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1 Introduction

Soft emissions off an energetic particle are remarkably simple in that they only depend on

the direction and the charge of the emitting particle. Furthermore emissions off collinear

energetic particles are only sensitive to their total charge, a property known as soft coherence.

However, in QCD these properties often do not translate into simple all-order results for



soft-emission contributions to cross sections. Specifically, it was shown in [1] that for
non-global observables, which constrain the energy of emissions only in certain phase-space
regions, successive emissions inside the unconstrained region lead to a complicated pattern
of logarithmically enhanced higher-order terms. Jet cross sections are in this category since
emissions are unconstrained inside the jets, the simplest concrete example being the interjet
energy flow. The leading non-global logarithms arising in this observable in the large- N,
limit can be resummed either by generating the successive emissions through a dedicated
parton shower [1, 2] or by solving a non-linear evolution equation, the Banfi-Marchesini-Smye
(BMS) equation [3]. Both approaches were generalized beyond the large-N, limit [4, 5] and
first numerical results at leading-logarithmic accuracy are now available at N. = 3 [6-9].
While the subleading-color contributions are in general small at eTe™ colliders, the situation
is different at hadron colliders since Glauber phases lead to the occurrence of double
logarithms at higher orders, while only single logarithms are present in the large- N, limit.
These so-called super-leading logarithms were discovered a long time ago [10, 11], but their
resummation was achieved only recently [12].

By now, the leading non-global logarithms have been resummed for a variety of
observables, but unsurprisingly these resummations suffer from large uncertainties and are
not sufficient for precision physics. Given the prevalence of non-global observables it is
therefore important to develop methods to also resum subleading non-global logarithms.
Factorization theorems provide the theoretical basis for resummations at higher accuracy
and there has been a lot of progress in understanding the factorization properties of non-
global observables. The crucial difference to global observables is that soft radiation in
non-global observables resolves the directions of individual hard partons. This translates
into factorization theorems for non-global cross sections, which involve a product of hard
functions, consisting of squared amplitudes for hard partons along fixed directions, and soft
functions, given by matrix elements of Wilson lines along these directions [13, 14]. The
same structure is present in the formalism of [15], which uses a “color-density matrix” to
keep track of the individual hard partons and reconstructs the soft emissions by taking
a suitable average over this matrix. To resum logarithms one evolves the hard function
from its natural scale y ~ @, where Q) is the center-of-mass energy, to the typical scale
p ~ Qo of the soft emissions. This evolution is governed by a renormalization group (RG)
equation. To resum the first tower of subleading non-global logarithms one needs the
one-loop corrections to the hard and soft functions, together with the evolution driven by
the two-loop anomalous dimension. The one-loop corrections to the hard and soft functions
were implemented in [16] and the goal of the present paper will be the extraction of the
two-loop anomalous dimension I'®). Recently, an alternative approach was put forward [17],
which formulates a generalization of the BMS equation to subleading logarithmic accuracy.
This paper set up this equation in a way suitable for numerical implementation and tested
that the framework captures all logarithms at two loops in the interjet energy flow. Very
recently first resummed results were presented in this new framework [18].

The paper [15] by Caron-Huot has presented the two-loop anomalous dimension in
the color-density matrix formalism and even the three-loop result for planar N’ = 4 super
Yang-Mills theory is known [19]. The determination of the anomalous dimension made use



of a mapping between the evolution equation for non-global logarithms and the Balitsky-
Kovchegov (BK) equation in N' = 4 super Yang-Mills theory [4, 15]. Given the close
relationship between our two approaches, the anomalous dimension given in [15] should be
relevant also for our formalism [14]. However, the derivation presented in [15] is indirect and
quite intricate. An independent, direct computation of the anomalous dimension is therefore
desirable. The paper [15] also did not perform any checks on the result, or detail how one
would translate the anomalous dimension into a result for the subleading logarithms. In
the present paper, we supply both a direct computation of r®, by extracting it from the
divergences from the relevant Feynman diagrams, and an explicit check of the anomalous
dimension. Our computation reproduces the result in [15], but we find that the anomalous
dimension in this paper does not correspond to the one in the standard minimal subtraction
(MS) scheme. As a check on our result, we analytically verify that our anomalous dimension
correctly reproduces the logarithms in the interjet energy flow at two-loop order, which
were computed in [14].

The anomalous dimension matrix I'® can be extracted by considering double soft
limits of hard functions, which are in essence cross sections of m hard partons along fixed
directions. The result for T'® has three distinct entries: i) double real-emission terms d,,,
ii) real-virtual terms r,, and iii) double virtual contributions v,,. An important difficulty
in the determination of the anomalous dimension is the presence of collinear singularities
in these terms. These divergences cancel in the end result after combining the different
contributions and integrating over the directions, but have to be tracked at intermediate
stages of the computation. In order to make the cancellation of collinear singularities
manifest and to have a form suitable for implementation in a parton shower framework, we
write all terms in I'® as angular integrals. To obtain the angular integrals, we perform the
energy integrations in the loop diagrams using the residue theorem. The soft singularities in
both the real and virtual terms are then isolated using an upper cutoff on the momenta. At
two-loop order there are different ways to impose this cutoff and we find that the presence of
intermediate collinear singularities leads to an ambiguity in the extraction of the coefficient
of a term Cy72T'M in the two-loop anomalous dimension I'®). For hard functions with a
small number of external legs, one can avoid the use of a cutoff by computing the divergences
with the full kinematics and we fix the missing coefficient by comparing to the explicit
results for the hard and soft functions for dijet production computed in [14].

Our paper is organized as follows. In section 2, we review the factorization theorem for
non-global observables, setup the notation and write down the relation between divergences
and the anomalous dimension at two-loop order. As a warm up we then discuss the
extraction of the one-loop anomalous dimension I'™ in detail in section 3. Already in 'V,
one encounters collinear singularities and we discuss their subtraction and cancellation
in section 4. We then proceed in section 5 to the two- loop anomalous dimension and
present the result for I'®) as one obtains it from an analysis of the soft limit of two-loop
diagrams (the analysis of the diagrams itself is presented later in section 7). This raw form
of the result still contains implicit and explicit collinear divergences which we eliminate by
shifting collinear terms in the double emission part d,, to the real-virtual part r,,. After
this collinear rearrangement we obtain the anomalous dimension in a form that agrees with



the result of [15] (in what the author refers to as MS scheme), but this result corresponds
to a renormalization scheme in which all angular integrals are kept d-dimensional. We then
determine the extra terms that are needed to change to the standard MS scheme. With the
final result for the anomalous dimension, we verify in section 6 that we correctly reproduce
all divergences in the two-loop soft function for interjet energy flow. The most technical
part of our paper, namely the extraction of the diagrammatic result for T'® is presented
in section 7. We summarize our results in section 8 and go over some of the subtleties
encountered in the extraction of the anomalous dimension. We conclude in section 9.

2 Factorization of non-global observables

The factorization formula for jet production in ete™ collisions with a veto on radiation in
part of the phase space takes the form [13, 14]

o0

7(Q,Q0) = Y (Ha({n},Q 1) ® Sn({n},Qo,n), (2.1)
m=mg
where my is the number of final-state jets. The hard function H,, describes the production
of m partons in the unconstrained region and the soft function §,, is the matrix element
squared of the emission from Wilson lines along the m partons of the hard function. Both
of these functions depend on the directions of the m partons {n} = {ni,...,ny}, which we
take as massless. The symbol ® indicates the angular integration over these directions

Hm({ﬂ}a Q, M) & Sm({ﬂ}7 Q07 ,UJ) = H / %Hm({n}a Q7 M)Sm({ﬂ}a QOa M) . (22)
=1

The generalization of (2.1) for processes involving heavy quarks was discussed in [20].
The above factorization theorem holds for jets with large radius, but similar factorization
theorems are also available for narrow jets [13, 14] and a variety of other non-global
observables such as certain event shape variables [21, 22] or isolation cone cross sections [23].

For Qp < @, the cross section (2.1) will involve large logarithms irrespective of the
choice of the renormalization scale p. These large logarithms can be resummed by solving
the RG equation of the hard function and evolving it from its characteristic scale up ~ Q
down to a soft scale us ~ Qo, leading to

U(Q, QO) = Z <7'Lm({@/}v Q, Mh) ® Z Uml({ﬂ}7 Hss ,uh) & Sl({@}v Qo, :us)> ) (2'3)
m=mo I>m

where the evolution factor is the path-ordered exponential of the anomalous dimension

Hh du
U{n}sseim) = Pesp | [ L0} tny)] (24
which evolves the m-parton configuration along the directions {n'} = {n1,...,n,} into
an [-parton final state along the directions {n} = {ni,...,n;}. RG evolution generates

additional particles and the symbol & denotes the integration over their directions before
integrating over the directions of the original hard partons.



The anomalous dimension in (2.4) is the main subject of the present paper. It captures
the ultraviolet divergences of the soft emission matrix elements, which are in one-to-one
correspondence to the infrared region of the hard parton matrix elements H,,. This
correspondence of the infrared singularities of hard amplitudes |M,,({p})) to ultraviolet
divergences can be used to obtain stringent factorization constraints on the infrared di-
vergences of scattering amplitudes [24-28], which now have been worked out up to four
loops [29]. The situation we analyze is more complicated because our bare hard functions

d—3
k@) = gz 3 T [ 2B Mo () (M (1)

spins =1

x (2m <Q ZE> 31 (fror) Om({n}) (2.5)

consist of the amplitudes squared, integrated over the particle energies at fixed directions

= pl'/E;. The function Oi,({n}) = Oin(n1)0in(n2)...0W(ny) restricts the m hard
partlcles to be inside the jet region, i.e. it prevents these particles from entering the veto
region. Both the hard and soft function depend on the geometry of the veto region in
which the energy is constrained. The hard function depends on it because the hard partons
are restricted to the jet region and the soft function because the energy constraint on soft
radiation is only applied in the veto region. In the example of cone jet cross sections, the
hard and soft functions depend on the cone angle. We do not need the operator definition of
the soft function for our computations in the present paper and refer the interested reader

o [14].

In the definition (2.5) of the bare hard functions in d = 4 — 2¢ dimensions, we have
strategically included a factor ¢ = €72 /7 to the power € in the denominator of each energy
integral, where g is the Euler—Mascheroni constant. This factor cancels a corresponding
one arising when expressing the bare coupling oy = g2/(47) in terms of the MS renormalized
one through ag = Z,as(p? é/4). We will include the é&-factor in the d-dimensional angular
integrals defined at the end of this section (see table 1) to avoid a proliferation of In¢é
terms in intermediate expressions. The normalization differs from [14], which had factors of
(2m)92 instead of & (27)? in the denominators of the energy integrals in the hard function.

There are two types of infrared singularities which arise in H,, and must be absorbed
into I': divergences when one or several of the energies F; go to zero and IR divergences
associated with loop corrections to [M,,({p})). The first type of singularity is associated
with real emissions, the second one with virtual corrections. Of course, at higher orders
combinations of both effects arise. In the next section, we will analyze the singularities in
detail for the one-loop case, but from the above discussion, we can already anticipate the
general structure of the anomalous dimension. Expanding it as

T = 47TI‘(1) + (4;> r® 4. (2.6)



the one- and two-loop matrices for the dijet case my = 2 take the form

‘/QRQ 0o 0 ... ’UQ’I"QdQO...
0 ‘/Q,Rg 0 ... 01]3’)"3(13...
r— 0 0 ViRy... [, r@—=1 0 0wvygry...|. (2.7)

0 0 0 V5... 0 0 0 vs ...

At O(a), we can either have divergences from a one-loop V,, virtual correction, or from a
single real emission R,,, which maps from the m to the m + 1 parton space. It therefore
occupies the row above the diagonal in I'. At two loops, we can either have a double real
emission d,,, a real-virtual correction 7, or a two-loop virtual term v,,. We see that each
additional order fills in one more row above the diagonal in I, while there are never any
entries below the diagonal.

As usual, the anomalous dimension is related to the Z-matrix, which absorbs the
divergences of the hard and soft functions. At the two-loop level the Z-matrix is given by

as 1oy (as\V | L Snman® | B 1o
Zim =1 5Ty, + <47r> ) > T,/&T,) + 12Vim = 7. Cim | (2.8)
k=l

Applying this matrix to the bare soft functions must render them finite

> 2@ 8p =S = finite. (2.9)

m=l

Writing this out order-by-order leads to the following finiteness conditions

— Qi (Vi + Rn®1] + S = 8tnll) — finite, (2.10)
€
1 R . .

+ 53 [Bn® (Rini1@1 4 Vi) + Vi (R @1+ Vi) |
Bo A Boouy 1 (1) 5 (1)

+ 5 [Vin + Rn®1] = 280) — (VS + R85 |

- % [V, + Tm@1 4 d)y,&1] + 82 = 812 = finite, (2.11)
€

where we have used that the leading order soft functions are trivial, 8§2> = 1. The term
—B—E"S%) in the second line arises because we expand the bare function in the bare coupling ag
and then perform coupling constant renormalization by replacing o with the renormalized
coupling ay, wich involves a factor Z, =1 — B—f%

We can use the one-loop relation to get explicit expressions for all the divergences at
the two-loop level. After expressing SE}L) through the renormalized function, we have

1 N N N
S = 8% — 5 [Ru® (Rna &1+ Vini1) + (Vin + 260) (R ©1+ V)]

1 ~ ~ ren 2 oren(l
- [vm F @1 + dn @1 + 2 (Vi + 280) ST 1 2R, & Ser(l)} . (2.12)



Convolution symbol Associated angular integrals

442,
0 = o [
® / 4] = # [ g
20,
201 _ i
@ / ) = [
®e ®:®2+26®e

Table 1. Angular convolution symbols and associated angular integrals for the individual partons
¢ =1...m. In the final result, the factors ¢ = €72 /7 cancel against the ones in the energy integrals
n (2.5). We will use the same notation also for the integrations over additional partons indicated
by &.

where the divergences are now fully explicit. The first line is indeed what we found in [14]
by iterating the anomalous dimension. In section 6, we will use the second line to check our
explicit expression for the two-loop anomalous dimension against the computation of S%)
in [14]. The relevant result was given in (B.13) of that reference.

The Z-matrix in (2.8) and the expressions (2.10), (2.11) and (2.12) involve bare
functions and therefore angular integrals in d dimensions. At the end of the day, we will
express everything through angular integrations in d = 4 as in (2.2) but at intermediate
stages it is crucial to keep track of the ¢ dependence of the integrals. To do so, we will use
the notation in table 1 to distinguish angular integrals in d = 4 — 2¢ and d = 4. As shown
in table 1, we add a prefactor ¢¢ = (e?7? /7)€ to the angular integrals in d-dimensions

di=2Q, di=20Q) 2
= &€ 1 e®E q = —_— 2 3
/[qu] ¢ 3(2m)i-3 e /(47()1_6 1+2e+ (4 1€ +0 (6 ) (2.13)

so that their e-expansion is free from yg’s and In(47)’s. Note that the angular integral over
the (d — 1)-dimensional unit sphere Qg1 is parameterized by d — 2 angles.

3 One-loop anomalous dimension from soft factorization

The basis for the derivation of the anomalous dimension is the factorization of hard
amplitudes in the soft limit. For an amplitude with m hard partons with momenta
{p} = {p1,...,pm} and one soft momentum ¢, we have

6*'711'

Min1({p,a})) = € (@) M ({p})) = 95 DT} Mm({p})),  (3.1)
i=1

n; - q

*

o
color-space formalism [30] in which the amplitudes are written as ket vectors in the color

where ¥ is the polarization vector of the outgoing gluon. Throughout our paper, we use the
space of the partons in the amplitude. The color-space notation suppresses the color indices

and works with color generators T} for the i-th external line, where (T}")a5 = t34 for a



final-state quark or initial-state anti-quark, (T{*)ap = — “ﬁa for a final-state anti-quark or
initial-state quark, and (T)p. = —if for a gluon. We have written the soft current J, 4(q)
at leading order in the coupling constant, but also the one [31] and two-loop results [32, 33]
for this quantity are available. Note that the soft current is transverse when applied to
the amplitude
m
" o @M ({p}) = 95 Y T Mu({p})) = 0 (32)
i=1
due to color conservation. Below, we will use soft factorization to also extract the two-loop
anomalous dimension.
To get the leading-order real emission R, entry in the anomalous dimension, we start
with the hard function for m + 1 partons,

m~+1 d—3
(g Q) = 355 S 1T [ Fir Mo (. a) (Mo (o)
spins =1

x (2m)"6(Q ~ %1 E;) 89D G+ D) O ({pa}),  (33)

i—
and assume that the momentum ¢ becomes soft. To isolate the associated infrared divergence,
we put a cutoff A on the energy E,. This cutoff is a technical tool to simplify our computation.
As is obvious from (3.3), even without a cutoff the energy is constrained in the hard function
and for small m we can simply compute H,,+1 in dimensional regularization to obtain
its divergences. However, the cutoff allows us to isolate the divergence associated with ¢
becoming soft and to use the associated soft factorization formula (3.1). In the presence of the
cutoff, we can also expand the soft momentum ¢ out of the phase-space constraints and get
results for arbitrary m. Introducing the cutoff and expanding in the soft momentum yields

A dE, B35 n; - n;j
2 ity _ M qa a
Hovin (g}, Q0 = o2 [ S50 Il 3 T Hn(2),Q.0

(3.4)

The minus sign arises from the sum over polarizations and the notation (ij) refers to
unordered pairs of indices. The color index of the soft gluon in the amplitude is a, the
one in the conjugate amplitude a. The color indices of the hard function are contracted
with the ones of the soft function in the factorization theorem (2.1). To evaluate the color
trace in (2.1) with the trivial leading-order soft function, Sﬁg) = 1, one will set a = a
and sum over all values of a, but in general we must distinguish the color indices of the
amplitude and the conjugate amplitude. Having explicit color indices is against the spirit
of the color-space formalism in which indices are suppressed, but the left-hand side of (3.4)
lives in the color space of m + 1 particles, while H,, on the right-hand side lives in the
space of m partons so that we have to make the extra color index explicit.

Expressing the bare coupling g, through the MS one and performing the energy integral,
we then obtain

Qg 2e
Hor ({0, mg b, @, ¢) = 222 (;D in(ng) S W T Hon ({0}, Q. o) TF . (3.5)

€dr @



Note that the color generator multiplying the amplitude appears on the left, while the
one multiplying the conjugate amplitude appears on the right. In order to indicate where
they act, we will denote the generators by T}’ and T{:‘R respectively. In this notation the
corresponding entry in the anomalous dimension matrix then reads

Ry =4 T T W bn(ng) (3.6)
(i)
since the anomalous dimension is (—2) times the coefficient of the divergence. The anomalous
dimension R,, maps a hard function with m partons onto a hard function with m + 1
partons.

There is an important comment we need to make at this point. It is obvious that
integrals over the anomalous dimension (3.6) suffer from collinear divergences when nq
becomes collinear to n; or n;. These collinear divergences will cancel against collinear
divergences in the virtual corrections when the anomalous dimension is applied to the
soft functions. This cancellation of divergences can be made manifest on the level of the
integrand by writing also the virtual corrections as angular integrals, which is what we will
do in the following. The cancellation of collinear divergences will be discussed in detail in
the next section. While the collinear divergences cancel in the end, their presence means
that (3.6) is not well defined on its own. To make it well defined, one could introduce an
intermediate collinear regulator when computing the individual pieces. This is done e.g. in
parton showers, which put a small cone around each hard parton and then compute both
the real and virtual contributions with a cutoff. However, with the implicit divergences
present, (3.6) is not the anomalous dimension in standard dimensional regularization: for
this to be true, we would need to regularize and extract all divergences dimensionally. We
will come back to this issue in the next section.

Applying the soft factorization (3.1) at the one-loop-level, the virtual correction takes

the form
Hol(n), Q0 = £ /ddq - A
m\y, &, €) = : ; ;
2 & (2m)% % + 40 [n; - ¢ + 0] [—n; - ¢ + 0]
X E ' T,] Hm({ﬂ}a Qv 6) + h.c ) (37)

where the factor two corrects for the fact that the unordered sum (ij) includes every term
twice and T;- T = >, T7T;'. We have written out the loop correction to the amplitude, the
hermitian conjugate adds the correction from the loop in the conjugate amplitude, which
has the opposite ¢0 prescription and has the color matrices act on the right-hand side of
the hard function. The ¢0 prescriptions in the above integral refer to outgoing lines ¢ and j.
The result with incoming lines is obtained by substituting ny — —nyg for k =i or k = j,
which switches the i0 on the corresponding line.

To write the infrared divergence as an angular integral, we first perform the integration
over ¢° using the residue theorem and then extract the IR divergence of the |q| integral.
To simplify the discussion, we use the identity

1 -1

— — 2mid(n; - .
gt i0 - “mgtao  2rolnia) (38)




inside the integral (3.7). In the part without the d-function both poles of the light-cone
propagators have positive imaginary parts. They can thus be avoided closing the contour
in the lower half-plane, which picks up the residue at ¢° = Eq — 0. Doing so and then
performing the energy integral with an upper cutoff, as in (3.4), we get

HO((n),Q,¢) = — 21 (ZA) ST T /dQ ({0}, Q.6) +he.,  (3.9)

AT € o
which corresponds to an anomalous dimension entry of
—22 L * jL+1—1ZR CZ—ij)/[qu] WZ? (310)

(25)

where we added the contribution of the conjugate amplitude.
For the part with the J-function we first symmetrize the integrand under ¢ — —q to
get a second delta function

HY ({n}, Q.c) = i T / d§ n RO Dy, (). Que).

(3.11)
The leading IR pole of this is unambiguous, subleading terms in € depend on the details of
the UV regulator. The easiest way to obtain the IR pole is the replacement

d . ) gd-2
/d ¢ , 1 /d(nz q)d(n; - q)d LIV
( N = M

27T)d (27T)d - |qi|) ’ (312)

where treating the perpendicular component as purely spatial gives the correct result for
the leading pole because such a frame obviously exists. Then the divergent part reads

ozs i

W ({n} Q) = ZT TjHm({n}, Q ¢), (3.13)

which implies that the contribution to the anomalous dimension is

(b):—QZ[ﬂL'T}',L_E,R':Tj,R]XiTrHij‘ (314)

The minus sign for the conjugate amplitude arises because it has the opposite imaginary
part. The imaginary part originates from the cut through the two eikonal lines and is often
referred to as the Glauber or Coulomb phase. It is not present when one line is incoming
and the other outgoing. This is reflected by the factor

1, 1,7 both incoming or outgoing,
Il;; = (3.15)

0, otherwise .

For the rest of the paper we will focus on cases where all lines are either incoming or
outgoing. For these cases II;; = 1 for all 4, j and we can then use color conservation

YT, =0 (3.16)

~10 -



to eliminate the Glauber phase

D [Tr-Tjr—Tir-Tjrl =Y [-Tr-Tir + Tir-Tir] =0, (3.17)
(i7) @

since TfL = TfR = (;, the quadratic Casimir associated with the corresponding line.

4 Collinear singularities

We now discuss the collinear singularities in the one-loop anomalous dimension and their
cancellation. The one-loop anomalous dimension was obtained by considering a single soft
emission and the collinear divergences arise when the emission is along the direction of
one of the m hard partons in the function #,,. As we will explain in this section, these
collinear configurations cancel between real and virtual terms in the anomalous dimension.
Since they cancel within the anomalous dimension they can be kept implicit and do not
need to be subtracted. However, in the determination of the two-loop anomalous dimension
we also encounter collinear singularities when two soft emissions become collinear. These
cancel against collinear configurations in the soft functions and are part of the anomalous
dimensions, as will be explained in the later sections.

4.1 Subtraction and cancellation of collinear singularities

When adding the real and virtual contributions and applying them to the trivial tree-level
soft functions §,, = 1, one finds

(Hon ® (Vi 1+ Rp@1)) =4 3 /[qu] W ot (ng) (Hon @ T4 - T5), (4.1)
(i)

where we used the cyclicity of the color trace (...) to move the color generators acting on
the left of the hard function to the right. We also defined 04y (1) = 1 — 0in(ng). Since the
gluon is always outside, it can never become collinear to the hard partons along directions ¢
and j so that the angular integration is finite. A useful property of the result is that the
soft function is trivial in the fully inclusive limit where no veto is imposed, i.e.when there is
no outside region. This property links the virtual corrections directly to the real emission
result and is useful at higher orders.

To demonstrate the cancellations of collinear singularities more generally and to have a
form of the anomalous dimension that is valid within ordinary dimensional regularization,
we now make the collinear divergences in V,,, and R,, explicit. To do so, we introduce an
angular J-function

[ 5(0, —n2) () = £ () (+2)

and a collinearily subtracted dipole operator, which acts on angular functions f(n,) as
follows [12, 34]

f(ni) —

n; - ng g - Ng

/mm%ﬂwzﬂmqum— )| @)
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In the subtraction terms, we can carry out the d-dimensional angular integration using

(0 = [la9) - = S = 5 + 000 (4.4

We can now separate out the collinear pieces from the anomalous dimension

R, =R, + R, =-4 Z Tir-Tjr {nggin(nq) + c(€) d(ng — ny) + c(€) 6(ng — ny)} )
()

Vi = Vo 4 VE =2 (T - Typ + Tog - Th) [ / (d92) T Bin(n) + 2c(e)} . (45)
@

and we can further simplify the collinear pieces using color conservation

m = +8c(e ZT ng —n;),

= —8¢(e Z Ci1. (4.6)

To establish the cancellation of collinear singularities we should show that when the
combination acts on a soft function we get zero. Applying the real and virtual part, we
obtain

(Hm @ (ViSm + R, ©8m41))

= =80(6) 3 C (Hn © ) +8¢(€) (TP HnT! © Sy - (4.7)
Note that we have performed the trivial angular integration over the extra gluon produced
by Rf,, so that two of the Wilson lines in &,,41 are collinear. For the trivial tree-level

soft functions &, = 1 the cancellation of collinear singularities among the real and virtual
contributions immediately follows from the cyclicity of the trace

(TPHWTE ©1) = (HaTETE 0 1) = Cy (Hy @ 1), (4.8)

However, it also holds for the nontrivial higher-order soft functions 8§,, as we shall demon-
strate now. To see this consider the splitting amplitude for the process in which a parent
parton P splits into collinear partons 1 and 2:

Sp({pLPQ}) ’Mm({Pv p3y. .. 7pm+1})> = |Mm+1({p17p27p37 s 7pm+1})> . (49)

Charge conservation implies that the splitting amplitude fulfills (see e.g. [26, 35])

(17" + T3') Sp({p1, p2}) = Sp({p1,p2}) TP - (4.10)

The color state of the partons after the decay corresponds to the color state of the parent
parton. The soft function for the two collinear partons contains Wilson lines for partons 1
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and 2 along the common direction P. Since the generators 1 and 2 commute, the Wilson
lines combine into a single Wilson line with color T} + T¥":

S1(n1)8S2(n2) = S1(np)Sa(np) = S142(np). (4.11)

Then one can use the color identity for splitting functions (4.10) to exchange the Wilson
line and the splitting amplitude

S1+2(np) SP({p1,p2}) IMim({ P, p3, - - - s Pmt1}))
= Sp({p1,p2}) Sp(np) IMm({P,p3, ..., Pm+1})) - (4.12)

In other words, the Wilson lines after the collinear splitting can be combined into the
Wilson line of the parent parton. The operator RY, is the soft limit of a sum of splitting
functions for the emission of an additional gluon from each leg and we can thus use the
identity (4.12) to move the splitting after the soft function, i.e.

where the soft function &,,+1 on the left-hand side contains two collinear partons, while the
one on the right-hand side only has the parent parton &,,. Equation (4.13) expresses soft
coherence on the operator level and once we use it to shift the collinear pieces to the end of
the emission chain they cancel against the collinear singularities of the virtual diagrams
when taking the color trace as in (4.8). With this we establish the cancellation of collinear
singularities also for nontrivial soft functions.

Suppressing the multiplicity index and writing the one-loop anomalous dimension as

r) =r4re (4.14)

one can also show that T°T = I'T¢ [12], using the same arguments as for the soft function,
so that we can commute all collinear pieces I' to the right in expressions such as

(HeoTWar® . erias). (4.15)

Then one moves the collinear pieces past the soft function using (4.13) where they vanish as
shown in (4.8). We can thus replace T'™) by T in (4.15). Due to the cancellation of collinear
pieces, the form of the anomalous dimension is not unique, we can always add or subtract
collinear pieces of the form (4.6) with coefficients that depend on the individual legs.

Let us add an important side remark: in processes with initial-state partons the Glauber
phases do not cancel. The Glauber phases do not commute with the collinear emissions
I'¢ associated with initial state legs, which then leads to the appearance of super-leading
logarithms [10-12].

4.2 Collinear anomalous dimensions in dimensional regularization

As discussed above, the form of the infrared singularities of massless scattering amplitudes
(M ({p})) is by now very well known [24-29]. Up to two loops their structure is especially
simple as they follow from an anomalous dimension which has the dipole form

r({sh.p) =Y 2D
(i9)

2
Yeuspl(@ts) In L= 4+ 37 7(@) 1. (4.16)
ij P
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This anomalous dimension does not immediately translate into a result for V,, and v,,
because the definition of the hard function (2.5) involves integrals over the energies of
the hard partons. However, for small values of m the energy integrals are fixed by the
momentum conservation constraints since the directions of the hard partons are fixed.
The hard function involves m — d integrations, so that for m < 4, the energies of the
partons can be expressed in terms of directions and the center-of-mass energy ). For
m < 4, equation (4.16) directly yields the result for the virtual anomalous dimensions in
dimensional regularization. At one-loop, we have

dim.reg. Ly p?
| & ——% ) (E,L‘T',Lln_sij_i_io‘FE,R'T},Rln —SU—’LO> 22'70
(4.17)
The one-loop coefficients are 'y = 4, and 7 = 7§ = —3CF for quarks and 7§ = 7§ = —f3 for
gluons. The formula for the two-loop result v,, has the same form with the corresponding
two-loop coefficients. We note that s;; = 20;; p; - p; + @0, where the sign factor o;; = +1 if

the momenta p; and p; are both incoming or outgoing, and o;; = —1 otherwise. Using that
2 2
K M .
In — —1In — g IL;; 4.18
—8i5 + 20 2p; " Dj & ( )

we see that formula indeed produces the Glauber phases, which cancel by color conservation
if all particles are outgoing.

According to the discussion above, we should find that this anomalous dimension can
be written in terms of the collinear subtracted anomalous dimension plus collinear pieces

deim.reg. —_ Vm + Z ‘/Z.COH' . (419)

To match the two forms, we can use that

2 s O ]
/[d Q| WY = In ==, (4.20)
which allows us to write
. — r
Vs =V = S (M Tt T Ty gt =3 0i1 (421
&) 2 2E 2F;
:Vm+§i:2(ciro ln2Ei—’yé>1, (4.22)

where we have used color conservation in the second line. The result clearly displays the
structure anticipated in (4.19).

5 Two-loop anomalous dimension I'(?)

In this section, we now turn to the two-loop anomalous dimension. As in the one-loop case
discussed in detail in section 3, the anomalous dimension can be extracted by considering
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the soft limit of amplitudes and extracting the infrared singularities associated with this
limit. To get the contribution associated with the two-loop anomalous dimension, one
has to first remove the contributions which arise from iterating the one-loop anomalous
dimension. We will discuss this in detail in section 7, but want to first present the result of
this extraction and discuss subtleties associated with collinear divergences and with the
choice of the renormalization scheme.

5.1 Diagrammatic result for the anomalous dimension

As indicated in (2.7), the two-loop anomalous dimension has three different types of
contributions. The entries d,, are associated with double real emissions, r,, describe
real-virtual terms and w,, contains purely virtual divergences. The part of the anomalous
dimension, which describes the emission of two particles along the directions n, and n, is
extracted by considering the soft current for the emission of two particles, identifying the
associated divergences and removing the strongly ordered contribution which corresponds
to the iterated one-loop result, as was done in [15] and will be detailed in section 7. The
result for the double real part of the anomalous dimension is given by

dy, = Z Zifabc ( i(,ZLCZ}?LTkC,R - Ti[,lRCI}?RTkC,L) Kijkqrtin(ng)bin(nr)
(i) k

=23 T T (KijigrOin(ng) 0 () + CeonWs Oin(ng)d(ng — ) . (5.1)
(i)
As in the one-loop result (3.6), we should distinguish the color indices of the emitted

particles in the amplitude from the ones in the conjugate amplitude. To be precise, we
should for example replace

if T T T — T T i T (5.2)

in the first term in d,, to properly indicate that two new gluons are produced with color
indices a, b in the amplitude and @, b in the conjugate amplitude. To keep the notation
compact, we will write the color indices in contracted form as in (5.1) throughout the main
text. Similarly to the example (5.2) it is easy to reconstruct the full result with open color
indices for the other terms. We will do so in section 8 when we present the final result for
the anomalous dimension.

The anomalous dimension d,, in (5.1) consists of three pieces. The first is a term
involving three color generators, proportional to the angular function [15]

Kijk%QT =38 (Wgc jrk - VVi%gWJrq - VVg‘ jrk + Wz%%%) In <Zzz> > (53)
where we introduced the abbreviation ng, = ng - np. This function has the property that it
vanishes in all collinear limits. The notation (ij) in (5.1) refers to a sum over unordered
pairs of legs, which includes both a term with ¢ = 1, j = 2 and one with ¢ = 2, j = 1. Below
we will also encounter sums over unordered triplets (ijk) of legs. As it stands, the first
term in (5.1) also generates contributions involving only two legs, since the sum over k is
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unconstrained and includes k£ = ¢ and k = j, however due to Kjji.qr = Kjjj.qr = 0 these
terms vanish. Following Caron-Huot [15], we split the two-particle term as follows

Kijigr = CaKy )+ [npTp — 2Ca] K\ 4+ [Ca — 205 Tp + nsTs] K50

(5.4)

where np and ng are the number of fermions and scalars included in the theory and Tr
and Tg the traces of the associated generators. The individual functions are given by [15]

an; NiiNn NigMj
a 7 1, T (2 T
Kz‘(j-)qr _ J 1+ iTq In et
’ NigMgrNjr NigNjr — NirNjg NirNjq
(b) . 87”Lij niqan
e = In (5.5)

)
Ngr(NigNjr — NirMjq) — Mirlijq
4 NigMir + NirT; NigM i

K(C) _ iqTjr irfjq g, MigTgr o)

igiqr T 2 i — T Tl M
’ Ngr \MigMjr — Nirljq  Nirlljg

These functions are finite when ¢ or r become collinear the legs 7 and j, but there are
collinear divergences when ¢ becomes collinear to r. In [15] the motivation for splitting
the two-particle term in the above form was that only the first term is present in N = 4
supersymmetric Yang-Mills theory. We are primarily interested in QCD, but allowing for ng
scalars is also useful when adopting renormalization schemes such as dimensional reduction
(DRED) which involve e-scalars, see e.g. [36].

In addition to the implicit collinear divergences present in Kjj.4-, the final term in the
anomalous dimension involves a purely collinear term proportional to

2C 4
Teon = V(IZUSP — TA (2 —cr+ 27T2) + 3 (Cyq —2npTp +ngTs) , (5.6)

which is proportional to the angular d-distribution introduced in (4.2). The value of the
coefficient I'co;; depends on the treatment of spins in d-dimensions. To be able to consider
different renormalization schemes, we have introduced a variable cg which tracks e-terms in
gluon spin sums. For the result in conventional dimensional regularization (CDR) we need
to set cg = 1. The collinear terms involve the two-loop cusp anomalous dimension

67 w2 20 8
cusp _ 4 . Cr— ZnpTe — —nel . 5.7
m ((9 3) 4 9nF g 9nS S) >0

Note that, throughout our paper, the symbol ~;™" refers to the value of this anomalous
dimension in conventional dimensional regularization (CDR). The terms proportional to
[con are different from the rest of the terms in d,, in that it is the angular integration, which
produces the divergence, while the soft integral itself is finite. The terms can be extracted by
considering the collinear limit of the real emissions and extracting the associated divergence,
see section 7.1. As mentioned earlier the ¢ || r collinear divergences cancel soft function
collinear divergences and are part of the anomalous dimension. To demonstrate this we
extract the collinear divergence of the soft function in appendix C, and show that it indeed
matches I'cop.
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The real-virtual part extracted from soft limits of diagrams takes the form!

P = =230 S ST T T~ TR T L) [ 4] Kijiarbin ()

+8imy Y if ( LT RT g + TYRT) LT, L) W5 In Wi Oin(ng)
i

4B0 87T2CA a a
(4SS o). 59
()

€

where we have taken the real part from the exclusive calculation, performing the energy
integrals using the residue theorem, and the imaginary part from the inclusive calculation
with the one-loop soft current. We want to have the real emission part in the form of an
angular integral in order to make cancellations of collinear divergences manifest, while it is
sufficient to obtain the imaginary part inclusively. Let us note that in contrast to d,, the
sums involving the angular function Kjjj.qr in 7, do produce two-leg contributions from
the terms where 7 = j since Kjjj.qr is non-zero.

We have extracted soft divergences associated with energy integrals but have kept all
angular integrals d-dimensional. The entire anomalous dimension should thus be integrated
over angles in d dimensions and this result is clearly not the anomalous dimension in the
standard MS scheme. This is particularly important for the divergent term in the last line,
where O(e) terms from the angular integral can contribute finite pieces in the anomalous
dimension. The divergence in the last line also makes it clear that the anomalous dimension
Tm in (5.8) is not yet in a useful form since it contains an explicit collinear divergence which
must cancel against collinear divergences from other terms. A related problem affects d,,
the angular integrals over Kj;,, produce a collinear divergence when ¢ becomes collinear
to r which must be regularized dimensionally. After giving also the result for the fully
virtual piece, we will rearrange the anomalous dimension in such a way that the collinear
singularities are manifestly cancelled when adding real and virtual contributions. After
this we change the scheme to the standard MS scheme in which angular integrations in the
anomalous dimension will be performed in d = 4.

For the double-virtual contribution the calculation in section 7 yields

Om = Y if “bc( fL T T~ E?RI}?RTE,R) / [d€2] / (A% ] Kijkiqr
(igk)

+ 2 (T + TiRTin) { [1d9] [ 49] Kijr

(i5)

2 47?2 C
+ (_50 + Leon + T A) /[qu] WZ}

3

3 (T T~ T A (5.9)
)

!There is an ambiguity in the extraction of the terms oc Ca7? in our computation of 7., and v, see (7.34)
in section 7. In the results presented here, the coefficient of the Ca7? terms in the last line of (5.8) and
third line of (5.9) were adjusted to be consistent with the checks performed in section 6.
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The real part of the result was obtained by performing the energy integrals using the residue
theorem. The extraction of the imaginary part is delicate since it is associated with Glauber
phases, but the above form is consistent with the general result for the IR divergences shown
n (4.16). All angular integrations in (5.9) have to be performed in d dimensions because of
collinear divergences, which are present both in implicit form in Kjj., and explicitly in the
term proportional to Bg.

5.2 Collinear rearrangement

The anomalous dimension presented above suffers from both implicit and explicit collinear
divergences. In order to have these regularized, it is necessary to keep all angular integrals
in d dimensions. Such a renormalization scheme is unconventional and not suited for
implementation into a parton shower framework. The key to solving this problem is
the identity

1
/ () Kijrgr = 20 [ﬁo( —i—ln(QWq)) 775
Teo 220 cp—1
EREEENPE R

which is derived in appendix A. We first use this identity to add zero to the real-virtual
part in such a way that the explicit divergence proportional to £y is converted into the
angular integral on the left-hand side (5.10). This yields

m=-2) Z ifabc(Ti(,lLT]b,RTlg,R - E?RT}ZJ,LTIE,L) /[dQ ] Kijksqrin(ng)
— £

+ 8im Z Z i fabe ( TbRTk r+ T TbLTk L) Wi In Wfk Oin(ng)
i (k)

+2) T TR / [dQ] Kijqrbin(ng) ZT Ty pW [450 In(2W;)
(ij)

4 CR — 1)C A
+ ,y;usp _ 2Fc011 —+ (3) Qin(nq) . (511)
Then, we observe that the collinear contribution proportional to §(ng —n,) in the double-real
part is physically indistinguishable from the real-virtual part. This allows us to move this
term from d,,, to the real-virtual part. Adding it cancels the I'cop term and yields

=-2)"3 if*e( '(,ILT]?RTI;R - Ti?RTJb,LTkC,L) /[er] Kijkqrbin(ng)
v (k)
+8im Y > ifte (T, ( TP Ty g+ E?RJB?LTIS,L) Wi In W3 0in(ng)
i (k)

+2 Z TgaR / Q] Kij;qrain(nq)

4(cr —1)Cy

3 Oin(nq) , (5.12)

— Y T T W [450 In(2W7) + 1" +
(7)
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while the double-real part simplifies to
dp =) > it ( T T R — E?RCI?RTI;L) Kijkqrbin(ng)fin(nr)
(ij) K
— 23 T T K Oin (1) O () (5.13)
(i5)

Next, we use the identity (5.10) to carry out one of the angular integrals in the Kjj.4r
term in the purely virtual part which then becomes

O = i f ( LTy T L — E?RI?RTI;R) /[qu] /[er] Kijsqr
(igk)

T, + TRT R 4Ca(cr — 1)
+y =t S / [d92) Wi [480 (W) + 7™ + ————
(i)
’Lﬂ'Hl
- ( i1 T — E?RTJ'C,LR> N (5:14)
(i7)

This eliminates the .o term present in (5.9). As a final simplification, we can set cp = 1
to get the result in CDR.

Even after this rearrangement, the individual pieces of the anomalous dimension contain
collinear divergences. These cancel in physical quantities in the same way as for the one-loop
anomalous dimension discussed at length in section 4.1. For example, the divergences in the
last line of (5.12) cancel against the ones in the second line of (5.14). As in (4.3), we could
introduce subtracted dipole functions in which the divergence is removed, but equally well
we can introduce some intermediate angular cutoff, as is done in a parton-shower framework.
After this, the angular integrals in these terms can be carried out in d = 4.

We already discussed that Kjjj.q, is free of collinear divergences so also these terms
can be integrated in d = 4. The only terms in which implicit collinear singularities are still
present are the integrals over Kjj.qr in dy, given in (5.13) and rp, in (5.12), but note that
in the combination these terms take the form

dy + T = =2 T T p Kijigrbin(ng) (Bin(ne) — 1) + ... (5.15)
(i)
and 1 — 6in(n,) = Bout(ny). Since the vector ng is inside the jet and n,. in the veto region,
the combination d,, 4+ r,, is free of collinear divergences so that also for these terms the
angular integrals can be carried out in d = 4. In the form (5.12) and (5.14), we can thus
take the limit d = 4 in all the angular integrals associated with the two-loop anomalous
dimension and this form is suitable for implementation in a parton shower framework.

5.3 Change to the MS scheme

The renormalization condition (2.9) and the associated anomalous dimensions involve
angular integrals in d-dimensions. It would be inconvenient and unconventional to keep
these integrations d dimensional and in the previous subsection, we have written the
anomalous dimension in such a way that we can make the transition to angular integrals in
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d = 4 and perform subtractions in the usual MS scheme. Before changing scheme, let us
first rewrite the renormalization conditions (2.10) and (2.12) in compact form

s — g _ Lpwgy
2¢ ’
s = s _ % [r<1>®r<1>®1 + 2601“(1)@1}
8e
1 N N
- [T@&1 + 20W@smen® 4 45,570 M)]. (5.16)
€
For brevity, we have dropped the multiplicity indices on the anomalous dimensions and the
soft functions.
To see that the renormalization conditions (5.16) differ from standard minimal subtrac-

tion, let us give the explicit result for the renormalized the one-loop soft function ngn(l) in
this scheme. The bare soft function is

dd—l
Snm({n},Qo) = —g; ZT m P Wq 0(Qo — 2E4)0out(q) (5.17)
and the one-loop subtraction was given in (4.1)
— %r == ZT T / [d2) Wi Oout () - (5.18)

This form of the subtraction removes all higher—order terms in € associated with the angular
part of the integral in (5.17). We thus also subtract finite terms so that this is not a
minimal subtraction. Expressing the bare quantity gs in terms of the MS coupling a; and
performing the energy integral, we find

s = 23T Ty =2 o /[ 20| WiOout (n) (5.19)
7
)

This result is not equal to MS renormalization for the soft function as we will see explicitly
in the next section, when we compute Sren(l) for the case of the two-jet cross section.

To change to the standard MS subtraction scheme, we should perform the subtractions
in (5.16) using angular integrals in d = 4. To do so, we now rewrite angular integrals as
integrals in d = 4 plus a remainder. Using the notation defined in table 1, we write

rWe1 =1Wd,1 +2e1Wd, 1, (5.20)

where we denoted the two-dimensional angular integral in d = 4 by the symbol ®o and the
remainder using the symbol ®.. In the remainder, we have factored out a prefactor 2¢ for
convenience. Using angular integrations in d = 4, the one-loop renormalization reads

ren(l) _ g(1) _ Qir(l) %91, (5.21)
€

S

where Sren(l) is the one-loop soft function renormalized in the MS scheme. Compared to
the earlier prescription, this corresponds to a finite shift

ren(1)

sren) — g™ g 1. (5.22)
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Converting to the MS scheme not only induces a shift in the renormalized function but also
changes the expression for the two-loop anomalous dimension

1

5 _ g2) - [Fm 29 TV @91 + 28,71 @ 1}
1 r- Sren Qren
I [1“@) @21 +2T0 @, 8 1 45,8 (1)} ) (5:23)
€

where the two-loop anomalous dimension in the MS is given by

I'®©,1=r®g,1-28T"M g 1-— (I‘(l) @, TW @, 1-1W g, 1M g, 1) .
(5.24)

To derive the additional terms in the anomalous dimension, one starts with (5.16), rewrites
the d-dimensional integrals in terms of 4-dimensional ones and uses (5.22) to express Sren()
in terms of the MS one. Note that the second term has the form of a commutator of
angular integrations associated with the two emissions. For independent emissions, this
part vanishes because of the symmetry among the emissions. However, for the two-loop
non-global piece we get a non-zero contribution, because this part involves one gluon outside
and one gluon inside the jet region and the O(e) pieces of the two angular integrals are
not identical.

The result for the two-loop anomalous dimension in (5.24), together with the two-loop
ingredients T2 = dpy +7m + U, given in equations (5.13), (5.12) and (5.14) and evaluated
with angular integrals in d = 4, is the final result for the anomalous dimension in the MS
scheme, suitable for numerical implementation.

6 Finiteness check for the two-jet cross section

Given the subtleties in the extraction of the anomalous dimension, it is important to have
a consistency check to verify that it indeed correctly renormalizes the divergences in the
hard and soft functions in the factorization theorem (2.3). We will now verify finiteness
for the case of the Sterman-Weinberg two-jet cross section [37], for which the hard and
soft functions were explicitly given in [14]. To simplify the two-loop computations [14]
used the thrust axis as the jet axis. As in the original definition, back-to-back cones
with a half-opening angle a are put around the jet axis and one then restricts the energy
outside the jets to 2FEy, < Qo = Q3. We define the abbreviations r = §% = tan?(a/2) and
A =cosa = (1—r)/(1+r). While we assume that § is small, we consider a situation
where § ~ 1 so that we do not encounter large logarithms of the opening angle.

The results for the bare soft functions can be most compactly written in terms of the
harmonic polylogarithms Hy, .. g, (r) introduced in [38] (see [39, 40] for a MATHEMATICA
implementation). In terms of these functions, the bare one-loop soft function reads

Sgl) —ACy (é;) [Hoe(r) +2H _5(r) — Hoo(r) — 7(;2 +0(e)] . (6.1)
0
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The poles of the bare two-loop soft function are

@

€

2\ 2 [280Ho(r) + Ca (8Hy(r) — 8H_(r) — 22
- (60w 1) [P ol et )

+ % ('y‘f;sp Ho(r) + 480 [3H _a(r) — Ha(r) — H_10(r) — Hop(r) + Hy o(r)]
—8Cy |:6H—2,71(’I“) —5H_20(r) —2H_91(r) — 2Hs,_1(r) + 3Hao(r) — 2H2 1(7)

- 7:Ho(7’) + Cs} —2(Ca —2nFTF) - ;‘zl+_4:2;10(r)> + 0(60)1 . (6.2)

We have not written out the C% terms, which follow trivially from exponentiation.

Let us start with the one-loop counter term. Applying the anomalous dimension to the
tree-level soft function 890 = 1 and using color conservation T + T§ = 0, we get

Ry, 80+ visy) =23 [ a0, | Wi (T 180 + ST, 1) - 21250 T7 01(0))
(i)

A de 2
_ 2 q _ -
_ 8CF/Out [@0,] W, = SCFLA T
= SCF ln(r) = SCFH()(T) s (6.3)
where we used the short-hand notation
|0 Wiy = [[0] banWhy = [0, 1 - tu@Wh. (64

Inserting this result into the renormalization condition (5.21) and comparing with (6.1), we
see that we indeed obtain the renormalized function in the MS scheme.

The angular integral (6.4) also arises when computing the renormalized function in the
renormalization scheme with d-dimensional angular integrals in the subtractions. Inserting

it into expression (5.19), we get
S0 g0 L) (6.5)
u

which explicitly demonstrates that this scheme does not correspond to the usual
MS subtraction.

Now we proceed to the two-loop results. The leading divergence in (5.23) involves the
square of the one-loop anomalous dimension

Y@, T ®y1 =Ry ®y (R3®2 1+ V3) + Vo (Ry @214 Va), (6.6)
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whose individual terms are given by
Ry @5 (R3 ®2 1+ Vi) = 320k / [qu} / [dZQT] [— 20 WLWY,
in out

O (W Wh— W — wgf)] | (6.7)

Va(Ry @21+ Wp) = —64012?/[0129(1} / {dQQr} WihWiy,

out
where we introduced the abbreviation

ni12

W{IQT = WfQWqT2 = Wf2W7?1 = (6-8)

N1gNgrNy2 ‘
Combining the real and virtual contribution has cancelled the collinear divergences in the
angular integral over r and adding the two pieces in (6.7) also removes the ones associated
with the ¢ integral so that the result

T @ TW @y 1 = 64C2 / t [0, / t (@20, Wi,

+3204C / [0,] /

in out

(@20, | (Wi W, — Wi — W)

= 64C2 [Ho(r)]? + 64CrCy [HQ(T) ~H () — 717;] (6.9)

is finite. Looking at the result and inserting it into (5.23), we immediately see that these
terms indeed cancel the 1/€% divergences in the two-loop soft function (6.1).

As discussed in section 5.3, we also need to compute the O(e) terms in the angular
integrals in (6.9) since these arise when transitioning to the MS, see (5.24). Specifically, we
need the term

D@, Mo, 1 -TW @, TW @y 1 = 16CrCA[ — 2H_3(r) + 2H_o0(r) — 4H_5(r)
— 4H2’_1(7’) + 4HQ,1(7“) + 4H3(7“) — Cg] , (610)

whose computation is detailed in appendix B. The other term in (5.24) is 260 T @, 1,
determined by the O(¢€) terms in the one-loop angular integral (6.3)

2

t[qu] quQ =8CF [Ho(T) +€ <2H_2(T) — H070(T‘) - >] . (6.11)

rvgl = —8CF/ ;

ou

Since the dipole Wi, consists of back-to-back vectors in the jet direction, the angular
integral can also be written in the form

JeeVEE +A 1 14e eVE€ 1
df) qzi/ d( ) :7/ d2Q,| = (2wa)tre .
/out[ q} W12 F(l o 6) _A ¢ 1— C2 F(l _ 6) out [ Q] 9 ( W12)

(6.12)
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We can trade the d-dimensional angular integral for integral over the logarithm of the dipole
in d = 4. For the two-jet case, we have

2

g, 1=—-4Cp / |d2Q,| Wi, In(2W,) = 4Cr <2H2(r) — Hoo(r) — ”) . (6.13)

out

6

Having evaluated the terms associated with the scheme change from I'® to the MS
anomalous dimension f(z), let us now evaluate the contributions from the anomalous
dimension I'® itself. Evaluating the sums for the two-particle case, where the indices can
only take the values 1 or 2, and performing the trivial color algebra, we get

r® ®R21=dy®21+72R®21+ v
= QCFCA/ {dQQq] /{d29r:| (K112;qr + K221;qr)

in
- 2C'F/ [dQQq} / {dQQT] (K12;qr + K21;q1“)
in out
1
—8Cp / a2, | W, (ﬂo In(2WE,) + 47‘;‘@) : (6.14)
out
Note that the imaginary parts of the anomalous dimension do not contribute when it acts
on the trivial tree-level soft function. Because of this, our consistency check does not test
the imaginary parts. Note that the test does involve the three-particle correlations Kjx.qr,
but here only the real-virtual part rs contributes. The double-real contribution vanishes
because K;ji.qr = Kijj.qr = 0 and the double-virtual part requires three different legs.
We see that the In(2W) term the last line of (6.14) cancels against —25,T'") ®, 1
given in (6.13). We still need to evaluate the integral over the two particle terms, for which
we find

/i [dzﬂq} /Out [dQQT} (K12:9r + Ko1,4r)
1 — 4+ 472 Hy(r)

:4(CA —2nFTF) 3(1 —T2)2

+ 8Ca[2Ha0(r) — 2H _20(r) + (3]

7T2

+ 8,80[H2(T’) + H_LO(T') — H_Q(T) — HL()(T) — F] . (6.15)

Finally, we need the contribution from the three-particle correlations for which we get

/in [d29q} /[dQQT} (K112gr + K22154r)

in out

N1gM2gM1rN2rNgr nirnor

= 16[H_3(7‘) — 2H_27_1(7“) + H_270(T) + Cg] , (6.16)

where we have used the antisymmetry of the integrand under ¢ <> r to eliminate the
‘in-in’ contribution.

With this we have all two-loop terms associated with the anomalous dimension. The
final ingredient to check finiteness in (5.23) is the product

M g, &Y =1 g, [§O) - 2lr<1> @21 . (6.17)
€
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Rewriting it in the form shown on the right hand side is convenient because we can use the
result (6.9) together with the results for the angular integrals in appendix B, which leads to

2

) 2
0 g, & = 3202 Hy (r) (Ho(r) In <gg> — Hoo(r) + 2H_o(r) — )
0

2 2
+ 320}?0,4{ (HQ(T‘) + Ha(r) — 12) ID<Q[2)>
- H_g(T‘) — 2H_27_1(T‘) + 2H_270(T‘) — _HQ,O(T)

+2H1(r) + H3(r) + gHo(T) - C3] : (6.18)

The detailed derivation can be found in appendix B.

With this we have evaluated all the individual pieces entering (5.23). Plugging in and
adding up, we find that the pole terms cancel the ones present in the bare soft function (6.2)
so that we end up with a finite renormalized function (5.23).

7 Extraction of T'® from soft limits

In the following we derive the diagrammatic result for the two-loop anomalous dimension
T'® presented in section 5.1. As in the one-loop case discussed in section 3, we proceed
by considering the soft limits of the hard function. Thus, the anomalous dimension does
not subtract hard-collinear divergences from the hard function, but those can only appear
in the in-region where the energy is unconstrained and thus cancel in the sum of real and
virtual contributions by virtue of the KLN theorem. On the other hand, soft-collinear
divergences are absorbed into the anomalous dimension. However, contrary to the one-loop
case analyzed in section 4, they no longer completely cancel between the real and virtual
contributions at two-loop order. The reason is that the double-virtual configuration where
the two-loop momenta are in the out-region and become collinear to each other has no
analogue in the double-real and real-virtual contribution. For this reason, we will have
to carefully track divergences arising when two soft momenta become collinear, as will be
explained in detail in the calculation presented below.

7.1 Double-real contribution d,,

We determine the double-real emission entry d,, of the NLO anomalous dimension by
considering the limit where the last two partons in the hard function H,,+2 become soft. At
leading power, the two soft partons can either be two gluons or a quark-antiquark pair and
we denote their momenta with ¢ and r. In addition we consider the production of a pair of
soft scalars in the color-adjoint representation to allow a more detailed comparison with
the results of [15] in the DRED scheme. In (5.4) we have grouped the two-parton function
Kij.qr into SUSY multiplets as [15], but in our explicit computation, we will separately
extract the gluonic, fermionic and scalar pieces and split

Kijigr = CaKf

ijqr T npTrKE. . +nsTsK (7.1)

ijiqr ijiqr
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The individual pieces are of course immediately obtained from the functions K z(] 211“’ Kg-);)qr,

Kz(j )qr given in (5.5). We note, however, that the function Kjj.q arising in the explicit
computation is manifestly symmetric in ¢ and r, in contrast to the expressions (5.5) which
were simplified using the fact that the anti-symmetric part does not contribute to the

anomalous dimension result.

In the case of two soft gluons with polarization vectors €}, 1(¢q) and &}, 5(r), the
amplitude takes the form

M5 ({pa,7D) = B{J“v%q),ﬂb(r)} +g§z’f“bcsz"<q,r>] et o M ({2))

(7.2)
where the color-connected part reads [41]
S QR . A A TR Gkl e -l R
2n;-(q+7r) [ni-q ni-r q-r

When integrating the current over the phase space of the two soft gluons, one needs to add a
factor of 1/2! since they are identical particles. Note that the color generators T; associated
with different legs commute since they act in a different space. The anti-commutator
in (7.2) is thus only relevant when the two generators involve the same leg, i.e. for the terms
{T?, T?}. The two terms in (7.2) are not separately transverse but their sum is. As in the
one-emission case, the non-transverse pieces vanish due to color conservation. To apply it,
one needs to combine the anti-commutator from the first terms with the commutator in the
second, as explained in [41, 42]. The above results are valid in a physical gauge, where the
sum over polarizations takes the form

Nuqy + qun
du(q) = =g + % ) (7.4)

but since the currents are transverse, we can omit the gauge-vector dependent terms and
replace d.,(q) = —guw-

Using (7.2), the hard function takes on a factorized form in the double-soft region

dE,ES? rdE, B3 [1
Ly = ,a v,b w,a v,b
o =5 [ G [ e | 10 @ T LT @), 7))

U S g ) (TEH{ T (@), T (1)) = {(T(0), T () Hon T
2 4k ¢, ) \ Tk Hm 1 " v YT

+ gsCA Z JM Q7 )J (Q7 T)T‘ia?'tml—']q‘| ein(nq)ein(nr)a(/\ - Eq - ET) . (75)
7-]
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After the energy integration we obtain
Qg 2 m 4e Y . Wq W]rl 1 27‘(‘2
Homsa = (477) (2/\) Oin(ng)0in (nr) %Z{T , T YA T T }T 273

Kijk;qr + Kz(;l)c qr
8e

+ Z Z if e (TEH{TE T} — (T T} M TE) [

+Ca Y TiH T}
(i)
T r T A A (5)
) {WZ%WU — 2WEWS, — 2WE W ( 1 2w2> | Kl + K

N WkaT W we o2
2 62 3

1 igsqr ijsqr €
2 €2 3 2€

o).

(7.6)

where we have expanded to O(e”). The finite terms in the energy integration contribute to
the anomalous dimension because of implicit 1/e poles that are generated by the angular
integration. However, in the angular integration of the finite terms we only need to consider
those 1/€ poles which arise from the configuration where the emitted gluons with momenta ¢
and r become collinear to each other, because the cancellation of singularities from emissions
collinear to the hard lines is guaranteed by the KLN theorem, as detailed in section 4. Thus,
we can expand the finite terms in (7.6) around the limit where both emissions are collinear,
i.e. ngy — 0. Dropping integrable terms which do not result in 1/e poles, we obtain

2
A _ 20 = 6er (n w) 6w

ijsqr 2 T
7 9ng, Nig Mg

. (7.7)

Ngr

whereas K l(],)c ar

The fact that the O(e”) terms in (7.6) only contribute via the collinear configuration allows

vanishes. The collinear expansion of the finite 72 terms is straightforward.

us to perform one of the angular integrations once and for all — independently of the shape
of the veto region. We find

waon- (2" ()" o[ 5 e

i,9,k,1

. rabc c a b a b c WZ%CWJTQ Kijk;q’r
20D (TiHn (T T} — (T T HTE) | g+ =
(i7) k

WIW? — AWIW? KA
a a ij 'V ij ij " jq ijsar
+CAZTZHmT] ( 2€2 + 2¢ >]
(i5)
204 (67 cp 272 o a 0
L (9 +5 - 3) STHT [ [UIWG O (0

The renormalization condition states that the poles in this expression must be removed by
the counterterms contribution

2
-1 N R
<as> |:7'Lm®Rm®Rm+1 + = eI_1|_1®Rm+1 + Hm®dA (79)

4 8e2
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Here H;;" | denotes the hard function in which the divergence associated with the extra
emission has been renormalized. This does not arise in our computation since we only
consider divergences in the region where both gluon momenta ¢ and r become soft. The first
term removes the 1/€2 poles in (7.8) which originate from strongly-ordered contributions
and we can solve for the two-gluon emission part of the anomalous dimension. We obtain

z Z Zfabc ( LI’JQLTIS,R - E?RT]%RTICC,L) Kijk;qrein(nq)ein (nr)
(i) k
—2Cy Z T, T3 K’L] gr0in(ng)bn(nr)
(49)
67 CR T
B I Z L TirWijbin(1g)0(ng — ns) . (7.10)

(25)

To extract the anomalous dimension, we can set p = 2A in (7.8), since the divergent parts
involving logarithms of y are subtracted by the H}} | @Ry,41 contribution.

Next, we turn to the fermionic part of the anomalous dimension. The amplitude with
a soft quark-antiquark pair reads

M o({p,0, 7)) = 06307 T*00) 5o Tuala + P)Mu({ph), (711)

and we obtain a simplified expression for the hard function in the soft region E, 4+ E, < A

ngl]
%m+2 % ZTQ HmT 91n<nq>91n(n7’)
dE, dET Nig Njr + Nir Njq — Nij Ngr
O(A—E,—FE,), 7.12
E2 B2 (Egnig + Erng) (Eqnjq + Ernge) n2, ( 1 ) (7.12)
where np denotes the number of massless quark flavors and Tp = 1/2. The energy

integration yields

as\2 [ 1\ aKgquerfF)
Hm+2 (47r) <2A> npTp ZT HinT; - Oin(nq)0in(nr) (7.13)

where we only obtain a single pole because the configuration with a single soft quark or
antiquark is power suppressed. Again, we only require the collinear limit of the O(¢®) term
which takes the form

Kifar = ~g,2.

2 q
B 20 <n nﬂ) WL (7.14)

Nig  MNjq

Performing the angular integration over the finite part, we find the contribution to the

anomalous dimension

52
dh = —dAnpTp Y T TiR [Kg;qr Oin(n) —

< Wij 8(ng = nr)| Oin(ng) - (7.15)
(7)
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Last and least, we consider the amplitude with a pair of soft scalars in the color-adjoint
representation

Mo (20 rD) = 007 oL 7, (g4 Mo ({2])) (7.16)

q
2q-r

The hard function in this configuration reads

gingCy
s = (g 2T T o)
qu dE,  (Egniq — Ernir) (Bgnjq — Erngyr) O(A—E,— E,)
Eq1+26 E%—i—QG (Eqniq + E’I‘ni?”) (Eq’rqu + E’r‘an) ngr q )
(7.17)

where ng denotes the number of scalars. The energy integration creates a double pole which
vanishes due to color conservation. For the single-pole contribution we find
2 4e KS. 4 K3,
Qs Iz ijiqr ijsqr
2§+2 = (47‘(’) <M> TLSCA % 1-%(1 %mljja “oc Hin(nq)ein(n’r’) )

where
A(nignjr + nirnijq) I a"ir 8 (7.18)

2 M. . m. o 2
nqr(nlqnﬂ“ n”’n]q) NirMjq nqr

KS

17,97 =

and the collinear limit of the O(e”) term is given by

2
€ 2 ir i
G — <” - "J> +o (7.19)
' 9n2 n Nig  MNjg
Proceeding as before, we find the following contribution to the anomalous dimension
S a S 20 q
dy, =2nsCa Y T Kb (ne) + — 5 Wi ©6(ng —ny)| Oin(ng) . (7.20)

(i5)
Summing up the contributions from gluons, quarks and scalars, we obtain the result
presented in eq. (5.1).

7.2 Real-virtual contribution 7,

As we have discussed in section 3 for the one-loop case, we want to make the cancellation
of soft-collinear divergences manifest by also expressing the virtual contributions as angular
integrals. Nevertheless, the inclusive results in dimensional regularization will prove useful
for the determination of the imaginary parts of the two-loop anomalous dimension where
no cancellations between virtual corrections and real emissions can occur. Thus, making
use of known results for the one-loop soft emission, we first consider the inclusive version
of the real-virtual corrections where the entire loop integration has been performed. The
matrix element with L 4 1 loops and m + 1 legs takes the form [31]

MED (. a}) = £t [T @IMP {p}) + T @M ()] (7.21)

1 dor 1
— *H (1) O) () = 0t (0) (L)
= Cm+1 lJu ald )+Ju,a(Q) 2 / (2m)d 72 _|_Z~0Ju,b (T)Ju,b (T)] My ({B})>
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in the region where the loop L + 1 with the associated loop momentum r routed through a
gluon line? and the leg m + 1 with momentum ¢ both become soft, while all other internal
momenta are considered hard. In this expression, we have expanded the soft current as

2
g2
Ja(q) = gs lJ,Sﬁ(q) + 1o J,f)l(q)] : (7.22)

The term with the integrated one-loop soft current

[3(1—e)T%(1 +e)

Il €
’ifabc Z TbTC nj'u _ nkﬂ A7 W]k 1l
e2T'(1 — 2¢) T i\ njq ngkoq) |2B2eimhae g

(7.23)

is purely non-Abelian while the second term in (7.21) is Abelian and its contribution will
be fully removed by the TM&TM counterterm.

In the limit where the leg m + 1 becomes soft the (L + 1)-loop hard function takes
the form

atr i) ()3 (r)

v,

27)d r2+i0

gs Oin(ng)
4e (2m)d—2

L 7+ 2 [ HE T (ng)

,a

(7.24)

where we have carried out the trivial energy integration. We obtain

Mo en) _ (o) ()" L yv, oR,, (7.25)
m+l1 Abelian 41 2A 4e2 :

s\ 2 4€P3(1—e)r21+e b b
_ s abc na (L)
Non-Abelian (47[') (2A) €3 P(l - 26 Z Z f T T H

L+1
Ho D61

2Wq —mH]k €
gk ] (7.26)

o B / [dQq) (W — W) [_ne-n

The poles in this expression have to be removed by the counterterm

2
s -1 A N
(L) [862H;§>®Rm(vm+1+250)—%< V&R + E%fgnv@“)@Rm

ren 1 A
+ %ﬁé ) (Vi1 — 260) + L H G (7.27)

where the contributions from the third and fourth terms vanish because the renormalized

2Quark loops are power-suppressed in the soft limit.
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hard function vanishes in the soft region. Summing up the contribution we find

abc a b
1 Non-Abelian <4ﬂ—> { 2 ZZ f T T 7'L

L (L+1)®1 _ H(L+1)

m+1 m—+1
(jk) ¢
T(—€)e® | fnie\ "¢ [nrg\ | .
X/ [qu] WZ [IS(F)QQ l(;) _<2q> +am (Hkq_ij) +h.c.
Bo “ " 1 .
_Eng HT; /in[dﬁq] Wi+ - HE Orm (7.28)
ij

where we have evaluated the contribution of the extra gluon in V41 using the integral

—E)eVE [\ €
/ (A9, WY = FF((;_)ZE) (”2]) +0(e) (7.29)
in order to match the current (7.23) which also is given in integrated form. We note that in
the case where the directions ¢ and j are back to back, the higher-order corrections in €
vanish and formula (7.29) becomes exact.

From the result (7.28) we can now read off the imaginary part of the anomalous
dimension as

fm [r] = — 87 > S i f U TETPHTE W (I — Ty — Tig) In (205, ) 61 (ng) — hic.,
(k) i
(7.30)

where we have dropped terms that vanish due to color conservation. Since we divide by 4
to obtain the imaginary part, we need to subtract the hermitian conjugate in (7.30). The
factor in the imaginary part simplifies to Il;;, — ILj; — IIx; = 1 when j and k are both
incoming and II;, — II;, — Iy, = —1 otherwise, because ¢ is outgoing and this has been
exploited to simplify a term proportional to (1, — IL;, — Hkq)2 = 1. This implies that the
imaginary part takes the simple form

Tm [r,] = SWZZ i TETPHE T W n (W, ) 6 (ng) — hic. (7.31)

when the hard function involves at most one incoming leg, and we will exploit the observation
that the contribution from legs i, j and k is the same when j and k are both outgoing or
when one is incoming and the other is outgoing below.

As stressed above, the integrated form (7.23) of the soft current is not suitable to obtain
the real part of the anomalous dimension 7,,, since we want to work in a scheme where all
energy integrals are evaluated in the presence of a UV cutoff and the angular dependence
on the loop momentum r is kept explicit. To determine the real part, we now extract the
real-virtual result from the diagrams shown in figure 1. We write the contributions with
gluon attachments to the lines 4, j and k in the form

L a a
HE 01 =33 W% 4 he., (7.32)
i (jk)
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Figure 1. Real-virtual diagrams. We denote the contribution from the left four diagrams as part
[a]) while the upper and lower diagram on the right are parts [b] and [¢], respectively. The symmetry
of part [a] under exchange of j and k is broken when these lines have opposite directionalities
as considered here. In this case there is a second diagram in category [c], where we attach to k
instead of j.

for v = a,b. Using color conservation, also the contribution [¢| can be written in this way.
In this work we are interested in processes where all eikonal lines are outgoing. However, as
pointed out above, the configuration where j is outgoing and k is incoming yields the same
result as the case where all lines are outgoing. This allows us to perform the calculation of
the hgj‘,]g for the configuration where the line j is outgoing, the line k is incoming and the
directionality of the line ¢ is arbitrary. This has the advantage that no Glauber phases occur
which considerably simplifies the calculation. While we adopt this kinematical configuration
for the calculation itself, we then use that the result is the same if all lines are outgoing when
we carry out the sums over all hard partons pairs (jk) in (7.32). We note that the light-like
vectors ny are always defined with ng = +1 and thus 0 < n;; < 2. The contribution from
the Abelian diagrams in part [a] of figure 1 takes the form

y 4 d dy. 9 20(A — E

htd = 25

ik 2 in(27r)d (27T)d [7"2 + ZO] n;-q

{ i LTTAHOT? | YT THTE
[

i+ 0]y - (g —7) + i0

—n; -1+ 10 nj-q

B ik Nk
[=nj -7 +i0)[=n - (¢ + r) + 0]

TTTHOT  TTTHOT
—ng -1+ 10 —ng - q ’

where we have routed the loop momentum such that the only pole in the lower half of the
complex 70 plane is at 0 = E, — 0.
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To obtain the anomalous dimension, we now want to separate out the soft region in
the energy integrals by putting an upper cutoff on the energy integrations. For the real
momentum ¢, we have already imposed a cutoff §(A — E;) in (7.33), and after closing the
contour it seems natural to put an upper limit (A — E,) also on the energy integration
associated with the loop integral. We would then have a cutoff §(A — E;)8(A — E,) in the
real-virtual diagrams and 6(A — E, — E,) in double real diagrams. The energy integrations
with the two cutoffs differ at O(?),

O(A—E)0(A—E.) A %1
/qudET Eq—QeglET—QE—I T4 e
OA—E,—E,) A (1 27
/ e e o - & RX<(GS (7.34)

While the difference between the cutoff prescriptions is finite, the 72 term becomes relevant
when one encounters a collinear singularity in the angular integrals. If this is the case, it
produces a contribution oc C47? in the anomalous dimension. While a separate cutoff on
the real and virtual contributions seems natural since the observable only constrains the
real emission energy, one could also argue the one should impose the same cutoff in both
types of diagrams to ensure the real-virtual cancellations predicted by the KLN theorem.
On a more basic level, our problem is that we want to extract an anomalous dimension in
dimensional regularization by imposing cutoffs in integrals. Unfortunately, for the oc Cy7?
terms, the result depends on the way in which we impose the cutoff. Since we do not see a
simple way to resolve this ambiguity, our method does not predict the oc C47? terms. For
simplicity, we will impose the cutoff (A — E, — E,) in all computations below, but neither
of the two cutoffs prescriptions (7.34) leads to the correct result for the 72 terms. However,
the correct coefficient of the 72 term can be inferred by comparing to the explicit result for
soft functions at NNLO. In our results given in section 5.1, the coefficients of the C' 472
terms in 7., and v,, were chosen so that the result for I'® passes the finiteness check in 6.

Returning to (7.33) we now close the countour in the lower half and pick up the residue
at 7 = E, —i0. After performing the energy integration with the cutoff 6(A — E, — E,),
we obtain the following result for the Abelian diagrams [a].

e ()2 )" o f

1 2r? 2i TP TEH T :
{W% ” l_ ( ﬂ)‘{i}“,’—’}"}Tﬁ%%m“ — Hn>_”H

e 3 € Njr
FWAW, [— (1—27;) oz e 2D (Zz)] } |
(7.35)
The non-Abelian diagram in part [b] takes the form
B 9s abCTchH(L)Tg/ d’q / d'r 215, (¢*)0(A — Ey)
ik g TITRTIm Lo@m)d ) (2m)d [r2 4 i0][(g — r)2 + 40]
9 nij k- (r—2q) +njpni - (g —2r) +ngng - (g+7) 7 (7.36)

[ni - ql[n; - (g —r)+i0][—ng - r + 0]
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and after closing the contour in the lower half to pick up the residues of the two gluon
propagators and performing the energy integration we obtain

h[b] _ Qs 2 I A . abchTcH(L)Ta dQ a0
ijk = \ 45 9\ if T T, T m[ gl [ [dS2]

- - 1 2
(2WEWE, — 2WEW, + WEWE — Wi WE) (262 - 3)

— (2 W, + 2WR W — 2W W, - W) w

o) 52)
i [ -2

+ (2WAW), + 2WH WL — 2W W), —

ng
T L_W:_ln(”’;‘)
LA DYS R €

€

-

(7.37)

where the terms in the last line are transverse and will vanish in the sum over ¢ because of
color conservation.

The contribution [c] involves only two legs. In our calculation, we will again consider
the case of an outgoing leg j and an incoming leg k, but at the end extend the sum over all
j and k. In order to avoid double counting, we therefore compute the average

H D [Z nd + Z hl | + hee. (7.38)
For the two kinematic configurations, we have
d d 2 _ q, .
e CAT“’H(L)T“ / diq / d r 2‘;5;((1.)9(1\ Eg)wfj nj - (q+ 2@
J (2m)d J (2m) o (12 +140][(q + 7)? + i0][—n; - r + i0]

o) H * (L) 0 QO q 1 In % —am )
(4#) (2/\) CalyHo T /in[d q}/[d ]W Wi 22 us

€
2
—<lnjq—i7r> +4Lig<— ]r>—4<lnjq—iﬂ'>ln<l+ﬂ>+...
Njr Njq Njr Mg

Bl iggcAT“H(L)TF‘/ d%q / dir  2m64(®)0(A — Eg)Wi ng - (¢ — 2r)
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In part [c] we have kept the finite terms of order €”, because there is an implicit divergence
in the angular integration when ¢ and r become collinear and consequently a contribution
to the anomalous dimension as discussed above for the double-real contribution. We now
rewrite the contribution (7.38) in the form (7.32) by applying the color identity

CA ATiuTe = N i fetert TP Ty (7.41)

oy

0 (7.39) and a similar identity to (7.40). Averaging the two terms as in (7.38) yields

h[C] _ (%)2 (N)4E ifabchTcH(L)Tg/ [dQ ]/[dQ ] wWrwe L _ In (an) —im
ijk A 2A JrkTtm Fi . q T 13 'V ar 262

€

2
+ dimln(2) — 7;] — Wi W [ +} (7.42)
€

where we have only kept terms that are singular as ¢ and r become collinear in the term of
order €. Summing up the contributions, we observe that the logarithmic terms in (7.42)
cancel against terms in (7.37). We find

hijx = (Z;)2 (2'[;&)46 /in[qu] /[er]

q r q

W r
- TH{TE TOHG T 5

a b L)
{ (T} T T — 15 =

WqW WqWT —|—WTWq— rWwi
+ Zfabci—uijkc%%)fl-; [ kq ik = ik ir

+ Kz'jk;qr - Kikj;qr + 8ZW(WZWka + WZ%CW]C(] Wq qu jrkWigﬂ)
—4e

Wq W 472
+n<2mln()—3>]+...}, (7.43)

which is renormalized by adding the contribution of the lines 4, j and k to the countert-

erm (7.27). Assuming a process where all color-charged lines are outgoing, the final result
for the renormalized hard function then follows by using color conservation to remove terms
that are proportional to ), T = 0, using symmetry under exchange of the lines j and k
for simplifications, and performing the angular integral over €, for the imaginary part. We
note that the imaginary part in the last line of (7.43) cancels against the corresponding
contribution in the Hermitian conjugate. We have explicitly checked that the terms of
order ¢ in parts [a] and [b], which are not given above, do not contribute to the final
result because they are either finite in the collinear limit or also cancel with the Hermitian
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conjugate. We finally obtain the result

ren Qg 2 . rabe c a 2Kz o
o1 (5) {ZZ#”TJ’%%&%’E [ a2 [/[dszr]_ifgq
i GR) in

8ir Wi (W)
—4e

_ @ B 4C 472
€2 3e

where we have set y = 2A for simplicity. The imaginary part is in agreement with the

+ + h.c.

1 ~
STy [ 10w+ 46715,%)@%} - (1.44)
ij

expression (7.31) obtained in the inclusive calculation.

From these results, we read off the anomalous dimension

=23 S T T T~ T T ) [ 1890) Kijicaria(n)
i (jk)
+8im >3 if e (T TP LT g+ TERTLRTE L) Wik In W 01 (ng)
(ij) *

46  16C 47> o e
+ (6 - 3 ) (z; E,LI},RWi%Ginmq) . (7.45)
ij

The prime in 7, indicates that this result was obtained with the energy cutoff (A —E,— E,).
For a cutoff O(A — E,)0(A — E,), the 72 terms in the third line of (7.45) would be absent.
In the result for 7, given in (5.8), the coefficient of the 72 term has been adjusted by hand
such that the result passes the finiteness check in section 6.

7.3 Double-virtual contribution v,,

Based on (4.16), we argue that the imaginary part is given by

o = - X (TTE, — TaTy) 0 TR (740
(7)

As in the RV part, this allows us to compute at least the 2-particle contribution in a
configuration without picking up residues of Glauber poles and to obtain the full result via
appropriate generalization.

We first consider the diagrams involving only two eikonal lines ¢ and j shown in figure 2,
where we distinguish between three parts [a], [b] and [¢]. Similar to the real virtual part, we
express the full contribution in the form

H LNl — Z hE?] The., (7.47)
(i)
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Figure 2. Double-virtual diagrams involving two eikonal lines ¢ and j. We denote the contribution
from the two Abelian diagrams as part [a]), the contribution from the diagram with a three-gluon
vertex as part [b] and the self-energy contribution as part [c].

and compute the hz[-‘;-‘] with a = a, b, ¢ for the configuration where the line ¢ is incoming and
the line j is outgoing such that no Glauber phases appear. For part [a], we have

plal _ _g?/ d4q / dér n%j
Y 2 J(2m)® ) 2m)¢ [=ni - q +i0l[=ni - (q+ 7) + i0][=n; - (¢ + r) + i0]
1 TiaTiijaT]b%m TﬂTibTJbT]@Hm
[¢? +10][r2 +i0] | —nj-q+1i0 —nj -1+ 10

, (7.48)

where the momentum has been routed such that the only poles in the variables ¢ and °
are in the lower half of the complex plane. After closing the contour and picking up these
poles we perform the energy integration with the UV cutoff §(A — E, — E,) to isolate the
IR divergences and obtain

2 4e
[a] _ Qs M T arqb a b 1 ™
= (5) (3x) [1a0d [1aen Wiquw{ﬂ THT Iy o (22 - 3>

Ca 1 w2 NigNjr + NirNjg In Z:{ZW
o BT (32— 3 )+ “

2¢2 3 NigNjr — NirNjq €

igMyr 4, Mia"q | ALy (1 _ ””‘) — 4Li, ( — nﬂ’") ﬂ } . (7.49)
NirNjq Nir N Nig Njq

For part [b] we consider the average of the diagram shown in figure 2 and its counterpart

+ In

with legs ¢ and j interchanged. After some manipulation and momentum shifts, we obtain

L _ 95Ca ﬂq/wr i TP T Ho, 4
94 ) (2m)d ) (2m)d [g2 +i0][r2 + i0][(qg — )2 + i0] | [-n; - 7 + i0][-nj - 7 + 40]
1 1
_ — , 7.50
[—n; - ¢+ i0][—n; - +40]  [—n; -7+ i0][—n; - ¢ + i0] (7.50)

where it is now straightforward to evaluate the ¢° and ¥ integrals in the spirit of the
Feynman tree theorem [48, 49]. We use the identity
I 1 2mid (¢ — E,)
?+i0  (¢¥ —i0)? — E? 2F, ’

(7.51)
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after which we can proceed with the second term by simply closing the r° contour in the
lower half of the complex plane which yields the sum of the residues of the two remaining
gluon propagators. In the first term we shift ¢ — ¢ + r and then apply the same identity
after which one can also close the 0 contour to pick up the residue of the third gluon
propagator. Overall, this is equivalent to the replacement

1
[q? +40][r? 4 i0][(¢ — )2 + 40]

51(q*)d1(r?) | 04(¢®)dr((g—7)%) | 64(rH)ds((g —r)?)
o [[(q — )2 440 + [r2 + 0] [q2+—|— i0] 1 ’

(7.52)

i.e. to taking the sum over all possible ways to cut two of the gluon lines. Evaluating the
energy integration with the UV cutoff §(A — E, — E,.), one obtains

2 4e
Bl _ Qs 1\ Ca arpa / /
i (47r> <2A> 5 LT Ho [ [dQ] [ [dS]

In Zia®ir
( L N )niqnjﬂrmr”jq[ Ririjq

niqnjrnqr nirnjqnqr niqnjr — nirnjq €

I ey, Malia gy, (1 - ”) — 4Ly (1 - ”J> ] : (7.53)
NirNjq  NirNjr Nig Njq
The self-energy contribution denoted as part [c] is of the form
Bl _ 95 paagy / @y / dr ni
w2 L em)d ) (2m)d [—n; - (g + 1) 4 40][—ny - (¢ + 1) +190][(q + )% + i0]?
Guvq T — quTv — Q@Why (q - T)[t(q - 7a)l/ (3 - QCRe)g/w
AnpT, —ngT Ca| — ———75—
{ MR R o ] S ol 1 a0 A (12 + i0]

n (5¢% +8q -1+ 57"2)9W, —2(3 = cre)(qury + qury) — 2(1 4 cre)(quqy + rury)
2[¢? + i0][r? + 0] '

(7.54)

We now apply the UV cutoff (A — E, — E,) to isolate the IR divergence and then perform
the ¢” and r¥ integrations similar to part [b]. We note that the contributions from the
double pole in the squared propagator 1/[(q + r)? 4 i0]? involve the self energy and its
derivative at vanishing external momenta which are scaleless. Thus, this step effectively
reduces to the replacement 1/([¢? + i0][r? + i0]) — —47%6,(¢*)d+(r?). Performing the
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energy integrations, we find

2 4e 2
[C] M aa nsTs i ™
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where at order € we again only require the terms that are singular in the configuration
where ¢ and r become collinear. These terms

(7.55)

2
gse _ 32 32 [ni  nyr 8 [y _ M) (q_"ur .. (7.56)
wiar n2. 92 \niy nj 3n2 Nig Njq ’
16Wq
F,(e) S,(€)
Kijar = KZJ ot nor L+ (7.57)

differ from their counterparts in the double-real part by terms that only depend on at most
one of the two eikonal lines ¢ and j. We now renormalize the sum of the parts [a], [b] and
[c] with the two-particle part of the counterterm

4 8¢e2
and after setting u = 2A, we obtain

a ctren S 2 _2 T T ]_ 1
h£j+b+ +ren] _ <Oé) Ea@qﬂm/[dﬁq] (Ca—2npTp+nsTs) I
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B Wi Wi (670,4 Cacr 26npTr 1On5T5>

qr
—4e
(7.59)

where the terms in the first line vanish due to color conservation, because they at most
depend on a single direction ¢ or j.

For the three-particle diagrams part [a], we have
plal _ s [l / d'r Mk jk
ik 2 J (2m)d ) (2m)4 [—n; -+ i0][ng - (¢ + 1) +0][—n; - ¢ + i0]
T T | TOTITETY
ng - q + 10 ng -7+ 10

1
[q2 + 10][r2 + i0]

(7.60)
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Figure 3. Double-virtual diagrams involving three eikonal lines ¢ and j.

According to (7.46) the imaginary part in the double virtual contribution arises from
two-particle diagrams and there is no Glauber phase in the three-particle contributions.
We can thus ignore Glauber poles and replace the gluon propagators in (7.60) using the
Cutkosky rule

[¢? + iO]l[rﬂ a0 —4n*0, (‘JQ) 0+ (7“2) (7.61)

to pick up the residues. We observe that there are no singularities when ¢ is collinear to

r and will therefore not include the terms at the order €. Evaluating the energy integral
with the cutoff §(A — E, — E,.), we obtain

pel — (2 (L oy (o) wiwsd mertre, mya, L
ik = \ 47 I q eI WigWiky L5k ks Ttm

2
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For part [b], the integrals are written as

4 d d
[b] — gis d q /d r . abCTquTC
it =6 Jamd Jana ! LT
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[—n; -7+ 10][nk - (¢ + 7) + i0][—n; - ¢ + i0][¢? + 0][r? + i0][(¢ + r)? + 0] (7.63)
With the same argument, we replace the gluon propagators by
1
g% + 30 [r2 + 0] |(q + 7)° + 0]
SR N 8 e o o (R N K (L )
—_— 7'(' .
[(q+7)* +10] [ + i0] [q? + i0]

The integrals contain ¢ || 7 collinear singularities at order € but the collinearly divergent
terms only depend on two legs and vanish due to color conservation. Evaluating the integral
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with the cutoff §(A — E, — E,.), we have

2 4e
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The first two 1/€? terms of this result have kinematical functions which are symmetric
under ¢ <> k and j > k, respectively, but multiply anti-symmetric color structures and
therefore vanish when summed over. The last two terms at both 1/¢? and 1/€ only depend
on two legs and vanish by color conservation. The 1/€? terms in (7.65) therefore all vanish
and the counterterm %Vme’Hm removes the abelian divergence in (7.62). Combining
the remaining non-abelian term with the one in (7.65), we find

a+b
h’E]k }

2
— _ (Zi) Zfabc’_z—;a’I’ijkC%m/[qu] / dQ ] szk qr - (766)

non-abelian

Adding up the results, we get the double virtual anomalous dimension

’U;n = Z Zfabc( LTbLTkL E?RIB?RTIS,R) /[qu] /[dﬂ | K, ijkiqr
(i5k)

£ 3 (T, T ﬁR){/[qu]/[dQ] iar
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2 8120
! <_ﬁ0+rcoll+ : A) /[qu] WZ}
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cus HZ
Z( 1 Tj, — T’k fR)v pmzj (7.67)
(i)

The prime in v}, indicates that this is the result obtained with the energy cutoff (A—E;—E,),
see the remarks after (7.45). The explicit 72 term in the anomalous dimension (7.67) differs
from the one in (5.9) by a factor 2 and cancels against the implicit one in T'co).

This concludes the diagrammatic extraction of the anomalous dimension. In section 5,
we have taken the diagrammatic results for d,,, r,, and v, derived here and rearranged
their collinear singularities in such a way that the anomalous dimensions become suitable
for numerical evaluation in d = 4 and implementation in a parton shower.

8 Summary and discussion

In the following we present the final result for the anomalous dimension, compare to the
literature and then discuss some of the subtleties we encountered in our computation.
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8.1 Result for the anomalous dimension

The factorization formula for non-global observables splits the cross section into hard
functions H.,,, and soft functions &,,,. The hard functions H.,, consist of squared amplitudes
with m hard partons along fixed directions, while the soft functions &, describe the soft
emissions from the hard partons and are given by matrix elements of Wilson lines along the
directions of hard partons. The anomalous dimension of H,, is related to soft singularities
of scattering amplitudes with m hard partons. At one-loop level the anomalous dimension
matrix has two types of entries: R,, absorbs soft singularities in real emissions, while V,,
contains the ones in the loop diagrams. Explicitly, the one-loop anomalous dimension is
given by

Ry =-4) T T W 0n(ng),
(i)
2> (T TjL+ Tir-Tjg) / [d29q} W
(i5)
) 1 cus
—ir Y 5 [Tn Tip = Tor- T 5", (8.1)
(i5)

Vi

where the soft dipole is Wg- = ni;/(nigngj). The color generators T; 1, and T; g act on color
of the i-th parton in the hard amplitude and its complex conjugate, respectively. The entry
R,,, maps m-parton hard functions onto (m + 1)-parton hard functions and the constraint
0in(nq) ensures that the additional hard parton along the direction n, is inside the jet region.
The additional gluon induced by R,, has color index a in the amplitude and index & in the
conjugate amplitude. The virtual piece V;,, keeps the number of partons unchanged. The
individual entries R,, and V,, contain collinear divergences when the additional parton
q becomes collinear to partons ¢ or j. As discussed in detail in section 4, the collinear
singularities associated with final-state partons cancel when the anomalous dimension is
applied to the soft functions. The quantity II;; = 1 if 7 and j are both incoming or outgoing
and II;; = 0 otherwise. For eTe™ collisions we have only outgoing QCD partons so that
II,; = 1 and the Glauber-phase terms in V,, proportional to 75" = 4 cancel by color
conservation. For hadronic collisions this is not the case, and the Glauber phases spoil the
cancellation of the soft-collinear singularities associated with the initial state. To analyze
hadronic collisions, the collinear singularities in (8.1) must be made manifest, see [12].
Their presence leads to double logarithms known as super-leading logarithms [10, 11]. A
form of (8.1) suitable for hadronic collisions was given in [12] and used to resum these
super-leading logs to all orders. In our paper, we restrict ourselves to e*e™ collisions.
The two-loop anomalous dimension matrix has three different types of entries. The
elements d,, describe singularities arising in unordered double emissions from the original
hard partons, and it maps from the space of m hard partons to the one of m + 2 hard
partons. The entries 7, are related to soft singularities in real-virtual corrections and map
m parton hard functions into (m + 1)-parton hard functions. The third and final entries
v, relate to the soft singularities in two-loop virtual corrections and leave the number of
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hard partons unchanged. Our final result for the three entries reads

dp=> > ifee (E?LI?,LTIE,R - E?RT']?),RTIS,L) Kijkqr Oin(ng)fin(n,)
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This expression involves the functions Kjj.qr and Kjjj.qr introduced by Caron-Huot [15],
which are given in (5.4) and (5.3). These angular functions depend on the light-cone
directions n, and n, associated with emissions or loop-momenta, and the directions n;,
n; and ny of the hard partons. As they stand, the quantities d,,, 7, and v,, contain
collinear singularities when the emitted partons are aligned with the hard partons along
directions n; and n;. In addition, the two-loop hard functions also contain singularities
when the emitted partons along n, and n, become collinear. In our result for r'® we
have rearranged the collinear terms so that the cancellation of collinear singularities in
the angular integrals is manifest. To achieve this, we have shifted terms in d,, describing
collinear configurations to r,.

As stressed earlier, we should distinguish the color indices of the emitted partons
in d,, and 7, in the amplitude from the ones in the conjugate amplitude. To keep the
notation compact, we write the indices in contracted form in (8.2) and (8.3), but it is easy
to reconstruct the result with open color indices. For the three-parton correlations in d,,
we should replace

. pabc a b e a b e a b : eaberc @ b - pabere
if ( i,LI},LTk,R_Ti,RCI}‘,RTk,L) = T Ty if T g — TRT pif T, (8.5)

to properly indicate that two new gluons are produced with color indices a, b in the
amplitude and @, b in the conjugate amplitude. Similarly in 7,,, we should replace

if T T RTY g — TPRTY [Ty ) — T i fT) g T g — TPRi f° T T, (8.6)

to indicate that one extra gluon is emitted, with color index a in the amplitude and & in the
conjugate amplitude. The only piece where the restoration of color indices is more involved
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is the two-parton correlations proportional to Kjj.qr in d,,. The color index in CZ“ZCLT]C R
refers to the parent parton which branches into two quarks, scalars or gluons. To, for
example, restore the color indices of the emitted quark-anti-quark pair, one should replace
F d d F

Ti T pCrnpTe Kl = TE T (1) (89) 1 nw Ky (87)

The results (8.2), (8.3) and (8.4) correspond to a renormalization scheme in which all
angular integrals are kept d-dimensional. Changing to conventional dimensional regulariza-
tion and using standard minimal subtraction (MS) induces additional contributions related

to € terms in the angular integrals of the (iterated) one-loop terms. The full anomalous
dimension in the MS scheme, integrated over directions is given by

T @1 =T® @, 1-25T"e.1- (TWerWe1-10e 10 e,1),
(8.8)

where T'® contains the elements dp, T and vy, given above. The explicit form of (8.8)
for the two-jet case was presented in appendix B.

Let us compare our results to those of Caron-Huot [15], who tracks real-emissions with
a color density matrix U. In his results for the anomalous dimension, terms with two
such matrices correspond to our d,,, terms with a single one to 7,,. He distinguishes color
matrices acting on the left and right, but he defines this relative to the color density matrix.
His left color matrices therefore act to the right of the amplitudes and to compare to his
results we should thus exchange T; 1, <+ T; g in our results, which changes the sign of the
three-particle terms. In addition, there is a relative minus sign between our definitions
of the anomalous dimensions. Accounting for these conventions, our results (8.2), (8.3)
and (8.4) agree with (3.21)—(3.23) in his paper [15] when using the value of ycusp in CDR.
The Glauber terms in v,, are not shown in his result but cancel by color conservation in
ete”. Note however, that the additional terms in (8.8) are not present in his result. What
Caron-Huot denotes as his MS result therefore corresponds to a non-minimal scheme where
full d-dimensional angular integrals are subtracted, see the detailed discussion in section 5.3.

This year a new formalism for the resummation of subleading non-global logarithms
was presented in [17, 18]. It extends the BMS equation [3] to subleading logarithm and
is valid in the large N, limit. As we do, the authors verified their result against the
two-loop results for the dijet cross section [14] so that there is agreement at this level. It
will be interesting to compare the resummation in more detail, for which they presented
numerical results very recently [18]. Other recent works considering the all-order structure
of non-global observables include [43-45] but these papers do not claim higher-logarithmic
accuracy. The paper [46] has analyzed the color structures in the anomalous dimension
in the color-flow basis, which is suitable to analyze them in an expansion around the
large-N, limit [47]. In the strict large- N, limit, the squared amplitudes can be described
by dipoles and the anomalous dimension only acts on the dipoles. Genuine three-parton
correlations are then color suppressed and the anomalous dimension can be written in terms
of two-parton contributions.
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8.2 Subtleties in the computation

It is gratifying that our explicit computation of the anomalous dimension matches the
indirect determination of [15], but there are several aspects of our computation which
make it quite delicate and susceptible to mistakes. Fortunately, our comparison against the
two-loop results for the dijet cross section [14] provides for a strong check on our final result,
but we nevertheless would like to review some of the issues that complicate the extraction
of the anomalous dimension. In the calculation, multiple issues can destructively interfere,
but let’s discuss them in turn:

Collinear singularities. The individual elements of the anomalous dimension contain
two types of collinear singularities. First of all, there are singularities when the emissions
become collinear to the hard partons. These cancel within the hard anomalous dimension
after applying it to the soft functions since the soft functions are regular in the collinear
limits: the higher-multiplicity soft functions describing the process after an emission reduce
to the lower multiplicity soft functions in collinear limits. Rather than explicitly subtracting
these types of collinear singularities in dimensional regularization, we rearranged and
rewrote the matrix elements d,,, r,,, and v,, in such a way that the singularities and their
cancellation becomes manifest in angular integrals. In this form the anomalous dimension is
suitable for a parton shower implementation, where the collinear singularities are typically
regularized with an intermediate angular cutoff.

A second type of collinear singularity arises when two soft emissions become collinear.
This type of collinear singularity is present in the soft functions and its cancellation involves
both the soft and hard functions. Since it does not cancel among the hard functions
themselves, it must be subtracted and is part of the hard anomalous dimension. These
singularities can be extracted by considering soft limits of hard functions, but the collinear
divergence in the angular integrals can multiply a finite contribution in an energy integral.
It is therefore generally not sufficient to keep only the divergent part of energy integrals
when determining the anomalous dimension. In our derivation we therefore also included the
terms Ki(;)qr,
which contribute to the anomalous dimension. The collinear terms in the double emission

which are e-suppressed compared to K;j.,- but contain collinear singularities

d,, can be absorbed into 7, to cancel real-virtual collinear contributions. The treatment of
the collinear singularities is different in [15]. Rather than computing the collinear terms,
Caron-Huot first extracts the anomalous dimension ignoring the collinear singularities in
Ko
renormalization scheme where they are absent. While the end result is the same, we believe

but then performs a collinear subtraction in the form of a scheme change to a

that the explicit computations in our paper clarify the extraction and subtraction of these
contributions.

Energy cutoff. We isolate the infrared singularities in the hard functions by putting a
UV cutoff on the associated energy integrals. If there is a single divergence, this procedure
is unambiguous, but in cases with double divergences, the result can depend on the form of
the cutoff and it is then unclear how it translates to the anomalous dimension in dimensional
regularization. To isolate the two-loop divergence, we can subtract the strongly ordered
part of the soft limit so that we are left with a single divergence. However, due to collinear
divergences, higher-order terms in € in the strongly ordered limit generate C 472 terms
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contributing to the cusp anomalous dimension, which depend on the form of the energy cutoff
and cannot be unambiguously extracted. Let us stress that this ambiguity is a limitation
of our cutoff-based method to compute the anomalous dimension, not an ambiguity in
I'® or the resummation formalism. We have determined the coefficient of these terms by
comparing to the two-loop results for the dijet cross section [14], which were computed in
standard dimensional regularization without a cutoff, but a full computation of the two-loop
hard functions for an arbitrary number of external legs is not currently feasible.

We believe that the ambiguity in the C47? terms is also inherent in the calculation
of [15]. The form of the collinear subtractions performed in [15] is not unique and different
forms would lead to different results. More specifically, with the form of the angular function
f that is chosen in appendix A of [15], the different C47? terms in the anomalous dimension
nicely combine into the standard cusp anomalous dimension, but with the form of f present
in the splitting functions this would not be the case. The finite difference between the
two choices can be interpreted as a difference in the renormalization scheme for the hard
functions. In our paper we want to extract the anomalous dimension in the MS scheme, so
the scheme is fixed.

Residues of light-cone propagators. Since we want to write the anomalous dimension
in terms of angular integrals, we use the residue theorem to carry out the energy integrals
and then extract the associated IR divergences. In our analysis, we have collected the
residues by hand, but there are ways to algorithmically perform this step using the Feynman
tree theorem, see [48, 49]. In the soft limit, we encounter Eikonal propagators associated
with the energetic hard partons. Of course, in general one then also picks up residues of
these linear light-cone propagators and the algorithm of [48, 49] can be generalized to this
case [46]. However, in dimensional regularization, the results of the energy integrations
are angular distributions and we observe that these angular distributions are difficult to
interpret and expand in € when we pick up poles of light-cone propagators. More specifically,
the angular distributions, in particular those associated with imaginary parts, develop
unphysical singularities if they are naively expanded in e. To avoid dealing with these
distributions, we pick up the residues in space-like kinematics for which we can pick contours
which avoid the light-cone poles. We then reconstruct the imaginary parts from the inclusive
result for the loop diagrams.

We hope that future work will come up with a more algorithmic and less tedious way
to obtain the anomalous dimension. We also note that our explicit check using dijet cross
section [14] does not check the imaginary part of the anomalous dimension since it is not
contributing at this order.

9 Conclusion and outlook

In our paper, we have computed the two-loop anomalous dimension governing the renorm-
alization-group evolution from the hard scale to the soft scale in exclusive jet processes and
other non-global observables. This anomalous dimension is the final ingredient needed for
the resummation of subleading non-global logarithms in eTe™ cross sections. Our direct
computation confirms the result of Caron-Huot [15], but also yields an additional term that
is needed if the soft functions are renormalized in the standard MS scheme. We have checked
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our result for the anomalous dimension by using it to reconstruct the known two-loop
results for the dijet cross section [14].

To perform the resummation, the two-loop anomalous dimension should be implemented
into a parton shower framework and combined with the one-loop corrections of the hard and
soft functions. The latter two corrections were implemented and computed in [16] so that
the implementation of the two-loop anomalous dimension is the only missing piece to achieve
next-to-leading logarithmic accuracy in our framework. Both the real and virtual parts of
our result for the anomalous dimension are given in terms of angular integrals, which makes
them suitable for this task. Our result is valid for finite N, and there are currently several
groups developing methods to go beyond the large- N, limit in parton shower simulations,
see e.g. [9, 50-52]. The paper [46] has analyzed the color structures which arise at two
loops and has rewritten them in the color-flow basis, suitable for implementation in the
framework [9, 47]. Nevertheless, it is natural to first implement the anomalous dimension
in the large- N, limit. In this limit, the color structure becomes trivial and the amplitudes
can be viewed as a products of color dipoles. The anomalous dimension acts on these
dipoles and genuine 3-particle correlations are suppressed. In the absence of 3-particle
correlations, the two-loop anomalous dimension has a similar structure as the one-loop
result and the implementation can proceed along similar lines, except for three differences:
i.) Instead of the simple dipole angular structure Wg-, we encounter more involved angular
functions, which must be sampled in an efficient way. ii.) At the two-loop level we have
two-emission terms, real-virtual and purely virtual terms and these terms involve double
angular integrals so that we must simultaneously generate two vectors to sample these. iii.)
Since the contribution of I'®) is single logarithmic but proportional to a2, it is suppressed
by «as, even when the logarithms are large L ~ 1/as. It is therefore sufficient to insert
the two-loop anomalous dimension once during the evolution to achieve next-to-leading
logarithmic accuracy.

The first resummation of non-global observables beyond the leading-logarithmic accuracy
was obtained very recently using a different formalism [17, 18]. We look forward to presenting
resummed results in our effective theory framework and to comparing to these results.
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A Integral over the two-particle function K;;,,,

The goal of this appendix is to establish the relation

1 1 cus
a6 =3 () - o

C 2
—|-?A - 3(CA—2nFTF+nsTs)] (A1)
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used to rearrange the anomalous dimension in the main text. The divergence originates
from the configuration where the direction n, is collinear to the direction n,. We proceed by
subtracting the divergences in the integrand which allows us to use different parametrizations
for the divergent subtraction term and the finite remainder. For the divergent part we use
a coordinate system in which

ng = (1,6,0, 1) , Mg = (1,6, si,ci) , Ny = (1,6, sj,cj) , ny = (1,,5182,51C2,C1) ,
(A.2)
where 0 and 7, denote (1—2¢)-dimensional zero and unit vectors, respectively, and s2+c2 = 1.
The finite part can be computed in four dimensions and we use coordinates where 7 and j
are back-to-back:

ng = (170707 1)7 n] = (170707 _1)7 qu = (1707376)7 ny = (17818275162761) .
(A.3)

Below we outline the integration of the three contributions (5.5) that make up the function
Kij.qr. Part (a) is collinear finite and we obtain

1 (Y deder (o) Ar? 272
/[dQT] Kz(ja)qr =5 T 5 Kij‘qr =31 _ .2y a Wf]v (A4)
2r J 4 /1_63 3(1—¢?) 3
where the integral was performed in the coordinates (A.3) and we have dropped higher
orders in the dimensional regulator. The collinear divergence in part (b) can be subtracted
with the function K 5"P = 8W{ /ng, and we obtain

ijqr J
su 1 4qu
Juae Kt = 8w [lae] = =~ =4 0@, (A.5)

Ngr €
with the integral given in (4.4) for the divergent part and
8(2+m152)
(b) (b),sub] _ ( 4
/ a2 [KT, — K] = ——— =2

for the finite part. The presence of two powers of n4, in the denominator makes the calcula-

= 4w [2 - n(2w))], (A.6)

tion for part (¢) more complicated. Following [15], we choose the following convenient form

2
K )sub _ 2 [nir(njq — ngr) — njr(nig — 1gr)] (A.7)
1ar 3niqnjqnirnjrngr '

of the subtraction function. The angular integrations yield

q
[1a w = Wi {—1 — 442w+ 0(5)} (A8)
T riggr 3 € tj
and e
c c),sub ij
/ 40,] (K5, — K] = =52 [7 - 3mewd) + 0(e)] (A.9)
The full result for part (c) is
[0 k8, =ws [—2 N AR 0(6)] (A.10)
17591 ) 3e 9 3 3

and we obtain (A.1) by combining the results with the coefficients as given in (5.4).
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B Iterated one-loop anomalous dimension

In this appendix, we compute the CrCy part of TNGT M @1 in (6.9) in d dimensions to
evaluate the extra term (5.24) in the anomalous dimension. To be able to separately keep
track of the e terms in the two angular integrals, we set d = 4 — 2¢, in the €, angular
integral and d = 4 — 2¢, in the €0, angular integral. We consider the same back-to-back
two-jet configuration as in section 6 and parameterize the vectors as in (A.3). The angular
integral then takes the form

Heger)= [ (9] [ 140 (WiyWh, =W - W)

4= 1+€q+€re’7 €qter) </ /) qu /A dCl /1 dCQ [
T AT (1—e)T (3-e sg) Joa (1) o1 (s2)zter

4 2 2 ]

525% - (I—cq)(1+c1)(1—sgs102—C4C1) B (I+cq)(1—c1)(1—sgs102—C4C1)
2\/>46q+6r6’Y (eq+er) (/ / ) qu /A dC]_ [
I'(1—¢)l f—er 32 “ Joa(sP)

1 _257" (c1cq—1)In (%) +2erln2
(c1—1) (c1—cq) (cg+1) 5% (c1—cq) s?l s%sg

2 Jcater v(egt+er) 1
= VAT e / dcq/ dcll
I'(1—¢y)T f—e,« (e1—=1) (c1—¢q) (cg+1)

2¢, (c1cg—1)1In (%) 2¢,.1n2
. C1)(Cq + r +€ 111( 2)+erln(52)]
st(c1—cq) 83 stsg 1

2 2
v T
= —2H (1) 2H(r)~ T e (GHO(T)HHQ,O(T) 2, 0(r)

—4H_27_1 (7’) +4H_271 (T’) +4H27_1 (7’) —2H3 (7’) —Cg)
2
Y, <7;H0(1")—|—4H2,0(7“)—2H270(r)—|—4H271(r)—4H2,1(r)

—2H_3(7”)+2H3(7‘)—2C3> y (B.l)

where the ¢; and €, terms are from the ¢ integrals r integrals, respectively. Using this
general result, the commutator term in (5.24) is obtained as

1
r'Y @, rM g1 -r® g r" e, 1 =320,Cr lim - [J(0,€) = J (e, 0)] . (B.2)

Note that there is a close relationship between the angular integrals and the one-loop
soft functions given in (5.17). Performing the energy integral and rewriting the bare coupling
in terms of the MS one, we have

Sn({n}, Qo) = (g;) i1“(1)@?291, (B.3)
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where TW&1 = R,,&1 + V,,,. With this form of the soft function, we can use the result
for the integral J(eq,€,) to reconstruct the CpCy part of

I @, 80 = Ry @, S + V4 S5V (B.4)

For the C’% part of this, we need the one-loop angular integral

I(e) = /Out [dQ | Wi, = —Ho(r) + € <2H2(r) + Hoo(r) + 72:) ) (B.5)

which was given in (6.11). Adding the color factors, we have

12\

T @y 80 = — (L) (64C3 1(0) I(€) +32CkCa J(0,6)) (B.6)
2e \

Subtracting the divergence, we get the renormalized result for I'V) @, §™2(1) gshown in

equation (6.18) in the main text.

C Extracting the collinear divergence of the soft function

In the main text we have extracted the divergence which arises when two soft partons
become collinear as this divergence is not cancelled among the hard functions themselves.
These soft-collinear divergences must cancel against divergences in the soft function and it
is therefore instructive to extract the collinear singularities in the soft function itself.

The situation is especially simple for the ng and ng pieces, which in dimensional
regularization only arise in the part of the soft function with two real emissions in the
outside region: the double virtual pieces are scaleless and the real-virtual diagrams only
have the color structure CrC4 and the in-out contribution is collinear finite. We consider
the two-jet cross section as in section 6 and analyze the part of the soft function 552) which
involves two soft particles in the veto region. The relevant matrix element can be found in
appendix C of [53]. Extracting the divergence when the two emissions become collinear,
performing the energy integrals and setting u = @), we find the result

1 1 , 2n?
552) ol — ZF(I) ®921 [(2C4 — npTr) (6 + 4) 11 — CA73 11
1 5Y\.
+ (CA (1 — CR 6) —2nplr + nsTs) (_66 — 9) 12:| , (C.l)

where the coeflicients 71 and iy are extracted from the angular integrals

1 1
ng-ny  2€

I = ilz/[dﬁr]

2

; 1 . o . 2 1 1
L=-2 (WFI.) — /[er] (n; nqn]‘ My — N - Mgy - Ny)” -2 (WZ) OO,

€ Y
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and have been normalized to one for ¢ — 0. As in the rest of the paper cg = 1 tags the
e-terms from the gluon spin sums. Since we are interested only in the collinear divergences,
we can drop all finite terms in the integrals I; and I5. Setting i; = i3 = 1 in expression (C.1),
we obtain

5@

@~ Llpmg,q (26‘) + rcon> . (C.4)

coll 8e

We see that the I'copp term indeed cancels against the combination

1, ..
— 5 (281 4 v) (C.5)

after inserting (5.1) and (5.9) obtained from the hard function and the [Sp-term is removed
by the (p/€? in the renormalization condition (2.12).
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