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1 Introduction and summary of results

The string theory effective action has a double expansion in the inverse string tension o
and the string coupling gs. Here we will consider tree-level string theory and so ignore
all gs corrections. The tree-level effective action has a very interesting property — its
dimensional reduction to D — d dimensions (D = 10 or 26 being the critical dimension)
has a continuous O(d, d; R) symmetry [1, 2], which extends to all orders in ¢ [3]. Our goal
here is to use this symmetry to learn about the structure of o’ corrections. Specifically,
we will focus on the first o’ correction which is common to all string theories. The metric
terms have been known for a long time and take the form [4-9]
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where tgtsR* is shorthand for
ts al...astglmbSRalwblbzRa3a4bgb4Ra5a6b5bﬁRa7a8b7bg (1.2)

and similarly for egeg R*. These tensor structures are defined as
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and

tabede foh MEP MsEMET MI™ = 8 tr(My My Ms M) — 2 tr(M Ms) tr(MsMy) + cyclic(234)
(1.4)
for anti-symmetric matrices Mj 234. It is important to note that the second term in (1.1)
is a total derivative at the leading order in fields and throwing away the total derivative
we may write egeg R* ~ w?R? ignoring terms of higher than fifth order in fields.
Here we will use the requirement of O(d,d) symmetry of the reduced action to fix
the couplings involving the B-field up to the fifth order in fields. We will see that O(d, d)
requires a surprisingly intricate form for these couplings. The full set of couplings of the NS
sector fields have been previously found in [10, 11] by a brute force calculation — writing
the most general ansatz in ten dimensions and requiring T-duality symmetry of the circle
reduction.! This was shown to lead to a unique result. Unfortunately, the resulting action
is extremely complicated and it is very hard to see any structure in it. This is the reason
we revisit the calculation here using tools adapted to the O(d, d) symmetry and finding a
simpler, though still complicated, form for the effective action. We find the following form
for the effective action (up to the overall coefficient)

L == LR4 +L(w2+H2)R3 +L(H/\H)R3 +LH2VH2R+ ey (15)

where the ellipsis denotes terms involving the dilaton and RR-fields, which we don’t de-
termine, and terms of sixth and higher order in fields. These couplings have the following
form. First we have .

Lps= Etgth‘* (1.6)
where we have defined

o 1 1 1
Rabcd = R(i)abcd - iHabeHecd = Rabcd - V[alqb]cd + iH[aceHb]ed - iHabeHecd (17)

and R is the Riemann tensor computed from the torsionful spin connection wéi)bc =

wa?® + %Habc. The second contribution is given by
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where the term in brackets in the first line stands for
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'A cosmological reduction of all spatial dimensions has also been considered [12-14], but this is not
enough to fix the form of the D-dimensional action.



and the ellipsis denotes total derivatives and terms of sixth order or higher in fields. In
particular, we reproduce the egegR* term with the correct coefficient. The equality of the
two expressions is shown in appendix A. Then we have additional H?R3-terms which take
the form

6!2 - ra Fay 5! N A N
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Note that they do not contain any contractions between the H’s. The need for such terms
was seen from amplitude calculations in [15]. Finally, we have the terms of the form
H?VH?R, which are by far the most complicated. They take the form

Lyevp2r =

34!
6 H Y HYI 7K H gV o Hygr, RO + 3H Y HYIN7X H g V1 H o, R9 oty + T(L1 + Ly),

(1.11)

where L1 and Lo are distinguished by the structure of the contractions and are given
in (4.21) and (4.22). The total number of these terms is 42 and their structure is surprisingly
intricate. Still, compared to the 106 terms of this form in [11], we have clearly achieved
some simplification.?

Ignoring terms of order H* it is easy to see that our results match precisely those
of [15],% which determined all the H? couplings using string amplitude calculations.* Due
to the very complicated form of the H* terms in [11], we have not attempted a comparison
of these.

To derive this result our strategy is the following. We start with the known tgtg R*
term in D = 10 (or D = 26). Then we use ideas from Double Field Theory (DFT) [17-19]
to rewrite it in terms of an O(D, D) invariant analog of the Riemann tensor. This object
is not Lorentz invariant and we have to add terms quadratic in the spin connection to
compensate for this. These extra terms can also be expressed in terms of objects from
DFT. In doing so we obtain an expression which looks O(D, D) invariant, except for the
fact that the double Lorentz symmetry needed to have a consistent DFT formulation is
explicitly broken. Only its diagonal, the usual Lorentz group, is preserved. It is important
to note that we are working only with completely gauge-fixed objects from DFT, which
can always be expressed only in terms of the usual metric/vielbein and B-field. Therefore,
the explicit breaking of the DFT symmetries does not lead to any inconsistencies. It seems
that we could just as well work with the usual metric and vielbein, rather than involve the

2Curiously, while the complicated (H/\H)R3 and H?VH?R terms found above are required at tree-level
by O(d, d), they are absent at one loop [16]. The one-loop R*-terms therefore seem to have a much simpler
structure than the tree-level ones, even though in the type IIB case the purely metric terms are exactly the
same. In particular this means that there must be several supersymmetric R* invariants, as already argued
in [15].

3Except that our Lzamyrs is 8 times that of [15].

4Note that we may replace H*1%2 Hy p,0, — 3Hp, 1“2 H% 4y, in (1.8) up to H* terms, as follows from

(+)

a similar calculation to (A.11) with w'™ replaced by H.



DFT notation. However, the reason for using the DFT notation is 1) that the dimensional
reduction of the action expressed in terms of the DFT fields to D —d dimensions is simple to
perform, but more importantly 2) that one can read off directly which terms in the reduced
action are compatible with O(d, d) and which terms are not. More precisely, we work with
a frame-like formulation where the global O(d, d) symmetry is made manifest at the cost of
introducing a local (internal) double Lorentz symmetry O(d) x O(d) which is not manifest,
but needed for consistency. We require that the terms in the reduced action which would
explicitly violate the O(d) x O(d) symmetry, by having an index transforming under the
first factor contracted with an index transforming under the second factor, should cancel.
This is a very strong requirement and, in fact, we argue that at least in the present case it is
equivalent to O(d,d) invariance. We find that the required cancellations are only possible
if one adds particular terms involving the NSNS field strength H to the D-dimensional
action. We determine these by working order by order in H. To simplify the calculations
we make the following assumptions

1. We look only at the terms in the reduced action quadratic in the gauge vectors and

not containing the internal scalars.
2. We ignore terms involving the dilaton.

3. We use the equations of motion in the reduced theory, i.e. we allow field redefinitions
after reduction.

Regarding the first point, it is not hard to see that the remaining terms, i.e. terms quartic
in the gauge vectors or terms containing scalars, will cancel along very similar lines, though
these are typically less constraining. The second assumption means that we cannot deter-
mine any of the couplings involving the dilaton. With some extra work one can of course go
back and determine them by keeping track of them everywhere. Finally, regarding the last
point, ideally one would like to allow only field redefinitions in the D-dimensional theory,
but we did not investigate this as the calculations become more complicated. We also did
not attempt to prove that the result is unique (up to field redefinitions), since this already
follows from [11].

Let us emphasize again that, while some of our expressions are written using a mix
of DFT and standard notation, this is just a trick to simplify the bookkeeping and we
are always working with the standard gravity fields and symmetries. In any expression
where the generalized fluxes F' appear they are understood to be expressed in terms of the
usual spin connection and H as in (2.5), i.e. the DFT symmetries are completely gauge-
fixed. However, from our results it is straightforward to extract a non gauge-fixed DFT
description of the reduced theory, where only the internal coordinates are doubled. All
one needs to do is keep all the O(d, d) compatible terms in the dimensional reduction and
forget about the DFT gauge fixing of the internal coordinates. One should also include
the scalars which we set to zero. We did not try to write the resulting action since it
would contain quite a large number of terms and our main interest here is the original
D-dimensional action.



It might seem that we could have worked instead within DFT from the beginning, but
we believe this is actually not possible. Indeed, in [20] it was shown that while the R*-terms
can be cast in O(D, D) invariant DFT form at the quartic order in fields, it is not possible
to complete them (within DFT and with some mild assumptions) by terms of fifth order in
fields. This might seem surprising given the fact that the lower order o and o’? corrections
to the bosonic and heterotic string can be cast in DFT form [21, 22] (see also [23, 24] for
earlier attempts). However, the reason is that these lower corrections (together with an
infinite tower of higher corrections) can be generated from an uncorrected extended gauged
DFT action, by imposing an identification of the gauge field and spin connection [25, 26]
(see also [27]), a la Bergshoeff and de Roo [28, 29]. There is no similar trick for generating
the ((3)a’® corrections we are interested in here. Indeed, our calculations show explicitly
how terms that are not compatible with an O(D, D) invariant DFT description in D
dimensions can lead, upon dimensional reduction to D — d dimensions, to terms which are
compatible with and O(d, d) invariant DFT description of the reduced theory, thanks to
additional cancellations possible only after dimensional reduction. Note that the difference
between the O(D, D) and O(d, d) invariant case is not just that d < D, the more important
difference is that in the latter case there are d isometries, which are ‘rotated’ by O(d, d),
while in the former case no isometries are assumed, which is much more restrictive.

The remainder of the paper is organized as follows. In section 2 we introduce the
DFT parametrization of the fields that we will use. Then in section 3 we discuss the
dimensional reduction in terms of these fields. The main part of the paper is section 4
where we require the non-invariant terms in the reduced action to cancel, fixing the form
of the D-dimensional action. We end with some conclusions. Details of the calculations
are provided in the appendix.

2 DFT parametrization of fields

Here we introduce the necessary concepts from DFT. As the name suggests DFT involves
doubling the spacetime coordinates © — (#,x). One then imposes an O(D, D) invariant
“section condition” which effectively removes half of them. Here we will mostly ignore
the doubling and work with the solution to the section condition where the additional
coordinates T are set to zero. In fact, in the rest of the paper we will work only with
completely gauge-fixed DFT, which is equivalent to the usual gravity description. The
reason for still using DFT notation is that it provides a natural way to organize the fields
in order to recognize directly which terms in the reduced action are compatible with O(d, d)
symmetry and which are not.

We will use the so-called flux formulation of [30], building on the frame-like formulation
of DFT [31]. The basic field is the generalized vielbein

1 €(+)am — e(+)aanm e(+)am
V2

M _
Ea™ = ) _ g Im (2.1)
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It is constructed from two sets of vielbeins e() for the metric Gmn, which transform



independently as A®e() under two copies of the Lorentz group, and the B-field.> The
standard supergravity fields are recovered by fixing the gauge e(t) = e(=) = ¢, leaving only
the diagonal copy of the Lorentz group. In this formulation a global O(D, D) symmetry
acting on the doubled coordinate index M = (™,,,) is manifest. Instead, consistency
requires the local double Lorentz symmetry O(D —1,1) x O(D — 1,1) acting on the index
A = (%), which is not manifest, to be preserved.

There are two constant metrics, the O(D, D) metric nAB and the generalized metric
HAB | which take the form

AB Nab 0 AB Nab 0
= 5 H = 5 22
n ( 0 _nab ) ( 0 nab ) ( )

where n = (—1,1,...,1) is the D-dimensional Minkowski metric. The O(D, D) metric is
used to raise and lower indices. The projection operators

pPAB — % (n*? £ HAP) (2.3)

are easily seen to project on upper and lower indices respectively. The analog of the spin

connection is the “generalized flux”®

Fapc = 304Es™ Ecpyr - (2.4)

Since we can use the projection operators to project onto upper or lower indices we actually
have four objects. After fixing the double Lorentz symmetry by imposing the gauge () =
e(-) (and solving the section condition) they reduce to

_ b 1 b

Fabc = 7“}( )abca F° = *7wz(z+) C’

V2

]' - aoc ]' aoc aoc
753l + Hate) Pt = (e g (25)

By construction Fapc is invariant under constant O(D, D) transformations since these

Fabc:

simply rotate the coordinate indices M, N, .... However, it transforms similarly to a con-
nection under the O(D —1,1) x O(D — 1, 1) double Lorentz transformations acting on the
indices A, B, .... In particular, after splitting the indices into upper and lower ones using
the projectors, the upper indices are rotated by the first Lorentz group while the lower
indices are rotated by the second. This means that F’s with different index placements,
e.g. F,*¢ and F¢ are independent fields (in DFT) since they transform differently.” We

5The dilaton ®, which will not play any role here, is encoded in the generalized dilaton d defined as

672d _ 672<I> /*G .

5Here we have defined 94 = Fa™ 0y where Oy = (0, 0m) after solving the section condition in the
standard way.
7 After fixing the gauge () = (=) they are no longer independent, as is clear from (2.5).



are therefore not allowed to raise and lower the indices on these fields. Importantly for our
later discussion it also means that a contraction of two indices with 7., e.g.

1" Fo" Fey , (2.6)

is compatible with the double Lorentz symmetry, since the contracted indices transform
under the same group. On the other hand a contraction of an upper and a lower index, e.g.

FabCFade , (27)

would explicitly break the symmetry, since the two contracted indices transform under
different Lorentz groups. It is terms of this form (with the contracted index an internal
index) that we will require to cancel in the reduced theory.

We can also introduce a DFT analog of the Riemann tensor. Following [32] we define®

R®q = 200F g — ey FOF g 20 Fla FY gy (2.8)

When we fix the gauge e(™) = e(~) this reduces to

1
7?'abcd = §(R(_)abcd + W(+)eabw(_)ecd) s (29)

which shows that unlike the usual Riemann tensor this object is not Lorentz covariant.
Conversely, we can instead take the combination

Rabcd + FeabFecd ; (210)

—)ab

which is Lorentz covariant, in fact it reduces to %R( cd on setting et) = e5) but is

not compatible with double Lorentz symmetry due to the contraction of an upper and a
lower index in the second term. It therefore only makes sense to work with this object after
gauge-fixing the DFT symmetries.

3 Dimensional reduction

We will denote D-dimensional quantities by calligraphic letters in order to distinguish
them from the corresponding quantities in the dimensionally reduced theory. We take the
following dimensional reduction ansatz for the generalized vielbein

EM=EN1+U)M, (3.1)
where F is diagonal with non-zero components
EAB and Eu” (3.2)

while the non-zero components of U are

! ’ 1 /
Unirn = Aptrm s UnN = —aN" Unnn = _5,45 Agrp . (3.3)

8Deﬁning Ran®? similarly we have Rap®® = —R .



Index Internal /External Transforms under

M= (M,M") - Global O(D, D)
A=(AA) - Local O(D —1,1) x O(D —1,1)
M=) External Global O(D —d, D — d)
A=(%,) External Local O(D —d—-1,1) x O(D —d —1,1)
M =" ) Internal Global O(d, d)
A= (", o) Internal Local O(d) x O(d)

Table 1. Summary of index notation.

Note that this form guarantees that 1+ U € O(D — d, D — d) x O(d,d). Internal indices
are denoted with primes and the various indices and groups under which they transform
are summarized in table 1. We are interested only in the internal symmetries (O(d, d) and
O(d) x O(d)) and we will take the external part to be gauge-fixed, removing O(D —d, D —d)
and breaking O(D —d—1,1) xO(D—-d—1,1) — O(D —d — 1, 1), the usual Lorentz group
for the external directions. We have grouped the two gauge fields, coming from the metric
and B-field respectively, into an O(d, d) vector

(1)n’
ANt = (Am ) ) (3.4)

Gauge fixing e(T) = (=) one recovers the usual Kaluza-Klein reduction ansatz.’
The dimensional reduction of the generalized flux F 43¢ becomes

Fapc = Fapc + gF[%BAC]D/ . Fasc=-Fapc,  Fapc=0cEs™ Epnp,
(3.5)
while F 4/ pr¢r vanishes. Here we have introduced the field strength of the doubled gauge
field
FR, =20, A (3.6)

and used the generalized vielbein to convert the indices, i.e. Ay = EN 'EBmAme
and Fape = Ea™ Eg™Ec"F,nx. Note that this means in particular that here A, =
%eb’”Amb/, rather than the standard definition without the v/2. In DFT this reduction
breaks the O(D, D) symmetry and double Lorentz symmetry down to their internal parts,
i.e. O(d,d) and double Lorentz transformations (rotations) acting on the primed indices
O(d) x O(d).

For the remainder of this paper we will set the scalars that arise on dimensional
reduction to zero, since this will be enough for our purposes. This amounts to F 4™

9Namely
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being constant. Since we are also ignoring the dilaton we are starting from an action in

D dimensions which can be expressed in terms of H,,. and R(_)“bcd and their covariant

derivatives.!® Our strategy is to first write this in terms of gauge-fixed DFT fields. In
particular we have from (2.5)

Hobe — \/i(Fabc _ 3nd[adeC]) , Hupe = \/§(Fabc _ 377d[adec]) ) (3.7)

This is of course not the only way to express H in terms of the F’s but it is the way
that violates the would-be double Lorentz symmetry the least, since it involves only one
n (remember that upper and lower indices on F' are rotated by different groups in DFT).
Similarly we may express R(7) ; through the combination (2.10) as

R()ab = oR® 4+ 2F, P F° . (3.8)

However, it will be more convenient for our purposes to include some quadratic terms in
H and work instead with

Rabcd = R(_)abcd + aHabeHecd + bHae[cHd] be ) (39)

where a and b are constants to be fixed. Let us now compute the dimensional reduction
of this object. We first promote it to an expression in terms of (gauge-fixed) generalized
fluxes using (3.7) and (3.8). Next, we use the reduction of the generalized flux (3.5),
recalling the definition of R4 in (2.8) and letting E 4 " be constant. Denoting again
the D-dimensional R as R one finds the reduction

R%eq =R%q+ A%,
Ry =Ry + A"y,
R%ug=R%sq+ A%uyq,
R g =B g+ A"
ﬁabcld/ = ﬁabcld/ + Aabcld, b))

A ) A/ /
R bc/d =R bc’d+Aa bc’da

(3.10)

while the components with more than two primed indices vanish. As discussed at the
end of the previous section, the object we started with does not respect the D-dimensional
double Lorentz symmetry. After the reduction we are interested only in the internal double
Lorentz symmetry rotating the primed indices. We have therefore split the r.h.s. into terms
which are compatible with this symmetry (primed indices contracted only with 7*?") and
terms which would explicitly violate it (primed indices contracted with 6,‘},,). The ones that

10Note that we use a, b, ... both for D-dimensional indices and for external (D — d)-dimensional indices.
Since these never occur together in the same expression it is hopefully clear from the context which one we
mean.



are compatible with such a symmetry are

j%abcd — R(_)abcd + aH’abeHl + bHéa[cHIEbd} + 2(@ _ 1)ne’f’F6/abFCfd/

ecd
+ 2anelf/Fe/abFf’cd + 2b775’f/F6/a[ch/bd} + 2(b . 2)7]elf/Fe/C[aFf’db] ’
Ry = = V2 (VOPFY g+ aP™ Hloy — DFGH™ )

ele
Rabc’d = \/§ (VE;—)Fclab — aH/abch/de + bFCe/[aH,b]ed> s (311)
RYY g =2(2 - b)Fl¢ FYle,,
Rabc’d’ =2(2 - b)Fa/eFd/]eb,

[c

R g =(2 = b)FYFY — 2aF“"*F, .4,

&

(£)b

where V&) uses the spin connection wg " and H is everywhere replaced by
zlzbc = Hape — 3\/§F[gbAc]D’ . (312)

The precise form of these terms will not be important for us, only that they are compatible
with an internal double Lorentz symmetry and so could arise from a DFT description. What
will be important here is the form of the terms which would explicitly violate O(d) x O(d),
by containing contractions of an upper and a lower internal index (or a raising/lowering of
a free internal index by n®?’ /Moy ). They are

A g =2aF" " Feq+ 2(1 + ) FSPFg + 4bF 1 Bl Py

€
ATy = — a\/ﬁna,f/F})’eHécd + b\/ﬁﬂa/f,Ff/e[cH,Ebd] ;
Aabc’d _ a\/gnclf/FézH/abe + b\@nc’f/Ff/e[aH/b]ed :
Aa/blcd = — 4b77fl[a/Ff/€[CFb/]d]e + 2bT]f/[a/Fflcenb/]g/Fg/de s (313)
Ay = — 4 F N g o PV, 4 201 FT %, FI°,

[¢
Aa/bc’d = - 2ana/f/Ff’bch’ed - bnc’f’Ff/beFeat; - 2aFa/benc’f’Ff/ed - chb’ena/f/Ff’ed
— 2@7]alf/Ff/benC/g/Fgled — bnclf/Ff/benalg,Fgled .

Actually, we will only need the first three expressions, because we will confine ourselves
only to terms quadratic in the KK gauge field strength. Now we are ready to turn to the
question of O(d,d) invariance of the reduced action.

4 Requiring O(d, d) invariance of the reduced action

We wish to fix the form of the D-dimensional action by requiring that the reduced theory
is O(d, d) invariant. Actually, rather than directly requiring O(d, d) invariance, we will just
require that the terms which would explicitly violate it, by not being compatible with an
internal double Lorentz O(d) x O(d) symmetry and therefore cannot come from a DFT
formulation, cancel out. These are precisely the terms which contain contractions of an
upper and a lower internal (primed) index, since these indices would have to transform
differently under the two O(d) factors.

~10 -



This is clearly a necessary condition for O(d,d) invariance. In fact it is also sufficient,
as we will now argue. Consider the internal double Lorentz O(d) x O(d) transformation of
the reduced action (promoted to a DFT action by forgetting the gauge fixing of the internal
DFT fields). From the formulas in the previous section it is clear that internal (primed)
indices sit only on FZ', the field strength of the (doubled) KK vectors. Contractions
without a derivative on F', F'- F' (where the dot denotes contraction of the internal index),
are automatically invariant since we made sure only the invariant contractions survive.
Therefore we only need to check terms with a derivative on F' and since, in our case, we
never get more than one derivative these are of the form VF'- F and VF-VF'. However, we
must also remember to reinstate the scalars by dropping the condition F 4™ " = constant
that we imposed in the last section. This leads to additional terms involving Fap/cs given
in (3.5) and the relevant fields are Fuy and F,Y¢ which transform as connections under
the internal double Lorentz transformations. Taking all these contributions into account
the internal double Lorentz variation of the reduced action becomes (setting the scalars to
zero after the variation for simplicity)

SLrea = VAy FE TSy + V' FLFY T

4 VN FEVOFINV sy + VaX' | Fo N, FE 700 (4.1)

+ vaéa,b/VbFa(,i’evCFl;fgwabcdefg + vaxa b vage/ chf;Wabcdefg 7

for some functions of the fields U, U, V., V, W and W (here we have suppressed the na'b,
contracting the primed indices, which may not be raised or lowered, unlike the unprimed
ones which are ordinary external Lorentz indices). The point is now to note that the
reduced action must be invariant under (standard) Lorentz transformations, since it arises
from reduction of a Lorentz invariant theory. This means that, gauge-fixing DFT to go to
supergravity and setting A = —)\ = A, the above variation must vanish. Since each term is
independent however (recall that F’ ' involves the vectors coming from the metric while F,
involves the vectors coming from the B-field) this requires U = U=V=V=W=W=0
and it follows that the Lagrangian is actually invariant under the full internal double
Lorentz symmetry.

The cancellation of all terms with index contractions not compatible with O(d, d) turns
out to be a very strong requirement, which will completely fix the form of the D-dimensional
action. In fact, it turns out to be enough to ignore the internal scalars and to consider
only the terms in the reduced action which are quadratic in the gauge field strength gl;
As mentioned in the introduction we will further ignore the dilaton and work only up to
fifth order in fields.

We start from the following ansatz for the D-dimensional Lagrangian'!

1 .\ 1 N
L= T6t8t8R4 + §€9€9(F2 + HQ)RS . (4.2)

1The numerical factors are introduced for convenience. We ignore the factor e ~2® since we set the dilaton
to zero here.

- 11 -



These terms are shorthand for the following expressions

A4 by eobe B ~ Aasa ~
tgtgR™ =tq,..qt™ 8Ra1a261b2Ra3a4b3b4Ra a6b5beRa7a8bsbs ) (4.3)
2 2\ 53 bybg [ € f 1 ,
EQEQ(F + H )R :Ecal...aggc 109 (4 |:Fb1a1a2Fa5b2b3 — gFalaQaJFbleb3:| (44)
d 203 ff €}I aiaz ras Dasas Dasar Hagag
+ % b1b2bs + Z b1 bobs R b4b5R b6b7R bgbg »

where tg is defined in (1.4) and R in (3.9). Note that R contains two free parameters a, b
and above we have introduced three additional free parameters ¢, d,e. These will become
fixed later. The F’s appearing in the above expression can be written in terms of the spin
connection w and H using (2.5), but we write them this way here since then we can carry
out the dimensional reduction directly. The precise combination of F’s with different index
structure is dictated by the requirement that the action should be Lorentz invariant up to
a total derivative. This means that one can add a total derivative to complete these terms
to egeg R? (see the introduction).

Dimensionally reducing this Lagrangian using the results of the previous section gives
rise to terms that would explicitly violate an internal double Lorentz symmetry of the
following schematic form (ignoring the scalars and terms with more powers of F')

1. - R .
Etgth‘L — tgts 2R3 + ts FHVFR? (4.5)

1 A ~ A A
ggggg(F? + H?)R? — egeg F2R? + egeg(wF + HF)VFR? 4 egeg(w? + HY)VF?R, (4.6)

where we have kept only terms up to fifth order in fields, so R can be replaced by R(~). The
last term in the second line looks very non-Lorentz covariant. To write it more covariantly
we have to integrate by parts. It is convenient to organize the calculation in powers of H.
We start by considering the double Lorentz violating terms in the reduced theory which
do not contain H.

4.1 Terms of order H°

Setting H = 0 and looking at the order F? terms we have, up to total derivatives and
higher order terms,

tsts F2R? = % (aF“ Fuay + (14 a) FE By — 20F " Fo) (tsts RY)™ca

cses F2R3 = % [(c+d+ 3e) Fg' Py + (d + 3¢) F*'“ Fyygp | (esesR) e s
eseswFVFR? = %F;ﬂFgg (esesR%) g, 0
egesw’VF2R = %F;fl % (egeg R3) g .

These terms explicitly violate the would-be internal Lorentz symmetry since they contain
a contraction of a lower and upper primed index. To get an O(d,d) invariant reduced
action we must require that they cancel. Clearly the terms with the tgtg structure and
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egeg structure must cancel separately. The only way this can happen is if the combinations
of F2-terms are such that (F?)gpeq = —(F?)edap, since then they give zero due to the
contraction with the R? terms which are symmetric under exchanging the pairs of indices
due to the symmetry of the Riemann tensor. This in turn requires the free coefficients to

satisfy!?
1
a=-g, b=0 and d+3e=—bc. (4.8)
Having partially fixed the free parameters we can now go back to the general H # 0
case and we find (to this order R = R())

.1 , L
tsts F2 R = Ztgtg(Fa/Fa —FYF,)R?, (4.9)

where the index structure on the first factor is F g,b cad, — Fp@abp, . and

ts FHVFR? =12t01bs paeyd & Hegby Rachsbs R dbb
— 12ta1‘..a8FlfL€lvdF;,1a2 [ easas Ra5a6bcRa7a8 d

by-b ' fed | B
— St N o By Hepypy B bsb6 Racrbg

+ Bt ay...as Fi VO FO102 feasa fpasas  farasde (4.10)
while the egeg-terms are, again dropping total derivatives and higher order terms,
cses F2R3 = — %5858(4&/17&’ +5FY F,)R3, (4.11)
egeg(w? + HY)VF2R = f—gageg(Fa/Fa/)RB’ + %5858(Fa/F“')VHVHR
8!

— —(d+€) Vo HY ™"V Hy g0, FS O FL

6 a asae6

eses(wF + HF)VFR? = 55858(&,1?“ VRS — ?65858(&,1?@ )WWHR?

R, ., (4.12)

+71(d+e) (H“1“2“3Fa/[a1a2V“4F“'

azaq

ajaz a’agzas\ Hasa para,
+H[a1a2a3Fa’ vCL4F ? )R 7 6a5a6R s

arag) *
(4.13)
4.2 Terms of order H?!

Again we consider the terms in the reduced theory which would not be compatible with an
internal double Lorentz symmetry, but this time the ones linear in H. From the eg-terms

we have
15¢ + 12 , ,
—%5858(1’&/}7“ JVHR? 42 7(d + e) HU %y, Gupd Rsas,  pores o
(4.14)

Note that in the first term we may integrate by parts to have the derivative acting on F
rather than H. The tg-terms give

3 / /
— Ztgtg(Fa/Fa )WHR? + 12t S FPV 4 F2 . Hygyau Racasas R aras

+ 3ta1ma8Fg/bvaFal Hba3a4Rcda5a6RCda7a8 - (Fal < Fur). (4‘15)

aija2

12Tp fact, this also ensures that the order F* terms vanish since the symmetries of the Riemann tensor
are the same.
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The first step is to rewrite the first term so that the derivative is acting on F' instead of
H, since all other terms can be written in that form. To start with we have

tats(Fy F¥)YWHR? ~ 8t S FPFY 7y Hogas R 506 Rdaasas

aias
b a’ d b a’ d

+ 8t agFg/ F:1a2 V‘H a3a4Rdaa5a6 Rbca7a8 — 4" QSFS’ Fglag vc}IdagaleC asag Raba7ag
b / d b ! d

+ 841 VC(FZ}' FC(LllaQ)Hba3a4 R° asae Rdaawg + 2¢71798 Va(Fg’ Fzglag)Hbastc a5a6 Rcdams
b a’ d

+ 8ta1 ang/ Fgla2 Hba3a4 VCRc a5a6Rdaa7a3 ) (416)

where ‘~’ means up to total derivatives and higher order terms. The last term can be

removed by a field redefinition since it is proportional to the equations of motion at this
order. The next step is to rewrite the first three so that the derivative is acting on F
rather than H. It is convenient to start with the terms with the fewest number of ‘traces’
(contractions of pairs of anti-symmetrized indices) and work upwards in the number of
traces. The calculations are long and some details are provided in appendix B.1. When
the dust settles one finds that the contribution of the tg-terms in (4.15) can be written as

/

3 , ,
— gEgSg(Fa/Fa VYWHR? + 12F oy Hae Y45 — 12F% Hy, ;Y20 (4.17)

where Y@'abdef and Y,,%bef have the structure VFR? and are defined in (B.3). Importantly,
the Y-terms involve no contractions between the F and H sitting in front. This means that
they can be canceled by adding terms quadratic in H, with no index contracted between
the two H’s, to the D-dimensional Lagrangian without introducing additional unwanted
terms in the reduced theory. One finds that the following terms do the job

8 ~ ~ ~ ~ ~ ~ ~ ~ ~
6 (3HabCHdefRagthbhechk‘fg+8HabcHdefRadgthhekngcf _4HabcHdefRabngChekngfh
- 4HabcHdefRagdeRbhfkﬁCkgh - 2HabCHd€fRabghﬁhkde}?fgck +HabcHdefRabdeRCghthkfg

+HabcHd€fpbabghEdeeRghfk +HabcHdefﬁghdeﬁabfkRCkgh) '

But we will work with a simpler form for these terms, which agrees with the above up to
terms of order H*, given in (1.10). Finally, the remaining term cancels against the eg-term

in (4.14) provided that

1 1 1
S = == 4.1
c=¢, d 5 € (4.18)

fixing all remaining free coefficients in our ansatz (4.4).
4.3 Terms of order H?
At this order we have from the tg-terms (4.9) and (4.10)'?
Uy ras FgévdFaa/1a2 [basas (7 )acasas garas
— 12ta, g FG VAFS 02 (17730 R1€9596 (7 J ) .77
— Gty .aq Foy VOF192 ({00504 (7 [T) 04506 Ro798 ) 4 (FY 3 F) (4.19)

YHere (VH)®.q = VIO HY 4.
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and from the eg-terms (4.11)—(4.13)

9
4
In addition we have the terms coming from the reduction of the H?R3-terms in (1.10). It

9 / /
— Jeses(Fu F*)VHVHR ~ — BIFgP Ve F H gV H (f R gy (4.20)

is not hard to see that these terms cannot cancel. It is therefore clear that one has to add
terms of the form H?VH?R to the D-dimensional Lagrangian. However, if these terms
have a contraction between the two H’s without derivatives they will give terms of the form
F2VH?R, but all the terms we need to cancel have the form FVFHYVHR. Therefore, we
should only add such terms if they can be integrated by parts to put one derivative on F'.
This shortens the list of possible terms. Taking a basis of such terms (see the appendix)
one finds after a long calculation that to cancel all internal double Lorentz violating terms
in the reduced action one should add to the D-dimensional Lagrangian the terms in (1.11),
where the terms involving a contraction of HH or VHVH are

3 11
Ly =— 5H“kakghV[CHaerdeghRef]cd - ZIjra’wmfhv[CHab"“lvdeghR@f]cd
— 3HakakegV[CHabhvdHf‘gtheﬂcd + 5HgakaebV[c abhvdﬂf‘gh‘Ref]cd
)

- §H“bcH9th[CHef‘k‘VdeabRef lon + %H“kakghV[CHderdHabcRef Lon
— 5H H IV HM gV Hoy R gy + 2H P H "V Hye VO H Ry (4.21)
— HY H, "V Hy MV H R ) + 11THYI H, "V H MV Hyy RO
— 2H"H V1 Hyp VO H, "M R g — 2B H 9"V Hy VT H gy R
— 6H® HI" VI H 11,V Hy FI Ry — 6 H % HL 9PV € H o, VEH M RS,
— H" Hyge V' HoeaV Hyp g R — 8H®™  Hog V' H o,V Hpp M RETI"
while those containing no such contractions are

5
2 :§HabcHdef VI Hygo VF He g R, + 6 HOCHY VU H oV H o R )

+ 2H " HY pVU Hygp, V9 Hoep R™ gq — BHHY ;N Hyop, V9 Hyo, R g4

L

2

— 11H™ H% VYV Hy3. VI H o R, — gmbcﬂdef VI Hyey VI Hyp. R™M
5

— GH " H IV Hyge VI H ppi R g — 5 H H 11 Hyao V' Hopi R,

11
+ ﬂHabCHdefv[bHdefvcththk}ga + 16HabCHd€fv[CHdthbeethk]ga
+ 4H % HY NV H o, Vo H g1, R"™9 , + AH " H TV Hy o, VO H o R,

— HH%® VI Hy ) V9 Hon R oy — 3HH VU H 0,V H, o, R

— 8H " H™ NV H, 1,V Hyg R™ g — 6 H," H y V1" Hy g V7 Hog RM9),

(4.22)

11
- ?Habcﬂdef VU Hy VP Hyge R*M9), — 12 H,,C HY V1 Hy g VO H o p RE9),
+ 3H,HY yV1 Hyp oV Hyge RM9), — 8H oy HY pV'1 H g VP H oy R

3
+ 32H, H VI H gV Hopp RTFIM — 5Jarab%r“le sV H 3 VO H RIS

b 1
+ §HabCHder[achdvaeghRfk}gh + EHabcHdefv[adeevafghRCk]gh )
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Here we have written the answer as far as possible in terms of terms with an anti-
symmetrization of four indices which allows them to be integrated by parts to put the
reduced terms in the form FVFHVHR. We find only two terms left over which cannot be
cast in this form, namely the first two terms in (1.11). This result is highly non-unique due
to the many ways one can integrate by parts and use Bianchi identities to rewrite it. Our
strategy was to simplify the expressions for L; as much as possible first, before simplifying
Lo, but the above expressions are probably not the best way to write these terms. Note
that, ignoring factors of 2, the coefficients of the terms above involve only the prime factors
3, 5 or 11. This seems to suggest some substructure to these terms, but it is hard to say
more without having a more systematic way to organize the terms.

We could now go on and consider terms of order H? in the reduced action. However,
since we have already fixed all the possible terms in the D-dimensional action that are
relevant for us these terms would have to cancel automatically. It would be nice to verify
this as a consistency check, but we have not done so since the calculations are quite long,
we have only checked that all terms in the reduced action which need to cancel can again
be put in the form FVFHVH?.

5 Conclusions

We have seen how to complete the R*-terms in the tree-level string effective action by re-
quiring that the effective action reduced to D —d dimensions should have O(d, d) symmetry.
In fact, we showed that it is enough to require that all terms with an index contraction
not compatible with O(d, d), or rather an internal double Lorentz symmetry O(d) x O(d),
cancel out. We carried this out to fifth order in fields ignoring dilaton terms. It is in
principle straightforward to extend this to compute all the couplings, though it requires
some work. However, given the complicated structure of the H2VH?R terms, it would
be important to first understand how to organize these terms. That the result is unique
follows from [11] and our result can be used as a guide to organizing the full (NS sector)
completion of R* found there in a better way.

It is clear from our calculations that O(d, d) symmetry appears due to very non-trivial
cancellations in the reduced theory. Another important question is if it is possible to make
the O(d,d) symmetry more manifest already in D dimension, probably at the expense of
making Lorentz invariance less manifest.
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A Proof of (1.8)

For completeness we give here a direct proof of the equality of the two expressions in (1.8).
We make the proof slightly more general by considering an arbitrary power of R(7).

A.1 Vanishing of terms linear in the spin connection

Let us first consider terms with one spin connection and show that they vanish up to total
derivatives and higher order terms. They are

. n!wa1a2a3H[alagagR(i)a4a5a4a5 .. R(*)an—lanan_lan] —+ (H — —H) s (Al)

which consists of a sum of terms with an even number of H’s of the form

w(ua2a3H[a1a2a3va4Ha5a4a5 .\ %6+2k [TOT+2k (64007128 Ra8+2ka9+2ka8+2ka9+2k . Ranflananilan] .
(A.2)
This term can be rewritten as follows
n+1 asb, aijasas a4 ag - a742k ag42k an
1M 0,0,V Hi oy (VH - VH) wo-arson (R R) .
+na5bwa1a2a3 Hb[a1a2 V4 Ha3a4a5 (VH e VH)ae-.-erzk . (R e R)a8+2k'--an 0 o]
4k \
+ ?naSbwaltmag H[al a2a3 V(M H(l4f15f16 Vab Hll7 |b|a7
(VH Tt VI{)%MCWHIC ag--ariok (R' o R)a8+2kman agq ok ++an]
n—5—4k
#,’7(151)(&}0‘10‘20‘3 H[a1a2a3 Va4 Han_1a4a5
(VH Tt VH)%WGH_% a6 a2k (R' o R)as_‘_%man agqog-|blan] -
(A.3)

The first term is zero by the anti-symmetry in as and b and the last vanishes by the Bianchi
identity for the last Riemann tensor. Integrating the second term by parts and dropping
the total derivative and terms of higher order in fields it becomes minus the term we started
with. This term is therefore given by 1/2 times the third term, i.e.

2k
7wa1a2a3H[alaNBva4Ha4a5a6va7Ha5a6a7 (VH . VH)GS"'GHM

9 ag---a742k (A4)

(R L R)a8+2k-..an a8+2k~~-an} )
This vanishes if £ = 0. If k& > 0 we can apply the same trick as above to lower the ag
index and following the same steps we find that the result vanishes unless & > 1. Clearly,
continuing in this way we find that the result must vanish to all orders in H. This completes
the proof that the terms linear in the spin connection vanish modulo total derivatives and
higher order terms, which are not relevant for our discussions here.
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A.2 Remaining terms

Looking now at the terms quadratic in the spin connection, the first step is to note that

by---b + (= ) —)an—1a
Eaypa, € Inel )a1a2a3w R( )a4a5b4b5 .. R()an—1 "y by

= — ply(Haazas, () R( )6‘46‘5a4ar ... R(H)an—1an

[a1aza3 an—1an]

=—(n+1)! nbalw[(+)a2a3w( ) R(_)“4a5a4a5 ... R(5)an—1an

ajazas an—10n]
Ab
— ’I’L'nbalW[(+)a2a3w\(b|cz2a3R(_)a4a5 asas " "’ R(_)anilananflan] ( )
—onlp ba; [(+)a2a3 ((1223“)'[.{( )asas caas ..R(*)an—lanan_lan}

a2 azaq

+ (n N 3) nbmw[ (+)a2a3 (=) R( )a4a5|b|a5 . R(—)anflan

Gn_1an] "

The first term vanishes by the anti-symmetry in a; and b. Using the Bianchi identity
R(labeld —%8dH abe  where we neglected terms with more fields, and integrating by
parts the last term becomes

n—3 (-)

nlw

HmazasR(*)M% . R(*)anflananilan] , (A.G)

l[araza3 asas

where we dropped total derivative terms and terms of higher order in fields. Using this we
have

5a1---an€b1"'bn (W£+)a1a2w(_)a3b2b3 _ w(+)a1a2a3wl§1—b)2b3> R(_)a4a5b4b5 ... R(")an—1an

1 n—lbn
~ 2n|w[(+)“1“2 C(LQCZBag (R(—) .. .R(_))Mman a4-an]
n—3 (-) araoa _ _\\a4-an
_ n‘w[a1a2a3H 1a2a3 (R( ) . R( )) a4.“an}
(A.7)
and we may further rewrite the first term as
— 2n'w[(+)a1a2Ha2a3 (R(i) ce R(f))%“'an sy
+4(n — 1)!wéf)[a2|b|w(+)al (R(’) oo R(*))Mman] a5y
—2(n—3)(n— 1)lw( )[a1a2w( )a4R( Jlblas (R(—) e R(_))%..-an a6--an]
~ — inw( )a1a2H a3 R(—) N R(_) aardn P
[a1 ( ) 4van] (A.8)

a _ N\ G4an
+4(n — Dl ((l IZI ! (R( ) ... R( )) asean]

[a1

ala a a _ C\\ a6an
—2(n—3)(n—1)! [( Jai 204, [ C(L;)M 4w(+)b 5] (R( ). R ))

agan]

~ — 2n!w[(;)a1a2Ha2a3a3 (R(_) cet R(_)>a4 o

a4--an)

a1b a _ _ a4---Qn
—(n+1)(n— 1)!w[(;;) ! w£;33| 2 (R( )...R( )) ag--an] -
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Adding now the total derivative term

(n 4 1)(7’L . 1)'V(+) (w((zi)alagR(f)aga4a3a4 . R(i)an72an71an,2an,1])

[a1
_ntl (n—1)! (R(’) . R(*))al'"a” foran]
Dl = R (R RO Y
Lt 171!15[[@1@2 w(Hazes (R(—) . R(—))Mma" asan]
cancels the w?-term and we are left with
n+1 (n—1)! (R(—> . R(—))‘“"'“” la1--an]
+ e o1 (RO ROYT (A.10)
on g 3"'W[a1a2agﬂala2a3 R ..R(*)>a4”'a" aaan]
Finally, we use the fact that
[(+)a2a3Ha2a3 (R(*) e R(*))a“ma” a4-tn]
;n (e ( RO ... RH)M'”“" v
L . 3na1bw[(;)a2a3Ha4a2a3R(—)a4a5‘b‘as (R(_) o R(_))%man )
~ %w(+)a1a2a3H[ala2a3 (R(_) . R(—))‘Mma" asan] (A.11)
n—3

. wrara B _\\G6an
~ 5 Yo 2% H o1 a9as Oas H 444 (R( ) ... R )) a6--n]

~ lw(-i-)awzagI{[m@a3 (R(—) ... R(_))%man

. ag--an]

and we get
T (RO ROV
B Ty T (RO RO )
_n-— 3n'w[(a,1)aza3Ha1a2a3 (R(—) . .R(—))Mman ag--an]

a2 s (A.12)
+ ( : > n!H[alagagHa1a2a3 (R(*) . R(*)) ag---an]
1 a1an
s (n—1)! (R(_) e R(_)) ' [a1-an]
n? -9 | Fa1azas3 (=) (=) )4aan
g U gy (R 'R ) asan]
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where we used our previous result which says that the terms linear in the spin connection
vanish. Putting this together we have shown that

2 ala —)a 1 al1a2a. —_ 1
7n_‘_15a1---an€b1 bn <wl()j) ' 2(")( ) 3b2b3*["‘)(+)*§H] 1 3[{")( )+3H]b1b2b3>
(RO RO)™,
_ N\ @1 an n—1 aana B N\ Ga--an
N(n_l)! (R( ) ...R( )) [m---%}"’?nlﬂ 1a2 3H[d1a2a3 (R( )...R( )) aa-an]

(A.13)

and setting n = 9 we recover (1.8).

B Details of cancellation of non-invariant terms

Here we provide some further details of the calculations at order H and H?.

B.1 Order H!

The F?V H R?-terms in (4.16) not involving any ‘traces’ (contracted anti-symmetric pairs
of indices) are rewritten as terms of the right structure, i.e. FVFH R?, plus terms involving
at least one trace as follows

1S e eV H 0, Raaasas Rbcaras ~ 8Va(Fa F"F)H“ Ryq py Ry
+ 2V (FEPFS) HE Rgagn Roe®" — AFS F Ve H" Ry T4 Rogg
— AFPFYIH Ry tq Ryegn + AFPFYIIH Ryt Rjagn
+ 8FPFSGH Ry P9IV Ry

(B.1)
and
£ Fl o, Vo Heagar R agas Raaaras ~ %!Fa/ang}v“’H‘ch@‘Rf 9eaR™ g
+AFYFYIN  H R g Rygh — AFSPFUIN H Ryt R% g,
+AFYFUIN Hogy RpgeaRy ™" + 2F8 FUINI, Ho gy Ry pea RO
— AFPFYIN  Hpe Ry Rya®" + AFS FUIN  Hpe g Rag™ Roa”" (B.2)

— 2P F TN Heoe R Ryggry, — 2F80 F¥ I Hogh R ¢y Rao®"

— 2F P PV H gy R Ryger + AF G F* I, Hope Ragg" RS

+2- 31 Fyq FYVPHN RUY R}, + 2 31F, 0 F VI H Rl 4RI,
— 3 Fyap PNV H Ry RY ), — 2F oy FE VT HMR™ g, R,

The last five terms are proportional to the equations of motion, modulo terms we are
ignoring, and can be dropped. Continuing in this way one eventually finds that the ts-
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terms can be written as in (4.17) with Y given by
yo'abdef gy, pa'dh e, cphafe _1gy, podhga, epbfes _ gy podhgae, pbicg
16V, FdRae, Rhafc | gyapadhgiescp, f gy, par gaged ghie]
AV FadhRee, RabI9 4 ggepaldhge,  pboef _gyepa'depa  pbohf

_ 4vaFa/cdeeghRngh + 4vaF;};RdgbcReth + QVCFalefRacgthdgh

(B.3)

. 2cha/ngChefRabgh . 2vaFa'ebecghRdcgh + VCF;};RabdeRghcf
_ QVaF;’;RghcdRcbef + VcFa'efRabgthdgh _ 2VaFa'chbcghRefgh

+ chga’;RabcdRefgh

and similarly for Y;fbdef

B.2 Order H?

with the primed index lowered.

We use the following basis for the H2V H?R terms involving a contraction of H with H or
VH with VH (contractions with the index on the derivative do not count)!*

f1 = M Haap Hegn V1 Hye f Ve Hyay R ),
fo = A Hyep Heogn VI Hao, VE Hyay R ),
f3 = A Hyop Hign VI Hae f VEHop R ),
f1 = A Hyoy Hign V' HoeaV? Hye p R ),
f5 = AHycaHygn V' Hape V' Hap s R gy
fo = A Hyea Hygn, VI Hye VI Happ R,
fr = A H e Hygn V' Hyy V4 Hope R g,
fs = A Hoca Hign V1 Hyay V* Hoe R g1,
fo = 4 HoeaHygn VI Hyooe VEH 1 R,
fro = A Haep Hype VI Hopy, VEH i, R
fi1 = M Hpn Hyni VI Hye y VO H ot R°T. .,
fr2 = A He 14 Hyop VI Hyne VE Hopi RS,
fis = A\ Hep, Hogn VI Haop VEHop R
fra = A Hep Hyp V' Hyoy VEHpo R
fis = A He y Hyga V' Hyap V2 Hya RS,
fi6 = M Hyap Hop V' Hyye y VEHpioa R o
fir = A Hyap Higa V' Hye V4 Hpap R o
fis = 4 Hpap Hyp VI Hpyo f V4 H g R,
fro = 4 Hyap Hogn VI Hypo ; V2 Hopg R,
foo = 4 Hyap Hyap VI Hypo f Ve Hygn R,
for = HH oy Hoe V' Hapt V Hyni R o
fao = A Hpay Hye V' Hang V! Hyap R o
foz = A Hapi Hypp V1 Hope VE Hya R,
for = HH oy Hon g VI Hyen V' Hyap R o

fos = A Haap Hyp V' Hop VEHp o RS
fo6 = A Hopra Hign VI  Hop VEH, 11, RS,
for = A Hyan Hyogn, VI H oy VEH o s RS,
fos = A H e Hyp VI Hope VEHpio R o,
fao = A Hyep Hyge V' Hyah VE Hopr R 1,
fs0 = A Hope Hyp VI Hae f VEHpro R o,
fs1 = A Hyap Hyge VI Hae y VO Hop, RO o,
faz = A HyeaHprg VI Hoe p V Hopn R 1,
fs3 = Al HyeaHye VI Hiy VI Hop, R o,
fsa = A HyeaHyg VI Hope VI Hop, RO g,
fas = A HyeqHygp VI Hope VEHopn R g,
fs6 = A HyeaHogp VI Hope VI Hyp, RO o,
far = A HpeaHoge VI Hyay VEH R g,
fas = A Heap Hy 1oV Hyea Ve Hpy R g,
fa0 = A Hyap Hoge VI Hye VEHy R g,
fao = A Heay Hyea V' H poi V Hpgo R 1,
fa1 = M Hope Hyed V' Hop VEHyp p R
faz = A H e Hyge VI Hogry VEHyp p R g,
faz = A Hyap Hygn VI Hoe fV Hye f RI
faa = AHypap Hygn V' Hope VIH, 11, RIY g
fis = 4 Hyay Hyey V' Hiaf V Hpe g R cq
fa6 = M Hyap Hyap VI Hye VU Hp e f RO
far = ALH* H 0, V1 Hyy,  VEH S RIM

(B.4)

14The index placement here is chosen purely for readability.
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and those without such contractions

91 = A Hope Hae f V' Hyo p VF Hog RO ), 923 = A Hope Hao VI Hyop VEH g, R o
92 = M Hope Hae VI Hae VP Hye R g 24 = A Hope Hae VI He .V Hogn R
93 = A Hype Hae y VI Hoe p V¥ Hyo, R 925 = M Hope Hye V' H, 11, V9 Hygn R™
94 = M Hop Hae p V' Hygp V9 H, 1 R, 926 = A Hope Hae V€ Hog, V9 H o, R
95 = AHapeHaey V' Hyea VI Hpne Ry ga7 = A Hape Hae p VP He pt V9 Hegn R™ o
96 = M Hope Hae f VI Hepn VO Hyok R™ 0y 25 = 41 Hope Hae f V0 Heeh V9 H pgn R"™ 0
g1 = MHope Hae f VO Hepn VO Hear R™ag - 929 = 4 Hape Hue V' Hapo V' H g1 RE
95 = M Hope Hae VI Hye VI Ho R™ 0y g30 = 41 Hape He p V' Hye fVE Hagr ¥
99 = M Hope Hae VO Hae VI Ho R™ag - g31 = 41 Hape Hoe p V' Hye V' Hogr RE
910 = 4 Hope Hae VO Heoo V9 Hygpe R, 932 = A Hope Hyo V" Hypoq VP Hyo p REM )
g11 = A Hape Hae VI Hyeg VT Hope R™ g g33 = 41 H e Hao VI Hyoo p VP Hyog R o
g12 = A Hope Hae f VO Heo ;YU H oy R g g3y = A Hope Hyo p V1 Hip oV Hyo f R
913 = 4 Hape Haey VP Haey Vo Hor Ry g35 = 41 Hupe Hae V' Hype V Hoep RE
914 = A HopeHae VO Hop VO He g R™ g 36 = 41 Hope Hie p VIO H o fV° Hap R
915 = A HopeHae VO Hype Ve Hep g R™ g 37 = 41 Hope He p VI H o fV° Hopy R™
916 = A Hope Hae f VO Hip VO Hepg R™ 0y gag = A Hope Hae p VI Hyoo VP H i R
917 = 4 Hope Hae p V1 Hyp .V Hogg R, 939 = A Hope Hae V' Hae VO H e R )
918 = A Hape Hae V' Hapnt VF Hpog R"™ oy gao = A Hope Hye V1" Heop VP Hyp R g
919 = M Hope Hae VU Hopn Vo Hagh R™ g gay = A Hopo Haep V1 Hyo VP Hagr R g
920 = A Hape Haey VO Hopn VO Hegr Ry gao = 4 Hape Hae V' Hiee V2 H 1gn R
921 = A HapeHae VO Hoan VEH g R™ g guy = A1 H e Hao VI Hyoo p VO Hogr, R o

922 = A Hope Hae ; V' Hygn V/ H g R,
(B.5)
Adding a linear combination of these

Zcz’fi + Zdigz’a (B.6)

to the D-dimensional Lagrangian one finds after a long calculation that all the terms
violating the internal double Lorentz symmetry cancel if we take the following non-zero

coeflicients
T S RN SADRN -
01—4, C3—8, Ce = 9 C11 = , Ci2 = 97 Cl4 = 9
3
ci5=—3, cig=—-3, co5=-9, c=-9, c39= 50 Ca0= -12, (B.7)
e 915
43 — 47 44 — 87 45 — 27 47 — 2
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and

15 9 33
= — frd — —_ — — — _1
dl 4 ) d3 97 d4 37 d6 27 d8 2 ) d9 )
15 11
dio=-9, dio=——, diz=——, dig=-24, dig=-6, doz=—-6,
4 16
3 9 33 <B'8)
d24=§, d26:§7 doy = =12, d31 = -9, d32=—z, d3z3 = —18,
9 9 1 15
dsg = o, dyr=—12, dag=4 dio=—>, dn==>, dip=-"
3= 5 37 , d3s 8, 40 1 =g, 42 =

and

add the two terms in (1.11) without the anti-symmetization in the indices. Here we

have tried to pick a minimal solution by first setting as many of the ¢;’s as possible to

zero, though there may exist a better choice of solution. The solution then takes the form
of (1.11).
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