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Abstract: We study the holographic dual of the extended thermodynamics of spherically
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the (grand) canonical ensembles at fixed (Q̃,V, C), (Φ̃,V, C) and (Q̃,V, µ), based on the
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p ensembles, i.e. there is no p − V criticality, and hence the CFT state dual to a classical
charged black hole cannot be a Van der Waals fluid. Whether or not this phase structure
is supported by CFT computations remains an interesting open question.
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1 Introduction

Black holes, nature’s perfect absorbers, are generally believed to behave as perfect black
bodies once quantum effects are taken into account [1]. The temperature of a black hole
depends on its mass, charge, and angular momentum, as well as other parameters per-
tinent to the physical setup. In Einstein gravity, the conjugate thermodynamic entropy
is proportional to the horizon area A, in notable contrast to an ordinary fluid system,
whose entropy is proportional to its volume. To be specific, the Hawking temperature and
Bekenstein-Hawking entropy of black holes are given by (setting ~ = c = kB = 1) [1, 2]

T = κ

2π , S = A

4GN
, (1.1)

where κ is the surface gravity of the black hole and GN is the gravitational Newton constant.
These features indicate that black hole thermodynamics is crucially important in providing
clues about the nature of quantum gravity.

The thermodynamics of black holes is considerably enriched for asymptotically Anti-de
Sitter (AdS) black holes, which have been argued to be equivalent to thermal states in the
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dual conformal field theory (CFT) via the AdS/CFT correspondence [3]. Asymptotically
AdS black holes can be in thermal equilibrium with their Hawking radiation and have
been shown to exhibit a plethora of interesting phase behaviour, including a first-order
transition to radiation [4] corresponding to confinement/deconfinement of the dual quark
gluon plasma [5], Van der Waals type phase transitions for charged AdS black holes [6–9],
polymer transitions [10], reentrant phase transitions [11, 12], triple points [13, 14], and
superfluid transitions [15].

The enriched phase behaviour for AdS black holes is due to the presence of a negative
cosmological constant Λ. In fact, some of the new phase transitions arise by treating
the cosmological constant as an additional thermodynamic variable for black holes [16].
Recently, Newton’s constant GN has also been added to the extended thermodynamic phase
space as a parameter that can be varied [17–22], since it is a coupling constant that can vary
in the space of gravitational theories and, in particular, it varies along the renormalization
group flow if quantum corrections are included. Moreover, as we will see below, Newton’s
constant can be useful as a “bookkeeping device" in finding the correct thermodynamic
interpretation of the extended first law of black holes. For Einstein-Maxwell theory with a
negative cosmological constant, the extended first law of charged AdS black holes in d+ 1
dimensions, including variations of Λ and GN , and the generalised Smarr relation read,
respectively, [16, 21]

dM = κ

8πGN
dA+ ΦdQ+ Θ

8πGN
dΛ− (M − ΦQ) dGN

GN
, (1.2)

M = d− 1
d− 2

κA

8πGN
+ ΦQ− 1

d− 2
ΘΛ

4πGN
. (1.3)

Here, M is the mass of the black hole, Q is the electric charge and its conjugate quantity
Φ is the electric potential. Moreover, Θ is the quantity conjugate to the cosmological
constant, which can be defined in a geometric way in terms of surface integrals of the
Killing potential [16] or in terms of the proper volume weighted locally by the norm of the
Killing vector [23].

The standard thermodynamic interpretation of the negative cosmological constant Λ
is in terms of a positive bulk pressure [16, 24–27]

P = − Λ
8πGN

, with Λ = −d(d− 1)
2L2 , (1.4)

where L is the AdS curvature radius. Assuming Newton’s constant is held fixed, the
ΘdΛ/8πGN term in the extended first law becomes equal to a V dP term, if we identity
V = −Θ as the thermodynamic volume. The respective extended first law (1.2) and the
generalised Smarr relation (1.3) can then be written as

dM = TdS + ΦdQ+ V dP , (1.5)

M = d− 1
d− 2TS + ΦQ− 2

d− 2PV . (1.6)

However, the bulk pressure interpretation above has some peculiar features. First, the mass
M of the black hole is identified with the thermodynamic enthalpy H (rather than internal
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energy) in this extended thermodynamic phase space, since the enthalpy satisifes the first
law dH = TdS + V dP . This seemingly stands in contrast to the standard identification of
the ADM mass with the boundary Hamiltonian generating time translations at asymptotic
infinity, which plays the role of an (asymptotic) energy. Second, if we allow for variations
of Newton’s constant (as a bookkeeping device) then the Λ and GN variations in the
extended black hole first law cannot be combined into a single term d(Λ/GN ). Specfically,
the extended first law (1.2) can be rewritten as

dM = κ

8πd
(
A

GN

)
+ ΦdQ+ Θ

8πd
( Λ
GN

)
−
(
M − κA

8πGN
− ΦQ− ΘΛ

8πGN

)
dGN
GN

. (1.7)

The first term on the right can now be identified with the TdS term in the thermodynamic
first law, and the third term can be interpreted as a V dP term. But the final term cannot
be put to zero by employing the Smarr relation and it is not clear what its thermodynamic
interpretation is. So it seems that either (P, V ) are not the right thermodynamic vari-
ables for expressing the extended first law, or one has to find another meaningful pair of
thermodynamic variables in addition to (P, V ) that accounts for the final term in (1.7).1

Moreover, a problematic issue of the bulk pressure interpretation is that it does not
seem compatible with holography [18, 19, 28–32]. In AdS/CFT the thermodynamics of AdS
black holes can be equivalently described by the dual CFT at finite temperature. Therefore,
one would expect that the thermodynamic variables of AdS black holes can be mapped to
standard thermodynamic variables in the CFT. However, the bulk pressure P is not dual
to the pressure p of the dual field theory, and the thermodynamic volume V of black holes
is not related to the spatial volume V on which the CFT is formulated [28]. Further, the
generalised Smarr relation should be dual to the thermodynamic Euler relation in the field
theory. But the latter relation does not contain any dimension dependent factors whereas
the former does, so this raises the question as to how the Smarr relation (1.3) can be
mapped to the CFT Euler relation.

These problems can be resolved by choosing new thermodynamic variables, which at
the same time give a correct CFT interpretation of extended black hole thermodynamics.
Several authors [16, 18, 19, 28, 29] have argued that varying the cosmological constant is
dual to varying the central charge C or the number of colors N in the dual gauge theory.
In holographic CFTs dual to Einstein gravity the central charge is related to both the AdS
radius and Newton’s constant, C ∼ Ld−1/GN ; hence variations of C in the CFT could in
principle lead to variations of both Λ and GN in the gravity theory. Therefore, the central
charge C and its conjugate chemical potential µ (also called “color susceptibility" [19]) play
an essential role in the holographic dual of extended black hole thermodynamics.

Recently, in [21] this central charge interpretation has been made more precise by
providing an exact match between the extended CFT thermodynamics and the extended
gravitational thermodynamics. In particular, the extended first law of AdS black holes (1.2)
was shown to be dual to the extended CFT first law, where both the field theory pressure

1For instance, in [22] dGN/GN in (1.7) was replaced by − 2
d+1

dC
C
− d−1

d+1
dP
P
, with P ∼ −Λ/GN being the

bulk pressure (1.4) and C ∼ Ld−1/GN the boundary central charge (2.15). This yields a “mixed” first law
with a new thermodynamic volume and a chemical potential different from the one in [21].
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and the central charge are allowed to vary. By inserting dΛ/Λ = −2dL/L and using the
Smarr relation (1.3) to express Θ in terms of the other variables, one can write the first
law (1.2) as

dM = κ

2πd
(

A

4GN

)
+ Φ
L
d(QL)− M

d− 1
dLd−1

Ld−1 +
(
M − κA

8πGN
− ΦQ

) d(Ld−1/GN
)

Ld−1/GN
. (1.8)

This is a different rewriting of the first law compared to (1.7) in terms of the central
charge C ∼ Ld−1/GN rather than the bulk pressure P ∼ −Λ/GN . The advantage of this
new rewriting is that all the terms in the first law immediately have a thermodynamic
interpretation in the dual CFT, and there are no left-over terms like the dGN/GN term
in (1.7), which do not have a direct thermal interpretation. In particular, if we insert
the standard holographic dictionary for CFTs living on geometries whose curvature radius
coincides with the AdS radius L [19, 21],

E = M , Φ̃ = Φ/L , Q̃ = QL , V ∼ Ld−1 , C ∼ Ld−1/GN , (1.9)

and use (1.1) for the temperature and entropy, then (1.8) turns into the extended CFT
first law

dE = TdS + Φ̃dQ̃− pdV + µdC , with (1.10)

µ = 1
C

(E − TS − Φ̃Q̃) , and p = 1
d− 1

E

V
. (1.11)

Note in (1.9) that both the CFT electric charge and its corresponding conjugate potential
are rescaled by the AdS radius [6]. In (1.11) the formula for the chemical potential µ is
the Euler equation in large-N gauge theories in the deconfined phase; it does not contain
dimension dependent factors, as should be the case. This Euler equation can be shown to
be dual to the generalised Smarr relation (1.3) [19, 21]. Further, the field theory pressure
p in (1.11) satisfies the CFT equation of state in d spacetime dimensions.

As explained in [21], the holographic dictionary (1.9) can be extended to CFTs for
which the curvature radius R is unequal to the AdS length L, which we will review in
section 2. In this case there is still a precise match between the CFT first law (1.10) and
the bulk extended first law (1.2). The advantage of this generalised dictionary is that the
boundary volume V and the central charge C are now completely independent, since the
volume depends on R and the central charge on L. However, one can also set R = L and
then all the results on phase transitions and all the plots presented in the paper remain
the same.

The purpose of the present paper is to investigate the holographic dual of extended
thermodynamics of charged AdS black holes in more detail. For the three pairs of conju-
gate quantities (Φ̃, Q̃), (p,V) and (µ,C), there are in total eight possible thermodynamic
(grand) canonical ensembles in the CFT. In section 3 we find that three of these ensembles
exhibit interesting phase behaviour or critical phenomena, to wit the ensembles at fixed
(Q̃,V, C), (Φ̃,V, C) and (Q̃,V, µ). We plot the appropriate free energies in these ensembles
as a function of the temperature and analyse the relevant phase diagrams. Further, in
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section 4 we study the critical behaviour and thermodynamic stability in detail, and show
that the critical exponents of the critical points in the Q̃− Φ̃ and C − µ plane agree with
those of mean field theory. Finally, in section 5 we compare our work with other literature
on the holographic dual of extended black hole thermodynamics.

2 Holographic thermodynamics of charged AdS black holes

The AdS/CFT correspondence relates the thermodynamics of AdS black holes to the ther-
modynamics of the dual CFT [5]. In this section we recap the holographic dictionary for
the extended thermodynamics of charged AdS black holes, presented in [21]. We keep the
number of dimensions general in most of the paper, but all plots are made for d = 4, i.e.
the AdS5/CFT4 correspondence.

2.1 Extended thermodynamics of charged AdS black holes

We begin by briefly revisiting the spherically symmetric, charged black holes in asymptot-
ically AdS spacetime [6, 7]. This is a solution to Einstein–Maxwell theory with a negative
cosmological constant Λ, whose action in d+ 1 spacetime dimensions reads

I = 1
16πGN

∫
dd+1x

√
−g

(
R− 2Λ− F 2

)
(2.1)

where F = dA is the electromagnetic field strength, Λ is given in (1.4), where we note
that the normalisation 1/16πGN of the matter part of the action is not standard, since it
involves Newton’s constant. The metric for a Reissner–Nordström AdS black hole in static
coordinates is

ds2 = −f(r)dt2 + dr2

f(r) + r2dΩ2
d−1 , (2.2)

where dΩ2
d−1 is the metric on the round unit d−1 sphere, and the function f(r) is given by

f(r) = 1 + r2

L2 −
m

rd−2 + q2

r2d−4 . (2.3)

Here, m is the mass parameter of the black hole, which is related to the ADM mass by

M = (d− 1)Ωd−1
16πGN

m. (2.4)

Further, q is the charge parameter, which is related to the electric charge via

Q = (d− 1)Ωd−1
8πGN

α q , with α =
√

2(d− 2)
d− 1 . (2.5)

The associated gauge potential is

A =
(
− 1
α

q

rd−2 + Φ
)
dt , (2.6)

where Φ is a constant that plays the role of the electric potential. Charged black holes have
inner horizons and an outer event horizon. We are only concerned in this paper with the

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
4

outer horizon at r = rh, which is the largest real positive root of f(r). From the condition
f(rh) = 0 we can solve for the mass parameter in terms of the horizon radius, the AdS
radius and the charge parameter

m = rd−2
h

(
1 + r2

h

L2 + q2

r2d−4
h

)
. (2.7)

We fix the electric potential such that At(rh) = 0, i.e.

Φ = 1
α

q

rd−2
h

. (2.8)

With this choice Φ represents the potential difference between the outer horizon and in-
finity. The black hole parameters are related to each other by the generalised Smarr
formula (1.3) [16],

M = d− 1
d− 2

κA

8πGN
+ ΦQ− 1

d− 2
ΘΛ

4πGN
. (2.9)

Here, Θ = −V is the quantity conjugate to the cosmological constant Λ, which can be
defined as the background subtracted Killing volume [23]

Θ ≡
∫

Σbh
|ξ|dV −

∫
ΣAdS

|ξ|dV , (2.10)

where |ξ| =
√
−ξ · ξ is the norm of the time translation Killing vector ξ, which generates the

event horizon. We have subtracted the same integral in pure AdS to cancel the divergence
at infinity. Note that the domain of integration Σbh extends from the horizon to infinity,
whereas the domain of integration ΣAdS in the AdS background extends across the entire
spacetime. Moreover, through Stokes’ theorem this definition can be shown to be equivalent
to the original definition of Θ in terms of surface integrals of the Killing potential [16]
(see footnote 9 in [23]). In static coordinates, setting ξ = ∂t, the background subtracted
Killing volume is equal to minus the Euclidean volume excluded by the black hole, i.e.
Θ = −1

dΩd−1r
d
h [16, 26]. Instead of using the background subraction method one can

also employ the counterterm subtraction method to regulate the divergence in the Killing
volume [33].

Further, by using the metric (2.2) and by computing the surface gravity defined with
respect to the time translation Killing vector ξ = ∂t, we obtain from (1.1) the Hawking
temperature and the Bekenstein–Hawking entropy

T = d− 2
4πrh

(
1 + d

d− 2
r2
h

L2 −
q2

r2d−4
h

)
, S = Ωd−1r

d−1
h

4GN
. (2.11)

The generalised Smarr formula and the extended first law of AdS black hole mechanics are
related by a scaling argument [16, 34, 35]. The black hole parameters scale with the AdS
radius as M ∼ Ld−2, A ∼ Ld−1, Q ∼ Ld−2 and Λ ∼ L−2, and with Newton’s constant as
M,Q ∼ G−1

N . It can be shown that the gravitational first law for charged AdS black holes,
extended to include variations of the theory parameters GN and Λ, is given by

dM = κ

8πGN
dA+ ΦdQ+ Θ

8πGN
dΛ− (M − ΦQ) dGN

GN
. (2.12)
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As mentioned in the introduction, the addition of the variation of the cosmological constant
in the first law is well studied in the literature (see [36] for a review). The variation of
Newton’s constant was considered before in the context of the first law of holographic
entanglement entropy in [18, 37, 38] and for the extended first law of AdS black holes
in [17, 20–22].

2.2 CFT thermodynamics with a chemical potential for the central charge

In [19, 21, 39] it was shown that the generalised Smarr formula (2.9) for AdS black holes
is dual to an Euler equation in large-N field theories, which includes a µC term but not a
pV term. For charged black holes the dual Euler equation takes the following form:

E = TS + Φ̃Q̃+ µC , (2.13)

where µ is the chemical potential associated with the central charge C, and Φ̃ and Q̃ are
the CFT electric potential and charge. Moreover, in [21] the extended first law (2.12) was
matched with an extended first law of thermodynamics in the CFT, which involves both a
µdC term and a pdV term,

dE = TdS + Φ̃dQ̃− pdV + µdC , (2.14)

where p is the field theory pressure and V the spatial volume on which the CFT resides.
In this subsection we will summarize how this matching works between the boundary and
bulk thermodynamic first laws, for the case where the boundary curvature radius R is
unrelated to the bulk curvature radius L. We refer to [19, 21, 39] for a derivation of the
generalised Smarr formula for AdS black holes from the Euler equation in the dual CFT.

Let us begin by explaining the holographic dictionary that is necessary for the match.
First, in AdS/CFT the central charge of the CFT is related to the AdS radius and the grav-
itational coupling constants in the bulk theory. For Einstein gravity this dictionary reads

C = Ωd−1L
d−1

16πGN
. (2.15)

In conformal field theory there are several candidates for the central charge in general di-
mensions. The standard central charges parametrizing the trace anomaly 〈Tµµ〉 in a curved
background exist only in even dimensions. We normalized the central charge in (2.15) such
that it agrees with the coefficient A of the Euler density in the trace anomaly. In d = 2 our
central charge is related to the usual central charge by C = c/12; inserting this into (2.15)
yields the well-known Brown–Henneaux dictionary c = 3L/2GN in AdS3/CFT2 [40]. Two
other candidates for a generalised central charge, denoted as CT and a∗d, are also defined
in odd dimensions [41, 42]. The former central charge CT is defined as the overall normal-
ization of the two-point function of the CFT stress tensor [43]. The latter central charge
a∗d is the universal coefficient in the vacuum entanglement entropy for ball-shaped regions.
Now, crucially for CFTs dual to Einstein gravity both CT and a∗d scale as Ld−1/GN times
a constant in the bulk. The precise normalization of the central charge is ambiguous, but
it can be chosen such that these central charges are equal, CT = a∗d, and both satisfy the
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holographic dictionary (2.15) [44]. Later on, we will see the normalization of the central
charge is irrelevant for our purpose of expressing the black hole first law in terms of CFT
quantities, since only the combination dC/C appears in the first law. Therefore, only the
scaling of the central charge with L and GN , i.e. C ∼ Ld−1/GN , is important.

Another parameter of the CFT that appears in the thermodynamic first law, is the
spatial volume V of the geometry on which the CFT is formulated. In the literature (see
e.g. [19, 32]) the CFT is often put on a sphere of AdS radius L, such that the volume is
V = Ωd−1L

d−1. However, we want to clearly distinguish between the central charge C and
the spatial volume V of the CFT. Therefore, we choose the boundary curvature radius R
to be different from the bulk curvature radius L, and let the spatial volume be

V = Ωd−1R
d−1 . (2.16)

Note this is the volume of a (d− 1)-dimensional sphere of radius R in the CFT boundary
geometry R × Sd−1, which corresponds to an “area” in the (d + 1)-dimensional AdS bulk
geometry. Technically, this can be realized by choosing a particular conformal frame for the
CFT. In AdS/CFT the dual field theory lives on the conformal boundary of the asymptoti-
cally AdS spacetime. More precisely, according to the Gubser–Klebanov–Polyakov–Witten
(GKPW) prescription [45, 46] the CFT metric gCFT is identified with the AdS metric gAdS
evaluated on the asymptotic boundary up to a Weyl rescaling

gCFT = lim
r→∞

(
λ2(x)gAdS

)
, (2.17)

where r → ∞ corresponds to spatial infinity and λ(x) is an arbitrary Weyl factor. As
r →∞ the line element of asymptotically AdS spacetime approaches

ds2 = − r
2

L2dt
2 + L2

r2 dr
2 + r2dΩ2

d−1 . (2.18)

For the standard choice of the Weyl factor λ = L/r the line element of the boundary CFT
is ds2 = −dt2 + L2dΩ2

d−2. In this case the bulk curvature radius L coincides with the
boundary curvature radius. However we shall instead take the Weyl factor to be λ = R/r

such that the CFT resides on a sphere of constant radius R, and the line element of the
CFT becomes

ds2 = −R
2

L2 dt
2 +R2dΩ2

d−1 . (2.19)

The spatial volume of the boundary sphere is now indeed given by (2.16). For this choice
of CFT metric the holographic dictionary for the entropy S, energy E, temperature T ,
electric potential Φ̃ and electric charge Q̃ in the dual field theory is [6, 19, 21]

S = A

4GN
, E = M

L

R
, T = κ

2π
L

R
, Φ̃ = Φ

L

L

R
, Q̃ = QL . (2.20)

Note that the factor L/R arises in the dictionary for the energy, temperature and electric
potential, since the bulk Schwarzschild time t differs from the boundary CFT time in (2.19)
by a factor R/L [47]. Hence, the dictionary for the energy, temperature and potential differs
by a factor L/R from the holographic dictionary in (1.9). Further, our dictionary here for
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the charge and potential differs by a factor
√
GN from that in our previous work [22], where

we used Q̃ = QbL/
√
GN and Φ̃ = Φb

√
GN/L (note we assumed R = L). This is because

the convention in [22] for the bulk charge and potential is different, Qb =
√
GNQ and

Φb = Φ/
√
GN , compared to the expressions for Q and Φ in (2.5) and (2.8), respectively.

The difference can be traced back to a different convention for the bulk action: in [6, 19, 21]
the Einstein–Maxwell action was defined as (2.1), whereas in [22] the bulk action took the
standard form I = 1

16πGN
∫
dd+1x

√
−g

(
R− 2Λ−GNF 2) . The latter convention leads to

another coefficient in the dGN term in the bulk first law (2.12), since ΦdQ+ΦQdGN/GN =
ΦbdQb + 1

2ΦbQbdGN/GN .

Furthermore, in the holographic dictionary above we assumed the energy of the vacuum
state vanishes. However, the vacuum energy for a CFT on a sphere is in fact finite when
d is even due to the Casimir effect, and it can be computed in AdS/CFT through the
counterterm subtraction method a.k.a. holographic renormalization [48, 49]. The correct
dictionary for the renormalized energy that follows from this method is given by E =
(M +E0)L/R, where the vacuum energy E0 ∼ C is proportional to the central charge. For
the purpose of this paper we can safely ignore the Casimir energy, since it is essentially
irrelevant for the (holographic) thermodynamics, as pointed out in footnote 5 of [7]. This
choice of setting the vacuum energy to zero is also in agreement with other definitions of
the asymptotic energy in asymptotically AdS spacetimes [50–53], which are not based on
the counterterm subtraction method. Nevertheless, if it exists, the Casimir energy does
affect the Killing volume Θ and the chemical potential µ; see appendix E in [21] for a
renormalized version of the Euler equation.

A crucial step in matching the bulk and boundary first laws is to replace Θ in the
extended first law (2.12) using the generalised Smarr formula (2.9), and to insert dΛ/Λ =
−2dL/L. After a reorganization we can express the extended first law in terms of the
boundary thermodynamic quantities [21]

d

(
M
L

R

)
= κ

2π
L

R
d

(
A

4GN

)
+ Φ
R
d(QL)− M

d− 1
L

R

dRd−1

Rd−1

+
(
M
L

R
− κA

8πGN
L

R
− Φ
R
QL

) d(Ld−1/GN
)

Ld−1/GN
.

(2.21)

The holographic dictionary (2.15), (2.16) and (2.20) then implies that the extended first
law of charged AdS black holes is dual to the following thermodynamic first law in the CFT

dE = TdS + Φ̃dQ̃− pdV + µdC . (2.22)

By comparing the bulk and boundary first laws, (2.21) and (2.22) respectively, we find the
CFT pressure and the chemical potential associated with the central charge are fixed to be

p = 1
d− 1

E

V
, µ = 1

C

(
E − TS − Φ̃Q̃

)
. (2.23)

The first equation is the CFT equation of state in d spacetime dimensions, which is a conse-
quence of the scale invariance of the CFT. The second equation is the Euler relation (2.13)
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for large-N gauge theories with a conserved charge Q̃, which is equivalent to the fact that
the grand canonical free energy is proportional to C (or N2) in the deconfined phase of
large-N theories, i.e. W ≡ E − TS − Φ̃Q̃ = µC [19]. Notably, in contrast to the gener-
alised Smarr relation (2.9), the Euler equation does not contain any dimension dependent
factors, just like the Euler equation in standard thermodynamics. Moreover, even though
the −pdV term features in the CFT first law, a −pV term is absent in the large-N Euler
equation. This peculiarity arises because the volume does not generically scale with the
central charge C, like the other thermodynamic quantities in the CFT do, i.e. E,S, Q̃ ∼ C.
However, in the infinite-volume or infinite-temperature limit TR → ∞ the volume does
scale with the central charge, since in that case we have pV = −µC, and the Euler equation
reduces to the standard one in flat space E = TS + Φ̃Q̃− pV (see appendix C in [21]).

The additional term µdC in the extended CFT first law (2.22) requires some further
discussion. In SU(N) gauge theories with conformal symmetry like N = 4 supersymmetric
Yang-Mills theory the central charge is associated with the rank of the gauge group, C ∼
N2. Changing the rank of the gauge group is tantamount to changing the original theory.
Variations of the rank of the gauge group can thus be viewed as moving within the space
of theories and changing the number of degrees of freedom N2. We are investigating in
this paper how various physical quantities change as the central charge varies. However,
since N is an integer it can not be varied in a continuous way. Nevertheless, in the large-N
limit, which is relevant for holography, we still have ∆N/N � 1, and hence dC/C � 1.
Since µ ∼ 1/C the combination ∆C/C appears precisely in the first law, and therefore the
µdC term in the first law only makes sense for large-N field theories.2

Finally, we give explicit expressions for the thermodynamic variables of CFT thermal
states dual to charged AdS black holes. Following [32], we find it convenient to introduce
the dimensionless parameters

x ≡ rh
L
, y ≡ q

Ld−2 . (2.24)

The gravitational entropy (2.11), electric charge (2.5) and potential (2.8) of AdS black
holes can be mapped to CFT variables using the holographic dictionary (2.20):

S = 4πCxd−1, Q̃ = 2α(d− 1)Cy, Φ̃ = 1
αR

y

xd−2 , (2.25)

where we recall R is the boundary curvature radius, and C is the CFT central charge (2.15).
Further, the ADM energy (2.4) and the Hawking temperature (2.11) can also be related
to the CFT energy and temperature, respectively,

E = d− 1
R

Cxd−2
(

1 + x2 + y2

x2d−4

)
, T = d− 2

4πR
1
x

(
1 + d

d− 2x
2 − y2

x2d−4

)
, (2.26)

where (2.25) can be used to express x and y in terms of the CFT variables S, Q̃, Φ̃, C
and R. Moreover, the chemical potential (2.23) can be expressed in terms of x, y and R as

µ = xd−2

R

(
1− x2 − y2

x2d−4

)
. (2.27)

2We thank an anonymous referee for pointing this out.
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We point out that the 1/R dependence in equations (2.25)–(2.27) is fixed by the scale
invariance of the CFT; the scale invariant combinations are Φ̃R, ER, TR and µR.

3 Thermodynamic ensembles in the CFT

Using the holographic dictionary of the previous section we want to study different (grand)
canonical thermodynamic ensembles in the CFT. Besides the pair (T, S) there are three
pairs of conjugate thermodynamic variables in the CFT description of charged AdS black
holes, namely (Φ̃, Q̃), (p,V) and (µ,C). For the study of thermal behavior this yields 23 = 8
(grand) canonical ensembles.

Five of these ensembles exhibit no interesting phase behaviour. The relevant grand
canonical potentials or free energies for these ensembles are

fixed (Q̃, p, C) : F1 ≡ E − TS + pV = Φ̃Q̃+ µC + pV ,
fixed (Q̃, p, µ) : F2 ≡ E − TS + pV − µC = Φ̃Q̃+ pV ,
fixed (Φ̃, p, µ) : F3 ≡ E − TS − Φ̃Q̃+ pV − µC = pV ,
fixed (Φ̃, p, C) : F4 ≡ E − TS − Φ̃Q̃+ pV = µC + pV ,
fixed (Φ̃,V, µ) : F5 ≡ E − TS − Φ̃Q̃− µC = 0 .

(3.1)

We did find phase transitions or critical phenomena for the remaining three ensembles
at fixed (Q̃,V, C), (Φ̃,V, C) and (Q̃,V, µ), whose free energies we denote as F,W and G,
respectively,

fixed (Q̃,V, C) : F ≡ E − TS = Φ̃Q̃+ µC ,

fixed (Φ̃,V, C) : W ≡ E − TS − Φ̃Q̃ = µC ,

fixed (Q̃,V, µ) : G ≡ E − TS − µC = Φ̃Q̃ .
(3.2)

In the next three subsections 3.1–3.3 we will study the phase behaviour of these three en-
sembles by looking at how the appropriate free energies behave as functions of temperature.
In the last subsection 3.4 we will briefly mention our findings in the other five ensembles.

3.1 Ensemble at fixed (Q̃,V, C)

In the canonical ensemble we fix the electric charge Q̃, the spatial volume V and the central
charge C. The thermodynamic potential in this ensemble is the Helmholtz free energy

F ≡ E − TS = C
xd−2

R

(
1− x2 + (2d− 3) y2

x2d−4

)
. (3.3)

Indeed by the CFT first law (2.22), the differential of F satisfies

dF = dE − TdS − SdT = −SdT + Φ̃dQ̃− pdV + µdC . (3.4)

Hence, F is stationary at fixed (T, Q̃,V, C), and is therefore the right free energy in this
case. This ensemble is equivalent to the fixed charge ensemble analysed in [6, 7], but we
clarify that in the dual CFT description implicitly V and C are also kept fixed.
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Figure 1. Free energy F vs. temperature T plot in d = 4 for the fixed (Q̃,V, C) ensemble. Left:
we plot different values of Q̃ for fixed R and C, the parameters are R = 1, C = 1 and Q̃ =
0.1, 0.2, 4/3

√
5, 1 (blue, orange, green, red). For Q < Qcrit (blue, orange) the free energy displays

“swallowtail” behaviour and a first-order phase transition occurs between two thermodynamically
stable branches. The “horizontal” branch has low entropy, while the “vertical” branch has high
entropy. The intermediate branch that connects these two branches has negative heat capacity
and is hence unstable. For Q = Qcrit (green) there is a second-order phase transition, and for
Q > Qcrit (red) there are no phase transitions. Right: We plot different values of C for fixed Q̃ and
R, the parameters are R = 1, Q̃ = 1 and C = 1, 3

√
5/4, 4 (blue, orange, green). As in the charged

case, the plot exhibits different behaviours below and above the critical value, this time, a critical
central charge. The swallowtail and first-order phase transitions occur for C > Ccrit (green). This
transition becomes of second order at C = Ccrit (orange) and for C < Ccrit only a single phase
exists, as implied by the smooth single-valued curve (blue). The two apparent triple intersections
of the blue, orange and green curves is a consequence of plotting resolution; there are no triple
intersections.

Let us now study how the free energy F behaves as a function of the temperature T
for different fixed (Q̃,V, C) values. For this purpose, it is practical to consider F and T

as functions of (Q̃, R,C, x), where we note that fixing the radius R is identical to fixing
the volume V due to (2.16). This is done by replacing the parameter y in (2.26) and (3.3)
by the electric charge and central charge, using the relation Q̃ = 2α(d − 1)Cy. We then
obtain for the free energy and temperature, respectively,

F = C
xd−2

R

(
1− x2 + 2d− 3

4α2(d− 1)2C2
Q̃2

x2d−4

)
,

T = d− 2
4πR

1
x

(
1 + d

d− 2x
2 − 2d− 3

4α2(d− 1)2C2
Q̃2

x2d−4

)
.

(3.5)

This allows us to plot F (T ) parametrically using x as parameter for fixed values of
(Q̃, R,C), which we depict in figure 1. The dependence on the radius R is trivially fixed
by scale invariance, hence plots of F (T ) for different values of R are only rescalings of
each other. It does matter, however, whether we plot F (T ) for different values of Q̃, while
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keeping C fixed, or for different values of C, while keeping Q̃ fixed. In both cases the free
energy displays “swallowtail” behaviour connecting three different branches, but in the
former case this only occurs for Q < Qcrit and in the latter case for C > Ccrit, where Qcrit
and Ccrit are critical values whose ratio we compute below in equation (4.3). In figure 1
the former case is shown on the left and the latter case is shown on the right. We will now
discuss these two different plots in more detail.

On the left in figure 1 we show the free energy as a function of the temperature for
Q < Qcrit (blue, orange), Q = Qcrit (green) and Q > Qcrit (red) while keeping C and R

fixed. The free energy displays a “swallowtail” shape for Q̃ < Q̃crit, a kink when Q̃ = Q̃crit,
and a smooth monotonic curve for Q̃ > Q̃crit. For each of the curves, starting from the
point on the curve where T = 0, the value of x along the curves increases as T increases.
From the formula S = 4πCxd−1 for the CFT entropy, we see that black holes with small
x ≡ rh/L are dual to CFT thermal states with small S/C, i.e. states with low entropy
per degree of freedom. On the swallowtail curve (e.g. blue), this low-entropy state (from
here on we drop the phrase “per degree of freedom” to avoid clutter) is the only available
state near T = 0 on this curve and thus has initially the lowest free energy F . It continues
to have the lowest free energy as T increases until the self-intersection point of the curve.
Beyond this point, the CFT state with high entropy per degree of freedom, corresponding to
large x black holes, lying along the “vertical” branch of the curve, becomes the state with
lowest free energy F and hence dominates the canonical ensemble. A first-order phase
transition thus takes place between low- and high-entropy states at the self-intersection
temperature for each value of Q̃ < Q̃crit. As we increase Q̃, the temperature at which the
phase transition occurs increases while the swallowtail shrinks in size until Q̃ = Q̃crit, where
it becomes just a kink in the curve. The phase transition between low- and high-entropy
states becomes second order at this (Q̃crit, Tcrit) critical point, which depends on the value
of C. This F − T behaviour of the CFT is commensurate with the canonical ensemble for
AdS black holes at fixed charge [6].

However unlike [6], we also consider variations of C while keeping Q̃ fixed. On the right
in figure 1 we show the plots of F (T ) for three representative values of C while keeping Q̃
and R fixed: C < Ccrit (blue), C = Ccrit (orange) and C > Ccrit (green). Qualitatively,
this plot conveys a phase behaviour similar to that on the left figure. That is, the CFT
displays a first-order phase transition between states with low- and high-entropy per degree
of freedom for C > Ccrit, a second-order phase transition at Ccrit, and a single phase for
C < Ccrit. As we decrease C, the temperature at which the first-order phase transition
occurs decreases until the critical central charge is reached, where the phase transition
becomes second order. Comparing the left and right plots in figure 1, it is noteworthy
that the first-order phase transitions occur for large central charge C > Ccrit on the right,
but for small electric charge Q̃ < Qcrit on the left. Moreover, on the right the value of
the free energy at which the first-order phase transition occurs decreases as C decreases;
in contrast, on the left the free energy of the first-order phase transition increases as Q̃
decreases. These results on central charge criticality are consistent with recent findings
from a bulk perspective [22].
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Figure 2. Free energyW vs. temperature T plot and phase diagram for the fixed (Φ̃,V, C) ensemble
in d = 4. Left: W −T plot for the parameters R = 1, C = 1 and Φ̃ = 0.9Φc (blue), Φ̃ = Φc =

√
3/2

(orange) and Φ̃ = 1.1Φc (green). For Φ̃ < Φc the free energy curve consists of two branches ending in
a cusp, the upper branch corresponds to a low-entropy state and the lower branch to a high-entropy
state. At W = 0 there is a first-order phase transition between the high-entropy “deconfined” state
and a “confined” state, dual to a generalised Hawking-Page transition between a large black hole
and thermal AdS, which depends on the value of Φ̃ here. For Φ ≥ Φc the curve lies below or at the
W = 0 axis and no phase transition takes place. Right: The Φ̃ − T phase diagram for R = C = 1
with a coexistence curve representing a line of (de)confinement phase transitions in the CFT. At
Φ̃ = 0 the transition occurs at the Hawking-Page temperature T = Tc = 3/2π, and at T = 0 it
happens at Φ̃ = Φ̃c.

3.2 Ensemble at fixed (Φ̃,V, C)

If we fix the potential Φ̃, instead of the charge Q̃, then we are in the grand canonical
ensemble at fixed (Φ̃,V, C). The thermodynamic potential of this ensemble is the Gibbs
free energy

W ≡ E − TS − Φ̃Q̃ = µC = C
xd−2

R

(
1− x2 − y2

x2d−4

)
, (3.6)

where we inserted the Euler equation (2.13), which implies the free energy W is just
proportional to µ, and in the last equality we used (2.27). This ensemble is equivalent to the
fixed potential ensemble considered in [6, 7], but here we give a more precise interpretation
in terms of the dual CFT (see also [32]).

Using Φ̃ = y/αRxd−2 we can rewrite the free energy in terms of the electric potential

W = C
xd−2

R

(
1− x2 − α2R2Φ̃2

)
. (3.7)

Similarly, the temperature can be expressed as

T = d− 2
4πR

1
x

(
1 + d

d− 2x
2 − α2R2Φ̃2

)
. (3.8)
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This allows us to plot the free energy W (T ) parametrically using x as parameter for fixed
(Φ̃, R, C), as shown in figure 2 on the left. The W − T plot displays different behaviour
above and below a certain critical potential Φ̃c, which we compute below in (3.10). On the
one hand, for Φ̃ ≥ Φ̃c (orange, green curves) the free energy is single valued as a function
of the temperature, with W ≤ 0 and the curve cuts the W -axis. On the other hand, for
Φ̃ < Φ̃c (blue curve) the free energy curve consists of an upper and a lower branch that
meet at a cusp, corresponding to low-entropy (small black holes) and high-entropy (large
black holes) states, respectively. The upper branch has negative specific heat and is hence
thermodynamically unstable, while the lower branch has positive specific heat and is thus
a stable solution. The temperature attains a minimum as a function of x at the cusp, i.e.

(
∂T

∂x

)
Φ̃

= 0 at xcusp =
√
d− 2
d

(1− α2R2Φ̃2) ,

hence Tcusp = 1
2πR

√
d(d− 2)(1− α2R2Φ̃2) .

(3.9)

We see from the blue curve on the left of figure 2 that the free energy of the lower branch
switches sign at W = 0, signalling a first-order phase transition. The large-entropy “de-
confined” state dominates the ensemble when W < 0, while the “confined” state is ther-
modynamically preferred when W > 0. This (de)confinement phase transition is dual
to a generalised Hawking-Page phase transition between large AdS black holes and the
AdS spacetime with thermal radiation [4, 5]. Even though the Hawking-Page transition
was originally discovered for AdS-Schwarzschild black holes [4], it also exists for charged
AdS black holes, where the transition depends on the value of the electric potential [6].
This generalised Hawking-Page transition even exists for Lifshitz black holes for the values
1 ≤ z ≤ 2 where z is the dynamical Lifshitz exponent [54] and for hyperscaling violating
black holes for any hyperscaling violation parameter θ [55]. Thus, there exists an entire
line in the Φ̃− T plane along which first-order phase transitions between the confined and
deconfined phase occur.

This line of first-order phase transitions can be computed analytically. By setting W =
0 and eliminating x in favour of the temperature, we can obtain the following expression
for the coexistence line

Φ̃ = Φ̃c

Tc

√
T 2
c − T 2 , with Tc = d− 1

2πR , Φ̃c = 1
αR

= 1
R

√
d− 1
2d− 4 . (3.10)

We plotted the coexistence line in the Φ̃−T plane in figure 2 on the right. Notice at T = 0
the phase transition occurs at Φ̃ = Φ̃c, and at Φ̃ = 0 the transition is equivalent to the
standard Hawking-Page phase transition in the bulk at temperature T = Tc. The values
for Tc and Φ̃c in (3.10) are consistent with the expressions found in the bulk in [6]. Even
though the phase behaviour is essentially the same as for the fixed potential ensemble in
the bulk, our analysis makes sure that the volume V and central charge C are also explicitly
kept fixed in the corresponding fixed potential ensemble on the boundary.
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Figure 3. Free energy G vs. temperature T plot and phase diagram for the fixed (Q̃,V, µ) ensemble
in d = 4. In both figures we set R = 0.1, Q̃ = 1. Left: The G(T ) plot for the values µ =
−60,−10, 0, 1/10, 2 (blue, orange, green, red, purple). For µ ≤ 0 there is only a single stable phase.
For µ > 0 (e.g. red curve) the free energy curve consists of two branches, which meet at a cusp
T = T0 (3.16) and cut the G = 0 line at two temperatures T1 ≤ T2 (3.15). The upper branch
corresponds to a low-entropy state and the lower branch to a high-entropy state. For T0 < T < T1
the high-entropy state is the thermodynamically preferred phase. At T = T1, the high-entropy
branch terminates and the CFT undergoes a zeroth-order phase transition to the low-entropy CFT
phase when the temperature is increased. The low-entropy branch has positive heat capacity at
T = T2, but it becomes negative at some intermediate temperature Tint indicated by the black
dashed line for the red curve. Right: The µ− T phase diagram showing demarcations between the
different phases: the green shaded region bounded by the green curve is the high-entropy phase,
which has positive heat capacity, the regions on the right above the T -axis correspond to the low-
entropy phase. The latter is further divided into a stable (“S”) phase with positive heat capacity and
an unstable (“U”) phase with negative heat capacity. White regions indicate that no solution exists.

3.3 Ensemble at fixed (Q̃,V, µ)

In the previous two ensembles we fixed the central charge C, which roughly corresponds to
fixing the number of field degrees of freedom in the CFT or N2 in a large-N SU(N) gauge
theory. Here we consider what happens if one fixes the associated chemical potential µ
instead. The appropriate free energy for this grand canonical ensemble at fixed (Q̃,V, µ) is

G ≡ E − TS − µC = Φ̃Q̃ , (3.11)

where we inserted the Euler equation (2.13) in the last equality. The differential of G is

dG = dE − TdS − SdT − µdC − Cdµ = −SdT + Φ̃dQ̃− pdV − Cdµ , (3.12)

so the free energy G is indeed stationary at fixed (T, Q̃,V, µ). This ensemble has not been
considered before in the black hole thermodynamics literature. We note that fixing the
chemical potential instead of the number of degrees of freedom is very natural in thermo-
dynamics. However, in the CFT this means that we are allowed to vary the central charge,
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which is only possible if we consider a family of holographic CFTs with different central
charges. In the gravity theory this corresponds to allowing for variations of Λ and GN .

We can express the free energy and temperature as functions G = G(Q̃, R, µ, x) and
T = T (R,µ, x) by replacing the potential Φ̃ with the chemical potential µ using equa-
tions (2.27) and (2.25)

G = |Q̃|
αR

√
1− x2 − Rµ

xd−2 , (3.13)

T = d− 2
4πR

(
Rµ

xd−1 + 2(d− 1)
d− 2 x

)
. (3.14)

In the formula for G the absolute value of Q̃ appears, since strictly speaking the free energy
cannot become negative. This can be easily seen by expressing the free energy in terms
of the bulk electric potential and charge, i.e. G = L

RΦQ = L
R

(d−1)Ωd−1
8πGN

q2

rd−2
h

, hence the free
energy is always greater than or equal to zero: G ≥ 0.

With these expressions (3.13) and (3.14) we can plot G(T ) parametrically for fixed
values of (Q̃, R, µ); see the left plot of figure 3. We note that the G(T ) diagram undergoes
a qualitative change at µ = 0 (the green curve), in which case the temperature is given by
T (µ = 0) = d−1

2πRx. For µ ≤ 0 (blue, orange and green curves) the free energy as a function
of the temperature is single valued, corresponding to the existence of a single CFT phase
that is stable under thermal fluctuations. For 0 < µ < µcoin (red and purple curve) the free
energy curve consists of two branches, cutting the G = 0 line at two temperatures T1 and T2
with T2 ≥ T1, corresponding to the two positive roots of the function f(x) = 1− x2− Rµ

xd−2

appearing in expression (3.13). For d = 4 we can find the analytic expressions

T1 = 3− 4µR+ 3
√

1− 4µR
√

2πR
(
1 +
√

1− 4µR
)3/2 , T2 = 3− 4µR− 3

√
1− 4µR

√
2πR

(
1−
√

1− 4µR
)3/2 . (3.15)

Note for µ = 0 we have T1 = 3
2πR and T2 → ∞. Further, the two temperatures are the

same at the coincidence point µcoin = 1/4R, so that Tcoin =
√

2
πR .

3 The free energy G is only
real for µ ≤ µcoin, hence there are no G(T ) plots for µ > µcoin.

Looking for example at the red curve in the left plot of figure 3, starting from the right
intersection T2 the value of the parameter x increases along the curve up to the cusp at T0,
and increases further as we move down from the cusp to the left intersection T1. Therefore,
the CFT phase lying between the cusp and T2 corresponds to a low-entropy phase and the
state lying between the cusp and T1 corresponds to a high-entropy phase. The temperature
of the cusp can be computed by obtaining the stationary point of T (x), i.e.(

∂T

∂x

)
µ

= 0 at x0 =
(
d− 2

2 µR

)1/d
,

hence T0 = d

2πR

(
d− 2

2 µR

)1/d
.

(3.16)

We note that T0(µcoin) = Tcoin, thus T0, T1 and T2 are all the same for µ = µcoin.

3In general d this coincidence point occurs at xcoin =
√

d−2
d

, µcoin = 2
dR

(
d−2
d

) d−2
2 and Tcoin =

√
d(d−2)
2πR .
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Let us now us describe the phase transitions in this ensemble. For µ ≤ 0 there is only a
single phase, but for 0 < µ < µcoin a phase transition can occur between the low- and high-
entropy branches. For T0 < T < T1 the free energy is lowest for the high-entropy state,
hence this phase is thermodynamically preferred in this regime. At T = T1 the high-entropy
phase terminates and there is a zeroth-order phase transition between the high-entropy and
low-entropy state. For T1 < T < T2 the low-entropy state is the only existing phase, and
hence it dominates the thermodynamic ensemble. An interesting feature of the low-entropy
branch is that it has positive heat capacity between T2 and some intermediate temperature

Tint =
(d− 2)µ

(
2

dµR

) d−1
d−2

4π +
(d− 1)

(
2

dµR

)− 1
d−2

2πR , (3.17)

which is indicated by a dashed line on the left in figure 3, for which xint =
(
d
2µR

)1/(d−2).
But the low-entropy phase has a negative heat capacity between Tint and T0 and is hence
unstable for low temperatures. The temperatures Tint and T1, at which the zeroth-order
phase transition occurs, coincide for two values of the chemical potential, the first is µcoin
and the second is given by µ∗ = 1

324R

(
16
√

7− 35
)
in d = 4, and the associated temperature

is T∗ = 2
3πR

√
2 + 8/

√
7. This means that for µ∗ < µ < µcoin the zeroth-order phase

transition takes place between the stable low-entropy phase and the high-entropy phase,
whereas for 0 < µ < µ∗ the phase transition happens between the unstable low-entropy
state and the stable high-entropy state.

We would like to point out that the zeroth-order phase transition could in principle
happen both ways between the high- and low-entropy state, depending on whether the
temperature is decreased or increased. On the one hand, the phase transition from the high-
to the low-entropy state occurs when the temperature of the CFT increases above T = T1,
since above this temperature only the low-entropy branch survives, but this transition has
the peculiar feature that the entropy decreases during the process, in contradiction to the
second law of thermodynamics. On the other hand, the phase transition from the low- to
the high-entropy state happens when the temperature decreases below T = T1, and this
transition seems thermodynamically more favourable since the entropy increases during
the process.

We indicated the different phases in the µ − T plane on the right in figure 3. The
green region is associated with the high-entropy phase, while the red and yellow regions
correspond to the stable and unstable low-entropy phases, respectively. The zeroth-order
phase transition occurs between the high-entropy phase (green region) and the low-entropy
phase (red and yellow regions). There are no solutions in the white regions. For µ < 0,
the (red) boundary is fixed by the value of T1. For any given µ > 0, the left and right
boundaries of the phase space are set, respectively, by the temperature of the cusp T0
and the temperature T2. These two boundaries meet at the coincidence point, where
µcoin = 2

dR

(
d−2
d

) d−2
2 and Tcoin =

√
d(d−2)
2πR . Further, the coexistence line (the dashed

line between the green and red/yellow regions) between the high- and low-entropy phase
is determined by the temperature T1. And the coexistence line between the stable and
unstable low-entropy phase (the dashed line between the red and yellow regions) is set by
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Figure 4. The free energies of other ensembles plotted against temperature in d = 4, corresponding
to ensembles at fixed (Q̃, p, C), (Q̃, p, µ), (Φ̃, p, µ) and (Φ̃, p, C) (from left to right). In the top left
and right diagrams the free energies are plotted for p = 1 (blue), p = 10 (orange) and p = 20
(green). On the bottom left, the free energy of the fixed (Φ̃, p, µ) ensemble has qualitatively different
behaviour for µ ≤ 0 and µ > 0. The former is single branched with an asymptote at T = 0, while
the latter is double branched with a “tip” corresponding to a maximum Φ̃ and minimum T ; the
parameters used are µ = −10 (blue), µ = 0 (orange), µ = 1/20 (green) and µ = 1/5 (red). On
the bottom right, the free energy plot for fixed (Φ̃, p, C) has a single branch with an asymptote at
T = 0; the parameters used are p = 1 (blue), p = 5 (orange), p = 10 (green). These four ensembles
do not display phase transitions.

the intermediate temperature Tint. The two coexistence lines (the intersection of the two
dashed lines) meet at the point (µ∗, T∗).

3.4 Other ensembles

In the previous subsections we discussed the (grand) canonical thermodynamic ensembles
at fixed (Q̃,V, C), (Φ̃,V, C) and (Q̃,V, µ). In addition, there are five other grand canonical
ensembles, for which the corresponding free energies F1 − F5 are given in equation (3.1).
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In figure 4 the free energies are plotted against temperature for the first four ensembles
for some representative parameter values. From left to right, these are the fixed (Q̃, p, C),
(Q̃, p, µ), (Φ̃, p, µ) and (Φ̃, p, C) ensembles. The ensemble not displayed in the figure is
the fixed (Φ̃,V, µ) ensemble, for which the associated free energy F5 is identically zero
(F5 ≡ 0) due to the Euler equation. We further note that in the infinite volume or infinite
temperature limit TR→∞, two of the free energies simplify drastically

TR→∞ : F1 = Φ̃Q̃, F4 = 0 , (3.18)

since we have µC = −pV in this limit (see appendix C in [21]). Moreover, in this limit
the free energy F1 coincides with the free energy G (3.11) in the fixed (Q̃,V, µ) ensemble,
i.e. F1 = Φ̃Q̃ = G. And, in this limit the free energy F2 is equal to minus the free energy
W (3.6) in the fixed (Φ̃,V, C) ensemble, i.e. F2 = −µC = −W .

Importantly, from figure 4 we see that all five ensembles do not display critical phenom-
ena or phase transitions. Therefore, there is no critical behaviour, such as p−V criticality,
in the fixed p ensembles in the CFT. Further, in the first three ensembles at fixed (Q̃, p, C),
(Q̃, p, µ) and (Φ̃, p, µ), there are two branches in the free energy plots: the lower branch
corresponds to a thermal state with a high value of S/C, dual to a large black hole in the
bulk, and the upper branch is associated with a thermal state with a low value of S/C,
coresponding to a small AdS black hole. The lower branch in these plots has the lowest free
energy for a fixed temperature, and hence this phase dominates the respective ensembles;
moreover, it has positive specific heat and is therefore stable against thermal fluctuations.
The upper branch has negative specific heat, and is therefore thermodynamically unstable.

4 CFT criticality and thermodynamic stability

In this section we study the critical behaviour of the (extended) CFT thermodynamics
corresponding to charged AdS black holes. We show that the critical points in the Q̃−Φ̃ and
C − µ planes have mean field critical exponents. Further, we derive the heat capacities for
the ensembles at fixed (Q̃,V, C), (Φ̃,V, C) and (Q̃,V, µ), and analyse the thermodynamic
stability of the different phases in these ensembles.

4.1 Critical points and comparison with Van der Waals fluid

As is widely known, the critical behaviour of charged AdS black holes resembles that of
common thermodynamic fluids. From what we have just seen, this resemblence is main-
tained in the dual CFT. In the fixed (Q̃,V, C) ensemble the first-order phase transition
between low- and high-entropy states observed above is similar to the first-order liquid-gas
phase transition of Van der Waals fluids. If one plots the three-dimensional G̃−T −P dia-
gram for the Van der Waals fluid (see for example figure 3 in [9]), where G̃ ≡ E−TS+PV

is the Gibbs free energy, one obtains a swallowtail diagram similar to what we would obtain
if plot the F −T − Q̃ or F −T −C−1 diagram. Therefore, we can view respectively Q̃ and
1/C as playing a role analogous to the pressure of the Van der Waals fluid in driving the
system to its critical point. Moreover, the electric potential Φ̃ and the chemical potential
µ are analogous to the volume of the Van der Waals system. In fact, critical exponents of
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Figure 5. Coexistence lines in d = 4 for the fixed (Q̃,V, C) ensemble. Left: Low-entropy and
high-entropy coexistence curve for CFT thermal states on Q̃ − T phase diagram. The parameters
used here are R = 1, C = 1/10 (blue), C = 1 (red, dashed) and C = 10 (green, dotted). For each
value of C, the coexistence line represents a line of first-order phase transitions between low-entropy
states (to the left of the line) and high-entropy states (to the right), and the line ends at a critical
point where a second-order phase transition occurs at Q̃ = Q̃crit and T = Tcrit. Right: A similar
coexistence curve of the low- and high-entropy CFT states exists in the 1/C − T phase diagram,
which we depicted here for R = 1 and Q̃ = 1/2 (green), Q̃ = 2 (orange, dashed) and Q̃ = 6 (blue,
dotted).

the CFT critical point are the same as the critical exponents of the Van der Waals fluid,
and hence they fall within the same universality class. We will perform this computation
in both the Q̃− Φ̃ and C − µ plane in the next subsection.

Let us first compute the values of the relevant thermodynamic quantities at the critical
point. The temperature has an inflection point as a function of x at the critical point [6], i.e.(

∂T

∂x

)
y

= 0 =
(
∂2T

∂x2

)
y

at x = xcrit and y = ycrit. (4.1)

From (2.26) we find that these relations are solved by

xcrit = (d− 2)√
d(d− 1)

, ycrit = 1√
(d− 1)(2d− 3)

xd−2
crit . (4.2)

This yields a critical value for the ratio of the central charge and the electric charge

Ccrit

Q̃crit
= 1

2α(d− 1)ycrit
=
√

(2d− 3)
8(d− 2)

1
xd−2

crit
. (4.3)

For d = 3 we have Ccrit/Q̃crit = 3/2 and for d = 4 we have Ccrit/Q̃crit = 3
√

5/4. When the
electric charge vanishes Q̃ = 0 there is no critical point and hence no critical value of the
central charge.
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Van der Waals fluid analogy 1 analogy 2
temperature β β

pressure Q̃ 1/C
volume Φ̃ µ

Table 1. Two analogies between the thermodynamic variables of the Van der Waals fluid and those
of the CFT thermal state dual to charged AdS black holes.

The entropy (2.25) and temperature (2.26) at the critical point are

Scrit = 4πQ̃crit

√
(d− 2)(2d− 3)

8d(d− 1) , Tcrit = (d− 2)2

(2d− 3)πRxcrit
= d− 2

2d− 3

√
d(d− 1)
πR

. (4.4)

For completeness, we also write down the critical values of the chemical potential (2.27),
the electric potential (2.8) and the pressure (2.23)

µcrit = 6(d− 2)
d(2d− 3)

xd−2
crit
R

, Φ̃crit = 1
R
√

2(d− 2)(2d− 3)
, (4.5)

pcrit = Ccritx
d−2
crit

Ωd−1Rd
4(d(d− 3) + 3)
d(2d− 3) = Q̃crit

Ωd−1Rd
2(d(d− 3) + 3)

d
√

2(d− 2)(2d− 3)
. (4.6)

Figure 5 shows the coexistence lines of the low- and high-entropy phases of the CFT on
the Q̃− T as well as the 1/C − T phase diagrams. The coexistence line separates the two
phases on these planes and the CFT undergoes a first-order phase transition as it crosses
the line. On both of these phase diagrams, the low-entropy phase lies to the left of the
coexistence line (for any given value of C and R respectively) while the high-entropy phase
lies to the right. The critical points are depicted by open circles on the diagram. Above
the critical points, the CFT does not display distinct phases.

One point to note about figure 5 is that while Q̃ and 1/C in the CFT can be roughly
viewed as playing the analogous role of the pressure of a Van der Waals fluid, we see a slight
qualitative difference in the respective coexistence lines. Those in the CFT are negatively
sloped, whereas those in the P − T plane of a Van der Waals fluid (and the 1/C − T of
bulk charged AdS black holes in [22]) are positively sloped. This mismatch in the analogy
can be resolved by replacing the temperature by the inverse temperature [6, 7, 9]. That
is, the coexistence lines in the Q̃ − β and 1/C − β phase diagrams have a positive slope,
and are therefore more analogous to the those in the P − T phase diagram of a Van der
Waals fluid (see for instance figure 13 in [9] for the coexistence curve in the Q− β plane).
In table 1 we summarize the two formal analogies between the CFT thermal states and
the Van der Waals fluid. This shows the analogies are purely mathematical and do not
identify the same physical quantities. Therefore, we conclude CFT states dual to charged
AdS black holes are not identical to Van der Waals fluids, they just fall within the same
universality class.

Finally, since the critical point given by (4.2) does not depend on V, and no critical
points were found in the fixed p ensembles, there is no critical behaviour in the p−V plane in
the CFT. This stands in stark contrast to the P−V criticality found in [9] for charged black
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Figure 6. No p − V criticality for holographic CFTs. The p − V phase diagram for the CFT is
very different from that of the Van der Waals fluid. At fixed C and Q̃, the diagram shows the same
qualitative behaviour for all T . In particular, there is no critical temperature at which the curve
displays an inflection point. The parameters used here are Q̃ = C = 1 and d = 4, but the same
qualitative behaviour applies in other dimensions d > 2.

holes using the standard interpretation of extended black hole thermodynamics, where P is
the bulk pressure (1.4) and V the associated thermodynamic volume. For illustration, we
display the CFT p(V) diagram in figure 6 for different values of the temperature at fixed
(Q̃, C). We see that the behaviour is different from that of the Van der Waals fluid (see
for instance figure 1 in [9]). For any temperature the pressure p first decreases to a global
minimum before increasing with the volume V for the given (Q̃, C). In particular, there is
no critical temperature at which the p(V) plot displays an inflection point. In other words,
the CFT fluid dual to a charged black holes is not a standard Van der Waals fluid.

4.2 Critical exponents for fixed (Q̃,V, C) ensemble

In the previous subsection we have seen that there is no criticality in the p− V plane; the
critical point only appears in the C−µ and Q̃−Φ̃ plane. Here, we aim to derive the critical
exponents of the critical points in these respective planes.

4.2.1 Criticality in C − µ plane

First we study the criticality in the C − µ plane. We can express the central charge and
chemical potential as the functions C = C(Q̃, T,R, x) and µ = µ(T,R, x), respectively,

C = Q̃

2α(d− 1)xd−2
√

1 + d
d−2x

2 − Tx4πR
d−2

, (4.7)

µ = xd−1

R

(
T

4πR
d− 2 −

2(d− 1)
d− 2 x

)
. (4.8)
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Figure 7. Isotherms in the C − µ plane for d = 4. The parameters used here are Q̃ = 1, R = 1
and T = Tcrit = 4

√
3

5π (orange), T = 0.999Tcrit (blue), T = 1.001Tcrit (green) and T = 1.002Tcrit
(red). The right plot shows a zoomed-in version of the left plot around the critical point (black
dot). For T > Tcrit (e.g. red curve), the curve displays a “wriggle” similar to the familiar P − V
phase diagram in the Van der Waals liquid-gas phase transition. The phase transition takes place
in accordance with Maxwell’s equal area law.

The “equation of state” is described by C = C(µ, T ) for fixed (Q̃, V ), since C (or actually
1/C) is analogous to pressure and µ to volume in the second analogy with the Van der
Waals fluid in table 1. In figure 7 we plot C(µ) parametrically using x as parameter for
different values of T . For each temperature, there exists a maximum value µmax for the
chemical potential. This happens at x = 4π

2dTR where we have µmax = 2
(d−2)Rx

d. The
local features of the critical point are more easily visible in the right diagram of figure 7.
The critical point is indicated here by the black dot, which is the inflection point of the
C(µ, Tcrit) curve. Above the critical temperature the C(µ) curve displays a “wriggle”,
i.e. a local minimum is followed by a local maximum. To describe the first-order phase
transition between high- and low-entropy CFT phases in the fixed (Q̃,V, C) ensemble one
has to replace the wriggle by a horizontal C = constant line, in accordance with Maxwell’s
equal area law [9]. This means that the areas above and below the C = constant line
(marked in red in figure 7) are equal. The first-order phase transition takes place across
this C = constant line.

To study the critical exponents in the C − µ plane, let us define the variables

t ≡ T − Tcrit
Tcrit

, χ ≡ C

Ccrit
, ψ ≡ µ− µcrit

µcrit
. (4.9)

Note that we are not precisely following the second analogy with the Van der Waals fluid
in table 1, since we are using T and C as our variables instead of β and 1/C respectively,
but this is not necessary to derive the mean field critical exponents. The critical exponents
that bear our interest are defined as follows:
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• The critical exponent α governs the behaviour of the specific heat at constant
(Q̃,V, µ),

CQ̃,V,µ ≡ T
(
∂S

∂T

)
Q̃,V,µ

∼ |t|−α . (4.10)

• The exponent β describes the behaviour of the order parameter η ≡ µh−µl where µh
(µl) is the value of µ of the high-entropy (low) CFT state at the first-order transition,

η ≡ µh − µl ∼ |t|β . (4.11)

• The exponent γ determines the behaviour of κT ,

κT ≡ −
1
µ

(
∂µ

∂C

)
T,Q̃,V

∼ |t|−γ , (4.12)

where we fix the temperature but do not hold µ fixed.

• The exponent δ governs the following behaviour on the critical isotherm T = Tcrit

|C − Ccrit| ∼ |µ− µcrit|δ . (4.13)

First, to find α we can use the following expressions for the entropy S(Q̃, R, µ, x) and the
temperature T (Q̃, R, µ, x),

S = 2πQ̃x d2 +1√
(d− 2)(d− 1)

√
−2 (x2 − 1)xd − 2µRx2

, (4.14)

T = x

4πR
(
(d− 2)µRx−d + 2(d− 1)

)
, (4.15)

obtained by substituting C and y in terms of µ, Q̃ and x, using (2.25) and (2.27). This
gives,

CQ̃,V,µ =
πQ̃x

d
2 +1

(
2xd − dµRx2

) (
(d− 2)µR+ 2(d− 1)xd

)
√

2(d− 2)(d− 1)3/2 (2xd − (d− 2)µR) (−xd+2 + xd − µRx2)3/2

−−−−−→
x→xcrit
µ→µcrit

2π(d− 3)(d− 2)(d− 1)
√

4d− 6
d (d2 − 3d+ 2)Q̃ =⇒ α = 0 .

(4.16)

In other words, the heat capacity at constant (Q̃,V, µ) has a finite limit at the critical
point and hence α = 0.

For the other critical exponents (see e.g. [9]), we write (4.7) in terms of χ = χ(t, ψ),
and expand around the critical point, t = ψ = 0. This gives us

χ = 1 + 2(d− 2)(d− 1) t+ 6(d− 2)(d− 1)(2d− 3)
d

t ψ

− 54(d− 2)(d− 1)(2d− 3)
d3 ψ3 +O(tψ2, ψ4). (4.17)

– 25 –



J
H
E
P
0
8
(
2
0
2
2
)
1
7
4

Differentiating this at fixed t gives

dC = Ccrit

(6(d− 2)(d− 1)(2d− 3)
d

t− 162(d− 2)(d− 1)(2d− 3)
d3 ψ2

)
dψ . (4.18)

Let us now denote ψh = (µh−µcrit)/µcrit and ψl = (µl−µcrit)/µcrit. Using Maxwell’s equal
area law and the fact that during the phase transition χ remains constant, we have the
following two equations:

χ = 1 + 2(d− 2)(d− 1) t+ 6(d− 2)(d− 1)(2d− 3)
d

t ψh −
54(d− 2)(d− 1)(2d− 3)

d3 ψ3
h

= 1 + 2(d− 2)(d− 1) t+ 6(d− 2)(d− 1)(2d− 3)
d

t ψl −
54(d− 2)(d− 1)(2d− 3)

d3 ψ3
l ,

0 =
∫ ψh

ψl

ψ

(6(d− 2)(d− 1)(2d− 3)
d

t− 162(d− 2)(d− 1)(2d− 3)
d3 ψ2

)
dψ , (4.19)

which admit the unique non-trivial solution, ψh = −ψl = d
√
t

3 . Hence we have

η = µcrit(ψh − ψl) = µcrit
2d
√
t

3 =⇒ β = 1/2 . (4.20)

To calculate γ, we differentiate (4.17), which gives(
∂µ

∂C

)
T,Q̃,V

= µcrit
ycrit

d

6(d− 2)(d− 1)(2d− 3)
1
t

+O(ψ) . (4.21)

Hence,
κT ∼

d

6(d− 2)(d− 1)(2d− 3)ycrit

1
t

=⇒ γ = 1 . (4.22)

Finally, we can determine δ by setting t = 0 in (4.17), which gives us

χ = 1 + 54(d− 2)(d− 1)(2d− 3)
d3 ψ3 =⇒ δ = 3 . (4.23)

The critical exponents obtained here agree with those found previously in [9] as well as the
predictions of mean field theory (MFT).

4.2.2 Criticality in Q̃− Φ̃ plane

We can also study the criticality in the Q̃− Φ̃ plane (see also [32, 56] for a similar analysis).
In this case, we consider the “equation of state” Q̃ = Q̃(Φ̃, T ) for fixed (V, C), following the
first analogy with the Van der Waals fluid in table 1. As before, we do this parametrically,
using x as the parameter. This gives,

Q̃ = 2
√

2Cxd−2
√

(d− 1) (dx2 + d− 2− 4πRTx) , (4.24)

Φ̃ =
√

(d− 1)(dx2 + d− 2− 4πRTx)√
2(d− 2)R

. (4.25)

The Q̃ − Φ̃ plot around the critical point is shown in figure 8. Similar to the C − µ case,
the curve displays a “wriggle” near the critical point for temperatures T < Tcrit, where an
equal area law holds.
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Figure 8. Isotherms in the Q̃ − Φ̃ plane around the critical point (black dot) for d = 4. The
parameters used here are C = R = 1 and T = 0.999Tcrit (blue), T = Tcrit = 4

√
3

5π (orange),
T = 1.001Tcrit (green) and T = 1.002Tcrit (red). For the temperatures T < Tcrit, the Q̃(Φ̃) curve
displays a “wriggle” for which Maxwell’s equal area law holds.

To study the critical exponents we denote

t ≡ T − Tcrit
Tcrit

, q̃ ≡ Q̃

Q̃crit
, φ ≡ Φ̃− Φ̃crit

Φcrit
. (4.26)

The four critical exponents α, β, γ and δ in this case are defined as

CΦ̃,V,C ≡ T
(
∂S

∂T

)
Φ̃,V,C

∼ |t|−α , η ≡ Φ̃h − Φ̃l ∼ |t|β , (4.27)

κT ≡ −
1
Φ̃

(
∂Φ̃
∂Q̃

)
T,V,C

∼ |t|−γ , |Q̃− Q̃crit| ∼ |Φ̃− Φ̃crit|δ . (4.28)

Compared to the Van der Waals fluid, here CΦ̃,V,C is the analog of the heat capacity at
constant volume, η is the order parameter on an isotherm describing the difference Φ̃h− Φ̃l

between the “volume” of high- and low-entropy phases, κT is the equivalent of isothermal
compressibility, and the exponent δ is a property of the critical isotherm t = 0.

The first critical exponent α can be derived by evaluating the heat capacity at the
critical point, which yields a finite value

CΦ̃,V,C =
4πC(d− 1)xd−1

(
(d− 1)

(
dx2 + d− 2

)
− 2(d− 2)2R2Φ̃2

)
d2(x2 − 1) + 2(d− 2)2R2Φ̃2 − dx2 + 3d− 2

−−−−−→
x→xcrit

4πC(d− 1)xd−1
crit

(
2(d− 2)Φ̃2R2 − 2d+ 3

)
1− 2(d− 2)Φ̃2R2 =⇒ α = 0 .

(4.29)

Further, in order to compute β, γ and δ, we need to expand q̃(t, φ) near the critical point

q̃ = 1− 2(d− 2)(d− 1) t+ 2(d− 1)(2d− 3) tφ− 2(d− 1)(2d− 3)
(d− 2)2 φ3 . (4.30)
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Figure 9. Heat capacities, from left to right, for fixed (Q̃,V, C), (Φ̃,V, C) and (Q̃,V, µ) ensembles
in d = 4. For ease of comparison, the parameters used here are the same as in figures 1, 2 and 3,
respectively.

Following the same steps as above in the C − µ plane, we can deduce from this expansion
that once again the critical exponents agree with those of MFT: α = 0, β = 1/2, γ = 1,
δ = 3.

4.3 Heat capacities and thermal stability

We turn next to the thermodynamic stability of the phases in the three main ensembles
considered in section 3. The heat capacities in the different ensembles are defined as

CQ̃,V,C ≡ T
(
∂S

∂T

)
Q̃,V,C

=
(
∂E

∂T

)
Q̃,V,C

, (4.31)

CΦ̃,V,C ≡ T
(
∂S

∂T

)
Φ̃,V,C

=
(
∂(E − Φ̃Q̃)

∂T

)
Φ̃,V,C

, (4.32)

CQ̃,V,µ ≡ T
(
∂S

∂T

)
Q̃,V,µ

=
(
∂(E − µC)

∂T

)
Q̃,V,µ

. (4.33)

We can compute the heat capacities explicitly by first finding the expressions for tem-
perature and entropy as functions of (Q̃,V, C, x), (Φ̃,V, C, x) and (Q̃,V, µ, x), respectively,
and then differentiating using the chain rule. This leads to the following expressions

CQ̃,V,C =
4πC(d− 1)

(
8C2(d− 1)x2d (dx2 + d− 2

)
− Q̃2x4

)
8C2(d− 1) (d (x2 − 1) + 2)xd+1 + (2d− 3)Q̃2x−(d−5) , (4.34)

CΦ̃,V,C =
4πC(d− 1)xd−1

(
(d− 1)

(
dx2 + d− 2

)
− 2(d− 2)2R2Φ̃2

)
d2(x2 − 1) + 2(d− 2)2R2Φ̃2 − dx2 + 3d− 2

, (4.35)

CQ̃,V,µ =
πQ̃x

d
2 +1

(
2xd − dµRx2

) (
(d− 2)µR+ 2(d− 1)xd

)
√

2(d− 2)(d− 1)3/2 (2xd − (d− 2)µR) (−xd+2 + xd − µRx2)3/2 , (4.36)

where we note that R is related to V through equation (2.16).
These heat capacities are plotted in figure 9 for d = 4. The left plot corresponds to

the fixed (Q̃,V, C) ensemble, for which the heat capacity behaves as follows. For C >
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Ccrit (green), the curve separates into three distinct segments, namely the low-entropy,
intermediate and high-entropy states of the CFT. These three segments correspond to the
three branches in the swallowtail F (T ) plot in figure 1. The low- and high-entropy CFT
states have positive heat capacities and are stable, while the intermediate entropy state
has negative heat capacity and is unstable. At C = Ccrit (orange), the heat capacity is
always positive, and becomes infinite at the critical point xcrit = d−2√

d(d−1)
. For C < Ccrit

(blue) the CFT does not display distinct thermodynamic phases and the heat capacity is
always positive.

The middle plot of figure 9 corresponds to the fixed (Φ̃,V, C) ensemble. When Φ̃ < Φ̃c

(blue), the curve splits into two segments: at small x, corresponding to the low-entropy
branch of the blue curve in figure 2, the CFT has negative heat capacity and is unstable;
for big x > xcusp =

√
d2−2(d−2)2R2Φ̃2−3d+2

(d−1)d , corresponding to the high-entropy branch of
the blue curve in figure 2, the heat capacity is positive and the CFT is in a stable state.
The heat capacity diverges at x = xcusp, which is identical to the value of the cusp in
equation (3.9). For Φ̃ ≥ Φ̃c (orange, green) the heat capacity is always positive.

The last plot of figure 9 shows the heat capacity for the fixed (Q̃,V, µ) ensemble. In
this ensemble, the heat capacity is always positive for µ ≤ 0. Note that for µ < 0 (blue,
orange), the physical parameter range is x ≥

(
d−2

2(d−1) |µ|R
)1/d

, corresponding to the solid
part of the µ < 0 curves. The dashed horizontal curve has negative temperature and is
unphysical. For µ > 0 (red), the plot consists of two disconnected segments corresponding
to the low-entropy phase (small x) and high-entropy phase (large x). While the CFT in the
high-entropy phase is always stable with positive heat capacity, the heat capacity of the
low-entropy phase cuts the x-axis at xint =

(
d
2µR

)1/(d−2) (black dashed line) and becomes
negative beyond this point. On the G − T plot of figure 3, low-entropy states on the red
curve lying to the right of the black dashed line have CQ̃,V,µ > 0 while those lying between
T0 and the dashed line have CQ̃,V,µ < 0. Note we computed the temperature Tint at which
the heat capacity of the low-entropy phase switches sign in equation (3.17). The separation
between the positive and negative heat capacity low-entropy states is, furthermore, shown
on the coexistence diagram of figure 3 by the horizontal dashed line between the red and
yellow regions. Finally, CQ̃,V,µ diverges at the temperatures T0, T1 and T2, corresponding
respectively to the left boundary, the vertical dashed line and the right boundary in the
µ− T diagram of figure 3.

5 Discussion

We have studied the thermodynamics of CFTs in thermal states that are dual to charged
AdS black holes via the AdS/CFT correspondence. The following pairs of conjugate ther-
modynamic variables — {(T, S), (Φ̃, Q̃), (p,V), (µ,C)}— are associated with these thermal
states, and each has a dual expression in terms of thermodynamic variables of the bulk
AdS black hole through the holographic dictionary. We note in particular that the pair
(µ,C) has been left out in most thermodynamic studies of holographic CFTs up to now.
To our knowledge, ours is the first exhaustive study of all possible canonical ensembles of
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the CFT under this new addition. We have not performed independent computations in
the CFT to confirm our results, which is an interesting direction for future work.

Only in the ensemble with fixed (Q̃,V, C) did we find critical behaviour. Criticality has
been found before [32] in the Q̃−Φ̃ plane for d = 4 holographic CFTs; the critical exponents
were also shown to agree with mean field theory when the right order parameter, namely Φ̃,
was chosen. Here we have considered in addition criticality in the C − µ plane. Moreover,
we discovered a new zeroth-order phase transition in the fixed (Q̃,V, µ) ensemble between
a low-entropy (small S/C) and a high-entropy (large S/C) phase. We refer to [11] for a
different example of a zeroth-order phase transition in extended black hole thermodynamics,
and to [57] for such a transition in superfluidity and superconductivity. The physical
viability of a zeroth-order transition remains an open question.

The fixed µ ensemble, for which we found a zeroth-order phase transition, certainly
deserves further study. We would like to remind the reader that the chemical potential is
equal to the grand canonical free energy W = E − TS − Φ̃Q̃ divided by the central charge
C, i.e. µ = W/C. Hence, fixing µ amounts to fixing the thermal free energy per degree
of freedom, which we note is a property of the thermal state under consideration. The
ensemble then compares different states with different thermal free energy per degree of
freedom. Further, the central charge of the CFT is allowed to vary continuously in this
ensemble, which for gauge theories only makes sense in the large-N limit. It would be
interesting to better understand how the rank N of the gauge group can be allowed to vary
while keeping µ fixed in, for instance, N = 4 supersymmetric Yang-Mills theory. However,
in the large-N limit the N dependence of the thermodynamic quantities like energy, entropy
and charge is trivial: they just scale with a power of N , for instance N2 for SU(N) theories.
Thus, changing N just rescales the thermodynamic quantities, and therefore in the large-
N limit it seems straightforward to study how various physical quantities change as the
central charge varies. Of course, this becomes less trivial when 1/N corrections are taken
into account.

The earliest studies of the phase behaviour of charged AdS black holes [6, 7] were
performed well before variations of Λ and GN had been introduced, and so these quantities
were implicitly kept constant in the analysis. It is clear that fixing Λ and GN corresponds
to fixing the central charge C in the dual CFT; in addition the boundary volume V was kept
fixed in the holographic interpretation. The canonical (fixed charge) and grand canonical
(fixed potential) ensembles studied previously in the bulk [6, 7] are therefore respectively
identical to the (Q̃,V, C) and (Φ̃,V, C) ensembles in the dual CFT that we have considered.
In particular, the Van der Waals-like phase transition with mean field critical exponents in
the bulk canonical ensemble is the same as the first-order phase transition in the (Q̃,V, C)
ensemble studied here, and the generalised Hawking-Page transition in the grand canon-
ical ensemble in the bulk is dual to the (de)confinement phase transition in the (Φ̃,V, C)
ensemble. In particular, the free energy plots in figures 4 and 3 in [7] in the canonical and
grand canonical ensembles are respectively similar to our figures 1 and 2 for the (Q̃,V, C)
and (Φ̃,V, C) ensembles. Moreover, the schematic coexistence diagrams in figure 12 of [7]
qualitatively agree with our exact phase diagrams in figures 2 and 5.

Since the thermodynamics of AdS black holes has been extended to allow for variations
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of Λ (and later on for variations of GN ), a natural follow-up question concerns the dual CFT
interpretation of this extended thermodynamics.4 The original investigations [16, 18, 28, 29]
already recognized that the cosmological constant is dual to the number of colors or the
central charge of the dual CFT. However, in previous holographic proposals for extended
black hole thermodynamics where the central charge and its associated chemical potential
were introduced, the CFT volume V and the central charge C were often not clearly
distinguished in the bulk, except in [19, 21]. For instance in [29–31], the chemical potential
was defined as µ ≡

(
∂E
∂C

)
S,Q̃

without fixing the CFT volume V. This is problematic
since they worked with a particular choice of CFT metric for which both V and C are
proportional to Ld−1 in the bulk, so one has to be careful with taking partial derivatives
with respect to C while holding V fixed. One way to resolve this is to allow for variations of
Newton’s constant such that the variation of V ∼ Ld−1 is clearly distinct from the variation
of C ∼ Ld−1/GN [19]. Another way to more clearly distinguish V and C is to introduce
the boundary curvature radius R, which can be unequal to the bulk curvature radius L,
such that the volume is V ∼ Rd−1 and the central charge is still C ∼ Ld−1/GN [21]. Note
that in this case GN does not need to be varied. To cover the most general case in the
present paper, following [21], we allowed for variations of Newton’s constant and considered
a constant boundary curvature radius R 6= L.

Recently a “mixed” bulk/boundary perspective on extended black hole thermodynam-
ics was considered by some of us [22], where the variation of both the bulk pressure and of
the central charge appear in the extended first law of AdS black holes (see footnote 1). The
fixed (Qb, P, C) ensemble for charged AdS black holes considered in that paper corresponds
to the fixed (Q̃,V, C) ensemble in the present paper. Similar critical behaviour was discov-
ered for d = 3 in the C−µ plane in that paper. One important difference, however, is that
the coexistence line in the 1/C−T phase diagram in [22] has positive slope and agrees with
the coexistence line in the P − T phase diagram of the Van der Waals liquid-gas system,
whereas the coexistence curve in the 1/C −T phase diagram in figure 5 has negative slope
and does not start from the origin. Moreover, another difference is that at the critical point
the central charge is proportional to the square of the electric charge Ccrit ∼ Q2

b in d = 3,
cf. equation (28) in [22], which is seemingly at odds with our result (4.3), Ccrit ∼ Q̃. This
is not a disagreement, because the Qb appearing in that formula is the bulk electric charge,
and the holographic dictionary employed in [22], Q̃ = QbL/

√
GN , alters the relationship

between the electric charge and central charge. Indeed, if we make use of this latter dictio-
nary definition, and note that C ∼ L2/GN for d = 3, then upon insertion into Ccrit ∼ Q2

b

we would obtain Ccrit ∼ Q̃ in agreement with our result.5

In other recent work [62] a restricted version of the CFT thermodynamics in [21] was
proposed, where the volume V was kept fixed. The reason for this seems to be that the
authors contend the boundary volume is related to the cosmological constant in the bulk,

4For other field theory interpretations of extended black hole thermodynamics, see e.g. [28, 32, 58–61].
5In general dimensions the critical central charge found in [22] is given by Ccrit ∼ G

− d−3
2d−4

N Q
d−1
d−2
b . In-

serting the dictionary Q̃ = QbL/
√
GN and C ∼ Ld−1/GN still yields Ccrit ∼ Q̃, in agreement with our

equation (4.3).
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via V ∼ Ld−1, which in turn is kept fixed in order to avoid changing the gravitational
theory. However in section 2 (and in [21]), we explained that the holographic dictionary
for the volume can be altered into V ∼ Rd−1 by Weyl rescaling the CFT metric, where
R is not related to the cosmological constant. Furthermore, the claim in [62] that the
absence of a pV term in the holographic Euler equation is a problem for the homogeneity
behaviour of the internal energy is not correct. The Euler equation is derived from the
scaling relation E(αS, V, αQ̃, αC) = αE(S, V, Q̃, C), which holds in the deconfined phase
of a large-N theory on a compact space. This means the internal energy is not extensive
in this setting, since it does not satisfy E(αS, αV, αQ̃, C) = αE(S, V, Q̃, C). Only in the
limit TR→∞ does the energy become an extensive function.

Finally, we comment on the different findings in the literature regarding criticality for
charged AdS black holes. In standard black hole chemistry, where Newton’s constant is
kept fixed, criticality is present in the Q−Φ plane, the β − rh plane and the P − V plane
for charged AdS black holes [6, 7, 9]. The pleasant feature of P − V criticality is that the
analogy with the Van der Waals fluid is complete, since it compares the “right” physical
quantities in the black hole system and the liquid-gas system. However, as explained in
the introduction, when Newton’s constant is allowed to vary, the extended first law cannot
be expressed solely in terms of the variation of the bulk pressure. Therefore, in [22] the
extended black hole first law was written in a “mixed” way in terms of the bulk pressure and
central charge variations. In this “mixed” bulk/boundary formalism there is no criticality
in the P − V plane, but a new kind of criticality was discovered in the C − µ plane.
Furthermore, in the present paper we studied a CFT interpretation of extended black hole
thermodynamics and found criticality in the Q̃ − Φ̃ plane and in the C − µ plane (where
our chemical potential is notably different from the one in [22]). Thus, on the one hand
we see that P − V criticality is only present in the bulk when Newton’s constant is kept
fixed. On the other hand, P − V criticality disappears when Newton’s constant is allowed
to vary, and it is traded for C − µ criticality. Similarly, our findings in the CFT suggest
there is no p−V criticality, but there is a critical point in the C−µ plane that falls within
the same universality class as the Van der Waals fluid.
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