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1 Introduction

Recent years tremendous progress has been made to understand the hidden mathematical
structure of scattering amplitudes, especially for planar N = 4 Super Yang-Mills (SYM)
theory. Among all these developments, the hexagon and the heptagon bootstrap program
(cf. [1–11] and a review [12].) plays a notable role. The crucial assumption of the program
is that, as dual conformal invariant (DCI) multiple polylogarithmic (MPL) functions of
external data, n = 6, 7 amplitudes have quite limited symbol letters in their alphabet [13] (9
for n = 6 and 42 for n = 7). After the space of allowed MPL functions with correct alphabet
has been determined, amplitudes can thus be fixed in the space following certain conditions
like symmetries, physical limits and so on. Consequently, six-point amplitudes have been
determined through 7 and 6 loops for MHV and NMHV cases, and seven-point amplitudes
through 4 loops for the two cases respectively. Mathematically, their symbol letters are
related to A-coordinates of G(4, n) [14] cluster algebras [15–18], and the 9 or 42 letters are
thus explained by G(4, 6) ∼ A3 and G(4, 7) ∼ E6 algebras. For higher multiplicities, cluster
bootstrap was obstructed since cluster algebras G(4, n) are of infinite type when n ≥ 8.
Moreover, explicit data of n ≥ 8 amplitudes (n = 8 ` = 2 NMHV [19] and ` = 3 MHV [20],
also the n = 9 case [21]) computed from the Q̄ equation [22] show that they involve symbol
letters that are not rational functions of external data, which are not A-coordinates of
G(4, n) as well. Explanations on their letters have also been made from various approaches,
such as Landau singularities [23–25], tropical positive Grassmannian [26–34] and Yangian
invariants and their associated Yangian letters [35–38].

On the other hand, many impressive ideas and powerful tools such as differential
equations [39–41], bootstrap strategies [42] and Wilson-loop d log form [43, 44] have been
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developed for the study of DCI integrals (see also [45–48]) in planar N = 4 SYM theory as
well, which have proved to be an ideal laboratory for exploring general Feynman integrals
in QFT. One of the important progress is the discovery of cluster structures of individual
integrals and their symbol letters, not only for n = 6, 7 DCI integrals [46, 49], but also
for the cases beyond N = 4 SYM theory [50]. Most recently, in a series of works on DCI
integrals, we revealed the connection between DCI kinematics and cluster algebras. After
generating alphabets of certain integrals from their corresponding cluster algebras such as
ladder-type integrals [39, 51], the cluster bootstrap program was successfully applied to
determine explicit results of individual integrals with algebraic letters [52, 53].

In this note, we provide an alternative path to generate symbol letters of ampli-
tudes/integrals geometrically from Schubert problems. In our new approach, after we
determine certain intersecting lines in P3 following the leading singularities of integrals,
symbol letters are interpreted as cross-ratios of their intersections. Moreover, the positiv-
ity of letters becomes a direct conclusion from the ordering of intersections on a line. While
the reason why these geometrical configurations are connected to physical singularities still
remains unclear, this method turns out to be quite powerful, recovering both rational letters
and algebraic letters of amplitudes and integrals. Note that it is quite different from the
tropicalization approach, where rational letters and algebraic letters have distinct genera-
tions. In our formalism, either rational letters or algebraic letters, and even mixed algebraic
letters with two distinct square roots as we will introduce, are all constructed from similar
geometrical configurations, which indicates the connection between various kinds of letters.

The paper is organized as follows. We will firstly review some basic notations and
definitions, such as momentum twistors, symbol letters and Schubert problems, which we
use throughout this note. In section 2 we will begin with some one-loop examples. Firstly
proposed by N. Arkani-Hamed in the conference [54], intersections from these one-loop
Schubert problems reproduce all one-loop symbol letters, whose positivity in the positive
region G+(4, n) is associated to the ordering of intersections on a given line. Especially we
will mention N. Arkani-Hamed’s construction on external lines of the four-mass Schubert
problem, and see that it gives us algebraic letters with definite sign. In section 3, we will
generalize this construction and investigate many configurations with ordered intersections
on external lines, which generate the 18 algebraic letters for 8-point amplitudes up to
three loops and prove their positivity. Finally in section 4, we generalize the discussion to
two-loop Schubert problems and introduce a new kind of algebraic letters, each of which
contains two distinct square roots. They are symbol letters of the 9-point double-box
integral, and are believed to appear in planar N = 4 SYM amplitudes at higher k + `.

1.1 Notations and review

Recall that for n ordered, on-shell momenta pi in planar amplitudes/integrals, it is con-
venient to introduce n momentum twistors [55] Z := ZAi , with A = 1 · · · 4, following the
definition:

Zi = (λαi , xαα̇i λiα)
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where dual coordinates xi are defined by pi = xi+1−xi. Momentum twistors trivialize both
the on-shell conditions p2

i = 0 and the momentum conservation, and the squared distance
of two dual points reads (xi−xj)2 = 〈i−1ij−1j〉

〈i−1i〉〈j−1j〉 . Here Plücker 〈ijkl〉 is the basic SL(4)
invariant 〈ijkl〉 := εABCDZ

A
i Z

B
j Z

C
k Z

D
l . Each dual point xi is mapped to a line (i−1i) in

momentum twistor space, and loop momentum ` is related to a bitwistor (AB) as well.
Consequently, propagator (` − xi)2 is rewritten as 〈ABi−1i〉

〈AB〉〈i−1i〉 . Finally, as a collection of n
momentum twistors, external kinematics lives in the top cell of Grassmannian G(4, n) [14].
Throughout this note, we mainly focus on a specific region, known as the positive region
G+(4, n) in the whole configuration space, which is defined by 〈ijkl〉 > 0 for arbitrary
i < j < k < l. These positive conditions guarantee the positivity of symbol letters, as we
will see.

Throughout this note, integrals/amplitudes we take into account are DCI MPL func-
tions of external data. Recall that the total differential of a weight w MPL function yields
a general form as

dFw =
∑
i

F (w−1)
i d log xi

Its symbol [56, 57] is correspondingly defined as

S(Fw) =
∑
i

S(F (w−1)
i )⊗ xi

iteratively. Symbol of a weight w MPL function is a sum over tensors with length w, whose
entries are called its symbol letters and they are the main interests of this paper.

Finally, we review basic definitions of one-loop Schubert problems. Before it, as our
most important example in this paper, let’s review basic facts about the one-loop four-mass
scalar box integral F (i, j, k, l) and its alphabet, whose integrand in both dual coordinates
and momentum twistors reads

j−1
i

j
k−1

l
i−1

l−1
k

:=
∫

d4`
(xi−xk)2(xj−xl)2

(`−xi)2(`−xj)2(`−xk)2(`−xl)2

=
∫
AB

〈i−1ik−1k〉〈j−1jl−1l〉
〈ABi−1i〉〈ABj−1j〉〈ABk−1k〉〈ABl−1l〉 (1.1)

Suppose the four indices satisfy i < j−1 and so on. As a DCI integral, it depends on 2
independent cross-ratios in momentum twistors as

u=〈i−1ij−1j〉〈k−1kl−1l〉
〈i−1ik−1k〉〈j−1jl−1l〉 , v=〈i−1il−1l〉〈j−1jk−1k〉

〈i−1ik−1k〉〈j−1jl−1l〉

and is well-known to be a weight-two MPL function, whose symbol reads

1
2∆i,j,k,l

(
v ⊗ zi,j,k,l

z̄i,j,k,l
+ u⊗ 1− z̄i,j,k,l

1− zi,j,k,l

)
(1.2)
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with the definition
∆i,j,k,l =

√
(1−u−v)2 − 4uv (1.3)

and zi,j,k,lz̄i,j,k,l = u, (1−zi,j,k,l)(1−z̄i,j,k,l) = v.
We naturally encounter Schubert problem when we compute the leading singularity

(LS) of this integral in momentum twistor space [45, 58]. After taking residues of the
integrand at 〈ABi−1i〉 = 〈ABj−1j〉 = 〈ABk−1k〉 = 〈ABl−1l〉 = 0, we find the solution
for loop momentum (AB) and arrive at an algebraic function of external data, which is
called the leading singularity of the integral. Note that square root ∆i,j,k,l can be generated
from its leading singularity as well, since we in fact have LS ∝ 1

∆i,j,k,l
(see appendix A for

more details). In momentum twistor space (projectively in P3), each on-shell condition
〈ABm−1m〉 = 0 indicates that the line (AB) intersects with (m−1m). Therefore, locating
loop momentum (AB) is interpreted as a Schubert problem geometrically, i.e. we look for
all the lines that simultaneously intersect with four lines (i−1i), (j−1j), (k−1k) and (l−1l)
in generic positions.

(AB)1

(AB)2

i−1

i

j−1

j

k−1

k

l−1

l

α1

α2

β1

β2

γ1

γ2

δ1

δ2

Following the procedures in appendix A, we solve this Schubert problem and obtain
exactly two solutions, which are called (AB)1 and (AB)2 throughout this note. Intersection
points {αi, βi, γi, δi} on the two solutions can be fully parametried by external momentum
twistors Zi as (A.1) and (A.2) [58]. Note that (1−u−v)2−4uv is positive definite once
external data Z are evaluated in the positive region G+(4, n), i.e. 〈ijkl〉 > 0 for all i < j <

k < l [30]. Therefore the intersections (A.1) and (A.2) involve only rational coefficients in
the positive region, and {(AB)i}i=1,2 can be interpreted as lines in P3 geometrically.

A much more important observation is that, on each solution (AB)i with i = 1 or
2, ordering of these four intersections (αi, βi, γi, δi) is always fixed! Any two intersections
are distinct and will never collide. Correspondingly, minors formed by any two points
will have definite sign. In the following sections we will see that, this crucial property is
satisfied not only in this four-mass Schubert problem case, but in various configurations
throughout this note, and cross-ratios of intersections read symbol letters of corresponding
amplitudes/integrals!

2 Warm-up: one-loop Schubert problems and positivity

In this warm-up section, we explore some one-loop configurations and their corresponding
Schubert problems. In these one-loop examples, we will see that intersections from Schubert
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problems are always ordered on a given line. Furthermore, cross-ratios of these intersections
reproduce DCI letters of one-loop amplitudes/integrals, and their positivity becomes a
direct conclusion due to ordering of the intersections. Most examples in this section were
firstly proposed by N.Arkani-Hamed in the conference [54]

Two-mass-easy box and the positivity of its letters. Let’s begin with a simple
example, the two-mass-easy box F (2, 3, 5, 6) and its corresponding Schubert problem,

5

4
3

1
6

2

2

1

3

4

5

6(25)
(2̄ ∩ 5̄)

(45) ∩ 2̄

(12) ∩ 5̄

(56) ∩ 2̄

(23) ∩ 5̄

Its leading singularity is supported by solutions of on-shell conditions 〈AB12〉 = 〈AB23〉 =
〈AB45〉 = 〈AB56〉 = 0. Therefore we are looking for all possible (AB) that intersect with
four lines {(12), (23), (45), (56)}, which are (AB) = (25) and (AB) = (2̄ ∩ 5̄), as the red
lines in the figure. Here we denote ī := (i−1ii+1), and (̄i∩ j̄) means the intersection line of
two planes (i−1ii+1) and (j−1jj+1). Let’s explore the intersections on each line. Firstly,
(25) has only two intersections 2 and 5, which are of course distinct. Secondly, (2̄ ∩ 5̄) has
four points

{(12) ∩ 5̄, (23) ∩ 5̄, (45) ∩ 2̄, (56) ∩ 2̄}

on it, where (i−1i) ∩ j̄ means the intersection point of line (i−1i) with plane (j−1jj+1).
To see they are ordered on (2̄ ∩ 5̄), we can set A = (12) ∩ 5̄, B = (23) ∩ 5̄ and parametrize
the rest two points by A and B on the line. For example, projectively we have1

(45) ∩ (123) ∝ 〈2456〉(Z1〈2345〉 − Z2〈1345〉+ Z3〈1245〉)
= −〈2345〉(Z1〈2456〉+ Z2〈4561〉) + 〈1245〉(Z2〈3456〉+ Z3〈4562〉)
= −〈2345〉ZA + 〈1245〉ZB.

Similar we have (56) ∩ (123) ∝ −〈2356〉ZA + 〈1256〉ZB, and the four points form a 2 × 4
matrix as (1 0 −〈2345〉 −〈2356〉

0 1 〈1245〉 〈1256〉

)
(2.1)

The upshot is that all of its 2 × 2 minors are positive definite when external Zis are in
the positive region G+(4, 6)! For instance, minor (3, 4) is 〈1245〉〈2356〉 − 〈1256〉〈2356〉 =
〈1235〉〈2456〉 > 0, etc. We can also evaluate all the minors (i, j) by cluster variables {fi}

1Note that (i−1i) ∩ (j−1jj+1) = Zi−1〈ij−1jj+1〉 − Zi〈i−1j−1jj+1〉 = Zj−1〈i−1ijj+1〉 −
Zj〈i−1ij−1j+1〉+ Zj+1〈i−1ij−1j〉.
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in [53], and see that they are all positive polynomials. Therefore the four intersections are
ordered on (2̄ ∩ 5̄). Note that its 6 minors (i, j) for 1 < i < j < 6 produce two non-trivial
cross-ratios, which are DCI letters of the two-mass-easy box:

U := (1, 2)(3, 4)
(1, 3)(2, 4) = 1−U, V := (1, 4)(2, 3)

(1, 3)(2, 4) = U, U = 〈1256〉〈2345〉
〈1245〉〈2356〉 (2.2)

Ordering of the intersections guarantees that these cross-ratios are positive definite as well.
Mathematically, the configuration space formed by m ordered points on a line is called

the positive moduli spaceM+
0,m, or Am−3 configurations as they are also related to type-An

cluster algebras (see [59–61]). For general m, in total we can construct m(m−3)
2 cross-ratios

from the line. Due to u-equations satisfied by these cross-ratios [61–63], only m−3 of them
are independent. Our example corresponds to the case when m = 4 especially, where we
have 2 cross-ratios {U ,V} satisfying one relation U + V = 1, and the positivity indicates
0 < U < 1 and 0 < V < 1. In fact, for general Am−3, if the points are not allowed to
collide, following from u-equations we always have 0 < u < 1 for each cross-ratio u.

Four-mass box and the algebraic letters. Back to the four-mass case in review part,
we can also choose two points on (AB)i, parametrize the other points and write down
the corresponding 2 × 4 matrix, which is much more complicated than (2.1) so we omit
it here. Minors of arbitrary two points on (AB)i are algebraic functions of external data.
Although implicit from the expressions directly, sign of the minors can be verified to be
definite in the region G+(4, n). We reveal that on each (AB)i, intersections are ordered
as {αi, βi, γi, δi}, and the corresponding matrices are both positive definite. On the line
(AB)1, two non-trivial cross-ratios are

U = zi,j,k,l, V = 1− zi,j,k,l

Therefore we have 0 < zi,j,k,l < 1 in the positive region. Similarly four ordered points
(α2, β2, γ2, δ2) on (AB)2 produce {z̄i,j,k,l, 1−z̄i,j,k,l}, which satisfy the condition 0 < z̄i,j,k,l <

1. We see that from this configuration we successfully reproduce all the symbol letters
in (1.2)! When one or more massive corners turn to be massless, four letters {zi,j,k,l, 1 −
zi,j,k,l, z̄i,j,k,l, 1−z̄i,j,k,l} degenerate to {U, 1−U} with certain cross-ratio U , which are letters
of the corresponding lower-mass box. Hence from the one-loop Schubert problems, we can
actually reproduce all one-loop letters in amplitudes/integrals and prove their positivity.

Finally, N. Arkani-Hamed has also suggested to consider the points on external lines
(i−1i) etc., and found out they also give certain algebraic letters for n ≥ 8 amplitudes [19–
21]. Let’s review this construction here as well.

α2 α1i−1 i

(AB)2 (AB)1

– 6 –
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As above, we notice that there are also four points {i−1, i, α1, α2} on the external line
(i−1i). The upshot is that these four points are ordered as

{α2, i−1, i, α1},

which can be checked from the following positive definite matrix (parametrizing the four
points by i−1 and i) ( 1 1 0 ∂Zi−1α1

∂Ziα2 0 1 1

)
(2.3)

Here the notation ∂Zi−1α1 stands for the coefficient of Zi−1 in the expression (A.3) of α1.
Especially, positive minor (1, 4) is proportional to the square root ∆i,j,k,l. Furthermore,
one of the cross-ratios from this A1 configuration reads

L̃i,j,k,l = (1, 2)(3, 4)
(1, 3)(2, 4) = χ1 − z̄i,j,k,l

χ1 − zi,j,k,l
, χ1 = 1 + 〈(j−1j) ∩ (i−1k−1k)il−1l〉

〈i−1ik−1k〉〈j−1jl−1l〉 (2.4)

It is a DCI algebraic function of external data involving the square root ∆i,j,k,l. The crucial
point is that it is contained in the alphabet of n = 8 amplitudes up to three loops [19, 20]
when (i, j, k, l) = (2, 4, 6, 8)! Similarly we can compute cross-ratios from lines (j−1j) and
so on, and conclude that they are all symbol letters with square root for amplitudes.

These letters together with zi,j,k,l

z̄i,j,k,l
and 1−zi,j,k,l

1−z̄i,j,k,l
are called algebraic letters, widely ap-

pearing in amplitudes when k + ` ≥ 3 and n ≥ 8, also in explicit results of individual
Feynman integrals [44, 47, 52, 53]. For n = 8, 9 they are also recovered from topical fans of
infinite-type cluster algebras G(4, n) [27–33], or from the “four-mass-box” Yangian invari-
ant and its associated Yangian letters [35–38]. Now (2.4) together with its new generation
inspires us to reproduce all algebraic letters for 8-point amplitudes by Schubert problems.
In the following section we will generalize the idea of Schubert problems on external lines,
and find out the 18 algebraic letters for 8-point amplitudes. We will also associate their
positivity to the ordering of intersections.

3 Schubert problems on external lines

In this section we generalize the idea in the last section and see more configurations from
Schubert problems, where intersections on given lines are always ordered, guaranteeing
the positivity of minors formed by intersections. More explicitly, after four solutions
from two different one-loop Schubert problems are determined, we consider the Schubert
problem formed by these four lines. Several rational letters or algebraic letters of ampli-
tudes/integrals can be reproduced from these configurations. Especially, such constructions
are quite powerful, which enable us to reproduce the 18 independent algebraic letters of
8-point amplitudes up to three loops.

Let’s review the algebraic letters of 8-point amplitudes at first [19, 20]. For n = 8,
there are two different four-mass topologies F (1, 3, 5, 7) and F (2, 4, 6, 8), respectively two
different four-mass square roots ∆1,3,5,7 and ∆2,4,6,8. For each square root there are 9
multiplicatively independent algebraic letters Li as (take F (2, 4, 6, 8) as an example)

Li = Xi − z2,4,6,8
Xi − z̄2,4,6,8

– 7 –
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3

2

8
4

1
α2 α1

1

(13) (1̄ ∩ 3̄)

2

3
4

8

(AB)2 (AB)1

Figure 1. One-mass configuration (left) and four points on the line (12) (right); the black lines
(81), (12), (23) and (34) form a one-mass Schubert problem, whose solutions are the red lines,
intersecting (12) at 1 and 2; blue lines (AB)1 and (AB)2 are the solutions from the four-mass
Schubert problem, intersecting with (12) at α1 and α2.

where {
X1 = 0,X2 = 1,X3 = 〈1236〉〈8567〉

〈1256〉〈8367〉 ,X7 = 〈1246〉〈8567〉
〈1256〉〈8467〉

}
,

together with their cyclic permutations (L3 to L4, L5, L6, and L7 to L8, L9, L10) under Zi →
Zi+2 (only 9 of them are multiplicatively independent following the relation L5L7L9

L6L8L10
= 1).

Note that algebraic letter (2.4) is related to Li as

L̃2,4,6,8 = L10
L4

(3.1)

Moreover, all 18 independent algebraic letters are positive(negative) definite in the positive
region G+(4, 8), and can be recovered from Schubert problems, as will be shown later.

3.1 Combining two one-loop Schubert problems

Let’s go back to the final example in the last section and restrict our discussion at
(i, j, k, l) = (2, 4, 6, 8). Besides the two intersections {α1, α2} produced by (AB)1 and
(AB)2 on (12), we also took 1 and 2 into account.

To generalize this construction, the crucial point is to interpret 1 and 2 as intersections
on (12) from a one-mass Schubert problem (figure 1).

Solutions of this problem are (AB)3 = (13) and (AB)4 = (1̄ ∩ 3̄), intersecting (12)
at 1 and 2 respectively. Together with (AB)1 and (AB)2, four lines {(AB)i}i=1···4 form
a new Schubert problem, whose solutions are nothing but (12) and (34), since these two
lines both intersect with all the four lines {(AB)i}i=1···4. Finally, cross-ratio U = (1,2)(3,4)

(1,3)(2,4)
of the four ordered intersections on (12) reads the algebraic letter (3.1) we want.

This alternative viewpoint provides a natural way to generalize Schubert problems
on external lines; we consider arbitrary two one-loop configurations sharing at least one
external (i−1i). Four solutions {(AB)i}i=1···4 from the two Schubert problems intersect
(i−1i) at four points respectively. Then a new Schubert problem formed by {(AB)i}i=1···4
yields a solution (i−1i). Four intersections on (i−1i) will thus give us non-trivial, positive
definite cross-ratios, once they are checked to be ordered.
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As an illustration, consider the following two three-mass configurations at n = 8 and
their corresponding Schubert problems:

5
6

4
2

8
7

1

CD

7
8

6
5

3
1

4

CD

There are four solutions for (CD), which are (CD)1 = ((45)∩ 1̄, (67)∩ 1̄), (CD)2 = (145)∩
(167) from the first configuration, and (CD)3 = ((81)∩ 4̄, (67)∩ 4̄), (CD)4 = (481)∩ (467)
from the second. (67) is one of the three lines that intersect with {(CD)i}i=1···4 simultane-
ously.2 Now we can check the four intersections from {(CD)i}i=1···4 on (67). For instance,
intersection of (CD)1 with (67) is just (67)∩1̄. As for (CD)2, the intersection is (67)∩(145),
since (CD)2 itself is fully contained in the plane (145), etc. Finally, four intersections read
{(67) ∩ (145), (67) ∩ (345), (67) ∩ (812), (67) ∩ (814)}, as shown in the figure below.

(67)
(67) ∩ (145) (67) ∩ (812)(67) ∩ (345) (67) ∩ (814)

(CD)2 (CD)3 (CD)1 (CD)4

The upshot is that such four points are again ordered, as can be checked by evaluating
minors of the following matrix (parametrizing four intersections by 6 and 7)(〈7145〉 〈7345〉 〈7812〉 〈7814〉

〈1456〉 〈3456〉 〈8126〉 〈8146〉

)
(3.2)

in the positive region G+(4, 8). One of the corresponding cross-ratios reads:

V = 〈1458〉〈1467〉〈(1̄ ∩ 4̄)67〉
〈1(28)(45)(67)〉〈4(18)(35)(67)〉

Here we introduce the notation 〈i(jk)(lm)(pq)〉 = 〈ijlm〉〈ikpq〉 − 〈ijpq〉〈iklm〉. Notice
that besides the ones in (1.2), one-loop letters can only be {u, 1−u} with u = x2

a,bx
2
c,d

x2
a,cx

2
b,d

, so
factors 〈1467〉 and 〈(1̄ ∩ 4̄)67〉 of V can never be factors of 8-point one-loop letters. They
are expected to appear in ` ≥ 2, n = 8 amplitudes/integrals. One of the simplest example
is the penta-box ladder integrals [39, 46, 51], whose Feynman diagrams read

1

4

3
2

7
8

6
5

2Note that here the four lines {(CD)i}i=1···4 are not in generic positions, since they are all asked to
intersect with (81) (45) and (67) simultaneously by construction. Hence we obtain more than two solutions
if we think of a Schubert problem formed by {(CD)i}i=1···4. We will see a similar example in section 4.
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5

1

1

4
3

8

2

5

(AB)2 (AB)1

(12) ∩ 4̄

(34) ∩ 1̄

α2 α1

β2 β1

(14)

(1̄ ∩ 4̄)

Figure 2. Two-mass-easy configuration (left) and four intersections on (12) or (34) (right); the
black lines (81), (12), (34) and (45) form a two-mass-easy Schubert problem, whose solutions are
the red lines, intersecting (12) (as well as (34)) at two points. The blue lines are solutions from the
four-mass Schubert problem again.

They depend on three cross-ratios u = (x2
17x

2
25)/(x2

15x
2
27),v = (x2

14x
2
57)/(x2

15x
2
47) and

w = (x2
15x

2
24)/(x2

14x
2
25). Up to all `, the penta-box ladder integrals have an alphabet as

{u, v, w, 1−u, 1−v, 1−w, 1−uw, 1−vw, 1−u−v+uvw}

following the explicit computation from Wilson-loop d log form [43]. The first 8 symbol
letters already appear in the alphabet of ` = 1 chiral pentagon integral, while the 9-th
letter only show up when ` ≥ 2. In momentum twistor representation, the 9-th letter reads

1−u−v+uvw = 〈1467〉〈(1̄ ∩ 4̄)67〉
〈1267〉〈1458〉〈3467〉 (3.3)

consisting of the two factors we constructed from Schubert problem. In fact we have
V = 1−u−v+uvw

(1−u)(1−v) .

3.2 8-point algebraic letters from Schubert problems

After discussions over the rational case, now we come back to 8-point algebraic letters.
The basic idea is the same; we are looking for two one-loop Schubert problems sharing
an external line, whose four solutions produce four intersections on the line, which yield
algebraic letters we want. It is easy to see that, to guarantee the resulting cross-ratios are
algebraic, i.e. involving square root ∆2,4,6,8, we should fix one of the one-loop configurations
as F (2, 4, 6, 8) and looking for the other one from possible lower-mass Schubert problems.

For instance, let’s consider a lower-mass Schubert problem as figure 2. Two lines
(AB)1 and (AB)2 still come from the four-mass Schubert problem. For the lower-mass
configuration, we look for (AB) satisfying 〈AB81〉 = 〈AB12〉 = 〈AB34〉 = 〈AB45〉 = 0,
which are (AB)3 = (14) and (AB)4 = (1̄ ∩ 4̄). Now let’s figure out intersections on (12).
(Note that (12) and (34) are solutions of the Schubert problem formed by {(AB)i}i=1···4).

– 10 –



J
H
E
P
0
8
(
2
0
2
2
)
1
6
8

We already have {α1, α2} from (AB)1 and (AB)2. Moreover, (AB)3 and (AB)4 intersect
with (12) at 1 and (12) ∩ (345) respectively. Such four points are ordered by checking the
following matrix ( 1 1 −〈2345〉 ∂Z1α1

∂Z2α2 0 −〈3451〉 1

)
(3.4)

is positive definite. Note that one of the non-trivial cross-ratios from this A1 reads

U = (1, 2)(3, 4)
(1, 3)(2, 4) = L2L5

L4L6L8
(3.5)

giving an algebraic letter we want.3 Note that U together with its three cyclic permutations
by Zi → Zi+2 are all members in the 9-dimensional multiplicative space for 8-point algebraic
letters with ∆2,4,6,8. By exploring cyclic permutations of the configuration in figure 2, we
reproduce 3 cyclic images of U correspondingly.

Other odd letters with ∆2,4,6,8 in the 9-dimensional space can also be generated through
similar approaches. Note that together with their cyclic permutations, letters L1, L2, (3.1),
and (3.5) provide 8 independent members in the 9-dimensional space. As for the final one,
it can be generated from the following configuration

2
3

1

7
4

8

This two-mass-hard Schubert problem yields two solutions (AB)3 = (1(34) ∩ 8̄) and
(AB)4 = (8(34) ∩ 1̄), intersecting (12) at (12) ∩ (348) and 1 respectively. Together with
{α1, α2} from the four-mass problem, four ordered points {(12) ∩ (348), α1, 1, α2} on (12)
yield an algebraic letter

U/V = L5L9
L4L6L8

from its A1 configuration. It contributes the rest letter we need to reproduce the full
9-dimensional space.

Remark that besides the configurations we went through, actually the 9 letters can
be obtained from certain similar constructions and corresponding An configurations as
well. Our approach is only one of the proper options. For instance, the 9-dimensional
space can also be recovered from ordered intersections on (34) in all configurations we
went through, instead of (12). It is just like the case in [28, 29], where more than 9
algebraic letters can be computed from limit rays of tropical G(4, 8) but only 9 of them
are multiplicatively independent. Here we emphasis that different from the cluster algebra
approach, where rational letters and algebraic letters are constructed from pretty different

3Note that here we can also consider V from these A1 configurations. However, it can be checked that
V is a multiplicative combination of U and certain other factors like rational letters and ∆2,4,6,8, producing
no new members in the 9-dimensional multiplicative space.
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F (3, 5, 7, 9)
(67)

(CD)3 (CD)1(CD)4 (CD)2

γ21 γ11 γ22 γ12

2

3 1
4 5

8 9

4
2

5
6

9
1

8
7

F (2, 5, 7, 9)

Figure 3. Two different one-loop configurations at n = 9 and their solutions; intersections on the
line (67) are checked to be ordered.

ways, from the viewpoint of Schubert problems we unify generations of these two kinds of
letters, and their positivity becomes a direct conclusion from A1 configurations. It is also
an interesting question to generate all 272 (or 356) rational letters from tropical G(4, 8)
through this procedure.

Let’s leave one more comment on the positivity of algebraic letters. Note that unlike ra-
tional cases, it is sometimes a little intricate to analytically prove the positivity of algebraic
letters a+∆2,4,6,8

a−∆2,4,6,8
(or ∆2,4,6,8+a

∆2,4,6,8−a) directly from their Plücker representations. Generally a are
not positive definite. An efficient way to achieve the goal is parametrizing a ±∆2,4,6,8 by
cluster variables {fi} and computing a2−∆2

2,4,6,8 [53]. The upshot is that throughout this
note, expressions a2 −∆2

2,4,6,8 are always positive (or negative) polynomials of {fi}. Since
in amplitudes/integrals, only combinations a+∆2,4,6,8

a−∆2,4,6,8
and a2 − ∆2

2,4,6,8 appear as symbol
letters, this in fact proves the positivity of corresponding algebraic letters directly.

4 Mixed algebraic letters and the 9-point double-box integral

Finally, we look into some more non-trivial examples, which provide algebraic letters with
more than one square root. We will see that such complicated algebraic letters can also be
constructed from almost the same configurations on external lines, which reveals the deep
relation between different kinds of letters.

Mixed algebraic letters with two four-mass square roots. After considering four
solutions from two one-loop Schubert problem with at most one four-mass configurations,
there is nothing stopping us from combining two different four-mass Schubert problems
and exploring intersections on external lines, which only realizes when n ≥ 9.

For instance, at n = 9 we consider Schubert problems from two four-mass boxes
F (2, 5, 7, 9) and F (3, 5, 7, 9), whose solutions are called (CD)1 and (CD)2 for the first
box and (CD)3 and (CD)4 for the second. Since two boxes share dual points x5, x7
and x9, lines (45), (67) and (89) all intersect with the four lines {(CD)i}i=1···4. Now
let’s consider the four points on the line (67) produced by four (CD)i, i.e. consid-
ering four points γ11 = (67) ∩ (89α11), γ12 = (67) ∩ (45α12), γ21 = (67) ∩ (89α21)
and γ22 = (67) ∩ (45α22) (A.2), where α1i are the two intersections (A.1) on (12)
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with (i, j, k, l) = (2, 5, 7, 9), and α2i are the two intersections (A.1) on (23) with
(i, j, k, l) = (3, 5, 7, 9). In the region G+(4, 9), we find that the four points are ordered as
{γ21, γ11, γ22, γ12} on (67) (figure 3), and they give a positive letter as

U/V = (z2,5,7,9 − z3,5,7,9)(z̄2,5,7,9 − z̄3,5,7,9)
(z2,5,7,9 − z̄3,5,7,9)(z̄2,5,7,9 − z3,5,7,9) (4.1)

This letter involves two different square roots ∆2,5,7,9 and ∆3,5,7,9, and has not shown up
in known n = 9 amplitudes yet. However, its appearance was spotted when computing
the 9-point double-box integral [64]:

9
1

8
7

4
3

5
6

2

EF GH

and similar symbol letters also show up in the 10-point double-box integral [65]. We
believe that such kind of mixed algebraic letters may also appear in amplitudes at k+` ≥ 4
for n ≥ 9. When either one of the two four-mass boxes in (4.1) degenerates to a lower-mass
configuration, mixed algebraic letter degenerates to an original algebraic letter. When
both the four-mass boxes degenerate, it comes back to a rational letter.

Mixed algebraic letters with the square root from double-box. By now, we
have considered possible cases that combining two different one-loop configurations and
considering intersections on external lines. A natural generalization of this idea is that,
instead of merely focusing on one-loop configurations, we can take maximal cuts of arbitrary
`-loop integrals into account. To illustrate this idea, let’s take the 9-point double-box
integral as an example again. Explicit computation shows that besides the letter (4.1), its
alphabet contains another kind of mixed algebraic letters as

W1 = (1+az2,5,7,9)(1+bz̄2,5,7,9)
(1+az̄2,5,7,9)(1+bz2,5,7,9) , W2 = (1+au1−z3,5,7,9)(1+bu1−z̄3,5,7,9)

(1+au1−z̄3,5,7,9)(1+bu1−z3,5,7,9)

Here we introduce combinations

a = −1 + u1 − u2 + ∆9
2u1

, b = −1 + u1 − u2 −∆9
2u1

with ∆9 =
√

(1− u1 − u2)2 − 4v1v2; and

u1 = 〈1245〉〈6789〉
〈4589〉〈1267〉 , v1 = 〈1289〉〈4567〉

〈4589〉〈1267〉 , u2 = 〈2389〉〈4567〉
〈4589〉〈2367〉 , v2 = 〈2345〉〈6789〉

〈4589〉〈2367〉 (4.2)

are four independent cross-ratios of the double-box integral. Although not apparent, we
have relation W1 ↔ W2 under axial symmetry of the integral (u1 ↔ u2, v1 ↔ v2). Note
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(EF )1 (EF )2 (GH)2(GH)1

ε1 ε2

Figure 4. Two pairs of solutions for (EF ) and (GH) from the leading singularity of double-box
integral; (EF ) intersects with (23), (45), (67) and (GH); (GH) intersects with (12), (89), (67)
and (EF ). Intersections of (EF )i with (GH)i both lie on the line (67), which are call ε1 and ε2
respectively.

that (1−u1−u2)2−4v1v2 is again positive definite in the positive region G+(4, 9), as can be
checked.

The square root ∆9 comes from the leading singularity of 9-point double-box integral.
Following the procedure in appendix A, there are two pairs of different solutions for loop
momenta (EF ) and (GH) when we compute its leading singularity, which are four deter-
mined lines in momentum twistor space (figure 4). On the support of each pair of solutions,
we have LS ∝ 1

∆9
, which is the generation of ∆9 (see appendix A for more details).

Now we are interested in intersections produced by (EF )i and (GH)i, especially on
(67). A non-trivial fact is that, for each i = 1, 2 the intersection of (EF )i with (GH)i
precisely lies on (67) (see figure 4), i.e. for each i, three lines (EF )i, (GH)i and (67)
are joint at the same point. we denote these two points as ε1 = Z6 + e1Z7 and ε2 =
Z6 + e2Z7 on (67). Here e1 and e2 are two solutions of (A.5)= 0. Now together with
four γij and 6, 7, we already have 8 points on (67). Quite non-trivially, these eight points
{γ21, ε1, γ11, γ22, ε2, γ12, 6, 7} are ordered on the line (67), forming an A5 configuration!

(EF )1 (EF )2 (GH)2(GH)1

ε1 ε2γ22 γ12γ21 γ11

(CD)3 (CD)1 (CD)2(CD)4

6 7

Furthermore, two mixed algebraic letters {W1,W2} can be constructed from its A1 sub-
configurations {γ21, ε1, γ22, ε2} and {ε1, γ11, ε2, γ12} and their corresponding U/V, as can be
checked directly.

Most generally, we can consider arbitrary many `-loop integrals sharing a same dual
point (i−1i) and compute their leading singularity respectively. After all loop momenta
have been located in momentum twistor space,4 they intersect (i−1i) at several points.

4As revealed in [66], sometimes this procedure may be obstructed if the integral itself is beyond MPL
function. Here we restrict our discussion over MPL cases.
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Once these intersections are checked to be ordered (which is quite non-trivial if we can
find any such configurations), we can compute cross-ratios of the points. Some of them are
expected to give physical singularities of the `-loop integrals we begin with, like what we
have seen from the double-box integral.

5 Discussions

In this paper we went through both one-loop and two-loop Schubert problems, which
correspond to solving leading singularities of DCI integrals in planar N = 4 SYM theory.
Solutions of loop momenta became determined lines in momentum twistor space. Besides
considering intersections on loop momenta (internal lines), we also considered intersections
on external lines when solutions of different Schubert problems intersect with a same line
(i−1i). We discovered that, when external Z are evaluated in the positive region G+(4, n),
in each configuration, intersections on a given line were checked to be ordered, and they
form an An configuration (mainly A1 configurations with four points). This makes cross-
ratios of these intersections positive definite. Since these cross-ratios coincide with physical
singularities of amplitudes/integrals, we therefore explained the positivity of their symbol
letters in the positive region. Especially, from A1 configurations on external lines, we
successfully reproduced the 18 multiplicatively independent algebraic letters for n = 8
amplitudes. Finally, we also discussed a new kind of mixed algebraic letters at n ≥ 9. As
symbol letters of the 9-point double-box integral, their positivity was also associated to the
ordering of intersections on an external line, and we believe they will be symbol letters of
planar N = 4 SYM amplitudes as well at k + ` ≥ 4.

Several problems are remained to be solved. The first and the most important problem
is to look for the condition that guarantees intersections to be ordered on a given line. In
fact, there exists a two-loop counterexample, where intersections on the solution of Schubert
problem are not ordered:

56
7

3

4

1

2

AB CD

Here four intersections on one of the maximal cut solutions of (CD) yields a minor
〈7(12)(36)(45)〉, which is not a cluster variable, nor positive definite in the positive re-
gion! Moreover, as a two-loop maximal cut, this configuration corresponds to the second
7-point plabic graph explored in [36], and associated Yangian letters consist of the same
non-cluster variable as well. It is also an interesting problem to systematically reveal the
relation between Yangian invariants and Schubert problems.

Secondly, in our construction, rational letters (appear in the amplitudes of arbitrary
k+`), algebraic letters (appear when k+` ≥ 3) and mixed algebraic letters (are supposed to
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appear when k+` ≥ 4) are all from ordered intersections on external lines when combining
two one-loop configurations. Although generations of these three kinds of letters are unified
in the language of Schubert problems, the reason why mixed algebraic letters are prohibited
in amplitudes at k+` < 4 remains unclear (similarly algebraic letters do not show up when
k+ ` < 3). Moreover, whether there are more complicated algebraic letters in the alphabet
of amplitudes at higher k + `? Can we uncover them from certain Schubert problems?

Finally, in this note we only focus on leading singularities of MPL integrals. It is also
possible for us to extend the discussion to elliptic cases, for instance, the 10-point double-
box integral [65]. The difference is that now loop momenta are no longer determined lines
in momentum twistor space, since to solve the elliptic leading singularity, the last unfixed
freedom of loop momenta is taken an contour integration [67], instead of being determined
by a specific residue. It would be extremely interesting if cross-ratios from this “elliptic
Schubert problem” still offer us any physical information about the 10-point double-box
integral, and we leave it for future study.
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A Schubert problems and leading singularities

In this appendix we present some details in finding solutions of Schubert problems from
computing corresponding leading singularities of integrals. Recall that to obtain the leading
singularity of an `-loop integral, we need to solve 4` on-shell conditions from the integrand
and take corresponding 4`-fold residues for loop momenta. We will see that through this
approach, geometrically we in fact locate loop momenta as determined lines in momentum
twistor space. Therefore the corresponding Schubert problem is solved.

Back to the one-loop four-mass box configuration F (i, j, k, l) again. We are looking
for the solutions for loop momentum (AB)i satisfying 4 on-shell conditions 〈ABi−1i〉 =
〈ABj−1j〉 = 〈ABk−1k〉 = 〈ABl−1l〉 = 0. As a geometric problem in P3, projectively
we can always parametrize two points A and B by four independent momentum twistors,
which following the choice in [45] are decided to be

A = αZi + εZj−1 + Zi−1, B = ρZi + βZj−1 + Zj

after a GL(2) gauge-fixing. Therefore conditions 〈ABi−1i〉 = 〈ABj−1j〉 = 0 indicate
ε = ρ = 0, while 〈ABk−1k〉 = 〈ABl−1l〉 = 0 result in quadratic equations of α and β as

α = −β〈i−1j−1k−1k〉+ 〈i−1jk−1k〉
β〈ij−1k−1k〉+ 〈ijk−1k〉 , β = − α〈i−1jl−1l〉+ 〈ijl−1l〉

α〈i−1j−1l−1l〉+ 〈ij−1l−1l〉
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which yield two solutions α1 and α2 for A (and β1 and β2 for B correspondingly) as [58]:

α1 = Zi+Zi−1
〈ij′j(kk′ ∩ (l′li′))〉+ 〈i′j′j(kk′ ∩ (l′li)〉+ 〈ii′kk′〉〈j′jl′l〉∆i,j,k,l

2〈j′j(kk′ ∩ (l′li′)i′〉

α2 = Zi−1 + Zi
〈i′ll′(k′k) ∩ (jj′i)〉+ 〈ill′(k′k) ∩ (jj′i′)〉+ 〈i′ik′k〉〈jj′ll′〉∆i,j,k,l

2〈ll′(k′k) ∩ (jj′i)i〉

β1 = Zj−1 + Zj
〈j′ii′(l′l) ∩ (kk′j)〉+ 〈jii′(l′l) ∩ (kk′j′)〉+ 〈ii′kk′〉〈j′jl′l〉∆i,j,k,l

2〈ii′(l′l) ∩ (kk′j)j〉

β2 = Zj + Zj−1
〈jk′k(ll′) ∩ (i′ij)〉+ 〈j′k′k(ll′) ∩ (i′ij′)〉+ 〈i′ik′k〉〈jj′ll′〉∆i,j,k,l

2〈k′(ll′) ∩ (i′ij)j〉

(A.1)

where we abbreviate a′ := a−1, and ∆i,j,k,l reads (1.3). Intersections γ on (k−1k) and δ
on (l−1l) can then be worked out from the geometric viewpoint as

γi = (k−1k) ∩ (l−1lαi), δi = (l−1l) ∩ (k−1kβi) (A.2)

Finally, taking residue of the integrand (1.1) at the solution of loop momentum, we will
see LS ∝ 1

∆i,j,k,l
as expected.

Let’s move to the more non-trivial two-loop example, i.e. 9-point double-box integral
and its leading singularity. In the geometrical point of view, solving on-shell conditions
is in equivalence to locating two lines (EF ) and (GH) in P3, where (EF ) intersects with
(GH), (23), (45) and (67), and (GH) intersects with (EF ), (12), (67) and (89). Similar to
the one-loop case, we parametrize four momentum twistors {E,F,G,H} as

E = α1Z5 + β1Z6 + Z4, F = α2Z5 + β2Z6 + Z7

G = γ1Z7 + δ1Z8 + Z9, H = γ2Z7 + δ2Z8 + Z6 (A.3)

and determine 8 variables by on-shell conditions from the integral. However, the integral
only has 7 propagators. Therefore equations from on-shell conditions are not enough for
us to determine all the variables. In fact, after putting all 7 propagators on shell, we have
relations

α2 = 0, β1 = 0, γ1 = 0, δ2 = 0

δ1 = −〈1269〉+γ2〈1279〉
〈1268〉+γ2〈1278〉 , α1 = −〈2346〉+ γ2〈2347〉

〈2356〉+ γ2〈2357〉 , β2 = 1
γ2

(A.4)

between variables, and are left with a quadratic factor

〈7 (89) ∩ (612) (645) ∩ (623)〉 − 〈6 (89) ∩ (712) (745) ∩ (723)〉γ2
2

+ (〈6 (45) ∩ (236) (789) ∩ (712)〉 − 〈7 (45) ∩ (237) (689) ∩ (612)〉)γ2
(A.5)

on the denominator. Relation β2 = 1
γ2

together with α2 = δ2 = 0 guarantees that F = 1
γ2
H.

Projectively they are identical on (67). Therefore intersections of (EF ) with (GH) always
lie on (67).

In principle, once satisfying (A.4), for arbitrary γ2 in these expressions, the corre-
sponding two lines (EF ) and (GH) from (A.3) are solutions of this two-loop Schubert
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problem. We are mainly interested in the solutions that correspond to leading singularity
of this integral; we need to set γ2 at the zero points of (A.5). Note that discriminant ∆′9
of quadratic equation (A.5)=0 is related to the square root ∆9 as

∆′9 = 〈2367〉〈4589〉〈1267〉∆9,

and the resulting two pairs of solutions (EF )i and (GH)i for i = 1, 2 are the solutions we
used in section 4 to construct letters W1 and W2. Finally, taking residues at the solutions
to derive the leading singularity, we see LS ∝ 1

∆9
.
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