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1 Introduction

In the past two decades, the investigation of various entanglement measures has greatly
sharpened our understanding of quantum many-body system, quantum field theory and
quantum gravity. In condensed matter theory, entanglement is a powerful tool to character-
ize different phases of matter [1–3]. In the AdS/CFT correspondence, the Ryu-Takayanagi
formula [4, 5] firstly opens the route of understanding spacetime from entanglement and
this idea turns out to have a key role in the black hole information loss paradox [6–8].
Entanglement is also an important concept in the studies of equilibration and thermaliza-
tion of isolated quantum systems. Among all these progress, entanglement entropy is the
most successful entanglement measure to characterize the bipartite entanglement of a pure
state. When the system is prepared in a pure state |ψ〉, the reduced density matrix (RDM)
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of subsystem A is defined by tracing out its complement B, ρA = trB |ψ〉 〈ψ|. From the
moments of ρA, i.e. TrρnA, one can obtain the Von Neumann entropy through the replica
trick [9]

S ≡ −Tr(ρA log ρA) = lim
n→1

Sn (1.1)

where Sn is the Rényi entropies

Sn = 1
1− n logTrρnA. (1.2)

Now suppose we are interested in the entanglement between two subsystems A1 and
A2, which are not necessarily complementary to each other. In this situation, ρA1∪A2 is
general a mixed state, and Von Neumann entropy is no longer a good measure of entan-
glement. Among different proposals, a computable measure of mixed state entanglement,
entanglement negativity (or logarithmic negativity equivalently) turns out to be very use-
ful [10–12]. The definition is

N = 1
2(||ρT2

A || − 1), (1.3)

where ||O|| = Tr
√
O†O denotes the trace norm of the operator O and ρT2

A is the partial
transpose of RDM ρA with respect to degree of freedom of subsystem A2. Let |e(1)

i 〉 and
|e(2)
j 〉 be two arbitrary bases of the Hilbert spaces associated to the degree of freedom on

A1 and A2 respectively. The partial transpose (with respect to the second space) of ρA is
defined as

〈e(1)
i e

(2)
j | ρ

T2
A |e

(1)
k e

(2)
l 〉 = 〈e(1)

i e
(2)
l | ρA |e

(1)
k e

(2)
j 〉 . (1.4)

It’s then useful to define the Rényi negativity

Nn = tr(ρT2
A )n (1.5)

which could be analytically continued from an even integer ne to obtain the negativity,
using ||ρT2

A || = limne→1Nne . Entanglement negativity has been studied extensively in both
quantum field theories (QFT) [13–18] and in holographic theories [19, 20, 22].

In recent years, people are interested in the interplay between symmetries and en-
tanglement. When our system exhibit a global symmetry, the entanglement will split
into different sectors characterized by eigenvalues of some charge operator. This symme-
try resolution of entanglement attract much attention recently [23–37]. In the context of
mixed states, the charge imbalance resolved negativity were also studied in several cir-
cumstances [38–40]. However, much fewer results are available for its evolution under
non-equilibrium setups [41–44]. It would be very interesting to further investigate the
non-equilibrium dynamics of these charge resolved measures of entanglement.

In this paper, we will consider the time evolution of the charge imbalance resolved
negativity in a special kind of non-equilibrium state known as global quantum quenches. A
global quantum quench describes a process in which the sudden change of the Hamiltonian
H0 → H at a given time that we set as t = 0, then the initial ground state |ψ0〉 of the
pre-quench Hamiltonian H0 evolves according to post-quench Hamiltonian H. Thus, we
have |ψ(t)〉 = e−iHt |ψ0〉. The quench dynamics of various measures of entanglement have
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been extensively studied in the literature [45–55]. In this paper, we will focus on two types
of global quenches in 1+1 dimensional complex Klein-Gordon field theory. The first type
is the boundary state quench in which after the quench the mass of the scalar field is zero,
so the time evolution is governed by a conformal field theory (CFT). The second type we
will consider is a mass quench in the underlying lattice model (complex harmonic chain),
where the post-quench dynamic is governed by a massive Hamiltonian.

The remaining part of this manuscript is organized as follows. In section 2, we briefly
review some basic facts about charge imbalance resolution of entanglement negativity. In
section 3, we discuss how to calculate the dynamics of charged Rényi negativity in the
boundary state quench setup using CFT techniques. In section 4, we will consider the
quench dynamics of charged (logarithmic) Rényi negativity between two finite intervals in
the boundary state quench protocol. In section 5, by applying Fourier transformation, we
can obtain the charge imbalance resolved negativity from the results derived in the previous
section. In section 6, we check our analytical predictions against numerical computation
in the complex harmonic chain. In section 7, we further discuss the mass quench in the
underlying lattice model numerically and using quasi-particle interpretation to predict the
quench dynamics of charged logarithmic negativity, finding perfect agreement. Finally, we
conclude in section 8 and discuss some possible interesting extensions of this work.

2 Charge imbalance resolution of negativity

In this section, we will briefly review the decomposition of entanglement negativity under
a global internal symmetry.

Let us first review some basic facts about the symmetry resolution of the entanglement
entropy. We assume that our system exhibit a global U(1) symmetry generated by a local
charge Q. If [ρ,Q] = 0 (this can be achieved if ρ only acts non-trivially on the eigenspace
of Q), then we have [ρA, QA] = 0, which implies that ρA admits charge decomposition
according to eigenvalues q of local charge QA

ρA = ⊕qPqρA = ⊕qp(q)ρA(q), p(q) = Tr(PqρA), (2.1)

where Pq is the projection operator which projects the space to the eigenspace correspond-
ing to eigenvalue q. The symmetry resolved Rényi entropies are defined as

Sn(q) = 1
1− n logTr[ρA(q)]n. (2.2)

It’s convenient to first introduce the charged moments of ρA,

Zn(µ) = Tr(eiµQAρnA). (2.3)

Then it’s sufficient to compute its Fourier transform

Zn(q) =
∫ 2π

0

dµ

2πe
−iqµZn(µ) (2.4)
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to obtain the Rényi entropies of the sector with charge q as

Sn(q) = 1
1− n log

[
Zn(q)
Z1(q)n

]
. (2.5)

Finally, the symmetry resolved entanglement entropy can be obtained by taking the replica
limit S(q) = limn→1 Sn(q).

Now we briefly review the symmetry decomposition of entanglement negativity under
the U(1) charge Q. Since the charge Q is local, we can write QA = Q1 + Q2, where Q1
and Q2 are the charges corresponding to sub subsystem A1 and A2 respectively. From the
relation [ρA, QA] = 0, performing a partial transposition with respect to the second region
A2 of subsystem A, we obtain

[ρT2
A ,QA] = 0, QA ≡ Q1 −QT2

2 , (2.6)

where we have introduced the charge imbalance operator QA and we will denote its eigen-
values as q to make a distinction with the eigenvalues of QA. Then ρT2

A has a block matrix
form, each block was characterized by different eigenvalues q of the imbalance operator
QA. If we write

ρT2
A = ⊕qPqρ

T2
A , ρT2

A (q) = Pqρ
T2
A

Tr(Pqρ
T2
A )

. (2.7)

Then we have
ρT2
A = ⊕qp(q)ρT2

A (q), (2.8)

where p(q) = Tr(Pqρ
T2
A ) is the probability of finding q as the outcome of measurement

of QA.
The charge imbalance resolved negativity is defined as

N (q) = 1
2(Tr|ρT2

A (q)| − 1). (2.9)

The total negativity is given by the sum of charge imbalance resolved negativity weighted
by the corresponding probability

N =
∑

q
p(q)N (q). (2.10)

It’s useful to define the charge imbalance resolved Rényi negativity

Nn(q) = Nn(q)− 1
2 , Nn(q) = Tr[(ρT2

A (q))n] = 1
p(q)nTr[Pq(ρT2

A )n]. (2.11)

Then the charge imbalance entanglement negativity can be obtained by taking the limit

N (q) = lim
ne→1

Nne(q). (2.12)

The projection operator Pq has the following integral representation

Pq =
∫ 2π

0

dµ

2πe
−iµqeiµQA . (2.13)
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It’s convenient to first introduce the charged Rényi negativity

Rn(µ) = Tr[(ρT2
A )neiµQA ], (2.14)

and it’s Fourier transformation

ZT2,n(q) =
∫ 2π

0

dµ

2πe
−iµqRn(µ) (2.15)

then the charge imbalance resolved Rényi negativity are related by Fourier transform

Nn(q) = ZT2,n(q)
p(q)n , p(q) =

∫ 2π

0

dµ

2πe
−iµqR1(µ). (2.16)

It’s also useful to introduce the charged Rényi logarithmic negativity En(µ), defined as

En(µ) = logTr[(ρT2
A )neiµQA ]. (2.17)

The charged logarithmic negativity is defined by taking the following replica limit

E(µ) = lim
ne→1

Ene(µ). (2.18)

Then the charge imbalance resolved negativity can be obtained as

N (q) = 1
2

(ZT2(q)
p(q) − 1

)
, ZT2(q) ≡ lim

ne→1
ZT2,ne(q) =

∫ 2π

0

dµ

2πe
−iµqeE(µ). (2.19)

In section 5, we will use eq. (2.19) and eq. (2.16) to evaluate the charge imbalance resolved
negativity.

3 Boundary state quench

In this paper, we will consider the 1+1 dimensional complex free scalar field theory with
the Euclidean action given by

A =
∫
d2x(∂µφ†∂µφ+m2φ†φ). (3.1)

This action exhibit a U(1) symmetry, i.e. the phase transformation of the field φ →
eiθφ, φ† → e−iθφ† leaves the action invariant. The Hamiltonian of this theory is

H =
∫
dx(π†π + ∂xφ

†∂xφ+m2φ†φ) (3.2)

with π is the canonical momentum for φ.
We can rewrite this theory in terms of two real scalar fields φ(1) and φ(2) with φ =

1√
2(φ(1) + iφ(2)). The Hamiltonian in terms of these variables becomes

H = 1
2
∑
α=1,2

∫
d2x[(π(α))2 + (∂xφ(α))2 +m2(φ(α))2]. (3.3)
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The Hamiltonian can be diagonalized in terms of particle and anti-particle mode opera-
tors a(p), a†(p) and b(p), b†(p) with the commutation relation [a(p), a†(q)] = [b(p), b†(q)] =
2πδ(p− q) and all other commutators vanishing. We have

H =
∫
dp

2πe(p)(a
†(p)a(p) + b†(p)b(p)) (3.4)

with e(p) =
√
m2 + p2, while the conserved charge corresponding to the global U(1) sym-

metry is

Q =
∫
dp

2π (a†(p)a(p)− b†(p)b(p)) =
∫
dx(a†(x)a(x)− b†(x)b(x)). (3.5)

In the second equal sign of above equation, the conserved charge are expressed as integral
of local density in real space. Thus its value in a given subsystem A is the same integral
restricted to A,

QA =
∫
A
dx(a†(x)a(x)− b†(x)b(x)). (3.6)

The lattice version of the complex Klein-Gordon field theory is the complex harmonic
chain which is equivalent to two decoupled real harmonic chains. The Hamiltonian of the
real harmonic chain made by L sites reads

HHC = 1
2

L−1∑
j=0

[
π2
j +m2φ2

j + (φj+1 − φj)2
]
, (3.7)

where periodic boundary conditions φL ≡ φ0, πL ≡ π0 are imposed and variables πj and
φj satisfy standard bosonic commutation relations [φi, φj ] = [πi, πj ] = 0 and [φi, πj ] = iδij .
The lattice version of the complex scalar field theory is the sum of two of the above harmonic
chain. In terms of the variables φ(1), π(1) and φ(2), π(2), the Hamiltonian is

HCHC = HHC(π(1), φ(1)) +HHC(π(2), φ(2)). (3.8)

The Hamiltonian eq. (3.8) can be diagonalized by introducing the creation and anni-
hilation operators ak, a†k and bk, b†k, satisfying [ak, a†k′ ] = δkk′ and [bk, b†k′ ] = δkk′ . In terms
of these operators, the Hamiltonian eq. (3.8) is diagonal

HCHC =
L−1∑
k=0

ek(a†kak + b†kbk), ek =
√
m2 + 4 sin2

(
πk

L

)
. (3.9)

While the U(1) charge is

Q =
L−1∑
k=0

(a†kak − b
†
kbk). (3.10)

The conserved charge is local and can also be written in the position space and for a given
subsystem A reads

QA =
∑
j∈A

(a†jaj − b
†
jbj). (3.11)
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3.1 The path integral approach to boundary state quench

In this section, we will focus on the case in which after the quench the mass of the scalar field
is zero, so time evolution is governed by a CFT. Let’s first briefly review the imaginary time
formalism for the global quenches where the post-quench dynamic is govern by a CFT. This
quench setup is called a boundary state quench as the correlation measures after quench
can be described by boundary conformal field theory (BCFT), where the gapped initial
state are represent by a spacetime boundary.

The expectation value of a product of equal-time local operators in time dependent
state |ψ(t)〉 is

〈O(t, {xi})〉 = Z−1 〈ψ0| eiHt−τ0HO({xi})e−iHt−τ0H |ψ0〉 . (3.12)

where two factors e−τ0H have been introduced to make the path integral representation of
this expectation value absolutely convergent and Z = 〈ψ0| e−2τ0H |ψ0〉 is the normalization
factor. The above prescription is equivalent to assuming that the initial state has the form
|ψ0〉 ∝ e−τ0H |B〉, where |B〉 is some conformal boundary state. One could interpret τ0
as being proportional to the correlation length of the initial state. Thus, the predictions
made by this approach are expected to be valid only in the spacetime scaling limit, t �
τ0, |xi−xj | � τ0, t/|xi−xj | = finite. The above correlator admits a path integral represent

〈O(t, {xi})〉 = 1
Z

∫
[dφ(x, τ)]O({xi}, τ = τ0 + it)e−

∫ τ2
τ1

dτL 〈ψ0|φ(x, τ2)〉 〈φ(x, τ1)|ψ0〉 .
(3.13)

where L is the Euclidean Lagrangian corresponding to the post-quench Hamiltonian H.
We need to identify τ1 = 0 and τ2 = 2τ0. We should compute the path integral considering
τ real and only at the end of the computation to analytically continue it to τ = τ0 + it.

3.2 Evolution of charged moments of RDM

In this section, we briefly review the strategy of computing the charged Rényi negativity
in two-dimensional CFT (see [40] for more details). In a generic two-dimensional QFT,
we can view the charged moments Zn(µ) (defined in eq. (2.3)) as the partition function on
the Riemann surface Rn,N pierced by an Aharonov-Bohm flux, such that the total phase
accumulated by the field upon going through the entire surface is µ. The presence of the
flux corresponds to impose an additional twist on the boundary of subsystem A. This
additional twist fuses with the replica (ordinary) twist field at the endpoints of subsystem
A and can be implemented by two local fields Tn,µ and T̃n,µ named as fluxed twist fields
and fluxed anti-twist fields. These fluxed twist fields take into account not only the internal
permutational symmetry among the replicas but also the presence of the flux. The partition
function on the fluxed Riemann surface is thus proportional to the 2N -point function of
these fluxed twist operators.

We consider the subsystem A consists of two disjoint intervals on the real axis, A =
A1 ∪ A2 with A1 = [u1, u2], A2 = [u3, u4]. The charged moments of RDM of vacuum state
ρA, i.e. trρnAeiµQA is equivalent to a four-point function of the fluxed twist fields

TrρnAeiµQA = 〈Tn,µ(w1)T̃n,µ(w2)Tn,µ(w3)T̃n,µ(w4)〉strip , wi = ui + iτ, (3.14)
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where w = u + iτ with τ ∈ R, τ ∈ (0, 2π) is the coordinate of the strip. The fluxed twist
fields Tn,µ and fluxed anti-twist field T̃n,µ are primary operators and they have the same
dimension [23, 27]

∆n,µ = 1
6

(
n− 1

n

)
− µ2

4π2n
+ µ

2πn. (3.15)

The charged moments of the partially transposed RDM can be obtained from the correlator
above with the fluxed twist field Tn,µ and T̃n,µ at the endpoints of A2 exchanged while the
remaining ones keep the same, giving

Tr[(ρT2
A )neiµQA ] = 〈Tn,µ(w1)T̃n,µ(w2)T̃n,µ(w3)Tn,µ(w4)〉strip . (3.16)

By conformal map z(w) = eπw/2τ0 , the four point function on the strip are mapped to the
upper half plane (UHP), then we can write

TrρnAeiµQA =
(
π

2τ0

)4∆n,µ

|z1z2z3z4|∆n,µ〈Tn,µ(z1)T̃n,µ(z2)Tn,µ(z3)T̃n,µ(z4)〉UHP, (3.17)

By global conformal symmetry, four-point functions of primary fields on the upper half
plane depend on 6 cross ratios ηi,j and have the following structure

〈Tn,µ(z1)T̃n,µ(z2)Tn,µ(z3)T̃n,µ(z4)〉UHP

= c2
n,µ

4∏
a=1
|za − z̄a|−∆n,µ

(
η1,3η2,4

η1,2η1,4η2,3η3,4

)∆n,µ

Fn({ηj,k})
(3.18)

where the cross ratios are defined by ηi,j = (zi−zj)(z̄i−z̄j)
(zi−z̄j)(z̄i−zj) and F({ηj,k}) depend on the full

operator content of the theory and usually is very complicated. The constants cn,µ are also
non-universal and are known for some specific theories.

While for the charged Rényi negativity, we have

Tr[(ρT2
A )neiµQA ] =

(
π

2τ0

)4∆n,µ 4∏
a=1
|za|∆n,µ〈Tn,µ(z1)T̃n,µ(z2)T̃n,µ(z3)Tn,µ(z4)〉UHP

= c2
n,µ

4∏
a=1

∣∣∣ za
za − z̄a

∣∣∣∆n,µ 1
η

∆n,µ

1,2 η
∆n,µ

3,4

(
η1,4η2,3
η1,3η2,4

)∆(2)
n,µ/2−∆n,µ

Gn({ηj,k})

(3.19)

Fortunately, in the spacetime scaling regime, we have ηi,j → 0, 1 or ∞, and the non-
universal functions Fn({ηj,k}),Gn({ηj,k}) are just constant. In the following section we will
just omit these non-universal functions and just focus on the universal part.

There is one important comment we must address. To compute the four-point function
of fluxed twist fields on the strip, we apply a conformal mapping from the strip to the UHP.
This is somewhat similar to the case of computation of the negativity at finite temperature,
where it is well-known that if the partial transposition involves an infinite part of an infinite
system at finite temperature, using the conformal map from the cylinder to the complex
plane is naively wrong [56]. This is not the case if one, for example, is interested in the
negativity between two (adjacent or disjoint) finite intervals [57, 58]. In our situation, we
are concentrated on the charged Rényi negativity between two finite intervals. Thus it’s
indeed free of these troubles.
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4 Evolution of charged logarithmic negativity in boundary state quench

In this section, we will consider the dynamics of the charged logarithmic negativity between
two intervals after a global quench whose post-quench evolution is governed by a massless
Hamiltonian.

4.1 Bipartite system

It’s convenient to first study the case in which A = A1 ∪ A2 is the entire system. In this
case, ρA corresponds to a pure state. As explained in previous section, in this case, the
temporal evolution of the charged Rényi negativity is governed by 〈T 2

n,µ(w1)T̃ 2
n,µ(w2)〉 on

the strip. The strip two-point function can be computed from the one in the UHP which
has the standard form

〈T 2
n,µ(w1)T̃ 2

n,µ(w2)〉UHP = |(z1 − z̄1)(z2 − z̄2)η1,2|−∆(2)
n,µ , (4.1)

where

∆(2)
n,µ =

∆n,µ, odd n
2∆n

2 ,µ
, even n

(4.2)

After mapping the correlator in the UHP to the one in the strip, we find

Tr[(ρT2
A )neiµQA ] = 〈T 2

n,µ(w1)T̃ 2
n,µ(w2)〉strip

=
(
π

2τ0

)2∆(2)
n,µ 2∏

a=1

∣∣∣ za
za − z̄a

1
η1,2

∣∣∣∆(2)
n,µ

.
(4.3)

In the spacetime scaling limit regime t� τ0, |ui − uj | � τ0, we have

log
∣∣∣ za
za − z̄a

∣∣∣→ − πt

2τ0
, log ηi,j →

π

2τ0
(|ui − uj | −max(2t, |ui − uj |)). (4.4)

Then it’s straightforward to derive the charged Rényi logarithmic negativity

En(µ) = −π∆(2)
n,µ

2τ0
min(2t, l1). (4.5)

In particular, for n = 1, the result is

E1(µ) = − π

2τ0
h1(µ) min(2t, l1), h1(µ) = − µ2

4π2 + µ

2π . (4.6)

The charged logarithmic negativity is obtained by taking replica limit ne → 1 in Ene(µ)

E(µ) = − π

2τ0
h(µ) min(2t, l1), h(µ) = −1

2 −
µ2

π2 + 2µ
π
. (4.7)
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4.2 Two adjacent intervals

In this case, the quench dynamics of the charged Rényi negativity between two adjacent
intervals can be obtained by studying the three point function 〈Tn,µ(w1)T̃ 2

n,µ(w2)Tn,µ(w2)〉
on the strip which can be computed by conformal mapping from the three point function
on the UHP. After dropping the non-universal functions, we finally have

Tr[(ρT2
A )neiµQA ] = 〈Tn,µ(w1)T̃ 2

n,µ(w2)Tn,µ(w3)〉strip

=
(
π

2τ0

)∆ 3∏
a=1

∣∣∣ za
za − z̄a

∣∣∣∆(a)

η∆(2)
n,µ−2∆n,µ

1,3

η∆(2)
n

1,2 η∆(2)
n

2,3


1/2

.
(4.8)

where ∆ = 2∆n,µ + ∆(2)
n,µ, ∆(1) = ∆(3) = ∆n,µ and ∆(2) = ∆(2)

n,µ. Then the CFT prediction
for the time evolution of the charged logarithmic Rényi negativity is given by

En(µ) = − π

4τ0

[
∆(2)
n,µ(min(2t, l1) + min(2t, l2))− (∆(2)

n,µ − 2∆n,µ) min(2t, l1 + l2)
]
. (4.9)

where we have defined l1 = u2 − u1, l2 = u3 − u2.
The temporal evolution of the charged logarithmic negativity is obtained by taking

replica limit ne → 1 in Ene(µ). The result is

E(µ) = − π

4τ0
[h(µ)(min(2t, l1) + min(2t, l2))− h2(µ) min(2t, l1 + l2)] . (4.10)

with
h2(µ) = −1

2 −
µ2

2π2 + µ

π
. (4.11)

From eq. (4.9), we have

E1(µ) = − π

4τ0
[h1(µ)(min(2t, l1) + min(2t, l2)) + h1(µ) min(2t, l1 + l2)] . (4.12)

4.3 Two disjoint intervals

The universal part the charged Rényi negativity is

TrρnAeiµQA = 〈Tn,µ(w1)T̃n,µ(w2)T̃n,µ(w3)Tn,µ(w4)〉strip

=
(
π

2τ0

)4∆n,µ 4∏
a=1

∣∣∣ za
za − z̄a

∣∣∣∆n,µ 1
η

∆n,µ

1,2 η
∆n,µ

3,4

(
η1,4η2,3
η1,3η2,4

)∆(2)
n,µ/2−∆n,µ

.
(4.13)

In this case, the CFT prediction for the time evolution of the charged logarithmic Rényi
negativity is given by

En(µ) =− π

2τ0

[
∆n,µ (min(2t, l1) + min(2t, l2)) + (∆(2)

n,µ/2−∆n,µ)

× (max(2t, l1 + l2 + d) + max(2t, d)−max(2t, l1 + d)−max(2t, l2 + d))
]
.
(4.14)

where l1 = u2−u1, l2 = u4−u3 and d = u3−u2 are the length of the subsubsystem A1, A2
and the distance between them respectively.
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The charged logarithmic negativity is easily obtained as

E(µ) =− π

2τ0

[
h1(µ) (min(2t, l1) + min(2t, l2)) + 1

2h2(µ)

× (max(2t, l1 + l2 + d) + max(2t, d)−max(2t, l1 + d)−max(2t, l2 + d))
]
.

(4.15)

As before, we also report the expression of E1(µ) here since it will be useful in the compu-
tation of charge imbalance resolved negativity. The result is

E1(µ) =− π

2τ0
[h1(µ)(min(2t, l1) + min(2t, l2))

− 1
2h1(µ)(max(2t, l1 + l2 + d) + max(2t, d)−max(2t, l1 + d)−max(t, l2 + d))].

(4.16)

We stress that eq. (4.9) and eq. (4.14) are only valid for CFT in which there is a perfect
linear dispersion. However this is not the case for the underlying lattice model, where the
excitation has non-linear dispersion. We will discuss how to adapt eq. (4.9) and eq. (4.14)
to describe the dynamics of charged Rényi (logarithmic) negativity in the mass quench
protocol of the complex harmonic chain.

5 Charge imbalance resolved negativity

In this section, using the results obtained in the last section, we will compute the dynamics
of the charge imbalance resolved negativity between two intervals after a global quench
to a conformal Hamiltonian. According to the discussion in section 2, our strategy is to
first compute ZT2(q) and p(q) (cf. eq. (2.19) and eq. (2.16)) from the charged moments of
partially transposed RDM, and then the charge imbalance resolved negativity is given by
eq. (2.19).

5.1 Bipartite system

t < l1/2. In this time region, we have

E(µ) = −h(µ)πt
τ0
, E1(µ) = −h1(µ)πt

τ0
. (5.1)

After Fourier transformation, we find

ZT2(q) = (−1)qe
πq2

4t/τ0
− πt

2τ0

2
√
t/τ0

Re
[
Erfi

(√
π(iq + 2t/τ0)

2
√
t/τ0

)]
, (5.2)

where Erfi(x) is the imaginary error function

Erfi(x) = −2i√
π

∫ ix

0
dte−t

2 x→∞−−−→ ex
2

√
πx
. (5.3)

A very similar expression exists for p(q) which we omit here. In the spacetime scaling limit,
we have much more concise results

ZT2(q) = 2e
πt

2τ0 t/τ0
πq2 + 4πt2/τ2

0
(5.4)
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and the probability distribution is given by

p(q) = 2t/τ0
πq2 + 4πt2/τ2

0
. (5.5)

Thus the charge imbalance resolved negativity is obtained from eq. (2.19)

N (q) = 1
2e

πt
2τ0 − 1

2 , (5.6)

which is independent of q.

t > l1/2. In this time region, we can simply make the replacement t → l1/2 to obtain
corresponding quantities. In particular, the charge imbalance resolved negativity is given by

N (q) = 1
2e

πl1
4τ0 − 1

2 , (5.7)

which is also q independent.

5.2 Two adjacent intervals

Without loss of generality, we will assume l1 < l2, the other case can be worked out
similarly.

t < l1/2 < l2/2 < (l1 + l2)/2. For this early time, we have

E(µ) = −(2h(µ)− h2(µ)) πt2τ0
, E1(µ) = −h1(µ)3πt

2τ0
. (5.8)

Then after Fourier transformation, we find

ZT2(q) = (−1)qe
πq2

3t/τ0
−πt2√

3t/τ0
Re

Erfi


√

π
3 (2iq + 3t/τ0)

2
√
t/τ0

 , (5.9)

Therefore in the spacetime scaling limit (t� τ0), we have

ZT2(q) = 6e
πt

4τ0 t/τ0
4πq2 + 9π(t/τ0)2 . (5.10)

In the spacetime scaling regime, the probability distribution can be computed similarly
and the finial result is

p(q) = 12t/τ0
16πq2 + 9π(t/τ0)2 . (5.11)

Then the charge imbalance resolved negativity is given by

N (q) = e
πt

4τ0 (16q2τ2
0 + 9t2)

16q2τ2
0 + 36t2

− 1
2 . (5.12)
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l1/2 < t < l2/2 < (l1 + l2)/2. In this case we have

E(µ) = −(h(µ)− h2(µ)) πt2τ0
− h(µ)πl14τ0

. (5.13)

Then

ZT2(q) = (−1)qe
πq2

(l1+t)/τ0
−π(l1+2t)

8τ0√
(l1 + t)/τ0

Re
[
Erfi

(√
π(2iq + (l1 + t)/τ0)

2
√

(l1 + t)/τ0

)]
. (5.14)

In the spacetime scaling limit

ZT2(q) = 2e
πl1
8τ0 (l1 + t)/τ0

4πq2 + π(l1 + t)2/τ2
0
. (5.15)

The probability distribution is

p(q) = 8(l1 + 4t)/τ0
64πq2 + π(l1 + 4t)2/τ2

0
. (5.16)

Then the charge-imbalance resolved negativity is

N (q) = 64q2τ2
0 + (l1 + 4t)2

32q2τ2
0 + 8(l1 + t)2

(l1 + t)e
πl1
8τ0

l1 + 4t − 1
2 . (5.17)

l2/2 < t < (l1 + l2)/2. In this time region, we have

E(µ) = h2(µ) πt2τ0
− h(µ)(l1 + l2)π

4τ0
, E1(µ) = −h1(µ)π(l1 + l2 + 2t)

4τ0
. (5.18)

Then applying Fourier transformation, we find

ZT2(q) = (−1)qe
πq2

(l−t)/τ0
− πl

8τ0√
(l − t)/τ0

Re
[
Erfi

(√
π(2iq + (l − t)/τ0)

2
√

(l − t)/τ0

)]
. (5.19)

Here and in the following sections we will always use the definition l ≡ l1 + l2. In the
spacetime scaling limit

ZT2(q) = 2e
π(l−2t)

8τ0 (l − t)/τ0
4πq2 + π(l − t)2/τ2

0
. (5.20)

the probability distribution is

p(q) = 8(l + 2t)/τ0
64πq2 + π(l + 2t)2/τ2

0
. (5.21)

the charge imbalance resolved negativity is then easily obtained as

N (q) = 64q2τ2
0 + (l + 2t)2

32q2τ2
0 + 8(l − t)2

(l − t)e
π(l−2t)

8τ0

l + 2t − 1
2 . (5.22)
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t > (l1 + l2)/2. In this case, we have

E(µ) = −[h(µ)− h2(µ)]π(l1 + l2)
4τ0

= E1(µ). (5.23)

Then the charge imbalance resolved negativity is

N (q) = 0. (5.24)

5.3 Two disjoint intervals

The computation of charge imbalance resolved negativity for two disjoint intervals is similar
to previous subsection, here we just report the final results (the space time scaling limit has
been taken). In this circumstance, the different size relation between l1, l2 and d may lead
to different behavior. However, for simplicity, we will only consider the case d < l1 < l2.

0 < t < d/2 < l1/2. At this early time stage, we have E(µ) = E1(µ), therefore

N (q) = 0. (5.25)

d/2 < t < l1/2. In this time period, we have

ZT2(q) = 4e
π(2t−d)

8τ0 (6t− d)/τ0
16πq2 + π(6t− d)2/τ2

0
, p(q) = 8(6t+ d)/τ0

64πq2 + π(6t+ d)2/τ2
0
. (5.26)

Then the charge imbalance resolved negativity is obtained straightforward as

N (q) = e
π(2t−d)

8τ0 (64q2τ2
0 + (6t+ d)2)

64q2τ2
0 + 4(6t− d)2

6t− d
6t+ d

− 1
2 . (5.27)

l1/2 < t < l2/2. In the spacetime scaling limit, we have

ZT2(q) = 4e
π(2t−d)

8τ0 (4t+ l1 − d)/τ0
16πq2 + π(4t+ l1 − d)2/τ2

0
, p(q) = 8(2t+ 2l1 + d)/τ0

64πq2 + π(2t+ 2l1 + d)2/τ2
0
. (5.28)

Then the charge imbalance resolved negativity is

N (q) = e
π(2t−d)

8τ0 (64q2τ2
0 + (2t+ 2l1 − d)2)

64q2τ2
0 + 4(4t+ l1 − d)2

4t+ l1 − d
2t+ 2l1 + d

− 1
2 . (5.29)

l1/2 < l2/2 < t < (l1 + d)/2. In this time region, the following results are obtained
(in the spacetime scaling limit)

ZT2(q) = 4e
π(2t−d)

8τ0 (l − d+ 2t)/τ0
16πq2 + π(l − d+ 2t)2/τ2

0
, p(q) = 8(d+ 2l − 2t)/τ0

64πq2 + π(d+ 2l − 2t)2/τ2
0
. (5.30)

The charge imbalance resolved negativity is given by

N (q) = e
π(2t−d)

8τ0 (64q2τ2
0 + (d+ 2l − 2t)2)

64q2τ2
0 + 4(2t+ l − d)2

2t+ l − d
d+ 2l − 2t −

1
2 . (5.31)
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(l1 + d)/2 < t < (l2 + d)/2. In this case, the following expression can be derived

ZT2(q) = 4e
πl1
8τ0 (l + l1)/τ0

16πq2 + π(l + l1)2/τ2
0
, p(q) = 8(2l − l1)/τ0

64πq2 + π(2l − l1)2/τ2
0
. (5.32)

The charge imbalance resolved negativity is independent of time in this period

N (q) = e
πl1
8τ0 (64q2τ2

0 + (2l − l1)2)
64q2τ2

0 + 4(l + l1)2
l + l1
2l − l1

− 1
2 . (5.33)

(l2 + d)/2 < t < (l1 + l2 + d)/2. In this time period, we have

ZT2(q) = 4e
π(d+l−2t)

8τ0 (d+ 2l − 2t)/τ0
16πq2 + π(d+ 2l − 2t)2/τ2

0
, p(q) = 8(l + 2t− d)/τ0

64πq2 + π(l + 2t− d)2/τ2
0
. (5.34)

The charge imbalance resolved negativity is

N (q) = e
π(d+l−2t)

8τ0 (64q2τ2
0 + (l + 2t− d)2)

64q2τ2
0 + 4(d+ 2l − 2t)2

d+ 2l − 2t
l + 2t− d −

1
2 . (5.35)

t > (l1 + l2 + d)/2. In this late time region, we have E(µ) = E1(µ) again, and charge
imbalance resolved negativity is zero

N (q) = 0. (5.36)

5.4 Total negativity

Having obtained the quench dynamics of the charge imbalance resolved negativity, it’s
an easy task to check whether we can recover the known results of quench dynamics of
entanglement negativity. Using the formula

+∞∑
q=−∞

1
π

a2

q2 + a2 = coth(πa) a→∞−−−→ 1 (5.37)

and the reconstruction formula of negativity eq. (2.10), it’s easy to check that indeed in each
time period, we can obtain the total entanglement negativity from the charge imbalance
resolved one, i.e. in the spacetime scaling limit, we have the following relation

+∞∑
q=−∞

p(q)N (q) = 1
2 exp{E(µ = 0)} − 1

2 = N . (5.38)

In this way, we have recovered the known quench dynamics [50] of the total logarithmic
negativity from the charge imbalance resolved ones, providing evidence of the correctness
of our results.
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6 Numerical test

In this section, we test our analytical predictions against numerical computation in the
complex harmonic chain which is the lattice version of our complex Klein-Gordon field
theory. We will use the correlation matrix techniques to obtain the charged Rényi (loga-
rithmic) negativity.

In section 3, we have already reported the Hamiltonian and the U(1) conserved charge
of the complex harmonic chain (cf. eq. (3.9) and eq. (3.10)). From the dispersion relation,
it’s easy to see that the Hamiltonian has zero modes for k = 0 and m = 0, and the group
velocities are obtained from the dispersion relation as

vp ≡
∂ek
∂p

= sin(p)√
m2 + 4 sin2(p/2)

, p ≡ 2πk
L
. (6.1)

The maximum velocity vmax ≡ maxp vp determine s the spreading of entanglement and
correlations.

In the global quench protocol, for t < 0, the system is prepared in the ground state of
the Hamiltonian

HCHC(m0) =
L−1∑
k=0

e0,k(a†kak + b†kbk), e0,k =
√
m2

0 + 4 sin2
(
πk

L

)
. (6.2)

At t = 0, the system evolves unitarily according to a new Hamiltonian HCHC(m) with a
different value m, namely |ψ(t)〉 = e−iHCHC(m)t |ψ0〉. The dynamics of symmetry resolved
negativity after a global quench described in the previous section corresponds to set the
new parameter m = 0. In this section, we will focus on the global quench to a massless
Hamiltonian (i.e. m = 0) to test our CFT predictions. In the next section we will discuss
the case m 6= 0.

Since the Hamiltonian of a complex harmonic chain is just two copies of a real harmonic
chain’s Hamiltonian, we could focus on the real harmonic chain first, and take the double
copies into account only at the end of the calculations. In the correlation matrix method of
computing entanglement measures, we first need to know the following two-point correlators
of the real scalars

Xrs(t) ≡ 〈ψ0|φr(t)φs(t) |ψ0〉 ,
Prs(t) ≡ 〈ψ0|πr(t)πs(t) |ψ0〉 ,

Mrs(t) ≡ 〈ψ0|φr(t)πs(t) |ψ0〉 ,
(6.3)

where

φr(t) = eiHHC(m)tφr(0)e−iHHC(m)t, πr(t) = eiHHC(m)tπr(0)e−iHHC(m)t. (6.4)
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The explicit form of these correlators is given by

Xrs(t) = 1
2L

L−1∑
k=0

Xk(t) cos
[2πk
L

(r − s)
]
,

Prs(t) = 1
2L

L−1∑
k=0

Pk(t) cos
[2πk
L

(r − s)
]
,

Mrs(t) = i

2δrs −
1

2L

L−1∑
k=0

Mk(t) cos
[2πk
L

(r − s)
]
,

(6.5)

where

Xk(t) = 1
ek

(
ek
e0,k

cos2(ekt) + e0,k
ek

sin2(ekt)
)
,

Pk(t) = ek

(
ek
e0,k

sin2(ekt) + e0,k
ek

cos2(ekt)
)
,

Mk(t) =
(
ek
e0,k
− e0,k

ek

)
sin(ekt) cos(ekt).

(6.6)

From the above expressions, it’s easy to find that the contribution from the zero mode
m = 0 and k = 0 is finite

X0(t) = m−1
0 +m0t

2, P0(t) = m0, M0(t) = −m0t. (6.7)

The evolution of charged Rényi (logarithmic) negativity of any subsystem A contain-
ing l lattice sites can be computed from these time-dependent correlators. Firstly, we
should consider the correlation matrices XA(t),PA(t) and MA(t) obtained by restricting
the indices of the corresponding correlation matrices to the sites belonging to A. Given
XA,PA and MA, the covariance matrix ΓA and the symplectic matrix JA associated to the
subsystem A are

ΓA(t) =
(

XA(t) MA(t)
MA(t)t PA(t)

)
, JA =

(
0l Il
−Il 0l

)
, (6.8)

where 0l and Il are l × l zero matrix and identity matrix respectively. Then find the
eigenvalues of the 2l × 2l matrix iJAΓA(t) which we denoted it by {±σ1(t), · · · ,±σl(t)}.
It’s also convenient to introduce the Fock space basis |n〉 ≡ ⊗lj=1 |nj〉, defined by products
of eigenstates of the number operator in the subsystem A, the reduced density matrix of
A (in a real harmonic chain) can be written as

ρA(t) =
∑

n

l∏
j=1

1
σj(t) + 1/2

(
σj(t)− 1/2
σj(t) + 1/2

)nj
|n〉 〈n| . (6.9)

In the Fock basis {|n〉}, QT2
2 = Q2 and the operator QA = Q1−QT2

2 = Q1−Q2 becomes
exactly the charge imbalance operator. For the complex harmonic chain, the charged Rényi
negativity factorises as

Rn(µ) = Tr[(ρT2
A )neiµQaA ]× Tr[(ρT2

A )ne−iµQbA ]. (6.10)
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Figure 1. Numerical data of charged Rényi logarithmic negativity E2(µ) as a function of t/l for
µ = π

8 ,
π
2 , π in the complex harmonic chain. The full lines are the CFT predictions (cf. eq. (4.9) and

eq. (4.14)). Left panel: adjacent interval with L = 3000, l1 = 200, l2 = 300. Right panel: disjoint
interval with L = 3000, l1 = 200, l2 = 300, d = 100. We have used the best fitted value of τ0.

In bosonic system, the net effect of partial transposition with respect to A2 is changing
the sign of the momenta corresponding to A2. Thus the momenta correlators in the partial
transposed density matrix can be obtained from PA by simply change the sign of the
momenta that in A2, i.e. PT2

A = RA2PARA2 ,where RA2 is the l2× l2 diagonal matrix with
elements (RA2)rs = (−1)δr∈A2 δrs. Thus the partial transformed covariance matrix is

ΓT2
A (t) =

(
Il 0l
0l RA2

)
ΓA(t)

(
Il 0l
0l RA2 .

)
(6.11)

If we denote the eigenvalues of iJAΓA(t)T2 by {τ2
1 (t), τ2

2 (t), · · · , τ2
l (t)}, then the charged

Rényi logarithmic negativity is given by1

En(µ) = −2
l∑

j=1
log

∣∣∣∣ (τj(t) + 1
2

)n
− eiµ

(
τj(t)−

1
2

)n ∣∣∣∣ (6.12)

and the charged logarithmic negativity is

E(µ) = −2
l∑

j=1
log

∣∣∣∣ ∣∣∣τj(t) + 1
2

∣∣∣− eiµ
∣∣∣τj(t)− 1

2

∣∣∣ ∣∣∣∣. (6.13)

The numerical data of the dynamics of the charged Rényi (logarithmic) negativity are
shown in figure 1 and figure 2, in which the CFT predictions are drawn with the full line
for comparison.

7 Global mass quench of the harmonic chain

In this section, we consider a global quantum quench in which the complex harmonic chain
is initially prepared in the ground state with mass m0 and at time t = 0 the mass is
quenched to a different (non-zero) value m 6= m0.

1This formula is consistent with the eq. (6.18) in paper [40].
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Figure 2. Numerical data of charged logarithmic negativity E(µ) as a function of t/l for µ = π
6 ,

π
3 , π

in the complex harmonic chain. The full lines are the CFT predictions (cf. eq. (4.10) and eq. (4.15)).
Left panel: adjacent interval with L = 2000, l1 = 200, l2 = 250. Right panel: disjoint interval with
L = 5000, l1 = 250, l2 = 400, d = 100. We have used the best fitted value of τ0.

7.1 Quasi-particle picture for entanglement entropy

In free scalar theory, since the particle numbers in each momentum mode are conserved
quantities, the time evolution leads to local and quasi-local observables converging to their
average values in the Generalized Gibbs Ensemble (GGE) instead of ordinary Gibbs en-
semble.

The quasi-particle picture of the time evolution of entanglement after a global quantum
quench has been proposed in [45], The basic idea is that one can view the initial state as
a source of quasi-particle excitations. Pairs of particles emitted from the same point in
space are highly entangled whereas particles produced from points far apart are incoherent.
We assume that the pairs of quasi-particle are created uniformly with opposite momenta
(p,−p). After the production, these quasi-particles travel ballistically with velocity vp =
−v−p. The entanglement entropy and Rényi entropy of subsystem A are proportional to
the pairs of entangled quasi-particle shared with its complement at a given time t.

In free models, we have

Sn(t) =
∫
dp

2πs
(n)
GGE(p) min(2|vp|t, l), (7.1)

with l being the length of subsystem A and s
(n)
GGE(p) is momentum space density of the

Rényi entropies in the GGE thermodynamic state [59]. Recall that the well-known result
of the CFT prediction of the quench to massless dynamics of Rényi entropies

Sn(t) = 1
n− 1

π∆n,0
2τ0

min(2t, l). (7.2)

We can formally obtained the formula eq. (7.1) from the CFT prediction eq. (7.2) by
replacing t→ |vp|t, −π∆n,µ

2τ0
→ s

(n)
GGE(p) and then integrating over all possible p.

7.2 Quasi-particle picture for charged logarithmic negativity

The complex harmonic chain is a free models and the stationary behavior of local and
quasi-local observables is described by the GGE

ρGGE = Z−1e−
∑

k
λ

(a)
k
a†
k
ak ⊗ e−

∑
k
λ

(b)
k
b†
k
bk , (7.3)
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where λ(a)
k , λ

(b)
k are Lagrange mulitpliers and Z is the normalisation constant such that

TrρGGE = 1. We have

Z =
∏
i=a,b

Tre−
∑

k
λ

(i)
k
n̂

(i)
k =

∏
i=a,b

∏
k

∞∑
n

(i)
k

=0

e−λ
(i)
k
n

(i)
k =

∏
i=a,b

∏
k

(1− e−λ
(i)
k )−1. (7.4)

The mode occupation number n̂(a)
k ≡ a

†
kak, n̂

(b)
k ≡ b

†
kbk are conserved quantities. Therefore

we have
〈ψ0| n̂(i)

k |ψ0〉 = Tr[n̂(i)
k ρGGE ] = (eλ

(i)
k − 1)−1. (7.5)

In the ground state |ψ0〉, we have 〈ψ0| n̂(a)
k |ψ0〉 = 〈ψ0| n̂(b)

k |ψ0〉 ≡ nk, thus

λ
(a)
k = λ

(b)
k = log(1 + n−1

k ) ≡ λk. (7.6)

Since the quasi-particle picture is not sensitive to A1 ∪A2 not being a pure state. For our
purpose, it’s sufficient to compute the charged moments of ρGGE

Tr[ρnGGEeiµQA ] = Z−n
∏
k

∣∣Tr[e−(nλk−iµ)a†
k
ak ]
∣∣2

= Z−n
∏
k

∣∣∣∣ ∞∑
nk=0

e−(nλk−iµ)nk
∣∣∣∣2 =

∏
k

∣∣∣∣ (1− e−λk)n

1− e−(nλk−iµ)

∣∣∣∣2
=
∏
k

|(1 + nk)n − eiµnnk |−2.

(7.7)

We have find the density of the logarithmic charged moment in momentum space

εn,µ(k) = −2 log |(1 + nk)n − eiµnnk |. (7.8)

It’s easy to derive that

nk = 1
4

(
ek
e0,k

+ e0,k
ek

)
− 1

2 . (7.9)

Then we have all the ingredients to give conjectures about the dynamics of charged Rényi
(logarithmic) negativity after a global mass quench in our free lattice model.

Adjacent interval. For the adjacent intervals, eq. (4.9) suggest the following formula of
quench dynamics of charged Rényi logarithmic negativity

En(µ) =
∫
dp

2π
[
ε(2)
n,µ(p)/2(min(2|vp|t, l1) + min(2|vp|t, l2))

− (ε(2)
n,µ(p)/2− εn,µ(p)) min(2|vp|t, l)

]
.

(7.10)

The charged logarithmic negativity is obtained by taking the limit ne → 1 in Ene(µ)

E(µ) =
∫
dp

2π
[
ε1/2,µ(p)(min(2|vp|t, l1) + min(2|vp|t, l2))

− (ε1/2,µ(p)− ε1,µ(p)) min(2|vp|t, l)
]
.

(7.11)

where we have defined

ε(2)
n,µ(p) =

εn,µ(p), odd n
2εn

2 ,µ
(p), even n

(7.12)
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Figure 3. Charged Rényi logarithmic negativity E2(µ) as a function of t/l for different µ after
the mass quench from m0 = 1 to m = 2 in the complex harmonic chain. The full lines are
the quasi-particle predictions (cf. eq. (7.10) and eq. (7.13)). Left panel: adjacent intervals with
L = 2500, l1 = 200, l2 = 300 and for µ = π

8 ,
π
3 ,

π
2 . Right panel: disjoint intervals with L =

2500, l1 = 150, l2 = 200, d = 50 and for µ = π
10 ,

π
5 ,

π
2 . As shown in the figure, the agreement is

extremely excellent.
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Figure 4. Charged logarithmic negativity E(µ) as a function of t/l for different µ after the mass
quench from m0 = 1 to m = 2 in the complex harmonic chain. The full lines are the quasi-particle
predictions (cf. eq. (7.11) and eq. (7.14)). Left panel: adjacent intervals with L = 2500, l1 =
200, l2 = 300 and for µ = π

8 ,
π
4 , π. Right panel: disjoint intervals with L = 2500, l1 = 200, l2 =

300, d = 150 and for µ = π
8 ,

π
4 , π. As shown in the figure, the agreement is perfect.

Disjoint intervals. In this case, according to eq. (4.14), we conjecture that the time
evolution of charged Rényi logarithmic negativity after a global mass quench is given by

En(µ) =
∫
dp

2π
[
εn,µ(p) (min(2|vp|t, l1) + min(2|vp|t, l2)) + (ε(2)

n,µ(p)/2− εn,µ(p)) (7.13)

× (max(2|vp|t, l + d) + max(2|vp|t, d)−max(2|vp|t, l1 + d)−max(2|vp|t, l2 + d))
]
.

The charged logarithmic negativity is obtained by taking the limit ne → 1 in Ene(µ)

E(µ) =
∫
dp

2π
[
ε1,µ(p) (min(2|vp|t, l1) + min(2|vp|t, l2)) + (ε1/2,µ(p)− ε1,µ(p)) (7.14)

× (max(2|vp|t, l + d) + max(2|vp|t, d)−max(2|vp|t, l1 + d)−max(2|vp|t, l2 + d))
]
.

The comparisons between numerical computations and the quasi-particle predictions are
shown in figure 3 and figure 4, finding perfect agreement.
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8 Conclusion

In this paper, we discuss the temporal evolution of charge imbalance resolved negativity
after two types of global quenches. Firstly, we have considered the boundary state quench
in which the post-quench dynamics is governed by a conformal Hamiltonian. Evaluating
the correlators of the fluxed twist fields in the UHP, we obtained the quench dynamics
of charged Rényi negativity. Then the charge resolved negativity is obtained by Fourier
transformation. The total negativity can be reconstructed from these charge resolved ones.
We also discussed the mass quench in the underlying lattice model and made conjectures
based on the quasi-particle picture.

It would be very interesting to investigate the evolution of other charge resolved entan-
glement measures in the same quenches discussed in this paper, or studying other quench
setups such as local joining quench or local operator quenches in field theories and in
holographic theories. One may find the breakdown of quasi-particle picture in certain
circumstance [60, 61]. We will turn to these problems in the future work.

Acknowledgments

This work was supported by the National Natural Science Foundation of China, Grant No.
12005081.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] L. Amico, R. Fazio, A. Osterloh and V. Vedral, Entanglement in many-body systems, Rev.
Mod. Phys. 80 (2008) 517 [quant-ph/0703044] [INSPIRE].

[2] P. Calabrese and J. Cardy, Entanglement entropy and conformal field theory, J. Phys. A 42
(2009) 504005 [arXiv:0905.4013] [INSPIRE].

[3] J. Eisert, M. Cramer and M.B. Plenio, Area laws for the entanglement entropy — a review,
Rev. Mod. Phys. 82 (2010) 277 [arXiv:0808.3773] [INSPIRE].

[4] T. Nishioka, S. Ryu and T. Takayanagi, Holographic Entanglement Entropy: An Overview, J.
Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[5] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,
Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[6] S.W. Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199
[Erratum ibid. 46 (1976) 206] [INSPIRE].

[7] S.W. Hawking, Breakdown of Predictability in Gravitational Collapse, Phys. Rev. D 14
(1976) 2460 [INSPIRE].

[8] A. Almheiri, T. Hartman, J. Maldacena, E. Shaghoulian and A. Tajdini, The entropy of
Hawking radiation, Rev. Mod. Phys. 93 (2021) 035002 [arXiv:2006.06872] [INSPIRE].

– 22 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/RevModPhys.80.517
https://doi.org/10.1103/RevModPhys.80.517
https://arxiv.org/abs/quant-ph/0703044
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C80%2C517%22
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://arxiv.org/abs/0905.4013
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA42%2C504005%22
https://doi.org/10.1103/RevModPhys.82.277
https://arxiv.org/abs/0808.3773
https://inspirehep.net/search?p=find+J%20%22Rev.Mod.Phys.%2C82%2C277%22
https://doi.org/10.1088/1751-8113/42/50/504008
https://doi.org/10.1088/1751-8113/42/50/504008
https://arxiv.org/abs/0905.0932
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA42%2C504008%22
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C96%2C181602%22
https://doi.org/10.1007/BF02345020
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C43%2C199%22
https://doi.org/10.1103/PhysRevD.14.2460
https://doi.org/10.1103/PhysRevD.14.2460
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD14%2C2460%22
https://doi.org/10.1103/RevModPhys.93.035002
https://arxiv.org/abs/2006.06872
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.06872


J
H
E
P
0
8
(
2
0
2
2
)
1
4
6

[9] P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech.
0406 (2004) P06002 [hep-th/0405152] [INSPIRE].

[10] A. Peres, Separability criterion for density matrices, Phys. Rev. Lett. 77 (1996) 1413
[quant-ph/9604005] [INSPIRE].

[11] G. Vidal and R.F. Werner, Computable measure of entanglement, Phys. Rev. A 65 (2002)
032314 [quant-ph/0102117] [INSPIRE].

[12] M.B. Plenio, Logarithmic Negativity: A Full Entanglement Monotone That is not Convex,
Phys. Rev. Lett. 95 (2005) 090503 [quant-ph/0505071] [INSPIRE].

[13] P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in quantum field theory, Phys.
Rev. Lett. 109 (2012) 130502 [arXiv:1206.3092] [INSPIRE].

[14] P. Calabrese, J. Cardy and E. Tonni, Entanglement negativity in extended systems: a field
theoretical approach, J. Stat. Mech 2013 (2013) P02008.

[15] M. Kulaxizi, A. Parnachev and G. Policastro, Conformal Blocks and Negativity at Large
Central Charge, JHEP 09 (2014) 010 [arXiv:1407.0324] [INSPIRE].

[16] D. Bianchini and O.A. Castro-Alvaredo, Branch Point Twist Field Correlators in the
Massive Free Boson Theory, Nucl. Phys. B 913 (2016) 879 [arXiv:1607.05656] [INSPIRE].

[17] O. Blondeau-Fournier, O.A. Castro-Alvaredo and B. Doyon, Universal scaling of the
logarithmic negativity in massive quantum field theory, J. Phys. A 49 (2016) 125401
[arXiv:1508.04026] [INSPIRE].

[18] O.A. Castro-Alvaredo, C. De Fazio, B. Doyon and I.M. Szécsényi, Entanglement content of
quantum particle excitations. Part II. Disconnected regions and logarithmic negativity, JHEP
11 (2019) 058 [arXiv:1904.01035] [INSPIRE].

[19] P. Chaturvedi, V. Malvimat and G. Sengupta, Holographic Quantum Entanglement
Negativity, JHEP 05 (2018) 172 [arXiv:1609.06609] [INSPIRE].

[20] V. Malvimat and G. Sengupta, Entanglement negativity at large central charge, Phys. Rev. D
103 (2021) 106003 [arXiv:1712.02288] [INSPIRE].

[21] P. Chaturvedi, V. Malvimat and G. Sengupta, Holographic Quantum Entanglement
Negativity, JHEP 05 (2018) 172 [arXiv:1609.06609] [INSPIRE].

[22] J. Kudler-Flam and S. Ryu, Entanglement negativity and minimal entanglement wedge cross
sections in holographic theories, Phys. Rev. D 99 (2019) 106014 [arXiv:1808.00446]
[INSPIRE].

[23] A. Belin, L.-Y. Hung, A. Maloney, S. Matsuura, R.C. Myers and T. Sierens, Holographic
Charged Renyi Entropies, JHEP 12 (2013) 059 [arXiv:1310.4180] [INSPIRE].

[24] M. Goldstein and E. Sela, Symmetry-resolved entanglement in many-body systems, Phys.
Rev. Lett. 120 (2018) 200602 [arXiv:1711.09418] [INSPIRE].

[25] H. Barghathi, C. M. Herdman and A. Del Maestro, Rényi generalization of the accessible
entanglement entropy, Phys. Rev. Lett. 121 (2018) 150501.

[26] S. Murciano, G. Di Giulio and P. Calabrese, Symmetry resolved entanglement in gapped
integrable systems: a corner transfer matrix approach, SciPost Phys. 8 (2020) 046
[arXiv:1911.09588] [INSPIRE].

[27] S. Murciano, G. Di Giulio and P. Calabrese, Entanglement and symmetry resolution in two
dimensional free quantum field theories, JHEP 08 (2020) 073 [arXiv:2006.09069] [INSPIRE].

– 23 –

https://doi.org/10.1088/1742-5468/2004/06/P06002
https://doi.org/10.1088/1742-5468/2004/06/P06002
https://arxiv.org/abs/hep-th/0405152
https://inspirehep.net/search?p=find+J%20%22J.Stat.Mech.%2C0406%2CP06002%22
https://doi.org/10.1103/PhysRevLett.77.1413
https://arxiv.org/abs/quant-ph/9604005
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C77%2C1413%22
https://doi.org/10.1103/PhysRevA.65.032314
https://doi.org/10.1103/PhysRevA.65.032314
https://arxiv.org/abs/quant-ph/0102117
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CA65%2C032314%22
https://doi.org/10.1103/PhysRevLett.95.090503
https://arxiv.org/abs/quant-ph/0505071
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C95%2C090503%22
https://doi.org/10.1103/PhysRevLett.109.130502
https://doi.org/10.1103/PhysRevLett.109.130502
https://arxiv.org/abs/1206.3092
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C109%2C130502%22
https://doi.org/10.1088/1742-5468/2013/02/P02008
https://doi.org/10.1007/JHEP09(2014)010
https://arxiv.org/abs/1407.0324
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1409%2C010%22%20and%20year%3D2014
https://doi.org/10.1016/j.nuclphysb.2016.10.016
https://arxiv.org/abs/1607.05656
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB913%2C879%22
https://doi.org/10.1088/1751-8113/49/12/125401
https://arxiv.org/abs/1508.04026
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA49%2C125401%22
https://doi.org/10.1007/JHEP11(2019)058
https://doi.org/10.1007/JHEP11(2019)058
https://arxiv.org/abs/1904.01035
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1911%2C058%22%20and%20year%3D2019
https://doi.org/10.1007/JHEP05(2018)172
https://arxiv.org/abs/1609.06609
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1805%2C172%22%20and%20year%3D2018
https://doi.org/10.1103/PhysRevD.103.106003
https://doi.org/10.1103/PhysRevD.103.106003
https://arxiv.org/abs/1712.02288
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD103%2C106003%22
https://doi.org/10.1007/JHEP05(2018)172
https://arxiv.org/abs/1609.06609
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1805%2C172%22%20and%20year%3D2018
https://doi.org/10.1103/PhysRevD.99.106014
https://arxiv.org/abs/1808.00446
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD99%2C106014%22
https://doi.org/10.1007/JHEP12(2013)059
https://arxiv.org/abs/1310.4180
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1312%2C059%22%20and%20year%3D2013
https://doi.org/10.1103/PhysRevLett.120.200602
https://doi.org/10.1103/PhysRevLett.120.200602
https://arxiv.org/abs/1711.09418
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C120%2C200602%22
https://doi.org/10.1103/PhysRevLett.121.150501
https://doi.org/10.21468/SciPostPhys.8.3.046
https://arxiv.org/abs/1911.09588
https://inspirehep.net/search?p=find+J%20%22SciPost%20Phys.%2C8%2C046%22
https://doi.org/10.1007/JHEP08(2020)073
https://arxiv.org/abs/2006.09069
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2008%2C073%22%20and%20year%3D2020


J
H
E
P
0
8
(
2
0
2
2
)
1
4
6

[28] D.X. Horváth and P. Calabrese, Symmetry resolved entanglement in integrable field theories
via form factor bootstrap, JHEP 11 (2020) 131 [arXiv:2008.08553] [INSPIRE].

[29] H.-H. Chen, Symmetry decomposition of relative entropies in conformal field theory, JHEP
07 (2021) 084 [arXiv:2104.03102] [INSPIRE].

[30] L. Capizzi and P. Calabrese, Symmetry resolved relative entropies and distances in conformal
field theory, JHEP 10 (2021) 195 [arXiv:2105.08596] [INSPIRE].

[31] L. Capizzi, D.X. Horváth, P. Calabrese and O.A. Castro-Alvaredo, Entanglement of the
3-state Potts model via form factor bootstrap: total and symmetry resolved entropies, JHEP
05 (2022) 113 [arXiv:2108.10935] [INSPIRE].

[32] S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement in AdS3/CFT2 coupled
to U(1) Chern-Simons theory, JHEP 07 (2021) 030 [arXiv:2012.11274] [INSPIRE].

[33] K. Weisenberger, S. Zhao, C. Northe and R. Meyer, Symmetry-resolved entanglement for
excited states and two entangling intervals in AdS3/CFT2, JHEP 12 (2021) 104
[arXiv:2108.09210] [INSPIRE].

[34] S. Zhao, C. Northe, K. Weisenberger and R. Meyer, Charged moments in W3 higher spin
holography, JHEP 05 (2022) 166 [arXiv:2202.11111] [INSPIRE].

[35] P. Calabrese, J. Dubail and S. Murciano, Symmetry-resolved entanglement entropy in
Wess-Zumino-Witten models, JHEP 10 (2021) 067 [arXiv:2106.15946] [INSPIRE].

[36] L. Capizzi, O.A. Castro-Alvaredo, C. De Fazio, M. Mazzoni and L. Santamaría-Sanz,
Symmetry Resolved Entanglement of Excited States in Quantum Field Theory I: Free
Theories, Twist Fields and Qubits, arXiv:2203.12556 [INSPIRE].

[37] M. Ghasemi, Universal Thermal Corrections to Symmetry-Resolved Entanglement Entropy
and Full Counting Statistics, arXiv:2203.06708 [INSPIRE].

[38] E. Cornfeld, M. Goldstein and E. Sela, Imbalance entanglement: Symmetry decomposition of
negativity, Phys. Rev. A 98 (2018) 032302 [arXiv:1804.00632] [INSPIRE].

[39] S. Murciano, R. Bonsignori and P. Calabrese, Symmetry decomposition of negativity of
massless free fermions, SciPost Phys. 10 (2021) 111 [arXiv:2102.10054] [INSPIRE].

[40] H.-H. Chen, Charged Rényi negativity of massless free bosons, JHEP 02 (2022) 117
[arXiv:2111.11028] [INSPIRE].

[41] N. Feldman and M. Goldstein, Dynamics of Charge-Resolved Entanglement after a Local
Quench, Phys. Rev. B 100 (2019) 235146 [arXiv:1905.10749] [INSPIRE].

[42] G. Parez, R. Bonsignori and P. Calabrese, Quasiparticle dynamics of symmetry-resolved
entanglement after a quench: Examples of conformal field theories and free fermions, Phys.
Rev. B 103 (2021) L041104 [arXiv:2010.09794] [INSPIRE].

[43] G. Parez, R. Bonsignori and P. Calabrese, Dynamics of charge-imbalance-resolved
entanglement negativity after a quench in a free-fermion model, J. Stat. Mech. 2205 (2022)
053103 [arXiv:2202.05309] [INSPIRE].

[44] S. Scopa and D.X. Horváth, Exact hydrodynamic description of symmetry-resolved Rényi
entropies after a quantum quench, arXiv:2205.02924 [INSPIRE].

[45] P. Calabrese and J.L. Cardy, Evolution of entanglement entropy in one-dimensional systems,
J. Stat. Mech. 0504 (2005) P04010 [cond-mat/0503393] [INSPIRE].

– 24 –

https://doi.org/10.1007/JHEP11(2020)131
https://arxiv.org/abs/2008.08553
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2011%2C131%22%20and%20year%3D2020
https://doi.org/10.1007/JHEP07(2021)084
https://doi.org/10.1007/JHEP07(2021)084
https://arxiv.org/abs/2104.03102
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2107%2C084%22%20and%20year%3D2021
https://doi.org/10.1007/JHEP10(2021)195
https://arxiv.org/abs/2105.08596
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2110%2C195%22%20and%20year%3D2021
https://doi.org/10.1007/JHEP05(2022)113
https://doi.org/10.1007/JHEP05(2022)113
https://arxiv.org/abs/2108.10935
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.10935
https://doi.org/10.1007/JHEP07(2021)030
https://arxiv.org/abs/2012.11274
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2012.11274
https://doi.org/10.1007/JHEP12(2021)104
https://arxiv.org/abs/2108.09210
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2108.09210
https://doi.org/10.1007/JHEP05(2022)166
https://arxiv.org/abs/2202.11111
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2202.11111
https://doi.org/10.1007/JHEP10(2021)067
https://arxiv.org/abs/2106.15946
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2106.15946
https://arxiv.org/abs/2203.12556
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.12556
https://arxiv.org/abs/2203.06708
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.06708
https://doi.org/10.1103/PhysRevA.98.032302
https://arxiv.org/abs/1804.00632
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CA98%2C032302%22
https://doi.org/10.21468/SciPostPhys.10.5.111
https://arxiv.org/abs/2102.10054
https://inspirehep.net/search?p=find+J%20%22SciPost%20Phys.%2C10%2C111%22
https://doi.org/10.1007/JHEP02(2022)117
https://arxiv.org/abs/2111.11028
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2202%2C117%22%20and%20year%3D2022
https://doi.org/10.1103/PhysRevB.100.235146
https://arxiv.org/abs/1905.10749
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB100%2C235146%22
https://doi.org/10.1103/PhysRevB.103.L041104
https://doi.org/10.1103/PhysRevB.103.L041104
https://arxiv.org/abs/2010.09794
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB103%2CL041104%22
https://doi.org/10.1088/1742-5468/ac666c
https://doi.org/10.1088/1742-5468/ac666c
https://arxiv.org/abs/2202.05309
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2202.05309
https://arxiv.org/abs/2205.02924
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2205.02924
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://arxiv.org/abs/cond-mat/0503393
https://inspirehep.net/search?p=find+J%20%22J.Stat.Mech.%2C0504%2CP04010%22


J
H
E
P
0
8
(
2
0
2
2
)
1
4
6

[46] T. Hartman and J. Maldacena, Time Evolution of Entanglement Entropy from Black Hole
Interiors, JHEP 05 (2013) 014 [arXiv:1303.1080] [INSPIRE].

[47] P. Calabrese and J. Cardy, Quantum quenches in 1 + 1 dimensional conformal field theories,
J. Stat. Mech. 1606 (2016) 064003 [arXiv:1603.02889] [INSPIRE].

[48] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Entanglement Scrambling in 2d
Conformal Field Theory, JHEP 09 (2015) 110 [arXiv:1506.03772] [INSPIRE].

[49] M. Nozaki, T. Numasawa, A. Prudenziati and T. Takayanagi, Dynamics of Entanglement
Entropy from Einstein Equation, Phys. Rev. D 88 (2013) 026012 [arXiv:1304.7100]
[INSPIRE].

[50] A. Coser, E. Tonni and P. Calabrese, Entanglement negativity after a global quantum quench,
J. Stat. Mech. 1412 (2014) P12017 [arXiv:1410.0900] [INSPIRE].

[51] X. Wen, P.-Y. Chang and S. Ryu, Entanglement negativity after a local quantum quench in
conformal field theories, Phys. Rev. B 92 (2015) 075109 [arXiv:1501.00568] [INSPIRE].

[52] J.S. Cotler, M.P. Hertzberg, M. Mezei and M.T. Mueller, Entanglement Growth after a
Global Quench in Free Scalar Field Theory, JHEP 11 (2016) 166 [arXiv:1609.00872]
[INSPIRE].

[53] M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement Evolution in Lifshitz-type
Scalar Theories, JHEP 01 (2019) 137 [arXiv:1811.11470] [INSPIRE].

[54] J. Zhang and P. Calabrese, Subsystem distance after a local operator quench, JHEP 02
(2020) 056 [arXiv:1911.04797] [INSPIRE].

[55] S. Murciano, V. Alba and P. Calabrese, Quench dynamics of Rényi negativities and the
quasiparticle picture, arXiv:2110.14589 [INSPIRE].

[56] P. Calabrese, J. Cardy and E. Tonni, Finite temperature entanglement negativity in
conformal field theory, J. Phys. A 48 (2015) 015006 [arXiv:1408.3043] [INSPIRE].

[57] P. Calabrese, F. Essler and A. M. Läuchli, Entanglement entropies of the quarter filled
Hubbard model, J. Stat. Mech. 2014 (2014) P09025.

[58] M. Hoogeveen and B. Doyon, Entanglement negativity and entropy in non-equilibrium
conformal field theory, Nucl. Phys. B 898 (2015) 78 [arXiv:1412.7568] [INSPIRE].

[59] L. Vidmar and M. Rigol, Generalized gibbs ensemble in integrable lattice models, J. Stat.
Mech. 2016 (2016) 064007 [arXiv:1604.03990].

[60] J. Kudler-Flam, Y. Kusuki and S. Ryu, The quasi-particle picture and its breakdown after
local quenches: mutual information, negativity, and reflected entropy, JHEP 03 (2021) 146
[arXiv:2008.11266] [INSPIRE].

[61] B. Bertini, K. Klobas, V. Alba, G. Lagnese and P. Calabrese, Growth of Rényi Entropies in
Interacting Integrable Models and the Breakdown of the Quasiparticle Picture, Phys. Rev. X
12 (2022) 031016 [arXiv:2203.17264] [INSPIRE].

– 25 –

https://doi.org/10.1007/JHEP05(2013)014
https://arxiv.org/abs/1303.1080
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1305%2C014%22%20and%20year%3D2013
https://doi.org/10.1088/1742-5468/2016/06/064003
https://arxiv.org/abs/1603.02889
https://inspirehep.net/search?p=find+J%20%22J.Stat.Mech.%2C1606%2C064003%22
https://doi.org/10.1007/JHEP09(2015)110
https://arxiv.org/abs/1506.03772
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1509%2C110%22%20and%20year%3D2015
https://doi.org/10.1103/PhysRevD.88.026012
https://arxiv.org/abs/1304.7100
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD88%2C026012%22
https://doi.org/10.1088/1742-5468/2014/12/P12017
https://arxiv.org/abs/1410.0900
https://inspirehep.net/search?p=find+J%20%22J.Stat.Mech.%2C1412%2CP12017%22
https://doi.org/10.1103/PhysRevB.92.075109
https://arxiv.org/abs/1501.00568
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB92%2C075109%22
https://doi.org/10.1007/JHEP11(2016)166
https://arxiv.org/abs/1609.00872
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1611%2C166%22%20and%20year%3D2016
https://doi.org/10.1007/JHEP01(2019)137
https://arxiv.org/abs/1811.11470
https://inspirehep.net/search?p=find+J%20%22JHEP%2C1901%2C137%22%20and%20year%3D2019
https://doi.org/10.1007/JHEP02(2020)056
https://doi.org/10.1007/JHEP02(2020)056
https://arxiv.org/abs/1911.04797
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2002%2C056%22%20and%20year%3D2020
https://arxiv.org/abs/2110.14589
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2110.14589
https://doi.org/10.1088/1751-8113/48/1/015006
https://arxiv.org/abs/1408.3043
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA48%2C015006%22
https://doi.org/10.1088/1742-5468/2014/09/P09025
https://doi.org/10.1016/j.nuclphysb.2015.06.021
https://arxiv.org/abs/1412.7568
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB898%2C78%22
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1088/1742-5468/2016/06/064007
https://arxiv.org/abs/1604.03990
https://doi.org/10.1007/JHEP03(2021)146
https://arxiv.org/abs/2008.11266
https://inspirehep.net/search?p=find+J%20%22JHEP%2C2103%2C146%22%20and%20year%3D2021
https://doi.org/10.1103/PhysRevX.12.031016
https://doi.org/10.1103/PhysRevX.12.031016
https://arxiv.org/abs/2203.17264
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2203.17264

	Introduction
	Charge imbalance resolution of negativity
	Boundary state quench
	The path integral approach to boundary state quench
	Evolution of charged moments of RDM

	Evolution of charged logarithmic negativity in boundary state quench
	Bipartite system
	Two adjacent intervals
	Two disjoint intervals

	Charge imbalance resolved negativity
	Bipartite system
	Two adjacent intervals
	Two disjoint intervals
	Total negativity

	Numerical test
	Global mass quench of the harmonic chain
	Quasi-particle picture for entanglement entropy
	Quasi-particle picture for charged logarithmic negativity

	Conclusion

