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Abstract: Scattering amplitudes in quantum field theories have intricate analytic properties
as functions of the energies and momenta of the scattered particles. In perturbation theory,
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1 Introduction

Feynman integrals are crucial for making theoretical predictions for high-precision particle
physics experiments in the framework of perturbative quantum field theories. These integrals
are extremely complicated functions of scattering energies and momenta of the particles
involved. Their explicit computation remains a challenging task spanning an enormous
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literature, see, e.g., [1] for a review. In fact, a lot of modern-day research is devoted to
answering the simpler question: what are the singularities of a given Feynman integral and
how complicated can they be?

Indeed, one of the biggest open questions in this topic has been the determination of the
general analyticity properties of scattering amplitudes consistent with the underlying physical
principles such a causality, locality, or unitarity. The importance of such investigations is
emphasized by the recent applications in the bootstrap approaches [2–5], bounds on low-
energy effective field theories [6–9], all-multiplicity conjectures for singularities of the planar
N = 4 super Yang-Mills amplitudes [10–14], or connections to cluster algebras [15, 16], to
name a few. A systematic study of such analyticity properties has been initiated in the
1960’s in a program known as the S-matrix theory; see, e.g., [17, 18]. While a great deal of
progress has been made in special cases — such as scattering of the lightest state in theories
with a mass gap — the determination of the analytic structure of all but the very simplest
Feynman diagrams remained too demanding computationally.

On the other hand, computational methods from nonlinear algebra have seen significant
advances in latest years, in particular with the development of robust numerical continuation
methods [19, 20] and fast, reliable implementations in packages such as PHCpack [21],
Bertini [22], and HomotopyContinuation.jl [23]. These methods seem tailor-made to
address the above questions. This work follows a natural direction in applying such recent
nonlinear algebra techniques to the old problems in the S-matrix theory.

A connection between the S-matrix theory and nonlinear algebra was established
in the work of Bjorken [24], Landau [25], and Nakanishi [26] who formulated a set of
polynomial equations determining allowed positions of singularities of a given Feynman
integral, nowadays known as the Landau equations. In this way, the investigation of
the analytic properties of Feynman integrals was transformed into an algebraic problem.
Physically, Landau equations are the conditions for the worldline path integral of a given
scattering process to localize on its classical saddle points [27, 28], in which the virtual
particles become on-shell states.

Recent work on mathematical aspects of Landau equations includes [29–36]. For a
more comprehensive summary of the literature see [28, Sec. II.C]. We note that methods of
computational algebraic geometry have been previously applied for integration-by-parts
reduction of Feynman integrals, see [37] for a review.

Contributions. The goal of this paper is to investigate the above physical questions
from an algebro-geometric and computational point of view. For each Feynman inte-
gral, we introduce the Landau discriminant as a projective variety whose points are
potential singularities of the integral. We prove its irreducibility and investigate its di-
mension and degree. We develop algorithmic tools for computing defining equations
of the Landau discriminant, significantly advancing the state of the art. In order to
showcase the effectiveness of these methods, we apply them to a gallery of examples,
illustrated in figure 1. We provide an implementation in the form of a Julia package
Landau.jl, available at https://mathrepo.mis.mpg.de/Landau/. The code makes use
of HomotopyContinuation.jl [23] (v2.6.0). Additionally, we study the combinatorics of
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polytopes arising from Feynman diagrams and Landau equations, motivated by the relation
between Landau discriminants and the A-discriminants from [38]. Finally, we present a
numerical nonlinear algebra routine to compute the number of master integrals for any
family of Feynman diagrams, exploiting the connection to maximum likelihood estimation
in algebraic statistics. With this work, we aspire to pave the way for future research by both
physicists and mathematicians in the study of the analytic structure of Feynman integrals,
Landau discriminants, and related topics.

Outline. This paper is organized as follows. We start by recalling elementary definitions
and introducing the notation in section 2.1–2.3. In addition, in appendix A, we include a
basic introduction to Feynman integrals for readers with a mathematical background. It
explains the Feynman rules and the transition from the loop-momentum integral to the
worldline formalism. We show how this conversion gives rise to Schwinger parameters and
Symanzik polynomials, which play a key role in this paper.

In section 2.4 we introduce the Landau discriminant ∇G, which describes the singularity
locus of a given Feynman diagram G, see Def. 2.4. In Thm. 2.1 we prove that ∇G is an
irreducible variety of codimension at least 1 in the projectivized kinematic space of energies,
momenta, and masses of G, denoted P(KG). In section 2.5–2.6 we compute Landau
discriminants for the well-known examples of the n-gon and banana diagrams, see figure 1a
and 1b.

In section 3, we introduce nonlinear algebra methods for computing Landau discrim-
inants, constituting our main computational results. Section 3.1 gives a brief discussion
on symbolic elimination methods using Macaulay2 [39], with the acnode diagram from
figure 1d as a running example. In section 3.2 we discuss a numerical approach based
on homotopy continuation. It combines (pseudo-)witness sets of linear projections [40],
irreducible decomposition via monodromy [41] and numerical interpolation. It is illustrated
in figure 2. To each point in the projectivized kinematic space P(KG) we attach the space
X of admissible Schwinger parameters. The incidence variety Y in the product X × P(KG)
is defined by the Landau equations. The closure of its projection onto P(KG) is the Landau
discriminant ∇G (both Y and ∇G are shown in blue in figure 2). The numerical sampling
algorithm proceeds by repeatedly intersecting Y with the pullback of a generic hyperplane in
P(KG) (orange). The intersection points are computed using homotopy techniques, and the
projection gives deg∇G points on ∇G (red). Defining equations for the Landau discriminant
are obtained by interpolating between the red sampling points in P(KG).

In the remainder of section 3 we apply this technique to the computation of Landau
discriminants for a range of diagrams illustrated in figure 1. With the exception of An
and BE, all the computations are cutting-edge and go far beyond the solutions of Landau
equations computed using previous methods [17, 18]. These results are summarized in
Thm. 3.1 and Ex. 12–13. The most complicated diagram we consider is the envelope diagram
env from figure 1e, whose Landau discriminant ∇env is a reducible surface of degree 45 in
the projectivized kinematic space P3. Another large example is the penta-box diagram from
figure 1l, whose Landau discriminant is a degree 12 5-fold in P6. A summary of degrees and
dimensions of Landau discriminants for all the diagrams from figure 1 is provided in table 1.
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(a) One-loop n-gon diagram,
G = An (section 2.5).

p1

p2 p3

p4

α1

α2

αE

(b) Banana diagram with E
edges, G = BE (section 2.6, 4.4).

p1

p2

p3

p4

α1

α2

α3 α4

(c) Parachute diagram,
G = par (Ex. 15, Thm. 3.1).

α1

α2

α3

α4

α5

p1 p2

p3p4

(d) Acnode diagram,
G = acn (Ex. 10, Rk. 3.4,
Thm. 3.1).

p1 p2

p3p4

α1

α2

α3

α4

α5

α6

(e) Envelope diagram,
G = env (Ex. 12, section 3.4).

p1

p2

p4

α1
α2

α5

α3

α4

α6

p3

(f) Non-planar triangle-box dia-
gram, G = npltrb (Thm. 3.1).

p1

p2

p4

α3

α1

α5

p3

α2

α4

(g) Twice doubled-edge trian-
gle diagram, G = tdetri
(Thm. 3.1).

α1

α2

α3

α4

α5

p1 p2

p3p4

(h) Doubled-edge box diagram,
G = debox (Thm. 3.1).

α1 α2
α4

α5

α6

p1 p2

p3p4

α3

(i) Twice doubled-edge box dia-
gram, G = tdebox (Thm. 3.1).

p1

p2

p4

α1
α2

α5

α3

α4

α6

p3

(j) Planar triangle-box diagram,
G = pltrb (section 3.3.1,
Thm. 3.1).

p1

p2

p4

α1

α2 α3

α6

α4

α5

α7

p3

(k) Double-box diagram,
G = dbox (Thm. 3.1).

p1 p5

α1

α2

α3

α6

α4

α5

α7

p4

p2

p3

α8

(l) Penta-box diagram,
G = pentb (Ex. 13).

Figure 1. Summary of the Feynman diagrams considered in this paper.

This part of the work is concluded with section 3.4, where we explain how to visualize the
discriminant on kinematic subspaces and quantitatively determine which singularities are
physically relevant.

In order to study degenerate solutions of Landau equations and bound the degree of
the Landau discriminant, we introduce Landau polytopes LG in section 4. In particular,
in Prop. 4.4 we explain how their facet structure can be determined in terms of the
combinatorics of the Feynman diagram G. As an example, in section 4.4 we explicitly work
out the facets of LBE for the banana diagrams BE. We conjecture that all facets of the
Landau polytope are labelled by certain subdiagrams of G, see Conj. 1. This conjecture is
verified for all examples in figure 1.
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Figure 2. Diagrammatic illustration of the numerical sampling algorithm.

In section 5, we apply homotopy continuation techniques to a different problem related
to Feynman integrals, namely that of counting the number of master integrals. After
explaining the formulation of Feynman integrals in analytic regularization in terms of
twisted cohomologies [42], we formalize previous results from the literature as Thm. 5.1
stating the connection between the signed Euler characteristic and the number of critical
points of the potential WG associated to a given G. We provide a simple Julia routine,
which proves a lower bound on the signed Euler characteristic via certified numerical
computations.

Section 6 contains concluding remarks and a list of research directions.

2 Landau analysis of Feynman integrals

In this section, after recalling the definition of Feynman integrals and Symanzik polynomials
in section 2.1–2.2, we present the formulation of the Landau equations related to a Feynman
diagram in section 2.3. This sets the stage for the definition of the Landau discriminant
in section 2.4 and a discussion of its first properties. In Section 2.5–2.6 we present several
examples.

2.1 Feynman integrals

The motivation for this work comes from studying analyticity properties of Feynman
integrals. We briefly recall their definition here. For the reader who is not familiar
with scattering amplitudes, we provide a more basic introduction in appendix A. For
our purposes, a Feynman diagram G is a connected undirected graph with EG internal
edges, nG external legs (open edges), as well as LG independent loops. Examples are
shown in figure 1. Such diagrams encode interaction patterns in a scattering process of
the external particles mediated by the internal ones. Each external leg in G corresponds
to one of these particles and carries a momentum vector pi ∈ R1,D−1 for i = 1, 2, . . . , nG.
Here R1,D−1 represents D-dimensional Minkowski momentum space in the mostly-minus
signature. Concretely, this means that the pi are vectors with D real entries, and the
Minkowski pairing of p = (p(0), p(1), . . . , p(D−1)), q = (q(0), q(1), . . . , q(D−1)) ∈ R1,D−1 is
given by p · q = p(0)q(0) − p(1)q(1) − · · · − p(D−1)q(D−1). We will use the standard notation
p2 := p · p. Most physical interest lies in D = 4. To each internal edge e we associate a
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Schwinger parameter αe ∈ C∗, which needs to be integrated out, and a mass me ∈ R+∪{0},
indexed by e = 1, 2, . . . ,EG.

In the worldline formalism the Feynman integral associated to a Feynman diagram G

is an integral over positive values of all the EG Schwinger parameters, αe ∈ R+. Roughly
speaking, it takes the following form:∫

REG
+

dEGα

UD/2
G

NG exp
[
i

h̄
VG
]
. (2.1)

The measure is simply dEGα :=
∏EG
e=1 dαe. The exponent involves the function VG, which

has the interpretation of the worldline action for G after analytic continuation. It can be
written as the ratio

VG := FG/UG (2.2)

of two polynomials, UG and FG, called Symanzik polynomials. Both UG and FG are
homogeneous in the Schwinger parameters, and FG involves the momentum vectors pi and
the internal masses me. We will define these polynomials in terms of the combinatorics of
the diagram G in section 2.2. They will play a central role in this work. The factor NG

is a polynomial in the Schwinger parameters (and typically other external data such as
polarization vectors or color factors) that encodes the physics of the particle interactions.
It will not be important for our purposes. eq. (2.1) also features i =

√
−1 and the reduced

Planck constant h̄ > 0.
For completeness, let us mention that the integrals of the type (2.1) do not converge in

general. Their more precise definition needs small deformations of the contour, which can
be implemented by inserting an infinitesimal parameter ε > 0 (the Feynman iε factor) in
the exponent, ensuring exponential suppression of the integrand as each αe →∞:

Ireg
G :=

∫
REG

+

dEGα

UD/2
G

NGRreg
G exp

[
i

h̄

(
VG + iε

∑EG
e=1 αe

)]
. (2.3)

In section 5 we will give an equivalent procedure with contour deformations. Additionally,
one needs to employ a regularization procedure, summarized in the factor Rreg

G . Two popular
choices are dimensional regularization (dim), corresponding to a shift D → D − 2ε for a
parameter ε ∈ C \ Z (not related to ε), and analytic regularization (an), which introduces
small parameters δe ∈ C \ Z for each edge e,

Rreg
G :=

U
ε
G reg = dim,∏EG
e=1 α

δe
e reg = an.

(2.4)

As a result, (2.3) becomes a meromorphic function of the regulators, which after summing
over all Feynman diagrams contributing to a given scattering process are taken to zero. A
more precise definition of Feynman integrals in analytic regularization will be given later in
section 5, and it will not play any role in the intervening sections.

In this paper, we will not be concerned with the important problem of evaluating
Feynman integrals. Rather, we are interested in investigating singularities of Ireg

G as a
function of the kinematic data. As we will see, this is a problem from nonlinear algebra [43].
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2.2 Symanzik polynomials and the kinematic space

A central role in the study of singularities of Feynman integrals (2.3) is played by the
Symanzik polynomials UG and FG. In this section, we present their definitions in terms
of concepts from graph theory. This will establish Lorentz invariance of the Feynman
integrals (2.3), leading us to the definition of kinematic space.

Let G be a connected Feynman diagram. A spanning tree in G is a connected subset
of EG − LG internal edges that contains all vertices of G. We write TG for the set of all
spanning trees of G.

Definition 2.1 (First Symanzik polynomial). The first Symanzik polynomial UG is

UG :=
∑
T∈TG

∏
e/∈T

αe, (2.5)

where the product runs over the LG internal edges that were removed from G to obtain the
spanning tree T .

A spanning 2-tree T1 t T2 in G is a disjoint union (with respect to the sets of edges and
vertices) of two trees T1 and T2 in G, containing all of its vertices. For a subset of external
legs S, let TG,S denote the set of all spanning 2-trees TS t TS̄ in G, such that TS contains
the vertices attached to the external legs labeled by S, and no vertices attached to external
legs labeled by the complementary set S̄ = {1, 2, . . . , nG} \ S, and similarly for TS̄ .

Definition 2.2 (Second Symanzik polynomial). For S ⊂ {1, . . . , nG}, define

FG,S :=
∑

TStTS̄∈TG,S

∏
e/∈TS ,TS̄

αe, (2.6)

where the product is over all the LG + 1 edges that needed to be removed in order obtain
the 2-tree TS t TS̄ . The second Symanzik polynomial FG is

FG :=
∑

{S,S̄}∈PG

(
∑
i∈S pi)2FG,S −

(∑EG
e=1m

2
eαe

)
UG. (2.7)

Here PG denotes the set of all partitions of the nG external legs into two disjoint non-empty
sets S and S̄. The number of terms in the first sum is |PG|= 2nG−1 − 1. Each FG,S is
weighted with the Minkowski norm (

∑
i∈S pi)2 of the total external momentum flowing

into S.

The first (second) Symanzik polynomial is a homogeneous polynomial of degree LG
(LG + 1) in the Schwinger parameters αe, at most linear (quadratic) in each individual αe.
Only FG depends on the external parameters pi,me.

Using the momentum conservation constraint
∑nG
i=1 pi = 0, one can show that the

number of independent Lorentz invariants (
∑
i∈I pi)2 is equal to nG(nG − 1)/2 whenever

nG ≤ D + 1. We can distinguish between the case |I|= 1, in which p2
i =: M2

i is the
squared mass of the i-th external particle, and the cases with 2 ≤ |I|≤ nG−2, in which case
(
∑
i∈I pi)2 are called Mandelstam invariants. There is a canonical choice of basis for such

invariants, which we summarize in the following.

– 7 –
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Definition 2.3 (Kinematic space). For any subset of external variables I ⊂ {1, 2, . . . , nG}
such that 2 ≤ |I|≤ nG−2, the Mandelstam invariant sI is

sI := (
∑
i∈I pi)2. (2.8)

A canonical basis BnG of Mandelstam invariants is given by all such I that consist of
consecutive labels in the cyclic ordering (1, 2, . . . , nG). For the squared masses of external
and internal particles we introduce respectively

Mi := M2
i , me := m2

e. (2.9)

The kinematic space KG for a given diagram G is defined to be

KG := {sI ∈ C | I ∈ BnG} × {Mi ∈ C | i = 1, 2, . . . , nG} × {me ∈ C | e = 1, 2, . . . , EG}.

Under the assumption nG ≤ D + 1 (which we will make throughout, see Rk. 2.1),
the kinematic space is an affine space of dimension dimCKG = nG(nG−1)

2 + EG. Feynman
integrals are multi-valued functions on KG. The goal of this paper is to determine varieties
in KG along which the Feynman integral (2.3) can develop singularities. We note that the
notation Mi, me for the squared masses is non-standard in the physics literature, but we
employ it here to make FG homogeneous in the kinematic invariants and to simplify the
expressions given later in the text. The physically most interesting setup is to fix all the Mi

and me to specific constant values and consider the behavior of (2.3) as the Mandelstam
invariants sI are varied. Alternatively, one may interpret Mi as the norm of the total
(off-shell) momentum attached to a given vertex, in which case it is interesting to also
vary it.

Remark 2.1. When nG > D + 1, there are additional constraints on the Mandelstam
invariants coming from the fact that the nG momentum vectors pi are embedded in R1,D−1.
Concretely, these constraints are given by the vanishing of all the (D+1)× (D+1) minors
of the Gram matrix with (i, j)-entry pi·pj. Since all the examples in this work have nG ≤ 5
external legs, these constraints do not play any role in D = 4 dimensions.

Example 1 (Four-point scattering). For diagrams G with nG = 4 (four-point scattering),
the kinematic space is given by

KG = {(s, t,M1,M2,M3,M4,m1,m2, . . . ,mEG) ∈ CEG+6}, (2.10)

where the two independent Mandelstam invariants are given by

s := s12 = (p1 + p2)2, t := s23 = (p2 + p3)2 (2.11)

in the conventional notation. For example, the Mandelstam invariant u := s13 is not
independent because using momentum conservation

∑4
i=1 pi = 0 we can express it as

u = (p1 + p3)2 = M1 + M2 + M3 + M4 − s− t. (2.12)

– 8 –
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The kinematic space is therefore (EG+6)-dimensional. In the above notation, the second
Symanzik polynomial reads

FG = s(FG,12 −FG,13) + t(FG,23 −FG,13) +
∑4
i=1Mi(FG,i + FG,13)−

(∑EG
e=1 meαe

)
UG.

4

We follow with two simple examples of diagrams with nG = 4.

Example 2 (Box diagram). As the first example we consider the box diagram, G = A4, as
illustrated in figure 1a. We have

nA4 = 4, EA4 = 4, LA4 = 1. (2.13)

The first Symanzik polynomial is a sum over four spanning trees obtained by removing a
single edge,

UA4 = α1 + α2 + α3 + α4. (2.14)

Similarly, there are six spanning 2-trees obtained by removing two edges in all possible
combinations, which gives the second Symanzik polynomial

FA4 = sα1α3 + tα2α4 + M1α1α2 + M2α2α3 + M3α3α4 + M4α4α1 (2.15)
− (m1α1 + m2α2 + m3α3 + m4α4)UA4 .

4

Example 3 (Sunrise diagram). Let us consider the sunrise diagram, G = B3, illustrated in
figure 1b. In this case we have

nB3 = 4, EB3 = 3, LB3 = 2. (2.16)

The three spanning trees are obtained by removing two edges in all possible combinations,
giving

UB3 = α1α2 + α2α3 + α3α1. (2.17)

There is a unique spanning 2-tree corresponding to the removal of all three edges,

FB3 = sα1α2α3 − (m1α1 + m2α2 + m3α3)UB3 . (2.18)

In particular, the answer is t-independent since there is no way of separating the external
legs {2, 3} from {1, 4}. 4

2.3 Saddle points and Landau equations

Regularization of Feynman integrals overcomes global divergence issues (such as ultraviolet
or infrared divergences). However, the question whether the integral exists for a specific
point in the kinematic space KG still remains. We would like to determine the singular
locus of (2.3) in KG. Physically, such singularities correspond to the classical limit, h̄→ 0,
and are known as anomalous thresholds; see, e.g., [17]. To be more precise, by singularities

– 9 –
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we mean branch points or poles of the Feynman integral in the kinematic space. They are
determined by the critical points of VG and have the interpretation of intermediate particles
becoming long-lived on-shell states. To set the background for the remainder of this paper,
in this subsection we make the connection between singularities of (2.3) and saddle points
of VG more precise.

Recall that VG, as defined in (2.2), is a homogeneous rational function in the Schwinger
parameters of degree 1. In what follows, we assume that the parameters Mi,me, sI are fixed
and we are interested in finding α∗ such that

∂VG
∂αe

(α∗) = 0, e = 1, 2, . . . ,EG. (2.19)

This is a system of EG rational function equations in EG homogeneous variables. Homogene-
ity implies that the solutions α∗ live naturally in a projective space: if α∗ = (α∗1, · · · , α∗EG)
is a solution, then so is λα∗ = (λα∗1, · · · , λα∗EG) for any λ ∈ C∗. Let us first focus on critical
points with nonzero coordinates, i.e.,

α∗ = (α∗1 : α∗2 : · · · : α∗EG) ∈ PEG−1 \ VPEG−1(α1 · · ·αeUG), (2.20)

where VA(f) denotes the subvariety given by {f = 0} in A. Here we also excluded UG = 0
and we will come back to this point shortly. Note that for all these solutions we have
VG(α∗) = 0, since Euler’s rule gives

VG(α∗) =
EG∑
e=1

α∗e
∂VG
∂αe

(α∗) = 0. (2.21)

Since (2.19) is a system of EG constraints on (EG−1)-dimensional space of Schwinger
parameters αe, one expects that there are no solutions for generic kinematic parameters in
KG. This is indeed the case, as we will show in Thm. 2.1.

In order to see why solutions of (2.19) lead to divergences of the Feynman integral, let
us explicitly perform the integration over the projective scale λ. Without loss of generality
we can assume that NG is homogeneous with degree mG. After the change of variables
αe → λαe and setting αEG = 1 we have

UG → λLGUG, VG → λVG, NG → λmGNG, (2.22)
dEGα→ λEG−1dλ dEG−1αe (2.23)

as well as

Rreg
G → λδRreg

G , δ :=

εLG reg = dim,∑EG
e=1 δe reg = an.

(2.24)

Introducing the degree of divergence dG := mG+EG−LGD/2+δ, the Feynman integral (2.3)
becomes

Ireg
G =

∫
REG−1

+

dEG−1α

UD/2
G

NGRreg
G

∫
R+

dλ
λ1−dG

exp
[
iλ

h̄

(
VG + iε

∑EG
e=1 αe

)]

= (ih̄)−dGΓ(dG)
∫
REG−1

+

dEG−1α

UD/2
G

NGRreg
G

(VG + iε
∑EG
e=1 αe)dG

. (2.25)
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Therefore, on a saddle point the ε → 0+ limit gives a singularity if dG > 0. Note that
VG = 0 by itself does not imply a singularity because one can deform the integration contour
to avoid it. An explicit deformation of this type is given later in (5.5). See Ex. 23 for an
illustration in the case of the bubble diagram (figure 7).

The saddle point conditions (2.19) are known as the leading Landau equations [25],
which were first written in this form by Nakanishi in [26]. Traditionally, they have been
associated with pinch singularities of the integration contour; see, e.g., [17]. An explicit
example is given in Ex. 23. The physical interpretation in terms of saddle points in the
worldline formalism was given in [27, 28].

Singularities of regularized Feynman integrals can also come from non-toric saddle
points, i.e., those for which there is a set E of one or more edges such that αe = 0 for all
e ∈ E. The equations (2.19) where ∂FG/∂αe = 0 is substituted for αe = 0 for all e ∈ E are
called subleading Landau equations. They correspond to leading Landau equations for a
diagram G/E obtained from G by contracting all the edges in E [25]. It is also possible
that αe = 0 and ∂FG/∂αe = 0 simultaneously for a subset of edges, but we do not study
such solutions in this work. We parenthetically remark that also solutions to UG = 0 are
known to correspond to second-type Landau singularities [44], which physically correspond
to collinear divergences in the external kinematics.

Example 4. Consider the diagram G = env from figure 1e. Its subleading Landau
singularities can be determined as follows. Shrinking any of its 6 internal edges leads to a
twice doubled-edge triangle diagram of the same topology as tdetri from figure 1g. For
each of them, we can further shrink the edge 5 (in the notation of figure 1g), resulting in a
banana integral with four edges, B4 from figure 1b. Shrinking of any other set of edges leads
to diagrams that do not depend on any Mandelstam invariants, which we do not consider
here. 4

Without loss of generality, we can focus only on the leading Landau equations and
their toric solutions (2.20). (Subleading Landau equations of G are the same as the leading
ones for all possible G/E.) Since this excludes solutions with a vanishing first Symanzik
polynomial UG, the saddle point conditions are equivalent to

∂FG(α∗e)
∂αe

= 0 for e = 1, 2, . . . ,EG, UG(α∗e) 6= 0. (2.26)

We will refer to these equations (together with the inequation) as the Landau equations,
omitting the word “leading” for conciseness. We are interested in characterizing the
kinematic parameters for which the Landau equations have solutions. Below, we will
formalize this question in terms of the Landau discriminant.

2.4 Landau discriminants

Once we fix some kinematic data Mi,me, sI , i.e., we fix a point q ∈ KG, the leading Landau
singularities are points in the variety

X := PEG−1 \ VPEG−1(α1α2 · · ·αEGUG). (2.27)
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They correspond to the points in X where the projective hypersurface {FG = 0} ⊂ PEG−1

is singular. This imposes EG conditions on a (EG−1)-dimensional space. One could expect
that for general parameters q, the solution set is empty. In this section, we show that this
is indeed what happens.

By homogeneity of FG in the parameters, it is natural and convenient to work in the
projectivized kinematic space P(KG) := KG/∼, where q ∼ λq for all λ ∈ C∗. First, let us
define the incidence variety

Y :=
{

(α, q) ∈ X × P(KG)
∣∣∣∣ ∂FG∂αe

(α; q) = 0, e = 1, 2, . . . ,EG
}
. (2.28)

Here the notation FG(α; q) makes the dependence of FG on the kinematic parameters
explicit. The variety Y has two natural projection maps associated to it:

πX : Y → X, πP(KG) : Y → P(KG). (2.29)

These are given by
πX(α, q) = α, πP(KG)(α, q) = q. (2.30)

The solutions to the Landau equations with kinematic data q are the points in (πX ◦
π−1
P(KG))(q). We are interested in finding parameters q ∈ P(KG) for which the Landau

equations have solutions. That is, for which (πX ◦ π−1
P(KG))(q) 6= ∅.

Definition 2.4 (Landau discriminant). The Landau discriminant ∇G of a Feynman diagram
G is the subvariety of P(KG) given by the Zariski closure

∇G := πP(KG)(Y ) ⊂ P(KG) (2.31)

of πP(KG)(Y ) in P(KG). If ∇G is a hypersurface, its defining polynomial ∆G (∇G =: {∆G =
0}), which is unique up to scaling, is called the Landau discriminant polynomial. If ∇G has
codimension greater than 1, we set ∆G = 1.

Theorem 2.1. For any Feynman diagram G, the Landau discriminant ∇G is an irreducible,
proper subvariety of P(KG).

Proof. First, we show that the fibers π−1
X (α) are equidimensional linear spaces of dimension

dimKG − EG. Since the image of πX is closed in X by [45, Ch. 8, §5, Thm. 6], the proof
of [46, Thm. 1.26] implies that Y is irreducible of dimension dimKG − 2. The fiber π−1

X (α)
consists of the points q ∈ P(KG) such that

∂FG(α; q)
∂α1

= · · · = ∂FG(α; q)
∂αEG

= 0. (2.32)

These are linear equations in the coordinates of q, so they can be written in matrix format
Mq = 0. We show that M has full rank for any α ∈ X by computing the maximal minor of
M corresponding to the columns indexed by the internal mass parameters m1,m2, . . . ,mEG .
This is the determinant of

UG(α)
UG(α)

. . .
UG(α)

+


∂UG
∂α1

(α)
∂UG
∂α2

(α)
...

∂UG
∂αEG

(α)


(
α1 α2 · · ·αEG

)
. (2.33)
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Using the identity det(A+ uv>) = (1 + v>A−1u) det(A), this minor evaluates to1 +
EG∑
e=1

αe
UG(α)

∂UG
∂αe

(α)

UG(α)EG = (LG + 1)UG(α)EG 6= 0. (2.34)

Here we used the fact that UG is homogeneous of degree LG in combination with Euler’s
rule. This shows that M has rank EG.

Since Y is irreducible of dimension dimKG− 2, πP(KG)(Y ) is irreducible of codimension
at least 1, and so is its Zariski closure ∇G.

Remark 2.2 (Dimension). Thm. 2.1 does not make claims about the dimension of ∇G.
In most of our examples, it is a hypersurface. However, as we will see in section 3.3.1,
the Landau discriminant may have codimension > 1. In this case, the projection map
πP(KG) : Y → P(KG) has positive dimensional fibers.

Remark 2.3 (Degree). Presently, there is no closed formula for the degree of ∇G in terms
of the combinatorics of the diagram G. Classical results from the theory of discriminants
and resultants provide upper bounds (Prop. 4.7 and 4.8). We postpone these results to
section 4, as they involve polytopes related to Symanzik polynomials and Landau equations.

Remark 2.4 (Restriction). In practice, we may only be interested in kinematic parameters
inside a subvariety E of P(KG). We will mostly consider restrictions to a linear subspace
E = Pq ⊂ P(KG). This allows, for instance, to set me = m,Mi = M, which is the
physically meaningful case where external and internal masses are all equal. We replace Y
by Y ∩ (X×E). The closure of the projection of Y to E is, with a slight abuse of terminology,
also called the Landau discriminant. We will denote it by ∇G(E). The projection map will
be denoted by πE : Y → E. We warn the reader that Thm. 2.1 only makes claims about
the most general case E = P(KG). Once we restrict to a smaller E, Y and its projection
may become reducible. Moreover, we will see that we may have ∇G(E) ( ∇G ∩ E (see, e.g.,
Ex. 6). For E = Pq, we will write ∆G(E) for the defining equation of the codimension 1
component(s) of ∇G(E). In case codim∇G(E) > 1, we set ∆G(E) = 1.

To illustrate Thm. 2.1 and Rk. 2.4, we compute Landau discriminants in two well-known
examples: the families of one-loop and banana diagrams.

2.5 One-loop diagrams

For the family of one-loop diagrams with n external legs, An, illustrated in figure 1a, we
have LAn = 1, EAn = n and the Symanzik polynomials are given by

UAn =
n∑
i=1

αi, FAn = 1
2

n∑
i,j=1

Yijαiαj . (2.35)

Here the entries of the n×n symmetric matrix Y are given by

Yij := (
∑j−1
k=i pk)2 −mi −mj when i < j, and Yii = −2mi. (2.36)
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When i = j−1 we have Yi,i+1 = Mi−mi−mi+1, and otherwise (
∑j−1
k=i pk)2 = si,i+1,...,j−1 are

Mandelstam invariants. We write Y(E) for the restriction of Y to a subspace E ⊂ P(KAn).
The leading Landau equations (2.26) impose

Yα = 0, α1α2 · · ·αn

(
n∑
i=1

αi

)
6= 0. (2.37)

The following statement is an immediate consequence.

Proposition 2.1 (One-loop diagrams). The Landau discriminant ∇An(E) is the Zariski
closure of the subset of E ⊂ P(KAn) defined by

det Y(E) = 0, kerY(E) 6⊂ {α1α2 · · ·αn(α1 + · · ·+ αn) = 0}. (2.38)

Example 5 (Bubble diagram). For n = 2, we have the bubble diagram A2. Calling
M1 = M2 = s (which corresponds to attaching legs 1 and 2 on one end and 3 and 4 on the
other end of the diagram, as a special case of figure 1b with EG = 2), we find for generic
internal masses m1,m2:

∆A2 = det
(

−2m1 s−m1 −m2
s−m1 −m2 −2m2

)
= 4m1m2 − (s−m1 −m2)2. (2.39)

This defines an irreducible curve in P2 with coordinates (s : m1 : m2), dual to the rational
curve in (P2)∨ parametrized by (α1α2 : −α1(α1 + α2) : −α2(α1 + α2)). Restricting to the
line E = P1 = {m1 = m2 = m} ⊂ P2 with coordinates (s : m), the determinant factors:

det Y(E) = det
(
−2m s− 2m
s− 2m −2m

)
= −s(s− 4m). (2.40)

The first component, {s = 0}, is not in the discriminant: it corresponds to the null vector
α = (1,−1) whose entries sum to zero (instead, it is a second-type Landau singularity). The
second factor, {s = 4m}, has α = (1, 1). The discriminant polynomial in the equal-mass
case is therefore ∆A2(E) = s − 4m. In passing from general masses to equal masses, the
degree of the discriminant drops by one: the variety of (2.40), which is ∇A2 ∩ E , strictly
contains ∇A2(E) = {(4 : 1)}. 4

Remark 2.5. We note that while ∆A2 given in (2.39) is irreducible, we can return to the
variables m1, m2 (with mi = m2

i ), in terms of which ∆A2 for generic masses factors as

∆A2 = −
(
s− (m1+m2)2

) (
s− (m1−m2)2

)
. (2.41)

The singularities associated to the two factors are known as the normal and pseudo-normal
thresholds respectively.

Example 6 (Box diagram). For the box diagram A4 with n = 4 we have

∆A4 = det


−2m1 M1 −m1 −m2 s−m1 −m3 M4 −m1 −m4

M1 −m1 −m2 −2m2 M2 −m2 −m3 t−m2 −m4
s−m1 −m3 M2 −m2 −m3 −2m3 M3 −m3 −m4

M4 −m1 −m4 t−m2 −m4 M3 −m3 −m4 −2m4

 (2.42)
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and hence the discriminant polynomial is irreducible of degree 4. Restricting to the P3

given by me = m and Mi = M, we find

det Y(P3) = det


−2m M− 2m s− 2m M− 2m

M− 2m −2m M− 2m t− 2m
s− 2m M− 2m −2m M− 2m
M− 2m t− 2m M− 2m −2m

 (2.43)

= s t
(
st+ 4m(4M− s− t)− 4M2

)
.

For s = 0 and t = 0 we find the null vectors to be respectively

α = (1, 0,−1, 0) and α = (0, 1, 0,−1), (2.44)

whose entries add up to zero in both cases, and some entries are zero. Therefore, the
discriminant polynomial in the equal-mass case is

∆A4(P3) = st+ 4m(4M− s− t)− 4M2. (2.45)

This defines an irreducible quadratic surface strictly contained in ∆A4 ∩ P3. One can
check that the kernel condition in (2.38) is not satisfied for s = m = M = 0, yet (2.45)
vanishes at this point in P3. This is an example of a point in the kinematic space that is
added to the discriminant by taking the closure of πP3(Y ). The same thing happens for
(s : t : m : M) = (1 : 0 : 0 : 0). 4

2.6 Banana diagrams

We start by presenting a new, explicit proof of the following well-known result.

Proposition 2.2 (Banana diagrams). Substituting me = m2
e in the Landau discriminant

of the banana diagram with E internal edges (BE in figure 1b) gives

∆BE (s,m2
1, . . . ,m

2
E) =

∏
{ηe}

(
s−

( E∑
e=1

ηeme

)2
)
, (2.46)

where the product runs over all 2E−1 projectively-inequivalent ways of assigning the signs
ηe ∈ {±1} to each edge e = 1, 2, . . . ,E.

Proof. The diagrams BE have LBE = E−1, EBE = E and the Symanzik polynomials are
given by

FBE = s
E∏
e=1

αe − UBE

E∑
e=1

meαe with UBE =
E∑
e=1

E∏
e′=1
e′ 6=e

αe′ . (2.47)

In order to simplify the notation let us introduce FBE = (
∏E
e=1 αe)F̃ , where

F̃ := s−
( E∑
e=1

1
αe

)( E∑
e=1

meαe
)
. (2.48)
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Toric solutions have F̃ = 0. On the support of this constraint the leading Landau equa-
tions are

∂FBE

∂αe∗
=
( E∏
e=1

αe

)
∂F̃
∂αe∗

=
∏E
e=1 αe
α2
e∗

[( E∑
e=1

meαe

)
−me∗α

2
e∗

( E∑
e=1

1
αe

)]
= 0, (2.49)

together with the constraint UBE 6= 0. The term in the square brackets has to vanish for all
e∗. We eliminate the term

∑
e meαe using F̃ = 0 (as well as UBE 6= 0) to get

s(∑E
e=1

1
αe

)2 = me∗α
2
e∗ . (2.50)

The term on the left-hand side is independent of the choice of e∗. It implies that for every
pair of edges e1 and e2 the solution must satisfy(

αe1
αe2

)2
= me2

me1
. (2.51)

Let us restore me = m2
e. The solutions of the Landau equations can be stated as

(α1 : α2 : · · · : αE) =
(
η1
m1

: η2
m2

: · · · : ηE
mE

)
(2.52)

together with

s =
( E∑
e=1

ηeme

)2
(2.53)

for all 2E−1 projectively inequivalent ways of assigning the signs ηe ∈ {±1} to each edge.
The Landau discriminant polynomial is therefore given by (2.46), up to a constant.

Example 7 (Bubble diagram). Let us consider the case E = 2, which gives the same bubble
diagram as the one studied in Ex. 5. The two inequivalent ways of assigning signs are

(η1, η2) ∈ {(1, 1), (1,−1)} , (2.54)

which according to (2.46) gives

∆B2 =
(
s− (m1+m2)2

) (
s− (m1−m2)2

)
, (2.55)

in agreement with the previous result (2.41), ∆A2 = −∆B2 . 4

3 Computing Landau discriminants

In this section, we focus on the computation of the Landau discriminant ∇G using methods
from nonlinear algebra. We will focus on the case where ∇G is a hypersurface in the
projectivized kinematic space P(KG), and our goal is to compute its defining equation ∆G = 0.
There are several ways to go about this. Depending on which tools are used, one strategy
may be preferable over another. In section 3.1, we briefly discuss two approaches using
classical elimination theory. In contrast, section 3.2 describes numerical sampling methods
using state-of-the-art technology from numerical nonlinear algebra. We use the latter
approach to compute the Landau discriminant of the diagram env from figure 1e, assuming
equal internal masses (m1 = · · · = m6 = m) and equal external masses (M1 = · · · = M4 = M).
This is a reducible surface of degree 45 in E = P3.
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3.1 Symbolic elimination methods

For a given G, the polynomials ∂FG
∂αe

from (2.26) generate an ideal I in the homogeneous
coordinate ring

C[P(KG)× PEG−1] = C[sI ,Mi,me, α1, . . . , αEG ] (3.1)

of P(KG)× PEG−1. Its associated subvariety of P(KG)× PEG−1 contains the Zariski closure
Y ⊂ P(KG) × PEG−1 of the incidence variety Y defined in (2.28). In order to eliminate
spurious components, we must saturate1 the ideal I by the polynomial g = (α1 · · ·αEG)UG:

VP(KG)×PEG−1(I : g∞) = Y . (3.2)

In practice, it is more efficient to saturate by each of the factors of g separately, i.e.

(I : g∞) = (((· · · (I : α∞1 ) : · · ·) : α∞EG) : U∞G ). (3.3)

The projection map πP(KG) extends naturally from Y to Y , and since PEG is complete, we
have πP(KG)(Y ) = πP(KG)(Y ) = ∇G. Therefore, ∆G is the generator of the elimination ideal
(I : g∞) ∩ C[sI ,Mi,me].

Example 8 (Box diagram). Consider the box diagram A4 from Ex. 2 and 6. We define its
Symanzik polynomials in the computer algebra software Macaulay2 [39] as follows:

R = QQ[a_1..a_4,M_1..M_4,m_1..m_4,s,t] 1

2

U = a_1+a_2+a_3+a_4; 3

F1 = a_1*a_2; F2 = a_2*a_3; 4

F3 = a_3*a_4; F4 = a_1*a_4; 5

F12 = a_1*a_3; F23 = a_2*a_4; 6

7

F = (s*F12 + t*F23 + M_1*F1 + M_2*F2 + M_3*F3 + M_4*F4 8

- U*(m_1*a_1+m_2*a_2+m_3*a_3+m_4*a_4)); 9

The ideal I is defined by

I = ideal apply(4, i->diff(a_(i+1), F)) 10

We saturate by the polynomial g. In this case, it turns out that (I : g∞) = (I : α∞1 ).
Geometrically, this means that in this case the spurious component of VP(KA4 )×P3(I) contained
in {g = 0} is contained in {α1 = 0}. The Macaulay2 command for saturating by α1 is

J = saturate(I, a_1) 11

eliminate(J, {a_1,a_2,a_3,a_4}) 12

1The saturation of an ideal I of a ring R by a polynomial g ∈ R is the ideal (I : g∞) = {f ∈ R | gkf ∈
I for some k ∈ N}. For more information and a geometric interpretation, see [45, Ch. 4, §4].
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Here we also eliminated the Schwinger parameters, resulting in the Landau discriminant
polynomial ∆A4 , which is homogeneous of degree 4 and equal to the determinant in Ex. 6. 4

An alternative way to take the non-vanishing of g = (α1 · · ·αEG)UG into account
is to work directly in the ring C[P(KG)] ⊗ C[X], where C[P(KG)] = C[sI ,Mi,me] is the
homogeneous coordinate ring of P(KG) and C[X] is the coordinate ring of the affine variety
X = PEG−1 \ V (g). We use the representation

C[X] = C[α1, . . . , αEG−1, y]/〈1− yg̃〉, (3.4)

where g̃ is obtained from setting αEG = 1 in g. Let Ĩ ⊂ C[sI ,Mi,me, α1, . . . , αEG−1, y] be
the ideal

Ĩ =
〈
∂FG
∂αe

∣∣∣∣
αEG=1

, e = 1, . . . ,EG

〉
+ 〈1− yg̃〉. (3.5)

The elimination ideal Ĩ∩C[sI ,Mi,me] = 〈∆G〉 is again generated by the Landau discriminant
polynomial.

Example 9. We apply the alternative technique for computing ∆G to the box diagram
G = A4. We add the variable y to the ring R in Ex. 6 and execute

Itilde = sub(I, a_4=>1) + ideal(a_1*a_2*a_3*sub(U,a_4=>1)*y-1) 10

eliminate(Itilde, {a_1,a_2,a_3,y}) 11

This gives indeed the same answer as before. 4

The symbolic elimination methods outlined here cannot deal with much larger examples,
as the number of variables involved in the computation grows too big. However, as mentioned
above (Rk. 2.4), it is often meaningful to make some simplifying assumptions on the
kinematic parameters. For instance, the Feynman diagram G = acn with equal internal
masses m1 = · · · = m5 = m and equal external masses M1 = · · · = M4 = M may be analyzed
using these techniques.

Example 10. The first Symanzik polynomial for the Feynman diagram G = acn from
figure 1d is

Uacn = α5(α1 + α2 + α3 + α4) + (α4 + α1)(α2 + α3). (3.6)

with the assumptions me = m, Mi = M, the second Symanzik polynomial is

Facn = sα1α3α5 + tα2α4α5 + M [α1α2α5 + α2α3(α1 + α4 + α5) (3.7)
+ α3α4α5 + α1α4(α2 + α3 + α5)]−mUacn(

∑5
e=1αe).

Setting I = 〈∂Facn/∂αe, e = 1, . . . , 5〉, saturating by g = (α1 · · ·α5) · Uacn and eliminating
α1, . . . , α5 gives the Landau discriminant, which is a surface in P3 with two irreducible
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components: ∆acn(P3) factors as ∆acn(P3) = ∆acn,1 ·∆acn,2 with

∆acn,1 = 9M4m2s2 − 54M3m3s2 + 81M2m4s2 + 9M2m3s3 − 54Mm4s3 + 9m4s4

+ 16M6st− 144M5mst+ 450M4m2st− 540M3m3st+ 162M2m4st

+ 12M4ms2t− 126M3m2s2t+ 297M2m3s2t− 162Mm4s2t+ 9M2m2s3t

+ 36m4s3t− 10m3s4t+ 9M4m2t2 − 54M3m3t2 + 81M2m4t2 + 12M4mst2

− 126M3m2st2 + 297M2m3st2 − 162Mm4st2 − 8M4s2t2 + 84M3ms2t2

− 189M2m2s2t2 + 54m4s2t2 − 11M2ms3t2 + 42Mm2s3t2 − 30m3s3t2 + m2s4t2

+ 9M2m3t3 − 54Mm4t3 + 9M2m2st3 + 36m4st3 − 11M2ms2t3 + 42Mm2s2t3

− 30m3s2t3 + M2s3t3 − 4Mms3t3 + 2m2s3t3 + 9m4t4 − 10m3st4 + m2s2t4,

as well as

∆acn,2 = m2
(
4M2 − 5M(s+ t) + (s+ t)2

)
−mst(s+ t− 5M)−M2st. (3.8)

It turns out that the diagram acn provides an example for which the restriction UG 6= 0
in (2.26) shrinks the Landau discriminant significantly. If we saturate the ideal I by the
product α1 · · ·α5 (instead of by g) and then eliminate the αe’s, we obtain an extra factor
∆acn,0 = 4M − s − t in the generator of the elimination ideal. We now explain that this
extra factor comes from spurious solutions to (2.26) satisfying Uacn = 0. Define the line
L = {α1 = −α2 = α3 = −α4} in P4 ⊃ X. Restricting the Landau equations to this line,
they simplify to

0 = −α2
1M + α1α5(−2M− 4m + s)−mα2

5,

0 = −α2
1M + α1α5(2M− 4m− t)−mα2

5,

0 = −α2
1M + α1α5(−2M− 4m + s)−mα2

5, (3.9)
0 = −α2

1M + α1α5(2M− 4m− t)−mα2
5,

0 = −α2
1(4M− s− t).

This shows that for general kinematic parameters satisfying 4M− s− t = 0, the Landau
equations have two solutions on L \ V (α1 · · ·α5). The first Symanzik polynomial vanishes
on both of these solutions, as one can easily check that it vanishes identically on L. 4

3.2 Numerical sampling methods

We now turn to numerical methods for computing the Landau discriminant. The punchline
is that, although symbolic verification remains valuable when possible, methods from
numerical nonlinear algebra can be used to compute ∆G and some of its invariants in an
efficient way. The basic strategy is to sample the discriminant using numerical continuation
techniques and then interpolate the sample points to obtain the defining equation ∆G. The
methods outlined here are implemented in a Julia package Landau.jl, made available
at https://mathrepo.mis.mpg.de/Landau/. The section will serve as a short tutorial on
how to use some functions in this package. As a running example, we will use the acnode
diagram G = acn with equal internal and external masses.
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Our starting point is the system of polynomial equations

∂FG
∂α1

∣∣∣∣
αEG=1

= · · · = ∂FG
∂αEG

∣∣∣∣
αEG=1

= 1− yg̃ = 0, (3.10)

where g̃ is obtained as in the previous section, by substituting αEG = 1 in g = (α1 · · ·αEG)UG.
These are the defining equations of the incidence variety Y from (2.28) embedded in
CEG × P(KG), where CEG has coordinates α1, . . . , αEG−1, y. Using Landau.jl, the Landau
equations are generated by specifying the edges and the node labels. Here the nodes are
the vertices of the graph G to which the external legs with the momenta pi are attached, in
the order of appearance. In the notation of figure 1d, for G = acn we have

edges = [[4,1],[1,2],[2,3],[3,4],[1,3]] 1

nodes = [1,2,3,4] 2

3

LE, y, α, p, mm = affineLandauEquations(edges, nodes) 4

The Landau equations are stored in LE. The output elements y, α represent the auxiliary
variable y and the list of Schwinger parameters αe, while p and mm represent lists of the
external momenta and internal masses, which will later be substituted by Mandelstam
invariants. As in Rk. 2.4, we may restrict the kinematic parameters to a linear subspace
E = Pq ⊂ P(KG) and replace Y by Y ∩ (CEG × E) ⊂ CEG × E . The Landau discriminant
is ∇G(E) = πE(Y ). We will focus on its components of dimension q − 1. Here is how to
restrict to the linear subspace Pq = P3 of equal external and internal masses.

LE, s, t, M, m = substitute4legs(LE, p, mm; equalM = true, equalm = true) 5

Let us consider the problem of estimating the degree of ∇G(E). We write (z0 : z1 : · · · : zq)
for the homogeneous coordinates on E . Adding q − 1 random linear equations

ai,0z0 + · · ·+ ai,qzq = 0, ai,j ∈ C, i = 1, . . . , q − 1 (3.11)

to (3.10) has the geometric interpretation of slicing πE(Y ) with a line L. The solutions to this
larger set of equations (3.10) and (3.11) form the pre-image π−1

E (πE(Y ) ∩ L) = π−1
E (L) ∩ Y .

By genericity of the coefficients ai,j , with probability one, we have |πE(Y )∩L|= |∇G(E)∩L|=
deg∇G(E). This gives the following algorithm to compute deg∇G(E):

1. Compute S = π−1
E (L) ∩ Y by solving (3.10) + (3.11).

2. Count the number of distinct points in the projection πE(S).

Here, step 1 can be performed using software from numerical nonlinear algebra. We choose
to use numerical homotopy continuation. For all our computations, we use the Julia
package HomotopyContinuation.jl. We dehomogenize by setting, for instance, z0 = 1.
In step 2, the points in the approximate solution set S are considered equal or distinct
according to some sensible heuristic, e.g. based on their relative distance ‖s− s′‖/‖s‖. This
is implemented in the function degreeProjection in Landau.jl:
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vlist = [α[1:end-1];y]; plist = [M;m;s;t] 6

dproj = degreeProjection(LE, vlist, plist) 7

Here vlist is a vector of affine coordinates on CEG and plist is a vector of coordinates on
E = P3. As a by-product of this degree computation, we obtain deg∇G(E) points on the
Landau discriminant ∇G(E). Essentially, in the language of numerical algebraic geometry,
we have computed a (pseudo-)witness set for ∇G(E) [40]. Doing this for different lines L,
we may sample ∇G(E) at will. Let L′ 6= L be a new generic line in E . From a homotopy
continuation point of view, we prefer to use the previously computed points S in order to
obtain S′ = π−1

E (L′) ∩ Y , rather than to start anew from scratch. We deform the line L
continuously into L′ by introducing a parameter into the equations and tracking the paths
described by the points in S along this deformation to end up in the points S′. A new
set of deg∇G(E) points on ∇G(E) is obtained from πE(S′). This procedure is carried out
repeatedly by the function sampleProjection in Landau.jl. Here is how to collect 500
samples:

samp, R, A, b, H = sampleProjection(LE, vlist, plist; npoints = 500) 8

The output H contains the equations (3.10) + (3.11) used to find the first set of points (i.e.,
the starting solutions for the homotopy). The line L defined by (3.11), together with some
random dehomogenization in E , is given by A*plist + b = 0. The output R is a result
returned by HomotopyContinuation.jl when solving H, and samp contains a list of at least
500 samples. The number 500 is chosen arbitrarily here. The number of sample points
should be at least the dimension of the space of homogeneous polynomials of degree dproj
in #plist variables, minus one. This is because the remaining step is to interpolate these
sample points by such a polynomial. In practice, for numerical reasons, we use more than
the minimal amount of sample points. Our heuristic is to use at least 1.2 × the minimal
number of samples. Interpolation is done via

disc, c, gap = interpolate_deg(samp, dproj, plist; homogeneous = true) 9

Here disc is the Landau discriminant polynomial ∆G(E), c contains its coefficients and
gap represents the ratio of the two smallest singular values of the coefficient matrix A in
the interpolation problem. The latter serves as a measure of trust in the computation: the
size of the gap governs the sensitivity of the kernel of A to perturbations in its entries [47].
A large gap corresponds to a well-conditioned interpolation problem. In this example, we
find gap = 2.1438277266482883e10. This means that the smallest singular value that was
considered numerically nonzero is about 1010 times larger than the last singular value. A
larger gap can sometimes be obtained by using more sample points.

The coefficients of disc are floating point numbers, many of which are close to zero.
We approximate these by rational numbers using

ratdisc = rat(disc) 10
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The result is a reducible polynomial of degree 12, equal (up to a nonzero rational factor) to
∆acn(E) in Ex. 10.

Remark 3.1 (Non-reduced incidence schemes). For some Feynman diagrams G, the
equations (3.10) do not define the vanishing ideal of the incidence variety Y . That is, the
solution set in CEG × E is Y , but the ideal generated by the EG + 1 polynomials is strictly
smaller than the ideal of polynomials vanishing on Y . In such cases, (3.10) may define Y
with a certain multiplicity. This happens, for instance, for G = npltrb. The solutions
to (3.10) + (3.11) are isolated points with multiplicity greater than one, which calls for
more brute force sampling techniques based on homotopy end-games. In Landau.jl, these
methods are invoked by adding the option findSingular = true in sampleProjection.
This makes the computations more time consuming, but it allows to deal with such singular
components.

The approach outlined above works in general, under the assumption that ∇G(E) ⊂ E
has codimension 1. As the acnode example illustrates, reducing to E ⊂ P(KG) often leads
to reducible Landau discriminants. In the rest of this section, we show how homotopy
techniques provide a natural way of computing the irreducible factors of ∆G(E) separately.
This leads to smaller interpolation problems that are numerically better behaved, and to
faster computations.

Let ∇G,i ⊂ ∇G(E) ⊂ E be an irreducible component and let Yi = π−1
E (∇G,i). In general,

Yi may consist of several irreducible components. Let Yi,j be any such component whose
projection πE(Yi,j) is dense in∇G,i. The set of points Si,j = π−1

E (L)∩Yi,j projects to deg∇G,i
distinct points in ∇G,i. Moreover, the same is true for the points S′i,j = π−1

E (L′) ∩ Yi,j ,
obtained via continuation by continuously moving L to L′. For reducible Y , the monodromy
group of

{(y, L) ∈ Y ×Gr(2, q + 1) | y ∈ π−1
E (L)} −→ Gr(2, q + 1) (3.12)

acts non-transitively on a general fiber [48]. Therefore, the partitioning of S into the
groups Si,j can be realized using monodromy loops. With this partitioning, we can sample
the components ∇G,i separately. The following command returns a list containing one
representative for each of the solution groups Si,j .

reps = decompose(H, solutions(R), [A[:]; b]) 11

In our acnode example, reps has two elements. We sample the component of ∇G(E)
corresponding to the first representative by feeding a monodromy seed to the function
sampleProjection. This consists of the first representative solution in reps and the
parameter values A, b for the line L.

samp1, R1, A, b, H = sampleProjection(LE, vlist, plist; npoints = 500, 12

seedsol = reps[1], seedA = A, seedB = b) 13

An analogous syntax is used to estimate the degree of this component and to interpolate
the samples:
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dproj1 = degreeProjection(LE, vlist, plist, seedsol = reps[1], 14

seedA = A, seedB = b) 15

disc1, N1, gap1 = interpolate_deg(samp1, dproj1, plist; homogeneous = true) 16

The rationalization rat(disc1) gives ∆acn,1 from Ex. 10 up to a nonzero rational factor.
An analogous computation gives the second component ∆acn,2. As a check of correctness,
we compute

expand(462//300*rat(disc) + rat(disc1)*rat(dics2)) 17

which gives 0. The factor 462/300 comes from the fact that interpolate_deg returns a
polynomial whose largest coefficient has modulus 1. Notably, the singular value gaps gap1
and gap2 are ≈ 103 times larger than gap.

Remark 3.2 (Higher precision arithmetic). In the case where ∆G(E) or its factors have
coefficients of strongly varying magnitude in the interpolation basis (here chosen as monomi-
als), it might be necessary to use augmented precision in order to make reasonable rational
approximations with the function rat. The package Landau.jl offers a higher precision
version of sampleProjection, called sampleProjection_HP, which computes points on
∆G(E) in Julia’s BigFloat format. These high precision coordinates are obtained by
performing Newton iterations on the initial set of double precision solutions.

Remark 3.3 (Iterative methods for interpolation). Computing the coefficients of the
interpolant through a collection of sample points requires the computation of a vector in the
kernel of a complex matrix M . The standard way of doing this is via the singular value
decomposition (SVD). However, if M is too large, this may be infeasible. We observe that
if the kernel of M has dimension one, then it is spanned by the eigenvector of MH ·M
corresponding to the eigenvalue 0 (here ·H is the Hermitian transpose). This eigenvector
may be computed efficiently using iterative methods, such as the eigs function implemented
in Arpack.jl. This may give less accurate results than for the SVD. However, it could give
us an idea of which coefficients of the discriminant are zero. Using this information, the
columns of M corresponding to zero coefficients can be dropped, reducing the complexity of
the kernel computation.

3.3 Computational results

3.3.1 Landau discriminants in P(KG)

We use Landau.jl to compute dimension and degree of the Landau discriminants ∇G
corresponding to the diagrams in figure 1 (in the most general case, where E = P(KG)).
This can be done using the following three lines of code.

LE, y, α, p, m = affineLandauEquations(edges, nodes) 1

LE, s, t, M, m = substitute4legs(LE, p, m; equalM = false, equalm = false) 2

deg = degreeProjection(LE, [α[1:end-1];y], [s;t;M;m]) 3
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Diagram G codim∇G deg∇G time (sec) ∇G(E) tsymb (sec) tnum (sec)
par 1 6 0.176 [1, 2]1 0.2 0.5
acn 1 16 0.489 [4, 8]1 175306.0 1.4
env 1 114 13.1 [8, 8, 8, 9, 12]1 × 1226.1
npltrb 2 10 37.2 [1, 1]1 1.9 4.0
tdetri 1 12 1.04 [2]1, [1]2 8.1 1.2
debox 1 8 0.366 [3]1, [1]2 7.9 0.5
tdebox 1 16 10.5 [2]1, [1]2 1476.8 4.3
pltrb 2 9 24.3 [1, 1]2 0.6 ×
dbox 1 12 8.64 [2, 4]1 13634.2 4.5
pentb 1 14 62.8 [12]1 × 815.9

Table 1. Dimension and degree of the Landau discriminants corresponding to the diagrams in
figure 1, with computation times. Here E is the linear subspace of P(KG) where Mi = M and me = m.

For the only five leg diagram G = pentb, we replace the last two lines by

LE, s12, s23, s34, s45, s51, M, m = substitute5legs(LE, p, m; equalM = false, 1

equalm = false) 2

deg = degreeProjection(LE, [α[1:end-1];y], [s12; s23; s34; s45; s51; M; m]) 3

The result is shown in the left half of table 1. By Thm. 2.1, each ∇G ⊂ P(KG) is irreducible.
For the diagrams G = npltrb, pltrb, the discriminant has codimension 2 in P(KG). In
order to compute its degree, we add the option codimen = 2 in degreeProjection:

deg = degreeProjection(ALE, [α[1:end-1];y], [s;t;M;m]; codimen = 2) 4

For G = pltrb. We checked symbolically that for equal external masses and generic
external masses (E = P8 has coordinates (s : t : M : m1 : · · · : m6)), ∇G(E) is defined by two
equations:

m1m4(m1 −m2 + m4) + ((−m1 + m2 + m5)m2 − (m1 + m2)m4)m5 + m6s
2

+(m1 −m5)(m2 −m4)m6 + ((m1 −m2)(m5 −m4)− (m1 + m2 + m4 + m5)m6 + m2
6)s = 0,

M(m2 −m4)2 + (M2 −M(m2 + 2m3 + m4) + (m2 −m3)(m4 −m3))s+ m3s
2 = 0.

We find numerically that general fibers of the projection map πP(KG) : Y → ∇G are curves
of degree 5. For G = npltrb, this degree is 8.

3.3.2 Equal-mass case

We now consider the case where E = Pq ⊂ P(KG) is the q-dimensional subspace for which
all external and internal masses are equal: Mi = M,me = m. In the case where G has 4
legs, the space E = P3 has coordinates (s : t : M : m). In case nG = 5, the coordinates
on E = P6 are (s12 : s23 : s34 : s45 : s51 : M : m). As we have seen in previous examples,
and as was pointed out in Rk. 2.4, the Landau discriminant ∇G(E) might be reducible. In

– 24 –



J
H
E
P
0
8
(
2
0
2
2
)
2
0
0

fact, its irreducible components may have different dimensions. In table 1, we encoded the
components of ∇G for all G from figure 1 with their dimension and degree in the following
way. A bracket [d1, . . . , dk]c indicates that ∇G has k irreducible components of codimension
c with degrees d1, . . . , dk. These numbers were obtained by using the methods in section 3.1
and/or the methods in section 3.2. The columns tsymb and tnum report computation times
for the symbolic and the numerical approach respectively. The symbolic method we opted
for was the approach based on sequential saturation, as in (3.3), since this gave the best
results. All computations were performed using HomotopyContinuation.jl v2.6.0 on a 16
GB MacBook Pro with an Intel Core i7 processor working at 2.6 GHz. We warn the reader
that the symbolic method (implemented in Macaulay2) computes the full elimination ideal.
The column tnum only comprises the time for computing the codimension 1 components of
∇G(E). In the rows of table 1 for which tsymb = ×, the Macaulay2 computation did not
finish within reasonable time. In all other cases, the discriminants ∇G(E) are computed
exactly. The same result was obtained using Landau.jl for the codimension 1 components.
We note that for the diagrams tdetri, debox, tdebox, the existence of the codimension
two components and their degrees can be verified numerically by adapting the methods
from section 3.2. We arrive at the following computational result.

Theorem 3.1. For G ∈ {acn, par, npltrb, tdetri, debox, tdebox, pltrb, dbox}, let E =
P3 ⊂ P(KG) be the subspace with coordinates (s : t : M : m) for which Mi = M, me = m. We
have that ∇acn(E) is as in Ex. 10, and

∇par(E) = {(M−m)(M2 − 10Mm + 9m2 + 4ms) = 0},
∇npltrb(E) = {m(s−M) = 0},
∇tdetri(E) = {s− 4M = s− 4m = 0} ∪ {9m2 − 10mM + ms+ M2 = 0},
∇debox(E) = {t−M = t−m = 0}

∪ {36m2M− 9m2s− 28mMt+ 10mst+ 4mt2 + 4M2t− st2 = 0},
∇tdebox(E) = {t− 4m = 40m + 4M− 11t = 0}

∪ {36m2 − 40mM + 16ms+ 4mt+ 4M2 − st = 0},
∇pltrb(E) = {s− 3m = s−M = 0} ∪ {s− 3m = s− 3M = 0},

∇dbox(E) = {(4mM−ms− 4mt+ st)
(
144m2M2 − 72m2Ms− 96m2Mt+ 9m2s2

+ 24m2st+ 16m2t2 − 96mM3 + 24mM2s+ 16mM2t+ 40mMst

− 10ms2t− 8mst2 + 16M4 − 8M2st+ s2t2
)

= 0}.

Example 11. The real section of ∇dbox(E) is illustrated in figure 3. The figure shows
that the limit limε→0+ ∇dbox(E) ∩ {m = ε} contains the curves {s = 0}, {t = 0} and
{st − 4M2 = 0} in the affine (s, t)-plane. However, one can check that α1 · · ·α7 Udbox

is contained in the ideal generated by ∂Fdbox
∂αe
|m=0, e = 1, . . . , 7. Therefore, the curves

{m = s = 0}, {m = t = 0} and {m = st − 4M2 = 0} end up in ∇dbox(E) by taking the
closure in (2.31). 4

For the more complicated diagrams G = env and G = pentb, the discriminant could
not be computed symbolically. We discuss our results for these diagrams in the following
two examples.
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Figure 3. Real part of the Landau discriminant ∇dbox(E) for the double-box diagram given in
Thm. 3.1 with dehomogenization M = 1. The two components are illustrated in blue (degree 2) and
orange (degree 4).

Example 12 (Envelope diagram G = env). In [49], the authors attempted to compute the
Landau discriminant for G = env, but the results are limited to a numerical plot. Using
our numerical sampling method, we find 5 irreducible components

∆env(E) =
5∏
i=1

∆env,i, (3.13)

where the first three are degree-8 with 83 terms each:
∆env,1 = −16sM7 − 432m2M6 + 20s2M6 + 192msM6 + 4stM6 + 1728m3M5 − 8s3M5 − 240ms2M5

−48m2sM5+216m2tM5−8s2tM5−72mstM5−2592m4M4+s4M4+96ms3M4+492m2s2M4

− 27m2t2M4 + s2t2M4 + 6mst2M4 − 1280m3sM4 − 864m3tM4 + 2s3tM4 + 134ms2tM4

− 84m2stM4 + 1728m5M3 − 12ms4M3 − 240m2s3M3 − 128m3s2M3 + 108m3t2M3

− 28ms2t2M3 + 48m2st2M3 + 2448m4sM3 + 1296m4tM3 − 40ms3tM3 − 408m2s2tM3

+ 1232m3stM3 − 432m6M2 + 30m2s4M2 + 224m3s3M2 + 2ms2t3M2 − 6m2st3M2

− 468m4s2M2 − 162m4t2M2 + 4ms3t2M2 + 136m2s2t2M2 − 468m3st2M2 − 1728m5sM2

− 864m5tM2 + 2ms4tM2 + 156m2s3tM2 + 156m3s2tM2 − 2052m4stM2 − 28m3s4M
−72m4s3M−20m2s2t3M+76m3st3M+432m5s2M+108m5t2M−32m2s3t2M−48m3s2t2M
+576m4st2M+432m6sM+216m6tM−12m2s4tM−136m3s3tM+288m4s2tM+1080m5stM
+ 9m4s4 + m2s2t4− 4m3st4 + 2m2s3t3 + 6m3s2t3− 54m4st3− 108m6s2− 27m6t2 + m2s4t2

+ 20m3s3t2 − 45m4s2t2 − 162m5st2 + 10m3s4t+ 18m4s3t− 162m5s2t− 108m6st,

(3.14)
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while the other two are obtained by relabelling:

∆env,2 = ∆env,1|s↔t, ∆env,3 = ∆env,1|t→u. (3.15)

where u := 4M−s−t. The remaining components are lengthy when written out in the
variables M,m, s, t. However, noticing that they are permutation invariant with respect to
the external legs, we express them in terms of the elementary symmetric functions

σ2 := st+ tu+ us, σ3 := stu. (3.16)

The degree-9 component is

∆env,4 = 4m3σ2
3 +64m2M3(m−M)4−σ3

(
27m4 − 2m2M2 + 8mM3 −M4

)
(m−M)2. (3.17)

Similarly, the last component is degree-12 with 81 terms (versus 347 before using permutation-
invariant variables) and reads

∆env,5 = 4096M12 − 65536mM11 + 475136m2M10 − 2048σ2M10 − 2064384m3M9 + 24576mσ2M9

+ 2048σ3M9 + 5988352m4M8 + 256σ2
2M8 − 147456m2σ2M8 + 14336mσ3M8

− 12222464m5M7 − 2048mσ2
2M7 + 606208m3σ2M7 − 313344m2σ3M7 − 512σ2σ3M7

+ 18006016m6M6 + 15360m2σ2
2M6 + 128σ2

3M6 − 1847296m4σ2M6 + 1783808m3σ3M6

− 8704mσ2σ3M6 − 19300352m7M5 − 79872m3σ2
2M5 + 2560mσ2

3M5 + 4096000m5σ2M5

− 5031936m4σ3M5 + 82432m2σ2σ3M5 + 14946304m8M4 − 1024m2σ3
2M4 + 230912m4σ2

2M4

+ 27136m2σ2
3M4 + 32σ2σ

2
3M4 − 6348800m6σ2M4 + 7350272m5σ3M4 + 1280mσ2

2σ3M4

− 390656m3σ2σ3M4 − 8159232m9M3 + 4096m3σ3
2M3 − 32σ3

3M3 − 374784m5σ2
2M3

− 438784m3σ2
3M3 − 1408mσ2σ

2
3M3 + 6602752m7σ2M3 − 4241408m6σ3M3

− 4096m2σ2
2σ3M3 + 1171968m4σ2σ3M3 + 2981888m10M2 − 6144m4σ3

2M2 + 1184mσ3
3M2

+ 343040m6σ2
2M2 + 1443456m4σ2

3M2 − 5440m2σ2σ
2
3M2 − 4360192m8σ2M2

− 1185792m7σ3M2 + 43520m3σ2
2σ3M2− 2141696m5σ2σ3M2− 655360m11M + 4096m5σ3

2M
− 7072m2σ3

3M− 165888m7σ2
2M− 242688m5σ2

3M + 67200m3σ2σ
2
3M + 1646592m9σ2M

+ 1425408m8σ3M− 129024m4σ2
2σ3M + 2366976m6σ2σ3M + 65536m12 + σ4

3 − 1024m6σ3
2

+ 13024m3σ3
3 − 48mσ2σ

3
3 + 33024m8σ2

2 − 3433728m6σ2
3 + 768m2σ2

2σ
2
3 − 149472m4σ2σ

2
3

− 270336m10σ2 + 458752m9σ3 − 4096m3σ3
2σ3 + 137472m5σ2

2σ3 − 1276416m7σ2σ3.

(3.18)

To obtain the correct rational coefficients of this component, we used higher precision as
explained in Rk. 3.2. The total degree of ∆env(E) is 45. 4

Example 13 (The penta-box diagram G = pentb). For G = pentb, we consider the
subspace E = P6 ⊂ P(Kpentb) with coordinates (s12 : s23 : s34 : s45 : s51 : M : m)
given by Mi = M,me = m. We used the iterative eigenvalue technique from Rk. 3.3 to
compute the kernel vector of a 22280× 18564 matrix. This gives a homogeneous polynomial
of degree 12 in the 7 parameters with 2601 terms. The discriminant can be found at
https://mathrepo.mis.mpg.de/Landau/. 4
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Remark 3.4 (Acnode diagram). The diagram acn was previously studied in [49, 50] with
the specific assignment of masses (in the notation of figure 1d):

M1 = M3 = M2, M2 = M4 = m2, me = 1. (3.19)

This defines a linear subspace E ⊂ P(Kacn). Using either of the techniques presented in
the above sections we find that the Landau discriminant has two irreducible components:
∆acn(E) = ∆acn,1 · ∆acn,2. The first factor has 184 terms and can be found at https:
// mathrepo. mis. mpg. de/ Landau/ . While it has not appeared in the literature, ref. [50,
Eq. (4)] provided its parametrization in the chart where m = 1:

s = 5 + 4 cosφ+ 2
(

2− 1
2M

2 + cos θ + cosφ
)

sinφ/sin θ, (3.20)

t = 5 + 4 cos θ + 2
(

2− 1
2M

2 + cos θ + cosφ
)

sin θ/sinφ, (3.21)

with θ + φ = π/3. We checked that this indeed correctly parametrizes ∆acn,1. For a range
of masses satisfying M2 ≥ 4 + 2

√
2, this curve develops cusps in the real (s, t)-space

on the physical sheet known as acnodes and crunodes [50], which provided an explicit
counterexample to the validity of the Mandelstam representation.

The remaining component of the Landau discriminant is given by

∆acn,2 =
(
u−m2(M2−1)

) (
(s−1)(t−1) + (M2−1)(1+2m2−M2)

)
+m4(m2−4)(M2−1),

(3.22)

where u := 2m2 + 2M2 − s− t, in agreement with the result quoted in [49, Eq. (9)]. It was
argued in ref. [49] that this component never lies on the physical sheet.

One can check that the above results evaluated at m = M match those of the Ex. 10
evaluated at M = M2, m = 1.

3.4 Coleman-Norton analysis of the envelope diagram

Recall that the Feynman integral (2.3) is in general a multi-valued function on the kinematic
space KG. The physically-relevant branch (consistent with causality) is defined by the
iε prescription in (2.3) within the physical regions PG, given by a union of disconnected
subsets of RP(KG) corresponding to the energies of the external momenta pi being real; see,
e.g., [51]. For instance, when nG = 4 the physical regions are given by

PG = RP(KG) ∩ {det (pi·pj)i,j=1,2,3 > 0}. (3.23)

This will be illustrated concretely in figure 4. The Landau equations give necessary but not
sufficient conditions for singularities of Feynman integrals. That is, not all points on the
Landau discriminant affect the numerical evaluation of (2.3). The purpose of this subsection
is to qualitatively identify the parts that do.

For a Feynman diagram G, let E ⊂ P(KG) be a nonempty subvariety and let ∇G(E) ⊂ E
be the associated Landau discriminant. It is physically meaningful to ask whether a point
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on ∇G(E) leads to singular points of the hypersurface {FG = 0} on the projectivized
integration domain

RPEG−1
+ = {(α1 : · · · : αEG) ∈ RPEG−1 | αe > 0 for all e } ⊂ X. (3.24)

This motivates the following definition, in which we use our previous notation πE : Y → E
for the projection of the incidence variety Y ⊂ X × E to E (Rk. 2.4).

Definition 3.1 (α-positive point). A point q ∈ ∇G(E) is called α-positive if π−1
E (q) ∩

(RPEG−1
+ × {q}) is nonempty.

Note that the above definition applies to any q ∈ ∇G(E), but the physical interpretation
is more subtle. The significance of an α-positive singularity in a physical region, q ∈
∇G(E)∩PG, was explained by Coleman and Norton [52]: it represents kinematics for which
the internal particles of the Feynman diagram propagate along their classical trajectories,
where each Schwinger parameter αe is real and (in the massive case, me > 0) proportional
to the proper time elapsed between pairs of vertices of the Feynman diagram G. Since the
value of a Feynman integral away from PG needs to be defined by analytic continuation, it
is in general much more difficult to determine if a given point on ∇G(E) is a singularity of
the integral on the appropriate sheet.

Example 14. For the family of banana diagrams BE, the explicit solution of the Landau
discriminant was given in section 2.6. Using (2.52), the only α-positive component is given
by ηe = 1 for all e, corresponding to

s = (
∑E
e=1me)2 (3.25)

known as the normal threshold. The remaining 2E−1 − 1 components are singularities on
sheets in the s-plane accessible by analytic continuation through the branch cut extending
from (3.25) to s = +∞. 4

Below, we will briefly illustrate a qualitative Coleman-Norton analysis on the example
of the envelope diagram, G = env, with generic masses. We focus on its leading singularities
only. We point out that the presented techniques can be applied to other diagrams in a
straightforward way.

Proposition 3.1. Consider the affine plane E = C2 ⊂ P(Kenv) obtained by setting all
Mi,me to fixed real values, with coordinates (s, t). All the α-positive points on the Landau
discriminant ∇env(E) are real.

Proof. We need to show that if the Landau equations (restricted to E) have a positive
solution, i.e., a solution α ∈ RP5

+, we must have Im(s) = 0 and Im(t) = 0. Viewing the
second Symanzik polynomial Fenv as a polynomial in s, t with real coefficients parametrized
by polynomials in the Schwinger parameters αe, its imaginary part equals

Im(Fenv) = Im(s)α1α3 (α5α6 − α2α4) + Im(t)α2α4 (α5α6 − α1α3) . (3.26)

Suppose (α1 : . . . : α6) is a positive solution to the Landau equations, so that it satisfies
Im ∂Fenv

∂αe
= 0. One checks easily that this implies Im(s) = Im(t) = 0.
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The above result implies that, for finding α-positive points with fixed masses, it is
sufficient to investigate the real part R∇env(E) of the Landau discriminant in RE = R2 with
coordinates (Re(s),Re(t)). Our analysis will be qualitative, in the sense that we investigate
the α-positive points by means of a plot.

The approach we present is numerical. It bypasses the interpolation stage described
in section 3.2. We argue that using these techniques, plotting ∇G can be achieved for
complicated diagrams for which it is not feasible to compute ∆G symbolically.

The strategy is to sample R∇G(E) (or its higher-dimensional analogues for nG > 4)
by intersecting it with a family of parallel lines in RE . Using sufficiently many of such
lines, we will have sampled the discriminant densely enough for a detailed plot. In Julia,
augmenting the Landau equations LE with such a pencil of lines can be done via

@var e 1

line = randn()*s + randn()*t + e 2

LE_line = System([LE;line], parameters = [e]) 3

The parameter e of the family of lines represents the offset from the origin. We define an
array targetpars of values of e for which we want to compute the intersections. Suppose
we want to plot the Landau discriminant inside a bounded real box B ⊂ RE = R2. With
the help of the basic auxiliary functions filter_in_box, which returns all points y ∈ Y
for which πE(y) ∈ B, and s_t_coordinates, which returns the projection πE(y) of these
points, the sampling can be done as follows.

samples = [] 4

for ee in targetpars 5

R = solve(LE_line; target_parameters = [ee]) 6

sols = filter_in_box(solutions(R)) 7

samples_in_box = s_t_coordinates(sols) 8

samples = push!(samples, samples_in_box...) 9

end 10

We apply this to the Landau discriminant of the envelope diagram G = env evaluated at
generic masses. As listed in table 1, it is irreducible with degree 114 and hence would be too
impractical to compute symbolically. Instead, using the above algorithm we plot R∇env(E),
where E = C2 is defined by the masses

(M1,M2,M3,M4) = (4, 5, 6, 7), (3.27)
(m1,m2,m3,m4,m5,m6) = (1/4, 1/5, 1/6, 1/7, 10/8, 10/9). (3.28)

The result is displayed in figure 4. It features 5 disconnected α-positive parts (orange),
among multiple other curve segments that do no satisfy the α-positive criteria (blue). In
this example, the physical regions PG (gray) are 4 disconnected regions carved out by the
inequality in (3.23) translating to

− s2t− st2 + 22st− 3s+ t− 22 > 0, (3.29)
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Figure 4. Leading Landau singularities for G = env with masses (3.27) at two different magnifica-
tions, featuring α-positive (orange) and non-α-positive (blue) curves. Physical regions PG have 4
disconnected components (gray). There are 3 α-positive curve segments intersecting PG, also known
as physical-sheet singularities.

for the choice of masses (3.27). Within the confines of the plot, only 3 out of the α-positive
curve segments intersect a physical region, including the one in the bottom-right corner of
the left panel in figure 4. In the physics language, those 3 curve segments are said to lie on
the physical sheet. The right panel illustrates how one of the curves stops being α-positive
around (s, t) ≈ (80.4,−44.3), which is where it leaves the physical sheet. We found that at
this point, the curve intersects one of the α-positive branches of the subleading Landau
singularity of G obtained by shrinking the edge 1.

One can easily include subleading Landau singularities of env, as listed in Ex. 4, which
are all straight lines (constant s, t, or u =

∑4
i=1 Mi−s−t). They also feature many α-positive

components, but we do not include them here to avoid cluttering figure 4 further.
We note that anomalous thresholds have effects visible at the energy scales a couple of

orders of magnitude larger than the mass scales involved in this problem.

4 Landau polytopes

This section is concerned with polytopes associated to Feynman diagrams and Landau
equations. As explained in section 4.1, what links such polytopes to Landau discriminants
is the theory of A-discriminants and toric resultants. The faces of these polytopes inherit
factorization properties of Symanzik polynomials. These factorization properties are listed
in section 4.2, and translated to the polytope setting in section 4.3. In section 4.4, we apply
the results to the banana diagrams BE (see figure 1). Finally, in section 4.5 we deduce
bounds on the degree of the Landau discriminant from the theory of A-discriminants and
toric resultants.
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4.1 Motivation

Convex lattice polytopes naturally arise in the context of toric geometry. They encode
the stratification of normal, compact toric varieties into torus orbits. For background,
see [53]. Such toric varieties are often considered as solution spaces for families of systems
of equations with a fixed monomial support, see for instance [54, Ch. 5]. In particular, they
provide a natural setting for studying discriminants and resultants.

Discriminants are classical objects in algebraic geometry. The class of A-discriminants
was extensively studied in the pioneering work of Gelfand, Kapranov, and Zelevinsky [38].
The symbol A typically denotes a subset of lattice points in Zn, corresponding to the
exponent vectors a occurring in a Laurent polynomial f =

∑
a∈A cax

a. The A-discriminant
is the Zariski closure of the set of all (ca) ∈ C|A| for which the hypersurface {f = 0}
has singularities in the algebraic torus (C∗)n. It naturally lives in the projective space
P(C|A|) = P|A|−1, and can be identified with the dual of the projective toric variety
XA ⊂ (P|A|−1)∨. Properties such as the degree of the A-discriminant can be understood
from the combinatorics of the convex polytope P = Conv(A) ⊂ Rn. The associated toric
variety XP is the normalization of XA. We would like to apply some standard results
in the theory of A-discriminants to our study of Landau discriminants. The role of the
polynomial f will be played by the second Symanzik polynomial FG (with n = EG). Its
monomials in the Schwinger parameters α1, . . . , αEG give the set A, and its coefficients are
parametrized linearly by the kinematic space P(KG) ⊂ P|A|−1. This justifies the study of
the corresponding Symanzik polytope, i.e., the Newton polytope FG of FG, and also the
Newton polytope of UG will make a natural appearance. We warn the reader that, apart
from restricting to the kinematic space or even smaller subspaces E of P|A|−1, an important
difference with A-discriminant analysis is that we discard singularities of {FG = 0} inside
the locus {UG = 0}. Related recent applications of A-discriminants to holonomic systems
for Feynman integrals include [55–58].

Resultants are closely related to discriminants. They encode parameter values for which
overdetermined systems of equations admit solutions. A well-understood class of resultants
is that of mixed (A0, . . . ,An)-resultants. The set Ai ⊂ Zn encodes monomials occurring
in a Laurent polynomial fi =

∑
α∈Ai ci,αx

α. The (A0, . . . ,An)-resultant polynomial ResA•
is the unique polynomial (up to scaling) vanishing on all points ((c0,α), . . . , (cn,α)) ∈
C|A0|×· · ·×C|An| for which f0 = · · · = fn = 0 has a solution in (C∗)n, under the assumption
that this set has codimension 1. Let Pi = Conv(Ai) ⊂ Rn and let L = P0⊕ · · ·⊕Pn be the
Minkowski sum (defined below (4.13)). One can show that each of the fi defines a Cartier
divisor VXL(fi) on the normal toric variety XL, and that ((c0,α), . . . , (cn,α)) ∈ V (ResA•)
if and only if VXL(f0) ∩ · · · ∩ VXL(fn) 6= ∅. This means that the resultant characterizes
precisely when f0 = · · · = fn = 0 has a solution in the toric variety XL. The construction
automatically takes into account solutions on the boundary XL \ (C∗)n of the torus in
this toric compactification. Recent efforts in numerical algebraic geometry have lead to
methods for detecting and computing such solutions on the boundary [59–61]. Here, we
will take the first steps in studying the polytopes L associated to this compactification
in the setting of Landau discriminants. We set n = EG − 1 and the polynomials fi are
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∂FG
∂αi+1

for i = 0, . . . ,EG − 1 (here the essential number of variables is indeed EG − 1, after
dehomogenizing αEG = 1). The Landau polytope LG associated to G will be defined as
the Minkowski sum of the polytopes Newt(fi). Again, for our purposes, the coefficients
((c0,α), . . . , (cn,α)) are parametrized linearly by the kinematic space, and we ignore solutions
in the hypersurface given by {UG = 0}.

In the above discussion, we have presented two, generally different toric compactifi-
cations of the variety X from (2.27): X ⊂ XFG and X ⊂ XLG . The former comes from
interpreting the Landau discriminant analysis from an A-discriminant point of view, while
the latter comes from computing toric resultants. The boundaries XFG \X and XLG \X
consist of the usual toric exceptional divisors, together with the hypersurface defined by
UG in the torus. The families of polytopes coming from these constructions are interesting
combinatorial objecs in their own right. We will see in the next subsections, for instance, that
their faces have factorization properties stemming from similar properties of the Symanzik
polynomials.

4.2 Factorization properties of symanzik polynomials

Let G be a Feynman diagram and let γ ⊂ G be a connected subdiagram. We denote by
UG|αγ→εαγ and FG|αγ→εαγ the result of replacing αe by εαe for all edges e ∈ γ in UG and
FG respectively. The symbol Lγ denotes the number of loops in γ and the contraction G/γ
is obtained from G by shrinking all the edges and vertices in γ to a point. We start by
recalling the following well-known result.

Proposition 4.1. For any connected subdiagram γ ⊂ G, we have

UG|αγ→εαγ = εLγ Uγ UG/γ +O(εLγ+1), (4.1)

FG|αγ→εαγ = εLγ Uγ FG/γ +O(εLγ+1). (4.2)

Proof. The proof is standard; see, e.g., [62, Thm. 5.1] or [63, Prop. 2.2, Thm. 2.7]. We
include a sketch for completeness. In the case of (4.1) one needs to use the fact that each
spanning tree T in G induces a spanning k-tree T ∩ γ in γ, where k ∈ {1, 2, . . . ,Lγ + 1}. At
the leading order in ε→ 0 only the spanning trees of γ (k = 1) contribute. In such cases
also T ∩ (G/γ) must be a spanning tree in G/γ, from which (4.1) follows. The derivation
of (4.2) uses the same arguments, except for the fact that a spanning 2-tree in G, which
induces a spanning 1-tree in γ, must be a spanning 2-tree in G/γ.

While in the case of (4.1) the leading order coefficient UγUG/γ is always non-zero on
PEG−1
>0 , for (4.2) it might happen that FG/γ = 0 identically. For simplicity, we will from

now on assume that all the internal edges in G are massive, i.e., me 6= 0, which guarantees
that FG/γ 6= 0 and makes the discussion less cluttered.

Remark 4.1. Simple examples illustrate that factorization akin to (4.2) does not persist at
subleading orders in ε once the massive condition is relaxed [64], though some factorization
at the order εLγ+1 can happen under certain more restrictive kinematic conditions [63,
Thm. 2.7].
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In the following subsections we will also need the following exact version of Prop. 4.1
in the special case where γ is a single edge.

Proposition 4.2. For any edge e of G, the Symanzik polynomials satisfy

UG = UG/e + αeUG\e, (4.3)
FG = FG/e + αe(FG\e −meUG), (4.4)

Proof. The proof is standard, see, e.g., [63, Lem. 1.9]. We include a sketch for completeness.
Because UG is at most linear in each αe, we have

UG = UG|αe=0 + αe
∂UG
∂αe

=
∑
T∈TG
T3e

∏
e′ /∈T

αe′ + αe
∑
T∈TG
T 63e

∏
e′ /∈T
e′ 6=e

αe′ . (4.5)

Since the first sum is over only the spanning trees that contain e, it can be identified with
UG/e. Similarly, the second sum contains precisely those spanning trees that do not contain
the edge e, and hence it equals UG\e, from which (4.3) follows.

Using similar manipulations and definition (2.6), we see that for any subset S ⊂
{1, . . . , nG} we have

FG,S = FG/e,S + αeFG\e,S , (4.6)

which together with (4.3) allows us to write

FG =
∑

{S,S̄}∈PG

(
∑

i∈S pi)2(FG/e,S + αeFG\e,S)− (meαe +
∑

e′ 6=e me′αe′)(UG/e + αeUG\e), (4.7)

according to (4.2). We then recognize the polynomials FG/e and FG\e, together with the
remaining terms proportional to me, which gives (4.4).

The above proposition will be important in understanding the facet structure of Landau
polytopes. As a side note, let us point out that it can be used to reformulate the Landau
equations (2.26) in terms of Symanzik polynomials of the diagram G \ e for any edge e.
Using (4.3) and (4.4) together with the fact that FG/e, UG/e, and UG\e are independent of
αe, we find

∂FG
∂αe

= FG\e −me(αeUG\e + UG) for e = 1, 2, . . . ,EG. (4.8)

4.3 Facets of Symanzik and Landau polytopes

We can construct different types of polytopes based on the Symanzik polynomials. For a
polynomial P =

∑
e∈NEG ceα

e ∈ C[α1, . . . , αEG ], let Newt(P ) = Conv(e ∈ NEG | ce 6= 0) ⊂
REG be its Newton polytope.

Definition 4.1 (Symanzik polytopes). For a given diagram G we define the Symanzik
polytopes

UG := Newt(UG) ⊂ REG , FG := Newt(FG) ⊂ REG , (4.9)

where FG is viewed as a polynomial in the Schwinger parameters after plugging in generic
kinematic parameters.
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Remark 4.2. For the kinematic parameters to be “generic” in Definition 4.1, it is necessary
that all the internal and external masses are non-zero: me 6= 0, Mi 6= 0. In combination
with generic Mandelstam invariants, this ensures that all possible monomials occurring in
FG have nonzero coefficients. One can study Newt(FG) for more degenerate kinematics,
but this is beyond the scope of this paper.

The polytope Newt(UGFG) first appeared in the work of Schultka [65] as a realization
of the iterated blow-up procedure for the integration region of Feynman integrals introduced
by Bloch, Esnault, Kreimer [66], and Brown [63] (see also [58, 67–71] for related work). A
systematic study of the polytopes (4.9) was undertaken in [64], where a specific Minkowski
sum/difference of UG and FG was needed to study ultraviolet and infrared properties of
Feynman integrals.

As a stepping stone to more complicated combinatorics, we first informally review some
of the properties of UG and FG [64, 65].

For d ∈ R, let Hd be the hyperplane Hd = {x ∈ REG | x1 + · · ·+ xEG = d} ⊂ REG . In
general, by homogeneity, the polytopes UG and FG are contained in the hyperplanes HLG
and HLG+1 respectively.

A connected graph G is called one-vertex irreducible (1VI) if it cannot be edge-
disconnected by removing a single vertex. Note that a 1VI diagram that does not have
a loop is necessarily a single edge. Note that all diagrams in figure 1 are 1VI. For a 1VI
diagram G, we have

dim UG = dim FG = EG − 1. (4.10)

Assumption 1. In the rest of this section, we assume that G is 1VI.

We now investigate the facets (i.e., the (EG−2)-dimensional faces) of UG and FG. Let
〈·, ·〉 denote the usual pairing between (Rn)∨ and Rn. For a polytope P ⊂ Rn and for each
vector v ∈ (Rn)∨, we denote the corresponding face of P by

∂vP := {x ∈ P | 〈v, x〉 = min
y∈P
〈v, y〉}. (4.11)

Note that ∂0P = P. As a consequence of Prop. 4.1, together with the fact that UG and FG

are generalized permutohedra [65], all facets of UG ⊂ REG are of the form Uγ ×UG/γ ⊂
REγ × REG/γ = REG , where γ and G/γ are both 1VI. For γ such that γ and G/γ are both
1VI, we denote the corresponding facet of UG by

∂γUG = ∂wγUG = Uγ ×UG/γ , (4.12)

where wγ =
∑
e∈γ we and we is the e-th standard basis vector of REG .

Similarly, for the polytope FG, the facets are ∂γFG = Uγ × FG/γ for each 1VI subdi-
agram γ. Here the 1VI condition on G/γ is not needed since it is already guaranteed by
requiring that G is 1VI. In particular, this means that FG usually has more facets than
UG. Examples will be given in later sections. As explained in Rk. 4.2, the cases where
some of the masses are zero require more careful analysis, see [63, 64]. For an explicit facet
presentation of UG and FG under some generic kinematics conditions see [65, Thm. 4.15]
and [71, Thm. 32].
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Since all monomials of FG in (2.7) appear also in (
∑EG
e=1 αe)UG, we have

FG = UG ⊕∆EG−1, (4.13)

where ∆EG−1 = Conv(w1, . . . , wEG) is the (EG−1)-dimensional simplex and ⊕ denotes
Minkowski addition. Recall that for two polytopes P1,P2 ⊂ Rn, P1 ⊕P2 = {p1 + p2 | p1 ∈
P1, p2 ∈ P2} ⊂ Rn.

Next to the Symanzik polytopes UG and FG, we introduce the class of Landau polytopes,
obtained directly from the critical point equations in (2.26).

Definition 4.2 (Landau polytopes). For a graph G and an edge e ∈ G we define

LG,e := Newt
(
∂FG
∂αe

)
, (4.14)

where FG is viewed as a polynomial in the Schwinger parameters after plugging in generic
kinematic parameters. The Landau polytope LG of G is given by

LG := Newt

EG∏
e=1

∂FG
∂αe

 =
EG⊕
e=1

LG,e. (4.15)

One motivation to consider these polytopes is to obtain a general bound on the degree
of the Landau discriminant polynomial ∆G, see Prop. 4.8.

Our next goal is to use Symanzik polytopes of subdiagrams G′ ⊂ G to describe the
faces of the Landau polytope LG. We start by considering the boundary structure of the
constituent polytopes LG,e.

Proposition 4.3. For a subdiagram γ ⊂ G, let ∂γLG,e := ∂wγLG,e be the corresponding
face of LG,e, with wγ =

∑
e∈γ we. If either γ and γ \ e are both 1VI or γ = e, we have that

∂γLG,e is a facet given by

∂γLG,e =


Ue × FG\e if γ = e,

Uγ\e × FG/γ if e ∈ γ, Lγ > 0,
Uγ × F(G/γ)\e if e ∈ G/γ, Lγ > 0.

(4.16)

Proof. Using (4.2) we have

∂FG
∂αe

∣∣∣∣
αγ→εαγ

= εLγ
(
∂Uγ
∂αe
FG/γ + Uγ

∂FG/γ
∂αe

)
+O(εLγ+1). (4.17)

Observe that, since e is contained in either γ or G/γ, at most one of the two terms in the
leading coefficient standing with εLγ can be non-zero. We claim that the only one situation
in which both leading terms in (4.17) vanish is when γ is a tree (Lγ = 0) containing e.

If e ∈ γ, the first term vanishes if and only if γ is a tree (for which ∂Uγ/∂αe = 0).
If e ∈ G/γ, the second term is identically zero only when G/γ contains a massless

tadpole (me = 0 and no external momentum flows through e, for which ∂FG/γ/∂αe = 0).
This is excluded by our assumption of generic kinematics.
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Let us investigate what happens when e ∈ γ and Lγ = 0. Then by (4.4) we have

∂FG
∂αe

∣∣∣∣
αe→εαe

= ε(FG\e −meUG/e) +O(ε2). (4.18)

If γ has more than one edge, one can apply Prop. 4.1 to conclude that ∂γLG,e is a face of
codimension > 1. Hence it suffices to consider the case where γ = e.

The three cases corresponding to one or two zero terms in the leading coefficient
of (4.17) can be summarized as follows:

∂FG
∂αe

∣∣∣∣
αγ→εαγ

=


εLγ+1 Ue

(
FG\e −meUG/e

)
+ . . . if γ = e,

εLγ Uγ\eFG/γ + . . . if e ∈ γ, Lγ > 0,

εLγ+1 Uγ
(
F(G/γ)\e −meU(G/γ)/e

)
+ . . . if e ∈ G/γ, Lγ > 0.

(4.19)

In the first line we have inserted Ue = 1 to make the structure more apparent. In the second
line we used (4.3) with G→ γ, and in the third we used (4.18) with G→ G/γ.

We now investigate the Newton polytope of the leading coefficient polynomials in (4.19).
The first contains two terms: proportional to FG\e and UG/e. However, all the monomials
in UG/e are already contained in FG\e because every spanning tree in G/e is also a 2-tree
in G \ e. Hence, for generic kinematics,

Newt(FG\e −meUG/e) = Newt(FG\e) = FG\e. (4.20)

This gives the first line in (4.16). Recall that Ue is a point. A similar discussion applies to
the third line of (4.19), where the Newton polytope of the term in the parenthesis becomes
F(G/γ)\e. Together with the 1VI condition on γ, it gives the required facet in (4.16). The
second line in (4.19) gives the corresponding facet in (4.16) provided that γ \ e is 1VI.

Boundaries of LG,e are therefore given by all ways in which we can combine the
operations of shrinking γ and removing e. Finally, we arrive at a similar result for the full
Landau polytope.

Proposition 4.4. For a connected 1VI diagram G and a subdiagram γ ⊂ G, let ∂γLG :=
∂wγLG be the corresponding face of LG, with wγ =

∑
e∈γ we. The polytope LG has a facet

given by

∂γLG = Ue ×
(

FG\e ⊕
⊕
e′∈G
e′ 6=e

F(G/e)\e′

)
(4.21)

if γ = e is a single edge, and a facet given by

∂γLG =

EG/γ ·Uγ ⊕
⊕
e′∈γ

Uγ\e′

×
Eγ · FG/γ ⊕

⊕
e′ /∈γ

F(G/γ)\e′

 (4.22)

if γ is a 1VI subdiagram with Lγ > 0. Here c ·P denotes a dilation of the polytope P by a
constant c > 0, and Eγ ,EG/γ = EG −Eγ are the number of edges in γ and G/γ respectively.
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Proof. The face ∂γLG is the Minkowski sum of the faces ∂γLG,e′ , given in Prop. 4.3, for
every e′ ∈ G.

When γ = e is a single edge, there are two cases: either e′ = e giving Ue × FG\e from
the first line of (4.16), or e′ 6= e which falls under the case e′ /∈ e in the third line of (4.16).
The latter gives Ue × F(G/e)\e′ for every e′ ∈ G, e′ 6= e, showing (4.21) since Ue is a point.

Similarly, when γ is not a tree, there are two cases depending on whether the specific
e′ is or is not contained in γ. According to the second line in (4.16) the former gives
Uγ\e′ × FG/γ , while the latter Uγ × F(G/γ)\e′ . Summing over all possibilities for e′ ∈ G
leaves us with the Newton polytope

∂γLG = Newt

∏
e′∈γ

(
Uγ\e′ FG/γ

) ∏
e′ /∈γ

(
Uγ F(G/γ)\e′

)
= Newt

UEG/γ
γ

∏
e′∈γ
Uγ\e′

×Newt

FEγ
G/γ

∏
e′ /∈γ
F(G/γ)\e′

 , (4.23)

where in the second line we have used ‘×’ since the sets of Schwinger parameters are disjoint.
This leads to (4.22).

Prop. 4.4 identifies facets of the Landau polytope LG coming from 1VI subdiagrams.
We expect that all facets arise in this way.

Conjecture 1. Let G be a connected, 1VI diagram. There are 1 : 1 correspondences

{1VI subdiagrams γ ⊂ G} 1:1←→ {facets ∂γFG}
1:1←→ {facets ∂γLG} . (4.24)

We have verified Conj. 1 for the diagrams in figure 1 with the help of Polymake [72].
For the one-loop diagrams AE, FAE is a dense quadratic polynomial (see section 2.5) and its
derivatives are linear forms. In this case, LAE and FAE are dilations of the standard simplex,
and Conj. 1 trivially holds. For the banana diagrams BE, we prove the conjecture in the
next section. Note that Conj. 1 implies that the normal fans of FG and LG coincide at the
level of rays. We will see (Ex. 16) that this is not true for cones of higher dimension.

Example 15. Let us consider the diagram G = par, labelled according to figure 1c. The
Symanzik polynomials read

Upar = (α1 + α2)(α3 + α4) + α3α4, (4.25)
Fpar = sα1α2(α3 + α4) + (M3α2 + M4α1)α3α4 − (

∑4
e=1meαe)Upar. (4.26)

The polytopes are given by

Upar = Newt(Upar), Fpar = Upar + ∆3, Lpar =
4⊕
e=1

Newt
(
∂Fpar

∂αe

)
, (4.27)

where we used (4.13). They are displayed in figure 5 (after dehomogenization by setting
α4 = 1). The set of facets is labelled by the 1VI subdiagrams
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Figure 5. From left to right: polytopes Upar, Fpar, Lpar. Facets are labelled by the edges belonging
to the corresponding subdiagram γ ⊂ par.

γ ∈ {1, 2, 3, 4, 34, 123, 124}, (4.28)

where we represented each γ by listing the edges that belong to it, e.g., the facet γ = 34
corresponds to the subdiagram consisting of edges 3 and 4 (and their vertices). The polytope
Upar is a pyramid with 5 facets because for γ = 123, 124, par/γ is not 1VI. The polytopes
Fpar and Lpar turn out to be combinatorially isomorphic, with 7 facets each. Their f -vector
is (10, 15, 7). 4

4.4 Example: banana diagrams

As an explicit example of an infinite family of polytopes, in this subsection we focus on
banana diagrams BE for any E ≥ 2, which we already considered in section 2.6. Previous
work includes [73]. Recall that the Symanzik polynomials are given by

UBE =
E∑
j=1

E∏
e=1
e 6=j

αe, FBE = s
E∏
e=1

αe −
( E∑
e=1

meαe

)
UBE . (4.29)

Since the monomial
∏
e αe occurs in (

∑
e meαe)UBE , we have

FBE = Newt
(∑

e

meαe

)
⊕UBE

= Conv(w1, w2 . . . , wE)⊕ Conv(u1, u2, . . . , ue), (4.30)

where w1, w2, . . . , wE are the standard basis vectors of RE and ui =
∑
e 6=iwe. Recall that

∆E−1 := Conv(w1, w2, . . . , wE) is the standard simplex. The facet representations of UBE

and ∆E−1 are

∆E−1 =
{
x ∈ RE | xe ≥ 0, e = 1, . . . ,E and

∑
e

xe = 1
}
, (4.31)

UBE =
{
x ∈ RE | xe ≤ 1, e = 1, . . . ,E and

∑
e

xe = E− 1
}
. (4.32)
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Both these polytopes are simplices, so that k-dimensional faces are obtained by replacing
E− k defining inequalities by equalities.

A useful observation is that for a subset γ ⊂ {1, 2, . . . ,E} of cardinality k and v =∑
j∈γ cjwj , cj > 0, we have that ∂vUBE is the codimension-k face given by Conv(wj , j /∈ γ).

Moreover, all codimension-k faces arise in this way. Similarly, for v = −
∑
j∈γ cjwj , cj > 0,

we have that ∂v∆E−1 is the codimension-k face given by Conv(uj , j /∈ γ).

Proposition 4.5. The facets of FBE are in one to one correspondence with the faces of the
standard simplex ∆E−1. In particular, the facets ∂vFBE of FBE are given by v =

∑
j∈γ wj,

for all proper, nonempty subsets γ ⊂ {1, 2, . . . ,E}.

Proof. Since FG is a generalized permutohedron [65], we know that for each facet ∂vFG,
v is proportional to

∑
j∈γ wj . Conversely, if v =

∑
j∈γ wj for a nonempty, proper subset

γ ⊂ {1, . . . , E}, we need to check that ∂vFBE is a facet of FBE . Note that ∂v∆E−1 =
Conv(wj , j /∈ γ) and ∂vUBE = Conv(uj , j ∈ γ). Translating ∂vUBE = Conv(uj , j ∈ γ) by
−
∑
ewe, we see that the sum of these faces of dimension |γ|−1 and E− |γ|−1 is indeed a

facet.

We now relate the facet-structure of FBE to that of LBE . Recall that

LBE =
E⊕
e=1

LBE,e =
E⊕
e=1

Newt
(
∂FBE

∂αe

)
. (4.33)

Since ∂FBE
∂αe

= s
∏
i 6=e αi −meUBE −

(∑E
i=1 miαi

)
∂UBE
∂αe

and

Newt(s
∏
i 6=e

αi) ⊂ Newt(UBE) ⊂ Newt
(( E∑

i=1
miαi

)
∂UBE

∂αe

)
, (4.34)

we conclude that
Newt

(
αe
∂FBE

∂αe

)
= ∆E−1 ⊕UBE,e, (4.35)

where
UBE,e := Conv(ui, i 6= e) = UBE ∩ {xe = 1}. (4.36)

As a consequence, the polytope LBE is, up to translation by (1, 1, . . . , 1), given by E ·∆E−1⊕⊕E
e=1 UBE,e.

Proposition 4.6. The facets of LBE are in one-to-one correspondence with the facets of
FBE. In particular, the facets ∂vLBE of LBE are given by v =

∑
j∈γ wj, for all proper,

nonempty subsets γ ⊂ {1, 2, . . . ,E}.

Proof. Since LBE = E ·∆E−1⊕
⊕E

e=1 UBE,e is a Minkowski sum of generalized permutohedra,
it is a generalized permutohedron itself. Therefore, if ∂vLE is a facet, v is proportional
to
∑
j∈γ wj for some nonempty strict subset γ ⊂ {1, 2, . . . ,E}. Conversely, we need to

show that the vector v =
∑
j∈γ wj defines a facet. Suppose γ has cardinality k. Then v

defines a (k−1)-dimensional face of
⊕E

e=1 UBE,e contained in E ·Newt
(∑

i∈γ
∏
j 6=i αj

)
. The
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Figure 6. From left to right: polytopes UB4 , FB4 , LB4 . Facets are labelled by the edges belonging
to the corresponding subdiagram γ ⊂ B4.

translation of the latter by (−E, . . . ,−E) is contained in the span of {ui, i ∈ γ}. The face
E · ∂v∆E−1 is contained in the span of the remaining standard basis vectors {ui, i /∈ γ}, so
that

dim
(

E · ∂v∆E−1 ⊕
E⊕
e=1

∂vUBE,e

)
= dim(E · ∂v∆E−1) + dim

( E⊕
e=1

∂vUBE,e

)
= k − 1 + E− 1− k = E− 2. (4.37)

This concludes the proof.

Corollary 4.1. Conj. 1 holds for G = BE, E ≥ 2.

Example 16. We illustrate Prop. 4.5 and 4.6 for the banana diagram with E = 4 edges.
In this case, UB4 = ∆3, FB4 and LB4 are 3-dimensional polytopes in R4. Their projections
onto (α2, α3, α4)-space are shown (not to scale) in figure 6, which we generated using
Polymake.jl [72, 74]. Their facets are labelled by the 14 1VI subdiagrams

γ ∈ {1, 2, 3, 4, 12, 13, 14, 23, 24, 34, 123, 124, 134, 234}, (4.38)

with the same notation as in Ex. 15. UB4 is a simplex and hence has only 4 facets labelled by
γ = 123, 124, 134, 234, which are the only subdiagrams for which B4/γ is 1VI. The polytopes
FB4 and LB4 have 14 facets each, corresponding to the 24 − 2 choices of γ in Prop. 4.5
and 4.6. Note that, although the normal fan for both polytopes coincide at the level of rays,
the lower-dimensional face-structure is quite different. The f -vector of FB4 is (12, 24, 14),
while that of LB4 is (24, 36, 14). 4

4.5 Bounds on the degree of the Landau discriminant

In some cases, a bound on the degree of the Landau discriminant polynomial ∆G can be
obtained from the volume of FG and its faces. The statement requires some additional
notation. For an (EG−1)-dimensional lattice polytope P ⊂ Hd ⊂ REG , let Vol(P) be
the volume of P, viewed as a lattice polytope in the (EG−1)-dimensional quotient lattice
MEG−1 = ZEG/(1, . . . , 1)Z. The volume is normalized such that Vol(∆EG−1) = 1. The
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lattice points of each D-dimensional face Γ ⊂ P generate a D-dimensional affine sublattice
MΓ of MEG−1, in which Γ has volume VolΓ(Γ). The normalization of the volume in the
sublattice is again given by VolΓ(∆D) = 1. Finally, recall that a D-dimensional polytope is
called simple if all of its vertices are contained in exactly D edges.

Proposition 4.7. If FG is simple, the degree of ∆G is bounded by

deg(∆G) ≤
∑

Γ⊆FG

(−1)codim(Γ) (dimΓ + 1)VolΓ(Γ), (4.39)

where the sum is over all faces Γ ⊂ FG together with FG viewed as a face of itself.

Proof. By [75, Cor. 3.10], every simple generalized permutohedron is Delzant. Therefore,
the projective toric variety XFG corresponding to FG is smooth and [38, Ch. 9, Thm. 2.8]
applies for its A-discriminant. The proposition follows from the observation that ∇G is a
subvariety of a linear section of this A-discriminant.

Remark 4.3. The inequality in Prop. 4.7 is expected to be strict in many cases, as the
condition UG 6= 0 in (2.26) and the fact that FG is not “generic” with respect to its monomial
support may cause the degree of ∆G to be strictly smaller than the bound in Prop. 4.7.

Example 17. For G = A4, we have FG = 2∆3 (see section 2.5). Hence FG is simple, and
the bound (4.39) evaluates to

deg(∆A4) ≤ 1 · (−1)0 · 4 · 8 + 4 · (−1)1 · 3 · 4 + 6 · (−1)2 · 2 · 2 + 4 · (−1)3 · 1 · 1 = 4. (4.40)

Here the numbers in bold correspond to the number of codimension 0, 1, 2, 3 faces of FG.
We have seen in Ex. 6 that this bound is tight. Another example for which FG is simple is
G = par (Ex. 15). The bound (4.39) gives 6 ≤ 24. 4

Recall that for positive, real parameters λ1, . . . , λEG−1, the mixed volume of EG − 1
polytopes Li ⊂ Hdi , i = 1, . . . ,EG − 1, denoted MV(L1, . . . ,LEG−1), is the coefficient
standing with λ1λ2 · · ·λEG−1 in the homogeneous polynomial 1

(EG−1)!Vol(λ1 · L1 ⊕ · · · ⊕
λEG−1 · LEG−1).

Proposition 4.8. The degree of ∆G satisfies

deg(∆G) ≤
EG∑
e=1

MV(LG,1, . . . , L̂G,e, . . . ,LG,EG), (4.41)

where L̂G,e indicates that the e-th polytope is omitted in the list.

Proof. For e = 1, . . . ,EG, let Ae ⊂ ZEG/(1, . . . , 1)Z be the set of lattice points in LG,e.
Observe that ∇G is a subvariety of a linear section of the mixed (A1, . . . ,AEG)-resultant [38,
Ch. 8, §1]. By [38, Ch. 8, Prop. 1.6], the proposition follows.

Remark 4.4. The degree bound from Prop. 4.7 has the disadvantage that it only holds in
the case where FG is simple. The bound from Prop. 4.8 applies more generally. If FG is
simple, the bound in (4.39) is bounded from above by the bound from Prop. 4.8. We point
out that both degree bounds trivially hold for ∆G(E), where E is any projective subspace of
P(KG) (e.g., the equal mass case).
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Example 18. For G = par, the bounds evaluate to 6 ≤ 24 ≤ 8 + 8 + 6 + 6 = 28. For
G = A4, both bounds are tight: (4.39) and (4.41) give 4 ≤ 4 ≤ 4. In the case of A4 and
E = P3 as in Ex. 6, we find deg(∆A4(E)) = 2 ≤ 4 ≤ 4. 4

5 Counting the number of master integrals

In this section we change gears and demonstrate how to apply homotopy continuation
methods to the problem of counting the number of independent multi-loop Feynman integrals
in analytic regularization. The approach rests on a theorem by Huh [76] which identifies
this dimension as the number of solutions to a system of rational critical point equations.
A similar technique has been recently applied to tree-level scattering amplitudes in [77, 78]
(see also [79] for previous work).

5.1 Feynman integrals and twisted cohomology

We first introduce a “potential function” WG associated to a given Feynman diagram G,
constructed out of the Symanzik polynomials

WG := (dG −D/2) log UG − dG logFG +
EG∑
e=1

δe logαe, (5.1)

where as before δe ∈ C \ Z are the analytic regulators and dG = mG + EG − LGD/2 + δ is
the degree of divergence with δ =

∑EG
e=1 δe. Monodromies of WG define a line bundle LG on

the space of Schwinger parameters

XG := (C∗)EG−1 \ {UGFG = 0}, (5.2)

where we have fixed the projective gauge by setting αEG = 1.
We can now define the k-th locally-finite homology with coefficients in the line bundle

LG on XG (see, e.g., [80]), H lf
k (XG,LG), as well as the twisted cohomology, Hk(XG,∇G),

with the integrable connection ∇G := d+dWG∧. A theorem of Aomoto, applied to the
above case, states that the only non-trivial twisted (co)homology is in the middle dimension,
k = dimCXG = EG−1, if LG is generic enough [81, Thm. 1]. That is, dG and the δe’s do
not satisfy certain linear relations. We refer the reader to [80] for more details on such
constructions in the context of the theory of hypergeometric functions.

Feynman integrals in analytic regularization over some point in the physical region
PG ⊂ RP(KG) are then defined as pairings

H lf
EG−1(XG,LG)×HEG−1(XG,∇G)→ C, (5.3)

given by

([ΓG ⊗ eWG ], [ϕ]) 7→
∫

ΓG

∏EG
e=1 α

δe
e

UD/2−dG
G FdGG

ϕ. (5.4)

Here we choose the homology class, which has the same effect as the iε factor in (2.25),
given by

ΓG :=
{(

αe exp
(
iε
∂VG
∂αe

))
e=1,2,...,EG−1

∣∣∣ αe ∈ R+
}
⊂ XG (5.5)
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for sufficiently small ε. In this section we are interested in Feynman integrals that do
converge, for values of kinematic invariants where Landau equations are not satisfied, in
which case the above prescription is equivalent to the Feynman iε prescription [28]. A
twisted cohomology class [ϕ] can be represented by a holomorphic (EG−1)-form on XG.
That is, a meromorphic form on CEG−1 with poles along the divisor {α1 · · ·αEG−1UG = 0}.
Such forms are given by polynomials in αe, 1/αe and 1/UG times the measure dEG−1α.
Different choices of [ϕ] give Feynman integrals within the same family defined by the
potential WG.

Since REG−1
+ remains fixed, the problem of counting the number of independent Feynman

integrals (known as the master integrals) within a given family amounts to computing
the dimension of the cohomology HEG−1(XG,∇G). Because it is the only non-trivial
cohomology and the line bundle LG is flat, the topological Euler characteristic of XG

equals [81, Thm. 3]

χ(XG) =
∑
k

(−1)k dimHk(XG,∇G)

= (−1)EG−1 dimHEG−1(XG,∇G). (5.6)

Thus, the number we are looking for is the signed Euler characteristic. In practical
applications it might be difficult to compute χ(XG) directly for large enough G.

A more efficient route stems the connection to Morse theory on XG associated to the
function Re(WG). Since WG is holomorphic, the critical points of Re(WG) are the same as
those of WG. Let us define the critical locus of WG to be

Crit(WG) := {(α1, α2, . . . , αEG−1) ∈ XG | dWG = 0}. (5.7)

For suitably generic values of the parameters δ1, . . . , δEG , dG, the above set is finite and all
the critical points are isolated and non-degenerate. In particular, we have the following
result.

Theorem 5.1. The signed Euler characteristic (−1)EG−1χ(XG) is equal to the number of
critical points of WG for generic complex parameters δ1, δ2, . . . , δEG , dG.

Proof. The statement of the theorem will follow from [76, Thm. 1] after we show that XG

is a smooth very affine variety, i.e., a smooth closed subvariety of a torus. To see this, we
embed XG → (C∗)EG via

(α1, α2, . . . , αEG−1) 7→
(
α1, α2, . . . , αEG−1,

1
UGFG

)
. (5.8)

Hence XG is given by y UGFG − 1 = 0, where we use coordinates (α1, α2, . . . , αEG−1, y) on
(C∗)EG . At a singular point, we would have ∂

∂y (y UGFG − 1) = UGFG = 0.

For an alternative derivation using Morse theory, see [81, Thm. 3]. Combining this
result with (5.6) we find that the number of critical points WG counts the number of
independent Feynman integrals in analytic regularization. The connection between counting
master integrals, twisted cohomology, and the number of critical points was first explained
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in [42, 82] in the Baikov representation as well as [83] in the parametric representation.
Related observations were previously made in the context of relative cohomology groups [84]
and D-modules [85]. In this section we gave a mild reformulation in terms of the potential
WG from (5.1), in order to stress more the connection to the combinatorics behind the
Symanzik polynomials. Finding critical points has many other applications within the
intersection theory of twisted cohomologies, including computation of integration-by-parts
relations and differential equations for Feynman integrals [42, 82, 83, 86–90]. This motivates
the need for an efficient algorithm for computing Crit(WG) using homotopy continuation
methods.

Remark 5.1. Using (4.3) and (4.4) the conditions for critical points can be written as

∂WG

∂αe
= (dG −D/2)

UG\e
UG
− dG

FG\e + me(UG\e − 2UG)
FG

+ δe
αe

= 0 (5.9)

for e = 1, 2, . . . ,EG. Therefore we obtain a system of equations defined purely in terms of
the combinatorics of the graph G.

5.2 Computational results

The critical points of WG can be computed with the help of Landau.jl and off-the-shelf
software from numerical algebraic geometry, making the Julia code very concise:

edges = [[1,2],[2,3],[3,4],[4,5],[5,6],[6,1],[3,6]] 1

nodes = [1,2,4,5] 2

3

E = length(edges) 4

5

F, U, α, p, mm = getF(edges, nodes) 6

F, s, t, M, m = substitute4legs(F, p, mm) 7

8

@var u[1:E+2] 9

W = u[1] * log(U) + u[2] * log(F) + dot(u[3:E+2], log.(α)) 10

dW = System(differentiate(subs(W, α[E] => 1), α[1:E-1]), 11

parameters = [s; t; M; m; u]) 12

13

Crit = monodromy_solve(dW) 14

crt = certify(dW, Crit) 15

println(ndistinct_certified(crt)) 16

The lines 1–7 simply compute the Symanzik polynomials using Landau.jl, here in
the example of G = dbox with generic masses. The potential function WG is given by W,
where u[i] are EG+2 generic parameters in front of the logarithms s in (5.1). The following
lines set up the critical point equations evaluated at αEG = 1. These are solved using
HomotopyContinuation.jl (v2.6.0) in line 14. In line 15, we use certify to get a rigorous
proof that each of the computed solutions is an approximate solution in a suitable sense [91].
The number of distinct certified solutions, printed in line 16, is a lower bound on χ(XG).
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G E = 2 3 4 5 6 7 8 9 10
BE (me) 3 7 15 31 63 127 255 511 1023

AE (Mi,me) 3 7 15 31 63 127 255 511 1023
AE (0,me) 2 3 11 26 57 120 247 502 1013
AE (Mi, 0) 1 4 11 26 57 120 247 502 1013
AE (0, 0) 1 1 3 11 33 85 199 439 933

Table 2. Signed Euler characteristic |χ(XG)| computed using the numerical code from section 5.2
for banana (G = BE) and one-loop diagrams (G = AE); see Ex. 19.

The above code is rather efficient, for example inputting G = B14, it finds 16383
solutions in about 12 minutes on the hardware used in section 3.3.2. Certifying these
solutions takes about 40 seconds. Let us apply the above code to the families of diagrams
considered in this paper.

Example 19. The results for |χ(XAE)| and |χ(XBE)| for E ≤ 10 are collected in table 2.
For the banana diagrams BE we give the result for generic masses me. The number of
critical points matches the result 2E − 1 proven in [85, Prop. 55], in agreement with [92].

In the case of the one-loop diagrams with E edges, AE, we present the results for
different ways of assigning masses, e.g., (0,me) means that all Mi = 0 and me are left generic.
We notice that in the fully generic case (Mi,me), we seem to find |χ(MAE)|= 2E − 1, and
the case (Mi, 0) gives results consistent with 2E − E − 1. We conjecture these are valid
for all E. Previous work on counting the size of cohomology basis for one-loop integrals
includes [93, 94], though in different formalisms. 4

Example 20. The results for |χ(XG)| for the other diagrams in figure 1 are presented in
table 3 in the same notation as in Ex. 19. We notice that for all the diagrams, the values of
|χ(XG)| are non-increasing going to the right of the table, as more and more special mass
configurations are chosen. Individual entries of the table match previous results contained
in [56, 85, 89].

4

6 Conclusion and outlook

In this work we introduced the Landau discriminant ∇G of a Feynman diagram G. This
formalises the notion of the singularity locus of Feynman integrals in the kinematic space,
with a view towards explicit computations. In particular, we perform the Landau analysis
from the point of view of nonlinear algebra. We proved that the Landau discriminant is
an irreducible, strict subvariety of the kinematic space, and present examples where it has
codimension > 1. Our symbolic and numerical methods allow us to compute the dimension,
degree and (with some simplifying assumptions on the kinematic parameters) the defining
equation of the Landau discriminant for nontrivial examples that were previously out of reach.
We studied combinatorial properties of convex polytopes related to Feynman diagrams and
Landau equations, and provided bounds on the degree of ∇G via A-discriminants and mixed
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G (Mi,me) (M,m) (0,me) (0,m) (Mi, 0) (M, 0) (0, 0)
par 19 19 13 13 4 4 1
acn 55 55 36 25 20 20 3
env 273 273 181 181 56 56 10

npltrb 116 116 77 52 28 28 5
tdetri 51 51 33 33 4 4 1
debox 43 43 31 25 11 11 3
tdebox 123 123 87 87 11 11 3
pltrb 81 81 61 47 16 16 4
dbox 227 227 159 111 75 75 12
pentb 543 543 430 341 228 228 62

Table 3. Signed Euler characteristic |χ(XG)| computed using the numerical code from section 5.2
for diagrams G from figure 1; see Ex. 20.

toric resultants. Finally, we showed how to use numerical nonlinear algebra to compute the
number of master integrals of G.

A number of open questions remain, especially about estimating the complexity of
the discriminant for a general diagram G. For example, while the computation of the
dimension and degree of ∇G can be made efficient in the examples we studied in this paper
(see table 1), it would be interesting to know whether they can be determined (or at least
estimated) purely from the combinatorics of G. Similarly, on physical grounds one expects
that ∇G simplifies in the limit when the Mandelstam invariants sij become large at fixed
masses Mi,me. Concretely, for nG = 4 one could study the asymptotes of the components
of ∇G when |s|, |t|� 1.

The Landau discriminant polynomial ∆G is in many cases sparse with respect to its
degree. For numerical interpolation, knowing the monomials (or other basis functions)
of ∆G a priori would lead to a significant improvement. Listing these monomials (or a
superset) from the combinatorics of G could be done by exploiting the connection with
A-discriminants and sparse resultants, see for instance [95].

In a number of results we made simplifying assumptions about genericity of the masses
Mi,me. It would be interesting to extend them to massless cases, where one expects to see
effects of infrared physics come into play. For instance, the degree of Landau discriminants
can jump discontinuously and the facet description of the Landau polytopes LG could change
drastically in such a degenerate limit. We leave such questions for future investigations.
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A Feynman integrals in a nutshell

In this appendix, we summarize the role of Feynman integrals in the theory of scattering
amplitudes. Moreover, we present two different formulations of these integrals in some detail.
The first representation, for which the integration domain is loop-momentum space, can be
constructed intuitively from a Feynman diagram G, taking the Feynman rules for granted.
The second formulation corresponds to the worldline formalism discussed in section 2.1. It
involves Schwinger parameters and Symanzik polynomials, which play a crucial role in this
paper (see section 2.2). The appendix’ purpose is to make this paper more accessible for
non-physicists, and to shed some light on the physical interpretation of the mathematical
objects it studies.

Feynman diagrams and scattering amplitudes. The experimental set-up to keep
in mind is a scattering process or scattering experiment in a particle accelerator. For our
purposes, the accelerator is a hollow sphere, and an experiment corresponds to sending
elementary particles (e.g., photons, electrons, or muons) into it. After some particle
interactions inside the accelerator, some new particles exit. The interactions that can
happen depend on the physical theory governing the process.

In total, there are n ingoing and outgoing particles. These particles are labeled
by their momentum vectors pi = (p(0)

i , p
(1)
i , . . . , p

(D−1)
i ) ∈ R1,D−1, i = 1, . . . , n. As in

section 2.1, R1,D−1 is the Minkowski momentum space, endowed with the pairing p · q =
p(0)q(0)−p(1)q(1)−· · ·− p(D−1)q(D−1), and we write p2 = p ·p. In many real-world examples,
the dimension D of R1,D−1 is taken to be 4. One dimension corresponds to time, and the
other three are space dimensions. The momentum vectors capture the relevant physical
information about the particles involved in the scattering experiment, such as their mass
and velocity. Momentum conservation imposes the relation p1 + · · ·+ pn = 0.

The scattering amplitude A(p1, . . . , pn) : (R1,D−1)n → C is a complex-valued function
of the momenta, associated to a scattering process. Its modulus |A(p1, . . . , pn)| can be
roughly thought of as a joint probability density function, telling us what to expect for the
outcome of the experiment. Such an amplitude function captures a great amount of physical
information. Its evaluation and analytic properties are important active areas of research.
For theories respecting Lorentz symmetry, an amplitude is invariant under the action of
the Lorentz group. Therefore, it can be expressed as a function of the Lorentz invariants
sI = (

∑
i∈I pi)2, I ⊂ {1, . . . , n} (also called Mandelstam invariants when 1 < |I|< n− 1),

see section 2.2.
In perturbation theory, one expresses the amplitude A as a sum over all possible

interaction patterns inside the particle collider. Let G be the set of these interaction
patterns. We write

A =
∑
G∈G
IG. (A.1)
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Figure 7. Bubble Feynman diagram used in Ex. 21 and 23.

This is usually an infinite sum, but as a rule of thumb, more complicated interaction patterns
have a smaller contribution to the amplitude. Therefore, one hopes to approximate the
amplitude by truncating the sum (A.1) after considering sufficiently many “simple” scenarios
G. As our notation suggests, the interaction patterns summed over in (A.1) are encoded by
Feynman diagrams. Examples of Feynman diagrams are shown in figure 1 and figure 7. We
state a definition below. The contribution IG corresponding to the Feynman diagram G

is an integral, called a Feynman integral. What this integral looks like is determined by
the Feynman rules. This is explained below. A standard strategy to study the analytic
properties of the amplitude A, which is also applied in this paper, is to study those of the
summands IG in (A.1).

For our purposes, a Feynman diagram is a connected, undirected but oriented graph.
That is, to each edge we assign an arbitrary orientation, but the resulting integral IG does
not depend on this choice. The graph has nG = n open edges, corresponding to incoming
and outgoing particles, and EG internal edges, corresponding to newly formed particles
inside the accelerator. For instance, the Feynman diagram in figure 7 has n = 4 open edges,
labeled by pi, and EG = 2 internal edges.

Loop-momentum integrals. We are now ready to describe the loop-momentum formu-
lation of IG. Momentum conservation at each node of the diagram imposes that the sum
of incoming momenta equals the sum of the outgoing momenta. This mirrors Kirchhoff’s
current law for electrical circuits. Assigning a momentum vector qe ∈ R1,D−1, e = 1, . . . ,EG
to each internal edge, we obtain a linear equation in pi, qe for each node of the diagram.

Example 21 (Bubble diagram). Consider the bubble diagram in figure 7. For this graph,
we have n = 4. Momentum conservation at the left and right vertex gives p1 + p2 + q2 = q1
and p3 + p4 + q1 = q2 respectively. 4

These equations allow us to write the internal momenta qe in terms of the external
momenta pi and LG other independent parameters, called the loop momenta `1, . . . , `LG .
Here LG is the number of independent loops of G, or equivalently, the rank of the first
homology group of G. If VG is the number of vertices of G, we have LG = EG −VG + 1.

Example 22 (Bubble diagram, continued). The number of loops in the bubble Feynman
diagram is LG = 1. Setting q2 = ` we obtain q1 = p1+p2+` = −p3−p4+`, where the second
inequality is satisfied by the overall momentum conservation p1 + p2 + p3 + p4 = 0. 4

We reiterate that momentum conservation fixes the internal momenta qe up to LG
degrees of freedom, called loop momenta. The Feynman integral IG can be expressed as
an integral over all possible loop momenta `1, . . . , `LG . That is, the integration domain is
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(R1,D−1)LG , where the j-th factor R1,D−1 has coordinates `(0)
j , . . . , `

(D−1)
j . The integrand

is a product over all internal edges of the diagram G, in which the factor corresponding
to the e-th edge is ih̄(q2

e −m2
e + iε)−1, with me the mass of the particle propagating along

edge e, a constant h̄ > 0 known as the reduced Planck constant, and i =
√
−1. Here it is

understood that qe is expressed as a linear combination of the external momenta pj and
the loop momenta `j . The integral reads

IG = 1
(iπh̄)DLG/2

∫
(R1,D−1)LG

EG∏
e=1

ih̄

qe(`1, . . . , `LG , p1, . . . , pn)2 −m2
e + iε

dDLG`, (A.2)

where dDLG` is short for d`(0)
1 ∧· · ·∧d`(D−1)

1 ∧· · ·∧d`(0)
LG ∧· · ·∧d`(D−1)

LG and the infinitesimal
positive parameter ε is used to avoid singularities along the integration contour, also
known as the Feynman iε prescription. The overall normalization is introduced for later
convenience.

Worldline formalism. In order to rewrite the integral (A.2) as an integral over the
positive orthant, we observe that

ih̄

q2
e −m2

e + iε
=
∫ ∞

0
e
i
h̄

(q2
e−m2

e+iε)αedαe. (A.3)

The αe are called Schwinger parameters. Substituting this into (A.2) we obtain

IG = 1
(iπh̄)DLG/2

∫
REG

+

(∫
(R1,D−1)LG

e
i
h̄

∑EG
e=1(q2

e−m2
e+iε)αedDLG`

)
dEGα, (A.4)

with dEGα = dα1 ∧ · · · ∧ dαEG . The advantage of this formulation is that now the inner
integral is Gaussian, which allows us to integrate out the loop momenta analytically. There
is a symmetric matrix A, a column vector of momentum vectors b and a scalar c such that

EG∑
e=1

(qe(`1, . . . , `LG , p1, · · · , pn)2 −m2
e + iε)αe =

LG∑
i,j=1

Aij(`i · `j) + 2
LG∑
i=1

bi · `i + c. (A.5)

Here A, b and c have polynomial entries in the Schwinger parameters αe, the Lorentz
invariants sI = (

∑
i∈I pi)

2, the internal masses me and the parameter ε. In fact, it is not
hard to see that A only depends on the αe, and this dependence is linear. Replacing the
exponents in (A.4) by (A.5), the integral becomes

IG = 1
(iπh̄)DLG/2

∫
REG

+

(∫
(R1,D−1)LG

e
i
h̄

(
∑LG

i,j=1 Aij(`i·`j)+2
∑LG

i=1 bi·`i+c)dDLG`

)
dEGα,

=
∫
REG

+

dEGα

(det A)D/2 e
i
h̄

(−b>A−1b+c).

We now set UG = det A and FG = UG(−b>A−1b + c), where the Lorentz indices between
b> and b are contracted in the second equation. This gives the integral in (2.1) with
NG = 1, also known as a scalar Feynman integral. The polynomials UG and FG are known
as Symanzik polynomials. They can be obtained from the graph G in a nice combinatorial
way, see section 2.2.
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Figure 8. Illustration of Ex. 23. Left: trajectory of the parameter s (in red) and the real axis.
The end point of the trajectory is s = 4. Right: corresponding trajectories of the two solutions
of FB2 = 0 in the complex α1-plane, one in blue and one in orange. The black line represents the
positive real axis. The dashed lines show a possible deformation of the integration contour as the
blue and orange trajectories approach each other at α1 = 1.

Remark A.1. Feynman integrals for more complicated scattering processes might give
loop momentum dependent numerators in the integrand of (A.2). Using a similar set of
manipulations to those above, they translate to non-trivial polynomials NG. As discussed
in section 2.1, additional regularization is needed to ensure convergence of IG. For more
details we refer the reader to standard textbooks such as [1].

We conclude with an example that illustrates the worldline formulation for the bubble
graph in figure 7 and how the singularities of IG depend on the singularities of FG, see
section 2.3.

Example 23 (Pinch singularity). For the bubble diagram G = B2 from figure 7, the
Symanzik polynomials are given by

UB2 = α1 + α2, FB2 = sα1α2 − (m1α1 + m2α2)(α1 + α2).

To illustrate how the Landau equations govern the singularities of the Feynman integral
IB2 as a function of s,m1,m2, we will restrict to m = m1 = m2 = 1. After regularization
and performing the rewriting steps in section 2.3, this integral in the worldline formalism is
given by

IB2(s) =
∫
R+

NB2R
reg
B2

(α1 + 1)D/2−dB2 (−α2
1 + (s− 2)α1 − 1)dB2

dα1,

up to a constant factor. Recall that we set α2 = 1. As explained in Ex. 5, (s : m)
belongs to the (equal-mass) Landau discriminant, if and only if s = 4. Indeed, for s = 4,
FB2 = −α2

1 + (s− 2)α1 − 1 = 0 has a singular solution, and UB2 6= 0 at this solution. To see
how this value of s causes trouble for the integration, let us evaluate the function IB2(s)
along a 1-real dimensional trajectory in the complex s-plane, as shown in the left panel of
figure 8. Note that the trajectory ends in s = 4. Along the way it crosses the real axis at
s∗ > 4. Before this happens, there are no poles of the integrand in R+. When s passes
the value s∗, IB2(s) can be analytically continued by deforming the integration contour R+.
This is illustrated in the right panel of figure 8. This deformation can be continued until s
reaches the value 4, at which point the relevant branch of IB2(s) is necessarily singular.

4
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