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1 Introduction

The black hole information problem (BHIP) is a tension between quantum mechanical
unitarity and the insensitivity of Hawking radiation to initial conditions, and has been a
persistent and impelling puzzle in quantum gravity since its conception [2, 3]. The Page
curve, the von Neumann entropy of emitted radiation as a function of time, is one sharp
diagnostic of unitarity in black hole evaporation [4]. Deriving a Page curve consistent with
unitarity, one that ends at zero von Neumann entropy for a black hole formed from collapse
of matter in a pure state, is an important step in resolving the BHIP, though it is not the
whole story.

Much of the recent progress in deriving a Page curve consistent with unitarity has
been in developing the techniques to calculate the entropy of Hawking radiation, or more
generally of quantum systems coupled to gravity. This was inspired in part by the Ryu-
Takayanagi formula for calculating von Neumann entropy in holographic CFTs [5, 6], and
its generalisations [7–10], and culminated in the island formula [11] and quantum maximin
prescription [12]. The island formula is a prescription for computing fine-grained entropy
in quantum systems coupled to gravity in terms of semiclassical entropy. See [13] for a
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review of islands, including an explanation of what is meant by fine-grained, coarse-grained,
renormalised and semiclassical entropy in this context. The island prescription is

S(R) = min extI

(Area(∂I)
4GN

+ Sren.(R ∪ I)
)

+ Sc.t.(R) (1.1)

where Sren. is the renormalised semiclassical von Neumann entropy, and Sc.t. the entropy
counterterm that isolates the UV divergences associated to the region’s boundary. The
prescription instructs us to extremise a functional over all possible islands I, including the
trivial empty island I = ∅, then pick the minimal extremum.

The main technical obstacle to explicitly finding islands is evaluating Sren.(R ∪ I) on
the set of all possible islands. The cases where it is possible, such as in lower dimensional
and doubly holographic models [11, 14–16], are sparse. This motivates finding necessary
and/or sufficient conditions for the existence of islands. Sets of necessary and/or sufficient
conditions for the existence of non-trivial islands may be easier to evaluate than the island
formula (1.1) itself. A set of necessary conditions were proposed in [17], and a set of
sufficient conditions in the Island Finder paper [1]. The literature which relies on these sets
of conditions is growing, so it is important to know if and when they can be relied upon.

The two conditions given in [1] for a region R to have a non-empty island are in terms
of an ‘island detector’1 region I ′ and require

1. Sgen(I ′ ∪R) < Sgen(R) (1.2)

and either
2.a. ±Θ±(I ′ ∪R) ≥ 0 (1.3)

or
2.b. ±Θ±(I ′ ∪R) ≤ 0. (1.4)

where Θ± is the quantum expansion in the future-directed outward (+) and inward (−)
null directions normal to ∂I ′.2

In this paper we first point out a loophole in the proof that eqs. (1.2) to (1.4) are sufficient
conditions for R to have a non-empty island. The proof given in [1] is by contradiction: it
is assumed that (1) there is an island detector region I ′ satisfying conditions (1.2) to (1.4),
and (2) that the island I is empty. Then it is shown that these two assumptions lead to a
contradiction. The loophole is the implicit assumption that at least one of the time slices on
which the empty island is the quantum maximin surface intersects the domain of dependence
of I ′.3 If this assumption is violated then the representative Ĩ ′ — the intersection of D(I ′)
with the time slice — is itself empty and an intermediate step in the proof is invalid.

We preempt and address counterarguments to this loophole which assert that the
implicit assumption mentioned above is always valid. One counterargument is based on the
claim that the past and future tips of D(I ′) are truncated by singularities, and the basis of

1Credit to Ahmed Almheiri for the name island detector.
2See [18] for a precise definition of quantum expansion.
3Assuming I ′∪R is quantum normal, i.e. (1.3). We will consider the quantum anti-normal case separately.
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this claim are two puzzling contradictions that arise when considering small representatives
Ĩ ′ near either tip of D(I ′).

The first puzzle is a direct tension with the quantum Bousso bound. Assuming that
either of ∂D±(I ′) is a quantum lightsheet, then the quantum Bousso bound implies that
Sgen(Ĩ ′∪R) must decrease as the representative Ĩ ′ is deformed towards the tip of the D±(I ′).
A contradiction, Sgen(R) < Sgen(R), is found when the tip is reached and Ĩ ′ = ∅. We
discuss several resolutions to this puzzle. The first two are an evasion of the tension with the
quantum Bousso bound: (1) there is no Ĩ ′ = ∅ because of truncation of D(I ′) by curvature
singularities, or (2) ∂D±(I ′) fails to be a quantum lightsheet. The third resolution is that
(3) the quantum Bousso bound is violated, but that this is not unexpected because to reach
Ĩ ′ = ∅ one has to pass outside the regime of validity of the semiclassical approximation.
There is more than one resolution, and how the tension is resolved depends on the set-up.

The second puzzle is that the existence of island detectors naively and incorrectly
implies that a ball-shaped region of the Minkowski vacuum violates the Bekenstein area
bound. The authors of [17] showed, with some mild assumptions, that any region I
that satisfies Sgen.(I ∪R) < Sgen.(R), which includes island detector representatives, also
violates the Bekenstein area bound. The second puzzle arises when applying this result to
a representative that is smaller than the local curvature and temperature scales. If such a
representative Ĩ ′ exists for a given island detector I ′, then the state on it is approximately
that of the vacuum in flat space, which should not violate the Bekenstein area bound.

The puzzles are of broader importance than may initially appear, because they also
need to be resolved for islands. As far as the puzzles are concerned islands are simply
special cases of island detectors in the sense that they satisfy (1.2) and saturate both
conditions (1.3) and (1.4) by their definitional extremality.

We discuss in depth the resolution of these two puzzles for islands in asymptotically
flat evaporating black holes. The past domain of dependence of the island has no curvature
singularities to prevent one from considering arbitrarily small representatives, so the quantum
Bousso bound is apparently violated. A key part of resolving the Bekenstein bound puzzle is
the sub-Planckian radial separation of the boundary of the island and the past lightcone of
the radiation region, which is an obstacle to specifying ‘nice’ time slices with trace extrinsic
curvature |K| � l−1

p .

Outline: in section 2 we review Island Finder and explain the loophole in the proof. In
section 3 we discuss counterarguments to the loophole, which naturally leads us to the
two puzzles, to which we propose resolutions. In section 4 we give some open questions
unresolved by this work and ideas for future research. In appendix A we outline two set-ups
which may have explicit examples of island mirages.

2 Island finder

In this section we discuss the Island Finder conditions and reproduce the proof given that
they are sufficient conditions for the existence of a non-empty island [1]. We point out
loopholes in the proof.
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Figure 1: Two (asymptotically flat) quantum systems, one with dynamical gravity and
one without. R is a region in the non-gravitating system, and I ′ a region in the gravitating
system. Σ is a time slice, and Ĩ ′ the representative of I ′ on that time slice as defined in (2.5).
If I ′ satisfies conditions (2.1) and (2.3) then it is an island detector for R. .

2.1 Conditions

Consider two disjoint achronal regions, I ′ and R, in a spacetime M with R in a weakly
gravitating subregion. The claim of [1] is that if two conditions are satisfied by the
generalised entropy of I ′ ∪R then this is sufficient to guarantee that R has a non-empty
island somewhere in M .

We will call an I ′ that satisfies the two conditions an island detector region for R. If
an island detector region exists and R does have a non-empty island I, then the conditions
are working as intended. If an island detector region exists and the island I for R is empty,
then we have a faulty island detector, and we call such an I ′ an island mirage.

The first of the two conditions is

(1) Sgen(I ′ ∪R) < Sgen(R) (2.1)

There is an equivalent form of this inequality,

I(I ′, R) > Sgen(I ′) (2.2)

which has the benefit of both sides being UV-finite even if we decouple gravity, GN → 0,
in the region that contains R [17, 19, 20]. One quick comment is Sgen(I ′) scales as the
surface area of I ′ in Planck units, so there is a manifest need for a large degree of correlation
between I ′ and R in order to satisfy the condition.

The second of the two sufficient conditions is that I ′∪R be either quantum anti-normal
or quantum normal. Quantum normality is the property that the generalised entropy of
a spatial region increases under deformations of the region’s boundary in outward null
directions. This is a generalisation of the classical notion of a normal spatial region whose
surface area increases under outward deformations. The definition of quantum normality is

(2) ±Θ±(I ′ ∪R) ≥ 0 (2.3)
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where Θ± is the quantum expansion in the outward/inward future null directions [18].
Quantum anti-normality is the opposite of quantum normality in the sense that the
generalised entropy decreases under outward null deformations. Any subregion of a time
reflection symmetric slice is automatically quantum normal or anti-quantum normal, so
any I ′ ∪R on such a slice which satisfies condition (2.1) satisfies both of the Island Finder
conditions. Also, if I ′ ∪R is quantum normal then so is I ′, which means the detector region
I ′ satisfies one of the necessary conditions to itself be an island [15, 17]. Note that (2.3) is
a property that is required to hold locally at every point on the boundary of I ′ ∪R, and
that it depends on the non-local entanglement entropy.

2.2 QFC and quantum maximin

In the proof the quantum focussing conjecture (QFC) and quantum maximin prescription
are assumed [12, 18]. We assume that the spacetime is stably causal, because that is the
causality condition assumed for the quantum maximin prescription [12], and because we
do not want to exclude asymptotically AdS spacetimes.4 Stably causal spacetimes have a
global time function, and the function’s level sets are constant time slices [22].

Quantum maximin is a prescription for calculating entropy of subregions in non-
holographic systems as well as holographic ones [12]. A relevant class of models are
AdS black holes evaporating into a non-gravitating bath, where in the non-gravitational
description we couple a holographic and non-holographic system together [15]. If R is
a subregion of the non-holographic system, then the quantum maximin prescription for
calculating its exact von Neumann entropy is

S(R) = max
Σ

min
I⊂Σ

(Area(∂I)
4GN

+ Sren.(R ∪ I)
)

(2.4)

The quantum maximin prescription (2.4) is equivalent to the island formula, assuming
the QFC and a certain stability condition on I [12]. The prescription minimises over
candidate islands on a given time slice, then maximises over time slices. Let us call such a
maximising time slice Σ a maximin slice. The maximin slice need not be unique, particularly
if the island is empty.

2.3 Proof

The proof given in [1] is a proof by contradiction. Start by assuming that the two
conditions (2.1) and (2.3) are satisfied, and that the true island I is the empty set, i.e.
there is no quantum extremal region I that lowers the generalised entropy of R. We will
treat the case where I ′ ∪R is quantum normal first, and consider the quantum anti-normal
case separately.

I ′ ∪R is quantum normal so the quantum expansion in the inward null directions is
initially negative. Consider a time slice Σ that contains R and define the representative Ĩ ′

4Classical maximin was originally introduced as a reformulation of the HRT holographic entanglement
entropy prescription which applies to asymptotically locally AdS spacetimes [7, 21]. Since AdS is not globally
hyperbolic it has no Cauchy slices, so the notion of Cauchy slices had to be enlarged to AdS-Cauchy slices
which are geodesically complete achronal surfaces [8, 21].
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of I ′ on Σ as
Ĩ ′ := D(I ′) ∩ Σ (2.5)

where D(I ′) is the domain of dependence of I ′. QFC states that the quantum expansion
cannot increase along a null congruence, so that the quantum expansion must remain
negative along the null congruence from I ′ to Ĩ ′. The generalised entropy can only decrease
under such inward null deformations:

Sgen(Ĩ ′ ∪R) ≤ Sgen(I ′ ∪R)
< Sgen(R)

(2.6)

The second line follows from (2.1).
The contradiction appears if we take Σ to be a time slice on which the codim-2 quantum

maximin surface lives. From the quantum maximin prescription the true island I gives the
lowest generalised entropy on its maximin slice, and since we assumed I to be the empty
set we have that

Sgen(Ĩ ′ ∪R) ≥ Sgen(I ∪R)
= Sgen(R)

(2.7)

which directly contradicts (2.6). The conclusion is that the island cannot be empty if the
two conditions (2.1) and (2.3) are satisfied.

When I ′ ∪ R is quantum anti-normal the essential steps in the proof are the same,
except that the representative Ĩ ′ of I ′ on a time slice Σ is defined as

Ĩ ′ := J(I ′) ∩ Σ (2.8)

with J(I ′) all points that can be reached from I ′ with causal curves [1].

2.4 Loophole

The proof in a nutshell is that the conditions imply that every time slice that contains R
and intersects D(I ′) has a non-empty Ĩ ′ for which Sgen(Ĩ ′ ∪R) < Sgen(R). This rules out
that time slice being the maximin slice for a true island that is empty, as the true island
must give the lowest generalised entropy on the maximin slice.

One loophole in the proof is the implicit assumption that the maximin slice of the
empty island intersects D(I ′). If the true island is empty, and its maximin slice does not
intersect D(I ′), then by the definition (2.5) we have Ĩ ′ = ∅, and the specific step that led
to a contradiction that fails here is (2.6). No contradiction is reached and the proof fails.

The QFC does not constrain, in relation to Sgen(I ′ ∪ R), the generalised entropy of
subregions X∪R, with X 6= ∅, on time slices that do not intersect D(I ′). QFC is defined on
null congruences, and by definition the integral curves in a congruence are non-intersecting,
so congruences end at caustics. QFC states that the quantum expansion cannot increase
along a null congruence, but the tips of D(I ′) are caustics. The QFC does constrain
Sgen.(X ∪ R) for X = ∅ if we apply it to a quantum normal I ′ ∪ R and integrate it over
the whole of either of ∂D±(I ′):

Sgen.(R) ≤ Sgen.(I ′ ∪R) (2.9)

– 6 –
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Figure 2: The Penrose diagram of a small AdS black hole that forms from collapse
then evaporates away to nothing. Σ is a time slice. I ′ is a region whose representative
Ĩ ′ := Σ ∩ J(I ′) = ∅, for which the step (2.6) of the proof in [1] is incorrect. This is an
example of the causal structure needed for Ĩ ′ to be empty in the case of I ′ ∪ R being
quantum anti-normal.

Thus there is a direct tension between island detectors and the QFC, if there exists an empty
representative Ĩ ′ = ∅, because (2.9) contradicts (2.1). This is a loophole counterargument
that we will return to in section 3.2.

When I ′ ∪ R is quantum normal any time slice that does not intersect D(I ′) gives
an empty representative Ĩ ′. To have an empty representative when I ′ ∪ R is quantum
anti-normal there must exist a time slice that does not intersect J(I ′). This is not possible
in globally hyperbolic spacetimes, because all causal curves from I ′ will intersect all Cauchy
slices. Recall however that quantum maximin is applicable not only to globally hyperbolic
spacetimes, but also spacetimes that are stably causal and not globally hyperbolic. This
allows for time slices on which Ĩ ′ is empty. An example of a stably causal spacetime with
an I ′ and a time slice Σ on which the representative Ĩ ′ is empty is shown in figure 2.
Singularities are barriers to causal curves from I ′. This figure is only an example of the
causal structure needed for an island mirage when I ′ ∪ R is quantum anti-normal — we
have not shown nor do we claim that the Island Finder conditions are satisfied in this case.

Whether I ′ ∪R is quantum normal or anti-normal, there are time slices on which the
representative Ĩ ′ = ∅, and Sgen(Ĩ ′ ∪ R) 
 Sgen(I ′ ∪ R). No contradiction is reached, so
a true island that is empty is not ruled out. The island finder conditions are insufficient
to establish existence of islands, and the conditions may be satisfied without R having a
non-empty island. The conditions are sufficient only to establish nonexistence of empty
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islands whose maximin slice intersects the domain of dependence of I ′ (when I ′ ∪ R is
quantum normal). The concommitant upper entropy bound given in [1] is also not proven
if the proof that the conditions are sufficient for a non-empty island has a loophole.

3 Loophole counterarguments and island puzzles

3.1 Time slices for empty maximin surfaces

The first objection one may have to the loophole is that if the true island is empty, then is
it not irrelevant which time slice we use when calculating the entropy? Can we not always
choose a time slice with a non-empty intersection with D(I ′)? The loophole is indeed
closed if all empty islands have maximin slices which intersect D(I ′). As a reminder, we
defined maximin slices to be the maximising subset of time slices in the quantum maximin
prescription (2.4).

Now it is true that when the island is empty the von Neumann entropy of R ∪ I is the
same for all time slices that contain R, and that in general a subset of those time slices will
intersect D(I ′). What is not true is that all such time slices are maximin slices for the empty
island. If the true island is empty then by maximin there is certainly at least one time slice
on which the empty-island entropy is the minimal entropy, but there is no guarantee that
the no-island entropy is the minimal entropy on every time slice containing R.

Assuming that the island is empty, a time slice fails to be a maximin slice when on
that slice there is a subregion X for which

Area(∂X )
4GN

+ Sren.(R ∪ X ) < Sren.(R) (3.1)

As an example of this, consider a time slice that contains a subregion X whose boundary
has zero area, i.e. whose components are null hypersurfaces, and for which X is entangled
with R such that Sren.(X ∪ R) < Sren.(R). Similar to the setups considered in [17], we
could take a thermofield double state on AdS and a non-gravitating bath, take R to be the
whole of the bath, and X to be a ball-shaped region in the AdS whose boundary has been
deformed into zigzag union of many null hypersurfaces. The time slices that contain this X
(and R) fail to be maximin slices for the empty island.

We have argued that for an empty island not every time slice (containing R) is necessarily
a maximin slice, but for the loophole to work we need something stronger: that no time
slice that intersects D(I ′) is a maximin slice when the island is empty. This requires
that on all such time slices with Σ ∩D(I ′) 6= ∅ there exists an X with X ∪ R ⊆ Σ such
that (3.1) is satisfied. Island Finder [1] showed that (3.1) is satisfied by the representative
Ĩ ′ as defined in (2.5). Thus an I ′ that satisfies conditions (2.1) and (2.3) only rules out
empty islands whose maximin slices intersect D(I ′); it is not sufficient for the existence of a
non-empty island.

3.2 Quantum Bousso bound puzzle

Another objection to the loophole is the apparent contradiction with the quantum Bousso
bound when there a time slice that does not intersect D(I ′), with I ′ ∪R satisfying condi-
tions (2.1) and (2.3).

– 8 –
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The version of the quantum Bousso bound that we use is that which is implied by the
QFC [18]. There is a different version of the quantum Bousso bound that has been proven
using positivity of relative entropy [23, 24]. In that version of the bound the entanglement
entropy is regulated by vacuum subtraction, and vacuum-subtracted entanglement entropy
is inequivalent to the renormalised entropy used in Sgen. [18, 24]. We need to use the
version implied by the QFC, because it is that version that constrains the renormalised and
generalised entropies that appear in the island formula.

The quantum Bousso bound applies to quantum light sheets, which are null hyper-
surfaces on which the quantum expansion is every nonpositive. Since I ′ ∪ R is quantum
normal by assumption, QFC implies that the past and future boundaries of the domain of
dependence D(I ′) are quantum light sheets, and the quantum Bousso bound states that [25]

Sgen.(I ′ ∪R) ≥ Sgen.(Ĩ ′ ∪R) (3.2)

where as before, Ĩ ′ := Σ ∩D(I ′).
We assume that the spacetime is stably causal, which is the same causality condition

assumed in the quantum maximin prescription, such that there is a global time function
t. With a reparametrisation of t we can take the t = 0 slice to contain I ′, and the t = ±1
slices to intersect D(I ′) at the future and past tips of D(I ′). In the limit of taking time
slices to the tips of the domain of dependence, |t| → 1−, we have Area(∂Ĩ ′) → 0. If we
assume also that as we deform towards either tip of D(I ′) that

lim
|t|→1−

Sren.(Ĩ ′ ∪R) = Sren.(R) (3.3)

then the |t| → 1− limit of the quantum Bousso bound (3.2) implies

Sgen.(I ′ ∪R) ≥ Sgen.(R), (3.4)

which directly contradicts (2.1). Thus as we deform Ĩ ′ towards either tip of D(I ′) then
there is a direct tension with the quantum Bousso bound even before the exact point of
Ĩ ′ = ∅ is reached, if (3.3) is true.

Islands, not just island detector regions, are in direct tension with the quantum Bousso
bound by the same chain of logic. Recall that islands are special cases of island detector
regions in the sense that they satisfy (2.1) and saturate the bounds (2.3). As an example,
consider an evaporating black hole in asymptotically flat spacetime, as depicted in figure 3.
The radiation region R is taken to be sufficiently large to have an island I in the black hole
interior. The representative Ĩ := Σ ∩D(I) on an earlier time slice satisfies

Sgen(Ĩ ∪R) ≤ Sgen(I ∪R) (3.5)

by the quantum Bousso bound and QFC. Again we reach the apparent contradiction
Sgen(R) < Sgen(R) when we reach the past tip of D(I) and Ĩ = ∅.

This contradiction needs to be resolved whenever conditions (2.1) and (2.3) are satisfied,
whether or not there is a non-empty island in the spacetime. Here are several ways the
contradiction can be evaded:

– 9 –
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Figure 3: An evaporating black hole in asymptotically Minkowski spacetime. Radiation
region R has an island I. Also shown are the boundary of the causal past of R, the boundary
of the past domain of dependence of I, and an earlier time representative Ĩ of I. This is
a counterexample to the claim that the existence of a region satisfying conditions (2.1)
and (2.3) implies the existence of singularities which remove both tips of the domain
of dependence.

1. D(I ′) is truncated by curvature singularities. One possible resolution is that
when conditions (2.1) and (2.3) are satisfied there are always singularities to the future and
past of I ′ that remove the tips of D(I ′), so that the problematic limit (3.3) does not exist.
In some spacetimes this would force all time slices to intersect D(I ′), so there would be no
empty representatives Ĩ ′ and the loophole would be closed. If truncation by singularities
were the only resolution to the tension with the quantum Bousso bound then conditions (2.1)
and (2.3) would also be sufficient conditions for the existence of singularities.5

There is a simple counterexample to the claim that there must be singularities, which
is the evaporating black hole of figure 3. While there is a singularity to the future of I
there is none to the past. Curvature singularities may resolve the tension with the quantum
Bousso bound in some cases, but there must be a different resolution for the past domain
of dependence of an island in an evaporating black hole.

2. ∂D±(I ′) fails to be a quantum lightsheet. Another way in which the quantum
Bousso bound can fail to be applicable is if only a subset of ∂D(I ′) is a quantum lightsheet.
Classical lightsheets, with everyhere negative classical expansion, can terminate due to the
formation of caustics where θ → −∞. Assuming the null energy condition is satisfied, the
Raychaudhuri equation implies that caustics form, and so lightsheets possibly end after finite

5This was also pointed out in [26].
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affine parameter whenever the classical expansion is negative [27]. The truncation of light-
sheets underlied an argument against the critically illuminated black hole counterexample
to the classical Bousso bound [28].6 This argument against Lowe’s counterexample was later
realised to be flawed; ∂D(I ′) does not fail to be a classical lightsheet, despite null geodesics
in the congruence orthogonal to ∂I ′ meeting other null geodesics and caustics [30].7

What is true for classical lightsheets is not necessarily true for quantum lightsheets. If
quantum lightsheets can end after finite affine parameter, perhaps because of a quantum
analogue of a classical caustic, Θ→ −∞, then the quantum Bousso bound can fail to apply
once the null generator deforming ∂Ĩ ′ reaches that point. We will return to the question of
whether Θ must diverge to −∞ in finite affine parameter on a quantum lightsheet in the
discussion section 4.

It does not seem likely that ∂D(I ′) failing to be a quantum lightsheet can resolve the
tension with the quantum Bousso bound for islands for all evaporating black hole set ups,
as the truncation of quantum lightsheets seems non-universal in that it depends on the
state, and in particular the stress-energy tensor of the infalling matter. We would like a
more robust resolution for islands in evaporating black holes.

3. Blueshift effects. There is a blueshift effect for Hawking modes near the horizon,
and it is tempting to claim that the blueshift of Hawking modes towards the past to
super-Planckian energies is what leads to violations of the quantum Bousso bound, but we
posit that this is not the case.

The renormalised entropy of the island comes from summing over interior Hawking
modes below the renormalisation scale. As we propagate the interior modes backwards in
time onto the representative region Ĩ the relative blueshift — the ratio of frequencies as
measured by free-falling observers that cross the event horizon at different times v1 and v2
— grows exponentially as [31]

ω1
ω2
≈ e(v2−v1)/2rs (3.6)

Towards earlier infalling times the area of the boundary of the representative Ĩ decreases,
yet Ĩ continues to be able to contain the same modes which purify the partner modes in R
despite the shrinking volume, due to the reduction in wavelength from the blueshift. Once
the mode blueshifts to a frequency above the renormalisation scale, whatever that may be,
it switches from contributing to Sren. to contributing to the entropy counterterm. Naively
the blueshift effect leads to modes with super-Planckian energies that backreact on the
geometry, a firewall.

We are assuming no drama for infalling observers which implicitly fixes the entanglement
between interior and exterior outgoing modes such that there is no backreaction [32]. Altering

6Angular caustics also save the classical Bousso bound when there is anisotropy in a collapsing shell,
which increases its entropy but also decreases the extent of the lightsheet [29]. The critically illuminated
black hole does not violate the vacuum-subtracted entropy version of the quantum Bousso bound [24].
Vacuum-subtracted von Neumann entropy is not classical, in that it is not generally additive, so the resolution
in [24] is not applicable to the classical Bousso bound.

7Thanks to Raphael Bousso for discussions on this point.
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the state by removing a single Hawking mode from the island would lead to a firewall in
the past, which would lead to a curvature singularity.

To summarise, blueshift effects do not seem to resolve the puzzle because with the no
drama assumption there are no curvature singularities in the neighbourhood of the past tip
of D(I) that could explain the violation of the quantum Bousso bound.

4. The naive result (3.3) was incorrect due to an unavoidable departure from the
semiclassical regime when taking the limit. Violations of the quantum Bousso bound are
not necessarily unexpected when the bound is applied outside of the semiclassical regime,
such as to regions of sub-Planckian size, or when it is derived from integrating the QFC
outside of the semiclassical regime.

The last resolution to the contradiction that we’ll mention is that the naive result (3.3)
is incorrect, because to take the limit you must consider regions Ĩ ′ of Planckian size.
Generalised entropy is a UV finite and regulator-independent quantity [33, 34], but it is a
semiclassical quantity. The generalised entropy of a region of Planckian size is physically
meaningless. It may be mathematically well-defined if the semiclassical approximation is
taken, in the sense that the region can at least be specified if quantum fluctuations of the
background geometry are neglected, but the result has no relation to the physical reality.

A simpler set-up where we can see what goes wrong if we trust formulas for entropy
beyond their physical regime of validity is if we consider an interval of length L in a 2d CFT
in the vacuum state, whose entanglement entropy is S(L) = c

3 log(L/ε). We can evaluate
S(L) for L < ε, but it physically meaningless and gives unphysical negative entropy. Just
as in (3.3), we can take a naive limit

lim
L→0

S(L) = −∞ (3.7)

and get a result which is not the correct entropy of the empty set, which is zero. There is
an important distinction between intervals of infinitesimal and zero length.

The QFC and the quantum Bousso bound are not physically meaningful when applied
to regions of sub-Planckian size, and violations of these bounds are not surprising in these
applications as we are outside of the semiclassical regime.

This does not immediately resolve the tension with the quantum Bousso bound when
it is applied to the whole of ∂D± as for an island detector in (2.9), or for an island as
in (3.5), because in these cases no subregions of sub-Planckian size are directly involved in
the bound.

We may derive the quantum Bousso bound, as applied in (2.9), by integrating the QFC
over ∂D±(I ′). To do so we must however apply the QFC to sub-Planckian regions, as we
integrate towards either tip of D(I ′), where violations of the QFC are not unexpected. A
bound that can be derived by integrating the QFC along a null congruence like ∂D±(I ′) is
not always false — that would rule out the GSL [18] — but violations of the bound are not
necessarily unexpected since we are applying the QFC outside of the semiclassical regime.
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3.3 Bekenstein bound puzzle

In the previous subsection we described a tension with the quantum Bousso bound that
arises when taking the infinitesimal limit of the representative of either of an island or a
quantum normal island detector, as well as beyond that when the representative is empty.
In this subsection we describe a different puzzle that arises before the representative reaches
Planckian length scales.

This puzzle is relevant to the loophole described in section 2.4, because just like the
Bousso bound puzzle if the only resolution were that curvature singularities truncate D(I ′)
before the tension is reached then it is more difficult for the empty island maximin slice to
not intersect D(I ′), though it is still possible in a stably causal spacetime.

Suppose there exists a region R with island detector I ′, with I ′ ∪R quantum normal.
As we follow null generators along ∂D(I ′), assuming for now that no curvature singularities
are reached, then the QFC implies

Sgen(Ĩ ′ ∪R) ≤ Sgen(I ′ ∪R)
< Sgen(R)

(3.8)

Now in [17] it was argued that any Ĩ ′ which satisfies Sgen(Ĩ ′ ∪R) < Sgen(R) also satisfies

Sren.(Ĩ ′) >
Area(∂Ĩ ′)

4GN
(3.9)

This means that the representative violates of the Bekenstein area bound. The puzzle arises
when Ĩ ′ is parametrically smaller than the local curvature and temperature scale, but still
larger than lp. When Ĩ ′ is this small the reduced state on it is approximately the vacuum in
flat spacetime, which should not violate the Bekenstein area bound. Since Ĩ ′ is still larger
than the Planck scale we can cannot claim that violations of the QFC in (3.8) are expected
due to the size of the Ĩ ′.. Let us assume that the QFC has not been violated and look for
other resolutions.

This puzzle needs to be resolved for both islands and island detectors. Let us see how
this puzzle manifests itself in a setup with islands. Take an asymptotically flat black hole
formed from collapse, see figure 3. By applying QFC to Sgen(I ∪R) we get

Sgen(Ĩ ∪R) ≤ Sgen(I ∪R) < Sgen.(R) (3.10)

which again, by the argument given for condition 1 in [17], implies that the representative
Ĩ violates the Bekenstein area bound. If the state on Ĩ is approximately the vacuum then it
should not violate the Bekenstein area bound.

How small Ĩ needs to be before the state on it is approximately the vacuum depends
on how the black hole was formed. For stellar collapse Ĩ will be a ball-shaped region in
the centre of the star soon after the event horizon formed, and it needs to be smaller
than the local temperature scale. For a collapsing shell of radiation, the Vaidya metric,
the geometry inside the shell of collapsing radiation is flat and Ĩ can be just inside. In
either case, QFC along with the island’s quantum extremality property implies that the
generalised entropy cannot increase as we deform along null generators from I to Ĩ, and we
again reach the incorrect conclusion that a ball-shaped region of the vacuum violates the
Bekenstein area bound.

– 13 –
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Figure 4: Representative cartoon of the subregions of time slice Σ used in the proof
of (3.11).

3.3.1 Is Bekenstein’s bound necessarily violated?

To explore this puzzle further we will reproduce the derivation from [17] that

Sgen.(I ∪R) < Sgen.(R) =⇒ Sren.(I) > Area(∂I)
4GN

(3.11)

We want to see what approximations were made in the derivation and if those approximations
are ever invalid. In [17] the region I was an island, while for us the region of interest is a
representative Ĩ ′ or Ĩ of an island detector or an island, but since they all satisfy the left
hand side of (3.11) the derivation is identical.

The first step is to surround I with a thin region C of width δ � lp. C shares a
boundary with I, such that ∂I\∂C = ∅, and is spacelike separated from R. See figure 4.
Applying monotonicity of mutual information

I(X,Y ∪ Z) ≥ I(X,Y ), (3.12)

to the region complement to I ∪ C, which is a superset of R, we get

I(I, (I ∪ C)c) ≥ I(I, R)
> Sgen(I)

(3.13)

We may rewrite (3.13) in the following way, which makes its relation to the Bekenstein area
bound transparent,

Sren.(I)− Area(∂I)
4GN

≥ Sren.(I) + Sren.(C)− Sren.(I ∪ C). (3.14)

This is done by expanding the mutual information in terms of the renormalised entropies,

I(I, (I ∪ C)c) = Sren.(I) + Sren.(I ∪ C)− Sren.(C), (3.15)

and rearranging. Note that no approximations have been made so far.
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We reach the conclusion that I violates the Bekenstein area bound at leading order
in GN ,

Sren.(I)− Area(∂I)
4GN

≥ 0, (3.16)

if and only if the right hand side of (3.14) is non-negative or O(G0
N ). Conversely, we need

Sren.(I) + Sren.(C)− Sren.(I ∪ C) . −O
(
G−1

N

)
(3.17)

in order to avoid the conclusion from (3.14) that I violates the Bekenstein bound. I
and C must have super-additive renormalised entropies. Renormalised entropy can have
unusual properties for an entropy, including superadditivity and negativity [35], so this
is not obviously impossible. The right hand side of (3.14) is not the mutual information
between I and C, which would be non-negative by subadditivity, because the overlap of the
boundaries I and C is nonzero so there is a leftover piece when the boundary counterterms
are added back in.

In [17] it is assumed that

Sren.(I ∪ C) = Sren.(I) (3.18)

and
Sren.(C) = 0 (3.19)

up to corrections that are subleading in G−1
N with respect to the area term. This is a

reasonable assumption if there exists a time slice on which the state is semiclassical and
with a subregion C as defined before, and of width δ � lp but smaller than the local energy
and curvature scales. Then Sren.(C) ∼ δ−(d−2) � G−1

N . As a first comment, note that one
class of examples where there is no C of width δ � lp is if ∂I and ∂R are null-separated.

3.3.2 Resolution for islands in evaporating black holes

As a first step to resolving this subsection’s Bekenstein bound related puzzle for an island
in an asymptotically flat evaporating black hole, let us re-examine the assumptions (3.18)
and (3.19) for this case. We will show that there is no time slice on which (1) there exists a
C of proper width δ � lp and (2) the curvature scale of the slice, as quantified by its trace
extrinsic curvature K, is not Planckian.

The boundaries of R and the island are not null-separated as can be seen in figure 5, so
there are time slices with regions C of non-zero width. We are working in the vacuum with
respect to an infalling observer, so a natural set of coordinates to use are Painlevé-Gullstrand:

ds2 = −dT 2 +
(
dr +

√
rs

r
dT

)2
+ r2dΩ2

d−2 (3.20)

where T is the proper time for a radially infalling observer initially at rest at infinity. We
will do an analysis in a region perturbatively smaller than the length scale set by the black
hole evaporation time, so we neglect the T dependence of rs.

The boundaries of R and I are not null-separated, but on a constant infalling time
slice the radial separation of the island and the past lightcone of R is Planckian [36], so
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Figure 5: An evaporating black hole in asymptotically Minkowski spacetime. C surrounds
the island I, with ∂I\∂C = ∅, and is spacelike separated from R. We show that C cannot
have both width δ � lp and trace extrinsic curvature |K| � l−1

p .

on that particular time slice there is no C of spatial width δ � lp. Let rI be the radial
position of the boundary of the island on a constant T slice, and rlc the radial position of
the intersection of ∂J−(R) with that slice. The reason why the radial separation (rlc − rI)
must be Planckian is because the gradient of the entropy must be order O(1/GN ) in order
to compete with the O(1) gradient of area in the extremality condition

∂rI

(Area(∂I)
4GN

+ Sren.(I ∪R)
)

= 0 (3.21)

The gradient of the area is ∂rIArea(∂I) = 8πrI , while by dimensional analysis the leading
divergence of the renormalised entropy is ∂rISren.(I ∪R) ∼ 1/(rlc − rI) [1]. To satisfy the
extremality condition (3.21) thus requires a radial separation (rlc − rI) ∼ l2p/rI .

The representative Ĩ at earlier times has an even smaller radial separation from ∂J−(R)
than I, as the separation of lightrays from the event horizon decreases exponentially in
advanced time v := t + r∗ towards the past. The maximum width an annular region C

surrounding Ĩ on a constant T slice can be is exponentially smaller than for I.
Now we discuss other time slicings, as we have only shown that there is no C of width

δ � lp on the constant T slice that intersects ∂I. There are certainly other coordinate
systems with time slices on which there is a C of arbitrarily large spatial width, because
the null separation of ∂R and ∂I in the future outward direction is infinite.8

8It may seem counterintuitive that two nearly-null separated points can have large spatial separation.
To get an intuitition for this, consider the spatial geodesic connecting two spacelike separated points in 2d
Minkowski. This has proper length −∆x+∆x− which diverges when ∆x+ →∞ if ∆x− is fixed and finite.
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C is annular with inner boundary fixed to be ∂I. For a fixed time slice Σ the outer
boundary of the maximum width C is Σ∩ ∂J−(R), which is as far as C can extend radially
while staying spacelike separated from R, as shown in figure 5.

For fixed I we can increase the maximum width C by deforming the time slice such
that Σ ∩ ∂J−(R) moves towards future null infinity. The cost of increasing the maximum
possible width of C by deforming the time slice between ∂I and ∂J−(R) towards the null
limit is that the slice in this region approaches an annulus-like subregion of a null cone, and
null cones have a divergent trace extrinsic curvature.

Let us assume that C stays in the neighbourhood (∆T,∆r � rs) of ∂I, and justify
that assumption later. The geometry in this neighbourhood is approximately

ds2 ≈ −dT 2 + dρ2 + r2
sdΩ2

d−2 (3.22)

where ρ is the Lemaître radial coordinate, which is related to the Schwarzschild radial
coordinate by

r(T, ρ) =
(3

2(ρ− T )
)2/3

r1/3
s . (3.23)

The radial separations of ∂I and ∂J−(R) on a constant T slice are approximately the same
in the two coordinate systems

(ρlc − ρi) ≈ (rlc − ri) ∼ l2p/rs (3.24)

because near r = rs we have dρ ≈ dr + dT .
Now consider a spherically symmetric time slice that intersects ∂I and in its neigh-

bourhood has slope dρ/dT =
√

1 + α2 with α > 0 to keep the slice spacelike. The trace
extrinsic curvature of this time slice in the neighbourhood of ∂I is the same as the surface
of a cone in Minkowski spacetime, which is

|K| = 1
αrs

. (3.25)

This K diverges in the null limit α→ 0+. Recall that to maximise the possible width of C
we want to move the intersection Σ ∩ ∂J−(R) towards future null infinity, so let us take
1 � α � lp/rs, which is as close to the null limit as possible while keeping the extrinsic
curvature sub-Planckian, |K| � l−1

p . The slice intersects ∂J−(R) after time

(
√

1 + α2 − 1)∆T = (ρlc − ρI) ∼
l2p
rs

(3.26)

Thus ∆T � rs given the range of α, which justifies the earlier approximation (3.22). The
largest possible C on the time slice defined has width given by the radial geodesic length
between ∂I and the intersection of the slice with ∂J−(R), which is

δ = α∆T � lp. (3.27)

The conclusion is that there is no time slice on which there exists a C with both width
δ � lp and with |K| � l−1

p .
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We have not shown that islands satisfy the Bekenstein bound, nor do we claim that they
do. We have only shown that one particular assumption that is sufficient to show that islands
necessarily violate the bound is invalid for the black hole set up of figure 5. The expectation
is that islands violate the Bekenstein bound, while their early time representatives Ĩ of
size below the local curvature scale, as depicted in figure 3, do not. In order to avoid
the conclusion that the Bekenstein bound is violated we have seen from equation (3.14)
that it is necessary for all possible regions C to give strongly (∼ G−1

N ) superadditive
renormalised entropy.

Let us make some preliminary remarks on how Ĩ and C can have superadditive
renormalised entropy, but leave a careful analysis for future work. We have shown that the
largest width C can have on a time slice with |K| � l−1

p is sub-Planckian for I, and it will
be exponentially smaller still for Ĩ because of the convergence towards the event horizon
of past-directed ingoing light rays. As mentioned in section 3.2, semiclassical entropies of
regions of sub-Planckian size can be formally evaluated, even if they are not physically
meaningful. If Sren.(Ĩ ∪ C) ≈ Sren.(Ĩ), which seems reasonable as LĨ � lp � LC , then
superadditivity requires Sren.(C) < 0. Regions of width smaller than the renormalisation
scale can have negative Sren.. For example the renormalised vacuum entropy of an interval
in a 2d CFT is proportional to log(L/µ), with µ the renormalisation scale, which is negative
for L < µ. For Ĩ the maximum width C can be is exponentially smaller than lp, so
Sren.(C) . −O(G−1

N ) may be possible.

4 Discussion and future work

In section 2.4 we pointed out a loophole in the proof given in [1] that their set of conditions
are sufficient for the existence of a non-empty island. There are trivial fixes to their set of
conditions to make them sufficient, such as an additional condition that all time slices in the
spacetime intersect D(I ′) (or J(I ′) if I ′ ∪R is anti-quantum normal rather than quantum
normal). This particular additional condition would be undesirably restrictive though:
it is satisfied for the recollapsing FRW universe example of [17] but not for evaporating
asymptotically AdS or flat Schwarzschild black holes. The bottom line is that we do not
have a set of conditions that are (1) sufficient to establish existence of a non-empty island,
(2) easier to evaluate than the island formula, and (3) are not overly restrictive in that they
fail to detect islands for whole classes of examples where islands are expected or have been
explicitly found.

Having pointed out loopholes in the proof, it is natural to look for explicit counterex-
amples, i.e. island mirages. In appendix A we outline two promising setups which we intend
to explore further. There may be examples of island mirages which are very different in
character from those suggested as possibilities in the appendix.

In section 3.2 we mentioned that it is unclear when or whether a quantum lightsheet
will truncate after finite affine parameter. Such a result would be important as it limits the
applicability of the quantum Bousso bound. Classically, null geodesics in a congruence with

– 18 –



J
H
E
P
0
8
(
2
0
2
2
)
1
4
2

negative expansion reach caustics after finite affine parameter because of the bound

θ′ ≤ − 1
d− 2θ

2 (4.1)

which follows from the Raychaudhuri equation for null geodesic congruences and assuming
the null energy condition. Similarly, a negative quantum expansion leads to the ‘quantum
caustic’ Θ→ −∞ after finite affine parameter if the following quantum analogue of (4.1)
is true:

δ

δV (y2)Θ[V ; y1] ≤ − 1
d− 2Θ(y1)Θ(y2)δ(y1 − y2) (4.2)

using the notation from [18]. This conjecture (4.2) is stronger than QFC. The on-diagonal
components give (4.1) in the classical limit, and give a stronger version of QNEC in the
weak gravity limit.9 We feel that these conjectures and their implications for the quantum
Bousso bound are worth further study.

In section 3.3 we described and gave possible resolutions to the Bekenstein bound
puzzle, and discussed the puzzle in the context of islands in evaporating black holes in detail.
We did not however give a complete argument for how the early time representative Ĩ of the
island can avoid the implication that it violates the Bekenstein bound with superadditive
renormalised entropies, as it seems it must. For future work we believe that the islands in
AdS2 black holes found in [14] would be a fruitful arena in which to explore this puzzle in
explicit calculational detail.
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A Possible island mirages

An island mirage is an island detector I ′ that satisfies conditions (2.1) and (2.3), but for
which R has no island. Mirages, if they exist, are counterexamples to the claim that the
conditions are sufficient to guarantee that R has an non-empty island somewhere. In this
appendix we outline two setups which we were not able to explicitly show have island
mirages, but that we feel are candidates worth further study in future work.

A.1 Small, critically illuminated, isolated AdS black holes

Here we consider a small isolated AdS black hole that is critically illuminated by mixed
state radiation that is purified by an auxiliary non-gravitational system, see figure 6. Unlike

9Which in 4d may not be satisfied by a ball-shaped region of the CFT vacuum in Minkowski spacetime.
We thank Aron Wall for pointing this out.
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Figure 6: A small, critically illuminated, isolated AdS black hole, and an auxiliary non-
gravitating flat spacetime. The radiation shown includes the incoming radiation that keeps
the black mass constant, the outgoing Hawking modes, and their interior partners. The
ingoing radiation is maximally mixed and purified by the degrees of freedom in R in an
auxiliary spacetime.

typical island setups, isolated AdS black holes are not coupled to a non-gravitational bath;
the asymptotic boundary conditions are reflecting for all time. Critically illuminated black
holes have an incoming flux of energy that exactly balances the outgoing flux due to Hawking
radiation, such that black hole has constant mass for some finite period of time [28]. In
our setup what an external observer sees is the formation of a small AdS black hole from
collapse, that is then critically illuminated for some Schwarzschild time tillum., then allowed
to evaporate away before the earliest Hawking radiation has had time to reflect and return
from the boundary. For AdS black holes to be small enough to evaporate requires a mass
less than

MlAdS �
(
lAdS
lp

) d2−1
2d−1

(A.1)

and there are no small AdSd black holes in d ≤ 3 [37].
The parametric separation of time scales is taken to be

tp � tevap. � tillum. � lAdS (A.2)

There are several reasons to look for an island mirage in such a setup:

1. Isolated AdS black holes do not have islands. Every point in the black hole interior
lies on a past causal horizon, so GSL rules out any quantum extremal surface [38, 39].

2. Critically illuminated black holes are a counterexample to the classical Bousso bound
as an arbitrarily large amount of classical entropy can pass through the event horizon
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while the horizon area stays constant [28]. An arbitrarily large amount of entropy
passing through the horizon is helpful for satisfying condition (2.1).

3. Small isolated AdS black holes only differ from asymptotically flat black holes, which
do have islands, far from the black hole.

Let us give a few comments about critically illuminated black holes. They are a
counterexample to the classical Bousso bound, though not to GSL as the Hawking radiation
continually adds to the entropy outside the black hole but it does not cross the lightsheet [28].
The classical Bousso bound is in effect violated by quantum effects in the form of Hawking
radiation. The critically illuminated black hole requires fine tuning of the incoming radiation,
and microscopic fluctuations in the incoming radiation generally leads to the lightsheet
truncating in finite affine parameter due to caustics [40–42].

Since there can be no islands in isolated AdS black holes, to find an island mirage we
just need to find an I ′ that satisfies the conditions (2.1) and (2.3). In figure 6 we depict three
such candidate I ′ wich we will now discuss in turn. I ′a satisfies (2.1) because it contains all
the ingoing radiation so Sren.(I ′a ∪R) ≈ 0, and the boundary of ∂I ′a has small area, but it
fails to be quantum normal because it is deep in the classically trapped region. I ′b ∪R is
quantum normal by GSL, because ∂I ′b lies on both a future and past causal horizon, but it
seems likely to fail to satisfy (2.1) because it contains all the interior modes. I ′c is in a sense
in between I ′a and I ′b, the Goldilocks candidate. The future inward null quantum expansion
is non-positive by GSL, but since ∂I ′c is inside the event horizon it does not lies on a future
causal horizon, so GSL does not apply to the future outward direction. To be quantum
normal it must be outside the quantum trapped region, yet it must also contain enough
of the incoming radiation to satisfy (2.1), and it is not clear whether both of these can be
simultaneously satisfied.

A.2 Large AdS black hole with infalling shell

In this example we consider a large, isolated AdS black hole formed from a collapsing star,
as shown in figure 7. The star is in a mixed state, with entropy Sstar. The star is purified by
R in an auxiliary non-gravitating spacetime. As an isolated AdS black hole, GSL again rules
out non-trivial quantum extremal surfaces, so there are no islands. We assume spherical
symmetry and look for ball-shaped island mirages I ′, centred on the origin, which satisfy
the conditions (2.1) and (2.3).

To satisfy (2.1) and lower the generalised entropy, the boundary of I ′ must be in the
red region of figure 7. There the surface area of I ′ is small and I ′ contains a sufficiently
large fraction of the collapsing star, which by construction is entangled with R, to lower
the generalised entropy. To satisfy (2.3), ∂I ′ must be outside the quantum trapped region,
whose boundary is the quantum apparent horizon depicted in blue in figure 7.

Take a point at the radial origin of the star after it has collapsed inside its Schwarzschild
radius. The subset of the future directed null cone that starts from this point to a cut of the
lightcone outside the classical trapped region is a lightsheet. If we assume the star’s entropy
to be extensive, then the classical Bousso bound places an upper limit on the entropy flux
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Figure 7: Left: a large, isolated AdS black hole formed from a collapsing star. The star
is in a mixed state of entropy Sstar that is purified by R in an auxiliary non-gravitating
spacetime. Spherical symmetry is assumed, and I ′ are ball regions whose boundaries are
points in the figure. To be an island mirage I ′ ∪ R must be both outside the quantum
apparent horizon, depicted in blue, and the inside the red hyperentropic region. Right: a
null shell of pure radiation is added. The null shell has a large entropy gradient in the x+

direction, so as to push the quantum apparent horizon into the red hyperentropic region.

through the lightsheet

S(L) ≤ Area(∂L)
4GN

. (A.3)

This rules out an I ′ whose boundary is outside the classically trapped region, and whose
classical entropy violates the Bekenstein bound. If we assume that this island detector
region violates the Bekenstein bound, i.e. there is a C for which I ′ and C do not have
superadditive renormalised entropies (see section 3.3), then we reach the conclusion that
an island detector cannot exist outside the classically trapped region if the entropy of the
matter forming the black hole is approximately classical, i.e. extensive.

We need to add matter whose entropy is not classical in order to evade the classical
Bousso bound, in order to have an I ′ that is both quantum normal and violates the
Bekenstein bound [17]. We would like to ‘push’ the quantum apparent horizon inward, as
depicted in the right hand side of figure 7 by creating a large positive entropy gradient in
the x+ direction, so making Θ+ positive where it was negative before.

We can try adding a thin shell of radiation of thickness ∆x+. Take the shell to be
composed of two concentric layers that are maximally entangled with each other, but with
the whole shell in a pure state. A ball shaped region that is concentric with the shell will
then have a large entropy gradient as a function of radius at the shell radius. A positive
entropy gradient in the x+ direction has the potential to flip the sign of Θ+ and so push
the quantum apparent horizon in.

We do have to be careful about the backreaction of the null shell though and the effect
on the classical expansion. One promising sign is that the quantum apparent horizon of the
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right hand side of figure 7 seems not to violate the QFC. The QFC would forbid Θ+(I ′ ∪R)
from changing signs twice as we deform I ′ in the x+ direction, but here it only changes sign
once. A more careful analysis of the interplay between the entropy gradient and backreaction
of the null shell is needed before this is a convincing example of an island mirage.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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