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1 Introduction

The problem of catalysis of vacuum decay by black holes [1–4] has recently received
significant attention in view of its possible relevance for phenomenology [5–16]. In the
Standard Model, the loop-corrected Higgs field potential may develop large negative values
at large field values, which makes the low-energy electroweak vacuum metastable [17–23].
Requirement that the lifetime of the vacuum exceeds the age of the Universe puts constraints
on the parameters of the Standard Model, of its possible extensions, and of systems and
environments which catalyze vacuum decay, including black holes; see, e.g., [24] for a review.
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The catalyzing effect of a black hole (BH) is two-fold. First, it is a local spacetime
inhomogeneity. Hence, as many types of impurities, it can facilitate nucleation of bubbles
of true vacuum in its vicinity. Second, BHs excite the quantum vacuum producing Hawking
radiation. As any field excitation, this radiation is expected to increase the decay rate. For
small enough BHs, the catalyzing effects due to curved geometry and quantum excitations
may be equally important.

In the semiclassical regime, the vacuum decay is described by a (complex) classical
solution of field equations. The solution — bounce — saturates the amplitude of transition
from the false to the true vacuum regions. It is important to note that the vacuum is
defined not only by classical field expectation values but also by the state of quantum
fluctuations around these values. Different false vacuum states reveal themselves through
different boundary conditions imposed on the bounce.

It is well-known how to obtain the bounce solution in equilibrium systems [25–28].
One rotates the system to the Euclidean time and looks for a regular solution satisfying
appropriate boundary conditions. In the case of BHs, this prescription leads to a periodic
Euclidean bounce whose period is inversely proportional to the BH temperature TBH, or to
a static solution — sphaleron. The solution with the smallest Euclidean action dominates
and describes vacuum transitions catalyzed by a BH in the presence of thermal bath of
temperature TBH. This state of a BH in thermal equilibrium is known as the Hartle-Hawking
vacuum [29]. The decay rate of the Hartle-Hawking vacuum is not exponentially suppressed
at high temperatures, reflecting the fact that thermal field fluctuations trigger vacuum
decay with order-one probability once their average energy exceeds the height of the barrier
separating the vacua.

Realistic BHs, however, are not in thermal equilibrium with their environment. In
particular, this is true for hypothetical small primordial BHs that could exist in the early
Universe but are completely evaporated by now [30–38]. At the late stage of evaporation, a
BH radiates at energies comparable to the Planck scale, much above the temperature possibly
attained in the primordial plasma. From the perspective of Standard Model vacuum decay,
such near-Planckian BHs are of principal interest. This is because the bounce mediating
decay of the electroweak vacuum probes field values near the minimum of the Higgs quartic
coupling which, for the measured values of the Standard Model parameters [39], approaches
the Planck scale.

The above considerations motivate to look for an approach to vacuum decay that can
handle such non-equilibrium systems as a hot isolated BH placed in a comparatively low
energy environment. This system is described by the Unruh state [40]. In the Unruh vacuum,
the BH emits Hawking radiation but does not receive anything from asymptotic infinity.
The Euclidean prescription described above is not suitable for a BH in the Unruh vacuum.

It is clear why the decay of the Hartle-Hawking vacuum is unsuppressed at high temper-
atures. It is much less clear if the Unruh vacuum decay is unsuppressed at high temperatures.
From studying vacuum transitions in thermal equilibrium we know that to trigger decay
one needs to form a field fluctuation that is coherent on a certain length scale typically
associated with the Compton wavelength of the free field. Such fluctuation is represented
by the sphaleron. It is not clear what the analog of the sphaleron in the Unruh vacuum is.
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In ref. [41] we have suggested a method to compute the Unruh vacuum decay rate
using complex tunneling solutions [42–46].1 The method accounts for the quantum state
of the false vacuum and, hence, it allows one to discriminate between the Hartle-Hawking
and Unruh vacua. The key ingredient is the correspondence between the quantum state
and the boundary conditions on the bounce. The boundary conditions turn out to be the
same as for the time-ordered Green’s function in the corresponding vacuum. In the case
of Hartle-Hawking vacuum the method reproduces the Euclidean time formalism used in
previous works on BH catalysis of vacuum decay [5–8]. The Unruh vacuum provides a
genuinely new application of the method. For explicit calculations ref. [41] adopted a toy
two-dimensional model consisting of a real scalar field in the background of a dilaton BH.2

Thanks to the choice of the tunneling potential, bounce solutions and associated decay rates
were found analytically, both for the Hartle-Hawking and Unruh vacua, and both in the
BH vicinity and far from it.

In the model of [41], the exponential suppression of the Unruh vacuum decay rate
vanishes at high temperatures. We would like to see if this result holds also in a realistic
case like the Schwarzschild BH in four dimensions. The model of [41] lacks two important
features of the realistic setup. First, a field in Schwarzschild background feels a centrifugal
barrier whose height is inversely proportional to the square of the BH size and, hence, grows
with the BH temperature. There is no such barrier in two dimensions. Its presence in four
dimensions may significantly affect the Unruh vacuum decay rate at high temperatures [11].
Second, the flux of Hawking quanta in four dimensions spreads inversely proportional to
the area of the sphere encompassing the BH at a given distance. This reduces the density
of Hawking radiation away from the BH and is expected to further suppress the tunneling
rate of Unruh vacuum [11, 52].

The present paper is a follow-up of ref. [41]. Its goal is to compute the rate of decay of
the Unruh vacuum in a model containing the temperature-dependent barrier for massive
scalar modes. This will bring us one step closer to the problem of vacuum decay in the
realistic BH background in four dimensions. To emulate the barrier, we modify the model
of [41] by adding a coupling between the tunneling scalar field and the dilaton. Note that
the area growth in four dimensions remains unaccounted for in our setup. We will discuss
qualitatively its possible effect on vacuum decay at the end of the paper.

The scalar-dilaton coupling constant that controls the strength of the barrier is a free
parameter of the model. When it is zero, the model reduces to the one studied in [41].
In particular, the exponential suppression of the Unruh vacuum goes to zero at high BH
temperatures. The main result of this paper is that, whenever the coupling is non-zero, the
decay of the Unruh vacuum remains exponentially suppressed at all temperatures.3

The paper is organized as follows. In section 2 we recapitulate the results of [41],
and describe the toy model used to study vacuum decay. We outline the technique to

1See [47–51] for related approaches to tunneling.
2The back-reaction of the tunneling field on spacetime geometry is taken to be negligible in [41].
3More precisely, the lower bound on the coupling comes from the requirement for the tunneling action to

be large at all TBH. We will see that the bound is proportional to another coupling constant that controls
the semiclassical expansion and can be made arbitrarily small.
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find the tunneling solution and illustrate it in the case of vacuum decay in flat space.
In section 3 we study the decay of the Hartle-Hawking vacuum in the BH vicinity. The
results of this study are important in two respects. First, it is instructive to compare
transitions from the Hartle-Hawking vacuum to those from the Unruh vacuum, since the
difference between the two states is entirely due to the different population of Hawking
quanta, i.e., due to the different quantum vacuum structure. Second, and more importantly,
the Hartle-Hawking vacuum decay can be straightforwardly studied in four dimensions.
Hence, we can directly compare the physics of tunneling in our toy model for the different
values of the scalar-dilaton coupling and in a four-dimensional scalar field theory in the
Schwarzschild background. We can then select the values of the coupling parameter for
which we see the best agreement in the behavior of the two systems.

In section 4 we study the decay of the Unruh vacuum. We analytically construct the
Unruh bounces for the range of the scalar-dilaton couplings emulating the four-dimensional
behavior and compute the associated decay rates. Not all values of BH temperature admit
analytic bounce solution. When no such solution is available, we employ a stochastic
estimate of the decay rate. We find that the exponential suppression of the Unruh vacuum
decay rate is constant in the high temperature limit.

We conclude in section 5. The main text is accompanied by several appendices.

2 Setup

2.1 Background geometry

We consider a real scalar field in the background of a dilaton BH in two dimensions [53].
The dilaton BH is characterized by the temperature TBH and mass M which are a priori
independent of each other.4 The BH background is set up by the metric gµν and the dilaton
field φ. As discussed in [41], the only region that is relevant for vacuum decay is the patch
of the BH spacetime outside the horizon. It is convenient to introduce tortoise coordinates
(t, x) covering this patch. Then the metric is read off from the line element

ds2 = Ω(x)(−dt2 + dx2) , (2.1)

where the conformal factor takes the form

Ω(x) = 1
1 + e−2λx . (2.2)

The parameter λ is related to the BH temperature as λ = 2πTBH. For the sake of brevity,
we will refer to λ itself as temperature. The horizon is located at x→ −∞. Near horizon,
the conformal factor behaves as Ω(x) ≈ e2λx. Substituting this to eq. (2.1), we obtain the

4This is different from the four-dimensional Schwarzschild case where TBH and M are related by

TBH = M2
Pl

8πM

with MPl the Planck mass.
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two-dimensional Rindler metric. Thus, the near-horizon region is approximated by the
Rindler spacetime. The physical size of this region is

lh ∼
∫ 0

−∞
dx
√

Ω ∼ 1
λ
. (2.3)

In the opposite limit, x→∞, the metric is asymptotically flat. Finally, the dilaton profile
is given by

φ = −1
2 ln

[
M

2λ
(
1 + e2λx

)]
. (2.4)

In appendix A we discuss dilaton BHs in more details. The vacuum boundary conditions
are imposed in the remote past, t→ −∞, on both sides of the physical patch, x→ ±∞.

2.2 Massive scalar field with a dilaton coupling

To study tunneling in the BH background, we consider the following scalar field theory

S = 1
g2

∫
d2x
√
−g

(
−1

2g
µν∂µϕ∂νϕ−

m2ϕ2

2 −Qe2φϕ2 − Vint(ϕ)
)
. (2.5)

Here Vint(ϕ) is the interaction part of the tunneling potential to be specified below. So
far it suffices to assume that the false vacuum is located at ϕ = 0 where the potential
vanishes, Vint(0) = 0. Next, Q > 0 is the nonminimal coupling (of mass dimension 2)
of the scalar field to the dilaton. We will see shortly that this coupling gives rise to the
temperature-dependent barrier in the potential for linearized field perturbations, which is
similar to the centrifugal barrier in the four-dimensional Schwarzschild spacetime. We will
refer to it as “dilaton barrier” in what follows. The small coupling constant g� 1 controls
the semiclassical expansion in the model.

In the background specified by eqs. (2.1), (2.2) and (2.4), the action (2.5) becomes

S = 1
g2

∫
dtdx

(
−1

2η
µν∂µϕ∂νϕ−

1
2Ωm2ϕ2 − QΩ′

M
ϕ2 − ΩVint(ϕ)

)
, (2.6)

where ηµν = diag(−1, 1) is the Minkowski metric. We see that the dependence on the
background is contained entirely in the (position-dependent) potential of the field ϕ.

Let us study linear perturbations around the false vacuum ϕ = 0. To this end, we
neglect the self-interaction part of the potential Vint, and decompose ϕ using a complete set
of positive- and negative-frequency modes:

ϕ+
ω (t, x) = fω(x)e−iωt , ϕ−ω (t, x) = f∗ω(x)eiωt , ω > 0 . (2.7)

The equation for fω follows from the linearized field equation for ϕ and reads

− f ′′ω + Ueff(x)fω = ω2fω , (2.8)

where prime denotes derivative with respect to x. This is the Schrödinger equation with
the potential

Ueff(x) = m2Ω + 2Q
M

Ω′ . (2.9)

– 5 –
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Figure 1. Potential for massive linear scalar modes in the two-dimensional dilaton BH background
in the presence of the scalar-dilaton coupling with q > m2/(2λ2). The horizon is located at x→ −∞.

It is instructive to compare it with the analogous potential for spherically-symmetric linear
perturbations of the massive scalar field in the four-dimensional Schwarzschild background,
which we review in appendix B.1. The latter admits similar form as in eq. (2.9) (with
a different Ω), with the factor in front of Ω′ being proportional to the BH temperature.
To reproduce this behavior, in what follows we take the mass of the dilaton BH to be
temperature-dependent,

M(λ) = M2
0
λ

, (2.10)

where M0 is a constant of mass dimension 1.5 In other words, we enforce the relation
between the BH mass and temperature as in General Relativity. Using eq. (2.2), we obtain

Ueff(x) = m2

1 + e−2λx + 2qλ2e−2λx

(1 + e−2λx)2 , (2.11)

where we introduced q = 2Q/M2
0 . The first term in this expression describes a smooth

interpolation between the near-horizon and asymptotically-flat regions, while the second
term generates a barrier separating these regions, see figure 1.

Two comments are in order regarding the form of the potential (2.11). First, at
2qλ2 > m2, the height of the barrier exceeds m2, and the maximum of the potential is
achieved near x = 0, see figure 1. This is expected to significantly affect the properties of
the tunneling solution in the vicinity of the BH. Second, the mode equation (2.8) with the
potential (2.11) admits a general solution in terms of the hypergeometric function. This
means, in particular, that the Green’s functions of ϕ can be found analytically both near
and far from the horizon. Thus, the linear part of the theory (2.5) retains all good features
of the model without the scalar-dilaton coupling that was studied in [41]. Further properties
of the potential (2.11) are discussed in appendix C.

5The constant M0 is subject to certain conditions ensuring that the back-reaction of vacuum decay on
the background geometry is negligible; see appendix A. Apart from this, it is arbitrary.
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t
!

tf

tupi

tlowi

Figure 2. Contour C in the complex time plane for the calculation of the vacuum decay probability.
We show the case when the branch-cuts of the bounce (shown with thick black lines) lie on the real
axis. This corresponds to a theory with the scalar potential unbounded from below.

To match the greybody factor of the four-dimensional Schwarzschild geometry, the
parameter q in eq. (2.11) must be of the order of one; see appendix B.1. However, our
goal is not to match exactly the two-dimensional model with a spherical reduction of some
four-dimensional theory. Such a matching would anyway be imperfect due to the difference
in Ω. Instead, we aim at identifying essential features of vacuum decay in four dimensions
and modeling them in the two-dimensional setup. As we believe that the presence of barrier
is important, we expect that the qualitative agreement between the physics of tunneling in
the two and four dimensions is achieved once q exceeds m2/(2λ2), which at high temperature
can be much less than one. We will see in sections 3 and 4 that it suffices to study the case

m2/(2λ2) . q � 1 . (2.12)

This limit significantly simplifies the calculation of the Green’s functions which is performed
in appendix C.

2.3 Bounce solution and tunneling rate

Here we summarize the results of ref. [41] concerning the construction of bounce solutions.
Bounce ϕb is a regular solution of the field equations that saturates the transition amplitude
from the false vacuum initial state to the basin of attraction of true vacuum. In our case,
the field equation of motion is

�ϕ− Ueff(x)ϕ− ΩV ′int(ϕ) = 0 . (2.13)

The bounce lives on a contour C in the complex time plane shown in figure 2. The contour
runs from the initial moment of time in the asymptotic past, t = tupi shifted to the upper
half plane, to the final moment t = tf and back to the asymptotic past, t = tlow

i in the
lower half plane. The contour must bypass the singularities of the bounce. Assuming that
the bounce is unique, its values on the upper and lower sides of the contour are complex
conjugated, hence at t = tf it is real and can be analytically continued along the real time
axis where it describes the evolution of the field after tunneling.

In the limits t→ tupi and t→ tlow
i the bounce must satisfy boundary conditions imposed

by the false vacuum state. These boundary conditions turn out to be the same as for the
time-ordered Green’s function in the corresponding vacuum X [41]. The latter is defined as

– 7 –
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a time-ordered average of the linear field operators ϕ̂ in the state X,

GX(t, x; t′, x′) = X〈T (ϕ̂(t, x)ϕ̂(t′, x′))〉X . (2.14)

In turn, the field operator is constructed out of the complete set of modes (2.7) in the
standard way [54]. Explicit expressions for the time-ordered Green’s functions in the
Hartle-Hawking and Unruh vacua are presented in appendix C.

A Green’s function satisfies the equation

(�− Ueff(x))GX(t, x; t′, x′) = iδ(t− t′)δ(x− x′) . (2.15)

Using this property, the field equation (2.13) can be recast into the integral form. To select
a particular solution — bounce — of the integral equation, one should, first, adopt the
time-integration contour C in the complex time plane and, second, choose the Green’s
function corresponding to a particular false vacuum X. Thus, we arrive at

ϕb(t, x) = −i
∫

C
dt′
∫ ∞
−∞

dx′ GX(t, x; t′, x′)Ω(x′)V ′int(ϕb(t′, x′)) . (2.16)

This form of the bounce equation will be useful in what follows.
Finally, let us discuss the tunneling rate Γ. The latter is defined as the probability of

tunneling per unit time. We are interested in the main exponential dependence and write

Γ ∼ e−B . (2.17)

The coefficient B is the sum of the imaginary part of the bounce action computed along
the contour C and a boundary term representing the initial-state contribution. One can
show that the boundary term cancels upon integration by parts in the action and one is left
with [41]

B = − i

g2

∫
C

dt
∫ ∞
−∞

dx
(1

2ϕbV
′

int(ϕb)− Vint(ϕb)
)
. (2.18)

2.4 Tunneling in the inverted Liouville potential

In general, solving eq. (2.16) (or eq. (2.13) on the contour C with the vacuum boundary
conditions) requires a numerical procedure. A big simplification of the problem happens in
theories where the nonlinear core of the bounce, where it probes the true vacuum region, is
much smaller in size than the Compton wavelength of the free field ∝ m−1. Then the source
in the integral (2.16) is essentially point-like, and the solution outside the core is simply
proportional to the Green’s function GX . On the other hand, the core itself can be found
by neglecting the mass term in the field equation (2.13). The full solution is constructed by
matching the long-distance asymptotics of the core with the short-distance asymptotics of
the Green’s function.

In [41], the interaction potential Vint has been studied for which the above procedure of
finding the bounce solution works and yields analytic result. This is the negative Liouville
potential,

Vint(ϕ) = −2κ (eϕ − 1) (2.19)

– 8 –
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Figure 3. The scalar field potential.

with κ > 0. In flat spacetime, the full scalar field potential V (ϕ) = 1
2m

2ϕ2 +Vint(ϕ) is shown
in figure 3. To ensure the applicability of the split-and-match procedure, the following
relation between the parameters is adopted

ln m√
κ
� 1 . (2.20)

Thanks to this hierarchy, the theory possesses two intrinsic energy scales: the mass scale m
and the scale associated with the maximum of the scalar potential separating the false and
true vacua m ln m√

κ
. Generally speaking, the first controls the width of the linear tail of the

bounce, while the second determines the size of its core. The maximum of the potential is
located at

ϕmax ≈ 2 ln m√
κ
, (2.21)

where we have reatined only the leading logarithmic term.
To illustrate the matching procedure outlined above, let us discuss bounce in the

flat-space Minkowski vacuum (see ref. [41]). Assume that the only singularities of the
bounce are located on the real-time axis. Then, the contour C can be deformed into the
contour C ′ that runs along the Euclidean time axis, see figure 4. The vacuum boundary
condition at C , which is provided by the Feynman Green’s function, becomes the vanishing
boundary condition at C ′. Hence, the standard Euclidean approach is reproduced [25, 26].

To find the core of the bounce, we neglect the mass term in eq. (2.13) and, using
eq. (2.19), obtain

� ϕb|core + 2κeϕb|core = 0 . (2.22)

This is the Liouville equation, and its general solution is known. Next, the linear tail of the
bounce is proportional to the Feynman Green’s function

GF (−iτ, x; 0, 0) = 1
2πK0

(
m
√
τ2 + x2 + iε

)
, (2.23)

where τ = it is the Euclidean time coordinate. The core and the tail are matched in the region
where, on the one hand, the solution to the Liouville equation is linearized and, on the other

– 9 –
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t�풞

τ

�풞′ 

Figure 4. Deformation of the contour C into the Euclidean time contour C ′ used for the calculation
of the flat-space Minkowski bounce. Black lines denote singularities of the bounce.

hand, the Green’s function is approximated by its short-distance asymptotics. We obtain6

ϕb|core = ln
[

4C2
M

(1 + κC2
M (τ2 + x2))2

]
(2.24a)

ϕb|tail = 8πGF (−iτ, x; 0, 0) , (2.24b)

where CM = m2e2γE/(2κ). The matching region is defined by

(CM
√
κ)−1 �

√
τ2 + x2 � m−1 .

Its existence is ensured by eq. (2.20). We see that the bounce is real for real τ , vanishes
at infinity and has zero time derivative at τ = 0. Hence, it is a valid tunneling solution.
Moreover, it has no singularities apart from the ones on the real-time axis, which justifies
the deformation of the contour C into C ′.

The tunneling suppression is given by eq. (2.18) where one should substitute the core
of the bounce (2.24a). We obtain7

BM = 16π
g2

(
ln m√

κ
+ γE − 1

)
, (2.25)

where γE is the Euler constant. We observe that the suppression is enhanced by the large
logarithm (2.20).

In the BH background (2.2), the linearized field equation (2.8) is still exactly solvable,
and this allows us to compute explicitly the Green’s functions of interest. The solvability
of the equation for the core of the bounce is lost, but can be recovered in the two regions:
near the horizon where the metric is approximately Rindler, and far away from the BH
where the spacetime is asymptotically flat. From eqs. (2.2) and (2.11) we see that the two

6Solving the partial differential equation for the core (2.22) becomes trivial once one takes into account
that the solution providing the dominant decay channel is spherically-symmetric [55–57]. Note, however,
that eq. (2.24a) can be derived without adopting spherical symmetry from the onset; in fact, the latter
follows from the form of the Feynman Green’s function (2.23).

7The corrections to eq. (2.25) are of order g−2 × o(1).
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regions are defined by x < 0, |x| � λ−1 and x > 0, |x| � λ−1, respectively. Although we
do not have the explicit bounce solution in the transition region |x| . λ−1, we will still be
able to draw a qualitative picture of the evolution of the bounce across this region.

3 Decay of the Hartle-Hawking vacuum

Here we study transitions from the Hartle-Hawking state in the model defined by eqs. (2.2),
(2.6) and (2.19). This state corresponds to the BH in thermal equilibrium, for which our
method reduces to the standard Euclidean time approach. It provides a benchmark for
later study of transitions from the Unruh vacuum. Besides, the relevant configuration
describing vacuum decay from the state in thermal equilibrium is readily found in the
four-dimensional BH background. Comparing the results in two and four dimensions, we
will identify the regime in which our model adequately mimics catalysis of false vacuum
decay by the four-dimensional Schwarzschild BH. In this and the following sections we will
assume λ� m, which allows us to treat the problem analytically.

3.1 Tunneling in the black hole vicinity

Consider first the near-horizon region where the BH geometry is approximated by the
Rindler spacetime. The bounce solution is found by applying the split-and-match procedure
described in section 2.4. It lives on the contour C stretched along the real-time axis. The
contour can be deformed partially to the Euclidean time domain as shown in figure 5. Then
the thermal boundary condition in the asymptotic past imposed at C transforms into the
periodic boundary condition imposed at the Euclidean segment −π/λ < τ < π/λ of C ′

(where τ = it denotes the Euclidean time coordinate) [41]. This way one recovers the
standard Euclidean prescription for the thermal bounce [58–60].

The equation for the nonlinear core of the Hartle-Hawking bounce takes the form (cf.
eq. (2.22))

� ϕb|core + 2κe2λx+ϕb|core = 0 , (3.1)

where we assumed that the core fits the near-horizon region. This equation admits analytic
general solution. On the other hand, the linear tail of the bounce is proportional to the
time-ordered Hartle-Hawking Green’s function GHH computed in the BH vicinity. Overall,
we obtain [41]

ϕb|core = ln
[

λ2bHH

κ
(
ch λ(x− xHH)−

√
1− bHH cosλτ

)2
]
− 2λx (3.2a)

ϕb|tail = 8πGHH(−iτ, x; 0, xHH) (3.2b)

Here the parameter bHH is determined from matching the core with the tail, and xHH < 0
is the position of the center of the bounce.

Let us see how the core and the tail of the bounce match each other. This is readily
done if bHH � 1, since in this case the matching region exists in the Euclidean strip of the
contour C ′. In the matching region, on the one hand, the core of the bounce linearizes, that
is, the first term in the denominator of ϕb|core dominates over the second one, and, on the
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Figure 5. Deformation of the contour C into C ′ containing the Euclidean time segment which is
used for the calculation of the Hartle-Hawking bounce.

other hand, the tail of the bounce is taken in the limit |x− xHH| � m−1. The expression
for GHH in this limit is given in eq. (C.11). One obtains the following relation between the
parameters

bHH = κ

4λ2 e
4λ

m+qλ−2λxHH . (3.3)

By extending the matching region to the parts of the contour going parallel to the real-time
axis, one can show that eq. (3.3) remains valid as long as bHH ≤ 1 [41]. On the other hand,
no matching is possible if bHH > 1.

We see that the Hartle-Hawking bounce is characterized by one free parameter xHH,
the position of the center of the bounce. Existence of one-parameter family of solutions is a
consequence of the (approximate) Rindler symmetry of the BH vicinity. The flat direction
corresponding to xHH is tilted by the terms in the BH metric that discriminate it from
the Rindler metric. Hence, one expects to get a unique tunneling solution with the least
suppression. The most likely candidate for such a solution is a static sphaleron [61] (see
also [3, 5]). It is obtained in the limit bHH = 1 which is achieved when xHH takes the value

xHH,sph = 2
m+ qλ

− 1
λ

ln 2λ√
κ
. (3.4)

The core of the sphaleron is given by

ϕsph|core = ln
[

λ2

κ ch2 (λ(x− xHH,sph))

]
− 2λx . (3.5)

Note that, strictly speaking, the static sphaleron does not satisfy the vacuum boundary
conditions imposed at C . Nevertheless, as explained in [41], it appears as the end-point
configuration of valid tunneling solutions and correctly describes the tunneling rate. Having
this in mind, in the rest of this section we will focus on the sphaleron solution.

At low and moderate temperature, the coordinate of the sphaleron’s center is negative,
xHH,sph < 0, so it is comfortably inside the near-horizon region. In the case without the
dilaton barrier, q = 0, the center of the sphaleron shifts to the right as the temperature
increases and at λHH,0 ' m

2 ln m√
κ
it reaches x = 0. At this point the sphaleron does not fit

– 12 –



J
H
E
P
0
8
(
2
0
2
2
)
1
6
1

into the near-horizon region anymore and sticks out into the flat space at x > 0 [41]. Our
goal now is to understand what happens with the sphaleron at λ ∼ λHH,0 in the presence of
the barrier.

3.2 Sphaleron at high temperature: weak and strong barriers

For static configurations, the equation of motion (2.13) reduces to the ordinary differential
equation

ϕ′′sph − (m2Ω + qλΩ′)ϕsph + 2κΩ eϕsph = 0 , (3.6)

which is straightforward to solve numerically. It is instructive, however, to consider a sim-
plified version of eq. (3.6) which can be studied analytically. To this purpose, we replace the
function Ω(x) in the brackets by the Heaviside θ-function and its derivative by the δ-function.
Physically, this means that we are neglecting the width of the dilaton barrier compared
to the size of the sphaleron. This is certainly a good approximation for the sphaleron tails
which have width of order m−1. On the other hand, the sphaleron core has width ∼ λ−1

which is comparable to the width of the barrier. Below we will encounter configurations
with the core of the sphaleron in the immediate neighborhood of the barrier. For these
configurations we do not expect an exact quantitative agreement with the solution of the
original eq. (3.6). Nevertheless, we will see that they capture the right qualitative behavior.

We also simplify the last — Liouville — term in eq. (3.6). We cannot simply set Ω to
the θ-function in it as this would lead to the loss of sphaleron solutions in the near-horizon
region. Instead, we approximate Ω with a pure exponential e2λx at x < 0 and 1 at x > 0. In
other words, we assume that the metric is exactly Rindler to the left from the barrier and flat
to the right of it. Overall, the approximate equation we will analyze has the following form,

ϕ′′sph −
(
m2θ(x) + qλδ(x)

)
ϕsph + 2κ

(
θ(−x)e2λx + θ(x)

)
eϕsph = 0 . (3.7)

It is straightforward to solve this equation to the left and to the right of the barrier. The
solutions bounded at x→ ±∞ are:

ϕsph
∣∣∣
left

= ln
[

λ2

κ ch2(λ(x− xsph,L))

]
− 2λx , (3.8)

ϕsph
∣∣∣
right

=


ln
[

λ2
0

κ ch2(λ0(x− xsph,R))

]
, core

2λ0
m

e−m|x−xsph,R| , tail
(3.9)

where λ0 satisfies
λ0

ln(2λ0/
√
κ) = m ⇒ λ0 ' m ln m√

κ
. (3.10)

At x = 0 the two solutions (3.8), (3.9) must be matched continuously, whereas the derivative
must have a jump due to the δ-function in the equation,

ϕsph(0)
∣∣∣
right

= ϕsph(0)
∣∣∣
left
≡ ϕsph(0) , (3.11a)

ϕ′sph(0)
∣∣∣
right

= ϕ′sph(0)
∣∣∣
left

+ qλϕsph(0) . (3.11b)
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Let us assume first that the solution on the right is given purely by the tail, i.e., the core
of the sphaleron lies deep in the near-horizon region. Then the matching conditions (3.11)
lead to the equation on xsph,L,

1− th(λxsph,L) = m+ qλ

2λ ln
[

λ2

κ ch2(λxsph,L)

]
. (3.12)

To proceed, it is convenient to parameterize q as

q = a

ln(m/
√
κ) . (3.13)

For a > 1, eq. (3.12) has a negative solution for arbitrary value of λ� m, implying that the
sphaleron core is always confined to the near-horizon region. This behavior is dramatically
different from the case without barrier (a = 0) and we will call barriers with a > 1 “strong”.
Notice that even for a strong barrier q itself can be much smaller than 1.

If a < 1, the negative solution to eq. (3.12) grows with temperature and reaches zero at
λ ' m

1−a ln m√
κ
. The sphaleron stops fitting the near-horizon region and escapes outside. We

will refer to this case as “weak barrier”. When xsph,L gets close to zero, eq. (3.12) becomes
inaccurate because the solution on the right can no longer be approximated by a pure tail.
Instead, the sphaleron core is now sitting right on the barrier and we should use the upper
expression in eq. (3.9). Let us introduce

sL = λ th(λxsph,L) , sR = λ0 th(λ0xsph,R) . (3.14)

Note that we do not require xsph,R (xsph,L) to be positive (negative) — these are just the
parameters of the solution and can have either sign. The matching conditions (3.11) take
the form

λ2 − s2
L = λ2

0 − s2
R , (3.15a)

sL − sR = λ(1− a) , (3.15b)

where in the second line we substituted eq. (3.13) and neglected terms suppressed by the
large logarithm (2.20). The solution reads

sL = λ2(2− 2a+ a2)− λ2
0

2λ(1− a) , sR = λ2a(2− a)− λ2
0

2λ(1− a) . (3.16)

The conditions −1 < sL/λ, sR/λ0 < 1 following from the definition (3.14) are satisfied for
BH temperatures in the interval

λ0
2− a < λ <

λ0
a
, (3.17)

which is non-empty only for a < 1. At the lower end of this interval both xsph,L and xsph,R
formally go to −∞, which means that the solution matches to the sphalerons deep in the
near-horizon region studied above (the run-away is regularized by replacing the sphaleron
core on the right by the tail).
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Figure 6. Profiles of the sphaleron in the metric of two-dimensional dilaton BH with strong dilaton
barrier. We take κ = 10−8m2 and q = 1.5/ ln m√

κ
. Different curves correspond to the following BH

temperatures: λ/
(
m ln m√

κ

)
= 0.25 (solid), 2 (dashed), 10 (dot-dashed).

The behavior at the upper end is qualitatively different for the case without barrier
(a = 0) and with barrier, no matter how weak. In the former case xsph,R → 0 at λ → ∞
implying that the field at x > 0 represents half of the flat-space sphaleron. At the same
time xsph,L → +∞, which means that the field at x < 0 is simply constant. Thus, the
two-dimensional BH “cuts the sphaleron in half” [41]. Accordingly, the sphaleron energy is
half of that in flat space.

On the other hand, for a > 0 both xsph,R and xsph,L run away to +∞ at λ → λ0/a.
This means that the sphaleron core gets detached from the barrier and shifts into the flat
region to the right. At λ > λ0/a there are no sphalerons at finite distance from the barrier.
Of course, there are still flat-space sphalerons in the asymptotic region x→ +∞ given by
eq. (3.9) and the Hartle-Hawking vacuum decay proceeds via jumps over these sphalerons
in the thermal bath far away from the BH.

The above analysis is confirmed by the direct numerical solution of eq. (3.6). In figures 6
and 7 we plot the sphaleron profiles for several values of BH temperature for strong (a = 1.5)
and weak (a = 0.5) barriers. We see that for the strong barrier the sphaleron gets confined
to the near-horizon region at all temperatures. By contrast, in the weak barrier case, as the
BH temperature increases, the sphaleron shifts from the near-horizon region to be centered
on the barrier and then moves further out to the asymptotically flat region.

Which of the two regimes — the weak barrier or the strong barrier — corresponds
better to a realistic four-dimensional theory? To answer this question, in appendix B.2
we perform a numerical investigation of the decay of the Hartle-Hawking vacuum in the
Schwarzschild background in four dimensions. We focus again on the sphaleron solution
since one can argue that it is the most relevant configuration at all BH temperatures [61].
We take the theory of a massive scalar field with a negative quartic self-interaction, which
is a prototypical model of the Higgs field and its (loop-corrected) potential. Our analysis
shows that the high-temperature Hartle-Hawking sphaleron tends asymptotically to its

– 15 –



J
H
E
P
0
8
(
2
0
2
2
)
1
6
1

-10 -5 0 5 10 15

0

10

20

30

40

Figure 7. Same as figure 6, but now for the case of weak dilaton barrier. We take κ = 10−8m2

and q = 0.5/ ln m√
κ
. The BH temperatures are: λ/

(
m ln m√

κ

)
= 0.25 (solid), 0.66 (dashed), 1.942

(dot-dashed), 1.944 (dotted).

flat-space counterpart. This means that there are no solutions localized in the near-horizon
region of a small Schwarzschild BH in thermal equilibrium. We conclude that the case of
weak barrier describes more adequately the physics of vacuum decay in four dimensions.
Since our goal is to model the four-dimensional physics as closely as possible, we focus on
the weak barrier case 0 < a < 1 in the rest of the paper.

Let us comment on the value of the scalar-dilaton coupling, q = (ln m√
κ
)−1 � 1,

separating the regimes of weak and strong barrier. That in our model this value is much
less than 1 is due to the large hierarchy between the mass scale and the scale of the scalar
potential separating the false and true vacua, see eqs. (2.20) and (2.21). This leads to the
hierarchy between the mass and the temperature at which the core of the sphaleron reaches
outside, λHH,0 � m. To prevent the sphaleron from escaping the BH vicinity, the barrier
must be such that qλHH,0 & m which is already achieved at q � 1. The situation is different
in the four-dimensional model studied in appendix B.2, since there the sphaleron core is of
the size of the Compton wavelength and reaches outside at λ ∼ m. Hence, the value q ∼ 1
corresponding to the Schwarzschild background is still not enough to confine the solution.

3.3 Decay probability

Let us now discuss the decay rate. We start from the low-temperature case when the bounce
forms in the near-horizon region. The expression for the suppression of the Hartle-Hawking
bounce for general values of bHH ≤ 1 and xHH < 0 was derived in [41] and reads,8

BHH,low-λ = 4π
g2

(
ln
[ 4λ2

κbHH

]
− 2λxHH − 4

)
. (3.18)

The derivation is insensitive to the shape of the potential for linear modes in the transition
region |x| . λ−1 and, hence, this formula is readily applicable to our model. Using eq. (3.3),

8Corrections to this formula are of order g−2 × o(1).

– 16 –



J
H
E
P
0
8
(
2
0
2
2
)
1
6
1

we obtain
BHH,low-λ = 16π

g2

(
ln λ√

κ
− λ

m+ qλ

)
, (3.19)

where, for simplicity, we have kept only the logarithmically enhanced terms. This expression
is valid as long as the core of the bounce or sphaleron fits entirely into the near-horizon
region, i.e., as long as

λ . λHH,1 ≡
m

2− a ln m√
κ
, (3.20)

where a is defined in eq. (3.13).
At higher temperature the vacuum decay proceeds via thermal jumps over the sphaleron

which is the saddle-point of the energy barrier separating the vacua. The corresponding
Boltzmann suppression is

BHH,high-λ = 2πEsph
λ

. (3.21)

To find the sphaleron energy Esph, we rewrite the general expression for it using integration
by parts and equation of motion (3.6):

Esph = 1
g2

∫ +∞

−∞
dx
(1

2ϕ
′2
sph + 1

2(m2Ω + qλΩ′)ϕ2
sph − 2κΩ(eϕsph − 1)

)
= 1

g2

∫ +∞

−∞
dxκΩ

(
(ϕsph − 2)eϕsph + 2

)
.

(3.22)

Next, we substitute here the solution from the previous subsection (3.8), (3.9) in the case
when the sphaleron sits on the dilaton barrier and use eqs. (3.13) and (3.16). Keeping only
the leading logarithmically enhanced terms, we obtain

Esph '
2(m+ qλ)

g2

(
ln m√

κ

)2
. (3.23)

This gives us the sphaleron energy up to

λ . λHH,2 ≡
m

q
= m

a
ln m√

κ
. (3.24)

As discussed before, at yet higher temperatures there are no sphalerons at finite distance
from the BH. The height of the energy barrier separating the false and true vacua is then
given by the energy of the flat-space sphaleron in the asymptotic region x→ +∞, which is
obtained by substituting (3.9) into (3.22) and taking the limit xsph,R → +∞. This yields,

Eflat
sph '

4m
g2

(
ln m√

κ

)2
. (3.25)

Substituting these results into eq. (3.21), we arrive at

BHH,high-λ '


4π(m+ qλ)

g2λ

(
ln m√

κ

)2
, λHH,1 < λ < λHH,2

8πm
g2λ

(
ln m√

κ

)2
, λHH,2 < λ

(3.26)
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Figure 8. Exponential suppression of the Hartle-Hawking vacuum decay as a function of BH
temperature TBH = λ/(2π) (solid) vs. suppression of the vacuum decay in a thermal bath with the
same temperature in the absence of BH (dashed). At low temperature λ < λHH,1 decay proceeds
via tunneling in the near-horizon region, at λHH,1 < λ < λHH,2 via sphaleron transitions in the BH
vicinity, and at λHH,2 < λ via sphaleron transitions far from BH. The critical temperatures marking
the boundaries of different regimes are given by eqs. (3.20) and (3.24). We work in the regime of
weak dilaton barrier.

At λ = λHH,1 this expression matches smoothly (both the function and its first derivative)
to the low-temperature suppression (3.19). The suppression at this temperature is one-half
of the suppression for tunneling in Minkowski spacetime (2.25). On the other hand, at
λ = λHH,2 the suppression has a break (although it is still continuous). This is due to the
abrupt run-away of the sphaleron to infinity.

We plot the suppression of the Hartle-Hawking vacuum decay in figure 8, where we
compare it to the suppression of decay in thermal bath at the same temperature in the
absence of BH. The latter was calculated in [41] and reads

Bflat
th '


16π
g2

(
ln λ√

κ
− λ

2m

)
, λ < λ0

8πm
g2λ

(
ln m√

κ

)2
, λ0 < λ

(3.27)

where λ0 is defined in eq. (3.10). We see that the BH provides an additional enhancement of
the decay rate in a range of temperatures, but in the high temperature limit the catalyzing
effect due to curved geometry disappears. Of course, at λ→∞ the suppression vanishes,
as expected in a thermal state.

Let us make an observation that will be important in what follows. The sphaleron
transition rate can be found using a simple stochastic picture [41]. At high temperature
the occupation numbers of the low-lying modes are large and the field experiences large —
essentially classical — fluctuations with a long correlation length ∼ m−1. From time to
time these fluctuations will throw the field over the barrier separating the false and true
vacua. The rate of such events can be estimated as

ΓHH,high-λ ∼ exp
(
− ϕ2

max
2(δϕ)2

HH

)
, (3.28)
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where ϕmax is the value of the field at the maximum of the scalar potential (2.21) and
(δϕ)2

HH is the variance of the fluctuations. In deriving eq. (3.28) we assumed that the
fluctuations are Gaussian. This is a good approximation in our model since the scalar
potential is essentially quadratic at ϕ < ϕmax and hence the field is free as long as its
amplitude does not exceed ϕmax.

The variance (δϕ)2
HH at the position x can be found from the coincidence limit of the

Green’s function, upon subtraction of the Green’s function in empty space to remove the
ultraviolet divergence,

(δϕ)2
HH = g2 lim

t→0, x′→x

[
GHH(t, x′; 0, x)− GF (t, x′; 0, x)

]
. (3.29)

From the expressions for the Hartle-Hawking Green’s function to the right of the barrier,
eq. (C.12), we see that the variance changes between

(δϕ)2
HH '

g2λ

2π(m+ qλ) at x = 0 (3.30)

and
(δϕ)2

HH '
g2λ

2πm at x→ +∞ . (3.31)

Note that for λ < λHH,2 the fluctuations are larger in the vicinity of the BH which implies
that the transitions will predominantly occur in this vicinity. However, for λ > λHH,2 the
amplitude of fluctuations near the BH is suppressed compared to fluctuations at infinity.
This is an effect of the high dilaton barrier for modes at x = 0 — the field gets repelled
from the BH. In this case the transitions at infinity will be preferred, which confirms our
earlier findings about the absence of sphaleron at finite x at these temperatures.

Substituting the maximal of the two expressions (3.30), (3.31) into eq. (3.28), we obtain

ΓHH,high-λ ∼


exp

[
−4π(m+ qλ)

g2λ

(
ln m√

κ

)2
]
, λ < λHH,2

exp
[
−8πm

g2λ

(
ln m√

κ

)2
]
, λ > λHH,2

(3.32)

which coincides with eq. (3.26). The stochastic approach is particularly useful when
construction of the actual semiclassical solution is problematic. In the next section we will
use it to estimate the rate of Unruh vacuum decay at high temperature.

4 Decay of the Unruh vacuum

We now turn to the main topic of this work — decay of the Unruh vacuum. We focus on
the case of weak dilaton barrier, a < 1, where a is defined in eq. (3.13). As explained in
section 3, in this regime the transitions from the Hartle-Hawking state proceed in close
analogy with the four-dimensional case. It is reasonable to expect that the same is true for
the Unruh vacuum.

Far from the BH, the Unruh vacuum corresponds to a flux of thermal radiation whose
spectrum is reduced by the temperature-dependent barrier. Hence, we expect transitions far
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from BH to be more suppressed than in the model without the barrier studied in [41]. Close
to the horizon, by analogy with the Hartle-Hawking case, we expect that the Unruh bounce
exists in a certain range of BH temperatures and disappears at a high enough temperature.

4.1 Tunneling near horizon

To find the Unruh bounce in the BH vicinity, we have to solve eq. (2.13) with Ω = e2λx along
the contour C shown in figure 2 and satisfy the boundary condition imposed by the Unruh
vacuum.9 In the core region of the bounce the field equation reduces to eq. (3.1). The tail
of the bounce is determined by the time-ordered Unruh Green’s function GU computed in
the BH vicinity. Overall, we have [41]

ϕb|core = ln

 4λ2bU

κ
(
−2λ(v − xU ) sh

(
λ
2 (u+ xU )

)
+ bUe

λ
2 (u+xU )

)2

− 2λx (4.1a)

ϕb|tail = 8πGU (t, x; 0, xU ) (4.1b)

Here we defined u = t− x, v = t+ x. The core expression (4.1a) has been built in such a
way that in the linearized regime its u- and v-dependent parts match the corresponding
terms in the Green’s function. The parameter xU determines the position of the center of
the bounce and bU is found from matching the constant parts of (4.1a) and (4.1b). For
simplicity, we will keep in this matching only the terms enhanced by the large ratio λ/m.
This yields

bU = b̄Ue−2λxU , b̄U = κ

4m2 exp
{ 4λ
πm
H
(
qλ

m

)}
, (4.2)

where the function H is defined in eq. (C.14a) and plotted in figure 14. As in the Hartle-
Hawking case, we obtain a one-parameter family of solutions parameterized by xU . Again,
this is an artifact of our approximation of the near-horizon geometry by the Rindler
spacetime. One expects that taking into account the deviation of BH metric from Rindler
will remove the degeneracy [41].

For the applicability of the matching procedure the bounce core should be smaller than
the tail, which amounts to the requirement

b̄U . 1 . (4.3)

More careful matching conditions can be found in [41], but they are not important for what
follows. Inequality (4.3) translates into the upper bound on the BH temperature,

λ < λU ≡
ycm

a
ln m√

κ
, (4.4)

where yc is the solution of the equation

ycH(yc) = πa

2 . (4.5)

9As in the Hartle-Hawking case, C can be deformed into the contour C ′ with a part in the Euclidean
time domain, see figure 5. This facilitates the matching procedure and is legitimate since the deformation
does not intersect singularities of the bounce. Note, however, that unlike the Hartle-Hawking case, the
Unruh bounce is not real in Euclidean time.
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Note that this solution exists for a < 1 due to the asymptotics of the function H,
eqs. (C.15), (C.16). At λ > λU , the bound (4.3) is violated and the matching proce-
dure breaks down. At the same time, the Liouville core of the Unruh bounce stops fitting
the near-horizon region. By analogy with the Hartle-Hawking case, we expect that further
growth of temperature drives the vacuum decay site across the gravitational barrier and to
the flat-space region on the right. We were not able to find explicitly the corresponding
bounce solutions. Nevertheless, we will see below that the vacuum decay rate in this regime
can be estimated using the stochastic picture.

Presently, let us return to the near-horizon bounces and compute their tunneling
suppression. A general expression for it was derived in [41] and reads as follows

BU,low-λ = 4π
g2

(
ln
[

4λ2

κb̄U

]
− 4

)
. (4.6)

It is not sensitive to the shape of the mode potential (2.11) in the transition region |x| . λ−1

and, hence, is applicable to our model. Keeping only the logarithmically enhanced terms,
we obtain

BU,low-λ = 16π
g2

ln

√
λm

κ
− λ

πm
H
(
qλ

m

) . (4.7)

For q = 0, using eq. (C.15), we recover the suppression for the model without dilaton
barrier [41],

BU,low-λ
∣∣∣
q=0

= 16π
g2

ln

√
λm

κ
− 8λ

3πm

 . (4.8)

For all values of q corresponding to weak barrier the suppression monotonically decreases
with temperature from the flat-space value BM (eq. (2.25)) at λ ' m down to BM/2 at
λ = λU , at which point the near-horizon bounces cease to exist.

4.2 Stochastic jumps at high temperature

Following the lessons learned from the Hartle-Hawking case, we expect that the Unruh
vacuum decay at λ > λU proceeds via large stochastic fluctuations kicking the field over
the maximum of the scalar potential ϕmax. The corresponding decay rate is

ΓU,high-λ ∼ exp
(
− ϕ2

max
2(δϕ)2

U

)
. (4.9)

The variance of the fluctuations is estimated from the coincidence limit of the Green’s
function,

(δϕ)2
U = g2 lim

t→0, x′→x

[
GU (t, x′; 0, x)− GF (t, x′; 0, x)

]
, (4.10)

where for GU we use the expressions (C.18), (C.19) valid to the right of the barrier at x = 0.
Focusing on the dominant terms containing the enhancement factor λ/m, we see that the
variance monotonically decreases from the value

(δϕ)2
U

∣∣∣
x→0

= g2λ

2π2m
H
(
qλ

m

)
(4.11)
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g2λ
2π2mH( qλm )

g2λ
2π2mH̃( qλm )

(δϕ)2
U

x0 (qλ)−1

qλ & m

g2

4πq

(δϕ)2
U

x0

qλ� m

Figure 9. Variance of the field fluctuations in the Unruh vacuum outside BH as a function
of the space coordinate. Left: moderate BH temperature qλ & m. Right: limit of very high
temperature qλ� m.

in the vicinity of BH down to

(δϕ)2
U

∣∣∣
x→+∞

= g2λ

2π2m
H̃
(
qλ

m

)
(4.12)

far away from it. The functions H(y) and H̃(y) are defined in eqs. (C.14a) and (C.20a),
respectively and are plotted in figure 14. The characteristic distance from the BH at which
the amplitude of the fluctuations changes is of order (qλ)−1. This is illustrated on the left
plot in figure 9.

For not-so-large temperature λ ∼ m/q, the neighborhood of the BH with large fluctua-
tions is of size m−1, sufficient to accommodate the flat-space sphaleron. At such temperature
the vacuum decay will be dominated by sphaleron transitions in the BH vicinity.

At yet higher temperature, λ� m/q, the size of the region with enhanced fluctuations
shrinks. However, also the variance of the fluctuations levels out throughout the whole
space, because the asymptotics of the functions H(y) and H̃(y) at y � 1 coincide, see
eqs. (C.16), (C.22). We obtain that in the high-temperature limit the variance is finite and
equals

(δϕ)2
U

∣∣∣
qλ�m

= g2

4πq (4.13)

irrespective of the position x, see figure 9, right plot.10 This constancy of the variance has
clear physical interpretation: the flux of particles emitted by the BH and producing the
fluctuations remains constant at arbitrary distance from the BH due to the two-dimensional
nature of the model. Thus, the sphaleron transitions can now happen with the same
probability anywhere in space.

10The subdominant terms in the Green’s function (C.18), (C.19) lead to a slight suppression of (δϕ)2
U

at x = 0 compared to the asymptotics at infinity. However, the subdominant effects are likely beyond the
validity of the rough estimates (4.9), (4.10).
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U
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M

λ
U λ

B

B

M

1

2

a
2

B

Figure 10. Exponential suppression of the Unruh vacuum decay as a function of BH temperature
TBH = λ/(2π). Decay proceeds via tunneling in the near-horizon region at λ < λU , whereas at
λ > λU it is mediated by stochastic jumps in the vicinity and far away from BH. The critical
temperature λU is given by eq. (4.4). The suppression approaches a non-zero constant in the limit
λ→∞. We consider the case of weak dilaton barrier, 0 < a < 1.

Putting everything together, we estimate the rate of the Unruh vacuum decay at any
temperature above λU as

ΓU,high-λ ∼ exp
[
−4π2m

g2λ

(
H
(
qλ

m

))−1(
ln m√

κ

)2]
. (4.14)

Remarkably, this expression matches the low-temperature suppression (4.7) at λ = λU up
to the first derivative with respect to λ. This supports the stochastic picture of vacuum
decay advocated above.

Crucially, the exponential suppression of decay persists even in the limit of infinite BH
temperature,

ΓU,λ→∞ ∼ exp
[
− 8πa

g2 ln m√
κ

]
. (4.15)

This is in striking contrast to the Hartle-Hawking case and is a direct consequence of the
lack of particles in the Unruh flux compared to the thermal state. We believe this property
to be universal and valid also for BHs in higher dimensions. It hinges on the presence of
the centrifugal barrier reducing the outgoing flux through non-trivial greybody factors. We
plot our results for the Unruh vacuum decay suppression in figure 10.

One point needs to be discussed before closing this section. At very high BH temperature
the Unruh flux is dominated by relativistic modes with high momenta k ∼ qλ� m that
most efficiently escape through the barrier. Thus, the correlation length of fluctuations
lcorr ∼ k−1 is much shorter than m−1 and further decreases with temperature. One may
ask if this leads to additional suppression of transitions compared to eq. (4.15), so that the
actual suppression grows with temperature. We now show that this is not the case, at least
in our two-dimensional setup.11

11In higher dimensions the suppression may actually increase at λ→∞ due to the drop of the particle
flux according to the inverse area law at finite distance from the BH, see the discussion in section 5.
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To this end, let us look at the spectrum of particles in the Unruh flux. Far away
from the BH particle occupation numbers are given by the product of the Bose-Einstein
distribution and the transmission coefficient through the barrier,

nk = 1
e2πω/λ − 1

· k
ω
|γω|2 , (4.16)

where ω is the particle energy, ω =
√
k2 +m2, the transmission amplitude γω is defined

in eq. (C.3), and the factor k/ω appears due to the different normalization of plane waves
on the left and on the right from the barrier. Although the relevant particle energies are
higher than m, they are still well below λ (recall that q � 1). Thus, we can expand the
Bose-Einstein factor at ω � λ and use the formula (C.7b) for γω. We obtain,

nk = 2λk
π
(
(ω + k)2 + (qλ)2) . (4.17)

As expected, this describes a broad spectrum of particles centered at ω ≈ k ≈ qλ/2.
Let us perform a boost to the rest frame of particles moving with the central momentum.

In terms of the momentum and energy in the new frame the occupation numbers read

nk′ = m(ω′ + k′)
πq
(
(ω′ + k′)2 +m2) . (4.18)

We see that in the boosted frame the Unruh flux represents a collection of soft particles
with momenta k′ ∼ m. Thus, we arrive at the following physical picture. In the reference
frame comoving with the radiation, the flux consists of soft modes with high occupation
numbers nk′ ∼ 1/q � 1. Collisions between these modes lead to stochastic fluctuations at
the scales k′−1 ∼ m−1 and induce sphaleron transitions in this frame without any extra
exponential suppression on top of eq. (4.15). Note that from the viewpoint of the original
“laboratory” frame connected to the BH, the produced sphalerons are highly boosted.

5 Conclusions

In this paper, we studied a toy model of vacuum decay induced by a BH. To model the BH
background, we used the theory of two-dimensional dilaton gravity. In this background, we
considered the massive scalar field with the negative Liouville potential. To emulate the
four-dimensional centrifugal barrier for massive scalar modes, we added the temperature-
dependent scalar-dilaton coupling. This coupling is a new ingredient compared to the
model studied in our previous work [41], and it brings us one step closer to a realistic
four-dimensional system. In this model, we first studied Hartle-Hawking vacuum decay,
for which our results can also be obtained by applying the standard Euclidean instanton
method. In particular, we found that in the high-temperature limit vacuum transitions
occur in the asymptotically-flat region and are not suppressed. This is consistent with
previous works on BH catalysis [5–8].

We then turned to the Unruh vacuum and found that the presence of the barrier
changes drastically the exponential suppression of the Unruh vacuum at high temperatures.
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This is because the barrier reduces the flux of particles emitted by the BH that escape its
immediate vicinity. Unlike the Hartle-Hawking case, the suppression of the Unruh vacuum
decay does not disappear even in the high-temperature limit; instead, it tends to constant.
This is the main result of our study.

At low temperature the Unruh vacuum decay proceeds via tunneling in the BH vicinity.
We found analytically the corresponding bounce solution and tunneling rate. At high
temperature, the decay regime changes to stochastic jumps over the sphaleron separating
the vacua, and the decay site shifts to the outer region. Thanks to the features of our model,
we were able to apply a simple stochastic estimate to find the decay rate in this regime.
The stochastic approach can, in principle, work in more general situations, but will require
full-fledged numerical simulation of the classical field dynamics [62–65] (see also [66–68]).
The implementation of such a simulation would be useful since it would allow one to go
beyond the special exactly-solvable model that was studied here.

Note that one important ingredient of the four-dimensional setup — the dilution of the
Hawking flux as it moves away from the BH — is still not captured by our model. Hence,
one can expect further suppression of the decay probability of the Unruh vacuum at high
BH temperature. Indeed, consider a BH with TBH � m and disregard the effect of the
centrifugal barrier, allowing the occupation numbers of soft modes with ω ∼ m, which are
relevant for the decay, to be thermally enhanced close to the horizon, nsoft

∣∣
r∼rh

∼ TBH/m.
Of course, this is an overestimate as the greybody factors strongly suppress nsoft. Even in
this case, the occupation numbers become small already at the distance m−1,

nsoft
∣∣
r∼m−1 ∼

TBH
m
·
(
rh
m−1

)2
∼ m

TBH
� 1 .

Thus, there are simply not enough modes to generate a classical field fluctuation that would
trigger the decay [11, 52]. One can reasonably expect that the largest catalyzing effect is
achieved when the size of the BH is of order m−1. This expectation needs to be confirmed
by explicit calculation, using, e.g., the method of [41]. We leave this for future work.
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A Dilaton black holes

We consider the following action of dilaton gravity in two dimensions [53]

SDG =
∫

d2x
√
−g e−2φ

(
R+ 4(∇µφ)2 + 4λ2

)
. (A.1)

Here R is the scalar curvature and λ is a constant parameter. The theory admits a
one-parameter family of BH solutions with the metric determined by

ds2 = −Ω(r)dt2 + dr2

Ω(r) . (A.2)

The function Ω and the dilaton field φ are given by

Ω(r) = 1− M

2λe−2λr , φ = −λr . (A.3)

The mass of a BH is M and its horizon radius is

rh = 1
2λ ln M2λ . (A.4)

Introducing the tortoise coordinate

x = 1
2λ ln

[
e2λr − e2λrh

]
− rh , (A.5)

and re-expressing Ω and φ as functions of x, we obtain eqs. (2.2) and (2.4).
Throughout the paper, we neglect the back-reaction of the tunneling field ϕ on the

geometry. This is justified if the gravitational coupling e2φ is small compared to the scalar
coupling g from eq. (2.5). Its maximal value in the BH exterior is reached at the horizon,

e2φ
∣∣∣
r=rh

= 2λ
M

. (A.6)

This imposes a restriction on the parameter M0 introduced in eq. (2.10),

M2
0 �

λ2

g2 . (A.7)

This can always be satisfied for large enough M0. Note that if we allow q = 2Q/M2
0 to be

of order one, the non-minimal coupling of the scalar to the dilaton must be large,

Q� λ2

g2 . (A.8)

However, this is not a problem since Q enters the action in the combination Qe2φ which is
bounded from above by qλ2.
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B Schwarzschild black hole in four dimensions

B.1 Mode potential

Let us see how the greybody factors arise in the theory obtained from four dimensions by a
spherical reduction. Consider a free massive scalar χ in four dimensions,

S =
∫

d4x
√
−g

(
−1

2g
µν∂µχ∂νχ−

m2χ2

2

)
, (B.1)

and adopt the Schwarzschild metric,

ds2 = −Ω(r)dt2 + dr2

Ω(r) + r2dΩ2
2 , (B.2)

where dΩ2
2 is the line element of a unit 2-sphere and

Ω(r) = 1− rh
r
. (B.3)

Let us make the field redefinition
ϕ = rχ (B.4)

and introduce the tortoise coordinate

x = r + rh ln
[
r

rh
− 1

]
. (B.5)

Then, upon restricting to spherically-symmetric configurations, χ = χ(t, r), changing the
variables in the action (B.1) according to eqs. (B.4) and (B.5) and integrating by parts, we
obtain

S = 4π
∫

dtdx
(1

2 ϕ̇
2 − 1

2ϕ
′2 − 1

2

(
m2Ω + Ω′

r

)
ϕ2
)
, (B.6)

where dot (prime) denotes derivative with respect to t (x) and r = r(x) is the inverse of
eq. (B.5).

From eq. (B.6) we read off the effective potential for spherically-symmetric scalar modes
(see figure 11 for illustration),

U
(4d)
eff = m2Ω + Ω′

r
. (B.7)

This should be compared with the effective potential in the dilaton BH (2.9). Let us focus
on the second term that gives rise to the potential barrier. In the region x ∼ 0, where the
barrier achieves its maximum, r is of order the Schwarzschild radius, r ∼ rh. The latter is
related to the BH temperature as rh = (2λ)−1. Hence, to mimic the Schwarzschild greybody
factors with two-dimensional dilaton gravity, the coefficient 2Q/M in eq. (2.9) must be ∝ λ.
This is achieved by imposing the condition (2.10).

Comparing the near-horizon asymptotics of the two potentials, we see that they agree at
q = 2. However, as explained in the main text, the physics of vacuum decay is qualitatively
similar already at much lower values of q, and the range (2.12) suffices. The large distance
asymptotics of eqs. (2.11) and (B.7) are different because of the different form of the function
Ω(x) and the presence of the function r = r(x) in the denominator of the second term in
eq. (B.7). The latter comes from the area growth in four dimensions. Removing it, i.e.,
replacing r(x) 7→ rh, makes the two potentials completely analogous. In particular, in the
near-horizon region the area factor is not important.
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Figure 11. Effective potential for spherically symmetric linear massive modes in the four-dimensional
Schwarzschild geometry.

B.2 Hartle-Hawking sphaleron

Here we study the Hartle-Hawking sphaleron in the four-dimensional Schwarzschild back-
ground for a scalar theory with inverted quartic potential. Consider the action

S =
∫

d4x
√
−g

(
−1

2g
µν∂µχ∂νχ−

1
2m

2χ2 + g2

4 χ
4
)
, (B.8)

where g2 > 0. We redefine the coordinates and the field variable χ as in appendix B.1,
further rescale ϕ 7→ ϕ/g, and restrict to spherically-symmetric configurations. In this way,
we arrive at

S = 4π
g2

∫
dtdx

(1
2 ϕ̇

2 − 1
2ϕ
′2 − 1

2

(
m2Ω + Ω′

r

)
ϕ2 + Ω

4r2ϕ
4
)
, (B.9)

where the conformal factor Ω is defined in eq. (B.3), and r = r(x) is the inverse of eq. (B.5).
One observes that the structure of this action closely resembles that of the two-dimensional
model (2.6) studied in the main text. The important difference, however, is the explicit
coordinate dependence of the interaction term.

The equation of motion for a static configuration is

ϕ′′sph −
(
m2Ω + Ω′

r

)
ϕsph + Ω

r2ϕ
3
sph = 0 . (B.10)

This must be supplemented with the boundary conditions,

ϕsph(x→ −∞)→ const , ϕsph(x→∞)→ 0 . (B.11)

The first condition reflects regularity of the Hartle-Hawking state at the horizon, and the
second is the vacuum boundary condition away from the BH. Finally, the energy of the
sphaleron reads

Esph = 4π
g2

∫ ∞
−∞

dx
(1

2ϕ
′2
sph + 1

2

(
m2Ω + Ω′

r

)
ϕ2

sph −
Ω

4r2ϕ
4
sph

)
. (B.12)
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Figure 12. Profiles of the Hartle-Hawking sphaleron in the four-dimensional Schwarzschild back-
ground at different BH temperatures: 2πTBH = 1.0m (solid), 3.5m (dashed), 7.0m (dash-dot).

We solve eqs. (B.10) and (B.11) numerically. We are interested in the behavior of the
sphaleron profile as the Schwarzschild radius rh (or the BH temperature TBH = 1/(4πrh))
varies. The sample plots are shown in figure 12. We see that at rhm & 1, the nonlinear core
of the solution is localized in the near-horizon region. On the other hand, at rhm . 1, the
core does not fit the BH neighborhood. Moreover, the function ϕsph(x) is not a monotonic
function, with the maximum outside the near-horizon region.12

At small BH temperatures, the Hartle-Hawking sphaleron deviates from its flat coun-
terpart. This is because the size of the BH rh exceeds the characteristic size of the flat
sphaleron which is ∝ m−1. In the opposite limit the BH is small and, as one can readily
check, the sphaleron is insensitive to the curved geometry and tends asymptotically to the
flat-space solution.

Finally, figure 13 shows the Boltzmann suppression factor Esph/TBH in the BH back-
ground vs. the Boltzmann suppression at the same temperature in flat space. We see
that the BH transition channel always dominates over the flat-space channel, although at
rhm & 1 both are superseded by the transition via the flat-space periodic bounce [9].13

Thus, we draw two important conclusions. First, if the BH temperature is below the
scale associated with the size of the sphaleron core (which is m−1 in this case), the nonlinear
part of the sphaleron is localized in the near-horizon region; at higher BH temperature
the sphaleron shifts outside. Second, in the large temperature limit the solution and the
associated decay suppression tend to the ones in flat spacetime. Comparing with the
two-dimensional model studied in the main text, we see that this qualitative behavior is
reproduced in the regime of weak dilaton barrier, see section 3.2.

12The sphaleron profile is still monotonic if written in terms of the original field variable χ.
13It is known that the theory (B.8) in flat spacetime does not admit a finite-size bounce at zero tempera-

ture [69]. Periodic bounces, however, exist.
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2πEsph
λ

λ

Figure 13. Suppression of the sphaleron transitions in the Hartle-Hawking vacuum as function
of the BH temperature TBH = λ/(2π) (solid). The sphaleron energy Esph is defined in eq. (B.12).
Dashed line shows the sphaleron suppression in thermal bath at the same temperature in flat space.

C Linear modes and Green’s functions

Here we discuss some further properties of the potential (2.11) and of the linear modes in
this potential. We also compute the Green’s functions in the regions of interest. Our aim is
to highlight differences between the model with the scalar-dilaton coupling and the model
without the dilaton barrier studied in [41]. The reader is referred to appendix B of that
paper for more details.

C.1 Effective potential, modes and scattering coefficients

Consider the potential (2.11). When 2qλ2 > m2, the barrier generated by the second term
exceeds the asymptotics at positive x. The height of the barrier and its position are

Umax = (2qλ2 +m2)2

8qλ2 , xmax = 1
2λ ln

[
2qλ2 +m2

2qλ2 −m2

]
, 2qλ2 > m2 . (C.1)

The width of the region where the potential changes rapidly is

∆x ∼ λ−1 . (C.2)

As discussed in section 2.2, the mode equation (2.8) with potential (2.11) can be solved
exactly in terms of the hypergeometric functions. Using the general solution, we construct
a basis of orthogonal and delta-function normalizable modes fL,ω, fR,ω for ω > m. At
x→ ±∞ the modes become plane waves. The modes fL,ω are left-moving at large negative
x, whereas the modes fR,ω are right-moving at large positive x. Using the asymptotics of the
modes fR,ω we determine the reflection and transmission amplitudes of the potential (2.11),

fR,ω =
{

eiωx + βω e−iωx , x→ −∞
γω eikx , x→ +∞

(C.3)

where
k =

√
ω2 −m2 , ω > m . (C.4)
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These obey the unitarity constraint

|βω|2 + k

ω
|γω|2 = 1 . (C.5)

The asymptotics of fL,ω are then also fully fixed in terms of βω and γω.
At 0 < ω < m only one family of the modes survives, which is exponentially damped

at x→ +∞. This can be obtained from the modes fR,ω by analytic continuation

k 7→ i
√
m2 − ω2 ≡ iκ . (C.6)

We will continue to denote this family by fR,ω, though, of course, there are no right-moving
waves at large x in this case. The reflection and “transmission” amplitudes are still defined
using eq. (C.3), but no longer obey the relation (C.5). Instead, we have |βω| = 1.

We only need the expressions for βω and γω at frequencies much below the temperature λ.
In this limit, instead of using the exact hypergeometric mode functions, it is simpler to obtain
the modes by approximating Ueff with a superposition of a step-function (corresponding
to the first term in eq. (2.11)) and a δ-function (corresponding to the second term). One
then finds

βω = i(ω − k) + qλ

i(ω + k)− qλ , ω � λ (C.7a)

γω = 2iω
i(ω + k)− qλ , ω � λ (C.7b)

where we have assumed q � 1. The expressions (C.7) can be analytically continued from
ω > m to ω < m with the replacement (C.6).

Let us note two properties of the amplitudes βω, γω. First, at qλ � ω � λ one can
neglect the term qλ in eqs. (C.7) and we return to the case q = 0. Hence, ω ∼ qλ is the
characteristic frequency of the barrier. Second, in the opposite limit ω → 0 the reflection
and transmission amplitudes behave as

|βω| = 1 , |γω| =
2ω

m+ qλ
, ω → 0 . (C.8)

We observe that the mass in |γω| appears in the combination m+ qλ. The interplay between
the two terms in this combination governs various tunneling regimes, as discussed in the
main text.

C.2 Green’s functions in the asymptotic regions

Here we summarize the expressions for the Hartle-Hawking and Unruh Green’s functions
which we use in the main text, postponing their derivation to the next subsection. We only
need their form when the two points x, x′ are placed in the near-horizon or asymptotically-
flat regions, where the mode functions fL,ω, fR,ω are approximated by plane waves. To
the former region we refer as “left” and to the latter as “right”. The two asymptotics are
separated by the region where the potential (2.11) changes rapidly. The width of this region
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is given in eq. (C.2). Hence, one can take

x, x′ < 0 , |x|, |x′| � λ−1 (“left”), (C.9)
x, x′ > 0 , x, x′ � λ−1 (“right”). (C.10)

Furthermore, we need the Green’s functions at “close separation”. This means that we
assume |x−x′|, |t−t′| to be sufficiently small, so that the Green’s functions are approximated
by their short-distance asymptotics. The precise conditions are different for different cases
and will be listed below for each case separately. We will use the superscript “close” to
indicate that an expression is valid under this assumption.

All expressions below are derived under the conditions m� λ, q � 1. Note that no
relation between m and qλ is assumed. Using the time translation invariance of the BH
background, we set t′ = 0.

Hartle-Hawking Green’s function (left):

GHH|left = − 1
4π ln

[
4 sh

(
λ

2 (x− x′ − t)
)

sh
(
λ

2 (x− x′ + t)
)

+ iε

]
− λ

4π (x+ x′) + λ

2π(m+ qλ) .
(C.11)

This expression is valid provided that eq. (C.9) is fulfilled and |t| < |x + x′|. No further
assumptions about |x − x′| or |t| are needed. In the limit q → 0, the Green’s function
reduces to the one in the model without the scalar-dilaton coupling [41]. We see that the
only effect of the barrier is the replacement m 7→ m+ qλ in the last term in this expression.

Hartle-Hawking Green’s function (right):

GHH|close
right = − 1

4π ln
[
4 sh

(
λ

2 (x− x′ − t)
)

sh
(
λ

2 (x− x′ + t)
)

+ iε

]
+ λ

4πm + λ

4πm ·
m− qλ
m+ qλ

e−m(x+x′) .

(C.12)

This expression is valid under eq. (C.10), together with m|x− x′|,m|t| � 1, |t| < x+ x′. In
the limit q → 0 it reduces to the expression found in [41].

Unruh Green’s function (left):

GU |close
left = − 1

4π ln
[
2 sh

(
λ

2 (x− x′ − t)
)
m(x− x′ + t) + iε

]
− λ(x+ x′)

4π

+ λ

2π2m
H
(
qλ

m

)
+ 1

8πH
(1)
(
qλ

m

)
,

(C.13)

where

H(y) = − 1
y2 −

(1 + y2)2 arctg y
y3(y2 − 1) + πy

y2 − 1 , (C.14a)

H(1)(y) = 1
y2 −

(1 + y2)2 ln[1 + y2]
y4 + 2(ln 2− γE) . (C.14b)
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This formula is valid under the conditions (C.9), |x − x′ + t| � min{m−1, (qλ)−1}, and
|t| < |x+ x′|.

The functions H, H(1) are regular in the limit y → 0:

H(0) = 8
3 , H(1)(0) = −3

2 + 2(ln 2− γE) , (C.15)

which corresponds to vanishing barrier, and the function GU |close
left reduces to that derived

in [41]. In the opposite limit y →∞ the asymptotics of H, H(1) are

H(y) ≈ π

2y , H(1)(y) ≈ −2(ln y − ln 2 + γE) , y →∞ . (C.16)

The function H(y) is monotonic, it is plotted in figure 14.

Unruh Green’s function (right):

GU |close
right = GU |close

far + ∆GU , (C.17)

where

GU |close
far = − 1

4π ln
[
2 sh

(
λ

2 (x− x′ − t)
)
m(x− x′ + t) + iε

]
+ λ

2π2m
H̃
(
qλ

m

)
+ 1

8π H̃
(1)
(
qλ

m

)
,

(C.18)

and

∆GU =



λ

2π2m

[
H
(
qλ

m

)
−H̃

(
qλ

m

)]
+λ(x+x′)

4π

[2qλ
πm
H
(
qλ

m

)
−1
]
+ 1

8π H̃
(2)
(
qλ

m

)
, x+x′�min

{ 1
qλ
,

1
m

}
1

2π ln[m(x+x′)]− ln2−γE
2π ,

1
qλ
�x+x′� 1

m

0, 1
m
�x+x′

(C.19)
Here

H̃(y) = − 1
y2 + (1 + y2) arctg y

y3 , (C.20a)

H̃(1)(y) = 1
y2 + (y4 − 1) ln(1 + y2)

y4 + 2(ln 2− γE) , (C.20b)

H̃(2)(y) = −2(1 + y2)
y2 ln(1 + y2) . (C.20c)

Note that the intermediate range in (C.19) exists only if m� qλ. In all above expressions
we assume eq. (C.10), |x− x′− t| � min{m−1, (qλ)−1}, |x− x′+ t| � m−1 and |t| < x+ x′.

In the limit of vanishing barrier, y → 0, the functions H̃, H̃(1), H̃(2) reduce to

H̃(0) = 2
3 , H̃(1)(0) = 1

2 + 2(γE − ln 2) , H̃(2)(0) = −2 , (C.21)

and the expression for GU |close
right derived in [41] is reproduced. In the opposite limit y →∞

the asymptotics of H̃, H̃(1), H̃(2) are

H̃(y) ≈ π

2y , H̃(1)(y) ≈ 2(ln y + ln 2− γE) , H̃(2)(y) ≈ −4 ln y , y →∞ . (C.22)

The function H̃(y) is monotonic and is plotted in figure 14.
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Figure 14. Functions H(y) (blue) and H̃(y) (red) given by eqs. (C.14a) and (C.20a).

C.3 Calculation of the Green’s functions

Hartle-Hawking Green’s function (left). We start from the general expression for
the Green’s function in terms of the reflection amplitude [41],

GHH|left =
∫ ∞

0

dω
4πω

[
2 cosω(x− x′) + βωe−iω(x+x′) + β∗ωeiω(x+x′)

]
S(ω) , (C.23)

where

S(ω) = e−iω|t|

1− e−
2πω
λ

+ eiω|t|

e
2πω
λ − 1

. (C.24)

Let us split the domain of integration in two parts 0 ≤ ω < m and m ≤ ω <∞ and write

GHH|left = G(1)
HH + G(2)

HH , (C.25)

where the integration in the two terms runs over the first and second domain, respectively.
We first evaluate G(2)

HH. Using the identities S(−ω) = −S(ω), β∗ω = β−ω, it can be brought
to the form

G(2)
HH =

∫
B

dω
4πω

[
eiω(x−x′) + βωe−iω(x+x′)

]
S(ω) , (C.26)

where B = (−∞,−m]∪ [m,∞), see figure 15. To this we add and subtract the integral over
B′ — the upper side of the branch cut at −m < ω < m. If x− x′ > |t| and |x+ x′| > |t|,
the contour B ∪B′ can be deformed into the contour D that encircles the poles of S(ω) at
ω = iλn, n = 1, 2, . . . as shown in figure 15.14 Since m� λ and q � 1, we can set βω = 0
when computing the residues over these poles. We obtain

G(2)
HH = − 1

4π ln
[
1− 2e−λ(x−x′) ch λt+ e−2λ(x−x′)

]
−
∫ m+iε

−m+iε

dω
4πω

[
eiω(x−x′) + βωe−iω(x+x′)

]
S(ω) .

(C.27)

14Note that βω does not have singularities in the upper half-plane due to the absence of bound states in
the potential (2.11).
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Figure 15. Contours in the ω-plane used in the calculation of the Hartle-Hawking Green’s function
and of the Unruh Green’s function at qλ < m.

We now turn to G(1)
HH. This can be written as

G(1)
HH =

∫ m

−m
− dω

4πω
[
eiω(x−x′) + βωe−iω(x+x′)

]
S(ω) , (C.28)

where the integral is understood in the sense of principal value. We observe that this almost
cancels with the second term in (C.27), up to a half-residue at the origin. The difference
equals to −λx/(2π) + λ/(2π(m+ qλ)). We combine it with the first line of eq. (C.27) and
analytically continue to x− x′ < |t| to obtain eq. (C.11).

Hartle-Hawking Green’s function (right). Here the general expression is [41]

GHH|right =
∫ ∞
m

dω
4πk

[
2 cos k(x− x′)− γ∗ωβω

γω
e−ik(x+x′) − γωβ

∗
ω

γ∗ω
eik(x+x′)

]
S(ω)

+
∫ m

0

dω
4πω |γω|

2e−κ(x+x′)S(ω) ,
(C.29)

where k and κ are given by eqs. (C.4), (C.6). Note that the last term describes contribution
of the non-propagating modes localized on the BH. We can manipulate the integrals in
the same way as in the previous paragraph. The only new twist are the restrictions on
|x− x′|, |t| that must be fulfilled to bring the result to the final form eq. (C.12). We leave
the details of the derivation to the reader.

Unruh Green’s function (left). Our starting point is the relation between the Unruh
and Hartle-Hawking Green’s functions in the left region [41],

GU |left = GHH|left −
∫ ∞
m

dω k
2πω2 |γω|

2 cos[ω(x− x′ + t)]
e2πω/λ − 1

. (C.30)

Let us evaluate the second term which we denote by G(2)
U . Viewing k(ω) and |γω|2 as

analytic functions of ω in the upper half-plane and using k(−ω) = −k(ω), |γ−ω|2 = |γω|2

for ω > m, we can bring it to the form

G(2)
U = −

∫
B

dω k
4πω2 |γω|

2 eiω(x−x′+t)

1− e−
2πω
λ

+
∫ ∞
m

dω k
4πω2 |γω|

2eiω(x−x′+t) , (C.31)
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Figure 16. Contours in the ω-plane used in the calculation of the Unruh Green’s function at qλ > m.

where B = (∞,−m] ∪ [m,∞). Now we add and subtract the integral over B′ — the
upper side of the branch cut at −m < ω < m. Let us assume that x− x′ + t > 0 (we will
analytically continue to negative x − x′ + t at the end). Then the contour B ∪B′ can
be deformed into the upper half-plane. This deformation picks up the thermal poles at
ω = inλ, n = 1, 2, . . ., as in the case of the Hartle-Hawking Green’s function, see figure 15.

In addition, we should consider the singularities of the transmission coefficient |γω|2.
Using eq. (C.7b), we see that for qλ < m it does not have any poles in the upper half-plane.
On the other hand, for qλ > m a single pole appears at

ωq = i

2qλ((qλ)2 −m2) . (C.32)

Since q � 1, this pole always stays well below the first thermal pole at ω = iλ, see figure 16.
All in all we write,

G(2)
U = G(21)

U + G(22)
U + G(23)

U + G(24)
U , (C.33)

where the first three terms stand for the integrals along the contours D , −B′ and D ′ shown
in figure 16, whereas G(24)

U is just the second term in eq. (C.31). Let us evaluate these four
contributions one by one.

Since m� λ and q � 1, we can set |γω|2 = 1 in G(21)
U , and the result is

G(21)
U = 1

4π ln
[
1− e−λ(x−x′+t)

]
. (C.34)

In G(22)
U we use eq. (C.7b) at ω < m, assume m(x−x′+t)� 1 and expand the integrand

to the subleading orders in ω/λ and ω(x− x′ + t) to retain O(1)-contributions. We obtain

G(22)
U = iλ

2π2

∫ m+iε

−m+iε

dω κ
ω((ω + iκ)2 + (qλ)2) +

(
i

2π −
λ(x− x′ + t)

2π2

)∫ m

−m

dω κ
(ω + iκ)2 + (qλ)2 .

(C.35)
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Evaluating the integrals, we arrive at

G(22)
U = − λ

4π2m

 2
y2 +

(1 + y2)2 arctg
(

2y
1−y2

)
y3(y2 − 1) − 2π

y2 − 1


+
(
− i8 + λ(x− x′ + t)

8π

)(
θ(1− y)− 1 + 2y2

4y4 θ(y − 1)
)
,

(C.36)

where we have denoted

y = qλ

m
(C.37)

and θ(x) is the Heaviside step-function.
In G(23)

U we assume again that m(x − x′ + t) � 1 and, moreover, qλ(x − x′ + t) � 1.
Evaluation of the residue at ω = ωq yields

G(23)
U =

[
− λ

4πm
(1 + y2)2

y3(y2 − 1) +
(
− i8 + λ(x− x′ + t)

8π

) (1 + y2)2

y4

]
θ(y − 1) . (C.38)

In G(24)
U we assume that both m(x− x′ + t)� 1 and qλ(x− x′ + t)� 1 and split the

integration domain into [m,ω∗) and [ω∗,∞) where m, qλ� ω∗ � |x− x′ + t|−1. We then
approximate the exponent eiω(x−x′+t) by 1 in the first sub-integral and approximate the
transmission coefficient by 1 in the second sub-integral. In this way we get

G(24)
U = − 1

4π ln
[
m(x− x′ + t)

]
+ ln 2− γE

4π + i

8 + y2 − (1 + y2)2 ln[1 + y2]
8πy4 . (C.39)

Finally, we combine all four terms together and use the identity

arctg
( 2y

1− y2

)
+ πθ(y − 1) = 2 arctg y . (C.40)

Note that, despite the presence of discontinuities at y = 1 in the individual terms of
eq. (C.33), the sum is continuous and smooth at this point. The discontinuity coming with
the pole at ω = ωq (eq. (C.32)) that appears in the upper half-plane at y > 1 is exactly
canceled by the discontinuity in the term G(22)

U .
It remains to perform analytic continuation to x− x′ + t < 0 and add the result to the

Hartle-Hawking Green’s function GHH|left. This leads to eq. (C.13).

Unruh Green’s function (right). The Unruh Green’s function in the right region is
related to the Hartle-Hawking one as follows

GU |right = GHH|right −
∫ ∞
m

dω
2πk

cos[k(x− x′) + ωt)] + |βω|2 cos[k(x− x′)− ωt)]
e2πω/λ − 1

+
∫ ∞
m

dω
2πk

[
γ∗ωβω
γω

e−ik(x+x′) + γωβ
∗
ω

γ∗ω
eik(x+x′)

] cosωt
e2πω/λ − 1

.

(C.41)
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The second term here, which we denote by G̃(2)
U , is computed following the same steps as in

the previous paragraph. We do not present them in detail and just quote the result,

G̃(2)
U = 1

4π ln
[2 sh λ

2 (x− x′ + t)
m(x− x′ + t)

]
+ λ

2π2m

{
− 1
y2 + 1 + y2

y3 arctg y − π

2

}
+ 1

8π

[ 1
y2 + y4 − 1

y4 ln(1 + y2) + 2(ln 2− γE)
]
,

(C.42)

where y is defined in eq. (C.37). In deriving this expression we have assumedm|x−x′+t| � 1,
m|x− x′ − t| � 1 and qλ|x− x′ − t| � 1. Combining this with the Hartle-Hawking Green’s
function (C.12) far away from the BH, we obtain the result (C.18).

The third term in eq. (C.41) is localized in the vicinity of the BH. Let us denote it by
G̃(3)
U . Substituting the expressions (C.7) for the reflection and transmission amplitudes we

obtain,

G̃(3)
U =

∫ ∞
m

dω
2πk

[
i(ω − k) + qλ

i(ω + k) + qλ
e−ik(x+x′) + h.c.

] cosωt
e2πω/λ − 1

. (C.43)

We observe that the integral converges at ω . max{m, qλ} � λ. Thus, we can expand the
thermal factor up to the first subleading term to keep track of O(1) contributions. If we
further assume |t| < x+x′ � min{m−1, (qλ)−1}, we can also expand the exponential factor
e−ik(x+x′) and replace cosωt with 1. Then the integrals are easily taken and we get

G̃(3)
U = λ

2π2m

[
π(y2 + 1)
2(y2 − 1) −

2(1 + y2)
y(y2 − 1) arctg y

]
− (1 + y2) ln(1 + y2)

4πy2

+ λ(x+ x′)
4π

[
− 2
πy

+ 2y
y2 − 1 −

2(1 + y2)2

πy2(y2 − 1) arctg y
]
, |t| < x+ x′ � min{ 1

m ,
1
qλ} .

(C.44)

If, on the other hand, x+ x′ � m−1, the integrand is quickly oscillating and the integral is
damped, so we obtain

G̃(3)
U ≈ 0 , x+ x′ � 1

m . (C.45)

The intermediate range (qλ)−1 � x+x′ � m−1, which exists only for very high temperatures,
requires a careful examination of various contributions. We leave this exercise to the reader.
The result is

G̃(3)
U = λ

2π2m

(
π

2−
π

y

)
+λ(x+x′)

4π

(
−1+ 2

y

)
+ 1

2π ln[m(x+x′)]− ln2−γE
2π , 1

qλ�x+x′� 1
m .

(C.46)
Combining these expressions with the Hartle-Hawking Green’s function (C.12) in the BH
vicinity, we arrive at eq. (C.19).
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