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1 Introduction

The cross section of the process ν̄e + p → e+ + n (IBD, from inverse beta decay), which
enabled the first direct observation of (anti-)neutrinos [1], is still essential today at relatively
low energies for detectors that are based on water or hydrocarbons, i.e. the most commonly
used detectors such as scintillators or Cherenkov light detectors.
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The most accurate estimates available today were described about 20 years ago by
Beacom and Vogel [2] and by Strumia and Vissani [3]. In this paper, we aim to update the
discussion, in consideration of some general facts: 1) the importance of the reaction itself,
2) the experimental progress of neutrino detectors, 3) the progress related to the parameters
that determine the reaction itself, 4) the role of second-class currents (SCCs) [4], previously
omitted, but which has been the subject of a recent debate [5–7].

Furthermore, there is a specific quantitative point that deserves to be highlighted: it
is important to update not only the value, but also the estimate of the uncertainty on the
cross section of the IBD process. Indeed, the conservative estimate of the uncertainty at
low energies on this IBD cross section, obtained in [3] is 0.4%. This corresponds to one
standard deviation on a sample of 60,000 events and therefore it is potentially relevant in
cases where the statistical sample is quite large. There are at least two cases of this type,
which concern reactor antineutrinos (with typical energies of 3MeV and up to 10MeV) and
those from supernovae (with typical energies of 20MeV and perhaps up to 60-70MeV). Let
us point out that:

• Reactor neutrino experiment Daya Bay [8] has collected 3.5 million events already.
Similar considerations apply to the other reactor experiments with very high statis-
tics. But also the future detector JUNO [9] designed to study events from distant
reactors, with a very large fiducial volume, about 20 kiloton of scintillator liquid, ex-
pects to collect 83 events/day which in 6 years will amount to a total of 180000 events.

• As for the future galactic supernova, Super-Kamiokande (SK) will collect more than
5000 IBD events with a mass of 32.4 kiloton and for a typical galactic distance of
10kpc (see e.g. [10]), a number that scales with the square of the distance (10/d)2, and
therefore it can be much larger for relatively closer events.1 JUNO also expects to see
a similar number of events. Furthermore, the future Hyper-Kamiokande detector [12]
will have a mass about 10 times greater than Super-Kamiokande, and therefore it
will collect a similar number of events even in the case that d = 10 kpc.

On these grounds, it will be important to update the assessment of the error on the cross
section today and even more so in the future.

In the next section we present explicit expressions for the cross section including all
relevant effects. In section 3 we estimate the uncertainties in the result in detail. Some
illustrative applications of these results are presented in section 4, while the last section
is devoted to the summary. A few technical results, concerning in particular second class
currents, are confined to the two appendices.

2 Neutrino nucleon cross section

In this section, we calculate the interaction cross section between (anti)neutrinos and nu-
cleons. We first define the most general form of the weak charged current (section 2.1)

1It is expected that the typical distance to a supernova event in the Milky Way is 10±5 kpc, see e.g. [11],
and that the number of events scales with the inverse of the square of the distance to the supernova.

– 2 –



J
H
E
P
0
8
(
2
0
2
2
)
2
1
2

including all possible form factors and emphasizing the (usually neglected) second class
currents. Then we give explicit expressions of the tree-level cross sections including the
main radiative corrections (sections 2.2 and 2.3).

2.1 The weak hadronic current

We are interested in electron neutrinos and antineutrinos interacting with single nucleons.
The first step towards the cross-section analyses is to write an explicit expression for the
nucleon matrix element of the Standard Model (SM) weak charged current. When the
matrix elements are taken between nucleon states, which are composites of quarks bound
by the strong interactions and have finite dimensions, the couplings, now named form
factors, are no longer constant. Moreover, additional terms arise in the hadron current,
provided that the symmetries of the strong interactions and general principles of Lorentz
covariance are respected.

2.1.1 The six form factors

One possible formulation of the most general matrix element of the charged weak current
between proton and neutron states, of 4-momenta pp and pn respectively, is

Jµ = ūn

(
f1γµ + g1γµγ5 + if2σµν

qν

2M + g2
qµ
M
γ5 + f3

qµ
M

+ ig3σµν
qν

2Mγ5

)
up (2.1)

The normalisation mass scale is M = (mn + mp)/2. The form factors f1, f2 and f2
are generally referred to, respectively, as vector, weak magnetism and scalar. The terms
including them represent the vector part of the current. The terms including g1, g2 and g2
represent the axial part of the current. These six dimensionless form factors are Lorentz
invariant, and in general depend upon the four-momentum transfer squared t = q2 = −Q2,
where q = pn − pp.

We have included all the possible independent vector and axial terms one can build
starting from the basis in the four-dimensional Clifford algebra and using the two indepen-
dent 4-vectors q and pp + pn. We do not force other symmetries as CVC symmetry on the
general form when mp 6= mn. We also do not include terms proportional to γµqµ since the
matrix element is on shell.

In the vector current, a term proportional to ūn(pµp + pµn)up does not appear, since it
can be re-expressed as a linear combination of the first and third term, by using the Gordon
identity. The axial part in a different formulation, including the dependence on pp + pn, is
given in appendix A.1.

2.1.2 G-parity and second class currents

Weinberg has introduced [4] a classification of the hadronic weak currents according to their
properties under a transformation called G-parity. G transformation is defined as a product
of the charge conjugation C and of a rotation in isospin space around the second axis:

G = CeiπI2 (2.2)

– 3 –
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Under G-parity, the vector and axial vector currents which transform as

GVµG
−1 = Vµ , GAµG

−1 = −Aµ (2.3)

are classified as first-class currents. On the contrary, vector and axial vector currents which
transform as

GVµG
−1 = −Vµ , GAµG

−1 = Aµ (2.4)

are classified as second-class-currents (SCC). The vector and axial vector currents of the
SM with form factors f1, f2, g1 and g2 transform as in eq. (2.3) and are first class currents,
the vector and axial vector currents with form factors f3 and g3 transform as in eq. (2.4)
and are second class currents. We demonstrate these statements in the appendix B.

G-parity is a symmetry for strong interactions, broken by mass differences. Second
class currents disappear in the limit of exact flavour SU(3) symmetry. They also disappear
by assuming invariance under isospin rotation (charge symmetry) if time reversal holds
(see e.g. [13]). However, they have been actively searched for (see e.g. [14]) and for the
sake of generality we include them.

2.2 Cross section for ν̄p→ e+n

We calculate the cross section for the inverse beta decay, namely the process

ν̄e(pν) + p(pp)→ e+(pe) + n(pn) (2.5)

It is convenient to introduce the definition for the difference and average of neutron and
proton masses mn and mp

∆ = mn −mp ≈ 1.293MeV M = mn +mp

2 ≈ 938.9MeV (2.6)

This charged-current quasielastic (CCQE) interaction is the dominant reactions of electron
antineutrinos till 2GeV; for the reasons explained in the introduction, we will be especially
interested in the low energy part of this region. The energy threshold is at

Eν ≥ Ethr =
(mn +me)2 −m2

p

2mp
= 1.806 MeV

Neglecting a region of 1 eV immediately above the threshold [3] the possible values of the
neutrino energies, as a function of the positron energies Ee, can be easily obtained from
the following expression,

Eν = Ee + δ

1− Ee−pe cos θ
mp

where δ =
m2
n −m2

p −m2
e

2mp
= 1.294 MeV

simply by varying the positron emission angle θ in the entire range 0 to π.
The differential cross section is given by

dσ

dt
= G2

F cos2 θC
64π(s−m2

p)2 |M
2| (2.7)
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where GF is the Fermi coupling and θC is the Cabibbo angle (that is linked to the u − d
element of the CKM matrix by the equality cos θC = Vud). The ‘core’ of the matrix element
includes the hadronic current that we have just examined:

M = v̄νγ
a(1− γ5)ve

· ūn
(
f1γa + g1γaγ5 + if2σab

qb

2M + g2
qa
M
γ5 + f3

qa
M

+ ig3σab
qb

2Mγ5

)
up

(2.8)

with q = pν − pe = pn − pp. Note that f3, g3 terms are second class currents. A straight-
forward calculation gives

|M2| = Aν̄(t)− (s− u)Bν̄(t) + (s− u)2Cν̄(t) (2.9)

where s = (pν + pp)2, t = q2 = (pν − pe)2 < 0, u = (pν − pn)2 are the usual Mandelstam
variables and

Aν̄ = (t−m2
e)
[
8|f2

1 |(4M2 + t+m2
e) + 8|g2

1|(−4M2 + t+m2
e) + 2|f2

2 |(t2/M2 + 4t+ 4m2
e)

+ 8m2
et|g2

2|/M2 + 16Re[f∗1 f2](2t+m2
e) + 32m2

eRe[g∗1g2]
]

−∆2
[
(8|f2

1 |+ 2t|f2
2 |/M2)(4M2 + t−m2

e) + 8|g2
1|(4M2 − t+m2

e)

+ 8m2
e|g2

2|(t−m2
e)/M2 + 16Re[f∗1 f2](2t−m2

e) + 32m2
eRe[g∗1g2]

]
− 64m2

eM∆Re[g∗1(f1 + f2)] +ASCC

Bν̄ = 32tRe[g∗1(f1 + f2)] + 8m2
e∆(|f2

2 |+ Re[f∗1 f2 + 2g∗1g2])/M +BSCC

Cν̄ = 8(|f2
1 |+ |g2

1|)− 2t|f2
2 |/M2 + CSCC , (2.10)

where me is the electron mass and the neutrino mass has been neglected. The terms
ASCC, BSCC, CSCC are generated by second class currents. When they are zero we recover
the expression in [3]. Their expressions are:

ASCC = − 2 t (4− t/M2)
[
4m2

e|f2
3 |+ |g2

3|(t−m2
e) + 8∆MRe[g∗3g1] + ∆2|g2

3|
]

+O(∆3M) +O(∆m2
e t/M) +O(m4

e)

BSCC = 8m2
e

[
4Re[f∗1 f3] + Re[f∗2 f3] t/M2 + 2Re[g∗1g3] + Re[g∗2g3] t/M2 + ∆|g2

3|/M
]

+ 16∆Re[(f∗1 + f∗2 )g3] t/M
CSCC =− 2|g2

3| t/M2 . (2.11)

The SCC form factor f3 only enters the cross section in terms suppressed by m2
e, or powers

of 1/M , but there are unsuppressed terms involving the axial SCC form factor.
Because of this suppression very precise beta decay measurements have difficulty lim-

iting the size of f3. Some experimental limits have been set |f3| ≤ 2 [15], but higher values
up to 4.4 f1 (at zero momentum transfer) are not excluded [16]. By contrast, the axial
second-class current at zero momentum transfer is reasonably well constrained by studies
of beta decay and can be assumed as g3/g1 = 0.15 at zero momentum transfer, although
in some analyses it can arrive to g3/g1 = 0.4 [16].
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2.3 Cross section for νn→ e−p

For the process
νe(pν) + n(pn)→ e−(pe) + p(pp) (2.12)

we obtain:

dσ

dt

(
νn→ e−p

)
= G2

F cos2 θC
64π(s−m2

p)2

[
Aν(t) + (s− u)Bν(t) + (s− u)2Cν(t)

]
(2.13)

with:

Aν =Aν̄ + 16 ∆
M

(
8Re[f∗1 f3]M2m2

e + 2Re[f∗1 f3]m4
e − 2Re[f∗1 f3]m2

et+ 4∆Re[f∗1 g3]Mm2
e

+ 2Re[f∗2 f3]m4
e + 4∆Re[f∗2 g3]Mm2

e − 4Re[g∗1g3]M2m2
e + 8Re[g∗1g3]M2t

+ Re[g∗1g3]m4
e + Re[g∗1g3]m2

et− 2Re[g∗1g3]t2 + 2Re[g∗2g3]m4
e

)
Bν =Bν̄ − 64Re[f∗1 f3]m2

e − 32 ∆
M

Re[f∗1 g3]t− 16m
2
e

M2Re[f
∗
2 f3]t− 32 ∆

M
Re[f∗2 g3]t

− 32Re[g∗1g3]m2
e − 16m

2
e

M2Re[g
∗
2g3]t

Cν =Cν̄ (2.14)

where Aν̄ , Bν̄ , Cν̄ denote the values for the IBD cross section reported in eq. (2.10).

2.3.1 Radiative corrections and final state interactions

We include the radiative corrections to the cross section [17–19] that are well approximated
as [20]

dσ(Eν , Ee)→ dσ(Eν , Ee)
[
1 + α

π

(
6.00 + 3

2 log mp

2Ee
+ 1.2

(
me

Ee

)1.5
)]

where α is the fine-structure constant. This expression is valid for the range of neutrino
energies we are interested in, when the full energy Ee of leptons and bremsstrahlung photons
in the final state is measured. Electroweak corrections are already taken into account, once
the measured values of the Fermi constant and axial coupling at Q2 = 0 are used. For the
scattering νe +n→ p+ e, we include the multiplicative Sommerfeld factor, which accounts
for final state interactions

F (Ee) = η

1− exp(−η) , with η = 2πα√
1−m2

e/E
2
e

3 Analysis of the uncertainties

In this section, we will examine the uncertainties on the cross section. The overall uncer-
tainty for small neutrino energies Eν , or rather in the limit Q2 → 0, depends mainly on a
few parameters, and it is discussed in section 3.1.

The uncertainty at higher energies, on the other hand, depends also on the behaviour of
the form factors as Q2 varies. The traditional treatment of these form factors (see e.g., [3])

– 6 –
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is based on certain global parametrisations, which have been developed for use at energies
around Eν ∼ GeV, which are much larger than those we are interested in for the detection
of reactor or supernova antineutrino signals.

In the region of energies in which we are interested the following limit applies

Q2
max = 2(Ee + δ)(Ee + pe)

1− Ee+pe
mp

−m2
e ∼ (4Ee)2 . (3.1)

Since we expect Ee . 50MeV in the case of supernova neutrino detection,2 it is reasonable
to use a simple linear expansion of the form factors. In other words, it is sufficient to
parameterise the evolution with Q2 by introducing appropriate radii, one for each form
factor, defined according to established conventions and discussed in section 3.2. We will
discuss the effect of the inclusion of second-class currents on the cross-section, showing
that, state-of-the-art, their impact is small and unimportant.

The results of the cross-section uncertainty study are summarised in section 3.3.

3.1 Overall uncertainty at low energies

The main source for uncertainty on the IBD cross section under a few tens of MeVs is due
to the uncertainties of two important constants: the value of the CKM matrix element Vud

and that of the axial coupling g1(0) = limq2→0 g1(q2).
Since we have independent measurement of these two quantities, an hyper-conservative

estimate of the uncertainty on the cross section is obtained by simply propagating the effect
of the two errors. However, a more complete estimate is also possible, using the fact that
the average life of the neutron depends on the same quantities, and it is precisely measured;
in this way, some correlations arise and must be taken into account.

In this section we discuss the uncertainties of the relevant parameters, and then sum-
marize the procedures for estimating the overall uncertainty. On several occasions it will
happen to combine measurement not perfectly consistent with each other. To do this, we
will follow the prescription of the PDG [21]: when the minimum value of χ2, estimated
from the data and the average, exceeds N − 1, where N is the number of measurements,
all errors contributing to the result are enlarged by the scale factor

S =
√

χ2
min

N − 1 (3.2)

provided that the value of S is not too large or that there are credible indications of
inconsistencies of specific data sets.

3.1.1 Value of the CKM matrix element

The most direct way to determine the matrix element we are interested in takes advantage
of the measurements of the super-allowed (s.a.) charged current transitions, which depend
only on the better understood vector form factors. From 2006 to 2015, Hardy and Towner

2Notice however that in the innermost regions of the supernova, neutrino energies up to three times
higher can be reached.
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Figure 1. Combination of values of Vud extracted from super-allowed decays and unitarity relations.

produced analyses of all decays this way, including the theoretical factors necessary for
the extraction of Vud, see e.g., [22]. Recently, it has been pointed out that these factors
require a more careful treatment [23, 24]. This has led to a critical discussion, which
resulted in an higher conservative estimate [25] |Vud(s.a.)| = 0.9737(3) which we will adopt
later. A second, more precise, determination follows from noting that, in the context
of the standard model, the CKM matrix is unitary. Therefore, by combining the two
measurements of |Vus| = 0.2245(8) and |Vub| = 3.82(24) × 10−3 reported in PDG [21], we
get Vud(unit) = 0.9745(2). The two previous values are not in perfect agreement, and this
has sparked speculation on the idea that the first value is smaller than the second one
due to a small deviation of the CKM matrix from unitarity. By taking into account the
statistical consistency of this still relatively weak inference, and considering the successes
of the standard model at the energies of interest, we think it is reasonable to assume that
this difference merely signals limits to the available interpretations and measurements.
Therefore, we combine the data, obtaining

Vud = 0.9743(3) (3.3)

where the value S = 2.0 reminds us of the tension between the two measurements. The
figure 1 shows the result of the conservative procedure with which we combine the measure-
ments, which, in essence, prefers the most precise measurement as regards to the central
value, but adopts the error of the less precise one.

3.1.2 Axial coupling measurements

Using polarized neutrons, see e.g. [26], it is possible to measure directly

λ = −g1(0)
f1(0) . (3.4)

Eight different measurements are available in the literature [27–34] and their average is
λ = 1.2755(5) with a scale factor of S = 2.3. The latest measurement, published in
2019 by the Perkeo III collaboration [27], is much more precise than the others and gives
λ = 1.2764(6). While the central value and the error of the global mean and of the latter

– 8 –
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measurement are not very different, the scale factor S > 1 for the mean value indicates a
potential problem with the systematics of the previous determinations. The reference [24]
suggested to exclude the four measurements prior to 2002, namely [31–34] which depended
on large and potentially large correction factors not completely under control. If we adopt
this prescription, and also include the result from [27] in the mean, we get λ = 1.2762(5)
with a scaling factor equal to S = 0.7; in other words we have perfect compatibility. On
the other hand, rather than exclude entirely the measurements prior to 2002, it seems more
conservative to include them, but enlarging their error by a factor 2. In this way we obtain

λ = 1.2760(5) (3.5)

with a scale factor of S = 1.2. The value is intermediate between the global average and the
measurement of Perkeo III, and both central values fall within the margin of one standard
deviation. In light of the current knowledge, we offer this estimate as a conservative trade-
off and we will use it in the next analysis, emphasizing that the central value we assumed
is in no way crucial to the conclusions that we will derive.

3.1.3 The neutron lifetime constraint

The average lifetime of the neutron depends on the same matrix element of the cross section
that interests us (which is indeed not by chance called “inverse beta decay") and therefore,
we have the theoretical prediction [35]

1
τn

= V 2
ud (1 + 3λ2)

4906.4± 1.7s . (3.6)

By propagating the errors, we find the prediction τn(SM) = 878.38± 0.89 s.
We can use this relationship together with a measurement of the average life τn to

obtain a constraint on the two quantities of interest. Now, there are two methods of
measurement; in the first, ultra-cold neutrons are trapped and their number is measured
over time, determining the total average lifetime; in the second, the products of the single
decay channel predicted by the standard model are observed, using beam neutrons. In other
terms, the beam method measures neutron lifetime by counting the injected neutron and
decay product in the beam. The results are τn(tot) = 878.52± 0.46 s (N = 9 and S = 1.8)
and τn(beam) = 888.0±2.0 s (N = 2 and S = 0.3) which clearly disagree. A priori, it would
be possible to hypothesize an additional neutron decay channel, into particles that are not
detected, which would shorten the total average lifetime — a possible way out recently
attempted [36]. This would require an agreement between the prediction and the exclusive
measurement, namely that of τn(beam), which is not what is observed: the predicted value
τn(SM) agrees with τn(tot), but not with τn(beam).

For these reasons, we will only use the first set of data, assuming that the second is
affected by a systematic deviation, which is not yet fully understood. The observed value
of the neutron lifetime τn(tot), together with the SM prediction, yield the relationship,

Vud = 2.36323(75)√
1 + 3λ2

(3.7)
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Figure 2. Left: illustration of the compatibility, within the SM, among the determinations of
λ, Vud and τn(tot). Right: enlargement of the parameter region to include the prediction of the
correlation λ−Vud (gray band) that follows from the SM assuming the correctness of measurement
τn(beam): this is incompatible with the determinations of λ and Vud.

that we report in figure 2, together with the measurements of Vud and of λ mentioned
above. We note that the scale factor relative to the nine measurements included is rather
large, and that there is a trend over time towards decreasing values of τn [21, 24] specular
to that of λ, which is increasing (in fact, the most precise measurement, the one obtained
in 2021 by UCN τ [37], indicates a value relatively small, τn(UCN) = 877.75± 0.28+0.22

−0.16 s,
even if compatible with the average).

3.1.4 Procedures for assessing the uncertainty on the cross section

At this point in the discussion, we can evaluate the uncertainty on the σ cross section.
By calculating the derivatives with respect to the parameters of interest, at the point of
maximum likelihood,

~ξ =
(
∂σ

∂Vud
,
∂σ

∂λ

) ∣∣∣
best
fit

(3.8)

we find the uncertainty from the formula

δσ =
√
~ξ
t Σ2 ~ξ where Σ2 =

 (δVud)2 , ρ δVud δλ

ρ δVud δλ , (δλ)2

 (3.9)

where the error matrix Σ2 is a table of known coefficients (which depends on the data that
have been included) and ρ is the correlation coefficient. We consider two cases:

• For an hyper-conservative error estimation procedure, we use only (3.3) and (3.5)
Vud = 0.97427(32)
λ = 1.27601(52)
ρ = 0

(3.10)

and, as shown in eq. (3.9), we sum in quadrature the effects of the two independent
errors.
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• In the case of the full procedure, the one which includes also the information about
the neutron decay, eq. (3.7), we have instead

Vud = 0.97425(26)
λ = 1.27597(42)
ρ = −0.53

(3.11)

Let us observe that the central (best fit) values are almost the same, the errors
decrease slightly, and interestingly a negative correlation appears, whose effect is to
reduce the overall uncertainty on σ.

3.1.5 Results

In the hyper-conservative case, we have:

δσ(Vud) = 0.66h δσ(λ) = 0.68h δσ = 0.94h (3.12)

In the full treatment case, we have

δσ(Vud) = 0.53h δσ(λ) = 0.55h δσ = 0.52h (3.13)

In conclusion, we find that:

• both errors on λ and Vud are significant and comparable;

• the correlation has a significant impact, leading to a halving of the error on σ.

The improvement over 2002 estimate [3], when it was estimated that the source of error
at low energies amounted to δσ = 4h, is noteworthy: 4 times smaller in the hyper-
conservative case, almost 8 times in the full case.

3.2 Effect of uncertainties on form factors

The dependence on t of the form factor can be expressed in several ways. A rather common
procedure is to adopt phenomenological descriptions of the behaviour of the form factors
of the nucleons [13]. Moreover, the form factors can be constrained by using analytic
methods, crossing symmetry and global fits, which include several intermediate states and
continuum contributions. Finally, the form factors can be calculated ab initio, in particular,
by exploiting lattice QCD.

In the present analysis we are mostly concerned with low energy processes. Thus,
whatever the expression of the full dependence of the form factor on t is, we only need
the first terms of its Taylor expansion. Furthermore, it should be borne in mind that the
phenomenological form factors recalled above — in particular, the dipolar approximation
— are not optimised for the energies we are interested in, and indeed, it has been argued
that in some cases of interest the differences are significant.

With these considerations in mind, the form factors we will use are taken in linearised
form. We follow conventional usage and for a generic form factor F (t) we define the
corresponding radius

√
〈r2〉 as

〈r2〉 = 6
F (0)

dF (t)
dt2

∣∣∣∣
t=0

(3.14)
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We recall that the linear expansions are used as a theoretical comparison term for form
factors and are usually presented in terms of the radii, namely

F (Q2)
F (0) ≡ 1− 〈r

2〉 Q2

6 +O(Q4) (3.15)

with Q2 = −t > 0.

3.2.1 Vector form factors f1 and f2

The linear expansion seems appropriate to assess the uncertainty introduced by the depen-
dence of the form factor on Q2 (or t). Indeed, for the energies of interest for supernova
neutrino detection, we have Q2

max ∼ (2E)2 . 0.01 GeV2 and the higher order terms in Q2

can be safely neglected.
The matrix elements of the weak vector currents belong to the same isotopic multiplet

of the matrix element of the iso-vector part of the electromagnetic current. Thus we can
estimate the former from the latter by assuming isospin symmetry.

Let us indicate Dirac and Pauli electromagnetic form factors of the proton and of the
neutron with F p,n1,2 (t), that are normalized to their electric charge and anomalous magnetic
moment when t = 0: F p1(2)(0) = 1(kp) ad Fn1(2)(0) = 0(kn). Here kp = 1.793 and kn =
−1.913 are the proton and neutron anomalous magnetic moments in units of the nuclear
magneton, and ξ = kp − kn = 3.706 denotes their difference. The isovector parts of the
form factors are defined as F v1,2 = (F p1,2 − Fn1,2)/2, and the corresponding radii, according
to [38], are

√
〈rv 2

1 〉 = 0.751+0.002 +0.002
−0.001−0.003 fm and

√
〈rv 2

2 〉 = 0.880 ± 0.001 ± 0.003 fm. The
nucleon radii accuracy was about 1% in [39], and now it is reduced to about 0.3% [40].

When we compare these values with the coefficients of t in the dipole approximation,3
we find rdip1 = 0.64 fm and rdip2 = 0.85 fm, namely a difference ranging from around 15% for
the former to a 3% for the latter, which we attribute to the approximated character of the
phenomenological description.

Finally, the form factors of the weak charged current are simply given by f1,2 = 2×F v1,2.
Note that conservation of the vector current predicts f1(0) = 1, and isospin-breaking
corrections are expected to play a negligible role. By using these central values and the
conversion factor ~c ∼ 0.197326 . . .GeV fm, we obtain

f1 ≈ 1 + (2.41± 0.02) t
GeV2 f2 ≈ ξ

(
1 + (3.21± 0.02) t

GeV2

)
For supernova neutrino energies, we can estimate a maximum value of Eν ' Ee ' 50MeV;
within these limits, we have at the most 2.4h correction on the form factors, which is small.

3As it is well-known, this is a phenomenological description of the behaviour of the form factors of the
nucleons. In this approximation we have

{f1, f2} = {1− (1 + ξ)t/4M2, ξ}
(1− t/4M2)(1− t/M2

V )2 (3.16)

thus, r2
1 = 12

M2
V

− 3ξ
2M2 and r2

2 = 12
M2

V

+ 3
2M2 . Note: M2

V = 0.71GeV2 is a parameter extracted by data.
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MA [GeV]
1.07(11) NOMAD [43]
1.08(19) NOMAD [43]

1.19+0.09(0.12)
−0.10(−0.14) MINOS [44]
0.99 MINERνA [45, 46]

1.20(12) K2K [47]
1.36(6) MiniBooNE [41]
1.31(3) MiniBooNE [41]

1.26+0.21
−0.18 T2K [42]

Table 1. The axial mass MA as measured in a sample of recent neutrino experiments.

3.2.2 The axial form factor g1

In this section, we quantify the uncertainty in the cross-section due to axial vector form
factor g1. As we will see, this form factor is by far the most important one, being the one
that causes the largest uncertainty at high energies. We begin by reviewing its description
in the dipole approximation, and then focus on its linear expansion, discussing the value
of the so-called axial radius as extracted by a rather conservative approach.

Dipole approximation: simple pole dominance would suggest g1 = g1(0)/(1 − t/m2
a1)

where the pseudo-vector a1 is the pole, with JPC = 1++ and mass ma1 = (1.23±0.04)GeV,
which should give the dominant effect. The usually adopted dipole parametrization in
eq. (3.16), namely g1 = g1(0)/(1− t/M2

A)2, provides a better fit of data when MA is left as
a free parameter. We expect in this way to parameterize the contribution of other higher
states (for which we do not know positions, nor residues). Efforts were made in the last
decade to extract the value of the parameter MA. Older data from pion electroproduction
on nucleon experiments, and from neutrino scattering processes off light, intermediate and
heavy nuclei have been discussed in [3]. Most of them could be satisfactorily described with
MA ' 1GeV to within a few percent accuracy. The formal world averaging of MA values
performed in 2002 [48] from several earlier experiments gives MA = 1.026± 0.021GeV. In
2007, it was updated [49] considering both νµ-Deuterium scattering and pion electropro-
duction experiments, resulting in

MA = 1.014± 0.014 GeV (3.17)

The measurements of the cross-section of the muon neutrino and antineutrino quasi-elastic
scattering processes on a nuclear target (mainly Carbon) in the (anti)neutrino energy
interval 3-100GeV performed by the NOMAD experiment, running in the years 1995–1998,
also gave a similar value [43].

These values do not include the results from the modern high statistics measurements
performed in the FNAL experiments MiniBooNE (2002-2019), SciBooNE (2007-2008),
MINERνA (2009-2019), MINOS (2004-2016), and in the (still running) T2K experiments
with two near detectors — ND280 (off-axis) and INGRID (on-axis). They yield larger
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z-expans. dipole approx.
MA [GeV] MA [GeV]

0.85+0.22
−0.07 ± 0.09 1.29± 0.05 (νµ) MiniBooNE [50]

0.84+0.12
−0.04 ± 0.11 1.27+0.03

−0.04 (ν̄µ) MiniBooNE [51]
0.92+0.12

−0.13 ± 0.08 1.00± 0.02 (π) MiniBooNE [50]

Table 2. Comparison between z expansion and dipole approximation in MiniBooNE for QE
neutrino/antineutrino-nucleon scattering (νµ/ν̄µ) and in charged pion electroproduction (π).

values, as can be see in table 1. This has fueled some discussions lately. One possible
explanation is that the discrepancy is caused by nuclear effects. Another line of inquiry is
based on the suspicion that the dipole parameterisation may be too restrictive. It is widely
used, especially to model measurements with Q2 & GeV2, but it is purely phenomeno-
logical and not necessarily reliable outside where it is probed. Using the z-expansion one
generally finds smaller values and much larger errors for MA, as can be seen in table 2.
Indeed the dipole fits, being the least flexible, usually tend to give the smallest error,
even if they could potentially suffer from a large bias if the true model is in fact not of
dipole form. The dipole is motivated mostly by its simplicity and phenomenological suc-
cess, whereas the z-expansion is based on a conformal mapping, constructed such that one
obtains the largest possible range of convergence for the form factors, treated as a function
of complex arguments.

The values of MA produced by lattice QCD in the last decade, and more frequently in
the last years, have generally large errors and higher values in the dipole ansatz, sometimes
finding smaller values using the z-expansion, as shown in Fig 5 of [52] by RQCD collabo-
ration, whose own result is MA = 1.02(10)GeV versus a value in the dipole approximation
of MA = 1.31(8)GeV.

Linear expansion and axial radius: In the range of energy we are considering the
connection between the z-expansion and the dipole ansatz can be made using the linearized
form, as we will detail in the next section. As already discussed, we can linearize the
dependence on t of the axial form factor g1(t) in eq. (3.16) as we have done in section (3)
and define a vector axial radius

〈r2
A〉 = 6

g1(0)
dg1(t)
dt2

∣∣∣∣
t=0

(3.18)

and, in this framework, we can define

M2
A ≡ −2g1

′(0)
g1(0) = 12

〈r2
A〉

(3.19)

which can be used to compare the description adopting the traditional dipole parameter-
ization discussed above with that of any other one, including those better justified the-
oretically. For the energies of interest for the detection of supernova neutrinos, we have
Q2

max ∼ (2E)2 . 0.01 GeV2 for E < 50MeV. Thus, using M2
A ∼ GeV2, we find also in
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this case that g1(Q2) varies by approximately 2% and higher order terms in Q2 have a
negligible role.

In view of the fact that we are interested in relatively low energies, compared to those
for which the dipole parameterisation was developed, it seems important to us to adopt as
cautious a procedure as possible. Therefore, following closely the reference [53], we proceed
with a critical discussion of the main measurements relevant at low energies. There are
three main useful sets of measurements to probe the axial radius, namely,

νN: direct measurements of charged current interactions, in particular using muon neutri-
nos on Deuterium targets.4 Neutral current measurements (using CVC and reason-
able assumptions on the axial charge) give consistent results [54]. The formal errors
obtained are very small, giving r2

A = 0.453±0.023 fm2 [49, 53], but the measurements
are obtained at higher energies than those that concern us directly, and therefore
cannot be used in the case we are interested in without an extrapolation. According
to [50] — see in particular figure 3 — this extrapolation is not without dangers.
In this cautious spirit, ref. [53] suggests r2

A = 0.46 ± 0.22 fm2, which does not rely
on the dipole approximation and is consistent with the previous results, but has a
considerably larger error.

µCap: due to crossing invariance, the muon capture on proton probes exactly the same
form factors at small Q2 and thus is extremely interesting for us. The recent MuCap
measurement has given results that are quite accurate and consistent with those of
the previous method, with errors of similar magnitude [53]. The compatibility of the
results and credibility of errors allows the combination of results.

e→ π: Finally, experiments on single pion production by electrons on nucleons give ex-
tremely precise results, and values consistent with previous ones [49, 53], that — for-
mally — cover precisely the most interesting Q2 region, see e.g. [48]. Unfortunately
they require using the theory in a regime where its reliability, according to [53], can
be doubted.

Summary. The conclusions of this discussion can be summarized as follows

r2
A =

{
0.454± 0.012 fm2 νN(dipole) & e→ π, [49]
0.46± 0.16 fm2 νN & µCap, [53] (3.20)

The value of MA derived from the first (aggressive) procedure coincides with that already
discussed in eq. (3.17); the other one is in perfect agreement as far as the central value
is concerned, but it is much more cautious when it comes to estimating the uncertainty
range.

In conclusion, despite the many advances, the situation at the moment does not seem
entirely different from that described 20 years ago [3]: on the one hand, it is possible to
assess the parameter we are interested in by adopting a rather aggressive procedure, and in

4Heavy targets as Carbon are also used to maximize interactions and increase statistics, but then nuclear
physics corrections are expected much larger.
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this way the error is minute or negligible, on the other one, a prudent, more conservative
attitude, is not to be ruled out.

In the future, theoretical advances (e.g. from lattice QCD) and more precise mea-
surements should be able to significantly reduce the error even within the conservative
approach.5

3.2.3 Second-class currents and g2

Let us examine the contribution of the second-class currents. Taking into account the
largest possible values for the SCC form factors compatible with data, f3 = 4.4 f1 and
g3 = 0.4 g1, we evaluate that the contributions to the total cross sections of electron
antineutrinos on protons (inverse beta decay) are at most at the level of 0.3h(Eν/50MeV),
and, as expected, are dominated by g3.

Summarizing, the state of the art and the needs of experimental physics seem to well
justify the conventional procedure in which these contributions to the cross section are ne-
glected. In a prudent approach, one could consider including their effect in the estimation
of the uncertainty of the cross section; however, the impact of the newly estimated uncer-
tainties is marginal and in practice unimportant. These conclusions could be reconsidered
only if it turned out that the coefficients of the second-class form factors were much larger
than those currently estimated.

Similarly, we find that the uncertainty associated to g2 is negligible compared to the
one from g1. This could be expected, since, as shown in eq. (2.10), g2 enters in the cross
section always with a suppression factor m2

e. In particular, if we consider a variation by an
order of magnitude in g2, the corresponding modification of the cross section is below the
0.1h level at energies Eν ≈ 50MeV.

3.3 Results

Our final results are shown in figure 3, where we plot the overall 1σ uncertainty variation
of the IBD cross section as a function of the neutrino energy, adopting the conservative
approach.

Note that at higher energies, Eν & 20MeV, the largest source of uncertainty comes from
g1, and in particular from its evolution with the energy, which we encoded in the uncertainty
on the evaluation of the axial radius rA. If we consider the conservative case in eq. (3.20),
corresponding to the evaluation of the axial radius from νN scattering measurements and
µCap in the cautious approach of ref. [53], and a possible range for rA values within
±1σ from the central value, we find a maximum shift of 1.8h in the total cross section at
Eν = 20MeV, which is of the same order of the total uncertainty on the cross section arising
from Vud and λ, and which increases up to 1.1% at Eν = 50MeV. However, these evaluations
have to be taken as estimates, since we cannot completely rely on the extrapolation from
measurements at the GeV scale used in eq. (3.20).

As discussed above, the effect of the second class currents and of g2 are expected to
be negligible.

5In principle, the most straightforward approach to measuring r2
A would require to perform scattering

experiments with antineutrinos of energies of a few hundred MeV, accessing in this manner Q2 ∼ 0.1–
0.3GeV2. However, the fact that weak cross sections decrease with energy makes this approach very
challenging experimentally.
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Figure 3. Overall 1σ uncertainty variation of the IBD cross section as a function of the neutrino
energy (blue curve). We also indicate the contribution from the errors associated to the Vud and λ
measurements (green curve), in this case we consider the conservative scenario without correlation
induced by the neutron lifetime constraint, and from the uncertainty on g1, encoded in the axial
radius (orange curve). Again, we consider the most conservative case.
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Figure 4. Total cross sections of quasielastic scatterings at supernova neutrino energies.

4 Applications

4.1 Estimated cross section

Figure 4 shows the cross sections of quasi-elastic scattering of neutrinos and antineutrinos
at supernova neutrino energies, calculated as described above.

The numerical values for the IBD ν̄ep→ e+n cross section as function of the neutrino
energy are listed in table 3, and more values in the low energy range [1.9, 12] MeV, of
particular interest for reactor experiments, are given in table 4. We consider the hyper-
conservative case, corresponding to the central values for the parameters in eq. (3.10) and
in the second row of eq. (3.20). The cross section reported in [3] is in good agreement with
ours; at 50MeV (resp. 100MeV) the value reported in our table 3 is ∼0.6% (resp. ∼1%)
higher than that reported in table 1 of that work. The difference is due to the updated
parameter values, which were discussed in the previous sections.
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Eν [MeV] σ(ν̄ep) [10−41 cm2] Eν [MeV] σ(ν̄ep) [10−41 cm2] Eν [MeV] σ(ν̄ep) [10−41 cm2]
2. 0.00331709 35. 8.42907 68. 25.9144
3. 0.0265181 36. 8.86955 69. 26.5082
4. 0.0680334 37. 9.31767 70. 27.1041
5. 0.127583 38. 9.77319 71. 27.7021
6. 0.204738 39. 10.2359 72. 28.302
7. 0.299076 40. 10.7055 73. 28.9038
8. 0.41018 41. 11.1819 74. 29.5074
9. 0.537644 42. 11.6648 75. 30.1126
10. 0.681069 43. 12.1541 76. 30.7195
11. 0.840063 44. 12.6494 77. 31.3278
12. 1.01424 45. 13.1507 78. 31.9375
13. 1.20324 46. 13.6577 79. 32.5485
14. 1.40667 47. 14.1702 80. 33.1607
15. 1.62418 48. 14.688 81. 33.7741
16. 1.85542 49. 15.211 82. 34.3886
17. 2.10003 50. 15.739 83. 35.004
18. 2.35767 51. 16.2718 84. 35.6204
19. 2.62801 52. 16.8093 85. 36.2376
20. 2.91071 53. 17.3512 86. 36.8556
21. 3.20546 54. 17.8974 87. 37.4743
22. 3.51193 55. 18.4478 88. 38.0937
23. 3.82982 56. 19.0022 89. 38.7136
24. 4.15881 57. 19.5604 90. 39.3341
25. 4.49861 58. 20.1223 91. 39.955
26. 4.84893 59. 20.6877 92. 40.5763
27. 5.20946 60. 21.2566 93. 41.1979
28. 5.57995 61. 21.8287 94. 41.8199
29. 5.96009 62. 22.404 95. 42.4421
30. 6.34963 63. 22.9823 96. 43.0645
31. 6.7483 64. 23.5635 97. 43.687
32. 7.15583 65. 24.1474 98. 44.3096
33. 7.57197 66. 24.7339 99. 44.9322
34. 7.99647 67. 25.323 100. 45.5549

Table 3. Numerical values (in the hyper-conservative case) for the IBD ν̄ep → e+n cross section
as function of the neutrino energy.
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Eν [MeV] σ(ν̄ep) [10−41 cm2] Eν [MeV] σ(ν̄ep) [10−41 cm2] Eν [MeV] σ(ν̄ep) [10−41 cm2]
1.9 0.00190183 5.3 0.1489 8.7 0.497711
2. 0.00331709 5.4 0.156356 8.8 0.510862
2.1 0.00484225 5.5 0.163987 8.9 0.524173
2.2 0.00652675 5.6 0.171791 9. 0.537644
2.3 0.00838533 5.7 0.179769 9.1 0.551275
2.4 0.0104239 5.8 0.187919 9.2 0.565064
2.5 0.0126452 5.9 0.196243 9.3 0.579013
2.6 0.0150505 6. 0.204738 9.4 0.59312
2.7 0.0176403 6.1 0.213406 9.5 0.607386
2.8 0.0204149 6.2 0.222245 9.6 0.621809
2.9 0.0233742 6.3 0.231255 9.7 0.636389
3. 0.0265181 6.4 0.240435 9.8 0.651126
3.1 0.0298462 6.5 0.249786 9.9 0.666019
3.2 0.0333584 6.6 0.259306 10. 0.681069
3.3 0.0370542 6.7 0.268996 10.1 0.696274
3.4 0.0409332 6.8 0.278854 10.2 0.711634
3.5 0.0449951 6.9 0.288881 10.3 0.72715
3.6 0.0492395 7. 0.299076 10.4 0.74282
3.7 0.0536659 7.1 0.309439 10.5 0.758644
3.8 0.058274 7.2 0.319969 10.6 0.774622
3.9 0.0630633 7.3 0.330665 10.7 0.790753
4. 0.0680334 7.4 0.341529 10.8 0.807037
4.1 0.0731839 7.5 0.352558 10.9 0.823474
4.2 0.0785142 7.6 0.363753 11. 0.840063
4.3 0.0840241 7.7 0.375113 11.1 0.856804
4.4 0.089713 7.8 0.386638 11.2 0.873697
4.5 0.0955806 7.9 0.398327 11.3 0.890741
4.6 0.101626 8. 0.41018 11.4 0.907935
4.7 0.10785 8.1 0.422197 11.5 0.92528
4.8 0.114251 8.2 0.434377 11.6 0.942774
4.9 0.120829 8.3 0.44672 11.7 0.960418
5. 0.127583 8.4 0.459225 11.8 0.978212
5.1 0.134513 8.5 0.471892 11.9 0.996154
5.2 0.141619 8.6 0.484721 12. 1.01424

Table 4. Numerical values (in the hyper-conservative case) for the IBD ν̄ep → e+n cross section
as function of the neutrino energy in the low energy range.
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4.2 Positron emission from IBD signal in Super-Kamiokande

We estimate now the energy distribution of positrons generated by supernova anti-neutrino
and detected at Super-Kamiokande via the IBD cross section.

The anti-neutrino fluence can be described by [55]

dF

dEν
= ε

4πD2
E2
ν e
−Eν/T

6T 4 . (4.1)

We consider ε = 5× 1052 erg and T=4MeV. The positron spectrum is then given by

dSe
dEe

= Np

∫ Eminν

Emaxν

dEν
dF

dEν
(Eν) dσ

dEe
(Eν , Ee) ε(Ee) , (4.2)

where Np is the number of protons, which in Super-Kamiokande is particularly large:

Np = 2(1−ΥD)πr
2h× ρwater
mH2O

= 2.167× 1033 . (4.3)

Here ΥD = 1/6420 represents the Deuterium contamination, mH2O = 2.9915 × 10−23g,
h = 36.2 m, r = 16.9 m, ρwater = 0.998 g cm−3 at 20 °C.

For the efficiency ε(Ee) we use, based on [10], the same expression, extended to lower
energies, adopted for the analysis of SN1987A to describe the response of Kamiokande-II
in its entire volume [55]:

ε(Ee) = η(Ee)
1
2

(
1 + erf

(
Ee − Emin√

2σ(Ee)

))
Emin = 4.5 MeV

η(Ee) = 0.93
[
1− 0.2MeV

Ee
−
(2.5MeV

Ee

)2
]

σ(Ee) = 1.27
√

Ee
10 MeV + Ee

10 MeV

(4.4)

The resulting energy spectrum of positrons is plotted in figure 5 together with its 1σ
variation coming from the overall uncertainty on the IBD cross section which we determined
as discussed in the previous sections.

5 Conclusions

In this paper we have discussed as accurately as possible the cross section of quasi-elastic
scattering of electron neutrinos and anti-neutrinos on nucleons. We focussed on the mod-
erate energy range from a few MeV up to hundreds of MeV, which includes neutrinos from
reactors and supernovae. We assessed the uncertainty on the cross section, which is rele-
vant to experimental advances and increasingly large statistical samples. We found that at
low energy (relevant for reactor neutrinos) the overall uncertainty on the cross section is
dominated by the errors on Vud and λ. We distinguished two cases: an hyper-conservative
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Figure 5. Energy spectrum of positrons from IBD scattering, considering the antineutrino flux in
eq. (4.1) (left plot) and the corresponding 1σ variation coming from the overall uncertainty on the
IBD cross section (right plot).

approach for the uncertainty estimation and a full procedure, which includes the infor-
mation on the neutron decay. The uncertainty we find is very small, below per mil. In
the first approach, the overall uncertainty on the cross section is 0.94h, in the second
one 0.52h. Both errors on λ and Vud are significant and comparable; correlation has a
significant impact.
At higher energies, the largest source of uncertainty comes from the uncertainties in the
axial coupling form factor g1. The evaluation of its evolution with energy can be esti-
mated from measurements at the GeV scale, but this requires an extrapolation to our
energies of interest. However, even adopting the cautious approach of ref. [53] (that uses
the axial radius obtained from νN scattering measurements and µCap, but which is less
precise) we find that the resultant uncertainty on the cross section is small, about 1.8h at
Eν = 20MeV, which is of the order of the total uncertainty on the cross section stemming
from Vud and λ, and which increases up to 1.1% at Eν = 50MeV. We found that the
uncertainty associated to g2 is negligible.
Finally, we also considered the impact of second-class currents and concluded that their
contribution to the cross section can be safely neglected for current needs.
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A Alternative form of the hadronic current and Gordon identities

We can use an alternative formulation of the hadronic current, as adopted, for example,
in [13]:

M = v̄νγa(1− γ5)ve

· ūn
(
f1γ

a + g1γ
aγ5 + if2σab

qb

2M + g2
qa

M
γ5 + f3

qa

M
+ g3

pap + pan
M

γ5

)
up

(A.1)

Note that, by using a generalization of the Gordon identity, we can express:

ūniσab
qb

2Mγ5up = ūn

( ∆
2Mγaγ5 −

pap + pan
2M γ5

)
up

This shows that the term ū
pap+pan
M γ5u used in this alternative formulation does not have

definite properties under G, unless we restrict to the limit ∆ = 0, since it can be expressed
as a combination of a first class current term and of a second class one.

In this alternative formulation, the terms from second class currents are different from
those reported in eq. (2.11) and read:

ASCC = 8 t (4− t/M2)
[
−m2

e|f2
3 |+ |g2

3|(m2
e − t) + 2∆MRe[g∗3g1] + 2∆2|g2

3|
]

+O(∆3M) +O(∆m2
e t/M) +O(m4

e)

BSCC = 8m2
e

[
4Re[f∗1 f3] + Re[f∗2 f3] t/M2 − 4Re[g∗1g3]− 2Re[g∗2g3] t/M2

+ 2∆2/M2 Re[g∗2g3]
]

CSCC =− 8|g2
3| t/M2 + 16∆Re[g∗3g1]/M + 8∆2|g2

3|/M2

B Properties of the weak hadronic currents under G-parity

We demonstrate the properties of the weak hadronic currents under G-parity for the axial-
vector currents (see [7] for the analogous discussion about the vector currents).

GNG−1 = NG = iτ2N
C = iτ2CN̄

T

GN̄G−1 = N̄G = NTC(−i)τ2
(B.1)

• Properties of the current N̄γµγ5τ
∓N . [g1 term]

GN̄γµγ5τ
∓NG−1 = NTC(−i)τ2γµγ5τ

∓iτ2CN̄
T

= −NTCγµγ5τ
±CN̄T

= NTγTµ γ
T
5 τ
±N̄T

= −N̄γµγ5τ
∓N

(B.2)

This current induces the term with the Lorentz structure γµγ5. We shows that it
transforms as in eq. (2.3) and it is thus a first-class current.
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• Properties of the current ∂µ(N̄γ5τ
∓N). [g2 term]

G∂µ(N̄γ5τ
∓N)G−1 = ∂µ(NTC(−i)τ2γ5τ

∓iτ2CN̄
T )

= −∂µ(NTCγ5τ
±CN̄T )

= ∂µ(NTγT5 τ
±N̄T )

= −∂µ(N̄γ5τ
∓N)

(B.3)

This current induces the term with the Lorentz structure qµγ5. We see that it trans-
forms as in eq. (2.3) and it is thus a first-class current.

• Properties of the current ∂µ(N̄σµνγ5τ
∓N). [g3 term]

G∂µ(N̄σµνγ5τ
∓N)G−1 = ∂µ(NTC(−i)τ2σµνγ5τ

∓iτ2CN̄
T )

= −∂µ(NTCσµνγ5Cτ
±N̄T )

= ∂µ(N̄σµνγ5(τ±)TN)
= ∂µ(N̄σµνγ5τ

∓N)

(B.4)

This current induces the term with the Lorentz structure iqνσµνγ5. We see that it
transforms as in eq. (2.4) and it is thus a second-class current.
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