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Abstract: We develop a new approach to extracting the physical consequences of S-duality
of four-dimensional N = 4 super Yang-Mills (SYM) and its string theory dual, based on
SL(2,Z) spectral theory.

We observe that CFT observables O, invariant under SL(2,Z) transformations of a
complexified gauge coupling τ , admit a unique spectral decomposition into a basis of square-
integrable functions. This formulation has direct implications for the analytic structure of
N = 4 SYM data, both perturbatively and non-perturbatively in all parameters. These
are especially constraining for the structure of instantons: k-instanton sectors are uniquely
determined by the zero- and one-instanton sectors, and Borel summable series around
k-instantons have convergence radii with simple k-dependence. In large N limits, we
derive the existence and scaling of non-perturbative effects, in both N and the ‘t Hooft
coupling, which we exhibit for certain N = 4 SYM observables. An elegant benchmark for
these techniques is the integrated stress tensor multiplet four-point function, conjecturally
determined by [1] for all τ for SU(N) gauge group; we elucidate its form, and explain
how the SU(2) case is the simplest possible observable consistent with SL(2,Z)-invariant
perturbation theory.

These results have ramifications for holography. We explain how 〈O〉, the ensemble
average of O over the N = 4 supersymmetric conformal manifold with respect to the
Zamolodchikov measure, is cleanly isolated by the spectral decomposition. We prove that the
large N limit of 〈O〉 equals the large N , large ‘t Hooft coupling limit of O. Holographically
speaking, 〈O〉 = Osugra, its value in type IIB supergravity on AdS5× S5. This result, which
extends to all orders in 1/N , embeds ensemble averaging into the traditional AdS/CFT
paradigm. The statistics of the SL(2,Z) ensemble exhibit both perturbative and non-
perturbative 1/N effects. We discuss further implications and generalizations to other AdS
compactifications of string/M-theory.
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1 Introduction

This paper pursues two intertwined endeavors.
The first is to understand how to extract the full implications of S-duality for the

observables of superconformal field theories, focusing specifically on four-dimensional N = 4
super Yang-Mills theory.

The second is to reframe the AdS/CFT Correspondence, namely the original duality
between N = 4 super Yang-Mills and type IIB string theory on AdS5 × S5, by applying
new lessons from S-duality.

The N = 4 super Yang-Mills (SYM) theory is, at risk of stating the obvious, a beautiful
theory from myriad points of view. Maximal supersymmetry imposes rigid structure and
regularity of CFT data, yet provides a route to computing certain observables that coincide
with those in less supersymmetric theories. For a finite number of colors N , perturbative
gauge theory calculations are complemented by modern bootstrap and supersymmetric
localization methods, providing rigorous and sometimes exact results for local and non-local
quantities. In the large N ‘t Hooft limit, new symmetries emerge, leading to integrability
solutions at the planar level and beyond. Not to be forgotten, the holographic correspondence
with type IIB string theory on AdS5 × S5 furnishes our most explicit definition of a theory
of quantum gravity, shedding light on both sides of the duality.
N = 4 SYM also enjoys S-duality [2–5]. For simply-laced gauge group G parameterized

by the complexified gauge coupling τ , this is, up to global identifications, a self-duality:
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namely, an invariance of the theory under (P )SL(2,Z) transformations of τ .1 Holographically,
this symmetry appears as the SL(2,Z) symmetry of type IIB string theory in AdS5 × S5 —
a background that preserves the SL(2,Z) symmetry of flat space string theory — where τ
is dual to the axio-dilaton.

There have been numerous checks of S-duality against independent calculations in
N = 4 SYM or in type IIB string theory. All have succeeded. The existence of this
symmetry, while no less remarkable, seems without question. What are the full implications
of S-duality for N = 4 SYM observables? In the presence of symmetries in any physical
theory, one should incorporate their effects at the outset of calculations. This will be our
approach: to efficiently process S-duality invariance of N = 4 SYM observables, reducing
these data to their dynamical content.

Viewing SL(2,Z)-invariant N = 4 SYM observables O(τ) — a class which includes
conformal dimensions, OPE coefficients, or certain correlation functions of superconformal
primary operators — as non-holomorphic functions invariant2 under SL(2,Z) transforma-
tions of τ , we have very limited “real-world” information about the form of these functions.
Being exactly marginal, τ parameterizes a one-complex dimensional conformal manifold,
M, that preserves the full N = 4 supersymmetry. In terms of real parameters,

τ = θ

2π + 4πi
g2 (1.1)

where g is the Yang-Mills coupling and θ is the topological theta angle. While perturbative
results near τ = i∞ (possibly with instanton backgrounds [8–11]) give some information,
the modular structure of O(τ) is inherently non-perturbative. S-duality has been input into
the construction of interpolating functions across moduli space [12–15], but (as noted there)
those interpolating functions lacked a principle for eliminating ambiguity in the chosen
function space. There is a shining recent exception to this general paucity of data which we
discuss, then derive, at length below.

Our idea is to introduce certain methods from the mathematics literature that we argue
are perfectly tailored to the N = 4 SYM context. There exists a robust spectral theory of
SL(2,Z), applicable to quantities that are square-integrable on the SL(2,Z) fundamental
domain, which we call F = H/SL(2,Z). As we will explain, N = 4 SYM observables O(τ)
are in this category. Employing a unique spectral decomposition into an SL(2,Z)-invariant
eigenbasis fully incorporates the S-duality symmetry. Determining O(τ) then boils down
to computing its spectral overlaps; specializing this mathematical toolkit to this physical
context, the analytic structure of the spectral overlaps is in turn very strongly constrained
by the consistency of weak coupling perturbation theory.

1The global aspects only affect S-duality of non-local observables. For simply-laced G, extended objects
are invariant under congruence subgroups of SL(2,Z) [6]. For non-simply-laced G, even local observables are
not SL(2,Z)-invariant, but are instead invariant under either a congruence subgroup of SL(2,Z) or a Hecke
triangle group, depending on the choice of G [5]. We restrict our attention to SL(2,Z)-invariant observables
in simply-laced N = 4 SYM, though our techniques may be directly generalized [7].

2There are also SL(2,Z)-covariant local observables in N = 4 SYM, such as (n > 4)-point correlators of
half-BPS operators. It would be worthwhile to extend the spectral techniques here to the covariant setting.
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With this framework in place, relatively simple calculations lead to a wealth of infor-
mation at finite N , described in further detail below. This is especially true as regards
the structure of instantons. The ensuing calculations look rather different than existing
approaches to N = 4 SYM observables. We gain confidence by applying the general
formalism to the integrated correlator introduced in [16] and studied in detail in [1, 17] —
a unique observable that is conjecturally known exactly as a function of N and τ — leading
to a derivation of their result and a crisp accounting of many of its properties.

Applying this approach at large N opens yet other doors. One may develop the
‘t Hooft limit of large N and fixed λ := g2N . At λ � 1, the theory is famously dual
to type IIB supergravity on AdS5 × S5, endowed with a prescribed series of stringy α′

corrections. Perhaps surprisingly, the spectral method has something fundamental to say
about holography: in particular, it suggests a new picture of AdS/CFT that unifies the
traditional holographic paradigm for UV complete theories with recent ideas on ensemble
averaging in lower-dimensional AdS/CFT.

In the current setting, the ensemble in question is what we call the SL(2,Z) ensemble,
the space of N = 4 SYM theories living on the conformal manifoldM. The central result,
elaborated upon in the description of section 10 below, can be simply stated: the large
N limit of ensemble-averaged N = 4 SYM is the strong coupling limit of planar N = 4
SYM. This holds at the level of individual observables O(τ). In bulk terms, type IIB
supergravity on AdS5 × S5 is both a low-energy limit of type IIB string theory, and the
average of type IIB string theory over moduli space. Unlike ensemble-averaged dualities in
lower dimensions, the duality between N = 4 SYM and AdS5 × S5 string theory applies for
every microscopic instance of N = 4 SYM: the ensemble average is an emergent description
of the strongly coupled, planar limit. This equivalence permits a satisfying embedding of
various developments involving wormholes, factorization, and ensemble statistics into the
quintessential holographic correspondence.

Let us now give a slightly more detailed description of our results.
In section 2, we begin with a brief, physicist-oriented introduction to the theory

of harmonic analysis of SL(2,Z). The L2(F) eigenspace contains a continuous subspace
spanned by non-holomorphic Eisenstein series Es(τ) with s = 1

2 +iR, and a discrete subspace
spanned by an infinite set of Maass cusp forms φn(τ) labeled by n ∈ Z≥0 (where φ0 is
constant). Both are eigenfunctions of the Laplacian on the upper-half plane. The former are
well-understood, while the latter are wild objects, of prevailing interest to mathematicians,
exhibiting several signals of chaos. We depict this wildness with a numerical plot; see
figure 2.

In section 3, we develop the spectral decomposition of observables in N = 4 SYM.
We explain how, and why, the results of the previous section apply to this setting. A
non-perturbatively well-defined observable O(τ) = O(γτ), with γ ∈ SL(2,Z), admits the
following spectral decomposition:

O(τ) = O + 1
4πi

∫
Re s= 1

2

ds (O, Es)Es(τ) +
∞∑
n=1

(O, φn)φn(τ). (1.2)

where (· , ·) denotes the Petersson inner product. The first term, O, is a constant, the modular
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(λ→∞) (N →∞)

Figure 1. A cartoon depicting the two equivalent field theory duals of type IIB supergravity on
AdS5 × S5, phrased in terms of the conformal manifoldM: as the limit of large ‘t Hooft coupling
(depicted by the point approaching the cusp ofM) of planar N = 4 SYM (left), and as the large
N limit of the ensemble average (denoted by the shading) of N = 4 SYM (right). On the left it is
understood that the N →∞ limit is taken first.

average of O, defined as the integral of O(τ) over F with the SL(2,R)-invariant measure,

O := vol(F)−1
∫
F

dxdy

y2 O(τ) , τ := x+ iy (1.3)

The basic statement of the spectral decomposition is that determining O(τ) thus reduces to
computing its average O and the spectral overlaps (O, Es) and (O, φn). The spectral overlap
(O, Es) is a meromorphic function of the spectral parameter s, whose analyticity in the
complex s plane is subject to stringent constraints from the consistency of the weak-coupling
expansion, well-definedness of the CFT observable in the ‘t Hooft limit, and the Eisenstein
series itself. As an example, the modified overlap {O, Es} := (O, Es)/Λ(s), where Λ(s) is
the completed Riemann zeta function defined in (2.12), must satisfy the functional equation
{O, Es} = {O, E1−s}.

Without further computation one observes two important consequences. The first is
a redundancy in instanton physics: k-instanton effects are fully determined by k = 0, 1
instanton effects, because the latter can be used to “invert” this expansion.3 The second
is a suggestive fact about the spectral decomposition. For any N and any O(τ), we can
define the ensemble average 〈O〉, as the integral of O(τ) over M with respect to the
Zamolodchikov measure on the conformal manifold. Thanks to maximal supersymmetry,
the modular average, O, equals the ensemble average, 〈O〉. Therefore, 〈O〉 appears in a very
clean way in the spectral decomposition of O(τ). This foreshadows some results to follow.

In section 4, we introduce an object that will be a touchstone for our methods throughout:
the integrated correlator GN (τ). This is a four-point function of the O20′ operator in
the SU(N) theory, integrated over space with a measure that preserves supersymmetry.

3We develop a Fourier expansion O(τ) = O0(y) +
∑∞

k=1 2 cos(2πkx)Ok(y), where k is the total instan-
ton number.

– 4 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
5

Accordingly, GN (τ) may also be represented as a supersymmetric localization integral. In a
beautiful paper [1], the authors conjectured and thoroughly tested an expression for GN (τ),
valid for all N and τ , given by a two-dimensional lattice sum over one-dimensional integrals
(see (4.5)). Its N -dependence is moreover fixed recursively by a “Laplace difference equation”
(see (4.7)). It is a rare situation, even in N = 4 SYM, to have an exact expression for
any observable at finite N , whose functional complexity (e.g. the number of integrals) is
independent of N . The evidence collected in [1] for their conjecture, reviewed later, is
abundant. Here we will give the first concrete application of our spectral methods to N = 4
SYM, by writing the spectral decomposition of GN (τ). For SU(2), for example,

{G2, Es} = π

sin πss(1− s)(2s− 1)2 , (G2, φn) = 0 (1.4)

The result for all N is extremely simple, with no cusp form overlap. This demonstrates
both how neatly the τ -dependence is couched in the eigenbasis, and the non-genericity of
GN (τ) in the space of possible observables.

In section 5, we develop the general theory of spectral decomposition of N = 4 SYM
observables. We explain how perturbative expansions g2 → 0, i.e. y →∞, may be developed
by contour deformation of (1.2). Because the cusp forms φn(τ) have the special property
that their k = 0 Fourier modes vanish, they do not appear in perturbation theory. This
simplifies matters. Indeed, a consistent perturbative expansion — namely, no logarithms
or fractional powers of g2 — implies that the key player (O, Es) must take a simple
functional form (5.7), with rigid analytic structure (see the discussion surrounding (5.8)).
In particular, there is a clear separation between perturbative and non-perturbative parts of
the overlap, i.e. those which contribute power law terms ∼ y−n and those which contribute
instanton-anti-instanton terms ∼ (qq̄)n, where q := e2πiτ .

We then proceed to derive a bevy of useful results for general O(τ), first in the simplifying
case that (O, φn) = 0, later re-integrating φn(τ). Many observables in perturbative gauge
theory have Borel summable expansions. We introduce the SL(2,Z) Borel transform, which
is a Borel transform specifically tailored to the resummation of SL(2,Z)-invariant functions.
Using this we show that not only are instantons redundant as described earlier, but the radius
of convergence of the SL(2,Z) Borel transform of the perturbative series around k instantons
admits a universal, merely quadratic dependence on k — see (5.39). We also construct
O(τ) as a (regularized) SL(2,Z) Poincaré sum of its zero mode. This representation is
equivalent to the spectral decomposition. A non-vanishing (O, φn) introduces arithmetic
quantum chaos [18] to the (k ≥ 1)-instanton sectors, thus isolating the chaotic parts of
the instanton data. We provide a sharp diagnostic (5.59) for the presence of cusp forms in
terms of the radius of convergence of the Borel transform of the expansion around k ≥ 1
instantons, relying on a result of Kim and Sarnak [19] toward proving the Ramanujan-
Petersson conjecture; in the case that the cusp forms give factorially-divergent contributions
to perturbation theory, (5.39) generalizes to (5.69), in turn providing a two-way diagnostic.

All of this is then applied to GN (τ), which we can immediately derive and explain as a
flagship demonstration of these results. The lattice-integral representation of [1] is nothing
but the Poincaré sum representation described above, and the integral kernel (called BN )
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is the SL(2,Z) Borel transform of the y → ∞ perturbative expansion of the zero mode,
GN,0(y). Furthermore, the result (1.4) for G2(τ) is seen to be the simplest possible pair of
spectral overlaps consistent with SL(2,Z)-invariant weak coupling perturbation theory. We
mean “simplest” in the mathematical, and hopefully uncontroversial, sense that (2s− 1)2 is
the simplest non-constant, entire function that is even in s→ 1− s (a condition required
by the functional equation for the overlap {G2, Es}). The overlaps for SU(N) are then
determined by the recursion relation of [1], or by direct analysis at fixed N . Overall, this
illuminates GN (τ) as a truly special object in the space of N = 4 SYM observables, and (in
our view) illustrates the clarifying value of the spectral decomposition.

In section 6, we write the general form of the spectral overlaps at large N .
In section 7, we treat the ‘t Hooft limit of large N and fixed λ := g2N . In this limit,

the cusp forms φn(τ) are suppressed non-perturbatively in N . Combining the results of
section 5 with the double scaling leads to the most general form of the 1/λ expansion at
strong coupling (see (7.63)). We then observe a powerful consequence of S-duality:4 the
convergence of the weak-coupling expansion λ� 1 of a CFT observable O(τ) directly leads
to the existence of non-perturbative corrections both at strong coupling λ� 1, and at large
N � 1 and finite λ. A remarkable imprint of SL(2,Z) invariance is that in both cases
the strength of the non-perturbative corrections is set by the radius of convergence of the
weak coupling expansion (see (7.20) and (7.21)). While the λ � 1 effects appear at the
non-perturbative scale ∼ e−

√
λ, representing fundamental string worldsheet instantons in

AdS5×S5, S-duality implies that the N � 1, fixed λ effects appear at the non-perturbative
scale ∼ e−

√
λS , where λS = (4πN)2/λ may be thought of as an “S-dual ‘t Hooft coupling”;

these effects are present, and non-perturbative in N , in the ordinary ‘t Hooft limit. These
reflect D-string instanton effects in AdS5 × S5. We apply both of these predictions to our
prototypical example GN (τ). The non-perturbative effects at strong coupling in the ‘t Hooft
limit are consistent with results previously derived by [1]. The computation of the D-string
instanton effects to GN (τ) from resurgence of the weak-coupling expansion is more novel.

In general CFT, the question of whether the 1/N expansion of CFT observables is
asymptotic, and whether non-perturbative corrections are needed, is open. The analysis in
section 7 shows that under certain general conditions in N = 4 SYM, the answer to both is
affirmative, and holographically implies the non-Borel summability of string perturbation
theory on AdS5 × S5.

In section 8, we treat the “very strongly coupled” (VSC) limit of large N and fixed
g [20]. This interesting regime has recently been studied in [16, 21–23]. Unlike in the ‘t
Hooft limit, at finite coupling SL(2,Z) invariance remains manifest, so the 1/N expansion
of O(τ) involves SL(2,Z)-invariant functions at every order. The constraints on the spectral
decomposition in the VSC limit are similar to (and can be thought of as inherited from)
the ‘t Hooft limit. As an example, we explore the VSC limit of an integrated correlator
different from GN (τ), which we call FN (τ). This one, studied in [22, 24] at large N , is
also supersymmetric. But as quickly becomes evident upon examining its explicit form,
FN (τ) is substantially more intricate than GN (τ). Nevertheless, we are able to leverage

4Subject to a technical assumption tested against examples.

– 6 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
5

previous results to determine its spectral overlap — including its overlap with the cusp
forms, (FN , φn) — to the first few orders in 1/N .

In section 9, we pause to flesh out a particularly nice implication of the large N results
for finite N physics. Specifically, we prove that if that strong ‘t Hooft coupling expansion
of a CFT observable O(τ) contains integer powers of 1/λ, then it receives non-perturbative,
instanton-anti-instanton corrections at finite N . This gives an easy diagnostic of finite
N non-perturbative physics. As an application, we show that unprotected conformal
dimensions in N = 4 SYM receive non-perturbative, instanton-anti-instanton corrections.

In section 10, we return to the ‘t Hooft limit and examine the λ � 1 limit in the
context of holography. The ensemble average 〈O〉 now makes its star turn. This quantity
must be computed at finite N ,5 but admits a subsequent 1/N expansion. From the spectral
decomposition, the λ� 1 expansion of O(τ) takes a general form given in (10.6). Focusing
on the leading term of order N2 for simplicity, that result is

O(λ� 1) ≈ N2
(
〈〈O(0)〉〉+

∞∑
m=0

a(0)
m λ−

3+m
2

)
(1.5)

where a(0)
m are coefficients. The quantity 〈〈O(0)〉〉 is the leading large N limit of 〈O〉, i.e.

limN→∞N
−2〈O〉 = 〈〈O(0)〉〉. This equation is familiar, but uncanny: it is the strong coupling

expansion of O, but with the ensemble average as the leading term! One deduces that at
leading order in large N ,

O(λ→∞) = 〈O〉 (1.6)

Of course, by the usual AdS/CFT dictionary, O(λ→∞) = Osugra, its value in AdS5 × S5

supergravity. This leads to the holographic reformulation

Osugra = 〈O〉 (1.7)

This relation extends to all orders in 1/N in a sense prescribed in (10.6) and (10.12). We
thus have the following picture. On the one hand, holographic duality between N = 4
SYM and AdS5 × S5 string theory works as it always has. On the other, semiclassical
AdS5 × S5 supergravity has two equivalent descriptions via type IIB string theory: first, as
a low-energy limit; and second, as an SL(2,Z) average.

In section 11 and section 12, we unfurl some consequences of this.
If AdS5 × S5 supergravity (i.e. strongly coupled planar N = 4 SYM) is also a large

N limit of an ensemble average, one is motivated to study the statistics of the SL(2,Z)
ensemble — that is, the distribution of N = 4 SYM observables over moduli space M.
We initiate this study in section 11. For general observables, the variance in the SL(2,Z)
ensemble admits an expression in terms of the squares of spectral overlaps:

V(O) := 〈O2〉 − 〈O〉2

= vol(F)−1
(

1
4πi

∫
Re s= 1

2

ds |(O, Es)|2 +
∞∑
n=1

(O, φn)2
)

(1.8)

5The ‘t Hooft double-scaling limit focuses on the cusp of the conformal manifold, obscuring the underlying
SL(2,Z) invariance.
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All observables that vary over the conformal manifoldM, supersymmetric or not, necessarily
have nonzero variance. At large N , as shown in (11.12), the variance is parametrically
suppressed compared to the squared average,

V(O)
〈O〉2

∼ 1
N
. (1.9)

This suppression implies, and quantifies, a sense in which gravity is self-averaging. In
particular, the SL(2,Z) ensemble is self-averaging at large N , and the large N average is
AdS5 × S5 supergravity. That is, in any member of the large N ensemble, observables O(τ)
are well-approximated by their supergravity values, Osugra, up to terms of order 1/N . Using
general properties of the large N spectral overlaps, we also find certain non-perturbative
contributions, scaling as positive powers of e−4

√
πN .

Our result exhibits a role for spacetime wormholes even within the conventional
holographic paradigm. (See figure 4.) A trademark feature of recently formulated low-
dimensional holographic dualities [25–28] involving ensemble-averaged boundary duals is
the important role played by spacetime wormholes, which leads to the non-factorization of
observables with multiple distinct boundaries, as the averaging induces correlations between
the boundaries. In a UV complete realization of holography, any wormhole contributions to
the semiclassical bulk path integral must be supplemented by other contributions which
restore factorization of multi-boundary observables. In our context, the effect of the ensemble
average is to project out these UV-sensitive details; nevertheless, we identify, via the spectral
decomposition, the natural appearance of wormhole-type contributions to (unaveraged)
multi-boundary observables. The spectral decomposition at large N also provides a clear
incarnation of the “half-wormholes” of [29] in N = 4 SYM observables.

We then ask how these results extend to the general holographic context. While we
set out a spectrum of possibilites, the most well-motivated is that large N averages over
more general U-duality symmetries of string theory (i.e. generalized S-duality symmetries
of CFTs), or over exactly marginal directions dual to the string coupling, may also localize
onto supergravity. It is of clear interest to explore these possibilities further.

In section 13, we conclude by highlighting some pertinent future directions.
Two appendices contain some technical details complementing the main text. We

highlight appendix B, which gives a self-contained and general treatment of a class of
functions appearing in the integrated correlators and in other string theory contexts from
the spectral point of view.

2 SL(2,Z) spectral theory

We will begin with a very brief review6 of the spectral theory of the Laplacian on the
fundamental domain of SL(2,Z),

F = H/SL(2,Z) =
{
τ = x+ iy ∈ H

∣∣∣∣− 1
2 ≤ x ≤

1
2 , |τ | ≥ 1

}
. (2.1)

6See [30] for a readable introduction.
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Functions f(τ) defined on the upper half-plane H that are invariant under the SL(2,Z) action

f(γτ) = f(τ), γτ = aτ + b

cτ + d
, γ =

(
a b

c d

)
∈ SL(2,Z) (2.2)

can be thought of as being defined solely on the fundamental domain F , as any point
outside F can be mapped to a point inside it by a suitable SL(2,Z) transformation. This
space is equipped with the hyperbolic metric

ds2 = dx2 + dy2

y2 (2.3)

and the corresponding hyperbolic Laplacian, which acts on scalar functions as7

∆τ = −y2
(
∂2
x + ∂2

y

)
. (2.4)

The Laplacian is self-adjoint with respect to the Petersson inner product on the space L2(F)
of square-integrable modular-invariant functions

(f, g) :=
∫
F

dxdy

y2 f(τ)g(τ). (2.5)

Square-integrability means that the norm defined with respect to the Petersson inner
product is finite,

(f, f) <∞. (2.6)

Any square-integrable SL(2,Z)-invariant function can be expanded in a complete
eigenbasis of the Laplacian, which includes three distinct components:

L2(F) = L2
const(F)⊕ L2

cont(F)⊕ L2
disc(F) (2.7)

The expansion is given in (2.25), but let us first present the eigenbasis. The most trivial is
the constant

∆τν0 = 0, ν0 = vol(F)−
1
2 =

√
3
π
. (2.8)

Next, there is a continuous branch spanned by the real-analytic Eisenstein series

∆τEs(τ) = µ(s)Es(τ), µ(s) := s(1− s), Re(s) = 1
2 . (2.9)

The Eisenstein series are defined by a Poincaré series, a sum over PSL(2,Z) orbits

Es(τ) =
∑

γ∈Γ∞\PSL(2,Z)
Im (γτ)s, (2.10)

where Γ∞ is the subgroup of PSL(2,Z) of upper triangle matrices that fix y. This sum
converges for Re(s) > 1. However, the Eisenstein series admits a meromorphic continuation
to the entire complex s plane via its Fourier decomposition

Es(τ) = ys + ϕ(s)y1−s +
∞∑
k=1

4 cos(2πkx) σ2s−1(k)
ks−

1
2 Λ(s)

√
yKs− 1

2
(2πky), (2.11)

7We note that this is defined with a minus sign compared to the Laplacian that often appears in the
literature. We have defined it this way so that its spectrum of square-integrable functions is non-negative.
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where σn(x) = ∑
p|x p

n is the divisor function,

Λ (s) := π−sΓ (s) ζ (2s) = Λ
(1

2 − s
)

(2.12)

is the completed Riemann zeta function, and

ϕ(s) := Λ(1− s)
Λ(s) . (2.13)

In the following application of spectral theory to observables in N = 4 SYM, the Fourier
mode number k will represent the total instanton number. It will be important in
what follows that the meromorphic continuation of the Eisenstein series satisfies the
functional equation

E∗s (τ) = E∗1−s(τ) (2.14)

where we’ve defined
E∗s (τ) := Λ(s)Es(τ). (2.15)

This is manifest from the Fourier decomposition (2.11). Note from (2.11) that the Eisenstein
series behave perturbatively at the cusp y =∞,

E∗s (τ) ∼ Λ(s)ys + Λ(1− s)y1−s (y →∞) . (2.16)

A final comment about the Eisenstein series is that it has a simple pole at s = 1 with a
constant residue,

Res
s=1

E∗s (τ) = 1
2 (2.17)

In appendix B we mention a few details about the higher-order s→ 1 behavior.
Finally, there is a discrete branch of the eigenspectrum of the Laplacian spanned by the

Maass cusp forms. The cusp forms νn(τ), infinite in number, are labelled by a parameter
tn that specifies their eigenvalue, unbounded from above:

∆τνn(τ) = µnνn(τ), µn :=
(1

4 + t2n

)
, 0 < t1 < t2 < . . . (2.18)

The tn are a set of sporadic positive real numbers. The cusp forms admit a Fourier
decomposition that is similar to that of the Eisenstein series8

νn(τ) =
∞∑
k=1

a
(n)
k cos(2πkx)√yKitn(2πky), (2.19)

where the Fourier coefficients a(n)
k are yet another set of sporadic real numbers that obey

many interesting proven and conjectured statistical properties (partly summarized in
e.g. [18, 31–33]). From the Fourier decompositions (2.11) and (2.19) it is manifest that

8We have here decomposed only the “even” cusp forms, invariant under x→ −x, ignoring the “odd” cusp
forms which are also infinite in number. Henceforth we treat only real observables O(τ), so all cusp forms
are taken to be even.
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the cusp forms νn(τ), like the Eisenstein series E∗s (τ), are real-valued. However, unlike the
Eisenstein series, the cusp forms have no zero mode,∫ 1

2

− 1
2

dx νn(τ) = 0 , (2.20)

and decay exponentially at the cusp y =∞,

νn(τ) ∼ e−2πy (y →∞) . (2.21)

There are two conventional normalizations of the cusp forms in the literature. In the
“L2 norm”, one rescales the cusp forms so that they have unit norm with respect to the
Petersson inner product

φn(τ) := νn(τ)√
(νn, νn)

, (φn, φn) = 1 (L2 norm) (2.22)

In this paper we will mostly make use of the L2 norm in order to minimize notation, but
some profound statistical properties of the cusp form Fourier coefficients are most naturally
stated in the “Hecke norm”, which sets the first Fourier coefficient to unity,

a
(n)
1 = 1 (Hecke norm) (2.23)

We will utilize one such property, on boundedness of Fourier coefficients with prime k (the
Ramanujan-Petersson conjecture), in subsection 5.7.

To give a feel for these functions, we have shown a plot involving Eisenstein series and
cusp forms in figure 2. This puts the chaos of the cusp forms in rather sharp relief: in
contrast to the power-law-dominated falloff of the Eisenstein series, the zero modes of the
squares of the cusp forms have an irregular set of local extrema that varies with n.9 The
reader is directed to [32] for a lovely exposition of Maass cusp forms with more pictures.

We would like to emphasize that even the existence of the (infinitely many) Maass cusp
forms is a non-trivial fact, given that F is noncompact. Their existence was first established
by Selberg, as an application of the Selberg trace formula (see e.g. [35] for a review).
Indeed, the resulting version of Weyl’s law establishes that the number of square-integrable
eigenfunctions grows asymptotically linearly with the eigenvalue [36]

N(µ) :=
(
# of Maass cusp forms with eigenvalue 1

4 + t2n ≤ µ
)

∼ vol(F)
4π µ, µ→∞

(2.24)

It is the finiteness of vol(F) which allows the cusp forms to exist.
Any square-integrable SL(2,Z)-invariant function O(τ) then admits a Roelcke-Selberg

decomposition into this complete eigenbasis:

O(τ) = O + 1
4πi

∫
Re s= 1

2

ds (O, Es)Es(τ) +
∞∑
n=1

(O, φn)φn(τ). (2.25)

9Since F is two-dimensional, two distinct cusp forms intersect at some nonempty set of points as τ varies
over F . However, for three cusp forms, one would expect no triple intersections, particularly for chaotic
functions. This is confirmed by the plot.
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Figure 2. A plot of the zero mode of the square of the Eisenstein series E 1
2 +i(τ) (rescaled by a

factor of 1/2) and of the first three even Maass cusp forms, defined as (φ2
i )0(y) :=

∫ 1
2

− 1
2
dxφi(τ)2, for

0 < y ≤ 1. The data for the cusp forms was obtained using the first 400 Fourier coefficients, known
numerically to over 100 digits, available at [34].

The first term O is the constant term in the spectral decomposition. The spectral overlap
(O, Es) can be written in terms of a Mellin transform of the zero mode of O, known as
the Rankin-Selberg (RS) transform [37, 38], which inherits many interesting properties,
including a meromorphic continuation in the complex s plane, from the Eisenstein series.
For Re s = 1

2 , this is given by
(O, Es) = R1−s[O] (2.26)

where
Rs[O] :=

∫
F

dxdy

y2 O(τ)Es(τ)

=
∫ ∞

0
dy ys−2O0(y)

= M

[O0(y)
y

; s
] (2.27)

Here O0(y) =
∫ 1

2
− 1

2
dxO(τ) is the zero mode of O and M[f ; s] :=

∫∞
0 dy ys−1f(y) is the

Mellin transform. To arrive at this form, we have made use of the fact that the Eisenstein
series is a Poincaré series as in (2.10) and “unfolded” the integral [37, 38]. The RS transform
also satisfies the same functional equation as the Eisenstein series

Λ(s)Rs[O] = Λ(1− s)R1−s[O]. (2.28)

From this we see that the modified spectral overlap

{O, Es} := (O, Es)
Λ(s) = {O, E1−s} (2.29)

is invariant under the reflection s→ 1− s.

– 12 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
5

The Mellin transform only converges for Re s > 1 (and indeed the form of the Eisenstein
series as a Poincaré sum is only valid in this half-plane); however, the RS transform inherits
a meromorphic continuation to the entire s plane from the Eisenstein series. In particular,
its only singularity in the half-plane to the right of the critical line Re s = 1

2 is a simple
pole at s = 1 with a constant residue given by

Res
s=1

Rs[O] = vol(F)−1
∫
F

dxdy

y2 O(τ) = O. (2.30)

We see that the residue of the RS transform at s = 1 encodes the modular average of the
observable O(τ) over the fundamental domain of SL(2,Z), which is also the constant term
in its spectral decomposition.

3 Spectral decomposition in N = 4 SYM

Having introduced some SL(2,Z) spectral technology, we transition to the physics by
recalling the necessary salient features of four-dimensional N = 4 SYM. We consider
N = 4 SYM with arbitrary simply-laced gauge group G, only later specifying G = SU(N)
when treating certain examples. This theory has a one-complex-dimensional N = 4
supersymmetry-preserving conformal manifold,M.10 M may be parameterized by τ , the
complexified gauge coupling,

τ = θ

2π + 4πi
g2 (3.1)

S-duality of N = 4 SYM with simply-laced G means invariance of the theory under
SL(2,Z) transformations of τ . This means, in turn, that local CFT observables O(τ) are
SL(2,Z) invariant,

O(γτ) = O(τ) , γ ∈ SL(2,Z) . (3.2)

We would like to emphasize that the term “CFT observables” includes only those that are
non-perturbatively well-defined. The spectrum of the dilatation operator, OPE coefficients
among dilatation eigenstates, and four-point functions of superconformal primary operators
are familiar examples of SL(2,Z)-invariant quantities.11

Reality of the coupling g implies that τ ∈ H. S-duality invariance then implies that we
may restrict τ to the fundamental domain, whereupon O(τ) becomes a modular-invariant
function of τ ∈ F . A natural measure onM is determined by the Zamolodchikov metric,

dµM := gZµν(x)dxµdxν (3.3)

where gZµν(x) is defined in general as the matrix of two-point functions of exactly marginal
operators. In N = 4 SYM, the Zamolodchikov metric is, owing to maximal supersymmetry,

10The N = 1-preserving conformal manifold is larger, see [39] for a thorough exposition.
11On the other hand, “the anomalous dimension of the Konishi operator” is not non-perturbatively

well-defined, as it makes reference to elementary fields in the N = 4 Lagrangian. However, the anomalous
dimension of the lowest-dimension SU(4)R-singlet scalar, being agnostic about the “composition” of the
operator, is well-defined and must be SL(2,Z) invariant. Indeed, we will show in section 10 that any quantity
which diverges in the large N ‘t Hooft limit at λ� 1 cannot be the limit of an SL(2,Z)-invariant observable;
this includes all single-trace anomalous dimensions.
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exactly equal to the Poincaré metric on H, so the measure is the SL(2,R)-invariant measure
on H:

dµM = dxdy

y2 (3.4)

This is special, and useful. In the notation of section 2, we have y := 4π/g2, so g → 0 at
fixed θ approaches the cusp y →∞ at fixed x.

Our observation is the following. Consider an SL(2,Z)-invariant observable O(τ).
On general grounds, CFT observables O(τ) are finite for all τ in the interior of F , as
singularities can only occur at boundaries of the moduli space. Moreover, the theory at the
cusp y →∞ is the free theory, where O(τ) converges to its (finite) free value. Therefore,

O(τ) ∈ L2(F) (3.5)

This implies that O(τ) admits the Roelcke-Selberg spectral decomposition into the SL(2,Z)-
invariant eigenbasis described in section 2:

O(τ) = O + 1
4πi

∫
Re s= 1

2

ds {O, Es}E∗s (τ) +
∞∑
n=1

(O, φn)φn(τ) (3.6)

This is a simple observation, but it is a far-reaching one. We will spell out its consequences
in detail. However, some of them are visible from the fundamental structure of the spectral
decomposition alone.

Let us develop a Fourier expansion of O(τ), invariant under x→ −x:

Ok(τ) = O0(y) +
∞∑
k=1

2 cos(2πkx)Ok(y) (3.7)

k labels the total instanton number. Instanton-anti-instanton pairs contribute integer
powers of qq̄ = e−4πy, where q := e2πiτ , with total instanton number zero. The mode Ok(y)
is obtained from (3.6) by inserting the kth Fourier modes of Es(τ) and φn(τ).

Without performing any detailed computation, one sees that, under a certain assumption
stated below, the k = 0 and k = 1 sectors uniquely determine all k > 1 sectors. The proof is
as follows. The overlap functions (O, Es) and (O, φn) in the spectral decomposition may be
determined by the k = 0 and k = 1 parts of O(τ), respectively. The former claim is manifest
from the definition of (O, Es) as the RS transform (2.27), which involves O0(y) only; note
that φn has no k = 0 component, simplifying matters. Having fixed (O, Es) from O0(y), one
then fixes (O, φn) by “inverting” the Bessel function (2.19) using orthogonality relations [40].
In this second step, we are assuming that the cuspidal eigenspectrum is non-degenerate,
which is an unproven but widely-held property of SL(2,Z) (e.g. [32, 41, 42]).12

12This same argument was used in [43], where these mathematical tools were applied to 2d CFT partition
functions, to prove a notion of “spectral determinacy” for 2d CFTs, in which the instanton number k
was instead interpreted as the spin j. We note that the inversion of the cusp forms must be performed
approximately, rather than exactly, because the chaotic spectrum of eigenvalues tn is (interestingly!) not
analytically known. That instantons with k > 1 are fully determined by k ≤ 1 is irrespective of that, as it
relies only on the existence of the spectral decomposition and the structure of the Fourier expansions of the
basis elements.
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In this sense, instantons are “redundant” in N = 4 SYM. This surprising simplicity
naively suggests that the non-perturbative structure of instantons — for instance, whether
the weak coupling expansions are convergent, asymptotic, Borel summable, etc, or whether
there exist non-perturbative instanton-anti-instanton corrections in powers of qq̄ — should
be the same for all k. We will show that, properly understood, this is correct. Moreover,
in favorable cases, the overlap with cusp forms vanishes — i.e. (O, φn) = 0 for all n — in
which case O(τ) is fully determined by the zero-instanton sector alone. We will provide
such examples in N = 4 SYM.

Let us now point out a second general consequence of (3.6). Recall that the first term
is the modular average of O(τ) over F . In a general CFT with conformal manifold M
coordinatized by moduli xµ, one may define the ensemble average of O(x) as

〈O〉 :=
∫
dµMO(x) (3.8)

where the integral is supported on the fundamental domain of M. In N = 4 SYM, the
Zamolodchikov metric is simply the Poincaré metric, cf. (3.4), and the fundamental domain
is F . Therefore, the ensemble average is the modular average:

〈O〉 = O (3.9)

O is, we recall from (2.30), determined as a residue of the RS transform of O(τ) at s = 1,
and is insensitive to the cusp form contributions to O(τ). So we see that the spectral
decomposition makes manifest the ensemble average of O(τ), and gives a straightforward
way to compute it.

4 Integrated correlator I: warmup

Before exploring the spectral decomposition of generic observables O(τ), we introduce
GN (τ), the integrated correlator studied by Dorigoni, Green and Wen [1, 17]. In addition to
being a rare and beautiful object, GN (τ) will act throughout as an affirmative benchmark
for our methods.

4.1 Definition

GN (τ) is the four-point function of the O20′ superconformal primary operator in the SU(N)
SYM theory, integrated over Euclidean space with the following supersymmetric measure:

GN (τ) = − 8
π

∫ ∞
0

dr

∫ π

0
dθ
r3 sin2 θ

u2 TN (u, v; τ) , (4.1)

where
u = x2

12x
2
34

x2
13x

2
24

= 1 + r2 − 2r cos θ , v = x2
14x

2
23

x2
13x

2
24

= r2 (4.2)

To be precise, TN (u, v; τ) is the “dynamical” part of the O20′ four-point function (after
stripping off a power-law prefactor) that is not determined by N = 4 superconformal Ward
identities, in the conventions of [1]. We indicate the τ -dependence explicitly to emphasize it.
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That GN (τ) is a protected quantity follows from its alternative formulation as derivatives of
a mass-deformed free energy on S4 [16]

GN (τ) = −1
4∆τ∂

2
m logZS4(τ ;m)

∣∣
m=0 (4.3)

where ZS4(τ ;m) may be computed from localization as a matrix integral over the Cartan
of SU(N)

ZS4(τ ;m) :=
∫
dN−1a

∏
i<j

a2
ijH

2(aij)
H(aij −m)H(aij +m)

 |Zinst(τ)|2e−2πy
∑

i
a2
i (4.4)

where aij := ai−aj and H(x) := G(1+x)G(1−x), with G(x) the Barnes G-function [44, 45].
The authors of [1] conjectured the following form for GN (τ) for all N and τ :13

GN (τ) = 1
2

∑
(m,n)∈Z2

∫ ∞
0

dξ BN (ξ) exp
(
−πξ |m+ nτ |2

y

)
. (4.5)

The function BN (ξ) is a rational function of ξ,

BN (ξ) = QN (ξ)
(1 + ξ)2N+1 , (4.6)

where QN (ξ) is a polynomial of order 2N + 1 determined by the following Laplace difference
equation for GN (τ):

−(∆τ + 2)GN (τ) = N2
[
GN+1(τ)−2GN (τ)+GN−1(τ)

]
−N

[
GN+1(τ)−GN−1(τ)

]
. (4.7)

Another useful representation, albeit a formal one that does not converge for all τ ∈ H, is
as an infinite sum over Eisenstein series,

GN (τ) = N(N − 1)
8 − 1

2

∞∑
s=2

(−1)sc(N)
s E∗s (τ) (4.8)

For SU(2),
c(2)
s = s(1− s)(2s− 1)2 (4.9)

For SU(N), the c(N)
s obey the following recursion relation in N :

N(N − 1)c(N+1)
s − (2(N2 − 1)− s(1− s))c(N)

s +N(N + 1)c(N−1)
s = 0 (4.10)

The recursion implies that
c(N)
s = P (N)(s) c(2)

s (4.11)

where P (N)(s) is a polynomial of degree 2N − 4 and P (2)(s) = 1.
13Our conventions differ slightly from [1]. We normalize our Eisenstein series such that Es(τ)

∣∣
there

=
2

Γ(s)E
∗
s (τ)

∣∣
here

. Also, in the formulas to follow, c(N)
s |here = (−1)s+1 2

Γ(s) c
(N)
s |there. Finally, yhere = Im (τ) =

ythere/π.
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The evidence collected in [1] for this remarkable formula is quite substantial, including
finite N matching to localization; matching to direct spacetime integration of Feynman
integrals at low perturbative order; and large N matching to expectations from type IIB
string theory and S-duality. Still, it remains conjectural, and its interesting structure begs
various questions. Why does GN (τ) have a lattice-integral representation? Do other N = 4
observables have one? What is the physical meaning of the rational functions BN (ξ)? Can
the Laplace difference equation be derived?

Since TN (u, v; τ) is a correlator of protected operators, both TN (u, v; τ) and GN (τ) are
SL(2,Z) invariant. Focusing on GN (τ), what is its spectral decomposition?

4.2 Spectral decomposition

Let us start with the SU(2) case. We claim that G2(τ) is given by the following expression:

G2(τ) = 1
2 + 1

4πi

∫
Re s= 1

2

ds

(
π

sin πss(1− s)(2s− 1)2
)
E∗s (τ) (4.12)

In terms of spectral overlaps, we have

{G2, Es} = π

sin πs c
(2)
s , (G2, φn) = 0 (4.13)

where c(2)
s was defined in (4.9). The claim is that G2(τ) is given exactly by this expression, for

all τ ∈ F : there is no need for regularization or resummation, a fact which is built into the
spectral decomposition, convergent by definition. Note that the spectral representation (4.12)
is functionally rather simpler than (4.5), being a one-dimensional integral without a lattice
sum on top of it.

It is easiest to first recover the formal expression (4.8) for N = 2 from (4.12). This is
done by contour deformation, with the expansion coefficients c(N)

2 encoded as residues of
(G2, Es) at s ∈ Z>1. This deformation also generates a constant contribution from s = 1,
where E∗s (τ) has a simple pole, cf. (2.17): if we deform to Re s > 1

2 , we pick up a constant
term −1/4. This combines to give the correct constant in (4.8). Now, recall that (4.8) is
not convergent, but rather required Borel resummation to become well-defined. This is
precisely encoded in the fact that the integrand of (4.13) diverges factorially at s→ ±∞,
due to the completed zeta function Λ(s). The spectral representation (4.12) may thus be
thought of as the Borel resummation of the weak coupling expansion.

If (4.12) is correct, then it should equal the (conjectural) expression (4.5) too, which is
also convergent for all τ ∈ F . We will establish this equality in section 5.5 as an example of
a more general equality between spectral decompositions and lattice-integral representations
of the same quantity O(τ), and in doing so, prove the validity of the formula (4.5) given
only the perturbative expansions of the k = 0, 1 modes as input.

The result for SU(N), which follows by recursion (4.10), is the direct extension of the
SU(2) case:

GN (τ) = N(N − 1)
4 + 1

4πi

∫
Re s= 1

2

ds
π

sin πs c
(N)
s E∗s (τ) (4.14)
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i.e.

{GN , Es} = π

sin πs c
(N)
s , (GN , φn) = 0 (4.15)

One again easily confirms the match to (4.8) by performing a contour deformation. Note
that the constant term can be determined even without using the explicit c(N)

s as follows.
The constant term is determined by

Res
s=1

Rs[GN ] = P (N)(1)× Res
s=1

Rs[G2]

= P (N)(1)
2

(4.16)

So our claim is that P (N)(1) = N(N − 1)/2. This may be derived for all N by setting s = 1
in (4.10), whereby the recursion becomes

N (N − 1)P (N+1) (1)− 2
(
N2 − 1

)
P (N) (1) +N (N + 1)P (N−1)(1) = 0 (4.17)

This is solved by P (N)(1) = αN + βN2 for any α, β. Using initial data for N = 2, 3 derived
from recursion fixes α = −β = −1/2, concluding the calculation.

Let us stress two striking features of this result. First, the overlap with cusp forms
vanishes for all N . Second, the ensemble average is the constant term in (4.14):

〈GN 〉 = N(N − 1)
4 (4.18)

Note that at large N , we have 〈GN 〉 ∼ N2/4. We explicate these points in much more detail
in later sections, including the systematics of the large N expansion of GN (τ).

5 Instantons and the analytic structure of N = 4 SYM

We now systematically explore the consequences of spectral decomposition for SL(2,Z)-
invariant observables O(τ). For clarity, we begin this section by writing formulas assuming
(O, φn) = 0, generalizing in due course. We remind the reader that φn(τ) has no zero mode,
so all conclusions about O0(y) are independent of this assumption. It will prove convenient
to write out the Fourier modes explicitly: suppressing the cusp forms in Ok>0(y),

O0(y) = 〈O〉+ 1
2πi

∫
Re s= 1

2

ds {O, Es}Λ(s)ys

Ok>0(y) = 1
2πi

∫
Re s= 1

2

ds {O, Es}
(
σ2s−1(k)
ks−

1
2

√
yKs− 1

2
(2πky)

) (5.1)

where the mode expansion was developed in (3.7).

5.1 Perturbation theory

Our starting point is to understand how to recover weak coupling perturbation theory from
this formalism. This is straightforward, and elegant. Weak coupling perturbation theory is
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an expansion around y →∞. For k = 0, the perturbative expansion is therefore read off
from contour deformation of (5.1) in the appropriate direction. In particular, since y →∞,
we must deform ys to the left. This seems in tension with the fact that the integrand may
not fall off sufficiently fast at s→ −∞ for this procedure to give a finite result. However,
exactly this fact encodes the convergence, or lack thereof, of the perturbative expansion
of O(τ). For example, if O(τ) admits an asymptotic series, then (O, Es) will diverge
factorially at s→ −∞. Thus, the spectral formalism for gauge theory observables embeds
the asymptotic properties of perturbative expansions in the |s| → ∞ asymptotics of spectral
overlaps. The virtue of the spectral decomposition lies in the existence of a convergent
expression from which one can, if desired, develop the weak coupling expansion.

For k > 0, things work differently. We note the asymptotics

√
yKs− 1

2
(2πky) = 1

2
√
k
e−2πky

∞∑
n=0

an(s)
(2πky)n (5.2)

where
an(s) = (s)n(1− s)n

(−2)nn! . (5.3)

We highlight that the complete asymptotic expansion of Ks− 1
2
(2πky) is a single exponential

times a power series in 1/y, for all s. Inserting in (5.1),

Ok>0(y) = e−2πky

4πi

∫
Re s= 1

2

ds {O, Es}
(
σ2s−1(k)k−s

∞∑
n=0

an(s)
(2πky)n

)
(5.4)

Suppose we swap the sum and integral in (5.4),

Ok>0(y) ≈ e−2πky

4πi

∞∑
n=0

y−n
(

1
(−4πk)nn!

∫
Re s= 1

2

ds {O, Es}σ2s−1(k)k−s(s)n(1− s)n
)
(5.5)

If this is allowed, then it is clear that Ok(y) receives no non-perturbative, i.e. instanton-
anti-instanton, contributions: such contributions would dress the e−2πky with extra powers
of qq̄ = e−4πy, but (5.5) is a power series in 1/y. The factor σ2it(k)k− 1

2 +it ∈ R for k ∈ Z is
oscillatory in t but bounded in k. Therefore, the convergence properties of the bracketed
integral are uniform in k. By inspection, convergence for fixed k demands that the overlap
decays faster than any polynomial as t→∞.

But clearly, this cannot always hold for N = 4 SYM observables, which can have
non-perturbative corrections. Indeed, a short calculation (see appendix A) shows that
convergence of the spectral decomposition only requires∣∣ {O, E 1

2 +it

} ∣∣ . O
(
eπt/2

)
(t→∞) (5.6)

where we have suppressed power law corrections.
Thus, the presence or absence of non-perturbative corrections to Ok>0(y) boils down to

whether the integrals in (5.5) converge, which in turn is determined by whether {O, E 1
2 +it}

decays super-polynomially as t → ∞. We show below that this asymptotic is elegantly
determined by the Borel summability of the zero mode, O0(y)! The connection, of course,
is that O0(y) and Ok>0(y) are fixed (modulo cusp forms) by the same spectral overlap.
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5.2 The analytic structure of CFT spectral overlaps

Let us now understand how the mathematical structure of the overlaps is constrained by
our physics problem. We are interested in CFT observables O(τ). These must have a good
perturbative expansion: specifically, we allow only non-negative integer powers of 1/y, and
no powers of log y. This strongly constrains the form of {O, Es}, because we can set k = 0,
and extract the perturbative expansion by contour deformation to the real axis.14

The most general such {O, Es} can be written as follows:

{O, Es} = π

sin πss(1− s)fp(s) + fnp(s) (5.7)

The labeling of these functions is hopefully clear. By contour deformation, fp(s) gives the
complete perturbative part of O(τ), proceeding in integer powers of 1/y.15 There is, in
addition, the possibility of a regular part fnp(s) which, having no poles away from s = 1,
can only contribute to the non-perturbative part of the modes Ok(τ), proceeding in powers
of qq̄ = e−4πy. Unlike the perturbative part, in the non-perturbative part of the spectral
integral we cannot deform the contour to infinity and rewrite it as a sum over residues.

The functions fp(s) and fnp(s) must obey the following properties:

1) Invariant under reflections, s→ 1− s.

2) Real for s ∈ R.

3) Regular for s ∈ R and s /∈ [0, 1].

These constraints follow immediately from the preceding exposition. In fact, these functions
obey even stronger constraints, which we prove using number theory in appendix A:

3a) fp(s) and fnp(s) are regular for all s ∈ C away from s = 1 (and its reflection).

3b) At s = 1,
lim
s→1
{O, Es} = 2O (5.8)

3c) On the critical line s = 1
2 + it, {O, Es} is finite for finite t.

4) If fnp(s) = 0 (resp. fp(s) = 0) then fp(s) (resp. fnp(s)) is entire.

To summarize, {O, Es} is a meromorphic function, regular everywhere on C\{s ∈ R} with
poles at s = 2, 3, . . . and their reflections coming only from the sin πs factor. Determining

14All formulas for {O, Es} that follow are valid even for (O, φn) 6= 0, since φn,0(y) = 0.
15The zero mode of O may be recovered from an inverse Mellin transform

O0(y) = 1
2πi

∫ σ+i∞

σ−i∞
dsRs[O]y1−s.

σ ∈ R is taken in the so-called “fundamental strip,” defined as the largest open strip s = σ + it in which the
Mellin transform converges; since Rs[O] admits a meromorphic continuation to the entire complex plane,
the fundamental strip is likewise extended to include σ ∈ R. See e.g. the Direct Mapping Theorem of [46].
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the (continuous part of the) spectral decomposition of O(τ) boils down to finding the two
real functions fp(s) and fnp(s) with these fairly rigid properties.

Since {O, Es} is defined as a Mellin transform of the zero mode,

{O, Es} = 1
Λ(1− s)M

[O0(y)
y

; s
]

(5.9)

it is simple to read off the values of fp(s) at s ∈ Z>1 from the perturbative series: insert-
ing (5.7) into (5.1) and deforming the contour to develop the 1/y expansion gives

O0 (y →∞) ∼
∑
n≥1

(−1)n cn y−n ⇒ cn = −n (n+ 1) Λ
(
n+ 1

2
)
fp(n+ 1) (5.10)

As n→∞,

fp (n→∞) ∼ −π
n+ 1

2

n2
cn→∞

Γ
(
n+ 1

2

) . (5.11)

This exhibits the encoding of the asymptotics of the perturbative series O0(y) in the s→∞
behavior of fp(s).

As for fnp(s), since by definition it only generates non-perturbative terms at y →∞,
which are necessarily of the form y−αe−4πny for constants α, n ∈ Z+, it is just the sum of
Mellin transforms

M
[
y−αe−4πny;−s

]
= (4πn)s+α Γ(−s− α) (5.12)

Parameterizing the most general series of non-perturbative corrections as

O0(y) ⊃
∞∑
α=0

cα(O)y−α
∞∑
n=1

κ(α)
n (O)e−4πny , (5.13)

where κn(O) and c(n)
α (O) are constants, translates into the general formula for the non-

perturbative overlap fnp(s):

fnp(s) = Λ(s)−1
∞∑
α=0

cα(O)Φ(α)
O (−s− α)Γ(−s− α) (5.14)

where we have introduced a Dirichlet series Φ(α)
O (s)

Φ(α)
O (s) :=

∞∑
n=1

κ
(α)
n (O)

(4πn)s (5.15)

This is associated to the non-perturbative corrections (qq̄)n around each perturbative
correction to O(τ).

An interesting fact is that the coefficients cα(O) and κ(α)
n (O) are constrained by the

reflection symmetry of fnp(s), which acts as a functional equation, fnp(s) = fnp(1− s). In
other words, defining the “completed” function

Ψ(α)
O (s) := Λ(s)−1Φ(α)

O (−s− α)Γ(−s− α) (5.16)
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we have
fnp(s) =

∞∑
α=0

cα(O)Ψ(α)
O (s) =

∞∑
α=0

cα(O)Ψ(α)
O (1− s) (5.17)

A consistent set of non-perturbative contributions to O(τ) must satisfy this fascinating
functional equation.16

5.3 SL(2,Z) Borel transform

Suppose that O0(y) has a factorially divergent, Borel summable expansion. Here and
throughout, following the literature on resurgence, we take “Borel summable” to mean that
the Borel transform B[ξ] is non-singular in a wedge of the complex ξ plane that includes
R+.17 This is a standard situation in N = 4 SYM perturbation theory at finite N . If O0(y)
has factorial growth, then fp(n→∞) is sub-factorial:

cn ∼ (πR)−nn! ⇒ fp(n) ∼ −n−
3
2R−n (n→∞) (5.18)

The constant R is the radius of convergence of the n� 1 expansion of fp(n).
For resumming N = 4 SYM perturbation theory, it is convenient to introduce a new,

non-standard Borel transform, which we call the SL(2,Z) Borel transform. If O0(y) has
the expansion (5.10), then we define its SL(2,Z) Borel transform B[ξ] as

B [ξ] :=
∞∑
n=0

(−1)n cn
Λ
(
n+ 1

2

) ξn+1 (SL(2,Z) Borel transform) (5.19)

This may be written in terms of the overlap using (5.10):

B [ξ] =
∞∑
n=0

(−1)n+1 n (n+ 1) fp (n+ 1) ξn+1 (5.20)

Its utility follows upon noticing that

Λ(s) = M

[
θ3(y)− 1

2 ; s
]

(5.21)

where θ3(y) = ∑
n∈Z e

−πn2y is the Jacobi theta function. The Borel resummation of the
original series may then be neatly inverted:

Ô0(y) := y
1
2

∫ ∞
0

dξ

ξ
3
2

(
θ3(yξ)− 1

2

)
B[ξ] (5.22)

16One may view this as a “bootstrap” equation for the non-perturbative data κn(O) and c
(n)
α (O); we

do not investigate this here, but believe this deserves further study. Similarly, it would be interesting to
consider the deeper meaning of these Dirichlet series for CFT observables.

17Generically, non-perturbative additions are not required for a Borel resummed quantity. However, there
are “non-generic” cases where non-perturbative contributions are present, indeed necessary, even if the
perturbative series is Borel summable. Some representative examples include “Cheshire cat resurgence” [47–
49] as well as certain effects in string perturbation theory [22, 50, 51]. We thank Daniele Dorigoni for
correspondence on the status of this question.
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This can be confirmed to return the original sum term-wise upon using (5.21). The radius
R in (5.18) is then the radius of convergence of the SL(2,Z) Borel transform.

The SL(2,Z) Borel transform is so named because it accounts for the Λ(n+ 1
2) factor

which appears universally in perturbation theory for SL(2,Z)-invariant functions. In other
words, the Jacobi theta kernel resums perturbation theory while manifestly respecting
S-duality. Whereas an ordinary Borel transform divides by Γ(n+ 1), the SL(2,Z) Borel
transform also properly eliminates the Riemann zeta factor.18

Just as for an ordinary Borel transform, Ô0(y) is analytic for Re (y) > 0 in the complex
y plane. This domain of analyticity may be extended to a wedge by considering the
“directional” inverse Borel transform along a ray eiθξ: this yields an analytic function for
Re (eiθy) > 0, i.e. in the domain

Dθ :=
{
y ∈ C | Re

(
eiθy

)
> 0

}
(5.23)

It can be shown by analytic continuation (e.g. [52]) that if B[ξ] is analytic for arg(ξ) ∈ [θ1, θ2],
then Ô0(y) is analytic in the union of domains Dθ1 ∪Dθ2 .

Note that the n→ 1− n transformation properties of the summand immediately imply
the inversion symmetry

B [ξ]√
ξ

=
√
ξB

[
ξ−1

]
(5.24)

This inversion implies the non-trivial integral relation∫ ∞
0

dξ
B[ξ]
ξ

=
∫ ∞

0

dξ

ξ

B[ξ]
ξ

(5.25)

In fact, using (5.21) and (5.22), this integral is just twice the modular — i.e. ensemble —
average of O:

〈O〉 = 1
2

∫ ∞
0

dξ
B[ξ]
ξ

(5.26)

Finally, note that19 ∫ ∞
0

dξ

ξ
3
2
B[ξ] = −2 Res

s= 1
2

Rs[O] = 0 (5.27)

This follows from square-integrability of O(τ), together with the definition of the RS
transform as an inner product involving Es(τ) [53], which obeys E1/2(τ) = 0.

An interesting implication of (5.27) is that B[ξ] is not sign-definite for ξ ≥ 0. The
physical meaning of zeros of Borel transforms has not been properly understood in a QFT
context (though see [54] for interesting observations in 3d N = 2 SCFT). It would be nice
to understand why SL(2,Z) Borel transforms of N = 4 SYM observables must have zeros.

18This answers a challenge posed in [13]. We note that other commonly used modified Borel transforms
divide by Γ(n + 1)ζ(n + 1) (as in [1, 52]) whereas here, the Riemann zeta argument is twice that of the
gamma argument, by definition of the completed Riemann zeta function.

19Both (5.26) and (5.27) can be seen to follow from the fact that the SL(2,Z) Borel transform can be
written in terms of an inverse Mellin transform of the RS transform of O

B[ξ] = ξM−1
[
Rs[O]

Λ(1− s) ; ξ
]
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5.4 The redundancy of instantons

Having better understood the structure of overlaps {O, Es} in N = 4 SYM, we are
in good position to prove relations among non-perturbative corrections in different
k-instanton sectors.

We return to the problem posed earlier, below (5.6). There is a very nice theorem
about the decay of Mellin transforms along strips s = σ + it as t→∞ (cf. Proposition 5
of [46]):

Let f(y) be analytic in the region

Sθ = {y ∈ C | 0 < |y| <∞ , |arg(y)| ≤ θ} with 0 < θ < π (5.28)

Assume that f(y) ∼ O(y−α) as y → 0 and f(y) ∼ O(y−β) as y →∞ in Sθ. Then

M [f (y) ;σ + it] = O
(
e−θ|t|

)
as |t| → ∞ (5.29)

uniformly for σ in every closed subinterval of (α, β). This extends to any subinterval of the
strip in which M[f(y); s] admits a meromorphic continuation.

The above theorem shows that {O, Es} will decay exponentially as long as O0(y) is
analytic in a wedge of the complex y plane. Happily, this follows directly from Borel
summability of O0(y): since O0(y) is analytic in a finite wedge arg(y) ∈ [θ1, θ2] around the
positive y axis

M

[O0(y)
y

; s
]
∼ e−(π2 +θ)|t| , θ := min{|θ1|, |θ2|} > 0 (5.30)

Crucially, θ is strictly positive. This holds on the critical line σ = 1/2.20 Together with
the asymptotics ∣∣∣Λ(1

2 − it
)−1∣∣∣ ∼ eπt2 log |t| (t→∞) (5.31)

derived in appendix A, we arrive the final result∣∣∣ {O, E 1
2 +it

} ∣∣∣ . e−θt , θ > 0 (t→∞) . (5.32)

Thus, {O, E 1
2 +it} decays exponentially as t → ∞, at a rate determined by the location

of the singularity of the Borel transform B[ξ]. This guarantees finiteness of the integrals
in (5.5), for all k. Note that if O0(y) has singularities only on the negative real axis, y ∈ R−,
then θ → π.

We can in fact go further, by characterizing the n→∞ asymptotics of the sum (5.5).
The best way to do this is by plugging in (5.7) and deforming to Re s > 1

2 , because then we
can compare directly to B[ξ], the Borel transform of O0(y), in (5.20). Dropping an overall
(−2πi), the coefficient of y−n is

Sn,k := 1
(−4π)nn!

∞∑
s=1

(−1)ss(s− 1)fp(s)(s)n(1− s)nσ2s−1(k)k−s−n (5.33)

20Indeed, (5.7) implies a meromorphic continuation of M
[O0(y)

y
; s
]
to all s ∈ C, so this theorem holds for

any finite σ ∈ R.
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The SL(2,Z) Borel transform of Ok(y) is, in terms of Sn,k,

Bk[ξ] :=
∞∑
n=0

Sn,k

Λ
(
n+ 1

2

)ξn (5.34)

We must thus extract the n� 1 asymptotics of Sn,k. This is straightforward. Set k = 1 for
the moment. We have

Sn,1

Λ
(
n+ 1

2

) = 1
(−4π)nn!Λ

(
n+ 1

2

) ∞∑
s=1

(−1)ss(s− 1)fp(s)(s)n(1− s)n

≈ 1
(−4)n

∞∑
p=0

(−1)p+1(p+ n+ 1)(p+ n)fp(p+ n+ 1)(p+ 1)2n
(n!)2

(5.35)

Here we used that (1− s)n = 0 for integer s ≤ n and (−x)n = (x− n)n(−1)n, shifted the
sum, and dropped irrelevant factors subleading at n � 1. Taking the zero mode to be
SL(2,Z) Borel summable with radius R > 0 means (cf. (5.18))

fp(s� 1) ∼ R−s (5.36)

So we insert this scaling into the above equation, perform the sum over p, and afterwards
expand at large n. Reinstating k-dependence is done by using the asymptotics

σ2s−1(k)k−s−n
∣∣
s�1 ∼ k

s−n−1 (5.37)

This leads to the insertion of a kp in (5.35). The sum may be performed exactly. Quoting
only the n� 1 result of interest, and suppressing power law prefactors,

Sn,k

Λ
(
n+ 1

2

) ∼ (− R

(R+ k)2

)n
(n→∞) (5.38)

Plugging into (5.34) gives the desired result: Borel summability of O0(y) implies Borel
summability of Ok(y) for all k! That is, Bk[ξ] is convergent and free of singularities on R+.
Moreover, we have a very simple polynomial formula for Rk, the radius of convergence of
Bk[ξ], for all k:

Rk
R

=
(

1 + k

R

)2
(5.39)

This is a powerful demonstration of the ability of SL(2,Z) to relate different instanton
sectors. Other notable properties of Rk include its monotonic increase with k, and its
quadratic growth at k � 1.

This result transcends the usual philosophy of resurgence methods. In typical appli-
cations of resurgence, one must perform independent resummations in different instanton
sectors. In the presence of extra symmetries, more is possible. What we are seeing here is
that SL(2,Z)-invariance is strong enough to relate all k-instanton sectors in a simple way,
with the k = 0 sector (and, upon including cusp forms, the k = 1 sector) being the only
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independent data. In the language of the so-called “resurgence triangle” [55, 56], the claim
is that SL(2,Z)-invariance moves horizontally within the triangle, determining all columns
from a finite subset.

This formula may actually be extended to non-Borel summable O0(y) as well, assuming
the perturbative series still grows only factorially. By “non-Borel summable,” we mean
that B[ξ] has a singularity at ξ = R ∈ R+. Relative to the Borel summable case with a
singularity along R−, this modifies the asymptotic (5.38) by R→ −R; in addition, while
the ensuing resummation acquires non-perturbative corrections to ensure analyticity of the
end result Ô0(y), none of these corrections affects the perturbative expansion. Propagating
this through, the same logic as above implies that non-Borel summability of O0(y) implies
non-Borel summability of Ok(y) for all k, where Bk[ξ] is singular at ξ = Rk subject to the
relation (5.38) with (R,Rk)→ −(R,Rk).

Finally, for the sake of clarity, we remind that these conclusions hold modulo possible
contributions from cusp forms. We will reinstate the cusp forms in subsection 5.7, giving a
diagnostic for their presence and generalizing (5.39) to (5.69). Moreover, some observables
have no cusp form support, in which case the above results are unconditional.

5.5 N = 4 SYM observables as Poincaré sums

The previous section derived quantitative formulas for k-instanton dynamics from the
zero-instanton dynamics. That this should be possible followed from the fundamental
determinism baked into the SL(2,Z) spectral decomposition. In this section we show that
starting from the zero mode O0(y), one can construct an interesting representation of the
full function O(τ) — as an SL(2,Z)-invariant lattice sum — which is equivalent to the
spectral decomposition.

The idea is simply to sum over SL(2,Z) images of O0(y). This uniquely determines
the function up to overall normalization, which is fixed by demanding that it produces the
correct O0(y).

The starting point is (5.22), the Borel resummation of O0(y), which we rewrite as

O0(y) = √y
∫ ∞

0

dξ

ξ
3
2
B[ξ]

∞∑
n=1

e−πn
2ξy. (5.40)

We will now proceed to perform a regularized Poincaré sum over images. Since O0(y)
depends only on y, we sum over Γ∞\PSL(2,Z), modding out by the invariant action of the
modular T -transformation on the seed. Let us call the resulting function O(τ):21

O(τ) := N
∑

Γ∞\PSL(2,Z)
Im(γτ)

1
2

∫ ∞
0

dξ

ξ
3
2
B[ξ]

∞∑
n=1

e−πn
2ξ Im(γτ), (5.41)

21These Poincaré series are divergent, but admit a natural zeta function-like regularization. This is most
clearly reflected in (5.44). See [57, 58] for a discussion of similar Poincaré series in the context of the partition
function of pure three-dimensional quantum gravity as defined by the sum over smooth saddle points in the
gravitational path integral.
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where N is a normalization constant that we will fix later. We now rewrite this via Poisson
summation as

O(τ) = N2
∑

γ∈Γ∞\PSL(2,Z)

∫ ∞
0

dξ

ξ2B[ξ]
∑
m∈Z

exp
(
− πm2

ξ Im(γτ)

)
− Im(γτ)

1
2

∫ ∞
0

dξ

ξ
3
2
B[ξ]

 .
(5.42)

The last term vanishes identically, cf. (5.27). To proceed, we expand the exponential
in (5.42) and note that

∑
γ∈Γ∞\PSL(2,Z)

∞∑
m=1

(
m2

Im(γ(τ))

)s
= 1

2
∑

(m,n) 6=(0,0)

(
|mτ + n|2

y

)s
(5.43)

to arrive at

O(τ) = N2

 ∑
γ∈Γ∞\PSL(2,Z)

∫ ∞
0

dξ

ξ2B[ξ] +
∑

(m,n) 6=(0,0)

∫ ∞
0

dξ

ξ2B[ξ] exp
(
−π|mτ + n|2

ξy

) .
(5.44)

The last formal equality we need is that ∑γ∈Γ∞\PSL(2,Z) = E0(τ) = 1, a regularization
inherited from the meromorphic continuation of the Eisenstein series. We can then combine
the two terms and make use of the inversion property (5.24) satisfied by the SL(2,Z) Borel
transform to arrive at

O(τ) = N2
∑

(m,n)∈Z2

∫ ∞
0

dξ
B[ξ]
ξ

exp
(
−πξ|mτ + n|2

y

)
. (5.45)

This is the final result up to the determination of the normalization constant N . One may
borrow the analysis of e.g. [1], done there for the specific observable O = GN but applicable
more generally, to find N = 1/2. Thus we have

O(τ) = 1
4

∑
(m,n)∈Z2

∫ ∞
0

dξ
B[ξ]
ξ

exp
(
−πξ |m+ nτ |2

y

)
. (5.46)

To summarize, we have constructed the observable O(τ) with zero mode O0(y) as a
Poincaré sum of O0(y). This is not sensitive to any details of B[ξ]. The resulting formula
is necessarily equivalent to its spectral decomposition. In other words, one can construct
any modular function O(τ) ∈ L2(F) uniquely modulo cusp forms from its zero mode O0(y)
in (at least) two equivalent ways: first, as a Poincaré sum over O0(y), with the resulting
lattice-integral expression (5.46); and second, as a spectral decomposition (5.1). Of course,
as we’ve been stressing throughout this work, in the absence of cusp forms the k > 0 sectors
do not contain any new information.

This construction also makes clear that the resulting function is orthogonal to cusp
forms, because any Poincaré sum over a zero mode has vanishing cusp form overlap: the
“unfolding trick” reduces the overlap to a y integral over the zero mode of the cusp forms,
φn,0 = 0, cf. (2.20).

We observe that the constant (m,n) = (0, 0) term is half of the ensemble average of
O(τ), cf. (5.26).
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The formula also applies to non-Borel summable O0(y), with suitable tweaking of B[ξ].
Singularities in B[ξ] for ξ ∈ R+ lead to non-perturbative terms in O0(y), which arise from
taking B[ξ]→ B̃[ξ] for some appropriate B̃[ξ] whose resummation is analytic. A typical
approach is “median resummation,” which does so by defining the resummation Ô0(y)
by integrating ReB[ξ] instead of B[ξ] — see e.g. [59]. Since the derivation of (5.46) only
used the definition (5.22), it exists even for non-Borel summable cases upon substituting
B̃[ξ] instead.

5.6 Integrated correlator II: derivation

Everything we have established in the previous subsections is beautifully on display for the
integrated correlator GN (τ), whose form we are able to efficiently explain and derive.

In terms of the overlap functions in (5.7), let us write

{GN , Es} = π

sin πss(1− s)fp,N (s) + fnp,N (s) (5.47)

For SU(2), from (4.9) and (4.13) we have

fp,2(s) = (2s− 1)2 , fnp,2(s) = 0 (5.48)

with the SU(N) results determined by recursion (4.10). This is extremely simple. In fact, it
is the simplest possible non-trivial overlap consistent with the necessary constraints! Setting
fnp(s) = 0 to eliminate non-perturbative terms, we recall from section 5.2 that fp(s) must
then be an entire, real, even function of s− 1

2 . The simplest entire functions are polynomials.
If fp(s) is constant, the corresponding SL(2,Z) Borel transform is B[ξ] ∝ 2ξ2/(1 + ξ)3,
which is sign definite for ξ > 0, contradicting (5.27). The next simplest possibility is the
degree-two monomial, which is the case realized by G2(τ).

The lattice-integral formula for GN (τ) was given in (4.5). Comparing to (5.46), we see
immediately that

B[ξ]
2ξ = BN (ξ) (5.49)

The kernel of the lattice-integral is simply the SL(2,Z) Borel transform of the zero mode.
(One can check for sanity, e.g. by integrating numerically, that the SL(2,Z) Borel resumma-
tion of GN,0(y) is equal to the Borel resummations in [1] that were performed with respect
to more conventional kernels.)

It is satisfying that this derivation elucidates the meaning of BN (ξ), which had previously
been opaque. We also understand why it must be independent of the instanton index k,
and why it obeys the inversion symmetry

√
ξBN (ξ) = BN

(
ξ−1)
√
ξ

(5.50)

This was seen to be crucial for the SL(2,Z) invariance of the lattice sum in [1]; we now
understand inversion symmetry as a consequence of SL(2,Z) invariance. Moreover, the
integral of BN (ξ) is simply its ensemble average, as implied by (5.26):

〈GN 〉 =
∫ ∞

0
dξBN (ξ) = N(N − 1)

4 (5.51)
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where the second equality uses the result previously extracted from the spectral decomposi-
tion, cf. (4.18). In addition, due to (5.27)∫ ∞

0

dξ√
ξ
BN [ξ] = 0 (5.52)

These two equalities were observed in [1].
In subsection 5.5 we showed that the lattice-integral representation (5.46) is derived from

the zero mode O0(y). Applying this to O = GN thus furnishes a proof of the formula (4.5),
taking only the perturbative expansion of the zero mode GN,0(y) as input. Moreover, (5.46)
is manifestly equivalent to the spectral decomposition. To make the proof truly complete,
it remains to show that (GN , φn) = 0. This follows from showing that the one-instanton
mode GN,1(y) is fully reproduced by the lattice-integral representation (4.5), so in total,
one needs both GN,0(y) and GN,1(y) as input.

Finally, let us check the radius of convergence formula (5.39), which should hold exactly
for GN (τ). At k = 0, one quickly deduces that R = 1, so (5.39) predicts that

Rk = (1 + k)2 (5.53)

To test this, it is convenient to use equation (3.22) of [1] at N = 2,

G2,k(y) = e−2πky ∑
p,q ∈Z+
pq=k

z2(p+ q)[z
(
11p2 + 2pq + 11q2

)
(p− q)2 + 2z2(p+ q)2(p− q)4

+ 9p2 − 12pq + 9q2]−
√
π

2 z
3
2 ez(p+q)

2
[
4z3

(
p2 − q2

)4
+ 24z2

(
p2 + q2

) (
p2 − q2

)2

+3z
(
9p4 − 2p2q2 + 9q4

)
+ 3

(
p2 + q2

)]
erfc

(√
z(p+ q)

)
(5.54)

where z := πy. The leading y � 1 behavior comes from the complementary error function
alone, which admits an expansion

π(p+ q)
√
z ez(p+q)

2erfc
(√
z(p+ q)

)
=
∞∑
n=0

(
− 1
π(p+ q)2

)n
Γ
(
n+ 1

2

)
y−n (5.55)

Therefore, applying our previous definitions for the SL(2,Z) Borel transform,

Rk = max
p,q

[
(p+ q)2

]
s.t. p, q ∈ Z+ , pq = k (5.56)

The maximum is given by (p, q) = (k, 1), thus proving (5.53). The result for general N
follows from recursion.

5.6.1 Comment on integrated 〈22pp〉 correlator

One may instead consider the supersymmetric integrated 〈22pp〉 correlator, where “p”
denotes the half-BPS superconformal primary scalar Op of dimension ∆ = p in the [0 p 0]
representation of SU(4)R. Let us call this quantity G22pp(τ), slightly abusing earlier notation
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and leaving the N -dependence implicit. G22pp(τ) may also be computed via localization.
Adding sources for integrated Op to ZS4(τ ;m),

ZS4(τ, τp;m) :=∫
dN−1a

∏
i<j

a2
ijH

2(aij)
H(aij −m)H(aij +m)

 |Zinst(τ, τp)|2 exp

−2
∞∑
p=2

π
p
2 Im (τ ′p)

∑
i

(ai)p


(5.57)
where τ ′2 := τ , one then differentiates with respect to sources to obtain

G22pp(τ) = ∂τ ′p∂τ̄ ′p∂
2
m logZS4(τ, τp;m)

∣∣
m=τ ′p=0 (5.58)

This is slightly schematic due to operator mixing issues on S4; see [16, 60] for an
exact expression.

What is the spectral decomposition of G22pp(τ)? In particular, we are interested in
whether the p-dependence affects the structural simplicity seen for p = 2. We address
this by examining y →∞ perturbation theory, setting Zinst(τ, τp) = 1. Compared to the
p = 2 case, the derivatives of logZS4(τ, τp;m) simply bring down p − 2 extra powers of
the eigenvalues ai. These powers multiply p-dependent coefficients. These coefficients do
not contain factorials, nor do the manipulations leading to G22pp(τ), including the mixing
matrix, lead to any. Therefore, generalizing the computations for GN (τ), we learn that the
perturbative expansion of G22pp(τ) is Borel summable. Applying the logic of resurgence for
generic observables would imply that fnp(s) = 0 for G22pp(τ) as well.

As for the cusp forms, we have not tried to formulate a rigorous argument as to their
absence; this would involve the structure of Zinst(τ, τp), whose explicit form is unknown.
However, the structural uniformity in p of the localization integral suggests (though certainly
does not prove) the following stronger statement: G22pp(τ) is Borel summable, and obeys
fnp(s) = (G22pp, φn) = 0 for all N and p.

5.7 Including cusp forms

We now re-introduce cusp forms φn(τ) to the preceding analysis. The upshot is equa-
tion (5.69) for the radius Rk that generalizes (5.39) by including cusp forms, which follows
rather intriguingly from a deep number-theoretic property of their Fourier expansions.

Let us first explain why determining the cusp form contribution to Ok>0(y) is inher-
ently much harder, for both physics and math reasons, than determining the continuous,
Eisenstein contribution.

Maass cusp forms exhibit arithmetic chaos [18, 32]. The fundamental data characterizing
the cusp forms — namely, the spectral parameters tn and the Fourier coefficients a(n)

k —
are not known explicitly, but are known to obey chaotic distributions. For example, the
tn exhibit Poissonian statistics at n � 1, while the a(n)

k for prime k are conjecturally
asymptotically equidistributed with respect to a semi-circle distribution, at either large k
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or large n.22 There is good “experimental” evidence for these claims [32, 61, 62]. We will
utilize one such property more explicitly below.

At a technical level, this means that it is infeasible to study the sum over φn(τ)
analytically. One could instead imagine approximating the discrete sum by treating (O, φn)
distributionally, then performing contour deformations in the complex sn plane away from
the critical line sn = 1

2 + itn. But besides being rather radical (and not, to our knowledge,
something done in the mathematics literature), since the overlap (O, φn) is not determined
as a Mellin transform, unlike the Eisenstein sector, its asymptotics as n→∞ are anyway
not obviously constrained by analyticity of the Fourier modes of O(τ).

Nevertheless, we can incorporate the presence of cusp forms.
First, note that the relation (5.39) gives a one-way diagnostic of the presence of cusp

forms. If (5.39) does not hold for some k, then (O, φn) 6= 0 for some n:

Rk
R
6=
(

1 + k

R

)2
⇒ (O, φn) 6= 0 (5.59)

What about the converse? It is not obvious that cusp forms must modify Rk at all. For
example, their contribution could (as far as we can see) be convergent or even purely non-
perturbative, in which case they give a vanishing contribution to the Borel resummation,
and hence to Rk.23 However, let us consider below the interesting situations, where the
cusp forms give a factorially divergent contribution to perturbation theory, so that their
contributions are not swamped by everything else. Then in fact, (5.59) holds in both
directions, as we now show.

The contribution of φn(τ) to the y−m term of Ok(y) is given by24

Ok(y)
∣∣
y−m
⊃ 1

(−4πk)mm!

∞∑
n=1

a
(n)
k ã

(n)
1 (O, φn)

(1
2 + itn

)
m

(1
2 − itn

)
m

(5.60)

The full y−m term is given by the sum of (5.60) and (5.5). Let us use R(φ)
1 to denote the

radius of convergence of the SL(2,Z) Borel transform of the cusp contribution at k = 1:
∞∑
n=1

ã
(n)
1 (O, φn)

(1
2 + itn

)
m

(1
2 − itn

)
m
∼ (m!)24m

(
R

(φ)
1

)−m
(m→∞) . (5.61)

Likewise, use R(E)
1 to denote the radius of convergence of the SL(2,Z) Borel transform of

the Eisenstein contribution at k = 1, determined previously in (5.39). The total radius of
convergence of Bk[ξ] at k = 1 is the minimum of the convergence radii in the cusp and
Eisenstein sectors,

R1 = min
(
R

(E)
1 , R

(φ)
1

)
(5.62)

22The word “arithmetic” refers to the arithmeticity of SL(2,Z), or to the existence of an infinite number of
mutually commuting generators, known as Hecke operators, of which each cusp form is an eigenvalue. This
symmetry leads to “milder” forms of chaos, e.g. Poissonian statistics for the tn, than is seen in other contexts.

23This happens if, for example, (O, φn) 6= 0 for a finite subset of φn(τ).
24The L2-normalized cusp forms φn(τ) being used throughout this paper have Fourier coefficients a(n)

k ã
(n)
1 ,

where ã(n)
1 := 1/

√
(νn, νn) is simply a norm factor. Recall that a(n)

1 = 1, cf. (2.23).
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We now ask what is the cusp contribution at k > 1. Associated to it will be a radius of
convergence R(φ)

k , such that Rk, the total radius of convergence of Bk[ξ], is

Rk = min
(
R

(E)
k , R

(φ)
k

)
(5.63)

The Fourier coefficients a(n)
k are believed to obey the Ramanujan-Petersson conjecture:

for all n,
|a(n)
k | ≤ 2 (k prime) . (5.64)

This implies that the sole k-dependence of R(φ)
k comes from the k−m term in the Fourier

expansion of the Bessel function, because it is not possible for the sum over cusp forms
to generate any parametric k-dependence. This is in distinction to the Eisenstein series
where ak(s) = σ2s−1(k)k−s → ks−1 at k � 1, and hence the integral over s generated the
k-dependence seen earlier. In fact, instead of invoking Ramanujan-Petersson we can use
the best proven bound, of Kim and Sarnak [19]: for all n,

|a(n)
k | ≤ k

7/64 + k−7/64 (k prime) . (5.65)

This scaling is still insufficient to change the asymptotics because it does not depend on n.
Thus, (5.60) implies

R
(φ)
k = kR

(φ)
1 (k prime) . (5.66)

Comparing R(φ)
k with R(E)

k , we see that at sufficiently large prime k = k∗, the former must
become smaller — for any values of the k = 1 radii — because it grows linearly, rather than
quadratically, in k. Hence,

Rk>k∗ = kR
(φ)
1 (k prime) , (5.67)

where k∗ is defined as the (integral part of the) largest root of the quadratic equation
k∗R

(φ)
1 = R

(E)
k∗

, with R(E)
k∗

defined in (5.39).
Actually, we can drop the prime condition by using Hecke relations (e.g. [7]). The

Hecke operators Tk act on cusp forms as

Tk φn = a
(n)
k φn (5.68)

and obey TjTk = ∑
d|(j,k) Tjk/d2 . This determines the a(n)

k for non-prime k as a polynomial
in the a(n)

k for prime k, for every n. Therefore, all a(n)
k obey a polynomial bound in k that

is independent of n.
Altogether, when cusp forms contribute to the Borel transform we have the

following result:
Rk
R

= min
((

1 + k

R

)2
,
k

R
R

(φ)
1

)
(5.69)

where R(φ)
1 is infinite if (O, φn) = 0 for all n. This also implies that (5.59) holds in both

directions, providing a rigorous, albeit mildly conditional, two-way diagnostic of the presence
of cusp forms. More conceptually, this subsection demonstrates a simple point: instantons
in N = 4 SYM exhibit arithmetic chaos, encoded in the cusp forms. If it happens that
(O, φn) = 0, as is the case for the integrated correlator GN (τ), one could rightfully call O(τ)
non-chaotic in this sense.
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5.8 On the strong coupling expansion

To conclude this section, let us ask what the spectral decomposition implies about the
strong coupling expansion, y → 0. To be clear, S-duality implies that strong coupling can
be mapped to weak coupling. The purpose of this short coda is to derive some precise
consequences of this.

To develop the y → 0 expansion of O0(y), we again start from the first equation of (5.1),
but now deforming to the right, Re s > 1

2 . This yields

O0(y) = 〈O〉+
∞∑
s=2

(−1)ss(s− 1)fp(s)Λ(s)ys (y → 0) (5.70)

There are a few notable features here. First, there is a universal factor ϕ(s) relating the
coefficients of the weak and strong coupling expansions of O0(y), seen by comparing (5.10)
and (5.70). In [1], this was regarded as a striking observation for GN (τ). We are showing
that it is a simple consequence of SL(2,Z)-invariance for any square-integrable observable.
Note that ϕ(s � 1) ∼ 1/

√
s, so the asymptotics at y → 0 and y → ∞ are essentially

identical. Second, there is never an O(y) term, which follows from Ress=1R1−s[O] =
Ress=1

(
ϕ(s)−1Rs[O]

)
= 0. Finally, the ensemble average equals the zero mode at y = 0:

〈O〉 = O0(y = 0) (5.71)

In other words, dialing O0(y) from weak to strong coupling adds a factor of the ensemble
average. This is a non-trivial statement, notwithstanding S-duality: we are taking the
strong coupling limit of the zero mode, which is not SL(2,Z) invariant, not of O(τ), which
is SL(2,Z) invariant. We will see a large N version of this statement in section 10, with
powerful implications.

6 Large N : generalities

We will be concerned with two types of large N limits.
The first limit is the ‘t Hooft limit, defined as N →∞, g → 0 with λ := g2N fixed. In

terms of our variable y = Im τ ,

N →∞, λ = 4πN
y

fixed (’t Hooft) (6.1)

In the ‘t Hooft limit, the perturbative 1/N expansion organizes into a genus expansion.
Instantons are non-perturbatively suppressed as

Ok(y) ∝ e−2πky ∼ e−8π2kN
λ (6.2)

so the genus expansion applies to the zero mode,

O0(y) =
∞∑
g=0

N2−2g O(g)
0 (λ) (6.3)

– 33 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
5

There are also other non-perturbative corrections in N which correct the zero mode itself
at each order in the genus expansion, to be derived below.

The second limit is N →∞ with g fixed, sometimes called the “very strongly coupled
limit” [20]:

N →∞, y fixed (very strongly coupled) (6.4)

The genus expansion (6.3) does not hold in the very strongly coupled limit, but taking y
fixed and then sending y →∞ recovers the leading λ� 1 behavior in the ‘t Hooft limit.

Before delving into details, let us state one of the main overarching points here. As
first explained in the previous section on perturbation theory at finite N , to develop
a perturbative expansion in some parameter from the spectral decomposition, one first
expands the spectral overlap {O, Es}, and then performs a contour deformation to pick up
poles. The presence or absence of non-perturbative corrections to the resulting expansion is
encoded in the |s| → ∞ asymptotics of the overlap. In the large N expansions to follow,
this approach will reveal various corrections. The power of SL(2,Z) is that perturbative
and non-perturbative physics are intertwined into one and the same automorphic object.

We first need to understand how the spectral overlaps are constrained. Let us present,
then explain, the result. At large N , the spectral overlap {O, Es} is of the following form:

{O,Es}=
∞∑
g=0

N2−2g
(

π

sinπss(1−s)
(
N−sf (g)

p (1−s)+(s→ 1−s)
)

+
∞∑
m=0

N−3−m2 f (g,m)
np (s)

)
(6.5)

where SL(2,Z)-invariance requires the reflection symmetry f (g,m)
np (s) = f

(g,m)
np (1− s).

These two sets of terms are the large N expansions of the perturbative and non-
perturbative parts of (5.7), respectively. Let us now explain (6.5) in slightly more detail.
The reader interested only in its consequences may skip to the next section.

The first, perturbative term in (6.5) can be understood by considering the ‘t Hooft limit,
but applies to any large N limit since {O, Es} is independent of y. The key observation is
that any function f(λ) is produced by an overlap with N−s scaling: recalling that {O, Es}
is Λ(s)−1 times the RS transform, we have

R1−s[f(λ)] =
∫ ∞

0
dy y−1−sf(λ)

= (4πN)−s
∫ ∞

0
dλλs−1f(λ)

= (4πN)−sM[f(λ); s]

(6.6)

where λ is the Mellin integration variable in the final line. Therefore, the genus expan-
sion (6.3) implies that f (g)

p (1− s) contains information of the ‘t Hooft expansion at genus
g, for any λ. The details of the λ � 1 and λ � 1 expansions — including possible
non-perturbative corrections in λ — are encoded in the polar structure of f (g)

p (1− s) for
s ∈ R. The presence of the reflected solution in (6.5) follows from the SL(2,Z)-invariance
of the spectral decomposition, i.e. the reflection symmetry of {O, Es}. Note that since we
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are expanding at N →∞ first, the polar structure of f (g)
p (s) can be non-trivial, unlike fp(s)

at finite N .
The second, non-perturbative term in (6.5) generates all exponential terms ∼ e−4πny, as

discussed in section 5.2. These are non-perturbative in the ‘t Hooft limit; consistent with the
previous paragraph, their N -scaling is independent of s. It may not be immediately obvious
why, or how, f (g,m)

np (s) generates exponentials. After all, to obtain the contribution of
f

(g,m)
np (s), we simply integrate along the critical line s = 1

2 + it; why is this non-perturbative
at y →∞? The answer can be nicely understood from basic properties of the Rankin-Selberg
method as adapted by Zagier [53]. At a fixed order in the 1/N expansion, O(τ) must be
SL(2,Z) invariant, although it need not be square-integrable. However, consistency with
the genus expansion in the ‘t Hooft limit means that the leading power of y at fixed order
in 1/N is bounded above. As shown in [53], if an SL(2,Z)-invariant function F (τ) with
bounded power-law growth at y →∞ has a zero mode

F0(y) =
m∑
i=1

ci
ni!
yαi logni y + (exponential) (6.7)

for some finite m, with ni ∈ Z≥0 and ci, αi ∈ C with bounded Re (αi), then F (τ) can be
written as

F (τ) :=
∑

i |αi≥ 1
2

ci
∂ni

∂sni
Es(τ)

∣∣∣∣
s=αi

+ Fspec(τ) (6.8)

The Eisenstein series subtract the powers of yαi≥ 1
2 in a modular-invariant way to restore

square-integrability, such that Fspec(τ) ∈ L2(F) and hence admits a spectral decomposition.
Then since the zero mode of the Eisenstein series has no exponential terms in y, any
exponential terms in F0(y) must come solely from Fspec(τ).

We pause to briefly note a small subtlety. Taking F0(y) to be free of logs, as in
perturbative CFT applications, we have

Fspec,0(y) =
∑

i |αi< 1
2

ciy
αi −

∑
i |αi≥ 1

2

ciϕ(αi)y1−αi + (exponential) (6.9)

If the powers of y do not exactly cancel (and they need not), then Fspec,0(y) has, in addition
to the exponentials, spurious powers of y that are not present in F0(y) (and vice-versa).
In order to obtain these powers from the spectral integral Fspec(τ), one should shift the
spectral contour, picking up residues of spurious poles of {Fspec, Es} along the way.25 The
remaining spectral integral has the form of an inverse Mellin transform.

Finally, we comment on the range of the sum over m in (6.5). Here, unlike elsewhere
in this work, we use some mild input from holography: in particular, that the first non-
perturbative terms in the AdS5 × S5 effective action appear at 14-derivative order, via
D6R4 invariants and their superpartners. This may be seen as a fact about type IIB string

25If there is a finite number of such spurious poles, this shift incurs no residue at infinity. All examples
we know are of this type. This is very neatly exhibited by a certain class of solutions to inhomogeneous
Laplace equations appearing in perturbative string theory and N = 4 SYM correlators, as we recall in detail
in appendix B.
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theory, or as following on general grounds from on-shell constraints in theories of maximal
supergravity combined with the flat space limit of AdS5 × S5 [63, 64].

Summarizing and returning to our problem: the function f
(g,m)
np (s) contributes non-

perturbative terms (qq̄)n, plus a possible set of spurious poles. Moreover, since f (g,m)
np (s)

generates exponentials in y,

Λ(s)f (g,m)
np (s) ∼ Γ(|s|) (s→ ±∞) (6.10)

for every (g,m).
One more comment before moving on. Although above we discussed non-perturbative

contributions to the spectral overlap {O, Es} between a CFT observable and the Eisenstein
series, essentially identical considerations apply to the overlap with the Maass cusp forms,
(O, φn). In particular, the cusp forms do not enter the AdS5 × S5 effective action until
14-derivative order, and so (O, φn) is suppressed by a factor of 1/N3 compared to the
leading perturbative effect fp(s). Moreover, like fnp(s), the large N expansion of (O, φn)
must proceed in half-integer powers of N :

(O, φn) =
∞∑
g=0

N2−2g
∞∑
m=0

N−3−m2 (O, φn)(g,m). (6.11)

Indeed, in the concrete example of large N expansion of the integrated correlator FN (τ)
in the very strongly coupled limit in section 8.2, we will see that these two contributions
to the spectral overlap (fnp(s) and (O, φn)) are intertwined, as they descend from a
common modular invariant, the solution to the inhomogeneous Laplace equation described
in appendix B.

We now consider the two large N limits. It will prove beneficial to treat the ‘t Hooft limit
first, where consistency with the genus expansion will strongly constrain the allowed poles of
the overlap. For brevity, when referring to the non-perturbative part of (6.5) we sometimes
refer to fnp(s) without the (g,m) superscript, bearing in mind its large N expansion.

7 ‘t Hooft limit

The strategy to analyze the ‘t Hooft limit is clear: we substitute y = 4πN/λ in the spectral
decomposition (5.1) and analyze it at fixed λ, taking further perturbative λ� 1 or λ� 1
limits afterwards. We introduce a useful notation

λ̃ := λ

4π (7.1)

We safely ignore the cusp forms, which are suppressed as ∼ e−N in the ‘t Hooft limit.
Importantly, while we will generalize in due course (see section 7.4), we begin by setting

fnp(s) = 0 (7.2)

This turns off the non-perturbative terms ∼ (qq̄)n. We employ this strategy because
it leads to very strong constraints, and will allow us to cleanly identify signatures of
non-perturbative physics in the large N limit.
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In the ‘t Hooft limit, the zero mode of the completed Eisenstein series is

E∗s,0(y) = Λ(s)N sλ̃−s + (s→ 1− s) (7.3)

Plugging (7.3) and the overlap (6.5) into the spectral decomposition (5.1) gives

O0(λ) =

〈O〉+ 1
2πi

∫
Res= 1

2

ds
π

sinπss(1−s)
∞∑
g=0

N2−2g
(
Λ(s)λ̃−s+Λ(1−s)N1−2sλ̃s−1

)
f (g)

p (1−s)

(7.4)
The two terms under the integral are of a very different nature:

• The first term is manifestly consistent with the ‘t Hooft limit, and can be expanded
at weak or strong coupling, or evaluated at finite λ̃. At λ̃� 1, we deform to the left,
while at λ̃� 1, we deform to the right.

• The second term has an explicit N1−2s factor. Because we are taking the large N
limit, we are forced to deform to the right, for any λ̃.26 This generates two constraints
on f (g)

p (1− s):

1) Consistency with the genus expansion: for Re s > 1
2 , the poles of the

integrand must lie at s = 1
2 + m with m ∈ Z+. In particular, the sin πs poles

must be cancelled by zeros,

f (g)
p (s) = 0 , s ∈ Z− (7.5)

On the other hand, simple poles for half-integer s are allowed,

Res
s= 1

2−m

[
f (g)

p (s)
]
6= 0 , m ∈ Z+ (7.6)

In addition, Λ(1 − s) has a pole at s = 1, which contributes a constant term.
Taking this all into account, we have, for fixed λ̃,

O0(λ) =

〈O〉 − 1
2
∑
g=0

N1−2gf (g)
p (0)

− ∞∑
g=0

∞∑
m=1

N2−2g−2mϕ
(1

2 +m
)
R(g)
m λ̃m−

1
2

+ 1
2πi

∞∑
g=0

N2−2g
∫

Re s= 1
2

ds
π

sin πss(1− s)Λ(s)λ̃−sf (g)
p (1− s)

(7.7)

where we define a “residue function”

R(g)
m := Res

s= 1
2 +m

[
π

sin πss (1− s) Λ (s) f (g)
p (1− s)

]
(7.8)

We can now deform this as needed to develop perturbative expansions.
26Bearing in mind earlier remarks, we must ask whether the coefficient has a factorial divergence at s→∞,

thus generating potential non-perturbative corrections in N . We analyze this question in the next subsection.
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2) Consistency with the λ̃ � 1 expansion: these residues at s = 1
2 + m

generate allowed powers of 1/N , but multiplied by half-integer powers of λ̃,
plainly visible above. These terms are present for any fixed λ̃. They must cancel
contributions from the remaining integral when we go to weak coupling, λ̃� 1,
where only integer powers of λ̃ are allowed. Developing the λ̃� 1 expansion by
deforming (7.7) to the left, the offending terms are cancelled if and only if the
following condition on the residues is met:

ϕ
(1

2 +m
)

R(g)
m = R(g+m)

−m (7.9)

This intriguing condition relates perturbative data of different genera.

After the dust settles, we have the following weak coupling expansion

O0(λ� 1) ≈
∞∑
g=0

N2−2g
∞∑
m=1

(−1)m+1m(m+ 1)Λ
(1

2 +m

)
f (g)

p (1 +m) λ̃m (7.10)

In terms of the residue function,

O0(λ� 1) ≈
∞∑
g=0

N2−2g
∞∑
m=1

R(g)
−m− 1

2
λ̃m (7.11)

Note that the absence of log λ̃ terms, or any other non-integer powers of λ̃, requires
that f (g)

p (s) is regular for all Re s > 1
2 away from the half-integer poles appearing in the

cancellation condition (7.9). We have thus completely determined the structure of allowed
poles and zeros of f (g)

p (s).
The payoff of this work happens at strong coupling, λ̃� 1. Deforming the second line

of (7.7) to the right now, and applying the previous constraints on the polar structure of
f

(g)
p (s), yields the strong coupling expansion

O0 (λ� 1) ≈ C (N)−
∞∑
g=0

∞∑
m=1

N2−2g
(
N−2mϕ

(1
2 +m

)
R(g)
m λ̃m−

1
2 + R(g)

m λ̃−
1
2−m

)
(7.12)

The first term is a constant,

C(N) := 〈O〉 − 1
2

∞∑
g=0

N1−2gf (g)
p (0) (7.13)

The next group of terms are the terms described earlier, but in the strong coupling
expansion they do not cancel with anything. They may at first seem peculiar — a finite set
of positive powers of λ at each even power of 1/N — but they are precisely what is needed
for the renormalization of the 1/N expansion at strong coupling. As explained in [65], they
are, from the gravity point of view, the string theory regularization of loop-level divergences
in AdS5 × S5 supergravity, where g +m = L with L the loop level. Consistent with this,
they are 1/N2 suppressed compared to the leading order.27

27At N0, for example, (g,m) = (0, 1) gives a
√
λ term, which is precisely the regularization of one-loop

supergravity by R4 (and its superpartners) in AdS5 × S5. At 1/N2, (g,m) = (0, 2) is the regularization of
two-loop supergravity by D4R4, while (1, 1) is the regularization of one-loop supergravity corrected by the
tree-level R4 term. This pattern continues.
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What we are mainly interested in is the last group of terms, containing the conventional
genus sum over perturbative series in 1/λ̃. Only half-integer powers of λ̃ appear, a fact
which we have derived solely from consistency conditions on the weak coupling and genus
expansions. This expression contains much physics, which we analyze in stages, beginning
now with the implications for non-perturbative effects.

7.1 Non-perturbative effects implied by SL(2,Z)

In this subsection we derive a surprising result: as a direct consequence of S-duality,
the convergence of a weak coupling expansion at λ � 1 directly implies the existence
of non-perturbative corrections in both λ � 1 and in N � 1, with the precise non-
perturbative scales set by the weak coupling radius of convergence.

Non-perturbative corrections in λ. Let us here reproduce the λ� 1 expansion (7.11)
and the λ� 1 expansion (7.12) at fixed genus g, dropping terms in O(g)

0 (λ� 1) that do
not contribute asymptotically and writing the residue function in terms of f (g)

p (s):

O(g)
0 (λ� 1) = −

∞∑
m=1

(−1)mm (m+ 1) Λ
(1

2 +m

)
f (g)

p (1 +m) λ̃m

O(g)
0 (λ� 1) = −

∞∑
m=1

(−1)m π
(
m− 1

2

)(
m+ 1

2

)
Λ
(1

2 +m

)
Res

s= 1
2−m

[
f (g)

p (s)
]
λ̃−

1
2−m

(7.14)

This makes clear that the λ� 1 and λ� 1 convergence are determined by the |m| → ∞
asymptotics of f (g)

p (m) in opposite directions along R.
Suppose that the λ� 1 expansion is convergent, with radius of convergence |λ| ≤ λ∗.

This is the typical situation in planar N = 4 SYM. Planar combinatorics determine
λ∗ = π2 for generic O(τ) [66, 67], but for the sake of generality we will leave λ∗ explicit. At
m→ +∞,

Λ
(1

2 +m

)
≈ Γ(m+ 1)π

−m− 1
2

√
m

(m→∞) (7.15)

This implies that28

f (g)
p (m+ 1) ∼ Γ(m+ 1)−1

(
4π2

λ∗

)m
(m→∞) (7.16)

In particular, f (g)
p (x) decays factorially at large positive argument. We now make a technical

assumption, borne out by examples, that the |x| → ∞ limit of f (g)
p (x) commutes with

x→ −x.29 This in turn implies

Res
s= 1

2−m

[
f (g)

p (s)
]
∼ Γ

(
−m+ 1

2

)−1
(

4π2

λ∗

)−m
(m→∞) (7.17)

28Here and henceforth in this subsection, we use the symbol ∼ to denote the asymptotic behavior up to
multiplicative power law corrections and beyond.

29This is weaker than, but included in, the natural condition that f (g)
p (s) admit a uniform asymptotic

expansion for s ∈ C.
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We plug these into (7.14). For large positive integer m,

Γ(m+ 1)Γ
(
−m+ 1

2
)−1
∼ (−1)m4−mΓ(2m) (m→∞) (7.18)

Inserting into the strong coupling expansion (7.14), we see that the λ� 1 expansion diverges
double-factorially without alternating sign! This is a hallmark of Borel non-summability. A
summand scaling asymptotically as (

4π2λ

λ∗

)−m
Γ(2m) (7.19)

requires non-perturbative corrections in powers of e
− 2π√

λ∗

√
λ
. Therefore, the full expression

for the zero mode at λ� 1, perturbatively in 1/N , is

O0(λ� 1) =
∞∑
g=0

N2−2g
∞∑
n=0

e
− 2πn√

λ∗

√
λ
O(g)

0,n(λ) (7.20)

where O(g)
0,n(λ) dresses the n’th exponential correction by a perturbative series in 1/λ. The

purely perturbative n = 0 piece is given explicitly in (7.12), while the non-perturbative n > 0
terms are obtained by applying resurgence to O(g)

0,0(λ).
It is remarkable that the numerical factor in the exponent is determined by λ∗, the weak

coupling radius of convergence.30 For the canonical radius λ∗ = π2, the non-perturbative cor-
rections are in powers of e−2

√
λ.

Non-perturbative corrections in N . The exact same argument that led to (7.20) also
applies to the second term in (7.4). The contour deformation develops a formal series in
positive integer powers of λ/N2, which diverges double-factorially at s→∞ with the same
leading-order asymptotics. The previous analysis carries over, but with the substitution
λ̃→ N2/λ̃. This yields non-perturbative corrections to the ‘t Hooft limit, for fixed λ̃, in
powers of exp(− 8π2

√
λ∗

N√
λ

).
Thus, for an SL(2,Z)-invariant observable O(τ) with fnp(s) = 0 whose λ� 1 expansion

has radius of convergence λ∗, the ‘t Hooft expansion in 1/N for fixed λ receives non-
perturbative corrections exponentially small in N , of the following form:

O0(λ) =
∞∑
g=0

N2−2g
(
O(g)

0 (λ) +O(g)
0,np(N,λ)

)
(7.21)

where
O(g)

0,np(N,λ) =
∞∑
n=0

e
− 8π2n√

λ∗
N√
λ O(g)

0,np|n

(
N2

λ

)
(7.22)

O(g)
0,np|n

(
N2

λ

)
dresses the n’th exponential correction by a perturbative expansion in λ

N2 � 1.
The purely perturbative piece O(g)

0,np|0

(
N2

λ

)
was given in the first line of (7.7),

O(g)
0,np|0

(
N2

λ

)
= − 1

N

∞∑
m=1

ϕ

(1
2 +m

)
R(g)
m

(
4πN2

λ

) 1
2−m

(7.23)

30In principle λ∗ could depend on g, though we are not aware of any such examples. If this happens, one
should take λ∗ → λ∗,g in this formula.
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We will compute O(g)
0,np(N,λ) for O(τ) = GN (τ) by resurgence in the next subsection.31 Let

us stress once again that λ∗, the radius of convergence at weak ‘t Hooft coupling, controls
the strength of these non-perturbative corrections.

Nonzero modes. We can also include nonzero modes, i.e. instantons, suppressed expo-
nentially as (6.2) in the ‘t Hooft limit. In each k sector, one should expect a structure
like (7.21) — the sum of a perturbative (in N) piece and non-perturbative corrections of
the same general form as above — with an overall exponential suppression. A mechan-
ical calculation generalizing the previous subsections, now using the Bessel asymptotics
appearing in the nonzero modes, yields

Ok>0(y) = e−8π2kN
λ

∞∑
r=1

N
3
2−rOk,r(λ) (7.24)

where
Ok,r(λ) :=

∞∑
g=0

∞∑
m=1

∞∑
n=0

fg,m,n(λ; k) δ2g+m+n,r (7.25)

with

fg,m,n(λ; k) := −R(g)
m

σ2m(k)k− 1
2−m

Λ
(

1
2 +m

) an
(

1
2 +m

)
(8π2k)n λn (7.26)

where an
(

1
2 +m

)
is the Bessel function coefficient defined in (5.3). This represents the

perturbative 1/N expansion of Ok>0(y) at fixed λ. Only odd half-integer powers appear,
starting at

√
N . At a fixed order in 1/N , there is a finite number of terms. (7.24) may

receive further possible non-perturbative contributions in N , depending on whether the
asymptotics of Ok,r(λ) at r →∞ are Borel summable. We will not study this here.

7.2 Comments + string theory interpretation

The 1/N expansion of CFT observables is expected to be asymptotic. Our analysis shows
that for SL(2,Z)-invariant observables in N = 4 SYM or other SCFTs, not only is it
asymptotic, but non-perturbative corrections in N are necessary. This is clearly true if
fnp(s) 6= 0, which by definition introduces instanton-anti-instanton terms controlled by the
scale qq̄ ∼ exp(−16π2N

λ ). If, on the other hand, fnp(s) = 0, the analysis above shows that
there are still non-perturbative corrections, instead controlled by the scale ∼ exp(− 8π2

√
λ∗

N√
λ

).
It would be valuable to confirm the growth condition assumed in subsection 7.1, on which
these conclusions rely, in full generality.

Let us explain the physical nature of the non-perturbative scales. We take λ∗ = π2 here
to reduce clutter. In the ‘t Hooft limit, the Eisenstein zero mode generates two types of

31This is a slight abuse of notation since O(g)
0,np|0

(
N2

λ

)
is itself perturbative in N . This is the series on

which we perform resurgence to determine the n > 1, genuinely non-perturbative terms. Note that compared
to the computation of O(g)

0,n(λ), the two perturbative series to which we apply resurgence differ by a factor
of ϕ(s). This will slightly modify the details of the non-perturbative corrections, as we will see applied to
GN (τ) in subsection 7.3.
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terms in the integrand of (7.4). One term generates functions of λ at every genus g, including
terms at λ� 1 suppressed by integer powers of the square of a non-perturbative scale32

Λλ := exp
(
−
√
λ
)

(7.27)

The other term generates functions of N2/λ. This may be thought of as the worldsheet
coupling in what we call the S-dual ‘t Hooft limit:

N →∞ , λS = 16π2N

g2 fixed (S-dual ’t Hooft) (7.28)

In terms of λ,

λS = 16π2N2

λ
(7.29)

Given a sequence of N = 4 SYM theories parameterized by N , each of which enjoys an
SL(2,Z) invariance, one takes the S-dual ‘t Hooft limit by approaching large Yang-Mills
coupling as N →∞. From this point of view, the non-perturbative corrections in N that we
have derived are simply the S-dual of the non-perturbative corrections (7.20), now suppresed
by the square of a non-perturbative scale

ΛλS := exp
(
−
√
λS
)

(7.30)

Since λS ∝ N2 � 1 for any fixed λ, they are non-perturbative in N in the ordinary
‘t Hooft limit.

We can now understand the type IIB string theory duals of the various non-perturbative
corrections. The AdS/CFT dictionary includes the basic entry

√
λ = 1

α′
= 2πTF1 ,

√
λS = 1

α′gs
= 2πTD1 (7.31)

where TF1 and TD1 are fundamental string and D-string tensions, respectively, in AdS units.
Thus,

• Terms controlled by Λλ are fundamental string worldsheet instantons, with endpoints
on the AdS5×S5 boundary. In AdS units, the non-perturbative scale is Λλ = e−2πTF1 .

• Terms controlled by ΛλS are D-string worldsheet instantons, with endpoints on the
AdS5 × S5 boundary. In AdS units, the non-perturbative scale is ΛλS = e−2πTD1 .

• Terms controlled by qq̄ = e−16π2/gs are spacetime instanton-anti-instantons.

To summarize the main result in bulk terms, we have holographically argued for the non-
Borel summability of string perturbation theory on AdS5 × S5: the gs � 1 expansion
must be completed by spacetime instantons, D-string instantons, or both. This generalizes
previous observations about string perturbation theory in flat space [70, 71]. We also point
out previous studies of non-perturbative corrections to sphere free energies in ABJM theory
in the ‘t Hooft regime [72, 73].33

32We have chosen to write the corrections as the square of a non-perturbative scale in the spirit of [68]
(where the non-perturbative scale in Γcusp is interpretable as a mass gap of the O(6) sigma model) and of
various other applications of resurgence to quantum systems (see e.g. [69] for a recent discussion).

33Since the dual AdS4 × CP3 background solves type IIA, there are no D-strings.
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7.3 Integrated correlator III: ‘t Hooft limit and D-string instantons from
resurgence

Let us pause the formalism and apply everything so far to GN (τ). Recall that fnp,N (s) = 0.
In terms of the coefficients c(N)

s defined in (4.8), the relations (4.14) and (5.7) imply

fp,N (s) = 1
s(1− s)c

(N)
s (7.32)

The large N expansion of the coefficients c(N)
s was performed in [1]. Translating to current

notation,34

f (0)
p (s) =

22s−2(2s− 1)2Γ
(
s− 1

2

)
√
πsΓ(s+ 2)Γ(s)

f (1)
p (s) =

22s−6(2s− 1)2(s− 6)Γ
(
s− 3

2

)
3
√
πsΓ(s− 1)Γ(s)

f (2)
p (s) =

22s−11(2s− 1)2(5s2 − 47s+ 30)Γ
(
s− 5

2

)
45
√
πsΓ(s− 4)Γ(s)

f (3)
p (s) =

22s−15(2s− 1)2 (35s4 − 602s3 + 2749s2 − 4582s+ 1680
)

Γ
(
s− 7

2

)
2835

√
πsΓ(s− 6)Γ(s)

(7.33)

These obey the relations

f (g)
p (0) = −1

2δg,0

f (g)
p (s) = 0 , s ∈ Z−

(7.34)

The latter confirms (7.5), while the former implies that the constant term in (7.7) is

〈O〉 − 1
2

∞∑
g=0

N1−2gf (g)
p (0) = 〈O〉+ N

4 = N2

4 (7.35)

This is correct [1] (see also (8.5)).
In the’t Hooft limit, let us write35

GN (λ) =
∞∑
g=0

N2−2gG(g)
N (λ) (7.36)

The order N2 term is (now writing in terms of λ = 4πλ̃)

G(0)(λ) = 1
4 + 1

2πi

∫
Re s= 1

2

ds
π

sin πss(1− s)Λ(1− s)
(
λ

4π

)s−1
f (0)

p (s) (7.37)

34In [1], the “reflected” solution f (g)
p (1 − s) appearing in (6.5) was absent from the large N expansion

of the coefficients c(N)
s . This was fine for their purposes because the c(N)

s were only used in the integer-
index expansion (4.8), and f

(g)
p (1 − s) vanishes on all integers s ∈ Z>1, as one can confirm with the

expressions (7.33).
35The parameter g differs from our previous definition of the genus in (7.4) — here we group terms in

powers of 1/N , rather than associating the “renormalization terms” to a given genus (but see the comment
around (7.43) relating the two) — so as to allow simpler comparison to [1].
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Again, we emphasize a main point of our treatment: the spectral decomposition gives the
full result for any λ. In [1], it was shown that the (median) Borel resummation of the λ� 1
limit at g = 0 coincides with the following integral representation obtained by resumming
the convergent λ� 1 expansion:

G(0)(λ) = λ

4π2

∫ ∞
0

dww3 1F2
(

5
2 ; 2, 4;−w2λ

π2

)
sinh2w

(7.38)

Computing numerically for various values of λ, one can confirm that (7.37) and (7.38) are
equal for finite λ.

Let us next verify that contour deformation of (7.37) produces the correct physics at
λ� 1, both perturbatively and non-perturbatively. At g = 0, [1] finds

G(0)
N (λ) = 1

4 +
∞∑
n=1

b(0)
n λ−n−

1
2 , (7.39)

where

b(0)
n =

22−2nΓ
(
n− 3

2

)
Γ
(
n+ 3

2

)
Γ(2n+ 1)ζ(2n+ 1)

πΓ(n)2 (7.40)

At g = 1, [1] finds

G(1)
N (λ) = −

√
λ

16 +
∞∑
n=1

b(1)
n λ−n−

1
2 , (7.41)

where

b(1)
n = −

n2 (2n+ 11) Γ
(
n+ 1

2

)
Γ
(
n+ 3

2

)2
ζ (2n+ 1)

24π 3
2 Γ (n+ 2)

(7.42)

One easily confirms the match to (7.37) and its genus one counterpart. Notice the term
linear in

√
λ in (7.41). From our SL(2,Z)-based point of view, this should be thought of as

a renormalization term for genus zero — in other words, while it is of order N0, its origin is
the first term in (7.12) at g = 0, with R(0)

m determined in terms of f (0)
p (s) by (7.8). One can

indeed confirm the prediction of (7.12) for the relative coefficient of this renormalization
term to the λ−3/2 term in (7.39), which is

ϕ

(3
2

)−1
(4π)2 = −16b(0)

1 = 48ζ(3) , (7.43)

giving a nice confirmation of this point of view.
Beyond perturbation theory, G(g)

N (λ) also contains non-perturbative terms at λ � 1
precisely as predicted by our general treatment. From the λ� 1 expansion of G(g)(λ), one
finds a convergent expansion with λ∗ = π2. Therefore, we predict a non-Borel summable
λ � 1 expansion with non-perturbative corrections in powers of ∼ e−2

√
λ (dressed by

perturbative series in 1/λ). We can see this easily enough from the spectral integrand
of (7.37). At g = 0,

integrand of (7.37) =
(
π

3
2−s

sin πs(1− s)(2s− 1)2
)
λs−1

Λ(1− s)Γ
(
s− 1

2

)
Γ(s+ 2)Γ(s)

(7.44)
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At s → +∞, this behaves sub-factorially, but at s → −∞, it behaves double-factorially,
∼ λs(2|s|)!, with a relative alternating sign. At g = 0, the non-perturbative terms were
derived in [1] to be

G(0)
N,0 (λ)

∣∣∣
np
∝
∞∑
`=1

a`
(
2
√
λ
)1−`

Li`−1
(
e−2
√
λ
)

(7.45)

where a` ∈ Q. This expansion proceeds in powers of e−2
√
λ, confirming our general analysis.

Similar expressions were derived in [1] at g > 0.

D-string instantons from resurgence. We now derive the non-perturbative, D-string
instanton corrections to GN (τ) in the ‘t Hooft limit at fixed λ. As previously argued
at the end of section 7.1, the computation of the non-perturbative corrections to the ‘t
Hooft limit (i.e. in 1/N) at finite λ are related to those at λ → ∞ via resurgence of
asymptotic perturbative expansions that differ by simple replacements. In particular,
examining the second and third terms in (7.12), we see that we replace λ̃ → N2/λ̃ and
Λ(m+ 1

2)→ Λ(m) in the perturbative expansion. For convenience we introduce the rescaled
S-dual ‘t Hooft coupling

λ̃S := λS
4π = N2

λ̃
(7.46)

As in section 7.1, we denote36 by G(g)
0,np|n(λ̃S) the part of the N2−2g term that admits a

purely perturbative expansion in λ̃−1
S around e−2n

√
λS . We will focus on the non-perturbative

corrections to the g = 0 part in order to illustrate the general idea. At g = 0, the leading
term is given by

G(0)
0,np|0(λ̃S) = 1

N

∞∑
n=1

B̂(0)
n λ̃

1
2−n
S , (7.47)

where

B̂(0)
n = Λ (n)

Λ
(
n+ 1

2

) b
(0)
n

(4π)
1
2 +n

=
4−2nπ−1−nΓ

(
n− 3

2

)
(2n+ 1)

Γ (n) Γ (2n+ 1) ζ(2n). (7.48)

This series is manifestly double-factorially divergent. To proceed, we follow [1] in their
analysis of the resurgence of the strong-coupling expansion, and define the following modified
Borel transform

B
[
G(0)

0,np|0

]
(ξ) :=

∞∑
n=1

B̂
(0)
n

Γ (2n+ 1) ζ (2n)ξ
2n = 2w2 (4w2 − 3

)
√
π
√

1− w2
, w := ξ

4
√
π
. (7.49)

We note the presence of the branch cut on the positive real ξ axis, which signals that the
original asymptotic series (7.47) was not Borel summable.

36Really we should be writing (GN )(g)
0,np|n, but we are suppressing the subscript N in an effort to keep the

notation manageable.
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The Borel summation one would have naively liked to define is given by37

Ĝ(0)
0,np|0

?= t2

N

∫ ∞
0

dξ

4 sinh2( tξ2 )
B
[
G(0)

0,np|0

]
(ξ), t :=

√
λ̃S, (7.50)

but this is not well-defined due to the branch cut. Thus there are ambiguities in the Borel
resummation, reflecting the need for new non-perturbative terms. We will proceed by
applying median resummation as in [1]. In order to apply the median resummation, we will
need to consider the directional Borel resummation(

Ĝ(0)
0,np|0

)
θ

= t2

N

∫ eiθ∞

0

dξ

4 sinh2( tξ2 )
B
[
G(0)

0,np|0

]
(ξ). (7.51)

This defines an analytic function in the wedge Re(eiθt) > 0 of the complex t plane with
the same perturbative expansion as (7.47). The necessary non-perturbative corrections are
captured by the discontinuity, given by the difference between the lateral resummations(
Ĝ(0)

0,np|0

)
disc

=
[(
Ĝ(0)

0,np|0

)
+
−
(
Ĝ(0)

0,np|0

)
−

]
= t2

N

∫ ∞
0

dξ

4 sinh2( tξ2 )
DiscB

[
G(0)

0,np|0

]
(ξ),

(7.52)
where for a CFT observable O with Borel transform B[O](ξ), the lateral resummations are
defined in terms of the directional resummation as

Ô± := lim
θ→0±

Ôθ (7.53)

and
DiscB[O](ξ) = B[O](ξ + i0)− B[O](ξ − i0). (7.54)

The median resummation is obtained by adding the resummation discontinuity to one of
the lateral resummations

Ômed := Ô± ∓
1
2Ôdisc (7.55)

The non-perturbative corrections are then captured by the following integral(
Ĝ(0)

0,np|0

)
disc

= 2t2
N

∫ ∞
0

dw

sinh2 (2
√
πtw)

Disc
(
w2 (4w2 − 3

)
√

1− w2

)

= 4it2
N

∫ ∞
1

dw

sinh2 (2
√
πtw)

w2 (4w2 − 3
)

√
w2 − 1

.

(7.56)

To parse this, we expand the sinh2 factor in the denominator and shift the integration
variable to get(

Ĝ(0)
0,np|0

)
disc

= 16it2
N

∞∑
k=1

ke−4
√
πtk
∫ ∞

0
du e−4

√
πtku (u+ 1)2 (4(u+ 1)2 − 3

)√
u(u+ 2)

= 2i
π
√
λSN

∞∑
k=1

2k
√
λS(3 + k2λS)K0(2k

√
λS) + (6 + 5k2λS)K1(2k

√
λS)

k2 .

(7.57)
37To see this, note that

∫∞
0

dξ

4 sinh2( tξ2 )
ξ2n = ζ(2n)Γ(2n+ 1)t−2n−1.
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where we re-inserted t =
√
λ̃S. This captures the perturbative expansions around each

non-perturbative contribution e−2k
√
λS as predicted by the analysis of section 7.1, since

Kn(x) ∼
√

π
2xe
−x (1 +O(x−1)

)
as x� 1.

The result (7.57) gives the non-perturbative corrections we are after. They are dual to
AdS5×S5 D-string instanton corrections to GN (τ). We can anyway proceed to compute the
full median resummation by adding this discontinuity to one of the lateral resummations as
in (7.55) to obtain the following manifestly real result(

Ĝ(0)
0,np|0

)
med

= t2

N

∫ ∞
0

dξ

4 sinh2( tξ2 )
ReB

[
G(0)

0,np|0

]
(ξ)

= 2t2
N

∫ 1

0

dw

sinh2(2
√
πtw)

w2(4w2 − 3)√
1− w2

.

(7.58)

The latter integral can actually be done in closed form in terms of special functions.
One finds(
Ĝ(0)

0,np|0

)
med

= 1
3N

∞∑
k=1

[ 1
2k

(
−k
√
λS

(
8k2

π
λS + 9I1

(
2k
√
λS
))

+ 6
(
3 + k2λS

)
I2
(
2k
√
λS
)

+ 9k
√
λSL1

(
2k
√
λS
)
− 6

(
3 + k2λS

)
L2(2k

√
λS)

)]
,

(7.59)
where In(x) is the modified Bessel function, and Ln(x) is the modified Struve function,
defined as the solution to the inhomogeneous differential equation

x2L′′n(x) + xL′n(x)− (x2 + n2)Ln(x) =
4
(
x
2
)n+1

√
πΓ
(
n+ 1

2

) . (7.60)

The median resummation (7.59) reproduces the perturbative expansion (7.47) and includes
non-perturbative corrections implied by the non-Borel summability of the perturbative series.

7.4 The general result: restoring instanton-anti-instanton effects

Let us now consider a general spectral overlap (6.5), in which fnp(s) 6= 0. This reintroduces
instanton-anti-instanton pairs in the 1/N expansion. How does this affect the physics in
the ‘t Hooft limit?

The strong coupling expansion when fnp(s) = 0 is given in (7.12). There is something
striking about that equation: only half-integer powers of 1/λ appear! Therefore, for
SL(2,Z)-invariant observables O(τ),

Integer powers of 1/λ are allowed in the strong ‘t Hooft coupling expansion
if and only if fnp(s) 6= 0.

This is a simple diagnostic of non-perturbative physics.38 It is straightforward to unveil
the mechanism for this by retracing our steps, and to derive modified expansions. Now

38In fact, this must also be true at finite N , else the large N limit would be trivial. We restate and apply
this to N = 4 SYM anomalous dimensions in section 9.
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including fnp(s), the zero mode in the ‘t Hooft limit becomes

O0(λ) =

〈O〉+
∞∑
g=0

N2−2g
[

1
2πi

∫
Res= 1

2

ds
π

sinπss(1−s)
(
Λ(s)λ̃−s+Λ(1−s)N1−2sλ̃s−1

)
f (g)

p (1−s)

+
∞∑
m=0

N−3−m2
1

2πi

∫
Res= 1

2

dsΛ(1−s)N1−sλ̃s−1f (g,m)
np (s)

]
(7.61)

With fnp(s) 6= 0 the condition (7.5) is no longer required for consistency with the genus
expansion: any integer powers of 1/N generated by the poles of the sin πs factor can
now be cancelled by residues of fnp(s).39 Equating integer powers of N and λ̃ yields the
linear relation

Res
t=s

[
f (g,m)

np (t)
]

= (−1)s+1s(1− s)f (g)
p (1− s) , m = 2(s− 3) , s ∈ Z≥3 (7.62)

When f (g,m)
np (s) = 0, we recover (7.5).

Other similar effects of f (g,m)
np (s) are also straightforward to obtain by contour deforma-

tion of (7.61), following the logic outlined at the beginning of section 7. In particular, (7.9)
is modified to include a contribution from f

(g,m)
np (s); and spurious poles of f (g,m)

np (s) can
contribute new “renormalization terms” — generalizing those in (7.12) — which have both
integer and half-integer powers of λ̃.

After all is said and done, the most general strong coupling expansion may be written
as follows:

O(λ� 1) ≈ C(N)−
∞∑
g=0

N2−2g
∞∑
m=0

(
a(g)
m λ−

3+m
2 +N−2−2m b(g)

αmλ
αm
)

(7.63)

The first term is a constant, now of the form

C(N) = 〈O〉 − 1
2

∞∑
g=0

N2−2g
(
N−1f (g)

p (0) +N−3
∞∑
m=0

N−
m
2 f (g,m)

np (0)
)

(7.64)

Plugging in for the ensemble average 〈O〉 leads immediately to some very interesting
conclusions, which we defer to section 10.

The second term is the perturbative strong coupling expansion, now including both
half-integer and integer powers, the latter being nonzero iff f

(g,m)
np (s) 6= 0, cf. (7.62). In

terms of the residue function defined in (7.8),

a(g)
m = (4π)

3+m
2 R(g)

m
2 +1. (7.65)

In writing (7.63), we have used the result (7.8) that R(g)
1/2 = 0 (i.e. there is no s = 1 pole).

The third term is the sum of 1/N renormalization effects described earlier. αm is an
index, which is summed over in (7.63), taking values in a set of non-negative half-integers

39These are what we referred to as “spurious” poles earlier.
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bounded above by m. The allowed values of αm may be enumerated by combining (7.61)
with consistency of the genus expansion.40 The coefficients b(g)

αm can likewise be written in
terms of fp(s) and residues of f (g,m)

np (s), but this is not terribly enlightening: unlike when
fnp(s) = 0, where the renormalization terms in (7.12) were related by SL(2,Z) to the weak
coupling expansion and hence determined in terms of fp(s), the residues of spurious poles
of f (g,m)

np (s) are a priori unconstrained.
How does f (g,m)

np (s) 6= 0 change the non-perturbative worldsheet instanton physics
derived in subsection 7.1? On the one hand, the perturbative λ � 1 and λS � 1 series
still must diverge double-factorially. Indeed, the earlier argument implies sign-definite
double-factorial growth for the integer and half-integer series independently. On the other,
that argument does not tell us these series’ relative sign. Therefore, Borel summability may
or may not hold, and F - and D-string worldsheet instantons may or may not be required.
A specific Borel summable example is the planar “octagon”, O(z, z̄) [76–83]. This is related
to a certain BPS four-point function, A(z, z̄) ∼ [O(z, z̄)]2, in a limit of large BPS charge;
we refer the reader to the references for definitions. Analysis of the λ � 1 expansion of
the planar octagon based on the determinant formula of [79] finds integer powers of 1/λ,
and therefore fnp(s) 6= 0, but the expansion is Borel summable [83], with asymptotically
alternating signs.41

8 Very strongly coupled limit

We have seen in the previous section that consistency with the ‘t Hooft expansion places
stringent constraints on the analytic structure of the perturbative part of the spectral
overlap of large N N = 4 SYM observables. Here we will see how these constraints carry
over to the structure of the expansion of these observables in the very strongly coupled
(VSC) limit of large N and fixed complexified coupling, cf. (6.4).

Mimicking section 7, we will start by assuming for the moment (though we will
generalize) that there are no instanton-anti-instanton contributions to O(τ), in particular
that fnp(s) = 0. We will also assume (O, φn) = 0. In this case, recall that the spectral
decomposition is given by the following in the large N limit:

O(τ) = 〈O〉+
∞∑
g=0

N2−2g 1
2πi

∫
Re s= 1

2

ds
π

sin πss(1− s)N
−sf (g)

p (1− s)Λ(s)Es(τ). (8.1)

40One can further constrain this by feeding in known facts about the type IIB string effective action
at low orders in α′, combined with the structure of the AdS5 × S5 compactification. Let us also remark
that αm = 0 should be understood as signifying powers of log λ. That these may be present in N = 4
SYM observables is suggested by the existence of non-analytic threshold terms in 10D flat space scattering
amplitudes, appearing there as powers of log(sα′) (e.g. [74, 75]). The significance of the reorganization
in (7.63) of the usual 1/N expansion — which collects all terms of a given power in 1/N , as opposed to the
expansion (7.63) which falls out from S-duality considerations — would be nice to explore further.

41Interestingly, the planar octagon receives non-perturbative corrections in λ despite its Borel summability;
our analysis herein implies that the AdS5 × S5 fundamental string worldsheet instanton effects, colorfully
depicted in [82], should be accompanied by equally colorful D-string worldsheet instantons. It would be nice
to apply the present techniques to expose the rich non-perturbative physics of the octagon.
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Upon taking into account the conditions on the spectral overlap when fnp(s) = 0 that were
derived in section 7, contour deformation leads to the following large N expansion in the
VSC limit:

O(τ) =

〈O〉 − 1
2

∞∑
g=0

N1−2gf (g)
p (0)

− ∞∑
g=0

∞∑
m=1

N
3
2−2g−mR(g)

m E 1
2 +m(τ), (8.2)

where the residue function R(g)
m is defined in (7.8). We pause here to emphasize that

the large N limit and the spectral decomposition do not commute — since the spectral
decomposition gives the exact CFT observable at any N , it is important that one performs
the spectral decomposition first, and takes the large N limit afterwards. We see in (8.2)
that order-by-order in 1/N , the observable O(τ) is written in terms of Eisenstein series
with order greater than 1

2 , which are not themselves square-integrable and do not admit a
non-trivial spectral decomposition. As a corollary, the modular (ensemble) average and the
large N limit do not commute: at each order in 1/N , the modular average diverges.

In the case that fnp(s) and (O, φn) are non-vanishing, the spectral decomposition (8.1)
is augmented by new terms to become

O(τ) = 〈O〉+
∞∑
g=0

N2−2g 1
2πi

∫
Res= 1

2

ds
π

sinπss(1−s)N
−sf (g)

p (1−s)Λ(s)Es(τ)

+
∞∑
g=0

∞∑
m=0

N−1−2g−m2

(
1

4πi

∫
Res= 1

2

dsf (g,m)
np (s)Λ(s)Es(τ)+

∞∑
n=1

(O,φn)(g,m)φn(τ)
)
.

(8.3)
As discussed in section 7.4, in the presence of non-perturbative effects the constraint that
f

(g)
p (s) = 0 for s ∈ Z− is relaxed; instead, f (g)

p (s) and f (g,m)
np (s) are related for s ∈ Z− as

in (7.62). This allows integer powers of 1/N to appear in the large N expansion in the VSC
limit, leading to

O(τ) =

〈O〉− 1
2

∞∑
g=0

N1−2gf (g)
p (0)

− ∞∑
g=0

∞∑
n=2

N
3
2−2g−n2 R(g)

n
2
En+1

2
(τ)

+
∞∑
g=0

∞∑
m=0

N−1−2g−m2

(
1

4πi

∫
Res= 1

2

dsf (g,m)
np (s)Λ(s)Es(τ)+

∞∑
n=1

(O,φn)(g,m)φn(τ)
)
.

(8.4)
The non-perturbative spectral overlaps f (g,m)

np (s) exhibit growth in the |s| → ∞ limit that
forbids deforming the spectral contour to infinity as is done with fp(s); this is ultimately
why they lead to non-perturbative physics in the weak-coupling limit. They may, however,
have a finite number of spurious poles at positive integer values of s in the right half s-plane,
with residues that are related to the perturbative part via (7.62), which is required for
consistency of the weak-coupling expansion.

The terms on the second line of (8.3) can, in general, generate modular invariants
that are much more complicated than the Eisenstein series; an example which appears at
integer powers of 1/N in the integrated correlator of [22, 24] that we study in section 8.2 is
described in detail in appendix B.
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8.1 Example: GN(τ )

Here we apply this formalism to study the integrated correlator GN (τ). Since this observable
is free of non-perturbative effects, we need only the perturbative overlaps, which are given
up to genus three in (7.33). This data is enough to compute GN (τ) up to order N− 11

2 in
the VSC limit. Computing the residues that appear in (8.2), we find explicitly

GN (τ) =
N2

4 −
3
24N

1
2 Ẽ 3

2
(τ)+ 45

28N
− 1

2 Ẽ 5
2
(τ)+3N− 3

2

(1575
215 Ẽ 7

2
(τ)− 13

213 Ẽ 3
2
(τ)
)

+225N− 5
2

(441
218 Ẽ 9

2
(τ)− 5

216 Ẽ 5
2
(τ)
)

+63N− 7
2

(1575
215 Ẽ 11

2
(τ)− 44625

225 Ẽ 7
2
(τ)+ 73

222 Ẽ 3
2
(τ)
)

+945N− 9
2

(31216185
231 Ẽ 13

2
(τ)− 41895

226 Ẽ 9
2
(τ)+ 1639

227 Ẽ 5
2
(τ)
)

+33N− 11
2

(1220198104125
238 Ẽ 15

2
(τ)− 12033511875

236 Ẽ 11
2

(τ)+ 61486425
234 Ẽ 7

2
(τ)− 109447

232 Ẽ 3
2
(τ)
)

+O(N− 13
2 ),

(8.5)
where

Ẽs(τ) := χ(s)Es(τ) (8.6)

for
χ(s) := 2Λ(s)

Γ(s) . (8.7)

This precisely agrees with the large N expansion of this integrated correlator previously
found by other methods in [1, 21]. The structure of the large N expansion of GN (τ) cleanly
reifies the prior analysis and confirms the prediction (8.2).

8.2 Example with non-perturbative effects: FN(τ )

We now explore the spectral decomposition of the other integrated correlator of [22, 24]
as a more non-trivial working example in which (as we will see) both fnp(s) and the cusp
form overlap are nonzero. This observable is computed by integrating the O20′ four-point
function over Euclidean space weighted with the following supersymmetric measure [24]

FN (τ) := −32c2

π

∫ ∞
0

dr

∫ π

0
dθ r3 sin2 θ

(1 + u+ v

u2

)
D̄1,1,1,1(u, v)TN (u, v; τ)− 48ζ(3)c,

(8.8)
where c = N2−1

4 , the cross ratios u, v are given in terms of r, θ as in (4.2) and D̄1,1,1,1 is a
scalar box integral given by

D̄1,1,1,1(u, v) = 1
z − z̄

(
log(zz̄) log 1− z

1− z̄ + 2 Li2(z)− 2 Li2(z̄)
)
, (8.9)

where u = zz̄ and v = (1− z)(1− z̄).
Like GN (τ), this integrated correlator is a protected observable that can be obtained by

taking derivatives of the sphere free energy in the N = 2-preserving mass-deformed theory,

FN (τ) = ∂4
m logZS4(τ ;m)

∣∣∣
m=0

(8.10)
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The large N expansion of this integrated correlator at fixed coupling was worked out
in [22] as42

FN (τ) = 6N2+6N
1
2 Ẽ 3

2
(τ)+C0−

9
2N
− 1

2 Ẽ 5
2
(τ)− 27

23N
−1F̃3; 3

2 ,
3
2
(τ)

+N−3/2
(117

28 Ẽ 3
2
(τ)− 3375

210 Ẽ 7
2
(τ)
)

+N−2
(
C1+ 14175

704 F̃6; 5
2 ,

3
2
(τ)− 1215

88 F̃4; 5
2 ,

3
2
(τ)
)

+N−5/2
(675

210 Ẽ 5
2
(τ)− 33075

212 Ẽ 9
2
(τ)
)

+N−3
[
α3F̃3; 3

2 ,
3
2
(τ)

+
∑

r=5,7,9

(
αrF̃r; 3

2 ,
3
2
(τ)+βrF̃r; 5

2 ,
5
2
(τ)+γrF̃r; 7

2 ,
3
2
(τ)
)]

+O(N−
7
2 )

(8.11)
where F̃ is the solution to the inhomogeneous Laplace equation studied in appendix B
rescaled as follows

F̃r;s1,s2(τ) = χ(s1)χ(s2)Fr;s1,s2(τ), (8.12)

Ẽs(τ) is given in (8.6) and αr, βr, γr, Ci are constants written down in [22].
From the structure of the large N expansion of FN (τ) in (8.11) some novel features

are already apparent. The first is that, compared to the large N expansion of GN (τ) given
in (8.5), we see that there are integer powers of 1/N in addition to the half-integer powers.
The reason for this is as anticipated by the previous discussion: the non-perturbative
contribution to the spectral overlap, fnp(s), is non-vanishing! Thus f (g)

p (s) is no longer
required to vanish on the negative integers, and integer powers of 1/N can appear. While,
similarly to GN (τ), the coefficients of the half-integer powers of 1/N are the familiar
Eisenstein series of half-integer order, we see that the coefficients of the integer powers
of 1/N involve the solutions to the inhomogeneous Laplace equation studied in detail in
appendix B. In particular, this implies that the overlap of FN (τ) with the Maass cusp forms
is nonzero. To summarize, from the large N expansion (8.11) we conclude that

fnp(s) 6= 0
(FN , φn) 6= 0, n = 1, 2, . . .

(8.13)

Since the large N overlaps are simply the expansion of the finite-N overlaps viewed as
functions of N , (8.13) holds at finite values of N as well. Remarkably, because the cusp
forms enter via the solutions to the inhomogeneous solutions to the Laplace equation, the
cusp form overlap (FN , φn) is actually computable, at least in a 1/N expansion, in terms of
certain L-functions associated with the cusp forms.

42In [22], this result was phrased in terms of the function Er;s1,s2 (τ), which is related to the function that
appears below and in appendix B as

Er;s1,s2 (τ) = 4ζ(2s1)ζ(2s2)Fr;s1,s2 (τ) = πs1+s2 F̃r;s1,s2 (τ).
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The VSC limit of the spectral decomposition of FN has the following general structure

FN (τ) = 〈FN 〉+
∞∑
g=0

N2−2g
[

1
2πi

∫
Re s= 1

2

ds
π

sin(πs)s(1− s)N
−sf (g)

p (1− s)E∗s (τ)

+
∞∑
m=0

N−3−m2

(
1

4πi

∫
Re s= 1

2

ds f (g,m)
np (s)E∗s (τ) +

∞∑
n=1

(FN , φn)(g,m)φn(τ)
)]
(8.14)

We will now provide each element of this decomposition by matching to (8.11). At first it
is not clear how the inhomogeneous functions in (8.11) fit into this framework. The key is
to think of these functions themselves in the spectral, rather than Fourier, decomposition.

We begin by discussing the perturbative part f (g)
p (s). The novel feature compared to

GN (τ) is that f (g)
p (s) need no longer vanish for s ∈ Z−. Indeed, the spectral decomposition

of the inhomogeneous solutions have Eisenstein series in their spectral expansion (see
appendix B):

Fr;s1,s2(τ) = Es1+s2(τ)
µ(s1 + s2)− µ(r + 1) + ϕ(s2)E1−s2+s1(τ)

µ(1− s2 + s1)− µ(r + 1) + (spectral)

Fr;s,s(τ) = E2s(τ)
µ(2s)− µ(r + 1) −

2ϕ(s)Ê1(τ)
µ(r + 1) + (constant) + (spectral),

(8.15)

where recall that µ(s) = s(1 − s). The function Ê1(τ), discussed in further detail in
appendix B, is extracted from the s→ 1 behavior of Es(τ),

Ê1(τ) := lim
s→1

(
Es(τ)− 3

π(s− 1)

)
(8.16)

The integer-order Eisenstein series that appear via the spectral decomposition of Fr;s1,s2
(cf. (8.15)) at integer powers of 1/N in (8.11) are realized as the residues of πs(1−s)sin(πs) f

(g)
p (1−

s)E∗s (τ) at s ∈ Z+. It will be convenient to split up f (g)
p (s) as follows

f (g)
p (s) = f

(g)
p,Z+ 1

2
(s) + f

(g)
p,Z(s), (8.17)

where the product of f (g)
p,Z(1− s) and f (g)

p,Z+ 1
2
(1− s) with sin(πs)−1 contributes residues at

positive integer and half-integer values of s, respectively, upon contour deformation. In
particular, f (g)

p,Z+ 1
2
(1− s) must vanish for s ∈ Z+.

To get a feeling for how this works, let us work out the genus-zero contributions to the
perturbative part of the spectral decomposition as explicitly as possible. The half-integer
powers of 1/N in (8.11) are consistent with

f
(0)
p,Z+ 1

2
(1− s) =

42−s(2s− 1)(2s+ 3)Γ(3
2 − s)√

πsΓ(2− s)Γ(3− s) (8.18)

so that
1

2πi

∫
Res= 1

2

ds
π

sin(πs)s(1−s)N2−sf
(0)
p,Z+ 1

2
(1−s)E∗s (τ)

=−10N+N1/2 6Ẽ3/2 (τ)−N−1/2 9
2Ẽ5/2 (τ)−N−3/2 3375

210 Ẽ7/2 (τ)

−N−5/2 33075
212 Ẽ9/2 (τ)+O

(
N−7/2

)
.

(8.19)
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We note the presence of the O(N) term which is not present in (8.11) and thus must be
cancelled by something. Similarly, although we have not been able to guess its functional
dependence on s explicitly, the genus-zero contribution f (0)

p,Z(s) must give the following

1
2πi

∫
Re s= 1

2

ds
π

sin (πs)s (1− s)N2−sf
(0)
p,Z (1− s)E∗s (τ)

= −N
f

(0)
p,Z (0)

2 −N−1
27χ

(
3
2

)2

8 E3 (τ)−N−2
135χ

(
3
2

)
χ
(

5
2

)
128 E4 (τ)

−N−3

6885χ
(

5
2

)2

4096 +
42525χ

(
7
2

)
χ
(

3
2

)
16384

E5 (τ) +O(N−4).

(8.20)

The non-perturbative contributions to the spectral overlap in (8.11) are actually quite
straightforward to work out given our knowledge of the spectral decomposition of the
solutions to the inhomogeneous Laplace equation as in appendix B. For example, from (8.11)
we can read off

Λ(s)f (0,0)
np (s) = −27

23

K̃1−s, 32 ,
3
2

µ(s) + 12

Λ(s)f (0,2)
np (s) =

( 14175
704(µ(s) + 42) −

1215
88(µ(s) + 20)

)
K̃1−s, 52 ,

3
2
,

(8.21)

where K̃s,s1,s2 is given in (B.11).
Similarly, the overlap of FN (τ) with the Maass cusp forms can be written in terms

of the Clebsch-Gordan coefficient given in equation (B.7) describing the triple product
between two Eisenstein series and a cusp form. In particular, we have

(FN , φn)(0,0) = −27
23

K̃n
3
2

3
2

µn + 12

(FN , φn)(0,2) =
( 14175

704(µn + 42) −
1215

88(µn + 20)

)
K̃n

5
2 ,

3
2
,

(8.22)

where K̃n
s1,s2 is given in (B.12).

9 Interlude: non-perturbative effects in anomalous dimensions at
finite N

A main point of section 7.1 was to demonstrate how strongly the non-perturbative corrections
at large N are constrained by SL(2,Z) symmetry. Among other things, we discovered
that integer powers of 1/λ in the strong ‘t Hooft coupling expansion — equivalently,
integer powers of 1/N in the VSC expansion — necessarily imply instanton-anti-instanton
corrections in powers of qq̄, order-by-order in 1/N . Somewhat obviously, that result implies
the existence of non-perturbative corrections at finite N :

If O(τ) contains integer powers of 1/λ in the strong ‘t Hooft coupling expansion,
then O(τ) receives non-perturbative, instanton-anti-instanton corrections at finite N .
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The logic is simply that in the spectral formulation, the qq̄ corrections at large N appear
via nonzero f (g,m)

np (s) in the spectral overlap, and the f (g,m)
np (s) are the large N expansion of

the finite N function fnp(s). One can thus rigorously deduce the existence of qq̄ corrections
at finite N from data at large N .43

We now apply this to the spectrum of conformal dimensions of gauge-invariant
local operators:

O(τ) = Spec(D)(τ) (9.1)
where D is the dilatation operator of N = 4 SYM. The italicized result above may be
used to prove that unprotected operator dimensions receive non-perturbative, instanton-anti-
instanton corrections at finite N .

Let us assemble some ingredients. Local operators, eigenstates of D in radial quantiza-
tion, are specified by their quantum numbers under the maximal bosonic subgroup of the
N = 4 superconformal algebra PSU(2, 2|4): namely, a conformal dimension ∆(τ), Lorentz
spins (j1, j2), and an SU(4)R representation with Dynkin labels [p1 p2 p3], with pi ∈ Z≥0. As
BPS-protected dimensions are constant in τ , we may restrict our discussion to unprotected
operators.44

By S-duality, the spectrum of the dilatation operator is SL(2,Z) invariant:

Spec(D)(γτ) = Spec(D)(τ) , γ ∈ SL(2,Z) (9.2)

Introducing a shorthand for the SU(2, 2)× SU(4)R quantum numbers

Q := {(j1, j2); [p1 p2 p3]} (9.3)

we introduce the grading
D =

⊕
Q

DQ (9.4)

acting on the Hilbert space of states on S3. In a sector of fixed charge Q, the spectrum
may be ordered by increasing conformal dimension,

Spec (DQ) =
{

∆(1)
Q ,∆(2)

Q ,∆(3)
Q , . . .

}
, ∆(1)

Q < ∆(2)
Q < ∆(3)

Q < . . . (9.5)

where these inequalities hold for all τ ∈ F .45 Each ∆(i)
Q (τ) admits a spectral decomposition.

Let us first prove the desired result for the lightest scalar singlet, generalizing to the
rest afterwards. (We use the ‘t Hooft limit, but the VSC limit is equally applicable.) To
simplify notation, we write, following [84, 86],

∆0(τ) := ∆(1)
{(0,0);[000]}(τ) (9.6)

43One may imagine that the corrections could kick in only above some N∗, or vanish for a sporadic set
of integers N . On the other hand, the corrections cannot vanish for all integer N unless the large N limit
exhibits oscillations in N ; this seems pathological, but can at any rate be assessed on a case-by-case basis.

44For more details on N = 4 superconformal representation theory, see e.g. [84, 85]. For modern bootstrap
results for N = 4 SCFTs at finite N , see e.g. [84, 86–90].

45In writing this, we have employed the standard assumption that any accidental degeneracies which arise
at some τ are resolved, such that level crossings are avoided. Strictly speaking, this remains an expectation
rather than a bulletproof fact about N = 4 SYM. However, there are arguments for it [91], and it is
compatible with (but does not assume) general lore about the structure of Regge trajectories in CFTs. Our
discussion may be suitably generalized to account for possible complexities.
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In the ‘t Hooft limit,

∆0(τ) = 2 + γ
(0)
0 (λ) + γ

(1)
0 (λ)
N2 +O

( 1
N4

)
(9.7)

At λ� 1, ∆0(τ) may be identified with the dimension of the Konishi operator, ∆K(τ). As
the coupling increases, ∆0(τ) transitions to the dimension of the scalar singlet double-trace
operator [O20′O20′ ] of leading twist — in particular, γ(0)

0 (λ� 1) = 2 (up to non-perturbative
1/λ corrections). Thus, to deduce non-perturbative corrections of ∆0(τ), it suffices to identify
the 1/λ asymptotics of the double-trace anomalous dimension. Taking

∆0(τ) = 4 + γ
(1)
0 (λ)
N2 +O

( 1
N4

)
(λ� 1) , (9.8)

the anomalous dimension γ(1)
0 (λ) obeys [92]

γ
(1)
0 (λ) = −16 +

γ
(1)
(0,0)

λ3/2 +
γ

(1)
(1,0)

λ5/2 +
γ

(1)
(0,1)
λ3 + . . . (λ� 1) (9.9)

The notation (9.9) signals the fact that γ(1)
0 (λ) may be efficiently extracted from the

connected four-point function 〈O20′O20′O20′O20′〉, which admits a 1/λ expansion in crossing-
symmetric polynomials (dual to AdS5×S5 quartic vertices) labeled by two integers (a, b) ≥ 0;
this is simply the original analysis of [93], with an N = 4 superconformal dressing.46 In
particular, the coefficient γ(1)

(0,1), fixed by (a scalar superpartner of) the non-vanishing D6R4

vertex in AdS5 × S5, is nonzero. By the logic at the start of this section, this means that
fnp(s) 6= 0 for ∆0(τ) at finite N , and therefore ∆0(τ) receives qq̄ corrections, concluding
the proof.

The above language is intentionally agnostic about any Lagrangian identification of
the operators themselves: we should not ask, non-perturbatively, what an operator is
“made of”. However, at infinitesimal coupling, we do know what operators these dimensions
are describing: the departure from the free fixed point turns on infinitesimal anomalous
dimensions for the operators of free N = 4 SYM. We noted above that ∆0(τ) is identified
with ∆K(τ) in a neighborhood of weak coupling. Accordingly, we note what our result implies
for the Konishi dimension per se: since the qq̄ corrections are non-perturbative near y →∞,
precisely the region where ∆0(τ) = ∆K(τ), the Konishi dimension receives non-perturbative

46A lightning review is as follows. After processing N = 4 superconformal Ward identities and stripping
R-symmetry polarizations, the unprotected part of 〈O20′O20′O20′O20′〉 is determined by an undressed
scalar four-point function. In Mellin space, this so-called “reduced” correlator admits an expansion [94, 95]

M(s, t) = Msugra(s, t) +
∑
a,b=0

λ−3/2−a−3b/2M(a,b)(s, t)

where M(a,b)(s, t) = σa2σ
b
3 + . . ., where σn := sn + tn + un and . . . represents lower powers of s, t, u. The

coefficients γ(1)
(a,b) follow from the conformal block expansion of M(s, t). Note that the terms M(a,b) are

holographically generated by scalar superpartners of the D2kR4 contact terms in the quartic gravitational
effective action of classical string theory on AdS5 × S5, with the relation 2k = 4a+ 6b. See [23, 96–102] for
a tranche of computations of double-trace anomalous dimensions at strong coupling.
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qq̄ corrections to its weak coupling expansion. For context and self-containedness, let us
assemble all previously-known perturbative data about ∆K(τ). We expand the Fourier
modes ∆K,k(y) in powers of qq̄ as

∆K,k(y) =
∞∑
n=0

∆(n)
K,k(y) (qq̄)n (9.10)

For the zero mode, the perturbative expansion is known47 through four loops [104–106]

∆(0)
K,0(y) = 2+ 3N

π
y−1− 3N2

π2 y−2+ 21N3

4π3 y−3+ N4

4π4 y
−4
(
−39+9ζ(3)−45ζ(5)

(1
2 + 6

N2

))
+. . .
(9.11)

For the nonzero modes, direct instanton computations [9] give the leading 1-instanton term

∆(0)
K,1(y) = − 27κN

5π2(N2 − 1)y
−2 + . . . , where κN :=

2Γ(N − 1
2)

√
πΓ(N − 1) (9.12)

for finite N , and the leading k-instanton term

∆(0)
K,k(y) ∼ −54π−5/2

N3/2 k−7/2σ2(k) y−2 + . . . (N →∞) (9.13)

for large N . Prior to this work, the status of ∆(n>0)
K,k (y) was unknown. The result that we

have proven here is that, for some range of finite N ,

∆(n≥0)
K,k (y) 6= 0 . (9.14)

Computing these explicitly is an attractive target for N = 4 SYM instanton calculus.
This result for ∆0(τ) generalizes to the complete spectrum of unprotected operator

dimensions ∆(i)
Q (τ). The point is that the unprotected spectrum of planar N = 4 SYM at

λ� 1 consists solely of multi-trace composites of BPS single-trace operators. So a version
of the above argument suffices to establish the existence of qq̄ corrections in general. We
demonstrate this generalization with the entire leading even-spin Regge trajectory in the
SU(4)R-singlet sector,

∆`(τ) := ∆(1)
{( `2 , `2);[000]} , ` ∈ 2Z≥0 (9.15)

The λ � 1 operator representatives are the SU(4)R-singlet double-trace operators
[O20′O20′ ]0,`, of twist four and spin `, so

∆`(τ) = 4 + `+ γ
(1)
` (λ)
N2 +O

( 1
N4

)
(λ� 1) . (9.16)

These are the leading-twist members of the larger class [O20′O20′ ]n,`, of twist 4 + 2n and
spin `. The M(a,b)(s, t) term of the four-point correlator contributes to bounded even spins
` ≤ 2a+ 3b, and all n. Thus, for fixed `, the same leading integer power of 1/λ turns on

47Recall that y = 4π/g2. Note that the analytic expansion of ∆K,0(y) in the planar limit is known through
11 loops [103].
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for all n, while for fixed n, an integer power of 1/λ turns on at sufficiently high spin ` [93].
Therefore, applying our earlier logic, ∆`(τ) receives non-perturbative qq̄ corrections for all `.
And in analogy to the ` = 0 case, the λ� 1 representatives are the “twist-two” single-trace
superconformal primary singlets, one for each spin ` — therefore, all twist-two anomalous
dimensions receive qq̄ corrections.48

We may unify the above findings in terms of the leading even-spin Regge trajectory,
with Reggeon spin j(ν). The dimension of the trajectory, ∆(ν) := ∆(j(ν)), obeys

∆(ν) = 2± iν (9.17)

where ν depends on y. All even-spin twist-two operators live at points j(ν) ∈ 2Z≥0 on this
trajectory. Our conclusion is that the entire trajectory receives qq̄ corrections. Decomposing
∆(ν) in Fourier modes ∆k(ν),

∆k(ν) =
∞∑
n=0

∆(n)
k (ν) (qq̄)n , ∆(n≥0)

k (ν) 6= 0 (9.18)

The extension to double-trace operators [OpOp] of other half-BPS operators Op in the
[0 p 0] representation for p > 2, or to K-trace operators, proceeds along identical lines using
bulk 2K-point contact interactions. These mix with the [O20′O20′ ]n,` operators for n > 0
analyzed above [98], which complicates the explicit form of the eigenfunctions of D, but the
method of proof is the same, and should lead likewise to qq̄ corrections for the subleading
Regge trajectories.49

10 AdS5 × S5 supergravity is ensemble-averaged string theory

This section may be read independently of those before.
Our starting point is equation (7.63), the most general perturbative λ� 1 expansion

consistent with SL(2,Z) invariance of an observable O(τ). Let us reproduce it here:

O(λ� 1) ≈ C(N)−
∞∑
g=0

N2−2g
∞∑
m=0

(
a(g)
m λ−

3+m
2 +N−2−2m b(g)

αmλ
αm
)

(10.1)

The coefficients a(g)
m and b(g)

αm , independent of N and λ, take explicit forms in terms of
residues of the perturbative and non-perturbative pieces — denoted f (g)

p (s) and f (g,m)
np (s),

respectively — of the spectral overlap {O, Es} at genus g, written in (6.5). The a(g)
m terms

generate the usual 1/λ expansion, while the b(g)
αm terms are “renormalization terms” that

cut off divergences in the 1/N expansion at large λ [65] (see subsection 7.4 for details).
Their explicit forms are not important here. However, the function C(N), constant in λ,
is important:

C(N) = 〈O〉 − 1
2

∞∑
g=0

N2−2g
(
N−1f (g)

p (0) +N−3
∞∑
m=0

N−
m
2 f (g,m)

np (0)
)

(10.2)

48The four-loop anomalous dimension for twist-two operators was recently computed in [107].
49These conclusions apply to all unprotected operator dimensions modulo the (to us) unlikely logical

possibility that for some privileged subclass of unprotected multi-trace operators, integer powers do not
appear at any order in 1/λ.
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〈O〉 is the ensemble average with respect to the Zamolodchikov measure. Let us simplify
this expression. By definition,

〈O〉 = Res
s=1

[
Λ(1− s){O, Es}

]
= 1

2

∞∑
g=0

N2−2g
(
f (g)

p (1) +N−1f (g)
p (0) +N−3

∞∑
m=0

N−
m
2 f (g,m)

np (0)
) (10.3)

where we used the general form of the spectral overlap (6.5). This simplifies the constant
C(N) considerably, yielding the expansion

O(λ� 1) =
∞∑
g=0

N2−2g
(

1
2f

(g)
p (1) +

∞∑
m=0

(
a(g)
m λ−

3+m
2 +N−2−2m b(g)

αmλ
αm
))

(10.4)

In particular, the leading-order contribution to the average (10.3) at genus g,

〈〈O(g)〉〉 := lim
N→∞

N2g−2〈O(g)〉 = 1
2f

(g)
p (1) , (10.5)

furnishes the entire constant term in (10.4) at every genus:

O(λ� 1) =
∞∑
g=0

N2−2g
(
〈〈O(g)〉〉+

∞∑
m=0

(
a(g)
m λ−

3+m
2 +N−2−2m b(g)

αmλ
αm
))

(10.6)

This is a remarkable expression. It is the usual sum over genera, expanded in 1/λ (and
renormalized) at every genus, with one key property: the strong coupling limit is simply the
ensemble average! Focusing on leading order in large N , we therefore conclude that

O(λ→∞) = 〈O〉 (10.7)

Since the 1/λ expansion is, by the AdS/CFT correspondence, dual to the low-energy
expansion of classical type IIB string theory around the supergravity limit, this is equivalently
stated as

Osugra = 〈O〉 (10.8)

In other words, an observable in classical type IIB supergravity is simply the classical limit
of its SL(2,Z) ensemble average over type IIB string moduli space.

Let us exhibit this equivalence for the integrated correlator GN (τ). At large N and
large λ [16],

GN (λ� 1) ≈ N2

4
(
1 +O

(
λ−3/2

))
(N � 1, λ� 1) (10.9)

On the other hand, (4.18) implies

〈GN 〉 ≈
N2

4 (N � 1) (10.10)

So indeed, GN, sugra = 〈GN 〉 at large N .
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The extension of this correspondence to all orders in 1/N is manifest from (10.6). The
constant term at genus g is the large N limit of the genus-g average:

O(g)(λ→∞) = 〈〈O(g)〉〉 (10.11)

Holographically, the λ→∞ limit of O(τ) at genus g is dual to the (g−g∗)-loop supergravity
result, where we define g∗ to be the leading non-trivial genus at which O(τ) is nonzero.
So (10.8) extends to all genera as

O((g−g∗)-loop)
sugra = 〈〈O(g)〉〉 (10.12)

Since the quantity 〈〈O(g)〉〉 is finite, the supergravity computation at each order in GN ∼
1/N2 is to be understood as regularized by the string scale cutoff. As noted earlier, this is
exactly the role of the b(g)

αm terms, dual to local counterterms in AdS5 × S5 implementing
the string theory regularization of gravitational UV divergences.50

It is important to remember that the large N limit and the ensemble average do not
commute: one must take the ensemble average of O(τ) first. For one, the order-by-order
average of the 1/N expansion is formally divergent: the modular functions appearing in
the 1/N expansion of O(τ) are not square-integrable, as discussed around (8.2); indeed,
even integrating them once against the hyperbolic measure gives a divergence. What is
more, attempting to bypass this issue by applying standard regularization techniques to
these formally divergent quantities yields incorrect results. This is clearly on display for
the integrated correlator GN (τ), studied earlier. One may write it formally as a sum of
integer-index Eisenstein series E∗s (τ), as in (4.8). In the usual regularization (oft-employed
in string theory) à la Zagier [53], 〈E∗s 〉 → 0. But regularizing (4.8) this way gives half of
the correct result, 〈GN 〉 = N(N − 1)/4. On a more physical level, non-commutativity is
also visible in the fact that 〈O〉 generically contains a term suppressed by 1/N , but the
genus expansion proceeds in powers of 1/N2.51

To recapitulate, we have discovered that AdS5 × S5 supergravity is, simultaneously,
the classical limit of ensemble averaged type IIB string theory, and the low-energy limit
of classical type IIB string theory, with the analogous statements for N = 4 SYM implied
by holography.

The traditional holographic paradigm is left intact — individual N = 4 SYM theories
are dual to full type IIB string theory on AdS5 × S5, sans ensemble averaging — while
nevertheless, as seen in other holographic dualities in lower dimensions, an ensemble average
does generate a simple bulk dual, which in this case is AdS5×S5 supergravity. The ensemble
average here is literal, a well-defined integration over a conformal manifoldM, equivalently,
a string moduli space. And indeed, the resulting theory is extremal: having specified an
N = 4 superconformal gauge theory, the large N averaged CFT has the largest possible

50We note in passing that SL(2,Z) invariance appears to select a certain renormalization scheme — that
is, the freedom to add finite counterterms at each order 1/N — such that the renormalized (g − g∗)-loop
bulk computation matches the specific quantity 〈〈O(g)〉〉 defined by conformal manifold integration.

51This term is the “S-dual” of the leading, O(N2) term. Its origin is not obvious from the bulk point of
view. Perhaps it should be understood using D-branes.
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spectral gap consistent with the symmetries, given by the infinite-coupling limit of the
microscopic planar CFT.

This result also provides new strategies for deriving supergravity observables from
N = 4 SYM. Instead of computing O(τ) in the planar limit as a function of λ and taking
λ → ∞, one could compute the average 〈O〉 as a function of N and take N → ∞. It is
conceivable that the latter is computationally simpler, requiring coarse-grained information
at every N , whereas the former, traditional approach requires complete control over strong ‘t
Hooft coupling dynamics. Intriguingly, it is also true that the supergravity/strong coupling
result is very closely related to the weak coupling expansion. In particular, the weak
coupling expansion of O(λ)−O(0), where O(0) is the free result, is given in (7.10). Writing
it in simpler notation as

O(λ)−O(0) =
∞∑
g=g∗

N2−2g
∞∑
m=1

c(g)
m (O)λm (λ� 1) (10.13)

and comparing to (10.4), one observes that the supergravity result is simply the analytic
continuation of the perturbative expansion coefficients:

Osugra = − lim
m→0

c(g∗)
m (O) (10.14)

This is a tantalizing, and more mysterious, sense in which the strong coupling dynamics are
directly encoded in the weak coupling expansion, beyond the usual tenets of integrability
or resurgence.

What is the broader meaning of this for holography? It is natural to posit that this
paradigm extends beyond the N = 4 SYM/AdS5 × S5 duality to other string/M-theory
compactifications. The general point of view is that in the large N limit, automorphic
averages over U-duality symmetries of string theory, i.e. ensemble averages over generalized
S-dualities in CFT, localize onto extremal points in the moduli space. We defer further
comments on this and other implications for AdS/CFT to section 12.

Comment on modularity of string states. One reading of (10.4) is that any planar
observable O(τ) which diverges as λ → ∞ cannot be SL(2,Z) invariant. From the CFT
point of view, this includes anomalous dimensions of all operators which become single-
trace at large N , e.g. twist-two operators. These dimensions are not non-perturbatively
well-defined for all τ , so one should not — and as we verify from a symmetry perspective,
must not — treat them as SL(2,Z) invariant. From the bulk point of view, one may ask
how the SL(2,Z) symmetry of string theory acts on stringy states. They are not SL(2,Z)
invariant, but one would like to characterize the representation of SL(2,Z), e.g. whether it
is finite- or infinite-dimensional. The latter seems more likely, perhaps with the size of the
representation controlled by λ. It is also unclear (to us) whether all states whose masses
scale with α′ mix under SL(2,Z), or whether (say) “short string” states with ∆ ∼ λ1/4 and
“semiclassical” states [108] with ∆ ∼

√
λ are distinguished by the action of SL(2,Z).
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11 Statistics of the SL(2,Z) ensemble

Motivated by the large N equivalence between averages and supergravity, we turn to the
statistics of the SL(2,Z) ensemble. This will allow us to quantify the extent to which
supergravity approximates an individual member of the SL(2,Z) ensemble at large N .

11.1 Higher moments of CFT observables

We have seen that the spectral decomposition of S-duality-invariant observables O(τ) in
N = 4 SYM cleanly distinguishes the ensemble average over the conformal manifold with
respect to the Zamolodchikov measure.52 In particular, the spectral decomposition O(τ)
encodes the deviation from the ensemble average 〈O〉, which we call Ospec(τ):

O(τ) = 〈O〉+Ospec(τ). (11.1)

A natural question is the extent to which more intricate statistics of observables in the
SL(2,Z) ensemble are captured by their spectral overlaps.

For example, the variance of an observable in the SL(2,Z) ensemble,

V(O) := 〈O2〉 − 〈O〉2 , (11.2)

is given by the modular (ensemble) average of O2
spec(τ):

V(O) = 〈O2
spec〉 = vol(F)−1

∫
F

dxdy

y2 O
2
spec(τ) = Res

s=1
Rs[O2

spec]. (11.3)

Although the RS transform on the right-hand side of this equation could be computed
directly by integrating the triple products of eigenfunctions using the Clebsch-Gordan
coefficients of [43, 53, 109] (and reviewed in appendix B), there is a shortcut. The ensemble
average of O2

spec(τ) can be written in terms of the Petersson inner product of Ospec(τ)
with itself,

〈O2
spec〉 = vol(F)−1(Ospec,Ospec) , (11.4)

which can be evaluated using Parseval’s identity, leading to the following elegant formula
for the variance in terms of the spectral overlaps of O(τ):

V(O) = vol(F)−1
(

1
4πi

∫
Re s= 1

2

ds |(O, Es)|2 +
∞∑
n=1

(O, φn)2
)

(11.5)

Thus the second moment of Ospec(τ) integrated over the fundamental domain F is equal
to the second moment of the spectral overlaps. Given the convergence properties of the
spectral integral in the decomposition of O(τ) itself, this manifestly converges. We note
that the variance (11.5) is non-vanishing for any CFT observable with a non-trivial spectral
decomposition — which is to say, for any CFT observable that varies non-trivially on the
conformal manifold.

52From now on, every reference to the ensemble average assumes the Zamolodchikov measure unless
otherwise noted.
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For example, the variance of the integrated correlator GN (τ) in the SU(2) theory is
easily computed from its spectral decomposition as

V(G2) = vol(F)−1

4πi

∫
Re s= 1

2

ds

(
π

sin(πs)s(1− s)(2s− 1)2
)2

Λ(s)Λ(1− s) ≈ 0.0214690

(11.6)
Recall that the average of G2(τ) over the conformal manifold is given by 〈G2〉 = 1

2 .
The higher moments of Ospec(τ) are not simply given by the corresponding higher

moments of the spectral overlaps. For example, the fourth moment 〈O4
spec〉 is proportional to

the inner product (O2
spec,O2

spec), whose computation via the Parseval identity would involve
the projections (O2

spec, Es) and (O2
spec, φn). The latter can be evaluated by integrating the

triple products of appendix B weighted by spectral overlaps, but in particular they are
not simply given by the square of the overlaps (O, Es) and (O, φn). For example, even
if (O, φn) = 0, it is not necessarily true that (O2

spec, φn) = 0. This is due to the nonzero
triple product Kn

s1,s2 given in equation (B.7), which reflects the fact that the product of
Eisenstein series has cusp forms in its spectral decomposition. These overlaps are written
explicitly in (12.3).

11.2 The variance at large N

Here we will study the contribution of |(O, Es)|2 to the variance in the large N expansion.
One expects on general principles that the variance V(O) is suppressed compared to the
squared average 〈O〉2 at large N , and we will see explicitly that this is indeed the case.

We will start by considering the perturbative part, i.e. setting fnp(s) = 0. Since the
variance involves the second moment of the full spectral overlap (O, Es) (rather than the
rescaled overlap {O, Es}), it will be convenient to define

f(g)p (s) := π

sin πss(1− s)Λ(s)f (g)
p (s) (11.7)

so that the large N expansion of the spectral overlap can be written as

(O, Es) =
∞∑
g=0

N2−2g
(
N s−1f(g)p (s) + ϕ(s)−1N−sf(g)p (1− s)

)
. (11.8)

On the critical line Re s = 1
2 , we then have the following expansion of the squared spec-

tral overlap:

|(O,Es)|2 =
∞∑

g1,g2=0
N4−2(g1+g2)

[
N−1f(g1)

p (1−s)f(g2)
p (s)+N−2sϕ(s)−1f(g1)

p (1−s)f(g2)
p (1−s)+(s→ 1−s)

]
.

(11.9)
Assuming that O(τ) starts at g = 0 (the generalization to g∗ > 0 is obvious), the leading
contributions to the variance in the 1/N expansion are thus given by∫

Re s= 1
2

ds |(O, Es)|2 = 2N3
∫

Re s= 1
2

ds f(0)
p (s)f(0)

p (1− s)

+ 2
∫

Re s= 1
2

dsN4−2sϕ(s)−1f(0)
p (1− s)f(0)

p (1− s) + . . . ,
(11.10)
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where the . . . denote higher-genus contributions whose 1/N suppression is manifest. The
first term is of order N3, with manifestly positive coefficient. The spectral contour for the
second term must be deformed to the right. The poles of the integrand for Re s > 1

2 , in
order of increasing Re s, include a simple pole at s = 1, a double pole at s = 3

2 (double
because f

(0)
p (1− s) appears squared), and others with Re s > 3

2 . The simple pole at s = 1
gives an order N2 term, while the double pole at s = 3

2 gives order N logN and order N
terms. Using the definition of f(g)p (1− s) and the relation

Res
s=1

[Λ(s)Λ(1− s)] = π

12 (11.11)

one finds

V(O) = N3
(

vol(F)−1

2πi

∫
Re s= 1

2

ds f(0)
p (s) f(0)

p (1− s)
)
− N2

4
(
f (0)

p (0)
)2

+O(N logN)

(11.12)

As we note in the following subsection, the 1/N expansion is asymptotically divergent.
Since the average is of order N2, we thus conclude that the variance is parametrically

suppressed at large N :
V(O)
〈O〉2

∼ 1
N
. (11.13)

An identical suppression holds if the leading contribution to O(τ) enters at higher genus
g∗ > 0. In that case, one would have V(O) ∼ N3−4g∗ and 〈O〉2 ∼ N4−4g∗ .

As an example, let’s again study the variance of the integrated correlator GN (τ) (which
recall has the special property that fnp(s) = 0), now at large N . The genus-zero contribution
to the variance is given to leading order in 1/N by

V(GN ) ≈ 3N3

2π2

∫ ∞
−∞

dt
16πt2 csch2(πt)ζ(−2it)ζ(2it)

4t2 + 9 + . . . , (11.14)

where we used f
(0)
p (s) from (7.33) and the . . . denote both contributions that are subleading

at genus zero (i.e. the terms on the second line of (11.10)) and the parametrically suppressed
contributions from higher genera. This can be evaluated to give

2π2

3N3V(GN ) ≈ 0.115551 . (11.15)

We can check this against the exact brute force evaluation of V(GN ) at large but finite
values of N . In figure 3 we plot the result of direct numerical integration of |(GN , Es)|2 for
N ≤ 107. The result nicely confirms (11.15).

The 1/N suppression of the variance is a quantitative measure of the sense in which
(super)gravity is self-averaging: in any typical member of the SL(2,Z) ensemble at large N ,
observables O(τ) are well-approximated by their supergravity values, Osugra. This may be
compared to recent discussions of “apparent ensemble averaging” in holographic duality —
where moduli are either not present, or fixed and identified between the bulk and boundary
— in which gravity is said to reliably compute those quantities which are self-averaging
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Figure 3. A plot of 2π2

3N3V(GN ) as a function of N for N ≤ 107. This matches well onto large N
asymptotics (11.15).

in the large N random matrix theory that ostensibly governs black hole microstates (i.e.
it computes large N limits of smooth functions of N which well-approximate the actual,
discrete sequences at large integer N) [110]. The relation between gravity and averaging
derived in our work, where the averaging is over couplings, is different. Both appear to be
true for N = 4 SYM/AdS5 × S5 holography.

One might ask how the re-introduction of non-perturbative qq̄ physics would modify the
discussion here. From (8.3) we see that the non-perturbative contributions to the spectral
overlap fnp(s) are suppressed by a factor of N−3 compared to the leading perturbative
effects, as required by consistency with the AdS5 × S5 effective action (as we describe in
section 6). They would thus give contributions subleading in 1/N compared to (11.10),
and would not affect the suppression (11.13). The same argument applies to cusp form
contributions (O, φn) 6= 0. Therefore, the 1/N suppression derived above is robust.

11.3 Non-perturbative corrections to the variance

We now show that, if the λ� 1 expansion of O(τ) converges, the large N variance receives
non-perturbative corrections in N , with strength controlled by the radius of convergence of
the λ� 1 expansion, precisely analogously to the non-perturbative effects in the ‘t Hooft
limit treated in section 7.1. In particular, we will see that these corrections appear at
every genus.

The basic logic is the same as that described in section 7.1 in the ‘t Hooft limit. Let us
again start by suppressing qq̄ contributions, setting fnp(s) = 0. It is convenient to grade
the perturbative contributions to the variance by the total genus g = g1 + g2, so that

V(O) =
∞∑
g=0

N4−2gV(g)(O) (11.16)
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where

V(g)(O) = vol(F)−1

2πi

g∑
g1=0

[
1
N

∫
Re s= 1

2

ds f(g1)
p (s)f(g−g1)

p (1− s)

+
∫

Re s= 1
2

dsN−2sϕ(s)−1f(g1)
p (1− s)f(g−g1)

p (1− s)
] (11.17)

As derived in the previous subsection, the first term in (11.17) enters at a fixed order in
1/N , while contour deformation of the second term to Re s > 1

2 furnishes an expansion in
powers of 1/N . This sum is badly divergent. To see this, recall our previous result (7.17)
(subject to an assumption) on the factorial growth of the residues of the perturbative part
of the spectral overlap at negative odd half-integer values of s, and that fp(s) carries an
additional factor of Λ(s) compared to fp(s). Together these imply that the integrand of the
second line of (11.17) diverges quadruple-factorially. When the genera are equal, 2g1 = g,
this is manifestly sign-definite and hence non-Borel summable. In particular, this is true of
the leading contribution in 1/N at g = 0 (or, more generally, at g = g∗).53 Assuming (7.17),
we then have the following asymptotic growth of the terms in the perturbative expansion
in (11.17), up to factors sub-exponential in s:

N−2sϕ(s)−1f(g1)
p (1− s)f(g−g1)

p (1− s) ∼ Γ(4s)
(

8π 3
2
√
N√

λ∗

)−4s

(s→∞). (11.18)

Recall that λ∗ is the radius of convergence of the λ � 1 expansion of O(τ). Thus we
conclude that the non-Borel summability of the original perturbative series (11.17) implies
the existence of non-perturbative corrections at large N in powers of exp(−8π3/2√N√

λ∗
). For

the radius of convergence λ∗ = π2 that is canonical in planar N = 4 SYM, these non-
perturbative effects proceed in powers of Λ2

N where

ΛN := e−4
√
πN . (11.19)

Combining perturbative and non-perturbative effects, and using the canonical λ∗ = π2 for
simplicity, the variance of a CFT observable in N = 4 SYM thus has the following structure
at large N

V(O) =
∞∑
g=0

N4−2g
(
V(g)

p (O) + V(g)
np (O)

)
(11.20)

where V(g)
p (O) is the 1/N expansion derived by contour deformation of (11.17) and54

V(g)
np (O) =

∞∑
n=1

e−8n
√
πNV(g)

np|n(O). (11.21)

53Beyond the leading genus, sign-definiteness is guaranteed only if the s→∞ asymptotics of f (g)
p (1− s)

have the same sign for all g. This is borne out in the examples we study in this paper, but we do not have a
proof of this.

54This is slightly schematic. Note that the combination f
(g1)
p (1− s)f(g−g1)

p (1− s) in (11.17) generically has
double poles, so the perturbative expansion splits into two series, one with powers N−1−2m and another with
powers N−1−2m logN . Thus there are really two towers of non-perturbative corrections due to non-Borel
summability of these perturbative series.
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V(g)
np|n(O) admits a purely perturbative expansion in 1/N around the nth exponential

correction, and is obtained by resurgence of the perturbative terms in V(g)
p (O).

How does the analysis in this section change if one allows for non-perturbative qq̄
contributions to the spectral overlap? It is straightforward to check that a nonzero fnp(s)
leads to additional large N series in (11.17) proceeding in half-integer powers of 1/N
(descending from a cross-term between fp(1− s) and fnp(s)) whose coefficients grow more
slowly than quadruple-factorially, so the non-perturbative contributions identified in this
section survive the presence of nonzero fnp(s). Whether the cusp forms give their own
non-perturbative contributions to the variance cannot be determined analytically in general,
but any such terms would leave the genus zero sector unaffected, as discussed in the
previous subsection.

To summarize, we have seen that at large N there are non-perturbative corrections to
the variance at fixed orders in the genus expansion due to non-Borel summability of the
perturbative expansion in 1/N , with a non-perturbative scale (11.19) that is independent
of the genus. There is also the sum over genera, which may generate yet further non-
perturbative corrections. These are beyond the scope of this work but are an interesting
target for future work on non-perturbative effects in N = 4 SYM and the SL(2,Z) ensemble.

12 Remarks on the AdS/CFT paradigm

Sections 10 and 11 lend a new perspective on planar N = 4 SYM at strong ‘t Hooft
coupling, its holographic duality with type IIB supergravity on AdS5 × S5, and the role of
ensemble averaging. In a snippet: ensemble averages capture strongly coupled physics, and
holography is fine. Here we make some further comments, and some speculations, on the
implications for the AdS/CFT Correspondence.

12.1 Wormholes in moduli space and emergent averaged holographic duality

The results of sections 10 and 11 have interesting interpretations relating to the role of
connected configurations with multiple disjoint boundaries, i.e. spacetime wormholes, in
the conventional holographic paradigm, in which a complicated, UV-complete theory of
quantum gravity is dual to a unique (possibly supersymmetric) quantum-mechanical theory
without gravity.

In recent years, a new paradigm involving low-dimensional holographic dualities has
emerged. There has been a significant accumulation of evidence that certain simple theories
of AdS quantum gravity in two and three bulk spacetime dimensions are dual not to unique
quantum-mechanical boundary theories but rather to ensembles of such theories. The
prototypical example of this paradigm is Jackiw-Teitelboim gravity [111–113], a theory
of two-dimensional dilaton gravity which, along with a broad class of generalizations and
deformations, has recently been shown to admit a non-perturbative completion in terms
of a random matrix integral [25, 26, 114–116]. More recently, a new averaged holographic
duality in three spacetime dimensions has been proposed between the ensemble average
of Narain’s family of free boson CFTs with respect to the Zamolodchikov measure on the
conformal manifold and an exotic bulk theory whose perturbative dynamics are equivalent
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to abelian Chern-Simons theory supplemented by a non-perturbative instruction to sum
over certain bulk geometries [27, 28, 117–120].

Spacetime wormholes play an important role in these dualities, whereupon observables
with multiple distinct boundaries do not factorize. On the other hand, in conventional
holographic dualities, multi-boundary observables must factorize; even if there are multi-
boundary wormhole solutions that are actually stable within string theory55 at finite α′,
their contribution to physical observables in the bulk dual of individual members of the
ensemble must be cancelled by some stringy mechanism. We want to understand how
this picture is informed by our fundamental bulk result, ascertained holographically from
S-duality of N = 4 SYM, that semiclassical type IIB supergravity in AdS5 × S5 is both a
low-energy limit and an SL(2,Z) average of type IIB string theory.

We can phrase the question in the following way. The large N equivalence 〈O〉 = Osugra
suggests a gravitational manifestation of the SL(2,Z) ensemble statistics at large N . How
much does semiclassical AdS5 × S5 string theory “know” about these statistics?

One may probe the SL(2,Z) ensemble statistics by computing the set of higher moments
of O(τ), as we did in section 11, which leads us directly to wormholes. The bulk prescription
for computing products of boundary observables O(τ) is to study multi-boundary topologies,
with an appropriate boundary condition for bulk fields at each asymptotic infinity. Since
the large N average over each individual N = 4 SYM ensemble can be recast as a strong
coupling limit, one is then led to ask whether wormholes — i.e. contributions to the bulk
path integral of connected bulk topology — appear in the multi-boundary string theory
calculation. To be clear, our goal here is not to show that wormholes strictly dominate
the semiclassical AdS5 × S5 theory: products of boundary observables do factorize, and
strongly coupled N = 4 SYM is noisy [121, 122]. Our goal is to understand whether and
why wormholes appear as part of the (unaveraged) semiclassical bulk theory, and how they
do so in a manner consistent with UV completeness.

Consider the squared observable O(τ)O(τ). In section 11, we saw that any O(τ) that
depends non-trivially on τ has a nonzero variance V(O) in the SL(2,Z) ensemble, with a
simple expression in terms of the spectral overlaps given in (11.5). The product O(τ)O(τ) is
computed by considering two copies of N = 4 SYM, corresponding to two boundaries of the
bulk spacetime. For any fixed τ , the squared observable manifestly (tautologically) factorizes
as the product. However, an ensemble average overM would induce correlations between
the two boundaries, leading to the nonzero variance (11.5) (and to non-vanishing connected
correlations more generally). Our view is that the large N equivalence 〈O〉 = Osugra points
to a role for wormholes semiclassically in AdS5 × S5, without sacrificing factorization.

To explain further, we find it instructive to refer to other works on this topic in two
bulk dimensions [29, 123–127]. A common thread in these works is the identification of
additional saddles in the gravitational path integral that are responsible for factorization.
Remarkably, in some circumstances these saddles coexist with the wormhole saddles while
retaining a semiclassical description. A name that has been given to these effects is “half-

55We are not aware of any existence statements in the literature. Stability is, of course, harder to establish
than instability.
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Figure 4. Coupling-dependent observables O(τ) have nonzero variance in the SL(2,Z) ensemble.
This correlation may be represented by a “wormhole” in an abstract space containing two copies of
the N = 4 SYM conformal manifoldM (left). At large N , this invites a geometric re-interpretation,
as a spacetime wormhole in AdS5 × S5 with strongly coupled planar N = 4 SYM living on the
conformal boundaries (right).

wormholes” [29]; for the purposes of the present discussion, this may be taken as shorthand
for “the part of a single-boundary observable which averages to zero.” Our work contains
the half-wormhole story in disguise. Recall that the spectral decomposition in N = 4 SYM
neatly distinguishes the ensemble average, which is present in the spectral decomposition of
O(τ) at all values of the coupling:

O(τ) = 〈O〉+ 1
4πi

∫
Re s= 1

2

ds (O, Es)Es(τ) +
∞∑
n=1

(O, φn)φn(τ)︸ ︷︷ ︸
Ospec(τ)

. (12.1)

Ospec(τ), whose average vanishes, provides the coupling dependence that must be responsible
for factorization of products of O(τ) in the bulk string dual to any particular member of
the SL(2,Z) ensemble. In this sense, one can think of Ospec(τ) as the half-wormhole.

To emphasize, the key point of this split vis-à-vis holography is that the ensemble
average 〈O〉 is not, from the bulk point of view, some random constant: on the contrary, it
coincides precisely with Osugra at large N .

This picture extends to higher correlations. Consider squaring Ospec(τ). The constant
term in the spectral decomposition of O2

spec(τ) is the variance of O(τ); its non-vanishing
signals a contribution of connected topologies in the gravitational computation. The
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remainder depends sensitively on the couplings:

O2
spec (τ) = 3

π

[
1

4πi

∫
Re s= 1

2

ds | (O, Es) |2 +
∞∑
n=1

(O, φn)2
]

︸ ︷︷ ︸
variance V(O): “wormhole”

+ 1
4πi

∫
Re s= 1

2

ds
(
O2

spec, Es
)
Es (τ) +

∞∑
n=1

(
O2

spec, φn
)
φn(τ)︸ ︷︷ ︸

coupling-dependent, noisy

(12.2)

The spectral overlaps may be determined explicitly: taking (O, φn) = 0 for simplicity,

(O2
spec, Es) = 1

(4πi)2

∫
Re s1= 1

2

ds1

∫
Re s2= 1

2

ds2 (O, Es1)(O, Es2)K1−s,s1,s2

(O2
spec, φn) = ã

(n)
1

(4πi)2

∫
Re s1= 1

2

ds1

∫
Re s2= 1

2

ds2 (O, Es1)(O, Es2)Kn
s1,s2 .

(12.3)

The spectral overlaps for O2
spec(τ) given above involve those of the individual observables

“linked” by the Clebsch-Gordan coefficients of [53, 109], quoted in [43] and appendix B.
The remainder term in (12.2) plays a role analogous to the “linked half-wormholes” of [29],
which combines with the variance (i.e. wormhole) to give the factorized result for O2

spec(τ),
the product of half-wormholes. In this way, there is a direct parallel between each term
in (12.3) and the product of half-wormholes in the collective field description of the toy
SYK model of [29].

Let us again stress the correspondence between bulk quantities and the SL(2,Z) spectral
decompositions. Squaring the half-wormhole term Ospec(τ) yields a spectral decomposition
which, analogously to (12.1), splits into the variance V(O) and fluctuations around V(O).
These two pieces can compete, as they do in lower-dimensional models, to give the factorized
result for O2

spec(τ) required by AdS/CFT; but the variance is there, falling out naturally
from the spectral decomposition. This is a concrete way in which a bulk spacetime wormhole
can be holographically related to ensemble statistics, even in a fixed instance of N = 4
SYM. Moreover, that the ensemble average 〈O〉 and strong coupling limit Osugra actually
coincide for single-boundary observables at large N gives a type of explanation for why
wormholes may exist in the semiclassical gravitational path integral, while still leaving
room for AdS5 × S5 string theory contributions that restore factorization. We view this
as a form of resolution of the factorization puzzle [128, 129]. The extent to which this is
addressing the standard factorization puzzle in holography is unclear, though, since our
results involve proper averages over exactly marginal couplings: the well-definedness of our
ensemble allows us to rigorously derive relations like (10.8) and (11.12), but the averaging
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uses an ingredient, the conformal manifold, which is not always present in generic theories
dual to gravity.56

There are various features of the above interpretation that deserve closer examination,
centered around the detailed nature of the interplay between the variance and fluctuations,
and how much is encoded in supergravity versus the full string theory; a total resolution
of the factorization puzzle would make this clear. In connection with that, we have not
answered the question originally raised by [29], addressed in low-dimensional toy models
but still left open in general, of what bulk configurations in string theory correspond to
“linked half-wormholes.” A related point is to understand the pattern of 1/N suppression
of the variance V(O), which is puzzling, and its connection to, and implications for,
wormhole amplitudes in AdS5 × S5 string theory; indeed, there is some evidence (still
developing) that type IIB supergravity on AdS5 × S5 supports two-boundary wormhole
geometries [129, 134–136], including some which appear to be stable but suppressed relative
to disconnected topologies.

These results may also be interpreted in a more conservative context, that of statistical
universality in AdS/CFT.57 Despite the fact that they are subleading topologies, wormhole
amplitudes in semiclassical gravity can, in some low-dimensional examples, capture universal
aspects of local operator content in chaotic quantum systems. The prototypical example
is the linear ramp at late times in the spectral form factor [121, 122, 137], which signals
high-energy level-spacing statistics of RMT. We view this as conceptually similar to the
sense in which universal aspects of large N CFT data are captured by certain leading
topologies or geometries in gravity (a canonical example is the extended universality [138]
of the Cardy formula for the asymptotic density of states in CFT2 [139], which is the
Bekenstein-Hawking entropy of the BTZ black hole [140]). In this light, perhaps wormholes
should be thought of as effective solutions valid within the low-energy gravitational EFT
that nevertheless capture universal aspects of operator statistics in chaotic CFTs. (See
e.g. proposals in [141, 142].) In order to probe their presence, one needs to perform an
operation that projects out the fine-grained details of the UV completion. In this paper we
have seen that one such way to achieve that is to average over a U-duality group.

Let us make a few further remarks before moving on.
One might hope that a resolution of the factorization puzzle for supersymmetric

observables could be attained solely at the level of the gravitational path integral of the
low-energy effective theory, without the need to invoke UV-sensitive mechanisms for the
cancellation of wormhole contributions. Such a mechanism was explicitly demonstrated
directly in the bulk in [143] for supersymmetric indices, which are independent of couplings.
It is not clear to us if our results have any implications for this mechanism for observables

56Another resolution of the tension between spacetime wormholes and the standard holographic dictionary
in higher dimensions, proposing enormous cancellations between topologies due to gauge redundancies in
quantum gravity, was recently advocated for on swampland principles in [130], building on earlier work
of [131]. In the tensionless limit of AdS3 × S3 × T 4 string theory supported purely by NSNS fluxes, another
novel mechanism for factorization was recently discovered in [132], where it was found that the fluctuations
around any given background (including Euclidean wormholes) include a sum over geometries. A similar
mechanism was found in a toy model for the SYK model in [125]. We also note the work [133] with a
different point of view on stringy realizations of ensemble averaging.

57The discussion in this paragraph has been enriched by talks by and discussions with Tom Hartman.
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that depend on the coupling, such as the supersymmetric integrated correlator GN (τ). On
the one hand, any observable that depends on the coupling will have nontrivial moments
in the SL(2,Z) ensemble, with an average given at large N by its value in supergravity.
On the other, it is clear from its explicit expression (11.5) that the variance is built from
ingredients that, mapped to the bulk, encode more than just supergravity. More generally,
it would be good to better understand the bulk degrees of freedom in averaged string theory
dual to the 1/N corrections of averaged quantities in the SL(2,Z) ensemble.

The structure of the large N expansion of non-trivial moments of CFT observables
in the SL(2,Z) ensemble is somewhat evocative of the duality between Jackiw-Teitelboim
gravity and a double-scaled random matrix integral (henceforth RMT) [25]. In N = 4 SYM
we have seen that there is a hierarchy of both perturbative and non-perturbative corrections
to higher moments of CFT observables in the large N limit, and that the variance is
parametrically suppressed compared to the mean-squared. In the JT/RMT duality, the
connected two-boundary path integral 〈Z(β1)Z(β2)〉conn is similarly suppressed

〈Z(β1)Z(β2)〉conn
〈Z(β)〉2 ∼ L−2 ∼ e−2S0 , (12.4)

where L ∼ eS0 (where S0 ∼ 1/GN) is the size of the random matrices. We note, however,
that the relationship between N and the gravitational coupling GN is different in N = 4
SYM than in the JT/RMT duality. In particular, from the holographic dictionary for
AdS5 × S5, we have

N2 ∼ 1
GN

, (12.5)

where GN is the five-dimensional Newton’s constant in AdS units.
Observables in RMT are computed in a genus expansion that proceeds in powers of L−2.

The sum over genera typically diverges like (2g)! and induces non-perturbative contributions
of the form ∼ e−#L. In N = 4 SYM there is more structure: there are non-perturbative
corrections to the variance at large N at fixed orders in the genus expansion from a
quadruple-factorially divergent perturbative expansion, potentially in addition to those
from the sum over genera, which we have not studied in this work. Also, in the JT/RMT
duality the non-perturbative effects in RMT translate into doubly non-perturbative effects
in JT gravity of size e−#eS0 ; in N = 4 SYM, it is rather unclear to us what the gravitational
meaning of the non-perturbative ∼ e−#

√
N contributions to the variance is. It would

be interesting to better understand the physical interpretation of the non-perturbative
scale ΛN .

12.2 Generalizations

An obvious question is whether a version of the present mechanism in N = 4 SYM extends
to other string theory vacua and their dual CFT pairs, in other spacetime dimensions and
with less supersymmetry. It seems quite likely to us that this is the case. Let us articulate
some possibilities in order of increasing strength. To set up, we consider sequences of
CFTs TN with conformal manifoldsM that admit large N limits, with a (possibly trivial)
generalized S-duality group, S [144]. We do not assume that the exactly marginal couplings
are gauge couplings. We take there to be a large N “double-scaling limit” that organizes
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into a sum over genera à la ‘t Hooft, possibly with boundaries, with couplings λi on which
local observables in the limit theory T∞ depend. In particular, we are interested in classes
of theories where T∞ includes a “’t Hooft coupling” λ, constructed from an exactly marginal
coupling onM, that controls the low-energy expansion of the bulk effective field theory;
this is characteristic of CFTs with string (rather than M-) theory duals. So as to simplify
language, we assume supersymmetry.

The most plausible scenario applies to sequences where T∞ contains a strongly coupled
regime, dual to two-derivative AdS supergravity.58 One claim would be that for these
sequences of CFTs, the relations (10.7) and (10.8) continue to hold:

Scenario I. When T∞ contains a strongly coupled regime, dual to an
AdS supergravity, the automorphic average over S, i.e. over the U-duality
group of the dual string theory, localizes onto a strongly coupled theory at
large N .

Where should we look to test such a scenario? The other maximally supersymmetric
duality involving exactly marginal couplings, namely type IIB string theory on AdS3×S3×
T 4/K3 and its duality to the deformed symmetric orbifold theories, is a prime candidate
(discussed further below). It may be technically simpler to consider other 4d SCFTs with
AdS5 ×M type IIB string theory duals and sub-maximal supersymmetry. For example,
consider those which are obtainable by deformations of N = 4 SYM, on which the “mother”
SL(2,Z) still acts. For example, the conifold theory [146], aN = 1 SCFT dual to AdS5×T 1,1,
is of this type. While the explicit SL(2,Z) action onMconifold is not well understood, one
may still be able to identify an averaging mechanism. In particular, an SL(2,Z)-invariant
observable is subject to SL(2,Z) harmonic analysis.

We emphasize two relevant conceptual points here. First, for N = 4 SYM where
S = SL(2,Z), the equivalence between the large N ensemble average and the strongly
coupled limit follows only from structural features of the spectral decomposition, in particular
the general scaling properties of the Eisenstein series and Maass cusp forms. The same
should hold for S for which harmonic analysis is available, and only partial information
may be necessary. Second, in N = 4 SYM, the Zamolodchikov measure on M and the
S-duality-invariant measure on F happen to be equal, leading to 〈O〉 = O. However, more
generally, they are not equal; see e.g. [147] for the nice example of 4d N = 2 SQCD.
So any generalization of the N = 4 SYM story must specify which ensemble averaging
measure is the relevant one. Non-Zamolodchikov choices are certainly allowed. Indeed, the
only other natural choice seems to be the S-invariant measure. One may take this as an
argument in favor of the automorphic average, i.e. the ensemble average with respect to the
S-invariant measure.

Having said that, we may imagine the slightly stronger possibility:
Scenario II. When T∞ contains a strongly coupled regime, dual to an
AdS supergravity, the ensemble average overM localizes onto a strongly
coupled theory at large N , irrespective of any generalized S-duality.

58The relevant abstract CFT notion of “strongly coupled” is that there exists a large N regime with a
parametrically large spectral gap to single-trace higher-spin operators [93, 145].
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In other words, every AdS supergravity background dual to a limit CFT T∞ may be
thought of as an ensemble average.59 Of course, without S-duality, the only natural choice
of measure is the Zamolodchikov measure, and harmonic analysis for S is not available. As
far as we are aware it is an open question whether 4d SCFTs with conformal manifolds
must admit a generalized S-duality group action.60

In both of the above scenarios, all couplings are averaged over. However, perhaps the
closest generalization of what happens in N = 4 SYM only requires averaging over the
“gravity direction” ofM: if λ := gN is the double-scaled coupling which controls the bulk
derivative expansion, where g is an exactly marginal coupling, one may imagine averaging
only “along g”, i.e. over a sub-manifold of M.61 This leaves the other couplings, which
do not become strong, unaveraged. Such an intermediate scenario may thus be stated
as follows:

Scenario II′. When T∞ contains a strongly coupled regime, dual to an
AdS supergravity, the ensemble average over the “gravity direction” of M
localizes onto a strongly coupled theory at large N , irrespective of any
generalized S-duality.

From the bulk point of view, this scenario would draw an equivalence between a large
N average and a supergravity with a moduli space, including the functional dependence of
the observables on the other moduli. This makes contact with other familiar examples of
holographic duality.

As an illustrative and relevant example, consider the large N CFT dual to type IIB
string theory on AdS3 × S3 ×M4, where M4 = T 4 or K3. Choosing T 4 for definiteness,
the conformal manifold M is 20-dimensional, with a moduli space locally of the form
SO(4, 5)/SO(4)× SO(5). One modulus g interpolates to the supergravity regime at large
N . The U -duality group is a subgroup of SO(5, 5;Z), denoted H~q in [150], which leaves
invariant the five “fixed scalars” descending from T 4 which are not moduli of the AdS3×S3

theory. So, one may consider doing (at least) three types of averages: average over M with
respect to the H~q — invariant measure; average overM with respect to the Zamolodchikov
measure; or average only over g. In the latter two cases, the measures are not known
explicitly. At large N , each of these cases corresponds to one of the scenarios above, with a
putative AdS3 × S3 supergravity in the bulk. Only the last scenario leaves some moduli

59There are AdS supergravity backgrounds that are not dual to sequences with exact conformal manifolds,
e.g. certain 3d Chern-Simons-matter theories. TN does not include this class of theories.

60This second scenario makes an appealing connection between the non-SUSY AdS conjecture of [148], and
the folklore that only superconformal theories can possess exactly marginal couplings. The non-SUSY AdS
conjecture is that a semiclassical theory of AdS Einstein gravity — specifically, with all higher-derivative
gravitational corrections parametrically suppressed — must in fact be a supergravity. The scenario above
would give a novel sort of justification for that: non-SUSY AdS Einstein gravity does not exist because
non-SUSY conformal manifolds do not exist. This is a caricature as stated, too strong because a sequence
of CFTs can develop a continuous coupling that is a large N artifact, as in the ABJM theories where
λ = N/k [149]. However, we expect that there are essential differences between theories obtained from
sequences of CFTs with truly continuous parameters, and those with “emergent” continuous parameters at
large N . It would be nice to understand this distinction in general.

61g may be packaged in a complexified coupling, as in N = 4 SYM.
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unaveraged. It is an intriguing possibility that the first two scenarios could land on a simple
low-energy theory in the bulk.

Finally, an even stronger, and somewhat plausible, possibility — for which we have
no evidence — is that the above scenarios extend to theories which do not even admit a
strongly coupled regime at large N :

Scenario III. For every sequence TN , the ensemble average over M
localizes onto the extremal theory, T ∗∞, at large N .

There are different things one may mean by “extremal CFT”, but any definition conveys
a notion of optimizing CFT data consistent with consistency conditions. A representative
definition is that an extremal CFT maximizes a spectral gap over the space of ‘t Hooft
couplings λi:

T ∗∞ := T∞
∣∣∆gap = ∆gap(λ∗i ), where ∆gap(λ∗i ) := max

λi
∆gap(λi) , (12.6)

where ∆gap is, say, the single-trace higher-spin gap.62 Then the scenario outlined above is
that CFT observables O(λi) obey

lim
N→∞

〈O〉 = O(λ∗i ) (12.7)

In the earlier, less adventurous scenarios, ∆gap(λ∗i )→∞, while here it remains finite. There
are of course many examples of sequences of this type coming from vanilla gauge theories.
A canonical example is 4d N = 2 SQCD with gauge group SU(N) and Nf = 2N → ∞,
where a 6= c to leading order in large N . Others may be found in a classification of 4d
N = 1 conformal gauge theories with simple gauge groups and weakly coupled conformal
manifolds [156].63 This scenario seems less likely to us, as it abandons the general connection
between ensemble averaging and universal gravitational physics. Whether any of these
scenarios is correct beyond N = 4 SYM/AdS5 × S5 holography deserves further study.

Let us conclude with further comment on the liminal case of AdS3/CFT2. Certainly
we expect the overall picture developed here to hold for AdS3 compactifications, in a
sense described above. As for the quest to construct a theory of “pure” AdS3 quantum
gravity or its 2d CFT dual, we have little concrete to add. It has been speculated that
pure AdS3 quantum gravity may be dual to an “ensemble” “average,” or to a “random 2d
CFT” [137, 158], in a sense that has not yet been explicitly defined or articulated. There
are arguments and suggestive computations, but a more conservative viewpoint casts these
results more straightforwardly in terms of the high-energy statistics of local operators in
chaotic CFTs. For various reasons, it is well-motivated to consider a slightly generalized

62Some other possible definitions include maximizing the gap to the first unprotected primary operator;
maximizing sparseness of the light spectrum; maximizing the fraction of OPE data which are extremized over
λi; or optimizing bootstrap constraints in theory space, a concept that may be formed rigorously [151–155].
Note that while is no proof that a single theory must simultaneously extremize all CFT data, functional
and other methods in the conformal bootstrap do justify the expectation of the existence of an extremal
CFT at the boundaries of bootstrap functional space.

63Those with large N limits were collected in tables 4.1 – 4.2 of [157]. The entries with α = 1/
√

2 have
a ≈ c at large c.
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quest: find a (S)CFT with large central charge, and a gap to the AdS3 black hole threshold
modulo an exactly marginal operator (and its multi-trace composites). This seems both
strategically useful and physically interesting. If there is a lesson in our work for the
pursuit of semiclassical AdS3 pure gravity, it may be that something morally close to it may
be found from an ensemble average in an analogous sense as for AdS5 × S5 supergravity,
perhaps following one of the scenarios described in this subsection.

13 Conclusion

An overarching message of this work is that harmonic analysis for SL(2,Z) is an insightful
and incisive tool for extracting the physical ramifications of S-duality of N = 4 SYM. This
approach uncovered a direct role for ensemble averaging in the holographic duality with type
IIB string theory on AdS5 × S5, revealing supergravity as an emergent large N ensemble
average. Our philosophy was simple, and familiar: to manifest the symmetries of the theory.
By using an S-duality-invariant formulation from the start, tucking away all functional
dependence on the coupling into an SL(2,Z) eigenbasis, many non-perturbative phenomena
presented themselves, often tied up with perturbative physics in a manner characteristic of
strong-weak duality in quantum field theory.

Given their grounding in symmetry considerations — and how elemental they are
mathematically — we are optimistic that spectral methods for S-duality have more physics
in the offing. The results of this paper fell out very efficiently from few ingredients. Our
computations are quite different than existing computations of N = 4 SYM observables. It
would be productive to reformulate what we know in the spectral language.

We close by listing some specific future directions of keen interest.

More N = 4 SYM observables: as an aid to future progress we mention some
observables one could analyze using SL(2,Z) spectral methods, in order of increasing
ambitiousness. There are some nearby extensions, such as the generalization of GN (τ) to
other SYM gauge groups or to the SL(2,Z)-covariant cousin in [159] and the integrated
〈22pp〉 correlator written in (5.58), for which we made a tentative prediction of its spectral
overlap. A more complicated extension would be to the extremal correlators 〈OpOp〉 in
4d N = 2 SQCD: upon multiplying by an appropriate power of y, these become SL(2,Z)
invariant [147]. Like GN (τ), they depend only on τ and are derivable from localization.
For p = 2, this is the Zamolodchikov metric on the SQCD conformal manifold. Some
preliminary calculations suggest a level of complexity similar to FN (τ). Does the Toda
chain relating different extremal correlators play nicely with the spectral decomposition?
Perhaps there is a clean recursion relation in p for the respective spectral overlaps.

More substantial (and obvious) targets are unintegrated correlators, like the O20′

four-point function. It may be more tractable to compute the average and variance of the
unintegrated four-point function than to obtain it across the entire conformal manifold; this
would provide access to information about the statistics of unprotected local operators in
the SL(2,Z) ensemble, features that are obscured in the integrated correlators we study in
this work. One can also attempt to address information puzzles in holography by studying
e.g. thermal two-point functions.
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This formalism is not fundamentally restricted to local observables. Consider the
thermal free energy on S3 × S1. Unlike the observables considered in this paper, this does
not appear to have a perturbative expansion in integer powers of 1/y [160], so modifications
of some of our formulas are necessary. It seems plausible that, following the ideas in
section 10 at large N , one could derive the famous factor of 3/4 from CFT [161].

Integrated correlators: we derived the form of the integrated correlator GN (τ), con-
firming the conjecture of [1], as a specific case of our general formulas for N = 4 SYM
observables at both finite N and large N . This revealed its optimal simplicity in the space
of N = 4 SYM observables. What we did not derive is the Laplace difference equation (4.7),
which surely lies at the core of any fundamental understanding of the dynamical content
of GN (τ). It would be very interesting to know how common such recursion relations
are in N = 4 SYM, relating observables at different values of N . We also analyzed the
supersymmetric integrated correlator, FN (τ), whose general form would be nice to derive.
Such a spectral decomposition would provide an explicit non-trivial example of a CFT
observable with non-perturbative (instanton-anti-instanton) physics at finite N , for which
both fnp(s) and (FN , φn) are non-vanishing.

Instantons: instantons are redundant, with k > 1 sectors uniquely determined by the
k = 0, 1 sectors. For Borel summable observables at finite N , there is a remarkably
simple formula (5.39) for the k-instanton radius of convergence (modulo cusp forms, whose
contribution we characterized in subsection 5.7). Can we understand these results from
traditional instanton calculus? We also derived the existence of nonzero qq̄ (instanton-
anti-instanton) terms in the conformal dimensions of unprotected operators, including the
Konishi dimension ∆K(τ). This result suggests, but does not strictly imply, non-Borel
summability of the weak coupling expansion of ∆K(τ). It would be valuable to investigate
this question, and to derive the precise instanton-anti-instanton terms whose existence we
have discovered — say, for SU(2) — with direct computations.

Combining SL(2,Z) spectral theory with other methods: we expect synergy from
combining these techniques with other preexisting ones in N = 4 SYM, e.g. integrability
methods and the superconformal bootstrap. At a more conceptual level, the bootstrap
philosophy of imposing abstract constraints could be generalized to spectral overlaps —
that is, to bootstrapping in spectral space. Recall that for the Eisenstein overlap (O, Es), its
analyticity properties in the complex spectral parameter s were completely determined in
section 5.2; the cusp form overlap (O, φn) is less constrained, but for the interesting reason
that it signals arithmetic chaos. “Analyticity in spectral space” should be investigated as
an N = 4 SYM bootstrap constraint. It would also be interesting to pursue the constraints
of the functional equation satisfied by the spectral overlap (5.17), viewed as a crossing
equation, on the non-perturbative contributions to CFT data.

String theory and holography: we discussed the implications for the AdS/CFT
paradigm in section 12, so let us just briefly mention here a few things. We empha-
size again the tantalizing, if uncertain, prospects for CFT derivations of supergravity
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physics using ensemble averages and the observations of section 10. It would also be very
interesting to better understand the worldsheet and spacetime perspectives on the non-Borel
summability of AdS5 × S5 strings, argued holographically in section 7.2. Finally, our initial
exploration of the SL(2,Z) ensemble statistics and possible connections to RMT would be
very interesting to flesh out. Perhaps the spectral formalism can lead to a string/brane
description of half-wormholes.

Other S-duality groups: one would like to generalize the whole formalism away from
SL(2,Z) to SCFTs with other S-duality groups S, as discussed in section 12. Two natural
approaches suggest themselves: look for interesting theories, or look for tractable groups for
which harmonic analysis is (at least partly) established. In the latter approach, there are
some automorphic groups where very tidy results are possible. One inspirational example
is S = Gq, the Hecke triangle group, a discrete subgroup of PSL(2,R) generated by S and
T elements subject to S2 = 1 and (ST )q = 1. The fundamental domain Fq for Gq may be
defined as the semi-infinite region of H bounded by |τ | = 1 and |x| ≤ cos(π/q). The L2(Fq)
eigenspace has continuous and discrete components.64 It has been conjectured by Phillips
and Sarnak [163], and substantially supported by numerics and analytics [162, 164], that
there are no even Maass cusp forms unless q = 3, 4, 6, where Gq becomes arithmetic. So
observables in SCFTs with S = Gq 6=3,4,6 are especially simple, and non-chaotic. To boot,
SCFTs with S = Gq have been identified as certain deformations of 4d N = 2 SQCD [165].
More generally, arithmeticity is believed to be crucial for the existence of cusp forms;
translated into CFT terms, this suggests that arithmeticity of S is a useful criterion for the
classification of SCFTs.

Arithmetic chaos: an interesting output of this work is the realization that generic
CFT observables in N = 4 SYM exhibit arithmetic chaos via the presence of the erratic
Maass cusp forms in their spectral decomposition.65 Although we were not able to say
much analytically about the contribution of the cusp forms to CFT observables in general
(an exception being (5.69)) we emphasize that there is a wealth of both established and
conjectured knowledge about their distributional and statistical properties in the math
literature. An obvious avenue for future work is to leverage these properties to connect the
spectral decomposition to more conventional spectral and dynamical notions of quantum
chaos in CFTs and holography and to better constrain the chaotic sector of CFT observables.
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A A few details for constraining spectral overlaps

A.1 Deriving (5.6)

Here we derive the leading-order bound (5.6), ignoring subleading multiplicative corrections.
The Maass-Selberg relation (e.g. [51], equation C.10) implies that

|E 1
2 +it|

2 ≈ −1
2

(
ϕ′

ϕ

(1
2 + it

)
+ ϕ′

ϕ

(1
2 − it

))
(A.1)

where ϕ(s) was defined in (2.13). Then the triangle inequality, together with [30] Exercise
3.7.28, gives

|E 1
2 +it|

2 ≤ −
∣∣∣∣ϕ′ϕ
(1

2 + it
)∣∣∣∣

. c log |t| (t→∞)
(A.2)

for some constant c.66 Translating this to a bound on {O, E 1
2 +it} using∣∣∣∣∣Γ

(1
2 + it

) ∣∣∣∣∣ ∼ e−πt/2 (t→∞) (A.3)

and [167]
|ζ(1 + it)−1| ∼ O(c′ log |t|) (t→∞) (A.4)

for another constant67 c′ gives the growth bound (5.6).

A.2 Proofs for section 5.2

Here we provide proofs of the statements made in section 5.2.

• fp(s) and fnp(s) are regular for all s ∈ C away from s = 1 (and its reflection)
By the property of the RS transform, {O, Es}Λ(s)2 is meromorphic with a possible pole
at s = 1 and, due to the perturbative terms, simple poles at s > 1 with Im s = 0. Since
Λ(s) is itself meromorphic on C and regular away from s = 0, 1

2 , the aforementioned
properties apply to {O, Es} directly. As the poles at s > 1 are encoded in the explicit
factor of sin(πs), holomorphy of fp(s) and fnp(s) away from s = 1 follows.

• At s = 1, lims→1 {O, Es} = 2O.
A direct computation gives

lim
s→1
{O, Es} = lim

s→1

(
Rs[O]Λ(1− s)−1

)
= 2 Res

s=1
Rs[O]

= 2O

(A.5)

66An improved bound, still logarithmic, can be found by using bounds on | ζ
′

ζ
(1 + 2it)| given in [167].

67In [167], c′ = 6.9×106. This is probably not optimal. See also [168] for a nice discussion of the Lindelhof
conjecture and progress toward its proof.
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• On the critical line s = 1
2 + it, {O, Es} is finite for finite t.

Λ(1
2 +it)−1 and (O, E 1

2 +it), and hence their product {O, E 1
2 +it}, are both finite. These

follow from putting together two facts. First, ζ(1 + 2it) 6= 0 and Γ(1
2 + it) 6= 0 for

t ∈ R (cf. [30], Exercise 3.5.8). Second, E 1
2 +it(τ) for fixed τ is holomorphic (cf. [7],

Theorem 6.11).

• If fnp(s) = 0 (resp. fp(s) = 0) then fp(s) (resp. fnp(s)) is entire.

This follows from the preceding results.

Note also a small corollary of these results: if O0(y) has a finite number of perturbative terms,
it must have non-perturbative terms. In the language of (5.7), if fnp(s) = 0, then fp(s) is
entire. A finite number of perturbative terms means fp(s) = sin πs×(something with poles).
But sin πs is entire, so there is a contradiction.

B Solutions to the inhomogeneous Laplace equation

In this appendix we will study the spectral decomposition of the solution to the inhomoge-
neous Laplace equation sourced by a product of real analytic Eisenstein series

(∆τ + r(r + 1))Fr;s1,s2(τ) = Es1(τ)Es2(τ). (B.1)

This function will serve as a prototypical example of a modular invariant that appears
in observables in both N = 4 SYM and type IIB string theory that has non-trivial non-
perturbative contributions in its spectral decomposition. This function, with r = 3 and
s1 = s2 = 3

2 was first conjectured to capture the non-perturbative corrections to the D6R4

interaction, which are mediated by D-instantons, in the low energy expansion of the type IIB
effective action in [169], and was further studied in detail in [51] (see also [170, 171]). They
also appear at integer powers of 1/N in the large N expansion of the integrated correlator
FN (τ) of section 8.2 [22] for certain positive integer values of r and odd half-integer values
of s1, s2. Such functions were studied at integer values of s1, s2 in [172, 173], and more
generally in [174].

The homogeneous solution to the Laplace equation is itself a real analytic Eisenstein
series Er+1(τ). However in the physical applications of interest [22, 51], one typically
assumes the moderate growth condition

Fr;s1,s2(τ) ∼ O(ys1+s2), y →∞. (B.2)

In our application (in particular, in the large N expansion of the integrated correlator
studied in the very strongly coupled limit in section 8.2) we will have Re (r+1) > Re (s1 +s2)
so the homogeneous solution, which has the moderate growth Er+1(τ) ∼ O(yr+1) at the
cusp, is ruled out.

– 80 –



J
H
E
P
0
8
(
2
0
2
2
)
1
9
5

B.1 General case

Here we will follow the approach of [51] in studying the spectral decomposition of Fr;s1,s2(τ).
The basic idea is to spectrally decompose the right-hand side of (B.1) and then invert
the Laplacian. Since the right-hand side of (B.1) is a product of eigenfunctions of the
Laplacian, its spectral decomposition is straightforwardly facilitated by the “Clebsch-
Gordan” coefficients of [43, 53, 109], which describe the triple product of eigenfunctions of
the Laplacian.

The starting point is to notice that the right-hand side of (B.1) grows as follows at the
cusp y =∞, cf. (2.11):

Es1(τ)Es2(τ) ∼ ys1+s2 + ϕ(s1)y1−s1+s2 + ϕ(s2)y1−s2+s1 + ϕ(s1)ϕ(s2)y2−s1−s2 . (B.3)

This product is thus of “slow growth” at the cusp and hence its spectral decomposition is
straightforwardly accommodated by Zagier’s adaptation of the Rankin-Selberg method [53]
as described in section 6. The idea is to subtract from (B.3) a suitable linear combination of
Eisenstein series in order to render it square-integrable. To proceed, we assume s2 6= s1, 1−s1,
which is a special case that needs to be treated separately. We will also assume that
Re s1 > Re s2 + 1

2 although we emphasize that if this is not the case it is trivial to modify
the exercise that follows. In this case, the following function is square integrable

Hs1,s2(τ) := Es1(τ)Es2(τ)− Es1+s2(τ)− ϕ(s2)E1−s2+s1(τ) ∈ L2(F). (B.4)

This object admits a straightforward spectral decomposition given by

Hs1,s2(τ) = 1
4πi

∫
Re s= 1

2

dsK1−s,s1,s2Es(τ) +
∞∑
n=1

ã
(n)
1 Kn

s1,s2φn(τ). (B.5)

The spectral coefficients are the Clebsch-Gordan coefficients of [43, 53, 109], given by

Ks,s1,s2 := Rs[Es1Es2 ] = 1
Λ(s)Λ(s1)Λ(s2)

∏
±1,2

Λ
(
s±1 (s1 − 1

2)±2 (s2 − 1
2)

2

)
(B.6)

Kn
s1,s2

:= Rs1 [νnEs2 ] = 1
4Λ(s1)Λ(s2) L̃

(n)
(
s1 + s2 −

1
2

)
L̃(n)(s1 − s2 + 1

2) (B.7)

and
ã

(n)
1 = 1√

(νn, νn)
(B.8)

is the first Fourier coefficient of φn(τ), alternatively given in terms of the norm of the
Maass form in the Hecke normalization (cf. (2.22)). Here, L̃(n) is a symmetrized L-function
associated with the cusp form, given by a Dirichlet series in terms of the cusp form Fourier
coefficients (cf. (2.19))

L̃(n)(s) := π−sΓ
(1

2(s+ itn)
)

Γ
(1

2(s− itn)
) ∞∑
k=1

a
(n)
k

ks
(B.9)

= L(n)(1− s). (B.10)
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Although the sum in (B.9) only converges for Re s > 1, the L-function inherits a meromorphic
continuation to the entire complex s plane from the Eisenstein series and thus satisfies the
functional equation (B.10). Note in particular the absence of a constant term in (B.5);
this is due to the fact that for s2 6= s1, 1 − s1, Ks,s1,s2 is non-singular at s = 1. In the
main text we will encounter a rescaled solution of the inhomogeneous Laplace equation
F̃r;s1,s2 = χ(s1)χ(s2)Fr;s1,s2 with χ(s) given by (8.7), so it will be convenient to work with
rescaled versions of these spectral coefficients

K̃s,s1,s2 := χ(s1)χ(s2)Ks,s1,s2 (B.11)

K̃n
s1,s2

:= ã
(n)
1 χ(s1)χ(s2)Kn

s1,s2 . (B.12)

The spectral decomposition of Fr;s1,s2 is then given by inverting the action of the
Laplacian on Es1Es2 :

Fr;s1,s2(τ) = (∆τ − µ(r + 1))−1 [Hs1,s2(τ) + Es1+s2(τ) + ϕ(s2)E1−s2+s1(τ)]

= Es1+s2(τ)
µ(s1 + s2)− µ(r + 1) + ϕ(s2)E1−s2+s1(τ)

µ(1− s2 + s1)− µ(r + 1)

+ 1
4πi

∫
Re s= 1

2

ds
K1−s,s1,s2

µ(s)− µ(r + 1)Es(τ) +
∞∑
n=1

ã
(n)
1 Kn

s1,s2

µn − µ(r + 1)φn(τ).

(B.13)

We pause to make some comments on the structure of the spectral decomposition (B.13),
which will also broadly apply to the result (B.22) in the special case of s2 = s1, 1− s1 that
we consider next.

In the main text, we see that these solutions to the inhomogeneous Laplace equation
appear at integer powers of 1/N in the large N expansion of the integrated four-point
function FN (τ) of section 8.2. Thus the spectral coefficients in (B.13) furnish the large
N expansion of the spectral coefficients of the integrated correlator. For example, the
Eisenstein series on the first line are associated with the perturbative part of the overlap,
fp(s). In particular, they arise as certain residues of N2−2g−s πs(1−s)

sin(πs) f
(g)
p (1 − s)E∗s in the

spectral decomposition in the large N limit. In the application to FN (τ), s1 and s2 are odd
half-integers, and the Eisenstein series in (B.13) arise as the residues of the perturbative
part of the spectral integrand (at different genera) at certain integer values of s. On the
other hand, the third term on the first line of (B.13) corresponds to a genuinely non-
perturbative contribution to the spectral overlap (O, Es). In particular, we would have
Λ(s)f (g,m)

np (s) ∝ K1−s,s1,s2
µ(s)−µ(r+1) for appropriate values of g,m in the notation of section 7.4.

Indeed, this term cleanly exhibits |s| → ∞ asymptotics that exemplify the factorial growth
requirement (6.10) of non-perturbative contributions to the spectral overlap

K1−s,s1,s2 ∼ Γ(|s|), |s| → ∞. (B.14)

The combination K1−s,s1,s2
µ(s)−µ(r+1) is also characterized by a finite number of spurious poles away

from the critical contour in the complex s-plane. This is due to the fact that the solutions
to the inhomogeneous Laplace equations are not themselves strictly square-integrable as
they exhibit power-law growth at the cusp (as discussed in section 8, this is not inconsistent
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because they arise as coefficients in the large N expansion of square-integrable observables
rather than at finite N). Finally, the last term in (B.13) represents the contribution of the
Maass cusp forms to the spectral decomposition: (O, φn) ∝ Kn

s1,s2
µn−µ(r+1) .

B.2 s1 = s2

We now consider the special case of s2 = s1 = s. The reflected case of s2 = 1− s1 can be
treated essentially identically. In this case, the right-hand side of (B.1) has the following
growth at the cusp

Es(τ)2 ∼ y2s + 2ϕ(s)y + ϕ(s)2y2−2s. (B.15)

We proceed assuming that Re s > 1
2 , so that the following combination is square integrable

Hs(τ) := Es(τ)2 − E2s(τ)− 2ϕ(s)Ê1(τ). (B.16)

where Ê1(τ) is the regular part of the Eisenstein series at s = 1,

Ê1(τ) := lim
s→1

(
Es(τ)− 3

π(s− 1)

)
(B.17)

It is not an eigenfunction of the Laplacian

∆τ Ê1(τ) = − 3
π

(B.18)

and has the following Fourier decomposition

Ê1(τ) = y − 3
π

log y + 6
π

(12 logA− log 4π) + 12
π

∞∑
k=1

cos(2πkx)σ1(k)e−2πky

k
, (B.19)

where A is Glaisher’s constant, logA = 1
12 − ζ

′(−1). Its role in (B.16) is to subtract the
linear term in (B.15). Hs(τ) then has the following spectral decomposition

Hs(τ) = Ks + 1
4πi

∫
Re s= 1

2

ds′K1−s′,s,sEs′(τ) +
∞∑
n=1

ã
(n)
1 Kn

s,sνn(τ). (B.20)

We note that there is now a constant term in the spectral decomposition, due to the fact that
Ks′,s,s is now singular at s′ = 1 and that there are constants in the Fourier decomposition
of Ê1(τ). The constant term is given by

Ks = Res
s′=1

Ks′,s,s − 2ϕ(s)ω = − 3
π
ϕ′(s), (B.21)

where ω := 6
π (12 logA− log(4π)) is the constant in the Fourier decomposition of Ê1(τ)

(cf. (B.19)).
Assembling the pieces, this leads to the following spectral decomposition for Fr;s,s(τ)

Fr;s,s(τ) = (∆τ − µ(r + 1))−1Es(τ)2

= E2s(τ)
µ(2s)− µ(r + 1) + 2ϕ(s)

( 3
πµ(r + 1)2 −

1
µ(r + 1) Ê1(τ)

)
− Ks

µ(r + 1)

+ 1
4πi

∫
Re s′= 1

2

ds′
K1−s′,s,s

µ(s′)− µ(r + 1)Es
′(τ) +

∞∑
n=1

ã
(n)
1 Kn

s,s

µn − µ(r + 1)φn(τ).

(B.22)
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B.3 A worked example: r = 3, s1 = s2 = 3
2

To elucidate the sense in which the perturbative and non-perturbative contributions (in
y−1) to Fr;s1,s2 are contained in its spectral decomposition, we will study the example of
r = 3, s1 = s2 = 3

2 in detail. In particular, we will study the modular invariant

E3; 3
2 ,

3
2
(τ) = 4ζ(3)2F3; 3

2 ,
3
2
(τ) (B.23)

that appears as the coefficient of the D6R4 interaction in the low-energy expansion of the
effective action of type IIB string theory and at order 1/N in the large N expansion of the
integrated 〈2222〉 correlator FN of section 8.2.

It will turn out that reproducing the perturbative expansion of the zero-instanton sector
of this function from the spectral decomposition is an instructive exercise. In [51], it is
shown that the zero mode of E3; 3

2 ,
3
2
is given by

(
E3; 3

2 ,
3
2

)
0

(y) =2
3ζ(3)2y3 + 4

3ζ(3)ζ(2)y + 4ζ(4)y−1 + 4
27ζ(6)y−3 + 2

∞∑
k=1

fPk,−k(y)

(B.24)
where

fPk,−k(y) = 32π
315k3σ2(k)2

1∑
i,j=0

qi,j3 (πky)Ki(2πky)Kj(2πky). (B.25)

The first four terms in (B.24) are the perturbative contributions to the zero mode, while
the sum over terms involving (B.25) capture non-perturbative (qq̄)k contributions. Here
the coefficients qi,j3 are given by [51]

q0,0
3 (z) = z

(
−512z4 + 48z2 − 15

)
q0,1

3 (z) = −128z4 − 12z2 − 15 = q1,0
3 (z)

q1,1
3 (z) = 512z5 + 16z3 + 33z − 15z−1.

(B.26)

We would like to understand how (B.24) is reproduced by the spectral decomposition

E3; 3
2 ,

3
2

(τ) = 4ζ (3)2
[1

6E3 (τ) + 2ϕ (3/2)
( 3

144π + 1
12Ê1 (τ)

)
+ 1

12K3/2

+ 1
4πi

∫
Re s= 1

2

ds
K1−s, 32 ,

3
2

µ (s) + 12Es (τ) +
∞∑
n=1

ã
(n)
1 Kn

3
2 ,

3
2

µn + 12 φn (τ)
]
.

(B.27)

In particular, the zero mode is given by(
E3; 3

2 ,
3
2

)
0
(y) = 4ζ(3)2

[1
6
(
y3+ϕ(3)y−2

)
+2ϕ(3/2)

( 3
144π+ 1

12

(
y− 3

π
logy+ω

))
+ 1

12K3/2

+ 1
4πi

∫
Res= 1

2

ds
K1−s, 32 ,

3
2

µ(s)+12
(
ys+ϕ(s)y1−s

)]
.

(B.28)
It is not immediately clear how (B.28) is consistent with (B.24). For instance, the latter has
terms of order y−1 and y−3 that are not obviously present in the former, while the former
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has terms of order log y, y−2 and y0 that must be cancelled in order to reproduce the latter.
The resolution is of course contained in the spectral integral in the second line of (B.28) —
the spectral integrand has poles in the complex s plane with residues that precisely resolve
these perturbative discrepancies upon deformation of the spectral contour so that all such
poles lie to one side of the contour. In particular, the integrand

K1−s, 32 ,
3
2

µ(s)+12 ϕ(s)y1−s has poles
at s = 1, 2, 3, 4 in the s half-plane to the right of the critical contour (along with reflected
poles in the left half-plane). We now imagine deforming the contour to Re s > 4. In doing
so, we pick up residues at the intervening poles. The residue at s = 1 precisely cancels the
spurious constant terms and log y term. The residue at s = 3 exactly cancels the spurious
term of order y−2. And finally, the residues at s = 2 and s = 4 exactly reproduce the
missing terms of order y−1 and y−3, respectively. Thus the deformed spectral integral
precisely accounts for the non-perturbative (instanton-anti-instanton) contributions to the
zero-instanton sector of E . In particular, we have

4ζ(3)2

2πi

∫
Re s>4

ds
K1−s, 32 ,

3
2

µ(s) + 12ϕ(s)y1−s != 2
∞∑
k=1

fPk,−k(y), (B.29)

which we have checked numerically.
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