMWc result. The most recent result from BMWc [6], also shown in the right
panel of figure 12, has a smaller error but it is only available at Q2 = 1 GeV2. We also
mention that the first lattice calculation of the quark-connected HVP contributions to
running of α and sin2 θW up to Q2 = 10 GeV2 was published by Burger et al. [19], who
reported a 2–3 % error dominated by systematic effects. However, we do not include this
result in our comparison since the disconnected contribution has not been determined in
that reference.

In the lower left panel of figure 12 we show the ratios of three recent phenomenological
determinations of ∆α(5)

had
(
−Q2) and the rational approximation of our result as continuous

curves. Our result lattice results for ∆αhad(−Q2) includes the contributions from u, d, s
and c quarks. In order to account for the contributions from bottom quarks that are needed
to complete the estimate for ∆α(5)

had
(
−Q2), we use results by the HPQCD collaboration

for the lowest four time moments of the HVP [135]. We determine the contribution from
bottom quarks by constructing Padé approximants from the moments, which results in a
few-permil effect on the total hadronic running of the coupling (up to 2.6 permil at the
largest Q2 = 7 GeV2). This effect is larger than the 0.4 permil effect reported for the HVP
contribution to the muon g − 2 [136] due to the fact that the running coupling scale Q2

is not well separated from the bottom quark mass, in contrast to the muon mass case.8

However, this effect is a small fraction of the percent-level total error on ∆αhad(−Q2) and
we include it as an additional source of systematic error.

Results from Davier et al. [12, 137] (labellel “DHMZ data”), Keshavarzi et al. [31, 138]
(KNT18 data), and based on Jegerlehner’s alphaQEDc19 software package [13, 134] show
good agreement among each other, but are between 3 and 6 % lower than our estimate.9

After taking the errors into account, we observe a sizeable tension of up to 3.5 standard
deviation between our lattice calculation and phenomenological estimates for space-like
momenta in the range between 3 and 7 GeV2. For smaller space-like momenta, the tension
is even larger, due to the fact that the extrapolation to the continuum limit has been
performed with an a2-term only, which results in a smaller error.

8As a crosscheck, we have reproduced the bottom quark contribution to the muon g − 2 reported by
HPQCD [136].

9The estimate of ∆α(5)
had

(
−Q2) in the space-like region corresponding to ref. [12] was kindly provided

to us by Davier, Hoecker, Malaescu, and Zhang. We are grateful to Keshavarzi, Nomura and Teubner for
providing the full covariance matrix of the R-ratio, allowing for a determination of ∆α(5)

had

(
−Q2) consistent

with ref. [31].
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Q2
0 pQCD′[Adler] KNT18[data]

0.1 – 0.026 798(110)
0.4 – 0.025 372(107)
0.5 – 0.025 045(106)
1.0 0.023 928(223) 0.023 889(103)
2.0 0.022 492(149) 0.022 578(97)
3.0 0.021 640(129) 0.021 754(93)
4.0 0.021 020(116) 0.021 144(89)
5.0 0.020 528(107) 0.020 656(86)
6.0 0.020 117(99) 0.020 247(83)
7.0 0.019 763(93) 0.019 894(80)

Table 7. The contribution from [∆α(5)
had
(
−M2

Z

)
−∆α(5)

had
(
−Q2

0
)
] for various threshold energy Q2

0.
The second column is based on the pQCD′[Adler] approach in eq. (5.2). The third column is obtained
with KNT18[data] approach in eq. (5.3). See the text for details.

The electromagnetic coupling at the Z pole, ∆α(5)
had

(
M2
Z

)
, puts a limit on the sensitivity

of global electroweak precision fits [13, 56, 139]. This quantity also receives growing
interest with respect to searches for physics beyond the Standard Model (BSM) at a future
International Linear Collider. Our lattice results for ∆αhad(−Q2) for space-like Q2 up to
7 GeV2 can be combined with either perturbative QCD or phenomenology to obtain the
five-flavor hadronic running at the Z pole, ∆α(5)

had
(
M2
Z

)
with no or much reduced reliance

on experimental data.
The connection between ∆αhad(−Q2) and the hadronic running of α for five quark

flavors at the Z pole in the time-like region can be established via the so-called Euclidean
split technique (also known as Adler function approach) [9, 10]. As the name suggests, this
technique allows for separating the contribution to the running at space-like kinematics,
which is accessible to computational frameworks formulated in Euclidean spacetime such
as lattice QCD, from the small subleading contribution associated with the space-like
to time-like rotation at high energies. The method amounts to rewriting the hadronic
contribution to the running at MZ as

∆α
(5)
had

(
M2
Z

)
=∆α

(5)
had

(
−Q2

0

)
+
[
∆α

(5)
had

(
−M2

Z

)
−∆α(5)

had

(
−Q2

0

)]
+
[
∆α

(5)
had

(
M2
Z

)
−∆α(5)

had

(
−M2

Z

)]
pQCD

,

(5.1)

where the threshold energy Q2
0 is typically around 5 GeV2. The first term on the r.h.s.

is proportional to the space-like HVP according to eq. (2.2). In the literature [9, 10],
∆α

(5)
had

(
−Q2

0
)
has been evaluated by employing the dispersive approach. Here, we evaluate

this quantity using our lattice QCD results ∆αhad(−Q2
0) shown in table 6 as input, with

the addition of the small bottom quark contribution as a systematic error.
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The second term in eq. (5.1) is the high-energy contribution
[
∆α

(5)
had

(
−M2

Z

)
−∆α(5)

had

(
−Q2

0

)]
.

To estimate it, we follow Jegerlehner’s idea [17] of utilizing the Adler function D(Q2) defined
in eq. (2.3). For sufficiently large Q2, the Adler function is calculable within perturbative
QCD (pQCD) plus minor non-perturbative (NP) corrections [9, 140]. Our implementation
of this approach, which we call pQCD′[Adler], is based on the public code pQCDAdler by
Jegerlehner [141]. It takes into account full three-loop QCD with charm and bottom quark
mass effects as well as massless four- and five-loop effects to improve high-energy tails.
The code also accounts for the NP corrections via the operator product expansion and
Padé approximants. We note that the pQCD′[Adler] approach does not rely on the R-ratio
integral, and does not suffer from the systematics of the cross-section data.

Once the Adler function D(Q2) has been determined, we can calculate[
∆α

(5)
had

(
−M2

Z

)
−∆α(5)

had

(
−Q2

0

)]
pQCD′

= α

3π

∫ M2
Z

Q2
0

dQ2

Q2 D
(
Q2
)
, (5.2)

where α is the QED coupling in the Thomson limit, and pQCD′ indicates that perturbative
QCD has been augmented by small NP corrections when estimating D(Q2). Our results
for [∆α(5)

had
(
−M2

Z

)
−∆α(5)

had
(
−Q2

0
)
] obtained in this way are shown in the second column in

table 7. The quoted errors, which amount to about 0.5 % at Q2
0 = 5 GeV2, originate from

uncertainties in the strong coupling at the Z pole and heavy-quark pole masses, which are
used as input quantities. For smaller Q2

0, the uncertainty associated with NP corrections
to D(Q2

0) grows significantly, hence we cannot access very small values of Q2
0 due to the

Landau pole appearing in the strong coupling.
In addition to using pQCD′[Adler] for the evaluation of [∆α(5)

had
(
−M2

Z

)
−∆α(5)

had
(
−Q2

0
)
],

we also consider the dispersive integral[
∆α

(5)
had

(
−M2

Z

)
−∆α(5)

had

(
−Q2

0

)]
= α

3π
(
M2
Z −Q2

0

) ∫ ∞
m2
π0

ds R(s)(
s+Q2

0
) (
s+M2

Z

) .
(5.3)

This allows for a consistency check of the pQCD′[Adler] approach described above. The
appearance of Q2

0 in the denominator of the integrand implies that contributions from the
R-ratio at low energies are suppressed along with any experimental uncertainties in their
determination. To compute the dispersion integral in eq. (5.3), we use the R-ratio data from
KNT18 [31]. Since ref. [31] does not quote a result for [∆α(5)

had
(
−M2

Z

)
−∆α(5)

had
(
−Q2

0
)
], we

have performed the integration of the R-ratio ourselves, using the full covariance matrix [138]
in the error estimate. In the following, we shall refer to this method as “KNT18[data]”. The
corresponding results are shown in the third column of table 7. The results are consistent
with the pQCD′ approach (second column) within the uncertainty.

Finally, we focus on the second combination in square brackets in eq. (5.1), which
provides the link between the space-like and time-like regions at MZ . We quote the pQCD
estimate by Jegerlehner [13, 55],[

∆α
(5)
had

(
M2
Z

)
−∆α(5)

had

(
−M2

Z

)]
pQCD

= 0.000 045(2) . (5.4)

With these ingredients in hand, we can provide an estimate for the phenomenologically
relevant quantity ∆α

(5)
had

(
M2
Z

)
, using our lattice estimate for ∆α(5)

had
(
−Q2

0
)
as input in
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Figure 13. The hadronic contribution to the running coupling for five flavors at the Z pole
mass, ∆α(5)

had
(
M2
Z

)
, evaluated according to eq. (5.1) and using our lattice result for ∆α(5)

had
(
−Q2

0
)
,

plotted as a function of the threshold energy Q2
0. Left: the higher energy contribution

[∆α(5)
had
(
−M2

Z

)
−∆α(5)

had
(
−Q2

0
)
] computed via the pQCD′approach in eq. (5.2) using the pQCDAdler

software package [141]. Right: results based on the KNT18[data] approach of eq. (5.3) using the
R-ratio data with full covariance matrix [31, 138]. The red symbols in each panel are taken to
produce the final estimates for each method, while the maxima and minima of the blue bands within
the non-shaded region are used to estimate the uncertainty.

eq. (5.1). In figure 13, we show ∆α
(5)
had

(
M2
Z

)
as a function of the Euclidean squared momen-

tum transfer Q2
0. In the left panel the contribution from [∆α(5)

had
(
−M2

Z

)
−∆α(5)

had
(
−Q2

0
)
]

has been determined in perturbative QCD via the Adler function (pQCD′[Adler]), while in
the right panel the same quantity has been evaluated using the R-ratio data and correlation
matrix from KNT18 in eq. (5.3). The blue bands represent the total error obtained by
adding in quadrature all uncertainties that enter eq. (5.1). In both cases we find that the
estimates for ∆α(5)

had
(
M2
Z

)
are very stable for Q2

0 & 3 GeV2. The slight upward trend and
the loss of precision observed for Q2

0 . 2 GeV2 when using the pQCD′[Adler] approach is
symptomatic of the failure of pQCD at strong couplings. Alternatively, when employing the
dispersive approach of eq. (5.3), one observes a decreasing trend for Q2

0 . 2 GeV2, which is
due to the enhanced contributions from low-lying resonances (ρ, ω, φ) in eq. (5.3) as Q2

0
is lowered. For our final results in both approaches we choose Q2

0 = 5 GeV2 and estimate
the uncertainty associated with the choice of Q2

0 from the maxima and minima of the blue
bands in the region 3–7 GeV2. In this momentum range, our lattice results for the hadronic
running can be extrapolated reliably to the continuum limit. Furthermore, this choice of
interval guarantees that our final estimate is not affected by the Landau pole when using
the pQCD′[Adler] approach, nor is it dominated by the experimentally determined R-ratio
when employing eq. (5.3) instead.
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Figure 14. Compilation of results for ∆α(5)
had
(
M2
Z

)
. The first two data points (red symbols)

represent the results from the Euclidean split technique using our lattice estimate for ∆α(5)
had
(
−Q2

0
)
.

Green circles denote results based on the standard dispersive approach, where the R-ratio integration
is performed over the entire momentum range. From top to bottom, we plot the results from
refs. [11, 12, 31], and [13]. The estimate based on the Adler function in ref. [13] is shown as a green
diamond. Blue symbols represent the results from global EW fits, published in refs. [34–36, 142, 143]
(see the text for further details). The gray band represents our final result quoted in eq. (5.5).

For our main result of the hadronic running of the QED coupling at the Z pole we
adopt the pQCD′[Adler] approach and quote

∆α
(5)
had

(
M2
Z

)
|Lat+pQCD′[Adler] = 0.02773(9)lat(2)bottom(12)pQCD′[Adler]

= 0.027 73± 0.000 15 .
(5.5)

The first error is the total uncertainty of our lattice estimate of ∆αhad(−5 GeV2) as
listed in table 7, while the second error accounts for the neglected contribution from
bottom quark effects. The error labeled pQCD′[Adler] is associated with the evaluation of
[∆α(5)

had
(
−M2

Z

)
−∆α(5)

had

(
−5 GeV2

)
] (see the second column in table 7), augmented by the

maximum deviations from the central value in the region Q2
0 ∈ [3, 7] GeV2.

For completeness, we also list the result obtained via the KNT18[data] approach,
which yields

∆α
(5)
had

(
M2
Z

)
|Lat+KNT18[data] = 0.02786(9)lat(2)bottom(10)KNT18[data]

= 0.027 86± 0.000 13 ,
(5.6)

where the meaning of the errors is similar to eq. (5.5). The relative difference to the result
obtained via the Adler function amounts to less than 0.5 % and is indicative of the different
treatment of the non-lattice contribution in eq. (5.1).
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In figure 14, we present a compilation of results for ∆α(5)
had

(
M2
Z

)
obtained using our

lattice estimate of the HVP, the standard dispersive approach, as well as global EW fits.
The first two symbols (red filled diamond/square) show our results represented by eqs. (5.5)
and (5.6).

We shall first focus on our main result — the red filled diamond (Lattice + pQCD′[Adler]).
The inner and outer error bars represent the total uncertainty and the combination of
the first two errors in eq. (5.5), respectively. The total error of about 0.5 % is close to
the precision of the dispersive approach (open green circles/diamond). Our main result is
consistent with the latter and also broadly agrees with the estimates from global EW fits
(blue upper/lower triangles).

It is instructive to compare our main result — which is represented by the gray vertical
band — with Jegerlehner’s evaluation [13], also based on the Euclidean split method and
represented by the open green diamond in the figure. The two estimates differ chiefly by
the contribution at the hadronic energy scale Q2

0 = 5 GeV2: while our result is based on
lattice QCD, the open green diamond has been obtained from the R-ratio. In figure 12,
we have observed a clear tension between the two evaluations (black vs. orange). However,
from eq. (5.5) one easily reads off that ∆α(5)

had
(
−Q2

0
)
contributes at most 60 % to the

total uncertainty of ∆α(5)
had

(
M2
Z

)
, resulting in smaller tension, due to the additional, albeit

correlated, uncertainty from the high-energy contribution.
Next, we compare our results to the estimate from global EW fits. This category

includes results from the Gfitter group [142], ref. [34] (obtained using the HEPfit code [144]),
refs. [35, 36] (employing the Gfitter library), and ref. [143] (with two different scenarios).
The blue open lower triangles in figure 14 were all obtained by a fit to EW precision data,
treating ∆α(5)

had
(
M2
Z

)
as a free parameter. This allows for ∆α(5)

had
(
M2
Z

)
to be determined

exclusively from the other EW precision observables, and favors smaller values compared to
both lattice and R-ratio determinations. The precision of these estimates of ∆α(5)

had
(
M2
Z

)
is

lower compared to results extracted from the lattice and the R-ratio. With the exception
of ref. [34], all results are compatible with our value within 1.3σ. Therefore, we conclude
that lattice calculations of the HVP contribution to the hadronic running of α and the
muon g − 2 are not in contradiction with global EW fits [34]. The data point from ref. [36]
marked by the blue open upper triangle results from treating both the Higgs mass MH

and ∆α(5)
had

(
M2
Z

)
as fit parameters without priors. It shows that if the precise experimental

input for MH is not used, the resulting determination of ∆α(5)
had

(
M2
Z

)
favors a larger value

with a significantly larger uncertainty [36]. Fits represented by blue filled triangles employ
priors for ∆α(5)

had
(
M2
Z

)
centered about the R-ratio estimate [35, 142]. It is interesting to

note that the output for ∆α(5)
had

(
M2
Z

)
is very close to the input R-ratio estimate. Finally,

the authors of ref. [143] apply the Euclidean split technique in eq. (5.1), by combining the
perturbative running with the lattice result by BMWc [21] at Q2

0 = 4 GeV2. In this way they
obtain ∆α(5)

had
(
M2
Z

)
= 0.027 66(10), which is consistent with our result in eq. (5.5). Using

this value as prior for the fit, the posterior probability is shown in figure 14 with a blue filled
diamond for two different scenarios. The observed pull of 1.1–1.3σ further supports the
conclusion that lattice results are not inconsistent with global EW fits [143]. Alternatively,
one could use our estimate ∆α(5)

had
(
M2
Z

)
as a prior, which is left to future work.
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Figure 15. Left: hadronic contributions to the running of the weak coupling α2 from the our
computation, compared to lattice results from ref. [19], as well as the phenomenological estimate
determined using alphaQEDc19 [13, 134], as a function of the space-like momentum transfer Q2.
Right: ratios of the phenomenological estimate and of the lattice computation in ref. [19] over
our result.

5.2 Hadronic running of the electroweak mixing angle

The lattice formalism gives us full control over the quark flavor charge factors that are used
to construct the quark-level vector currents in eqs. (2.5) and (2.11). The ability to perform
an exact separation of the vacuum polarization function Π̄γZ in terms of individual valence
quark flavors (see section 3) is an inherent feature of the lattice approach. It eliminates the
need to perform a reweighting of exclusive channels in hadronic cross section data, which
is a source of systematic uncertainty in phenomenological determinations of the hadronic
running of sin2 θW. In section 4.2 we have reported our results for the hadronic contribution
to the running of the electroweak mixing angle, ∆had sin2 θW(−Q2), as a function of the
space-like momentum Q2 > 0. Our result can thus replace estimates from the data-driven
approach in studies that apply the running with energy to determine the electroweak mixing
angle θW in the Thomson limit, with the understanding that current lattice QCD results
are limited to Q2 ≈ 7 GeV2. In the following, we compare our data with previous results in
the literature.

Phenomenological estimates of ∆had sin2 θW(−Q2) can be obtained by applying
Jegerlehner’s alphaQEDc19 software package [134], see ref. [13]. Since alphaQEDc19 pro-
vides ∆αhad and ∆α2,had as primary quantities with their respective error estimates, we
perform the comparison with our lattice determination for the running of the SU(2) gauge
coupling α2. As explained in ref. [13], the software package implements a modified flavor
separation scheme assuming SU(3) flavor symmetry [58], which differs from the “perturba-
tive” separation scheme advocated in refs. [40, 42, 45]. This modification is motivated by
the observation that it brings the phenomenological estimate into better agreement with
previous lattice results, see for instance the comparison plot in figure 9 of ref. [19] and the
discussion in ref. [13].
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Figure 16. HVP mixing function Π̄08 as a function of Q2 from our lattice computations, compared
to the phenomenological model described in appendix D. Two contributions to the model are also
shown in isolation: the finite perturbative QCD one, and the narrow resonances one resulting from
the ω and φ mesons with opposite signs.

A comparison between the alphaQEDc19 estimate of ∆had sin2 θW(−Q2) and our lattice
results is shown in figure 15. In performing this comparison, one has to take into account that
the result of ref. [13] has been obtained using sin2 θ`eff = 0.231 53 [145] as a reference value in
the normalization of eq. (2.10). This amounts to a 3 % difference which is accounted for in the
plot. We observe that, even though the modified reweighting brings the phenomenological
estimate closer to our lattice results, it still falls short by about 8 % at smaller Q2 and 4 %
at higher values.

In figure 15 we include points from previous lattice calculations. While the BMWc
paper [21] does not quote results for the running of α2, or for the Π̄08 component, we
can still estimate the α2 contribution using the fact that the Wick-connected component
is Π̄08,con =

√
3/2(Π̄33 − Π̄88

con), together with the observation from our data that the
same component varies between 130 % at Q2 = 1 GeV2 and 125 % at Q2 ≥ 5 GeV2 of
Π̄08. For the data points for ∆α2,had plotted in figure 15, we correct for this by adding
a O(0.5 %) positive contribution with negligible errors to the BMWc data points, which
brings them into good agreement with our result, especially at larger Q2. The result by
Burger et al. [19] is missing the quark-disconnected contribution, as in the ∆αhad case.
Thus, it is plausible that their estimate is lower than our result. Since the SU(3)-symmetric
flavor-separation scheme implemented in alphaQEDc19 was motivated by the findings of
earlier lattice calculations [19, 61, 146], the missing quark-disconnected contributions in
those references might explain the observed shortfall between the phenomenological estimate
on the one hand, and the more comprehensive results of our work and ref. [21] on the other.

Another possible strategy to estimate the hadronic contribution to the running of θW
at low energies is to combine the phenomenological evaluation of ∆αhad(−Q2) from R-ratio
experimental data with extra input providing the exact flavor separation and reweighting
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obtained from precise lattice data. From eq. (3.6) we observe that the difference between
Π̄γγ and Π̄Zγ is proportional to the I = 0 mixing HVP function Π̄08 given in table 5, plus
a small charm quark contribution. In figure 16, we plot our results for Π̄08 as a function of
Q2 up to 7 GeV2. To our knowledge, this is the most precise ab-initio computation of this
quantity and the first to include both connected and disconnected contributions. In the
same plot we also show a phenomenological model estimate, which is discussed in detail
in appendix D. The error band represents the statistical uncertainty on the model, which
is dominated by the experimental error on the partial decay widths into e+e− of the ω
and φ vector resonances. The model is obtained assuming that the quark-disconnected
diagrams of type (s, s) and (`, s) are negligible, and this assumption is shown to give a good
estimate in an analogous model for the aHVP,LO

µ strange and light isoscalar contributions.
Even neglecting this sources of systematic uncertainty, the plot shows clearly that the
lattice results are in good agreement with the model over the whole range of Q2 values, but
significantly more precise.

Π̄08(Q2) over the whole Q2 range is well approximated within 15 % of its total error by
a rational approximation of order [2/2] of the kind employed in section 4.2.4, i.e.

Π̄08
(
−Q2

)
= 0.021 7(11)x+ 0.015 1(12)x2

1 + 2.93(8)x+ 2.15(12)x2 , x = Q2

GeV2 , (5.7)

where the numerator ai and denominator bj parameters are strongly correlated according to

corr


a1
a2
b1
b2

 =


1

0.97 1
0.97 0.984 1
0.944 0.994 0.98 1

 . (5.8)

At large Q2, Π̄08 varies very slowly with Q2. For Q2 → ∞, the rational approximation
tends to the finite value a2/b2 = 0.007 04(17) which coincides with the value at our largest
Q2 = 7 GeV2

Π̄08 = 0.007 04(17) (5.9)

and is only 2 % larger than the value at Q2 = 3 GeV2. We take this value as our main result
for the I = 0 Zγ-mixing HVP function at large Q2.

6 Conclusions

In this paper we have presented a computation of the leading hadronic contribution to the
running of the QED coupling α and of the electroweak mixing angle θW from first principles
using lattice QCD.

For the QED coupling, our main result is presented in eqs. (4.11) and (4.12) in terms
of a rational approximation of ∆αhad(−Q2) as a function of the space-like Q2 > 0 up to
Q2 ≈ 7 GeV2. Our results are slightly larger but still compatible with an earlier calculation
by BMWc. However, there is a significant tension with the predictions based on the data-
driven method. Since the tension is larger at lower Q2, where our result is most sensitive to
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the scale setting error, a new determination of the t0 scale that is underway [147] will help
clarify the significance of this tension.

Combining our result obtained in a Q2-range between 3 to 7 GeV2 range with pertur-
bative QCD, we obtain an estimate for ∆α(5)

had(M2
Z) in eq. (5.5) that does not rely on any

experimental data as input, except for the calibration of the lattice scale. Our estimate,
based on the Euclidean split technique and the perturbative Adler function, is consistent
with and of similar precision (i.e. 0.55 %) as estimates employing the data-driven approach.
Thus, the tension in ∆αhad(−Q2) observed between our results and the R-ratio is largely
washed out when running the result up to the Z pole.

For the electroweak mixing angle θW, we also provide a description in terms of a rational
function of ∆had sin2 θW(−Q2) for Q2 up to 7 GeV2 (see eqs. (4.13) and (4.14)). Here we
take advantage of the fact that the different flavor structure of the (vector part of the)
weak neutral current with respect to the electromagnetic current is easily implemented in
the lattice approach. This results in estimates for ∆had sin2 θW(−Q2) with a similar error
budget as that for ∆αhad(−Q2), which is a vast improvement over what can be obtained
with the data-driven method which relies on a heuristic flavor separation affected by large
systematic uncertainties. Specifically, in eq. (5.7) we provide a rational representation for
the flavor-singlet mixing contribution Π̄08(Q2), which for a large Q2 tends to the constant
value in eq. (5.9). This result can be used in comprehensive studies of the running of the
electroweak mixing angle in combination with the experimental R-ratio data to reduce the
systematics from the flavor separation.
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amπ amK afπ afK

H101 0.183 56(48) 0.183 56(48) 0.063 87(19) 0.063 87(19)
H102 0.154 57(55) 0.191 64(48) 0.060 35(29) 0.063 92(21)
H105 0.123 53(128) 0.202 51(87) 0.058 24(48) 0.064 46(33)
N101 0.122 36(47) 0.201 89(28) 0.057 48(23) 0.064 20(19)
C101 0.096 16(65) 0.205 78(32) 0.054 59(27) 0.063 42(15)

B450 0.161 08(43) 0.161 08(43) 0.056 43(16) 0.056 43(16)
S400 0.135 92(43) 0.170 56(38) 0.053 81(35) 0.057 01(26)
N451 0.110 89(29) 0.178 27(18) 0.052 16(16) 0.057 67(9)
D450 0.083 62(39) 0.183 93(18) 0.049 67(25) 0.057 41(11)

H200 0.136 33(47) 0.136 22(67) 0.047 50(26) 0.047 52(27)
N202 0.134 23(30) 0.134 21(29) 0.048 32(16) 0.048 33(16)
N203 0.112 66(23) 0.144 13(19) 0.046 34(12) 0.049 07(11)
N200 0.092 34(28) 0.150 76(21) 0.044 14(14) 0.049 07(14)
D200 0.065 15(28) 0.156 15(16) 0.042 17(12) 0.049 10(11)
E250 0.042 17(28) 0.159 24(8) 0.040 08(22) 0.048 52(10)

N300 0.106 18(24) 0.106 18(24) 0.038 03(13) 0.038 03(13)
N302 0.087 25(34) 0.113 73(32) 0.036 32(15) 0.038 54(15)
J303 0.064 81(23) 0.119 64(20) 0.034 28(11) 0.038 66(14)
E300 0.043 67(16) 0.123 72(13) 0.032 37(12) 0.038 17(23)

t0/a
2 (w0/a)2

2.847(5) 3.694(9)
2.881(6) 3.759(11)
2.889(7) 3.779(14)
2.890(2) 3.789(5)
2.913(3) 3.836(6)

3.663(8) 4.845(18)
3.686(7) 4.895(15)
3.682(2) 4.896(5)
3.696(3) 4.933(6)

5.151(16) 7.003(42)
5.165(12) 7.020(29)
5.146(6) 6.982(15)
5.164(6) 7.040(14)
5.179(3) 7.099(7)
5.203(2) 7.176(6)

8.544(19) 11.821(48)
8.526(19) 11.784(49)
8.621(10) 12.101(31)
8.622(6) 12.163(15)

Table 8. Meson masses and decay constants, and reference scales t0 and w2
0.
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A Pseudoscalar meson and gradient flow observables

Thanks to the high statistics on the vector correlator, the results presented in section 3.8
have a better than 1 % precision on Π̄(−Q2) for all ensembles. This is comparable to
the statistical error of the meson masses and decay constants on the ensembles in table 1,
therefore it is sensible to include this source of uncertainty in the extrapolation to the
physical point. To implement the strategy presented in section 4, we performed a dedicated
computation of pseudoscalar density and axial current two-point functions, that we used
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δ [%] mπ mK fπ fK

H101 0.012 0.012 −0.11 −0.11
H102 0.051 0.000 −0.23 −0.12
H105 0.145 0.000 −0.60 −0.25
N101 0.010 0.000 −0.04 −0.02
C101 0.038 0.000 −0.15 −0.06

B450 0.031 0.031 −0.28 −0.28
S400 0.114 0.000 −0.53 −0.29
N451 0.021 0.000 −0.09 −0.03
D450 0.013 0.000 −0.05 −0.02

H200 0.096 0.096 −0.86 −0.86
N202 0.005 0.005 −0.05 −0.05
N203 0.024 0.000 −0.11 −0.05
N200 0.070 0.000 −0.29 −0.12
D200 0.056 0.000 −0.22 −0.08
E250 0.031 0.000 −0.12 −0.05

N300 0.033 0.033 −0.29 −0.29
N302 0.131 0.000 −0.60 −0.31
J303 0.086 0.000 −0.35 −0.14
E300 0.041 0.000 −0.16 −0.06

Table 9. Finite-size effects on mesonic observables.

to obtain mπ, mK , fπ and fK to subpercent precision. Crucially, this allows us to include
the correlation between these observables and the values of Π̄(−Q2) on the same ensemble
into the analysis. The axial current is non-perturbatively O(a)-improved using cA from
ref. [160] and renormalized using ZA and bA from refs. [161, 162]. The values of the meson
masses and decay constants are tabulated in table 8.

For a similar reason, we computed the gradient-flow quantities t0 [70] and w0 [163] that
set the scale, entering in the Q2 scale that is input in the kernel and in positioning of the
ensemble in the (mπ,mK) plane, see also figure 2. We use the same procedure as in ref. [67].
Specifically, to minimize the effect of boundary effects and additional discretization effects
from the boundary, on open BCs ensembles we use only the value of the action density
with clover-type discretization E(t, tfl) on a single time slice at t = T/2. On periodic BCs
ensembles the four-dimensional volume average is used. The values of t0 and w2

0 are also
tabulated in table 8, and, in the case of t0, they agree within errors with the values quoted
in refs. [66, 67]. In the following, we choose to use t0.

The meson masses and meson decay constants in table 8 are also affected by finite-size
effects. These effects are reliably computed in χPT [164] and listed in table 9. They amount
to a positive, permil-level shift on the masses and a negative sub-percent shift on the
decay constants.
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bin size τint

H101 25 1.70(26)
H102 25 1.73(27)
H105 20 1.32(27)
N101 15 0.79(11)
C101 20 0.79(10)

B450 25 1.45(24)
S400 20 2.17(32)
N451 10 0.73(10)
D450 5 0.55(7)

bin size τint

H200 30 1.20(19)
N202 35 1.86(45)
N203 20 1.15(17)
N200 15 0.77(10)
D200 10 0.58(6)
E250 5 0.47(4)

N300 40 3.36(67)
N302 30 2.07(33)
J303 20 1.41(26)
E300 20 1.07(22)

Table 10. Bin size and integrated autocorrelation time in units of saved configurations for each
of the ensembles included in our study. Configurations are saved every 4 molecular dynamics
units (MDUs) (2 trajectories of length 2 MDUs), except for J303, for which configurations are
separated by 8 MDUs (4 trajectories).

B Autocorrelation study

We employ the Γ -method [165, 166] to estimate the integrated autocorrelation time, τint
associated to ∆α for each ensemble. Then, we use this information to estimate a common
bin size. Taking into account all autocorrelations, the expected increase of the uncertainty
is estimated as

∆Π/∆Πnaive =
√

2 · τint , (B.1)

where ∆Π is the true standard deviation and ∆Πnaive is the uncertainty without taking
into account autocorrelations. The next step is to plot the ratio ∆Π(B)/∆Πnaive vs. the
bin size, B. For a similar analysis see ref. [167]. We find perfect agreement between (B.1)
and the region where ∆Π(B)/∆Πnaive plateaus.

The noise of the correlator at long distances could, in principle, hide the autocorrelations,
artificially reducing τint. To avoid this we repeat the analysis several times, each time
discarding more time slices at the tail of the correlator. However, we found that the result
is largely independent of the amount of noise removed. We also observe a clear trend to
smaller bin sizes as the physical point is approached. While this effect is in apparent contrast
with the expected ∼ 1/a2 scaling with lattice spacings [67], it is most likely explained with
the noisier observables and shorter MC chains of ensembles at finer lattice spacings and
lighter pion masses.

C Treatment of quark-disconnected diagrams

In this appendix we collect further technical details regarding the evaluation of quark loops

LOf (~p, t) =
∑
~x

ei~p·~x 〈Of (~x, t)〉F , (C.1)

– 48 –



J
H
E
P
0
8
(
2
0
2
2
)
2
2
0

for some operator Of (~x, t) involving a single quark flavor f , which represents the computa-
tionally most expensive part of this study. A simple all-to-all estimator can be constructed
using stochastic (four-dimensional) volume sources ξi, i = 1, . . . , Ns which satisfy

E[ξ†i ξj ] = δij , (C.2)

A simple estimator for the quark loop function in eq. (C.1) is then given by the average
over Ns noise sources,

LOf (~p, t) = 1
Ns

Ns∑
s=1

∑
~x

ei~p·~x tr
[
ξ†sΓO(Df )−1

xx ξs
]
, (C.3)

where Df denotes the Dirac operator for a single quark flavor and ΓO the desired combi-
nation of Dirac matrices corresponding to a local (bilinear) operator Of (x) = ψ̄(x)Γψ(x).
The generalization to non-local operators (i.e. point-split currents or operators involving
derivatives) is straightforward and does not require additional inversions. However, the
resulting statistical error for this naive estimator behaves as 1/

√
Ns, implying an insuffi-

cient rate of convergence for many observables (e.g. vector currents) with respect to the
computational cost required to saturate to gauge noise.

Therefore, we have computed the quark-disconnected loops using a variant of the
method introduced in ref. [72] combining the one-end trick (OET) [73] with a combination
of the generalized hopping parameter expansion (gHPE) [76] and hierarchical probing [77].
We write the difference between the quark loop function of operators O1 and O2 with
different flavors (with different quark masses m1 and m2 respectively) using eq. (3.14) to
get the OET estimator

LO1 (~p, t)−LO2(~p, t) = (m1−m2) 1
Ns

Ns∑
s=1

∑
~x

∑
y

ei~p·~x tr
[
ξ†s(D2)−1

yx ΓO(D1)−1
xy ξs

]
, (C.4)

where in the r.h.s. we have used the cyclic property of the trace and inserted the volume
sources satistfing eq. (C.2) at the other end of the propagator product with respect to the
local operator insertion. Using the OET is it possible to saturate to the gauge noise for all
relevant observables using at most O(100) sources. Note that this does not require any spin
or color dilution but is achieved with plain stochastic 4d sources, which greatly reduces
the computational cost compared to e.g. plain hierarchical probing. Using the gHPE, cf.
eqs. (3.15)–(3.16), we generalize the method of ref. [72] to apply also to point-split currents
by evaluating the first term on the r.h.s. of eq. (3.15) using hierarchical probing on spin and
color diluted stochastic volume sources. We find that Nh = 512 probing vectors are sufficient
to reach gauge noise for non-local operators, while for local operators the saturation occurs
already at Nh = 32. For the second term it is sufficient to use naive stochastic volume
sources, and the required inversion can be reused in the evaluation of tr

[
Γ (D−1

N−1 −D
−1
N )

]
,

i.e. the last term of the chain of OET estimators. Regarding the order of the gHPE, we
found a choice of n = 2 to be most effective. In practice, we use always four quark flavors,
i.e. light, strange, an additional, intermediate valence quark and a charm valence quark.
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κ` κs κi κc q2
max

H102 0.136 865 0.136 549 339 0.132 901 611 768 002 995 31 0.123 041 12
H105 0.136 970 0.136 340 79 0.132 812 391 061 451 851 62 0.123 244 12
N101 0.136 970 0.136 340 79 0.132 812 391 061 451 851 62 0.123 244 16
C101 0.137 030 0.136 222 041 0.132 761 760 906 907 502 03 0.123 361 16

S400 0.136 984 0.136 702 387 0.133 647 904 383 104 573 91 0.125 252 12
N451 0.137 061 6 0.136 548 077 1 0.133 590 334 051 988 036 99 0.125 439 25
D450 0.137 126 0.136 420 428 639 937 0.133 539 983 207 319 069 73 0.125 585 36

N203 0.137 080 0.136 840 284 0.134 438 580 455 760 296 63 0.127 714 16
N200 0.137 140 0.136 720 86 0.134 391 915 521 748 571 56 0.127 858 16
D200 0.137 200 0.136 601 748 0.134 340 862 017 844 683 60 0.127 986 16
E250 0.137 232 867 0.136 536 633 0.134 311 782 582 228 314 33 0.128 052 36

N302 0.137 064 0.136 872 179 135 8 0.135 153 490 631 909 189 61 0.130 247 16
J303 0.137 123 0.136 754 660 8 0.135 098 429 622 226 632 37 0.130 362 16
E300 0.137 163 0.136 675 163 617 732 7 0.135 059 004 501 960 048 51 0.130 432 36

Table 11. Values of (valence) κ`,s,i,c for the ensembles for which disconnected loops have been
produced, together with the lattice momentum cutoff q2

max in units of (2π/L)2 up to which momentum
space data has been saved for both local and one-link displaced operators.

For the (bare) mass of the intermediate quark flavor i we found that the following choice
for the value of the intermediate κi

1
κi

= 1−X
κs

+ X

κc
, X = 1/4 , (C.5)

works well for our ensembles. The values for κs,c are listed in table 11 and most of the values
for the charm quark have been previously published in ref. [8]. We use 512 stochastic volume
sources for the light quark and double this number for each heavier quark flavor. Moreover,
we average over stochastic sources such that effectively four independent blocks remain,
which we found to be an acceptable compromise between storage requirements and the
resulting loss of effective statistics in (unbiased) estimators for e.g. the quark-disconnected
contribution to meson two-point functions. Since certain other projects require position
space data on large lattices such a compromise is needed, i.e. to keep overall storage
consumption at a feasible level when storing lattice-wide objects involving all sixteen local
operators. One-link displaced operators have only been stored in momentum space.

The resulting method is significantly more efficient than e.g. plain hierarchical probing
as applied in refs. [8, 78]. While the statistical errors for the scalar, pseudoscalar and axial
vector currents are very consistent between the two methods, this is not the case for the
vector and tensor currents. Considering the products of variance σ2

O,vev and computational
cost t, an operator-dependent, effective speedup sO can be defined as the ratio of this
quantity for the “old” (hierarchical probing) and the “new” (OET+gHPE+HP)-based
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Figure 17. Speedup of the “new” (OET + gHPE + HP) method over the “old” (plain hierarchical
probing) setup for scalar (S), pseudoscalar (P), vector (V), conserved vector (Vnoe), axialvector (A)
and tensor (T ) quark bilinear operators. Results are shown for individual light and strange flavors
as well as for the l− s combination obtained directly from the OET. For operators that had reached
gauge noise already for the old setup a speedup of roughly a factor five is obtained, while for the
l − s combination of the vector currents speedups of more than an order of magnitude are observed.

method

sO =

(
σ2
O,vevt

)
old(

σ2
O,vevt

)
new

, (C.6)

where σ2
O,vev denotes the variance of the vacuum expectation values at zero-momentum, i.e.

for the observable
vev =

∑
t

〈
LO(~0, t)

〉
. (C.7)

Assuming independent measurements (i.e. a sufficiently large set of gauge configurations),
this ratio determines the difference in absolute computational cost for the two methods
for a given statistical target precision. The results are shown in figure 17 for the same set
of operators and flavors. Depending on the observable this effective speedup reaches an
order of magnitude. The largest difference between the two methods is observed for the
l − s combination of vector currents with an improvement of more than 17 in case of the
conserved vector current.

D Phenomenological model of the Π̄08 contribution

Modelling the Π̄08 contribution using experimental data as input requires some assumptions.
In this appendix we describe the phenomenological model that we compare to the lattice
result in figure 16. Using the definitions in eqs. (3.7),

GγγI=0 = 1
3G

88 ' 1
18G

ω + 1
9G

φ , G08 ' 1
2
√

3

[
Gω −Gφ

]
, (D.1)
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where Gω = C`,` + 2D`,`, Gφ = Cs,s, and we neglected the disconnected diagram contribu-
tions D`,s and Ds,s. The I = 0 light and strange contributions are labeled with the vector
meson that contributes the most to that channel, respectively the ω and the φ. Indeed, we
can model the contribution to the hadronic cross-section in these channels with a narrow
vector resonance contribution, plus the appropriate perturbative contribution

R`I=0(s) = 1
18Aωm

2
ωδ
(
s−m2

ω

)
+ θ (s− s0) Nc

18 (1 + αs/π) , (D.2)

Rs (s) = 1
9Aφm

2
φδ
(
s−m2

φ

)
+ θ (s− s1) Nc

9 (1 + αs/π) , (D.3)

where the masses are mω = 782.65(12) MeV and mφ = 1 019.461(16) MeV [7]. The ampli-
tudes Aω and Aφ can be estimated observing that the contribution for a narrow resonance
is proportional to its electronic decay width Γ (V → e+e−), resulting in

Aω
18 = 9π

α2
Γ
(
ω → e+e−

)
mω

= 7.33(24)
18 ,

Aφ
9 = 9π

α2
Γ (φ→ e+e−)

mφ
= 5.86(10)

9 ,

(D.4)
with Γ (ω → e+e−) = 0.60(2) keV and Γ (φ → e+e−) = 1.251(21) keV [7]. Setting Nc = 3,
αs = 0.30 and the perturbative contribution thresholds √s0 = 1.02 GeV and√s1 = 1.24 GeV,
eqs. (D.2) yield a respectively 50.2×10−10 and 53.4×10−10 for their contribution to aHVP,LO

µ .
We can add these contributions to get 103.6× 10−10 for the total uds isoscalar contribution
to aHVP,LO

µ , where we have neglected the `, s-type disconnected diagrams, consistent with
the findings of ref. [168]. These numbers are in excellent agreement with lattice results [8].
We also consider the exact sum rule for the spectral function of G08,∫ ∞

0
dsR08(s) = 1

2
√

3

[
Aωm

2
ω −Aφm2

φ +Nc

(
1 + αs

π

)
(s1 − s0)

]
= 0 , (D.5)

where R08(s) = [18R`I=0(s)− 9Rs(s)]/(2
√

3). This is satisfied within errors by the model,
with the resonances contributing −0.46(5) GeV2 and the perturbative piece contributing
0.47 GeV2.

This gives us confidence in the model for the Π̄08 mixing function

Π̄08
model

(
−Q2

)
= Q2

12π2
∫ ∞

0
ds R08 (s)
s (s+Q2) = 1

12π2
1

2
√

3
(D.6)

×
[
Aω

Q2

m2
ω +Q2 −Aφ

Q2

m2
φ +Q2 +Nc

(
1 + αs

π

)
log

(
s1
(
s0 +Q2)

s0 (s1 +Q2)

)]
.

(D.7)

The perturbative contribution cancels except for differences in the light and strange quark
thresholds, that leads to a finite contribution in the Q2 → ∞ limit. With the inclusion
of a ±100 MeV correlated error in the √s0 and √s1 threshold that gives the error band
in figure 16, the value is Π̄08

pert. → Nc(1 + αs/π) log(s1/s0)/(12π22
√

3) = 0.003 13(28).
Similarly, the ω and φ resonances contribution in the Q2 → ∞ limit is Π̄08

ω,φ → (Aω −
Aφ)/(12π22

√
3) = 0.003 57(64), for a total of 0.006 69(70), with the O(10 %) error dominated

by the experimental uncertainty on the ω and φ partial decay widths into e+e−. At
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Q2 = 7 GeV2, our lattice result is Π̄08 = 0.007 04(17) and very slowly varying with Q2, only
2 % larger than the Q2 = 3 GeV2 value, that makes it compatible with the model value but
significantly more precise.

E Phenomenological estimate of the charm quenching effect

Our goal in this appendix is to estimate the rough size of the effect of neglecting sea
charm quarks on the running of αem up to Q2

0 ≈ 5 GeV2. To this end, we may split up the
subtracted vacuum polarisation into two terms,

Π̄
(
−Q2

0

)
=
[
Π
(
−Q2

0

)
−Π

(
−1 GeV2

)]
+ Π̄

(
−1 GeV2

)
. (E.1)

The first term can be estimated using perturbation theory; the dynamical charm quark
effects enter at order α2

s and is numerically small. For the second term, we will see that
the contribution of the DD̄ channels to the light-quark correlators amounts to a roughly
one-permil effect if one neglects the virtuality dependence of the D-meson form factor.

We assume that the pion and kaon masses ared used to set the (u, d, s) quark masses,
and that the same low-energy scale-setting quantity is used in the Nf = 2 + 1 + 1 and the
Nf = 2 + 1 theory. To be clear, we do not claim to have a quantitative estimate of the
charm quenching effect on Π̄(−Q2

0), which represents a non-perturbative problem. Rather,
we have tried to identify some of the differences between the two theories and assume the
size of these differences to be representative of the total quenching effect.

E.1 D meson loops

In the Nf = 2 + 1 + 1 theory, D+D−, D0D̄0 and D+
s D
−
s pairs can contribute to the

connected vector correlator of the (u, d, s) quarks, while these contributions are absent
in the Nf = 2 + 1 theory. The real production of these heavy-light meson pairs makes
a positive contribution to the spectral function above the threshold of

√
s = 2mD. The

contribution to the R-ratio is

RD+D−(s) = 1
4

(
1− 4m2

D

s

)3/2

|FD+(s)|2 (E.2)

and a similar expression for the D0D̄0 and D+
s D
−
s channels. Since the form factors FD are

not known precisely, we will set them to their values at s = 0, which amounts to treating
these mesons in the scalar QED framework. With the form factors FD+(s) and FD+

s
(s) set

to 1/3, since that is the charge of these mesons with respect to the (u, d, s) electromagnetic
current, and similarly with FD0(s) set to −2/3, we obtain for the subtracted HVP the
contribution

δΠ̄γγ
(
−Q2

)
= 4

9f
(
Q2/m2

D0

)
+ 1

9f
(
Q2/m2

D+

)
+ 1

9f(Q2/m2
Ds) , (E.3)

with10

f(z) = 1
144π2

[
−8(1 + 3/z) + 3(1 + 4/z)3/2 log

(2 + z +
√
z(4 + z)

2

)]
. (E.4)

10For z → 0, we have f(z) = z
480π2 +O(z2).
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For Q2 = 1 GeV2, we find

δΠ̄γγ
(
−1 GeV2

)
= 0.39× 10−4 (E.5)

for the combined contribution of the D+
s D
−
s , D+D− and D0D̄0 channels. For comparison,

the (u, d, s)-quark contribution to this quantity is roughly 0.040. Thus the contribution (E.5)
represents a one-permil effect. For Q2 = 5 GeV2, we find

δΠ̄γγ
(
−5 GeV2

)
= 1.81× 10−4 , (E.6)

a 2.6 permil effect compared to about 0.070 for the (u, d, s)-quark contribution. In particular,

δΠ̄γγ
(
−1 GeV2

)
− δΠ̄γγ

(
−5 GeV2

)
= −1.42× 10−4 . (E.7)

The numerical values provided here can be enhanced by the presence of DD̄ 1−− resonances,
such as the ψ(3770); however, the latter is thought to be a ‘good c̄c resonance’, therefore
having little coupling to the electromagnetic current carried by the (u, d, s) quarks. As an
analogy, it may also be worth noting that the magnitude of the effective proton timelike
form factor describing the cross-section e+e− → p̄p starts at about 0.4 at threshold [169],
and thus well below its value at s = 0.

The corresponding contribution for the running of the mixing angle is easily estimated
considering the charges of the D mesons with respect to the weak isospin current, that
results in

δΠ̄T3γ
(
−Q2

)
= 1

12
[
2f
(
Q2/m2

D0

)
+ f

(
Q2/m2

D+

)
+ f

(
Q2/m2

Ds

)]
, (E.8)

and using the relation δΠ̄Zγ = δΠ̄T3γ − sin2 θWδΠ̄
γγ .

E.2 Perturbative estimate

It is interesting to compare eq. (E.7) the difference of eqs. (E.5) and (E.6) to the purely
perturbative prediction for the effect of unquenching the charm quark.

The required formulae for the contribution of heavy sea quarks to the spectral function
of the (u, d, s) quarks can be found in ref. [170]. The ‘valence quarks’ (u, d, s), i.e. those
coupling to the electromagnetic current, are treated as massless. There is a virtual correction
to the spectral function starting already at s = 0, and a contribution corresponding to the
‘real emission’ of a c̄c pair, which opens at s = 4m2. Using the spectral representation, and
setting αs = 0.30, mc = 1.25 GeV we find

Π̄γγ(−1 GeV2)− Π̄γγ(−5 GeV2) = −0.19× 10−4 . (E.9)

This prediction is about seven times smaller than the prediction in eq. (E.7) based on the
D-meson loops treated in the scalar QED framework.
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E.3 Change in the ω and φ masses and decays constants due to mixing
with J/ψ

A further non-perturbative effect to be expected in QCD with dynamical charm quarks is
a small shift in the masses and decay constants of the ω and φ mesons, relative to their
respective values in QCD without dynamical charm quarks. Simply speaking, this may
be viewed as a result of the ω and φ mixing with the J/ψ and possibly higher vector
charmonium mesons. Parametrically, this effect is of order 1/m2

J/ψ, with a significant
additional suppression associated with the small rate at which J/ψ decays. Even the mixing
of the ω and φ mesons among themselves is known to be very small in the single flavor
quark basis; see for instance the recent article [171] on this topic and references therein.
Since it is difficult to isolate and quantitatively estimate the effect, we refrain from doing
so here.

E.4 Synthesis

The largest potential charm-quenching correction we have identified comes from the D-meson
loop, assuming conservatively virtuality-independent form factors. We will therefore use
that correction as the basis of our estimate for the overall systematic uncertainty associated
with the neglect of dynamical charm quark efects. Specifically, we will use eqs. (E.3)–(E.4)
to estimate the charm-quenching error. As for the sign of the effect of quenching the charm
quark, we remark that the specific effects considered in sections E.1 and E.2 both lead to
Π̄(−Q2) in the Nf = 2 + 1 theory being slightly underestimated. Nevertheless, we will
quote symmetric systematic errors, since we are unable to perform a complete analysis.

As a final remark, we have not addressed the quark-disconnected contributions to the
electromagnetic-current correlator involving one charm quark, i.e. 2

〈
j8
µj
c
ν

〉
/(3
√

3). At least
in perturbation theory, such contributions are of order α3

s, i.e. of higher order than those
considered in section E.2.

F Extended table of results at the physical point

The results for the Π̄33, Π̄88, Π̄08 and Π̄cc, and for the total HVP contribution to the
running of α and sin2 θW, extrapolated to the physical point as explained in section 4, are
given in tables 12 and 13 respectively for all the values of Q2 sampled.
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Q2 [GeV2] t0Q
2 Π̄33 Π̄88 Π̄08 Π̄cc

0.01 0.005 53 0.000 904(14)(11) (7)(0)[19] 0.000 449 (6)(0) (5)(0) [7] 0.000 209 (6)(0) (9)(0)[11] 0.000 042 4(2)(1) (9)(–) [9]
0.015 0.008 29 0.001 342(20)(16)(10)(0)[28] 0.000 670 (8)(0) (7)(0)[11] 0.000 310 (9)(0)(13)(0)[15] 0.000 063 6(3)(1)(13)(–)[14]
0.02 0.011 06 0.001 77 (3) (2) (1)(0) [4] 0.000 888(11)(0) (9)(1)[14] 0.000 409(12)(0)(17)(0)[20] 0.000 084 7(4)(1)(18)(–)[18]
0.025 0.013 82 0.002 19 (3) (3) (2)(0) [4] 0.001 103(13)(0)(11)(1)[18] 0.000 506(14)(0)(20)(0)[25] 0.000 105 9(5)(1)(22)(–)[22]
0.03 0.016 59 0.002 61 (4) (3) (2)(0) [5] 0.001 316(16)(0)(13)(1)[21] 0.000 601(17)(0)(24)(0)[29] 0.000 127 0(6)(2)(26)(–)[27]
0.035 0.019 35 0.003 01 (4) (4) (2)(0) [6] 0.001 526(18)(0)(15)(1)[24] 0.000 694(19)(0)(28)(0)[34] 0.000 148 1(7)(2)(31)(–)[32]
0.04 0.022 12 0.003 41 (5) (4) (2)(0) [7] 0.001 735(20)(1)(17)(1)[27] 0.000 79 (2)(0) (3)(0) [4] 0.000 169 (1)(0) (3)(–) [4]
0.045 0.024 88 0.003 80 (5) (4) (2)(0) [7] 0.001 940(22)(1)(19)(1)[29] 0.000 88 (2)(0) (3)(0) [4] 0.000 190 (1)(0) (4)(–) [4]
0.05 0.027 64 0.004 18 (6) (5) (3)(0) [8] 0.002 144(25)(1)(21)(1)[32] 0.000 96 (3)(0) (4)(0) [5] 0.000 211 (1)(0) (4)(–) [4]
0.055 0.030 41 0.004 55 (6) (5) (3)(0) [9] 0.002 345(27)(1)(23)(2)[35] 0.001 05 (3)(0) (4)(0) [5] 0.000 232 (1)(0) (5)(–) [5]
0.06 0.033 17 0.004 92 (7) (6) (3)(0) [9] 0.002 54 (3)(0) (2)(0) [4] 0.001 13 (3)(0) (4)(0) [5] 0.000 253 (1)(0) (5)(–) [5]
0.065 0.035 9 0.005 28 (7) (6) (3)(0)[10] 0.002 74 (3)(0) (3)(0) [4] 0.001 22 (3)(0) (5)(0) [6] 0.000 274 (1)(0) (6)(–) [6]
0.07 0.038 7 0.005 64 (7) (6) (3)(0)[10] 0.002 94 (3)(0) (3)(0) [4] 0.001 30 (3)(0) (5)(0) [6] 0.000 296 (1)(0) (6)(–) [6]
0.075 0.041 5 0.005 98 (8) (6) (3)(0)[11] 0.003 13 (3)(0) (3)(0) [5] 0.001 38 (4)(0) (5)(0) [6] 0.000 317 (1)(0) (7)(–) [7]
0.08 0.044 2 0.006 33 (8) (7) (3)(0)[11] 0.003 32 (4)(0) (3)(0) [5] 0.001 45 (4)(0) (6)(0) [7] 0.000 337 (2)(0) (7)(–) [7]
0.085 0.047 0 0.006 66 (8) (7) (4)(0)[12] 0.003 51 (4)(0) (3)(0) [5] 0.001 53 (4)(0) (6)(0) [7] 0.000 358 (2)(1) (7)(–) [8]
0.09 0.049 8 0.006 99 (9) (7) (4)(0)[12] 0.003 69 (4)(0) (4)(0) [5] 0.001 60 (4)(0) (6)(0) [7] 0.000 379 (2)(1) (8)(–) [8]
0.095 0.052 5 0.007 32 (9) (8) (4)(0)[12] 0.003 88 (4)(0) (4)(0) [5] 0.001 68 (4)(0) (6)(0) [8] 0.000 400 (2)(1) (8)(–) [9]
0.1 0.055 3 0.007 64 (9) (8) (4)(0)[13] 0.004 06 (4)(0) (4)(0) [6] 0.001 75 (4)(0) (7)(0) [8] 0.000 421 (2)(1) (9)(–) [9]
0.12 0.066 3 0.008 86 (10) (9) (4)(0)[14] 0.004 78 (5)(0) (4)(0) [7] 0.002 02 (5)(0) (7)(0) [9] 0.000 505 (2)(1)(10)(–)[11]
0.14 0.077 4 0.010 01 (11) (9) (5)(0)[15] 0.005 46 (5)(0) (5)(0) [7] 0.002 28 (5)(0) (8)(0)[10] 0.000 588 (3)(1)(12)(–)[12]
0.16 0.088 5 0.011 09 (12)(10) (5)(0)[16] 0.006 13 (6)(0) (6)(0) [8] 0.002 51 (6)(0) (9)(0)[11] 0.000 671 (3)(1)(14)(–)[14]
0.18 0.099 5 0.012 11 (12)(10) (5)(1)[17] 0.006 76 (6)(1) (6)(1) [9] 0.002 73 (6)(0)(10)(0)[11] 0.000 754 (4)(1)(15)(–)[16]
0.2 0.110 6 0.013 08 (13)(10) (6)(1)[17] 0.007 38 (6)(1) (7)(1) [9] 0.002 94 (6)(0)(10)(0)[12] 0.000 837 (4)(1)(17)(–)[18]

Table 12. Results for the Π̄33, Π̄88, Π̄08 and Π̄cc HVP contribution extrapolated to the physical point for all the values of Q2 sampled. The first
quoted uncertainty is the statistical error, the second is the systematic error from varying the fit model estimated in section 4.1.1, the third is the
scale-setting error (see section 4.2.1), and the fourth is the systematic from missing charm sea-quark loops (see section 4.2.2). The final uncertainty,
quoted in square brackets, is the combination of the previous ones (continues).
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Q2 [GeV2] t0Q
2 Π̄33 Π̄88 Π̄08 Π̄cc

0.22 0.121 6 0.014 00 (13)(11) (6)(1)[18] 0.007 98 (7)(1) (7)(1)[10] 0.003 13 (6)(0)(11)(0)[12] 0.000 919 (4)(1)(19)(–)[19]
0.24 0.132 7 0.014 87 (14)(11) (7)(1)[19] 0.008 55 (7)(1) (8)(1)[10] 0.003 31 (7)(0)(11)(0)[13] 0.001 002 (5)(1)(20)(–)[21]
0.26 0.143 7 0.015 70 (14)(11) (7)(1)[19] 0.009 11 (7)(1) (8)(1)[11] 0.003 48 (7)(0)(12)(0)[13] 0.001 084 (5)(2)(22)(–)[23]
0.28 0.154 8 0.016 49 (14)(11) (8)(1)[19] 0.009 65 (7)(1) (9)(1)[12] 0.003 64 (7)(0)(12)(0)[14] 0.001 165 (5)(2)(24)(–)[24]
0.3 0.165 9 0.017 25 (14)(11) (8)(1)[20] 0.010 17 (7)(1) (9)(1)[12] 0.003 78 (7)(0)(12)(0)[14] 0.001 247 (6)(2)(25)(–)[26]
0.32 0.176 9 0.017 97 (15)(11) (9)(1)[20] 0.010 68 (7)(1)(10)(1)[12] 0.003 92 (7)(0)(13)(0)[14] 0.001 328 (6)(2)(27)(–)[28]
0.34 0.188 0 0.018 67 (15)(11) (9)(1)[20] 0.011 18 (8)(1)(10)(1)[13] 0.004 05 (7)(0)(13)(0)[15] 0.001 410 (6)(2)(29)(–)[30]
0.36 0.199 0 0.019 34 (15)(11) (9)(1)[21] 0.011 66 (8)(1)(11)(1)[13] 0.004 17 (7)(0)(13)(0)[15] 0.001 490 (7)(2)(30)(–)[31]
0.38 0.210 1 0.019 99 (15)(11)(10)(1)[21] 0.012 13 (8)(1)(11)(1)[14] 0.004 29 (7)(0)(13)(0)[15] 0.001 571 (7)(2)(32)(–)[33]
0.4 0.221 2 0.020 61 (15)(11)(10)(1)[21] 0.012 59 (8)(1)(11)(1)[14] 0.004 40 (7)(0)(14)(0)[15] 0.001 652 (7)(2)(33)(–)[34]
0.42 0.232 2 0.021 21 (15)(11)(11)(1)[22] 0.013 03 (8)(1)(12)(1)[14] 0.004 50 (7)(0)(14)(0)[16] 0.001 73 (1)(0) (4)(–) [4]
0.44 0.243 3 0.021 78 (15)(11)(11)(1)[22] 0.013 46 (8)(1)(12)(1)[15] 0.004 60 (7)(0)(14)(0)[16] 0.001 81 (1)(0) (4)(–) [4]
0.46 0.254 3 0.022 34 (16)(11)(12)(1)[22] 0.013 89 (8)(1)(12)(1)[15] 0.004 69 (7)(0)(14)(0)[16] 0.001 89 (1)(0) (4)(–) [4]
0.48 0.265 4 0.022 88 (16)(11)(12)(1)[23] 0.014 30 (8)(2)(13)(1)[15] 0.004 78 (7)(0)(14)(0)[16] 0.001 97 (1)(0) (4)(–) [4]
0.5 0.276 4 0.023 41 (16)(11)(13)(1)[23] 0.014 70 (8)(2)(13)(1)[16] 0.004 86 (7)(0)(14)(0)[16] 0.002 05 (1)(0) (4)(–) [4]
0.55 0.304 1 0.024 65 (16)(11)(14)(2)[24] 0.015 67 (8)(2)(14)(2)[16] 0.005 05 (7)(0)(15)(0)[16] 0.002 25 (1)(0) (5)(–) [5]
0.6 0.331 7 0.025 80 (16)(11)(15)(2)[24] 0.016 59 (8)(2)(15)(2)[17] 0.005 22 (7)(0)(15)(0)[17] 0.002 45 (1)(0) (5)(–) [5]
0.65 0.359 0.026 88 (16)(11)(16)(2)[25] 0.017 45 (9)(2)(15)(2)[18] 0.005 37 (7)(0)(15)(0)[17] 0.002 64 (1)(0) (5)(–) [5]
0.7 0.387 0.027 89 (16)(11)(17)(2)[26] 0.018 28 (9)(2)(16)(2)[18] 0.005 50 (7)(0)(15)(0)[17] 0.002 83 (1)(0) (6)(–) [6]
0.75 0.415 0.028 84 (16)(10)(17)(2)[26] 0.019 06 (9)(2)(16)(2)[19] 0.005 62 (7)(0)(15)(0)[17] 0.003 03 (1)(0) (6)(–) [6]
0.8 0.442 0.029 73 (16)(10)(18)(2)[27] 0.019 81 (9)(2)(17)(2)[19] 0.005 73 (7)(0)(15)(0)[17] 0.003 22 (1)(0) (6)(–) [7]
0.85 0.470 0.030 58 (17)(10)(19)(3)[27] 0.020 53 (9)(3)(17)(2)[20] 0.005 82 (8)(0)(15)(0)[17] 0.003 41 (2)(0) (7)(–) [7]
0.9 0.498 0.031 38 (17)(10)(20)(3)[28] 0.021 22 (9)(3)(18)(2)[20] 0.005 91 (8)(0)(15)(0)[17] 0.003 60 (2)(0) (7)(–) [7]
0.95 0.525 0.032 14 (17)(10)(20)(3)[28] 0.021 88 (9)(3)(18)(3)[21] 0.005 99 (8)(0)(15)(0)[17] 0.003 79 (2)(1) (7)(–) [8]

Table 12. Results for the Π̄33, Π̄88, Π̄08 and Π̄cc HVP contribution extrapolated to the physical point for all the values of Q2 sampled. The first
quoted uncertainty is the statistical error, the second is the systematic error from varying the fit model estimated in section 4.1.1, the third is the
scale-setting error (see section 4.2.1), and the fourth is the systematic from missing charm sea-quark loops (see section 4.2.2). The final uncertainty,
quoted in square brackets, is the combination of the previous ones (continues).
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Q2 [GeV2] t0Q
2 Π̄33 Π̄88 Π̄08 Π̄cc

1.0 0.553 0.032 87 (17)(10)(21)(3)[29] 0.022 51 (9)(3)(19)(3)[21] 0.006 06 (8)(0)(15)(0)[17] 0.003 97 (2)(1) (8)(–) [8]
1.05 0.581 0.033 57 (17)(10)(22)(3)[29] 0.023 12 (9)(3)(19)(3)[22] 0.006 12 (8)(0)(15)(0)[17] 0.004 16 (2)(1) (8)(–) [8]
1.1 0.608 0.034 23 (17) (9)(22)(3)[30] 0.023 71 (9)(3)(20)(3)[22] 0.006 18 (8)(0)(15)(0)[17] 0.004 34 (2)(1) (8)(–) [9]
1.15 0.636 0.034 87 (17) (9)(23)(3)[30] 0.024 28 (9)(3)(20)(3)[23] 0.006 23 (8)(0)(15)(0)[17] 0.004 53 (2)(1) (9)(–) [9]
1.2 0.663 0.035 48 (17) (9)(24)(4)[31] 0.024 82 (9)(3)(21)(3)[23] 0.006 28 (8)(0)(15)(0)[17] 0.004 71 (2)(1) (9)(–) [9]
1.25 0.691 0.036 07 (17) (9)(24)(4)[31] 0.025 35 (10)(3)(21)(3)[24] 0.006 33 (8)(0)(15)(0)[17] 0.004 89 (2)(1) (9)(–)[10]
1.3 0.719 0.036 63 (17) (9)(25)(4)[32] 0.025 86 (10)(3)(22)(4)[24] 0.006 37 (8)(0)(15)(0)[17] 0.005 07 (2)(1)(10)(–)[10]
1.35 0.746 0.037 18 (17) (9)(25)(4)[32] 0.026 36 (10)(4)(22)(4)[25] 0.006 41 (8)(0)(15)(0)[17] 0.005 25 (2)(1)(10)(–)[10]
1.4 0.774 0.037 70 (17) (9)(26)(4)[33] 0.026 84 (10)(4)(23)(4)[25] 0.006 44 (8)(0)(15)(0)[17] 0.005 43 (2)(1)(11)(–)[11]
1.45 0.802 0.038 21 (17) (8)(27)(4)[33] 0.027 31 (10)(4)(23)(4)[26] 0.006 48 (8)(0)(15)(0)[17] 0.005 61 (2)(1)(11)(–)[11]
1.5 0.829 0.038 70 (17) (8)(27)(4)[34] 0.027 76 (11)(4)(23)(4)[26] 0.006 51 (8)(0)(15)(0)[17] 0.005 78 (2)(1)(11)(–)[11]
1.55 0.857 0.039 18 (18) (8)(28)(5)[34] 0.028 20 (11)(4)(24)(4)[27] 0.006 53 (8)(0)(15)(0)[17] 0.005 96 (3)(1)(11)(–)[12]
1.6 0.885 0.039 64 (18) (8)(28)(5)[35] 0.028 63 (11)(4)(24)(4)[27] 0.006 56 (8)(0)(15)(0)[17] 0.006 13 (3)(1)(12)(–)[12]
1.65 0.912 0.040 09 (18) (8)(29)(5)[35] 0.029 05 (12)(4)(25)(5)[28] 0.006 59 (8)(0)(15)(0)[17] 0.006 30 (3)(1)(12)(–)[12]
1.7 0.940 0.040 5 (2) (1) (3)(0) [4] 0.029 45 (13)(4)(25)(5)[29] 0.006 61 (8)(0)(15)(0)[17] 0.006 48 (3)(1)(12)(–)[13]
1.75 0.968 0.040 9 (2) (1) (3)(1) [4] 0.029 85 (13)(4)(25)(5)[29] 0.006 63 (8)(0)(15)(0)[17] 0.006 65 (3)(1)(13)(–)[13]
1.8 0.995 0.041 4 (2) (1) (3)(1) [4] 0.030 23 (14)(5)(26)(5)[30] 0.006 65 (8)(0)(15)(0)[17] 0.006 82 (3)(1)(13)(–)[13]
1.85 1.023 0.041 8 (2) (1) (3)(1) [4] 0.030 61 (15)(5)(26)(5)[31] 0.006 67 (8)(0)(15)(0)[17] 0.006 99 (3)(1)(13)(–)[14]
1.9 1.050 0.042 1 (2) (1) (3)(1) [4] 0.030 98 (15)(5)(26)(5)[31] 0.006 69 (8)(0)(15)(0)[17] 0.007 16 (3)(1)(14)(–)[14]
1.95 1.078 0.042 5 (2) (1) (3)(1) [4] 0.031 34 (16)(5)(27)(5)[32] 0.006 70 (8)(0)(15)(0)[17] 0.007 32 (3)(1)(13)(–)[14]
2.0 1.106 0.042 9 (2) (1) (3)(1) [4] 0.031 69 (17)(5)(27)(5)[33] 0.006 72 (8)(0)(15)(0)[17] 0.007 49 (3)(1)(14)(–)[14]
2.1 1.161 0.043 6 (2) (1) (3)(1) [4] 0.032 37 (20)(5)(28)(6)[35] 0.006 75 (8)(0)(15)(0)[17] 0.007 82 (3)(1)(14)(–)[15]
2.2 1.216 0.044 3 (2) (1) (3)(1) [4] 0.033 0 (2)(1) (3)(1) [4] 0.006 77 (8)(0)(15)(0)[17] 0.008 15 (3)(1)(15)(–)[15]
2.3 1.272 0.044 9 (3) (1) (3)(1) [4] 0.033 6 (3)(1) (3)(1) [4] 0.006 80 (8)(0)(15)(0)[17] 0.008 47 (3)(1)(16)(–)[16]

Table 12. Results for the Π̄33, Π̄88, Π̄08 and Π̄cc HVP contribution extrapolated to the physical point for all the values of Q2 sampled. The first
quoted uncertainty is the statistical error, the second is the systematic error from varying the fit model estimated in section 4.1.1, the third is the
scale-setting error (see section 4.2.1), and the fourth is the systematic from missing charm sea-quark loops (see section 4.2.2). The final uncertainty,
quoted in square brackets, is the combination of the previous ones (continues).
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Q2 [GeV2] t0Q
2 Π̄33 Π̄88 Π̄08 Π̄cc

2.4 1.327 0.045 5 (3) (0) (4)(1) [5] 0.034 2 (3)(1) (3)(1) [4] 0.006 82 (8)(0)(15)(0)[17] 0.008 79 (4)(1)(16)(–)[16]
2.5 1.382 0.046 1 (3) (0) (4)(1) [5] 0.034 8 (3)(1) (3)(1) [5] 0.006 84 (8)(0)(15)(0)[17] 0.009 10 (4)(1)(17)(–)[17]
2.6 1.437 0.046 7 (3) (0) (4)(1) [5] 0.035 4 (3)(1) (3)(1) [5] 0.006 85 (8)(0)(15)(0)[17] 0.009 42 (4)(1)(17)(–)[17]
2.7 1.493 0.047 3 (4) (0) (4)(1) [5] 0.035 9 (4)(1) (3)(1) [5] 0.006 87 (8)(0)(15)(0)[17] 0.009 73 (4)(1)(17)(–)[18]
2.8 1.548 0.047 8 (4) (0) (4)(1) [6] 0.036 4 (4)(1) (3)(1) [5] 0.006 88 (8)(0)(15)(0)[17] 0.010 03 (4)(1)(18)(–)[18]
2.9 1.603 0.048 3 (4) (0) (4)(1) [6] 0.036 9 (4)(1) (3)(1) [6] 0.006 89 (8)(0)(15)(0)[17] 0.010 34 (4)(1)(19)(–)[19]
3.0 1.659 0.048 8 (5) (0) (4)(1) [6] 0.037 4 (5)(1) (3)(1) [6] 0.006 90 (8)(0)(15)(0)[17] 0.010 64 (4)(1)(19)(–)[19]
3.1 1.714 0.049 2 (5) (0) (4)(1) [6] 0.037 8 (5)(1) (4)(1) [6] 0.006 91 (8)(0)(15)(0)[17] 0.010 93 (4)(1)(19)(–)[20]
3.2 1.769 0.049 7 (5) (0) (4)(1) [6] 0.038 3 (5)(1) (4)(1) [6] 0.006 92 (8)(0)(15)(0)[17] 0.011 23 (4)(1)(20)(–)[20]
3.3 1.825 0.050 1 (5) (0) (4)(1) [7] 0.038 7 (5)(1) (4)(1) [7] 0.006 93 (8)(0)(15)(1)[17] 0.011 52 (4)(1)(20)(–)[20]
3.4 1.880 0.050 6 (5) (0) (4)(1) [7] 0.039 1 (5)(1) (4)(1) [7] 0.006 94 (8)(0)(15)(1)[17] 0.011 81 (5)(1)(21)(–)[21]
3.5 1.935 0.051 0 (5) (0) (4)(1) [7] 0.039 5 (6)(1) (4)(1) [7] 0.006 95 (8)(0)(15)(1)[17] 0.012 09 (4)(1)(21)(–)[21]
3.6 1.990 0.051 4 (6) (0) (4)(1) [7] 0.039 9 (6)(1) (4)(1) [7] 0.006 95 (8)(0)(15)(1)[17] 0.012 38 (5)(1)(21)(–)[22]
3.7 2.046 0.051 8 (6) (0) (4)(1) [7] 0.040 3 (6)(1) (4)(1) [7] 0.006 96 (8)(0)(15)(1)[17] 0.012 66 (5)(2)(22)(–)[22]
3.8 2.101 0.052 1 (6) (0) (4)(1) [7] 0.040 7 (6)(1) (4)(1) [7] 0.006 97 (8)(0)(15)(1)[17] 0.012 94 (5)(2)(22)(–)[23]
3.9 2.156 0.052 5 (6) (0) (4)(1) [7] 0.041 0 (6)(1) (4)(1) [7] 0.006 97 (8)(0)(15)(1)[17] 0.013 21 (5)(2)(23)(–)[23]
4.0 2.212 0.052 9 (6) (0) (4)(1) [7] 0.041 4 (6)(1) (4)(1) [7] 0.006 98 (8)(0)(15)(1)[17] 0.013 48 (5)(2)(23)(–)[24]
4.1 2.267 0.053 2 (6) (0) (4)(1) [8] 0.041 7 (6)(1) (4)(1) [7] 0.006 98 (8)(0)(15)(1)[17] 0.013 75 (5)(2)(23)(–)[24]
4.2 2.322 0.053 6 (6) (0) (4)(1) [8] 0.042 1 (6)(1) (4)(1) [7] 0.006 98 (8)(0)(15)(1)[17] 0.014 02 (5)(2)(24)(–)[24]
4.3 2.377 0.053 9 (6) (0) (4)(1) [8] 0.042 4 (6)(1) (4)(1) [8] 0.006 99 (8)(0)(15)(1)[17] 0.014 29 (5)(2)(24)(–)[25]
4.4 2.433 0.054 2 (6) (0) (4)(1) [8] 0.042 7 (6)(1) (4)(1) [8] 0.006 99 (8)(0)(15)(1)[17] 0.014 55 (5)(2)(25)(–)[25]
4.5 2.488 0.054 5 (6) (0) (4)(1) [8] 0.043 0 (6)(1) (4)(1) [8] 0.007 00 (8)(0)(15)(1)[17] 0.014 81 (5)(2)(25)(–)[25]
4.6 2.543 0.054 9 (6) (0) (4)(1) [8] 0.043 4 (6)(1) (4)(1) [8] 0.007 00 (8)(0)(15)(1)[17] 0.015 07 (5)(2)(25)(–)[26]
4.7 2.599 0.055 2 (6) (0) (4)(1) [8] 0.043 7 (6)(1) (4)(1) [8] 0.007 00 (8)(0)(15)(1)[17] 0.015 32 (5)(2)(26)(–)[26]

Table 12. Results for the Π̄33, Π̄88, Π̄08 and Π̄cc HVP contribution extrapolated to the physical point for all the values of Q2 sampled. The first
quoted uncertainty is the statistical error, the second is the systematic error from varying the fit model estimated in section 4.1.1, the third is the
scale-setting error (see section 4.2.1), and the fourth is the systematic from missing charm sea-quark loops (see section 4.2.2). The final uncertainty,
quoted in square brackets, is the combination of the previous ones (continues).
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Q2 [GeV2] t0Q
2 Π̄33 Π̄88 Π̄08 Π̄cc

4.8 2.654 0.055 5 (6) (0) (4)(1) [8] 0.044 0 (6)(1) (4)(1) [8] 0.007 00 (8)(0)(15)(1)[17] 0.015 58 (5)(2)(26)(–)[26]
4.9 2.709 0.055 8 (6) (0) (4)(1) [8] 0.044 2 (6)(1) (4)(1) [8] 0.007 01 (8)(0)(15)(1)[17] 0.015 83 (5)(2)(26)(–)[27]
5.0 2.764 0.056 0 (6) (0) (5)(1) [8] 0.044 5 (6)(1) (4)(1) [8] 0.007 01 (8)(0)(15)(1)[17] 0.016 08 (6)(2)(26)(–)[27]
5.2 2.875 0.056 6 (6) (0) (5)(1) [8] 0.045 1 (6)(1) (4)(1) [8] 0.007 01 (8)(0)(15)(1)[17] 0.016 57 (6)(2)(27)(–)[27]
5.4 2.986 0.057 1 (6) (0) (5)(1) [8] 0.045 6 (6)(1) (4)(1) [8] 0.007 02 (8)(0)(15)(1)[17] 0.017 06 (6)(2)(28)(–)[28]
5.6 3.096 0.057 7 (6) (0) (5)(2) [8] 0.046 1 (6)(1) (4)(1) [8] 0.007 02 (8)(0)(15)(1)[17] 0.017 53 (6)(2)(28)(–)[28]
5.8 3.207 0.058 2 (6) (0) (5)(2) [8] 0.046 6 (6)(1) (4)(1) [8] 0.007 03 (8)(0)(15)(1)[17] 0.018 00 (6)(2)(28)(–)[29]
6.0 3.317 0.058 6 (6) (0) (5)(2) [8] 0.047 1 (6)(1) (4)(2) [8] 0.007 03 (8)(0)(15)(1)[17] 0.018 46 (6)(2)(29)(–)[29]
6.2 3.428 0.059 1 (6) (0) (5)(2) [8] 0.047 6 (7)(1) (4)(2) [8] 0.007 03 (8)(0)(15)(1)[17] 0.018 92 (6)(2)(30)(–)[30]
6.4 3.538 0.059 6 (6) (0) (5)(2) [8] 0.048 0 (6)(1) (4)(2) [8] 0.007 03 (8)(0)(15)(1)[17] 0.019 36 (7)(2)(30)(–)[31]
6.6 3.65 0.060 0 (6) (0) (5)(2) [8] 0.048 5 (6)(1) (4)(2) [8] 0.007 04 (8)(0)(15)(1)[17] 0.019 80 (7)(2)(31)(–)[31]
6.8 3.76 0.060 4 (6) (0) (5)(2) [8] 0.048 9 (6)(1) (4)(2) [8] 0.007 04 (8)(0)(15)(1)[17] 0.020 24 (6)(2)(31)(–)[32]
7.0 3.87 0.060 8 (6) (0) (5)(2) [8] 0.049 3 (6)(1) (4)(2) [8] 0.007 04 (8)(0)(15)(1)[17] 0.020 66 (7)(2)(31)(–)[32]

Table 12. Results for the Π̄33, Π̄88, Π̄08 and Π̄cc HVP contribution extrapolated to the physical point for all the values of Q2 sampled. The first
quoted uncertainty is the statistical error, the second is the systematic error from varying the fit model estimated in section 4.1.1, the third is the
scale-setting error (see section 4.2.1), and the fourth is the systematic from missing charm sea-quark loops (see section 4.2.2). The final uncertainty,
quoted in square brackets, is the combination of the previous ones.
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Q2 [GeV2] t0Q
2 ∆αhad ∆had sin2 θW

0.01 0.005 53 0.000 098 4(13)(10) (8)(0) (3)[19] −0.000 099 2(15)(11) (7)(0)(0)[20]
0.015 0.008 29 0.000 146 2(20)(15)(11)(1) (4)[27] −0.000 147 3(22)(17)(10)(1)(0)[29]
0.02 0.011 06 0.000 193 (3) (2) (1)(0) (1) [4] −0.000 195 (3) (2) (1)(0)(0) [4]
0.025 0.013 82 0.000 239 (3) (2) (2)(0) (1) [4] −0.000 241 (3) (3) (2)(0)(0) [5]
0.03 0.016 59 0.000 284 (4) (3) (2)(0) (1) [5] −0.000 287 (4) (3) (2)(0)(0) [5]
0.035 0.019 35 0.000 329 (4) (3) (2)(0) (1) [6] −0.000 331 (5) (4) (2)(0)(0) [6]
0.04 0.022 12 0.000 372 (5) (4) (2)(0) (1) [7] −0.000 375 (5) (4) (2)(0)(0) [7]
0.045 0.024 88 0.000 415 (5) (4) (3)(0) (1) [7] −0.000 418 (6) (4) (2)(0)(0) [8]
0.05 0.027 64 0.000 457 (6) (4) (3)(0) (1) [8] −0.000 461 (6) (5) (3)(0)(0) [8]
0.055 0.030 41 0.000 499 (6) (5) (3)(0) (1) [8] −0.000 503 (7) (5) (3)(0)(0) [9]
0.06 0.033 17 0.000 539 (7) (5) (3)(0) (1) [9] −0.000 544 (7) (6) (3)(0)(0)[10]
0.065 0.035 9 0.000 579 (7) (5) (3)(0) (2)[10] −0.000 584 (8) (6) (3)(0)(0)[10]
0.07 0.038 7 0.000 619 (7) (6) (4)(0) (2)[10] −0.000 624 (8) (6) (4)(0)(0)[11]
0.075 0.041 5 0.000 657 (8) (6) (4)(0) (2)[11] −0.000 663 (8) (6) (4)(0)(0)[11]
0.08 0.044 2 0.000 695 (8) (6) (4)(0) (2)[11] −0.000 701 (9) (7) (4)(0)(0)[12]
0.085 0.047 0 0.000 733 (8) (6) (4)(0) (2)[11] −0.000 739 (9) (7) (4)(0)(0)[12]
0.09 0.049 8 0.000 770 (9) (7) (4)(0) (2)[12] −0.000 776 (9) (7) (5)(0)(0)[13]
0.095 0.052 5 0.000 806 (9) (7) (4)(0) (2)[12] −0.000 813 (10) (8) (5)(0)(0)[13]
0.1 0.055 3 0.000 842 (9) (7) (4)(0) (2)[13] −0.000 849 (10) (8) (5)(0)(1)[14]
0.12 0.066 3 0.000 979 (10) (8) (5)(0) (3)[14] −0.000 987 (11) (9) (6)(0)(1)[15]
0.14 0.077 4 0.001 109 (11) (8) (6)(1) (3)[15] −0.001 118 (12) (9) (7)(1)(1)[17]
0.16 0.088 5 0.001 232 (12) (9) (6)(1) (4)[16] −0.001 243 (13)(10) (8)(1)(1)[18]
0.18 0.099 5 0.001 348 (12) (9) (6)(1) (4)[17] −0.001 360 (13)(10) (9)(1)(1)[19]
0.2 0.110 6 0.001 459 (13) (9) (7)(1) (4)[18] −0.001 472 (14)(10) (9)(1)(1)[20]
0.22 0.121 6 0.001 565 (13) (9) (8)(1) (5)[19] −0.001 579 (15)(10)(10)(1)(2)[21]
0.24 0.132 7 0.001 666 (14)(10) (8)(1) (5)[19] −0.001 681 (15)(11)(11)(1)(2)[22]
0.26 0.143 7 0.001 762 (14)(10) (9)(1) (5)[20] −0.001 779 (15)(11)(12)(1)(2)[22]
0.28 0.154 8 0.001 855 (14)(10) (9)(1) (6)[20] −0.001 873 (16)(11)(13)(1)(2)[23]
0.3 0.165 9 0.001 943 (14)(10)(10)(1) (6)[21] −0.001 963 (16)(11)(14)(1)(2)[24]
0.32 0.176 9 0.002 029 (15)(10)(10)(1) (6)[21] −0.002 050 (16)(11)(15)(1)(2)[24]
0.34 0.188 0 0.002 111 (15)(10)(11)(1) (7)[22] −0.002 134 (16)(11)(15)(1)(3)[25]
0.36 0.199 0 0.002 191 (15)(10)(11)(1) (7)[22] −0.002 214 (16)(11)(16)(1)(3)[26]
0.38 0.210 1 0.002 268 (15)(10)(12)(1) (7)[23] −0.002 293 (17)(11)(17)(1)(3)[26]
0.4 0.221 2 0.002 342 (15)(10)(12)(1) (7)[23] −0.002 368 (17)(11)(18)(2)(3)[27]
0.42 0.232 2 0.002 413 (16)(10)(13)(2) (8)[23] −0.002 441 (17)(11)(18)(2)(3)[27]
0.44 0.243 3 0.002 483 (16)(10)(13)(2) (8)[24] −0.002 512 (17)(11)(19)(2)(3)[28]
0.46 0.254 3 0.002 550 (16)(10)(13)(2) (8)[24] −0.002 581 (17)(10)(20)(2)(3)[28]
0.48 0.265 4 0.002 616 (16)(10)(14)(2) (8)[25] −0.002 648 (17)(10)(20)(2)(4)[29]
0.5 0.276 4 0.002 680 (16)(10)(14)(2) (8)[25] −0.002 713 (17)(10)(21)(2)(4)[29]
0.55 0.304 1 0.002 831 (16) (9)(15)(2) (9)[26] −0.002 867 (18)(10)(22)(2)(4)[30]
0.6 0.331 7 0.002 973 (16) (9)(16)(2) (9)[27] −0.003 012 (18)(10)(23)(2)(4)[31]

Table 13. Results for the total HVP contribution to the running of α and sin2 θW extrapolated to
the physical point for all the values of Q2 sampled. Following the statistical error, and the systematic
errors from varying the fit model estimated, scale-setting and missing charm sea-quark loops, the
fifth uncertainty is the systematic error from missing isospin-breaking effects (see section 4.2.3).
The final uncertainty, quoted in square brackets, is the combination of the previous ones (continues).
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0.65 0.359 0.003 106 (16) (9)(17)(2)(10)[27] −0.003 149 (18)(10)(25)(3)(5)[32]
0.7 0.387 0.003 232 (17) (9)(18)(3)(10)[28] −0.003 277 (18)(10)(26)(3)(5)[33]
0.75 0.415 0.003 351 (17) (9)(19)(3)(10)[29] −0.003 399 (18)(10)(27)(3)(5)[34]
0.8 0.442 0.003 463 (17) (9)(20)(3)(11)[29] −0.003 515 (18) (9)(28)(3)(5)[35]
0.85 0.470 0.003 571 (17) (9)(20)(3)(11)[30] −0.003 62 (2) (1) (3)(0)(1) [4]
0.9 0.498 0.003 673 (17) (8)(21)(3)(11)[31] −0.003 73 (2) (1) (3)(0)(1) [4]
0.95 0.525 0.003 771 (17) (8)(22)(3)(12)[31] −0.003 83 (2) (1) (3)(0)(1) [4]
1.0 0.553 0.003 864 (17) (8)(22)(4)(12)[32] −0.003 93 (2) (1) (3)(0)(1) [4]
1.05 0.581 0.003 954 (17) (8)(23)(4)(12)[32] −0.004 02 (2) (1) (3)(0)(1) [4]
1.1 0.608 0.004 041 (17) (8)(24)(4)(12)[33] −0.004 11 (2) (1) (3)(0)(1) [4]
1.15 0.636 0.004 124 (17) (8)(24)(4)(12)[33] −0.004 19 (2) (1) (3)(0)(1) [4]
1.2 0.663 0.004 204 (17) (7)(25)(4)(13)[34] −0.004 27 (2) (1) (3)(0)(1) [4]
1.25 0.691 0.004 282 (17) (7)(25)(4)(13)[34] −0.004 35 (2) (1) (3)(0)(1) [4]
1.3 0.719 0.004 356 (17) (7)(26)(5)(13)[35] −0.004 43 (2) (1) (4)(0)(1) [4]
1.35 0.746 0.004 429 (18) (7)(26)(5)(13)[35] −0.004 50 (2) (1) (4)(1)(1) [4]
1.4 0.774 0.004 50 (2) (1) (3)(0) (1) [4] −0.004 58 (2) (1) (4)(1)(1) [4]
1.45 0.802 0.004 57 (2) (1) (3)(1) (1) [4] −0.004 65 (2) (1) (4)(1)(1) [4]
1.5 0.829 0.004 63 (2) (1) (3)(1) (1) [4] −0.004 71 (2) (1) (4)(1)(1) [4]
1.55 0.857 0.004 70 (2) (1) (3)(1) (1) [4] −0.004 78 (2) (1) (4)(1)(1) [4]
1.6 0.885 0.004 76 (2) (1) (3)(1) (1) [4] −0.004 84 (2) (1) (4)(1)(1) [5]
1.65 0.912 0.004 82 (2) (1) (3)(1) (1) [4] −0.004 90 (2) (1) (4)(1)(1) [5]
1.7 0.940 0.004 88 (2) (1) (3)(1) (1) [4] −0.004 96 (2) (1) (4)(1)(1) [5]
1.75 0.968 0.004 94 (2) (1) (3)(1) (1) [4] −0.005 02 (2) (1) (4)(1)(1) [5]
1.8 0.995 0.004 99 (2) (1) (3)(1) (1) [4] −0.005 08 (2) (1) (4)(1)(1) [5]
1.85 1.023 0.005 05 (2) (1) (3)(1) (1) [4] −0.005 14 (2) (1) (4)(1)(1) [5]
1.9 1.050 0.005 10 (2) (0) (3)(1) (1) [4] −0.005 19 (2) (1) (4)(1)(1) [5]
1.95 1.078 0.005 16 (2) (0) (3)(1) (1) [4] −0.005 25 (3) (1) (4)(1)(1) [5]
2.0 1.106 0.005 21 (2) (0) (3)(1) (2) [4] −0.005 30 (3) (0) (4)(1)(1) [5]
2.1 1.161 0.005 31 (3) (0) (3)(1) (2) [5] −0.005 40 (3) (0) (4)(1)(1) [5]
2.2 1.216 0.005 40 (3) (0) (3)(1) (2) [5] −0.005 49 (3) (0) (5)(1)(1) [6]
2.3 1.272 0.005 49 (3) (0) (3)(1) (2) [5] −0.005 59 (3) (0) (5)(1)(1) [6]
2.4 1.327 0.005 58 (3) (0) (4)(1) (2) [5] −0.005 68 (4) (0) (5)(1)(1) [6]
2.5 1.382 0.005 67 (4) (0) (4)(1) (2) [6] −0.005 76 (4) (0) (5)(1)(1) [7]
2.6 1.437 0.005 75 (4) (0) (4)(1) (2) [6] −0.005 84 (5) (0) (5)(1)(1) [7]
2.7 1.493 0.005 83 (5) (0) (4)(1) (2) [6] −0.005 92 (5) (0) (5)(1)(1) [7]
2.8 1.548 0.005 90 (5) (0) (4)(1) (2) [7] −0.006 00 (5) (0) (5)(1)(1) [8]
2.9 1.603 0.005 98 (5) (0) (4)(1) (2) [7] −0.006 07 (6) (0) (5)(1)(1) [8]
3.0 1.659 0.006 05 (6) (0) (4)(1) (2) [7] −0.006 14 (6) (0) (5)(1)(1) [8]
3.1 1.714 0.006 12 (6) (0) (4)(1) (2) [7] −0.006 21 (6) (0) (5)(1)(1) [8]
3.2 1.769 0.006 18 (6) (0) (4)(1) (2) [8] −0.006 28 (7) (0) (5)(1)(1) [9]
3.3 1.825 0.006 25 (6) (0) (4)(1) (2) [8] −0.006 35 (7) (0) (5)(1)(1) [9]

Table 13. Results for the total HVP contribution to the running of α and sin2 θW extrapolated to
the physical point for all the values of Q2 sampled. Following the statistical error, and the systematic
errors from varying the fit model estimated, scale-setting and missing charm sea-quark loops, the
fifth uncertainty is the systematic error from missing isospin-breaking effects (see section 4.2.3).
The final uncertainty, quoted in square brackets, is the combination of the previous ones (continues).
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3.4 1.880 0.006 31 (6) (0) (4)(1) (2) [8] −0.006 41 (7) (0) (5)(1)(1) [9]
3.5 1.935 0.006 37 (7) (0) (4)(1) (2) [8] −0.006 47 (7) (0) (5)(1)(1) [9]
3.6 1.990 0.006 44 (7) (0) (4)(1) (2) [8] −0.006 53 (7) (0) (6)(1)(1) [9]
3.7 2.046 0.006 49 (7) (0) (4)(1) (2) [8] −0.006 59 (8) (0) (6)(1)(1)[10]
3.8 2.101 0.006 55 (7) (0) (4)(1) (2) [9] −0.006 65 (8) (0) (6)(1)(1)[10]
3.9 2.156 0.006 61 (7) (0) (4)(1) (2) [9] −0.006 70 (8) (0) (6)(1)(1)[10]
4.0 2.212 0.006 66 (7) (0) (4)(1) (2) [9] −0.006 76 (8) (0) (6)(1)(1)[10]
4.1 2.267 0.006 72 (7) (0) (4)(1) (2) [9] −0.006 81 (8) (0) (6)(1)(1)[10]
4.2 2.322 0.006 77 (7) (0) (4)(1) (2) [9] −0.006 86 (8) (0) (6)(2)(1)[10]
4.3 2.377 0.006 82 (7) (0) (4)(1) (2) [9] −0.006 91 (8) (0) (6)(2)(1)[10]
4.4 2.433 0.006 87 (7) (0) (4)(1) (2) [9] −0.006 96 (8) (0) (6)(2)(1)[10]
4.5 2.488 0.006 92 (8) (0) (4)(2) (2) [9] −0.007 01 (8) (0) (6)(2)(1)[10]
4.6 2.543 0.006 97 (8) (0) (4)(2) (2) [9] −0.007 06 (8) (0) (6)(2)(1)[10]
4.7 2.599 0.007 02 (8) (0) (4)(2) (2) [9] −0.007 10 (8) (0) (6)(2)(1)[10]
4.8 2.654 0.007 06 (8) (0) (5)(2) (2) [9] −0.007 15 (8) (0) (6)(2)(1)[10]
4.9 2.709 0.007 11 (8) (0) (4)(2) (2) [9] −0.007 19 (8) (0) (6)(2)(1)[10]
5.0 2.764 0.007 16 (8) (0) (5)(2) (2) [9] −0.007 24 (8) (0) (6)(2)(1)[10]
5.2 2.875 0.007 24 (8) (0) (4)(2) (2) [9] −0.007 32 (8) (0) (6)(2)(1)[10]
5.4 2.986 0.007 33 (8) (0) (4)(2) (2) [9] −0.007 41 (8) (0) (6)(2)(1)[10]
5.6 3.096 0.007 41 (8) (0) (5)(2) (2) [9] −0.007 49 (8) (0) (6)(2)(1)[11]
5.8 3.207 0.007 49 (8) (0) (4)(2) (2) [9] −0.007 57 (8) (0) (6)(2)(1)[11]
6.0 3.317 0.007 57 (8) (0) (5)(2) (2) [9] −0.007 64 (8) (0) (6)(2)(1)[11]
6.2 3.428 0.007 65 (8) (0) (4)(2) (2) [9] −0.007 71 (8) (0) (6)(2)(1)[11]
6.4 3.538 0.007 72 (8) (0) (5)(2) (2) [9] −0.007 78 (8) (0) (6)(2)(1)[11]
6.6 3.65 0.007 79 (8) (0) (5)(2) (2) [9] −0.007 85 (8) (0) (6)(2)(1)[11]
6.8 3.76 0.007 86 (8) (0) (4)(2) (2) [9] −0.007 92 (8) (0) (6)(2)(1)[11]
7.0 3.87 0.007 93 (8) (0) (4)(2) (2) [9] −0.007 99 (8) (0) (6)(2)(1)[11]

Table 13. Results for the total HVP contribution to the running of α and sin2 θW extrapolated to
the physical point for all the values of Q2 sampled. Following the statistical error, and the systematic
errors from varying the fit model estimated, scale-setting and missing charm sea-quark loops, the
fifth uncertainty is the systematic error from missing isospin-breaking effects (see section 4.2.3).
The final uncertainty, quoted in square brackets, is the combination of the previous ones.
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