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1 Introduction

The symmetry between electric and magnetic degrees of freedom received appreciation
rather quickly following the creation of Maxwell’s theory of electromagnetism. A compre-
hensive summary of early developments can be found in [1]. A further boost was given
to this topic by Dirac’s analysis of magnetic monopoles [2, 3], which spawned the field of
monopole phenomenology and the corresponding experimental searches [4]. On the more
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theoretical front, the ideas of electric-magnetic duality have resurfaced prominently in such
developments as the dual monopole condensation picture of confinement [5, 6], Montonen-
Olive duality [7] and the Seiberg-Witten solution of supersymmetric gauge theories [8].
Related notions have also played a key role in the ‘second superstring revolution’ [9–11].

In the original Maxwell theory, it is impossible to identify the electric and magnetic
fields with each other in a Lorentz-covariant way, as that would leave only vanishing field
configurations.1 This, however, becomes possible if the number of spacetime dimensions
equals 2 mod 4, with Maxwell’s fields replaced by the closely analogous Abelian higher
form fields. Forcing the electric fields to equal the magnetic ones in those cases halves the
dynamical content of the theory and brings in the notion of chiral forms. Such chiral forms,
whose electric and magnetic components are identified, have come to play an important
role in higher-dimensional supergravities [12–14], both as fundamental fields and in effective
worldvolume theories of extended solitonic solutions (branes) [15, 16].

While electric-magnetic duality or selfdualify can be easily seen in the equations of
motion, at least within the free theory, it is known to be challenging to incorporate them
into Lagrangian theories. Thus, writing the simple equation

dA1 = ± ?dA2 (1.1)

for two vector potentials A1 and A2 (with ? being the Hodge star) automatically implies
that both potentials satisfy Maxwell’s equations d ? dA1 = d ? dA2 = 0, where A1 can
be understood, by (1.1), as the electric potential and A2 as its magnetic dual. Finding
a Lagrangian theory that generates (1.1) as its equation of motion is, however, highly
nontrivial, even for the elementary example of a free Maxwell field. Equations of the
form (1.1) are often referred to as twisted selfduality relations, since they can be thought
of as selfduality under a compound operation that combines the Hodge duality and the
interchange A1 → A2, A2 → −A1. Formalisms that include explicit electric and magnetic
potentials, as the above A1 and A2, are also referred to as ‘democratic’.

Tension has long been perceived between locality and Lorentz invariance if one tries
to construct a Lagrangian description of a (twisted or ordinary) selfdual field [17, 18]. The
first well-known attempt in this direction is [19], which provides a local Lagrangian theory
for Maxwell electrodynamics that features both electric and magnetic potentials, but is not
manifestly Lorentz-invariant. A considerable volume of work has followed over the subse-
quent decades generating a large number of approaches to this problem, each with distinc-
tive advantages and disadvantages [20–32]. (For an incomplete collection of other relevant
historical literature see [33–72], for a sampler of more recent related works see [73–88].)

Our purpose in this article is to present a general formalism that is simple, economical
and accommodates both democratic description of interacting p-forms in any number of
dimensions, and chiral forms in those dimensions where they exist. This formalism builds
upon the previous considerations reported in a series of recent works involving the present
authors [89–91]. Of the broad variety of approaches pursued in the past literature, this
formalism shows closest affinity to the Pasti-Sorokin-Tonin (PST) formulations [32, 36, 41].

1We work in Minkowski spacetimes.
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Indeed, for the free theory [89, 90], the corresponding PST representation can be recovered
from the Lagrangian theories of [89, 90] by integrating out a subset of auxiliary fields. An
advantage of the free theories of [89, 90] is, however, that their Lagrangians are polynomial
(in addition to being local and manifestly Lorentz invariant) and suggest a natural general-
ization to interacting cases, which is our main target in this work. Once interactions have
been introduced, the relation between our theories and PST-type formulations becomes
less obvious, though the general structure of the formalism (with a large set of gauge
symmetries completely eliminating the auxiliary fields on-shell) remains similar. The key
achievement of this paper is that we report a much bigger class of Lagrangian interacting
chiral form theories than what has been attained in the past using all other approaches.

We briefly summarize here one of the main results of this work. A large class of very
general equations of motion for a self-interacting Abelian selfdual p = 2k-form in d = 4k+2
dimensional Minkowski spacetime is given by the following covariant equations:

F − ?F = f(F + ?F ) , (1.2)

where f : Λ+ → Λ− is a function of selfdual (p + 1)-form variable taking values in anti-
selfdual (p + 1)-forms.2 Our Lagrangian formulation allows for a description of any such
theory, provided that

f(H) = ∂F(H)
∂H

, (1.3)

where F : Λ+ → R is an arbitrary scalar function of a selfdual variable that enters the
Lagrangian given by

L = (F + aQ)2 + 2 aF ∧Q+ F(H) , H ≡ (F + aQ) + ?(F + aQ) . (1.4)

Here, F = dA is the field strength of a dynamical p-form field A, while Q = dR is the field
strength of an auxiliary p-form field R, and a is an auxiliary scalar. The latter two fields are
completely eliminated on-shell due to a large set of gauge symmetries of (1.4). In the partic-
ular case of six spacetime dimensions, the self-interacting theory of a single chiral two-form
is defined by a function of one variable (there is a single functionally independent invariant
constructed from a selfdual three-form), and any theory of the very general form (1.2) can
in fact be derived from a Lagrangian of the form (1.4) since (1.3) is automatically satisfied
in this case due to the very restricted structure of Lorentz-covariant chiral form functions.

Our exposition is organized as follows: we shall start by reviewing, in section 2, the
considerations of [91], providing some pedagogical and technical details that had been
omitted from the letter-format paper. We then explain, in section 3, how to generalize
the interacting theories of [91] to a democratic formulation of interacting form fields of
arbitrary rank in an arbitrary number of dimensions. (This generalization has been briefly
alluded to already in the conclusions of [91].) In section 4, we specialize to the case of chiral
2k-forms in 4k+2 dimensions, where we provide explicit details for 2-forms in 6 dimensions
and 4-forms in 10 dimensions, the latter case known to be essentially inaccessible to the

2The same statements are (obviously) true for anti-selfdual fields, with plus and minus signs interchanged.
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previously established approaches.3 Given that our consideration produces very simple and
explicit equations of motion for the propagating degrees of freedom, we dedicate section 5
to discussing the place these equations occupy relatively to the most general covariant
selfduality relation one can write down, as well as to the past approaches, such as [40], where
manifest Lorentz covariance is sacrificed in the treatment of these equations. Sections 4
and 5 can be read largely independently from sections 2 and 3, and this may be a valid
strategy for readers specifically interested in chiral form fields. We review the implications
of our results in section 6.

2 Nonlinear electrodynamics in 4 dimensions

We start with reviewing the considerations of [91] and the democratic Lagrangian repre-
sentation of general nonlinear electrodynamics developed there. In this review, we will
follow the original logic of [91] so as to make the underlying heuristics clearly visible to
the reader. As already remarked in the conclusions of [91], the final structure that emerges
from this analysis can be understood in simpler terms, and it is this angle that allows for
easy generalization to other field ranks and numbers of dimensions. These generalizations
will be the main subject of the rest of the paper. (For readers specifically interested in
chiral forms, it should be largely possible to proceed directly to section 4.)

A comprehensive contemporary review of nonlinear electrodynamics from a perspective
close to our considerations can be found in [92].

2.1 Free theory

Before proceeding to include interactions, it is wise to recall in some detail the correspond-
ing democratic construction for a free Maxwell field [89, 90].

It is a common feature of all approaches to democratic Lagrangians that a set of
auxiliary fields is present, and they are eliminated on-shell due to a large set of gauge
symmetries, leaving the desired physical degrees of freedom (see, e.g., [20, 27, 32, 64, 68]). It
is commonly known to be impossible to formulate in a Lagrangian language such democratic
theories with explicit electric and magnetic degrees of freedom, or chiral form theories,
without including auxiliary fields (see, e.g., [20, 27, 32, 36, 41]) or sacrificing manifest
Lorentz symmetry (see, e.g., [18, 23, 30]).

The set of fields used in all of the constructions in this paper is of the same type: it
includes the original ‘electric’ p-form field in d spacetime dimensions (Lorentzian signature),
its ‘magnetic’ dual (d − p − 2)-form field (the latter identified with the ‘electric’ field for
the chiral cases), an auxiliary form field sector that copies the electric-magnetic sector we
have just described, and an extra scalar (whose role is very similar to the auxiliary scalar
in PST theories [32, 36, 41]).

For the case of 4-dimensional electrodynamics considered in this section, the above
specifications translate into an electric-magnetic doublet of vector potentials Abµ with
b = 1, 2 being the duality space index (“1” can be understood as ‘electric,’ and “2” as

3We thank Dmitri Sorokin for correspondence on this matter.
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‘magnetic’) and µ the ordinary spacetime index, and additionally an auxiliary doublet of
vector potentials Rbµ and an auxiliary scalar a. The Lagrangian is4

LMaxwell = −1
4H

b
µνH

bµν−a4 εbc εµνλρ F bµν Q
c
λρ , (2.1)

where ε and ε are correspondingly two- and four-dimensional Levi-Civita symbols, and
Hb
µν ≡ F bµν + aQbµν with

F bµν = ∂µA
b
ν − ∂ν Abµ , Qbµν = ∂µR

b
ν − ∂ν Rbµ . (2.2)

It may seem surprising that this theory is equivalent to a single propagating Maxwell field,
and the underlying reason is in the large set of gauge symmetries of (2.1). Besides the usual
gradient shifts of the vector potentials (the Lagrangian only depends on the corresponding
field strengths F and Q) with parameters in the form of arbitrary scalar doublets ub(x)
and vb(x),

δa = 0, δAbµ = ∂µu
b, δRbµ = 0, (2.3)

δa = 0, δAbµ = 0, δRbµ = ∂µv
b, (2.4)

the Lagrangian is invariant under two extra symmetries:

δa = 0, δAbµ = −aub ∂µa, δRbµ = ub ∂µa, (2.5)

and
δa = ϕ , δAbµ = −a δRbµ, δRbµ = − ϕ

(∂a)2 ∂
νa (Qbνµ − εbc ? Qcνµ) , (2.6)

where ϕ(x) in the last line is an arbitrary scalar field parameter. The Hodge star operation
? that is, of course, central to the topic of electric-magnetic dualities is defined for 2-forms
in 4 spacetime dimensions as

? Qµν = 1
2εµνσρQ

σρ. (2.7)

The equations of motion corresponding to (2.1) are

d[?Hb−a εbcQc] = 0 , (2.8)
d[a( ?Hb+εbc F c)] = 0 , (2.9)
Qb ∧ (?Hb+εbcHc) = 0, (2.10)

where we have switched to the differential form notation. (A summary of conventions,
identities and conversion formulas related to the tensor and differential form notation can
be found in the appendices of [90].) Multiplying (2.8) with a and subtracting it from (2.9),
we obtain

da ∧ (?Hb+εbcHc) = 0. (2.11)
4The difference in the sign of the second term compared to [91] fixes a minor inconsistency.
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Taking the Hodge dual of this formula, using the identities ?v∧ = ιv? (valid for any one-
form v with ιv being the inner product) and ?? = −1, and contracting with εbd (followed
by renaming d to b), we obtain

ida(?Hb+εbcHc) = 0. (2.12)

Then, acting with ιda on (2.11) and with da∧ on (2.12), adding up the result, and using
the projection-rejection identity valid for any (non-null) 1-form v,

1
v2 (v ∧ ιv + ιv v∧) = 1, (2.13)

we deduce that
?Hb+εbcHc = 0 (2.14)

whenever (2.8) and (2.9) are satisfied. In particular, it means that the equation of motion
for a given by (2.10) is implied by the remaining equations of motion. This structure
is closely related to a being a pure gauge degree of freedom, as the symmetry transfor-
mations (2.6) imply that it can be changed arbitrarily. Note that a cannot be gauged
away completely, and permissible gauges respect the condition (∂a)2 6= 0 at all spacetime
points. One indication of this is the presence of (∂a)2 in the denominator in the gauge
transformation (2.6).

Finally, substituting (2.14) into (2.8), we deduce that

da ∧ dRb = 0. (2.15)

Such equations for differential forms are ubiquitous in the approach to (twisted) selfduality
we describe here, and they are also very common in the PST theory. A detailed integration
procedure can be found in appendix C of [90]. The most general solution is

Rb = dCb + da ∧ Eb, or in components, Rbµ = ∂µC
b + Eb∂µa . (2.16)

However, any such solution can be gauge-transformed to Rb = 0. Namely, the first term
can always be removed by (2.4), while the second term can be removed by (2.5). Then,
with Rb = 0, (2.14) turns into

?F b+εbc F c = 0, (2.17)

which is the same as F 1 = ?F 2. Applying an exterior derivative to this relation, we
conclude that F 2 satisfies Maxwell’s equation d ? F 2 = 0, while F 1 is its magnetic dual.
Thus, the only propagating degrees of freedom of (2.1) are those of an ordinary Maxwell
field, while A1 and A2 explicitly present in the formulation of the theory are its electric
and magnetic potentials satisfying (1.1).

2.2 Interactions

We wish to construct a nonlinear generalization of (2.1), and a natural strategy is to look
for deformations of that theory that preserve its rich gauge symmetry structure. Indeed, it
is precisely the gauge symmetries (2.3)–(2.6) that ensured that the equation of motion for
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a is automatically satisfied and that a is a pure gauge degree of freedom, and furthermore
allowed us to nullify the R-fields in any solution of the equations of motion under (2.16).
If similar symmetries exist in a nonlinear deformation of (2.1), it is natural to expect (and
this expectation will hold true, as we are about to show) that they will similarly eliminate
the auxiliary fields and leave behind the nonlinear electrodynamics of a single vector field
(and its magnetic dual).

A key observation in relation to (2.4)–(2.6) that has served as a basis for the derivations
in [91] is thatHb

µν is by itself invariant under (2.3)–(2.5), while the last term in (2.1) changes
under the action of (2.5) by a total derivative. As a result, the symmetry of the Lagrangian
with respect to (2.3)–(2.5), as well as the Lorentz transformations, will remain intact if
one replaces the first term in (2.1), namely the term proportional to Hb

µνH
b µν , by any

scalar made of Hb
µν . For a Lagrangian constructed in this way, one must only worry about

enforcing the last remaining symmetry (2.6) that shifts a, and we shall see below that there
is a simple way to enforce this symmetry. (It will also become apparent later that one could
devise a natural prescription to implement the last remaining symmetry (2.6) automatically
from the onset, and this prescription also generalizes naturally to all spacetime dimensions;
these considerations will form the core of the subsequent sections.)

Starting with Hb
µν , one can build six functionally independent scalars:

Uab ≡ 1
2 H

a
µν H

bµν , V ab ≡ 1
2 H

a
µν ? H

bµν , (2.18)

where Uab = U ba, V ab = V ba. As indicated in the previous passage, we start with the
following nonlinear generalization of (2.1):

L = −a εbcF b ∧Qc + f(U,11 U,12 U,22 V,11 V,12 V 22) , (2.19)

which automatically respects the symmetries (2.3)–(2.5) of the free theory, but does not
automatically respect (2.6) until we introduce further constraints on f below.

The equations of motion for Ab and Rb are

d[(fUbc + fUcb) ? Hc − (fVbc + fVcb)Hc + a εbcQ
c] = 0 , (2.20)

d[a{(fUbc + fUcb) ? Hc − (fVbc + fVcb)Hc − εbc F c}] = 0 . (2.21)

where fUab ≡ ∂f/∂Uab, fVab ≡ ∂f/∂Vab (fU21 ≡ 0 ≡ fV21). The equation of motion for a is

Qb ∧ Kb = 0 , (2.22)

where
Ka ≡ (fUab + fUba) ? Hb − (fVab + fVba)Hb − εabHb . (2.23)

In direct analogy to the free theory derivation above (2.11), we can multiply (2.20) with a
and subtract it from (2.21) to obtain

da ∧Kb = 0 . (2.24)

We would like to ensure that this equation implies the equation of motion for a (2.22) in
a manner similar to the free theory. This would ascertain that a is a pure gauge degree of
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freedom. More importantly, it will allow us to derive first-order equations from a second
order Lagrangian we started with. This would always happen, in particular, if

Ka + εab ? Kb ≡ 0 (2.25)

is satisfied identically. If it is, then (2.24) will imply Kb = 0 in direct parallel to the free
theory derivation under (2.11). Then, (2.22) is a consequence of the equations of motion
for the form fields (2.20)–(2.21). Admittedly, the described approach is a particular way
one could technically enforce the desired structure of the equations of motion, but as we
shall see below, it is sufficient to capture generic nonlinear electrodynamics. More broadly,
the theories we shall build according to the same principles in the next sections capture a
huge class of form field interactions (quite possibly, all that exist).

One can equivalently recast (2.25) as the following condition in terms of f :

δac (fUcb + fUbc)− εac (fVcb + fVbc) + δab = 0 . (2.26)

The general solution of these linear PDEs is

f(U, V ) = −1
2Uaa + g(λ1, λ2) , (2.27)

λ1 = U12 −
1
2 (V11 − V22) , (2.28)

λ2 = V12 + 1
2 (U11 − U22) . (2.29)

where g(λ1, λ2) is an arbitrary function of two variables. The first term in f simply corre-
sponds to the free theory (2.1) and the resulting full Lagrangian is

L = LMaxwell + g(λ1, λ2) . (2.30)

We note that, using (2.28)–(2.29) and (2.18), λ1,2 can be expressed as

λ1 = 1
2 Hµν ?H

µν , λ2 = −1
2 Hµν H

µν , (2.31)

withHµν ≡ ?H1
µν−H2

µν . It is an important property that, whileHb is invariant under (2.3)–
(2.5), but not under (2.6), H is invariant under all the gauge symmetries (2.3)–(2.6) of the
free theory. As a result, λ1,2 as well as the full Lagrangian (2.30) are invariant under exactly
the same set of gauge transformations as the free theory. We shall return to this property
(and also demonstrate it explicitly) in the next sections, where it will form the basis for our
generalization of the present formalism to higher dimensions. It is a rather remarkable, and
very convenient, feature of the present formulation that the gauge symmetries (2.3)–(2.6)
are universal and do not need to be adjusted depending on the specific interactions one
chooses to consider. (Even though the type of interactions we consider here are those that
do not deform the free gauge symmetry also in the single-potential formulation, it does not
straightforwardly follow that there should be no deformation in the current formulation
with its much larger set of gauge symmetries.)

– 8 –
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2.3 Equations of motion and relation to the single-field formulation

For any theory of the form (2.19), the equations of motion (2.20)–(2.21) imply (2.24). Then,
our class of theories (2.30) has been constructed precisely in such a way as to make (2.25)
identically satisfied, and then (2.24) implies

Kb = 0 (2.32)

by an argument identical to the one given under (2.11). Substituting (2.32) into (2.20),
one gets

da ∧ dRb = 0 . (2.33)

Thus, the auxiliary forms satisfy exactly the same equation as in the free theory, solved in
full generality by (2.16), so that the result can always be gauge-transformed to

Rb = 0 , Hb = F b . (2.34)

Note that, since Kb satisfies (2.25), (2.32) encodes a single independent equation that can
be written as

?F 1 + F 2 = g2 (?F 1 − F 2)− g1 ? (?F 1 − F 2) , (2.35)

with
g1 ≡

∂g

∂λ1
, g2 ≡

∂g

∂λ2
. (2.36)

One can resolve (2.35) with respect to F1, and by Lorentz invariance (see, e.g., [75]), one
must obtain a relation of the form

F 1 = α(s, p)F 2 + β(s, p) ? F 2 , (2.37)

where s and p are the two independent Lorentz scalars made of F 2,

s = 1
2F

2
µνF

2µν , p = 1
2F

2
µν ? F

2µν . (2.38)

The specific form of the functions α and β would have to be determined on a case-by-case
basis by solving the system of algebraic equations given by (2.35). What is important for
us is that only one of the two field strength F 1 and F 2 is independent due to the nonlinear
selfduality relation (2.37). (The linear version of this relation corresponding to the free
theory arises from choosing g = 0, α = 0, β = 1.) Thus, all the auxiliary fields have been
eliminated by gauge transformation, and there is only one independent propagating gauge
field, satisfying a nonlinear twisted selfduality relation.

To complete the picture, it is useful to clarify how the dynamics of the theory (2.30)
expressed by the twisted selfduality relation (2.37) corresponds to the usual single-field
formulation of nonlinear electrodynamics defined by the Lagrangian

L = L(s, p), (2.39)

which is an arbitrary function of the two invariants (2.38), and we have retained the name
A2 for the gauge field. (Note that we do not assume any duality invariance at this point,
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and we will return to theories invariant under duality rotations later.) The equation of
motion of this theory is

d

[
−∂L
∂p
F 2 + ∂L

∂s
? F 2

]
= 0, (2.40)

where once again, F 2 is simply the field strength 2-form corresponding to the gauge poten-
tial A2. Exactly the same equation arises from applying the exterior derivative operator
to (2.37), provided that one identifies

α(s, p) = −∂L
∂p

, β(s, p) = ∂L
∂s

. (2.41)

Thus, the theories described by (2.39) and (2.30) are dynamically equivalent, given an
appropriate identification of the functions appearing in the two Lagrangians.

We can work out the relation between the theories (2.39) and (2.30) more explicitly
by rewriting (2.37) in term of the invariants as

g1 = 2α
α2 + (β + 1)2 , g2 = α2 + β2 − 1

α2 + (β + 1)2 , (2.42)

where g1 and g2 are the derivatives (2.36). While g1,2 are defined as functions of λ1 and
λ2, they can be expressed in terms of α, β, s and p using the following relations

λ1 = 2α (1 + β) s− [α2 − (1 + β)2] p ,
λ2 = [α2 − (1 + β)2] s+ 2α (1 + β) p

(2.43)

that can be obtained from (2.37) and (2.28)–(2.29), while

w ≡
√
λ2

1 + λ2
2 = (α2 + (β + 1)2)

√
s2 + p2 . (2.44)

If one starts with a democratic theory of the form (2.30), g(λ1, λ2) is given, and (2.42)
should be understood as a 2 × 2 system of nonlinear algebraic equations for α and β as
functions of s and p. Then, from α and β, one can recover the single-field Lagrangian L
by integrating (2.41). It is not obvious at first sight why α and β derived in this manner
will satisfy the compatibility condition ∂α/∂s+ ∂β/∂p = 0, but that is indeed the case, as
we prove in appendix A.

Similarly, if one starts with a single-field Lagrangian of the form (2.39), one should
first obtain α and β from (2.41). Then, (2.43) provide a 2×2 system of nonlinear algebraic
equations to express s and p through λ1 and λ2. Finally, (2.42) gives g1 and g2 as functions
of λ1 and λ2. These derivatives should then be integrated to obtain g, and again, we
provide existence results for this integration procedure in appendix A.

2.4 Duality symmetry and conformal invariance

The most basic duality symmetry present in the free Maxwell symmetry is the Z4 inter-
change of the electric and magnetic potentials A1 → A2, A2 → −A1. The corresponding
democratic formulation (2.1) similarly respects the transformations H1 → H2 , H2 → −H1,

– 10 –
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which induce λ1 → −λ1, λ2 → −λ2 by (2.31). Thus, to maintain this duality symmetry in
the interacting theory (2.30) one must simply restrict g(λ1, λ2) to satisfy the condition

g(−λ1,−λ2) = g(λ1, λ2) . (2.45)

The free theory (2.1) in fact admits a bigger group of SO(2) duality transformations
that act as ordinary rotations in the b-plane on the gauge potentials Ab and Rb. If one
rotates the potentials in the b-plane by an angle α, the induced transformation of (λ1, λ2)
is a rotation by an angle 2α. Thus, only the combination λ2

1 +λ2
2 is invariant. If one wants

to maintain the SO(2) duality invariance in the interacting theory (2.30), one must choose
g to depend only on this combination:

L = LMaxwell + h(w), w =
√
λ2

1 + λ2
2. (2.46)

One can alternatively express w as

w =
√
− detW , (2.47)

with a two-dimensional ‘metric’ W with Lorentzian signature, from comparing (2.46)
and (2.47),

Wab ≡ (?Ha
µν − εacHc

µν)(?Hbµν − εbdHdµν)/2 . (2.48)

In a series of recent works [82, 84, 86], special attention has been given to conformal
invariance in nonlinear electrodynamics, which is expressed for theories of the form (2.30) as

UabfUab + V abfVab = f . (2.49)

This implies g = λ1 g̃(λ1/λ2) with an arbitrary g̃(x). If both the SO(2) symmetry and
conformal invariance are imposed on the interacting theory (2.30), only a one-parameter
family of theories is left:

L = Hb ∧ ?Hb − a εbcF b ∧Qc + δ w , (2.50)

where δ is a real number. As we shall immediately proceed to show, this is just a democratic
formulation of the ModMax theory whose single-field form was introduced in [82].

For the SO(2)-invariant theories of the form (2.46), one can take a few further steps
in understanding the conversion procedure between the single-field and democratic for-
malisms, given in general by equations (2.42)–(2.43). When g(λ1, λ2) = h(w), as per (2.46),
one can rewrite (2.42) as

λ1
w
h′ = 2α

α2 + (β + 1)2 ,
λ2
w
h′ = α2 + β2 − 1

α2 + (β + 1)2 , (2.51)

Taking the ratio of the two equations (2.51), one obtains λ1(α2 +β2−1) = 2αλ2, and then,
substituting (2.43),

β2 + 2s
p
αβ − α2 = 1. (2.52)
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With the expressions (2.41) for α and β in terms of the Lagrangian, this equation is
recognized as the general SO(2)-invariance condition within the single-field formalism [33–
35, 55, 59, 61, 84, 86, 88], which can be rewritten in a simpler form using the variables
u = s+

√
s2 + p2 , v = −s+

√
s2 + p2:

∂uL ∂vL = −1 . (2.53)

We emphasize that, in the conventional single-potential formalism, this SO(2) duality in-
variance condition is a nonlinear PDE restricting the dependence of the Lagrangian on the
field strength invariants, with few known analytic solutions. By contrast, the condition of
SO(2) invariance in the democratic formalism (2.30) is a simple statement that the function
g(λ1, λ2) in the Lagrangian should only depend on the combination λ2

1+λ2
2. Given any func-

tion of one variable h(w), an SO(2) invariant theory is straightforwardly given by (2.46).
To complete the analysis of the conversion between the democratic and single-field

formalism in the SO(2)-invariant case, with (2.52) and (2.43), λ1 = 2α s+ 2(1 + β) p, and
hence from (2.51) and (2.44),

(αs+ (β + 1)p) h′
∣∣∣
w=
√
s2+p2(α2+(β+1)2)

= α
√
s2 + p2. (2.54)

Instead of the PDEs we obtained for the function g while performing the conversion from
the single-field formalism to the democratic one in the case of general electrodynamics,
with the SO(2) duality invariance present, we have the above ODE for the function h(w).

Finally, for the conformally invariant Lagrangian (2.50), h′ = δ, and hence (2.54),
together with (2.52), is explicitly solved by

α(s, p) = − sinh γ p√
p2 + s2 , (2.55)

β(s, p) = sinh γ s√
p2 + s2 − cosh γ , (2.56)

where δ = coth γ
2 . Using (2.41), these functions are integrated to the Lagrangian

L(s, p) = − cosh γ s+ sinh γ
√
s2 + p2 , (2.57)

which is just the Lagrangian of the ModMax theory of [82]. We have thus proved that (2.50)
provides a democratic formulation of the ModMax theory.

3 Democratic formulation for Abelian interactions of p-forms

The purpose of this section is to present a generalization of what was done in the previous
section for 4-dimensional nonlinear electrodynamics to arbitrary p-forms in d-dimensions.
Namely, we want to obtain a Lagrangian interacting theory of p-forms that explicitly
features both the p-form gauge potential and its (d− p− 2)-form magnetic dual. Readers
specifically interested in chiral forms can proceed directly to the next section, where a
similar and simpler formalism will be presented, with twice fewer gauge fields, and the
derivation will look more transparent.
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An important lesson learned from the previous section is that we do not have to
retrace all the steps taken under (2.19) to construct the interaction terms. Namely, it
turns out that a linear combination of the four form-fields in the theory exists that is by
itself invariant under all gauge symmetries. The interaction term, to be added to the free
theory Lagrangian, is then simply an arbitrary scalar function of this specific combination of
gauge fields. This structure will be used for constructing interactions that respect (twisted)
selfduality both in this and the next section.

3.1 Free theory

As before, we start by reviewing the democratic formulation for a free p-form in d dimen-
sions developed in [90]. This formulation features a p-form gauge potential A1 and its
auxiliary p-form partner R1, as well as a (d − p − 2)-form gauge potential A2 (that will
become on-shell the magnetic dual of A1) and its (d − p − 2) form auxiliary partner R2.
The four corresponding field strengths are

F1 = dA1, Q1 = dR1, F2 = dA2, Q2 = dR2. (3.1)

There is additionally an auxiliary scalar a that plays the same role as in the previous section
(and is analogous to the auxiliary scalar of the PST theory [32, 36, 41]). We remind the
reader the following elementary differential form relations that play a significant role in the
subsequent derivations and hold for any (p+ 1)-form G1 and any (d− p− 1)-form G2:

??G1 = (−1)p+d+pdG1, G1 ∧G2 = −(−1)p+d+pdG2 ∧G1. (3.2)

The free-field democratic Lagrangian proposed in [90] reads

L free democ. = (F1 + aQ1)2 + (F2 + aQ2)2 − 2 aQ2 ∧ F1 + 2 aF2 ∧Q1. (3.3)

(Throughout, for any form G, we use the notation G2 ≡ G∧?G = 〈G,G〉.) It is convenient
to introduce

H1 = F1 + aQ1 and H2 = F2 + aQ2, (3.4)

so that, up to total derivatives, (3.3) can be equivalently recast as

L free democ. = H2
1 +H2

2 + 2 da ∧R2 ∧H1 − 2H2 ∧ da ∧R1. (3.5)

This form is practically convenient for establishing the following set of gauge symmetries:

δa= 0 , δA1 = dU , δA2 = 0 , δR1 = 0 , δR2 = 0; (3.6)
δa= 0 , δA1 = 0 , δA2 = dV , δR1 = 0 , δR2 = 0; (3.7)
δa= 0 , δA1 = 0, δA2 = 0 , δR1 = dU , δR2 = 0; (3.8)
δa= 0 , δA1 = 0, δA2 = 0 , δR1 = 0 , δR2 = dV ; (3.9)
δa= 0 , δA1 =−ada∧U , δA2 = 0 , δR1 = da∧U , δR2 = 0; (3.10)
δa= 0 , δA1 = 0 , δA2 =−ada∧V , δR1 = 0 , δR2 = da∧V ; (3.11)

δa=ϕ, δA1 =− aϕ

(∂a)2 ida(Q1 +?Q2), δA2 =− aϕ

(∂a)2 ιda(Q2 +(−1)p+d+pd ?Q1) ,

δR1 = ϕ

(∂a)2 ιda(Q1 +?Q2) , δR2 = ϕ

(∂a)2 ιda(Q2 +(−1)p+d+pd ?Q1) . (3.12)

– 13 –



J
H
E
P
0
8
(
2
0
2
2
)
1
1
2

The gauge parameters above are a (p − 1)-form U and (d − p − 3)-form V (specified
independently in the different transformations where they appear) and a scalar ϕ. The
first four symmetries are self-evident, as the Lagrangian only depends on the field strengths
F1,2 and Q1,2. The next two symmetries, (3.10) and (3.11), leave H1 and H2 invariant and
change R1 and R2 by something involving da∧. As a result, the invariance of the Lagrangian
is manifest when it is written in the form (3.5). Verification of the last symmetry (3.12) is
slightly more laborious. We first write

δH1 = ϕQ1 −
ϕ

(∂a)2da ∧ ida(Q1 + ?Q2) = ϕ

(∂a)2 (ida(da ∧Q1)− da ∧ ida ? Q2) , (3.13)

δH2 = ϕQ2 −
ϕ

(∂a)2da ∧ ida(Q2 + (−1)p+d+pd ? Q1)

= ϕ

(∂a)2

(
ida(da ∧Q2)− (−1)p+d+pdda ∧ ida ? Q1

)
.

An important observation that will come to play a significant role later on is that

δH1 + ?δH2 = 0, (3.14)

where we have used the identities ?ιv(v ∧ A) = v ∧ ιv ? A and ?(v ∧ ιvA) = ιv(v ∧ ?A)
valid for any A and any 1-form v. (A summary of differential form identities useful for
our present purposes can be retrieved from the appendices of [90].) The variation of the
Lagrangian (3.5) under (3.12) can be written as

1
2δL = H1 ∧ ?δH1 +H2 ∧ ?δH2 + dϕ ∧R2 ∧H1 + da ∧ δR2 ∧H1 + da ∧R2 ∧ δH1

− δH2 ∧ da ∧R1 −H2 ∧ dϕ ∧R1 −H2 ∧ da ∧ δR1. (3.15)

We have

H1∧?δH1 +da∧δR2∧H1 = ϕ

(∂a)2H1∧
[
da∧ ida ?Q1−(−1)p+d+pdida(da∧Q2)

−(−1)p+d+pdda∧ ιda(Q2 +(−1)p+d+pd ?Q1)
]
=ϕQ2∧H1,

H2∧?δH2−H2∧da∧δR1 = ϕ

(∂a)2H2∧
[
da∧ ida ?Q2− ida(da∧Q1)−da∧ ιda(Q1 +?Q2)

]
=−ϕH2∧Q1,

da∧R2∧δH1 = ϕ

(∂a)2da∧R2∧(ida(da∧Q1)−da∧ ida ?Q2) =ϕda∧R2∧Q1,

δH2∧da∧R1 = ϕ

(∂a)2

(
ida(da∧Q2)−(−1)p+d+pdda∧ ida ?Q1

)
∧da∧R1 =ϕQ2∧da∧R1.

Putting everything together, we obtain for (3.15)

1
2δL = ϕdR2∧H1−ϕH2∧dR1+ϕda∧R2∧Q1−ϕQ2∧da∧R1+dϕ∧R2∧H1−H2∧dϕ∧R1.

Keeping in mind that dH1 = da ∧Q1 and dH2 = da ∧Q2, this expression is recognized as

1
2δL = d

[
ϕR2 ∧H1 − (−1)d−p−1ϕH2 ∧R1

]
.
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Thus, the variation of the Lagrangian under (3.12) is a total derivative, and (3.12) is a
valid symmetry of (3.3).

Proceeding to the equations of motion for (3.3), we get

d[?H1 + (−1)p+d+pdaQ2] = 0, (3.16)
d[a ? H1 − (−1)p+d+pdaF2] = 0, (3.17)

d[?H2 + aQ1] = 0, (3.18)
d[a ? H2 − aF1] = 0, (3.19)

Q1 ∧ ?H1 +Q2 ∧ ?H2 −Q2 ∧ F1 + F2 ∧Q1 = 0. (3.20)

Multiplying (3.16) with a and subtracting it from (3.17), we get

da ∧ [?H1 − (−1)p+d+pdH2] = 0. (3.21)

Multiplying (3.18) with a and subtracting it from (3.19), we get

da ∧ [?H2 −H1] = 0. (3.22)

The Hodge dual of (3.21) is
ιda[?H2 −H1] = 0. (3.23)

Acting with da∧ on (3.23), acting with ιda on (3.22), and adding up the results, one gets

H1 = ?H2. (3.24)

This relation holds whenever the equation of motion for the gauge forms (3.16)–(3.18) are
satisfied, and one can check that it makes the remaining equation of motion (3.20) for the
auxiliary scalar a automatically satisfied.

Substituting (3.24) back into (3.16) and (3.18), we get

da ∧ dR2 = 0, da ∧ dR1 = 0. (3.25)

These equations are integrated in full generality as

R1 = dB1 + da ∧ C1, R2 = dB2 + da ∧ C2, (3.26)

where B1 and C1 are arbitrary (p − 1)-forms, and B2 and C2 are arbitrary (d − p − 3)-
forms. (A description of the integration procedure can be found in appendix C of [90].)
Furthermore, the above expressions can always be gauge-transformed to zero using (3.8)–
(3.11), yielding

R1 = 0, R2 = 0. (3.27)

Thus R1 and R2 (as well as the auxiliary scalar a) are pure gauge degrees of freedom.
Furthermore, substituting (3.27) into (3.24), we get

F1 = ?F2, (3.28)

which says precisely that F1 is dual to F2 while both A1 and A2 satisfy the free equations
of motion d ? F1 = 0, d ? F2 = 0.
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3.2 Interactions

In section 2, we reviewed a particular approach, introduced in [91], to adding interactions
on top of free-field democratic Lagrangians of the sort given by (3.3). The essence of this
approach, in the language of this section, is that H1 and H2 defined by (3.4) are by them-
selves invariant under the gauge theory transformations of the free theory (3.6)–(3.11) but
not under the last remaining gauge transformation (3.12). Thus, one may try to add to the
free Lagrangian an arbitrary scalar function of H1 and H2 and then attempt constraining
this function in such a way that the last crucial gauge symmetry (3.12) emerges.

The above procedure is precisely what has been successfully implemented in [91] and
reviewed in section 2. In retrospect, however, one may do wiser than that. Namely,
from (3.14), H1 + ?H2 is invariant under all the gauge transformations (3.6)–(3.12) of the
free theory [91]. Thus, a convenient way to construct a very large class of interacting
theories that automatically respect the same gauge symmetries as the free Lagrangian is
to add to (3.3) an arbitrary scalar function F of H1 + ?H2,

L democ. = (F1 + aQ1)2 + (F2 + aQ2)2 − 2 aQ2 ∧ F1 + 2 aF2 ∧Q1 + F(H1 + ?H2). (3.29)

This structure was originally guessed by examining the output of the considerations re-
viewed in section 2, and briefly summarized in the conclusions of [91]. We shall now
explain in more detail how it works.

With the inclusion of the new term in (3.29), the equations of motion (3.16)–(3.20)
are modified as

d[?H1 + (−1)p+d+pdaQ2 + ?X] = 0, (3.30)
d[a ? H1 − (−1)p+d+pdaF2 + a ? X] = 0, (3.31)

d[?H2 + aQ1 −X] = 0, (3.32)
d[a ? H2 − aF1 − aX] = 0, (3.33)

Q1 ∧ ?H1 +Q2 ∧ ?H2 −Q2 ∧ F1 + F2 ∧Q1 + aQ1 ∧ ?X − aQ2 ∧X = 0. (3.34)

We have introduced X to denote the following (p+ 1)-form-valued function5 of H1 + ?H2
obtained by differentiating F :

Xi1···ip+1 ≡
∂F(Y )
∂Y i1···ip+1

∣∣∣∣∣
Y=H1+?H2

. (3.35)

The treatment of these equations of motion is directly analogous to the free case. First,
multiplying (3.30) with a and subtracting it from (3.31) yields

da ∧ [?H1 − (−1)p+d+pdH2 + ?X] = 0. (3.36)
5Note that the differentiation is somewhat subtle since the components of the form field are not indepen-

dent, and the result depends on whether one identifies the related components before or after differentiation.
The ambiguity, however, is a pure numerical factor that can be absorbed, if desired, into a redefinition of F .
We ignore such inconsequential factors, here and in similar formulas below, so as not to clutter the formulas.
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Then, multiplying (3.32) with a and subtracting it from (3.33) yields

da ∧ [?H2 −H1 −X] = 0. (3.37)

The Hodge dual of (3.36) is
ιda[?H2 −H1 −X] = 0. (3.38)

Acting on this with da∧, acting with ιda on (3.37), and adding the results yields

H1 +X = ?H2. (3.39)

Substituting this equation back into (3.30) and (3.32) yields

da ∧ dR2 = 0, da ∧ dR1 = 0, (3.40)

identical to the free case, integrated in full generality by R1 = dB1 + da ∧ C1 and R2 =
dB2 + da ∧ C2, then gauge-transformed to

R1 = 0, R2 = 0, H1 = F1, H2 = F2, (3.41)

so that the only remaining propagating fields are A1 and A2 related to each other by the
nonlinear twisted selfduality relation

F1 − ?F2 +X = 0 (3.42)

that follows immediately from (3.39). After R1 and R2 have been gauge-transformed to
zero, one should understand X as a function of F1 + ?F2 instead of H1 + ?H2 as in (3.35).
Note that the nonlinear selfduality relation (3.42) deforms the free selfduality relation
F1 − ?F2 = 0 by an arbitrary function of the opposite chirality combination F1 + ?F2,
which is the same structure (with the opposite sign conventions) that emerged in (2.35)
from the four-dimensional derivation, as anticipated by the observations in the conclusions
of [91] and confirmed in detail by our present derivations. Another observation is that the
same gauge invariant combination H1 +?H2 can be used to describe interactions with other
fields. In particular, supplementing the free Lagrangian (3.5) with a term (H1 +?H2)∧?T ,
where T is a (p + 1)-form constructed from other fields in the theory, the corresponding
equation (3.42) will describe the deformation of the free (Abelian) p-form theory including
interactions with other fields.

4 Abelian interactions of chiral 2k-forms in 4k + 2 dimensions

When the rank of the field strength is one half of the number of spacetime dimensions,
that is, for a p-form gauge potential A in d = 2p + 2 dimensions, the magnetic dual of A
is also a p-form. This allows one to transform the two fields into each other by duality
rotations, discussed for electrodynamics in section 2. Furthermore, when p = 2k and hence
d = 4k + 2, one can identify A and its magnetic dual, leaving a single field known as a
chiral (or selfdual) form. In this section, we shall discuss the Lagrangian description of
such chiral forms, starting with the free case, and then proceeding to include interactions.
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4.1 Free theory

For the free case, we consider the following Lagrangian, first proposed in [89]:

L free chiral = (F + aQ)2 + 2 aF ∧Q , (4.1)

where F ≡ dA is the (2k + 1)-form field strength of the 2k-form field A, Q ≡ dR is
the (2k + 1)-form field strength of the 2k-form field R, and a is an auxiliary scalar field.
(Throughout, for any form G, we use the notation G2 ≡ G ∧ ?G.) It may appear at first
sight that we are dealing with a large set of dynamical fields (while our aim is to describe
a single chiral 2k-form). The truth is that most of the Lagrangian fields will be eliminated
on-shell, leaving only the desired chiral form, which happens due to the following large set
of gauge symmetries:

δa = 0 , δA = dU , δR = 0 ; (4.2)
δa = 0 , δA = 0, δR = dU ; (4.3)
δa = 0, δA = − a da ∧ U , δR = da ∧ U ; (4.4)

δa = ϕ , δA = − aϕ

(∂a)2 ιda(Q+ ?Q) , δR = ϕ

(∂a)2 ιda(Q+ ?Q) . (4.5)

The parameters in these transformations are an arbitrary position-dependent scalar ϕ and
an arbitrary position-dependent (p − 1)-form U (the three copies of U appearing in the
first three transformations designate independent parameters).

The first two gauge symmetries (4.2)–(4.3) are ordinary gradient shifts of gauge fields,
and are obvious since (4.1) only depends on the field strength F and Q, but not on the
potentials A and R. To manifest the remaining two symmetries, it is convenient to first
introduce

H ≡ F + aQ , (4.6)

and rewrite (4.1), up to total derivatives, as

L free chiral = H2 + 2da ∧H ∧R . (4.7)

The invariance under (4.4) is now manifest, sinceH is invariant by itself, while R transforms
by something involving da∧, and da ∧ da = 0. To see the invariance under (4.5), we write

δH = ϕQ− ϕ

(∂a)2da ∧ ιda(Q+ ?Q) = ϕ

(∂a)2 [ιda(da ∧Q)− da ∧ ιda ? Q] . (4.8)

In particular, δH satisfies
δH + ?δH = 0 , (4.9)

which will come to play an important role when deforming (4.1) to include interactions. It is
useful to keep in mind, here and for the subsequent derivations, that for any (2k+1)-forms
G and G̃ in 4k + 2 spacetime dimensions

??G = G, G ∧ G̃ = −G̃ ∧G , (4.10)
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and additionally, that for any 1-form v and any A,

? (v∧ ivA) = iv(v∧?A), ?ιv(v∧A) = v∧ iv ?A, v∧ ιvA+ ιv(v∧A) = v2A . (4.11)

A summary of useful differential form identities can be located in the appendices of [90].
The variation of (4.7) under (4.5) is

1
2δL = H ∧ ?δH + dϕ ∧H ∧R+ da ∧ δH ∧R+ da ∧H ∧ δR . (4.12)

Then,

H∧?δH+da∧H∧δR= ϕ

(∂a)2H∧[da∧ιda?Q−ιda(da∧Q)−da∧ιda(Q+?Q)]=−ϕH∧Q,

da∧δH∧R= ϕ

(∂a)2da∧[ιda(da∧Q)−da∧ιda?Q]∧R=ϕda∧Q∧R,

where the last line uses da∧ da = 0 and v ∧ iv(v ∧A) = v ∧ [iv(v ∧A) + v ∧ ivA] = v2 v ∧A.
Plugging these expressions back into (4.12), we get

1
2δL = −ϕH ∧Q+ ϕda ∧Q ∧R+ dϕ ∧H ∧R = d(ϕH ∧R), (4.13)

where we have used dH = da ∧Q. Thus, the variation of the Lagrangian under (4.5) is a
total derivative, and the symmetry (4.5) is respected by (4.1).

We then turn to the equations of motion given by

d[?H + aQ] = 0, (4.14)
d[a ? H − aF ] = 0, (4.15)

Q ∧ ?H + F ∧Q = 0. (4.16)

Multiplying (4.14) by a and subtracting it from (4.15) yields

da ∧ (?H −H) = 0, (4.17)

the Hodge dual of which is
ιda(?H −H) = 0. (4.18)

Acting with ιda on (4.17) and with da∧ on (4.18) and adding up the results, by (4.11),

H = ?H. (4.19)

This relation is satisfied whenever the form-field equations of motion (4.14)–(4.15) are
satisfied, and it automatically implies the equation of motion (4.16) for the auxiliary scalar
a (remembering that F ∧Q = −Q ∧ F and Q ∧Q = 0).

Plugging (4.19) back into (4.14) yields

da ∧ dR = 0, (4.20)

which is solved in full generality (see appendix C of [90] for a more detailed explanation) by

R = dB + da ∧ dC, (4.21)
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with B and C being arbitrary (2k − 1)-forms. Then, R can always be gauge-transformed
to zero using (4.3)–(4.4), so that

R = 0, H = F. (4.22)

Therefore, (4.19) implies
F = ?F, (4.23)

which is exactly the desired free-field selfduality relation. Thus, R has been gauged away on-
shell, and a is a pure gauge degree of freedom that can be arbitrarily shifted by (4.5), leaving
the chiral 2k form A satisfying (4.23) as the only physical degree of freedom, as intended.

4.2 Interactions

Our inclusion of interactions into (4.1) is guided by preserving its symmetries (4.2)–(4.5).
There are two crucial observations in this regard. First, that H defined by (4.6) is by itself
invariant under (4.2)–(4.4), but not under (4.5). Second, that due to (4.9), H + ?H is
invariant under all the symmetries (4.2)–(4.5) of the free Lagrangian (4.1). As a result,
adding an arbitrary scalar function F of H+?H to the free Lagrangian (4.1) automatically
produces an interacting theory that respects the symmetries (4.2)–(4.5). We shall then
proceed to explore the equations of motion of the resulting Lagrangian

L chiral = H2 + 2aF ∧Q+ F(H + ?H), H ≡ F + aQ, (4.24)

given by

d[?H + aQ+ ?X −X] = 0, (4.25)
d[a ? H − aF + a ? X − aX] = 0, (4.26)

Q ∧ ?H + F ∧Q+Q ∧ (?X −X) = 0. (4.27)

Here,

Xi1···i2k+1 ≡
∂F(Y )

∂Y i1···i2k+1

∣∣∣∣∣
Y=H+?H

(4.28)

is a rank 2k + 1 fully antisymmetric tensor — that is, a (2k + 1)-form — obtained by
differentiating the scalar function F with respect to the components of its argument.

As in the preceding free theory derivations, multiplying (4.25) with a and subtracting
it from (4.26) yields

da ∧ (?H −H + ?X −X) = 0. (4.29)

By an argument identical to the one displayed under (4.17), this implies that

?H −H + ?X −X = 0, (4.30)

and hence the equation of motion for a given by (4.27) is automatically satisfied. Further-
more, plugging (4.30) into (4.25) yields

da ∧ dR = 0, (4.31)
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exactly the same equation as in the free theory, which is again integrated as R = dB +
da ∧ dC, which can be gauged to R = 0 and hence H = F . Thereafter, from (4.30),

?F − F + ?X −X = 0, (4.32)

where F should now be substituted instead of H in the definition of X, in other words,

Xi1···i2k+1 ≡
∂F(Y )

∂Y i1···i2k+1

∣∣∣∣∣
Y=F+?F

. (4.33)

To summarize, a very simple and general nonlinear selfduality relation (4.32) re-
sulted as the equation of motion for the only propagating degree of freedom of the La-
grangian (4.24). The nonlinearities are contained in the (2k + 1)-form valued function
X(F +?F ) obtained by differentiating an arbitrary scalar function F of a selfdual (2k+1)-
form Y . Interactions with other fields can be also included into F , which may have depen-
dence on other fields. In particular, the interaction term F = (H + ?H) ∧ T where T is a
(2k+1)-form sourced by any other fields in the theory, gives rise to the same equation (4.32)
where now self-interactions are replaced by interactions with additional fields.

As k increases in 4k + 2, the relevant spacetime dimensions that are most commonly
discussed in physics literature are 2, 6 and 10. In 2 dimensions, we are dealing with a scalar
whose ‘field strength’ is a vector. Since only one functionally independent scalar can be
constructed from a vector, and this scalar vanishes for a self-dual vector in two spacetime
dimensions, no interaction terms described by F in (4.24) exist in this case. This is in accord
with the perception that chiral scalars in 2d cannot self-interact. Nontrivial interactions
arise starting from the much-discussed case of dimension 6. We shall proceed to analyze
this case in more detail, followed by the case of chiral 4-forms in 10 dimensions.

4.3 Chiral 2-forms in 6 dimensions

The problem of classifying theories of the form (4.24) is the problem of classifying all
functionally independent scalars made of a selfdual form Y ≡ H + ?H. Then, in a general
theory of the form (4.24), F can be thought of as an arbitrary function of these scalars.

In six spacetime dimensions, there exists only one functionally independent scalar one
may construct from a selfdual form Y , that is, a fully antisymmetric rank 3 tensor satisfying

Yijk = 1
6εijklmnY

lmn. (4.34)

This invariant can be chosen as

I
(6d)
4 ≡M j

i M
i
j = Tr[M2], (4.35)

where
M j
i ≡ YiklY

jkl. (4.36)

It may appear surprising at first that only one independent invariant exists, but the surprise
is perhaps mitigated by the observation that a selfdual 3-form in 6 dimensions has 6!

2(3!)2 =
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10 components, while the number of independent Lorentz transformations 6 · 5/2 = 15 is
bigger than that, leaving little room for invariant information.

We demonstrate how any polynomial invariant made of Y can be re-expressed
through (4.35) in appendix B.1. In addition to this hands-on argument that applies chi-
ral form identities to express any invariant of Y through (4.35), we mention the following
shortcut that reaches the same conclusion in the language of spinor representations (see,
e.g., [93]), keeping in mind the isomorphism between so(1, 5) and su∗(4). In the spinor
language, the selfdual three-form is a symmetric Weyl bispinor Yab (or a symmetric bi-
fundamental representation of su∗(4), a, b = 1, . . . , 4). The only invariant tensor we can
contract with products of Yab so as to form an invariant is the Levi-Civita tensor εa1a2a2a4 .
On the other hand, since Yab is symmetric, only one index of it can be contracted to a given
Levi-Civita tensor. Then, any Levi-Civita tensor comes with the following contraction:

εa1a2a3a4Ya1b1 Ya2b2 Ya3b3 Ya4b4 = 1
24J

(6d)
4 εb1b2b3b4 , (4.37)

proportional to the invariant:

J
(6d)
4 = εa1a2a3a4εb1b2b3b4 Ya1b1 Ya2b2 Ya3b3 Ya4b4 , (4.38)

which is thus the only functionally independent invariant translating in the Lorentz tensor
language to I(6d)

4 given by (4.35), up to a numerical factor.6

Since we can express any invariant of a selfdual 3-form in six spacetime dimensions
through I(6d)

4 , we can write the most general Lagrangian (4.24) in d = 6 as

L = H2 + 2aF ∧Q+ F(I(6d)
4 ), H ≡ F + aQ, (4.39)

where F is an arbitrary function of one variable, and explicitly,

I
(6d)
4 = YiklY

jklY imnYjmn, Y = H + ?H. (4.40)

It is straightforward to show by a simple dimensional argument that among this general
class of self-interacting chiral 2-form theories, there is a one-parameter family that also
respects conformal symmetry, similarly to the four-dimensional case (2.50):

L conf = H2 + 2aF ∧Q+ δ

√
I

(6d)
4 . (4.41)

This is a covariant Lagrangian for the conformal chiral 2-form electrodynamics theories
of [78, 86].

We conclude with comparing the equations of motion of (4.39) with another formula-
tion of chiral 2-form interactions due to Perry and Schwarz [40]. That formulation is given
in terms of a five-dimensional reduction of the six-dimensional degrees of freedom, in line
with the belief prevalent at the time that no manifestly Lorentz-covariant formulation of

6Another elegant argument was provided to us by Amihay Hanany: the symmetric bispinor Yαβ breaks
the 15-dimensional algebra su(4) to its 6-dimensional subalgebra so(4) leaving Y invariant; the remaining
15− 6 = 9 generators transform the 10-dimensional representation Yαβ non-trivially, leaving room for only
10− 9 = 1 invariant.
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chiral form interaction is viable. The core of our present work is precisely to demonstrate
that not only are there simple and natural Lorentz-covariant equations of motion, but they
can also be derived from a local, Lorentz-invariant Lagrangian.7 Nonetheless, to compare
with the construction of [40], we will dimensionally reduce (4.39) to five dimensions.

In order to perform the desired dimensional reduction, we introduce the six-dimensional
unit vector n = (0, 0, 0, 0, 0, 1) and decompose the fields A and R whose field strengths F
and Q appear in (4.39) in terms of their projections along and perpendicular to this vector:

A1 ≡ ιnA, A2 = ιn(n ∧A), R1 ≡ ιnR, R2 = ιn(n ∧R). (4.42)

A1 and R1 are one-forms, and A2 and R2 are two-forms. By the standard projection-
rejection identity

A = n ∧A1 +A2, R = n ∧R1 +R2. (4.43)

To perform the dimensional reduction to five dimensions, we simply assume that all the
fields are constant along the last direction (the direction of n). In that case,

F = −n ∧ F1 + F2, Q = −n ∧Q1 +Q2, (4.44)

with F1 ≡ dA1, F2 ≡ dA2, Q1 ≡ dR1, Q2 ≡ dR2. Given that n is constant and all the
fields are constant in the direction of n, we have ιnF1 = ιnQ1 = 0, ιnF2 = ιnQ2 = 0,
F2 = ιn(n ∧ F2), Q2 = ιn(n ∧Q2). Thus, one has

(F+aQ)2 =(F1+aQ1)2+(F2+aQ2)2, (4.45)
F∧Q=n∧(F2∧Q1−F1∧Q2), (4.46)

Y ≡F+aQ+?(F+aQ)=−n∧Ỹ −ιn?Ỹ , Ỹ ≡F1+aQ1−ιn?(F2+aQ2). (4.47)

Note that ©? ≡ −ιn? is precisely the five-dimensional Hodge star operation with respect
to the five directions orthogonal to n. From these relations, we observe that dimensional
reduction of the six-dimensional chiral theory (4.24) produces precisely the five dimensional
democratic theory (3.29) for a 1-form A1 and its dual 2-form A2. The F -term of this theory
is, most generally, an arbitrary invariant made of the 2-form Ỹ = H1 +©?H2. There can be
only two such independent invariants (which is, in particular, the number of independent
nonzero eigenvalues of a real antisymmetric 5 × 5 matrix). Following [40], we can choose
these invariants as

z1 = 1
2 ỸαβỸ

βα, z2 = 1
4 ỸαβỸ

βγ ỸγδỸ
δα, (4.48)

where, until the end of this section, we use Greek letters from the beginning of the alphabet
to denote the five-dimensional directions. Most generally, within the context of (3.29), F is

7To provide a more complete historical perspective, we mention that a Lorentz-covariant (PST) La-
grangian formalism [41] was developed for free chiral field concurrently with [40], based on earlier ideas
from [32, 36]. It was later extended to include interactions in 6 spacetime dimensions starting with [43], see
section 3 of [76] for an accurate recent summary. In 6 dimensions, this formalism covers the same range
of theories as our present construction. The true power of our formalism is revealed in higher dimensions,
where only limited progress has been achieved using the PST approach [76]. We thank Dmitri Sorokin for
consultations on the history of covariant Lagrangian theories for chiral forms.
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an arbitrary function of z1 and z2. That cannot be so, however, for theories resulting from
dimensionally reducing (4.39), since F in these theories only depends on a single scalar.
Substituting (4.47) into the (4.39) results in an F -term depending on a single scalar made
of Ỹ . Since this scalar is quartic, it must be a linear combination of z2

1 and z2. The
coefficients can be fixed by expanding I(6d)

4 through the components of Y , giving

1
24 I

(6d)
4 = −z2

1 + 4 z2 . (4.49)

Thus, any theory of the form (4.39) is expressed, after the dimensional reduction to
five dimensions, as

L 5d = (F1 + aQ1)2 + (F2 + aQ2)2 − 2 aQ2 ∧ F1 + 2 aF2 ∧Q1 + h(z2
1 − 4z2). (4.50)

The corresponding equation of motion (3.42) for the propagating degrees of freedom is

F1 −©?F2 −
[
2 z1(F1 +©?F2)− 4 (F1 +©?F2)3]h′ = 0, (4.51)

where (F1 + ©?F2)3 denotes the ordinary matrix cube of the 5 × 5 matrix F1 + ©?F2. To
compare with [40], we need to resolve this system of algebraic equations to express F1
through F2.

We emphasize that the steps we are presently taking are directly analogous to the
exposition of section 2.3 where we were converting the democratic representation of 4d
electrodynamics to the ordinary single-field form, except that now we are in 5d and the
electric-magnetic dual potentials are a 1-form and a 2-form. Equation (4.51) plays a role
identical to (2.35), and one expects that it can be resolved in a manner analogous to (2.37)
to express ©?F2 through F1

©? F2 = α(y1, y2)F1 + β(y1, y2)(F1)3, (4.52)

where8

y1 ≡
1
2Tr[(F1)2], y2 ≡

1
4Tr[(F1)4] (4.53)

are the two invariants one can construct from F1. This is precisely the form of the five-
dimensional equations of motion in [40]. To explore the constraints on α and β imposed
by (4.51), we substitute (4.52) into (4.51) to obtain

(1− α)F1 − β[F1]3 +
{

(1 + α)F1 + β[F1]3
}{

2z1 − 4((1 + α)F1 + β[F1]3)2
}
h′ = 0 , (4.54)

where z1 = 1
2Tr[{(1 + α)F1 + β[F1]3}2]. This is an algebraic equation for the real anti-

symmetric matrix F1. To analyze this equation, we follow the strategy of the appendix
of [40], and assume that the matrix F1 can be Lorentz-rotated to the form where all of its
components are zero, except for

(F1)12 = −(F1)21 = λ+ , (F1)34 = −(F1)43 = λ− . (4.55)
8Indeed, the only way to construct a covariant rank 2 tensor from a rank 2 tensor is matrix powers and

multiplication by invariants. Furthermore, for an antisymmetric rank 2 tensor in 5d, all even matrix powers
are symmetric tensors and have a vanishing antisymmetric part, while any matrix powers higher than 3 are
expressible through the tensor itself, its matrix cube, and invariants.

– 24 –



J
H
E
P
0
8
(
2
0
2
2
)
1
1
2

(This is, strictly speaking, only possible if Tr[F 2
1 ] < 0, but one may expect that the resulting

analytic relations will hold in general.) In terms of λ±,

z1 = −[(1 + α)λ+ − βλ3
+]2 − [(1 + α)λ− − βλ3

−]2 . (4.56)

One then rewrites (4.54) equivalently as

(1− α)λ+ + βλ3
+ −

{
2 z1((1 + α)λ+ − βλ3

+) + 4 ((1 + α)λ+ − βλ3
+)3

}
h′ = 0 , (4.57)

(1− α)λ− + βλ3
− −

{
2 z1((1 + α)λ− − βλ3

−) + 4 ((1 + α)λ− − βλ3
−)3

}
h′ = 0 . (4.58)

These equations can be recast as

1− α+ βλ2
+ − (1 + α− βλ2

+) h̃ = 0 , (4.59)
1− α+ βλ2

− + (1 + α− βλ2
−) h̃ = 0 , (4.60)

where h̃ ≡ 2[{[(1 + α)λ+ − βλ3
+]2 − [(1 + α)λ− − βλ3

−]2}h′. Then, eliminating h̃ yields

α2 − (λ2
+ + λ2

−)αβ + λ2
+λ

2
−β

2 = 1 . (4.61)

Keeping in mind that y1 = −(λ2
+ + λ2

−) and y2 = (λ4
+ + λ4

−)/2, this can be rewritten as

α2 + y1αβ +
(
y2

1
2 − y2

)
β2 = 1, (4.62)

exactly the condition derived in [40] from the requirement that the dimensionally reduced
5d theory uplifts to a Lorentz-invariant theory in 6d. In our derivation, this condition
emerged automatically from dimensionally reducing the theory (4.39) to 5d. It plays
a role very similar to the SO(2) duality invariance condition (2.52) in 4d nonlinear
electrodynamics.

We have thus not only provided simple and explicit Lorentz covariant equations of
motion in 6d for all chiral form theories in the class described in [40], but also a Lagrangian
formulation for all of these equations of motion. We will further show in section 5 that the
most general conceivable equations for chiral forms in 6d can be reduced to this form.

4.4 Chiral 4-forms in 10 dimensions

If one attempts to classify all invariants of a selfdual form in 10 dimensions, there is still
a large choice of identities that reduce the number of independent invariants, but it is
much more challenging than in 6 dimensions to manage them in any explicit form, and the
number of invariants is expected to be large. The number of independent components of
a selfdual 5-form in 10 dimensions is 10!

2(5!)2 = 126 while the number of Lorentz generators
is 10 · 9/2 = 45. Thus, naively, one expects at least 126− 45 = 81 independent invariants,
while obviously not more than 126.

A systematic theory of Lie group invariants exists and revolves around the Hilbert series
and the Molien (or Molien-Weyl) formula [94]. It has been successfully applied9 to other

9We thank Prarit Agarwal, Kirsty Gledhill, Julius Grimminger and Amihay Hanany for discussions on
this matter.
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problems in high-energy theory [95, 96], and explicit classifications of invariants for the
simpler case of tensors in three Euclidean dimensions exist in the literature [97, 98], based
on precisely these techniques. (See also [99].) It seems challenging, however, to apply these
techniques to our situation in d ≥ 10, and we will refrain from pursuing this strategy here.

A more practical question, which is much more manageable, is to classify low-order
invariants. Indeed, at least in the particle theory context, one would rarely be concerned
with, say, 40-particle interactions resulting from an invariant in the Lagrangian obtained
from a product of 40 copies of the fundamental fields. It is natural to focus on low-order
invariants first, and we shall do it for quartic invariants of selfdual 5-forms in 10 dimensions.

It turns out that there is only one functionally independent quartic invariant of a chiral
5-form Y in 10 dimensions, which can be chosen as

I
(10d)
4 = YiklmnY

jklmnY ipqrsYjpqrs. (4.63)

We summarize arguments that lead to this conclusion in appendix B.2 in parallel to our
proof in appendix B.1 that, in six dimensions, there is only one independent invariant
(without any restrictions on the polynomial degree). We furthermore provide here an
alternative shortcut in the spinor language leading to the same conclusion. A simple
observation is that symmetric Majorana-Weyl bispinors in ten dimensions parametrize a
(136-dimensional) vector space isomorphic to the direct sum of the vector spaces of selfdual
five-form (126 dimensions) and vector (10 dimensions) representations of the Lorentz alge-
bra. In the language of the Clifford algebra (see [93]), this means that the ten symmetric
16 × 16 γ-matrices γabµ can be used to construct invariant spin-tensors Σab,cd = γabµ γ

µcd,
that can contract spinor indices of the symmetric bispinors Hab parametrizing the self-
dual five-forms (and satisfying γabµ Hab = 0). Then, since Σ(ab,c)d = 0 , it follows im-
mediately that Σab,cdHac = 0 = Σab,cdHab and the only possible contractions are those
where each Σ can contract at most one index from each H. This implies immediately,
that there are no quadratic invaraints and the quartic invariant is unique and given by
J

(10d)
4 ∼ Σa1b1,c1d1Σa2b2,c2d2Ha1a2Hb1b2Hc1c2Hd1d2 , equivalent to (4.63) up to a factor.

The uniqueness of quartic interactions of chiral forms in 10d has been established in a
different language in [76]. There are two advantages of our present treatment. First, this
statement is translated into a straightforward, purely algebraic fact that there is a unique
functionally independent quartic scalar that can be constructed from a chiral form in 10d.
Second, the unique independent quartic invariant (4.63) alone yields an infinite-parametric
family of interacting chiral 5-form theories by using an arbitrary function of this invariant in
place of F(H+?H) in (4.24), rather than only controlling the form of quartic interactions.
This is, evidently, still a tiny subclass of all theories described by (4.24) where any other
invariants could be used as well.

Scale-invariant theories in 10d, analogous to (4.41), can also be constructed. Besides
the evident interaction term

√
I

(10d)
4 , one can now choose an arbitrary F in (4.24) that is a

homogeneous function of degree 2 in its arguments, yielding a huge class of scale-invariant
theories.
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5 Covariant equations of motion

The past literature on the subject is often permeated with the perception that Abelian
interactions of chiral form fields are strongly constrained, and the search for consistent
interactions is seen as an important outstanding problem. The physical equations of mo-
tion (4.32)–(4.33) of our general interacting chiral theory cast this matter in a rather
different light, since they look like fairly generic Lorentz-covariant equations of motion,
without any need to satisfy sophisticated restrictions on the form of the nonlinear terms.

If one seeks a nonlinear generalization of the free selfduality relation H = ?H, a natural
starting point is

?H = G(H). (5.1)

This, however, is a set of algebraic equations with respect to the components of H, one
equation per component, and thus one generally does not expect nontrivial dynamics for
generic G and the description of the set of admissible G’s is not straightforward. It is more
illuminating to resolve these algebraic equations as an expression for H − ?H in terms of
H + ?H, that is,

H − ?H = G(H + ?H). (5.2)

Generically, there are still as many equations here as there are form components. However,
if it happens that G satisfies G = − ? G for any value of the arguments, the number of
equations reduces to one half of the number of components, leaving precisely the amount
of freedom one needs to specify a chiral form. Thus, the condition for G to be admissible
is merely that its values are anti-selfdual. The most general equations of such a form are

H − ?H = g(H + ?H)− ?g(H + ?H), (5.3)

and these are essentially the most general Lorentz-covariant equations one may imagine to
describe interacting extensions of free chiral theories, before discussing any further physical
constraints.

The equations of motion (4.32)–(4.33) produced by our Lagrangian theories are surpris-
ingly close to the most general conceivable equations (5.3), and furthermore these equations
automatically come out in the form (5.3), rather than (5.2), when varying the Lagrangian
and gauging away the auxiliary fields. The only constraint one has to impose is that g is
obtained by differentiating a scalar made of H + ?H with respect to the form components,
as expressed by (4.33). This is a surpisingly weak condition on the form of the interac-
tions, which turns out sufficient to have a full-fledged Lagrangian form of the theory. (The
derivative of a scalar F(H + ?H) with respect to the selfdual argument H + ?H is always
anti-selfdual in Minkowski spacetime in those dimensions where chiral forms exist.)

General results on the status of equations of motion of the form (5.3) which cannot be
represented as (4.32)–(4.33) will be reported elsewhere [100]. Although our formalism does
not provide a Lagrangian description for such equations, we cannot make a general pro-
nouncement on their consistency. The situation is simple, however, in the six-dimensional
case of section 4.3, where we can show that any equation of the form (5.3) can be recast
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as (4.32)–(4.33), and thus (4.39) provides a Lagrangian description to the most general con-
ceivable equations of motion (5.3). A proof of this statement is given in appendix C. The
strategy is to show that very few functionally independent chiral forms can be constructed
by contracting the tensor indices of chiral forms in 6d, and those functionally independent
chiral forms can be expressed as derivatives of the scalar invariant (4.40). The technology
that goes into the proof is a minor extension of the analogous proof of the uniqueness of
the chiral form invariant in 6d, presented in appendix B.1.

We conclude with an amusing observation in two dimensions. If we relax the assump-
tion that the right hand side of (5.3) should be polynomial with respect to its argument, we
find (details will be provided in [100]) that there is an equation in this case, describing half
a scalar degree of freedom, similarly to (4.32) or (5.3), but for which (4.33) does not hold
(this equation should be understood as component-by-component relations for vectors):

∂µϕ− εµν∂νϕ = 1
∂µϕ+ εµρ∂ρϕ

. (5.4)

In reality, this is not two equations, but one, since both sides of the equation are anti-
selfdual. It is clear that the right-hand side of (5.4) cannot arise from a derivative of
a scalar, since there is no scalar that can be constructed from ∂+

µ ϕ ≡ (∂µ + εµν∂
ν)ϕ.

Equation (5.4) is equivalent to

∂µϕ∂
µϕ = 1 , (5.5)

which can be rewritten as:

∂+ϕ∂−ϕ = −1 , (5.6)

where x± = x0 ± x1 are the light-cone coordinates in two dimensions. Curiously, this
equation is the same as the duality-symmetry condition for the non-linear electrodynamics
Lagrangian in four dimensions (2.53), despite the completely unrelated physical interpre-
tation. The field theory described by (5.4) or (5.5) is strongly coupled and symmetric
with respect to exchanging F − ?F and F + ?F . It cannot be understood as a continuous
interacting deformation of the selfdual free scalar theory, or equivalently, the anti-selfdual
free scalar theory. In d = 2, (5.4) is the only example of an equation (5.3) that cannot be
derived from the general Lagrangian (4.24). More generally, (5.4) is the only consistent
(interacting half-scalar) equation of the type (5.3) in two dimensions. We will report in
more detail on this case, as well as cases with d > 2, in [100].

6 Conclusions

Building on top of our recent work [91], and the earlier developments for free fields
in [89, 90], we have provided a local, Lagrangian, manifestly Lorentz-covariant democratic
description (3.29) for general self-interactions of Abelian p-forms, explicitly featuring elec-
tric and magnetic potentials on equal footing. Additionally, in those dimensions where
selfdual forms exists, this approach immediately leads to local, Lagrangian, manifestly
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Lorentz-covariant theories (4.24) of self-interacting chiral forms. The class of theories con-
structed in this fashion is considerably broader than what has been accessible to any past
approaches in the literature.

Besides being local, Lagrangian and manifestly Lorentz-covariant, our formulation has
a few further distinctive advantages:

1. The large set of gauge symmetries necessary for eliminating the auxiliary Lagrangian
fields and leaving only the desired dynamical content on-shell, is realized in a universal
manner. The expressions for the gauge transformations do not depend on the form
of the interactions one chooses to include in the theory.

2. The interaction terms in the Lagrangian, expressed through a specific combination
of dynamical and auxiliary fields, are only constrained by Lorentz invariance. One
does not need to satisfy any extra requirements (for example, in the form of PDEs)
in relation to the dependence of the interaction terms on the field variables.

We feel that our results invite considerable re-evaluation of a number of perceptions
commonly seen in the literature on the subject over the past decades. We draw the reader’s
attention in particular to the following important points:

1. A recurring motif in the past literature is that one should give up manifest Lorentz
covariance to deal with interacting chiral forms, in particular in 6d. Thus, the in-
fluential paper [40] remarks that “not only is there no manifestly Lorentz invariant
action, but even the field equation lacks manifest Lorentz invariance.” This attitude
reverberates through later articles on this subject, for example [65], where a similar
approach based on a 5d description is pursued for non-Abelian form fields.10 Our
work casts the matter in a different light, since not only extremely simple, manifestly
Lorentz-covariant equations of motion (4.32)–(4.33) are available for interacting chi-
ral theories, involving an arbitrary scalar function F of a selfdual form variable, but
these equations of motion can also be derived from the manifestly Lorentz-invariant
Lagrangian (4.24). Furthermore, as has been shown in section 5 and appendix C, in
six spacetime dimensions, these equations in fact cover the entire class of Lorentz-
covariant nonlinear selfduality relations (5.3), which are essentially the most general
equations of motion (without derivatives of the field strength) one may propose for
interacting deformations of free chiral form equations.

2. There is a persistent attitude in the literature that interactions of chiral forms are
somehow difficult to construct, and the interaction terms must satisfy stringent con-
sistency conditions. Thus, we read in [69] that “the functionals of gauge field strengths

10Concurrently with these attitudes, covariant Lagrangian description of chiral form interactions has
been developed within the PST approach starting with [43], see [76] for a more recent update. Up to
six dimensions, the PST approach covers the same range of theories as our formalism, but our formalism
becomes significantly more powerful in higher dimensions. We mention additionally the alternative approach
of [72, 74] due to Ashoke Sen, which is generally suitable for discussing chiral form interactions, but where
the auxiliary fields decouple from the dynamics, rather than being exactly gauged away.
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which determine non-linear selfduality conditions are constructed order-by-order as
perturbative series expansions in powers of the field strength and in general their
explicit form is unknown except for the Born-Infeld-type actions and few other exam-
ples.” In the Lagrangian formulation (4.24), the interaction term F is only constrained
by the elementary requirement of Lorentz invariance, and otherwise completely arbi-
trary. There are no further conditions that need to be imposed on F so as to make
our formalism work.

We thereby proclaim that the problem of constructing self-interactions of Abelian chiral
forms has been solved, as well as the problem of democratic Lagrangian description of self-
interacting Abelian forms, and that the solution has turned out embarrassingly simple.
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A Conversion between single-field and democratic formulations

When converting between single-field and democratic representation of nonlinear electro-
dynamics in section 2.3, one needs to solve the 2× 2 system of algebraic equations (2.42)–
(2.43). Additionally, since α and β are derivatives of a single function per (2.41), and
g1 and g2 are derivatives of a single function per (2.36), they must satisfy compatibility
relations ∂α/∂s + ∂β/∂p = 0 and ∂g1/∂λ2 = ∂g2/∂λ1. From an immediate inspection, it
is not obvious that such compatibility conditions will be automatically satisfied, and more
broadly, that one can indeed integrate the solutions of (2.42)–(2.43) to obtain the functions
g and L appearing in the corresponding Lagrangians. The purpose of this appendix is to
show that it is possible under mild assumptions.

We will find it convenient to work with complex combinations of the pairs of invariants
(s, p), (−λ2, λ1) and, correspondingly, the analysis will be expressed in the complex variable
notation.

A.1 Preliminaries

Let D ⊂ C be a connected open region and let µ ∈ C1(D,C). Consider the equation

∂f

∂z
= µ. (A.1)

The following statements are very easy to prove, but we will formulate them as lemmas for
convenient further reference.
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Lemma 1. Equation (A.1) has real-valued solutions on D if and only if

∂µ

∂z̄
= ∂µ̄

∂z
, ∀z ∈ D. (A.2)

In conjunction with equation (A.1), this condition is equivalent to

∂f

∂z̄
= µ̄. (A.3)

Proof. It is clear that any real-valued (differentiable) solution of (A.1) is automatically in
C2(D,R), and the equality of mixed derivatives immediately yields (A.2). The equivalence
of (A.2) and (A.3) for a solution of (A.1) is straightforward. The existence of a real-valued
solution when (A.2) is satisfied will be established below in Lemma 2.

For simplicity, the following lemma is formulated under the assumption that D is star-
shaped (i.e., convex along every line through a fixed point), so that integration is taken
along straight lines. But this can be replaced with any other choice of integration curves
between points with some reasonable effort.

Lemma 2. Assume that (A.2) is satisfied and that the region D is star-shaped with respect
to z0 ∈ D. Then for every C ∈ R equation (A.1) has a unique real-valued solution f ∈
C2(D,R) satisfying f(z0) = C given by

f(z) =
z∫

z0

µ(ξ)dξ +
z̄∫

z̄0

µ(ξ)dξ + C =
z∫

z0

µ(ξ)dξ +
z∫

z0

µ(ξ)dξ + C, ∀z ∈ D, (A.4)

where integration is performed along a straight line.

Proof. We first convince ourselves that (A.4) is indeed a real-valued C2 solution with
f(z0) = C. The uniqueness follows from the fact that the general solution to the ho-
mogeneous equation ∂f

∂z = 0 are functions antiholomorphic in D, and an antiholomorphic
function is real-valued only if it is a constant.

In the sequel we will meet equations of the form

∂F

∂ξ

∣∣∣
ξ=µ2z

= k

µ
, k ∈ R, (A.5)

where F (ξ) is given and we want to imply certain properties about the implicitly defined
function µ(z), if it exists.

Proposition 1. Let D ⊂ C be an open region and µ ∈ C1(D,C \ {0}). Let further D̃ ⊂ C
be another open region such that µ(z)2z ∈ D̃ for all z ∈ D. Suppose that F ∈ C2(D̃,R)
such that det HF (µ(z)2z) 6= 0 for all z ∈ D. If µ satisfies equation (A.5) for some k ∈ R
then it automatically satisfies (A.2).
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Proof. Differentiating both sides of equation (A.5) we find

∂

∂z

∂F

∂ξ
(µ2z) = ∂2F

∂ξ2 ·
(
µ2 + 2µz∂µ

∂z

)
+ ∂2F

∂ξ∂ξ̄
· 2µ̄z̄ ∂µ̄

∂z
= − k

µ2
∂µ

∂z
.

Repeating this for ∂
∂z̄ , and taking also the complex conjugate equations, we can write the

matrix equation

A ·Dµ = C, (A.6)

A =

∂2F
∂ξ2 · 2µz + k

µ2
∂2F
∂ξ∂ξ̄
· 2µ̄z̄

∂2F
∂ξ∂ξ̄
· 2µz ∂2F

∂ξ̄2 · 2µ̄z̄ + k
µ̄2

 , Dµ =
(
∂µ
∂z

∂µ
∂z̄

∂µ̄
∂z

∂µ̄
∂z̄

)
,

C = −

 ∂2F
∂ξ2 · µ2 ∂2F

∂ξ∂ξ̄
· µ̄2

∂2F
∂ξ∂ξ̄
· µ2 ∂2F

∂ξ̄2 · µ̄2

 .
Observe that

detC(z) = |µ(z)|4 det HF (µ2(z)z) 6= 0, ∀z ∈ D,

whence detA(z) 6= 0 and thus Dµ(z) is uniquely determined from A ·Dµ = C for all z ∈ D.
Moreover, a careful computation shows that C(z) · A(z)> = A(z) · C(z)> for all z ∈ D,
which implies that Dµ(z) = Dµ(z)>, and the latter is equivalent to (A.2).

Aside from special situations, equation (A.5) will define a C1 function µ(z) at least
locally. Let us make this statement more precise.

Proposition 2. Let D̃ ⊂ C be an open region and F ∈ C2(D̃,R) such that det HF (w) 6= 0
for all w ∈ D̃. Let D ⊂ C and D′ ⊂ C \ {0} be open regions such that

(∀(z, µ) ∈ D ×D′) w = µ2z ∈ D̃.

Then ∃U ⊂ D open and f ∈ C1(U,D′) such that µ = f(z) solves equation (A.5).

Proof. Follows immediately from (A.6) in the proof of Proposition 1 and the Implicit
Function Theorem.

A.2 Existence results for the conversion procedure

In formula (2.38), we see that s is a ‘parity-even’ square and p is a ‘parity-odd’ square.
This motivates the introduction of the complex variable

z = s+ ı p.

On the other hand, from formula (2.31) we see that λ2 is the negative of a ‘parity-even’
square, while λ1 is an ‘parity-odd’ square. Thus, we introduce the complex variable

λ = −λ2 + ı λ1.

Henceforth we will consider L as a function of the complex variable z, and g as a function
of the complex variable λ. Denote

v = 1 + β + ı α.
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In these new variables, equation (2.41) can be written as
∂L
∂z

= v − 1
2 ,

∂L
∂z̄

= v̄ − 1
2 , (A.7)

where the second equation can be substituted by the requirement that L is real-valued.
Similarly, equation (2.42) can be written as

∂g

∂λ
= 1
v
− 1

2 ,
∂g

∂λ̄
= 1
v̄
− 1

2 , (A.8)

where the second equation can be substituted by the requirement that g is real-valued.
The connecting equation (2.43) can be now written as

λ = v2z. (A.9)

Note that (2.44) follows immediately.
The question at hand is therefore: given a real-valued function L, find a real-valued

function g such that equations (A.7), (A.8) and (A.9) are satisfied, and vice versa. If L(z)
is given, then by (A.7) and (A.9) we have

v = 1 + 2∂L
∂z

(
λ

v2

)
, (A.10)

which we need to solve in order to find the function v(λ). Conversely, if g(λ) is given, then
by (A.8) and (A.9) we have

2
v

= 1 + 2∂g
∂λ

(v2z), (A.11)

which we need to solve in order to find the function v(z).
We are ready for the main result of this appendix.

Theorem 1. Given a real-valued C2 function L, in a neighborhood of a point where
det HL 6= 0 there exists a real-valued C2 function g such that (2.41), (2.42) and (2.43) are
satisfied. Conversely, given a real-valued C2 function g, in a neighborhood of a point where
det Hg 6= 0 there exists a real-valued C2 function L such that (2.41), (2.42) and (2.43) are
satisfied.

Proof. Let D̃ ⊂ C open and L ∈ C2(D̃,R), and let w0 ∈ D̃ be such that det HL(w0) 6= 0.
Then by continuity ∃U ⊂ D̃ open such that w0 ∈ U and det HL(w) 6= 0 for all w ∈ U . We
will assume U = D̃ for convenience. Define F ∈ C2(D̃,R) by

F (ξ) = ξ + ξ̄ + 2L(ξ), ∀ξ ∈ D̃.

One sees immediately that det HF (w) = 4 det HL(w) 6= 0 for all w ∈ D̃. With notations
µ = 1

v , z = λ, k = 1, equation (A.10) is equivalent to (A.5), which by Proposition 2
has a solution µ ∈ C1(D,D′) for appropriately chosen neighborhoods D,D′ ⊂ C. By
Proposition 1 this solution satisfies ∂µ

∂λ̄
= ∂µ̄

∂λ . It follows that

∂

∂λ̄

(1
v
− 1

2

)
= ∂µ

∂λ̄
= ∂µ̄

∂λ
= ∂

∂λ

(1
v̄
− 1

2

)
,

so that by (A.8) and Lemma 2 there exists g ∈ C2(D,R) that satisfies (A.8).
The reverse implication is proven completely analogously with notations

F (ξ) = ξ + ξ̄ + 2g(ξ), µ = v, z = z, k = 2.

This completes the proof.
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Remark 1. Note that det HL 6= 0 (respectively, det Hg 6= 0) is the least we can require in
order that the equations of correspondence are guaranteed to be non-degenerate and locally
solvable. If this condition is not satisfied, solutions may still exist but this becomes much
harder to establish on general grounds and should be elaborated case-by-case. Moreover, if L
or g are to be interpreted as Lagrangians, non-degenerate Hessians are important for finding
local minima. In particular, strictly convex functions have positive definite Hessians.

B Uniqueness of chiral form invariants

B.1 Six spacetime dimensions

For a fully antisymmetric tensor, a general polynomial invariant is a contraction of an
arbitrary number of copies of this tensor and Levi-Civita symbols εj1j2j3j4j5j6 . For a selfdual
rank 3 fully antisymmetric tensor Y , all the Levi-Civita symbols can be eliminated by first
taking one of the Y ’s that the Levi-Civita symbol is contracted to and rewriting it as
in (4.34) and then eliminating a pair of Levi-Civita symbols using the standard identity

εi1i2i3i4i5i6εj1j2j3j4j5j6 = − detmn[δimjn ]. (B.1)

The minus sign originates from the Minkowski signature of the metric. Once this process
has been applied to all Levi-Civita symbols, an arbitrary invariant of Y is expressed as a
contraction of Y ’s only. Evidently, this contraction must involve an even number of Y ’s so
that there is an even total number of indices available for the contraction process.

Our goal is to prove that, in six spacetime dimensions, any invariant of a selfdual fully
antisymmetric rank 3 tensor Y can be expressed through

I
(6d)
4 = YiklY

jklY imnYjmn. (B.2)

This statement underlies the analysis of section 4.3. The dramatic reduction in the num-
ber of independent invariants can be understood, in particular, as an effect of the large
number of identities on contractions of Y resulting from the selfduality property. One such
important identity results from starting with YijkY ilm, re-expressing both Y ’s using (4.34),
and then applying (B.1) to the emerging pair of Levi-Civita symbols.11 The result of these
manipulations is the following identity

YijkY
ilm = 1

4
(
M l
j δ

m
k −M m

j δlk −M l
k δ

m
j +M m

k δlj

)
, (B.3)

where M j
i ≡ YiklY

jkl, as in (4.36). In other words, a single contraction of a given pair of
Y ’s can be traded for a double contraction, which produces an M , while the contractions
of the remaining Y ’s in the invariant under consideration get ‘re-wired’ as a result.

There is a further identity we shall need. Consider

M j
i M

k
j = YipqY

jpqYjrsY
krs, (B.4)

11Such computations are rather burdensome for manual implementation, but they are handled very effi-
ciently by the FORM computer algebra system [101], which is optimized for working with tensor contractions
and Levi-Civita symbols.

– 34 –



J
H
E
P
0
8
(
2
0
2
2
)
1
1
2

and apply (B.3) to the middle pair of Y ’s. This yields

M j
i M

k
j = 1

4
(
YipqY

krqM p
r +YiqpY

krpM q
r +YipqY

ksqM p
s +YiqpY

kspM q
s

)
=YipqY

krqM p
r .

(B.5)
Now apply (B.3) on the remaining pair of Y ’s, which yields

M j
i M

k
j = 1

4
(
M k
i δ

r
p −M r

i δ
k
p −M k

p δ
r
i +M r

p δ
k
i

)
M p
r = −1

2M
j
i M

k
j + I

(6d)
4
4 δki , (B.6)

where we have used
M i
i = Tr[M ] = YijkY

ijk = 0, (B.7)

which is simply Y ∧ ?Y = Y ∧ Y = 0 in the differential form notation. Hence,

M j
i M

k
j = I

(6d)
4
6 δki , (B.8)

We are now ready to present an algorithm to express any full contraction of an even
number of Y ’s (and hence any scalar made of Y ) through powers of I(6d)

4 defined by (4.35).
Starting with an arbitrary such contraction, execute the following 3 steps repeatedly, until
they cannot be applied any further:

1. Replace all pairs of Y connected via double contractions by M using (4.36).

2. Repeatedly apply (B.8) to any pairs of M contracted to each other, which eliminates
such pairs of M and brings in explicit powers of I(6d)

4 .

3. Choose any pair of Y ’s connected via a single contraction and convert it into M

using (B.3).

When the above steps can no longer be executed, one is left with a scalar made of Y ’s and
M ’s where no Y is contracted to another Y and no M is contracted to another M , times a
power of I(6d)

4 . If the way this happens is that there are no Y ’s and no M ’s left at all, we
have expressed the original invariant as a power of I(6d)

4 . If there is one M left, it must be
contracted with itself, which is zero by (B.7). If there are any Y ’s left, each of them must
have all of its indices contracted to different M ’s (since they cannot be either contracted
to other Y ’s, by the recursive application of steps 1-3 above, nor to each other, since Y is
antisymmeric, nor to the same M , since M is symmetric and Y is antisymmetric). Choose
one of the remaining Y ’s, which must appear in the combination

M i
i′ M

j
j′ M

k
k′ Yijk = M j

j′ M
k
k′ Yi′lm Y

ilmYijk. (B.9)

Apply (B.3) to the last pair of Y ’s in this expression to obtain

M i
i′ M

j
j′ M

k
k′ Yijk = 1

4M
j
j′ M

k
k′ Yi′lm

(
M l
j δ

m
k −M m

j δlk −M l
k δ

m
j +M m

k δlj

)
= I

(6d)
4
12

(
M k
k′ Yi′j′k +M j

j′ Yi′jk′

)
, (B.10)
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where (B.8) has been used in the second line. Since index i′ originally belonged to an M ,
following the recursive implementation of steps 1-3 above, it had to be contracted to an Y
(and not to an M). After (B.10) has been enacted, this index is attached to an Y , so there
are two Y ’s contracted to each other, and we can restart the recursive application of steps 1-
3 above. If there are any Y ’s left after that, we shall apply (B.10) again, and restart 1-3, and
so on. Since the number of Y ’s constantly decreases in this process, repeated application of
the above procedure must terminate with complete elimination of all Y ’s. In that case, ei-
ther there is oneM left, and it is contracted to itself and hence zero by (B.7), or there are no
tensors left at all, and the original scalar has been completely expressed as a power of I(6d)

4 .

B.2 Ten spacetime dimensions

We turn to functionally independent scalars that can be made in 10 spacetime dimensions
from a selfdual fully antisymmetric rank 5 tensor Y , and focus on quartic invariants. First
of all, we introduce

M j
i ≡ YiklmnY

jklmn, (B.11)

analogous to (4.36). Similarly to (B.3), the following identity holds whenever Y is selfdual:

Y ijpqrYmnpqr = 1
8
(
M i
mδ

j
n −M i

n δ
j
m −M j

mδ
i
n +M j

n δ
i
m

)
. (B.12)

Then we can start constructing quartic invariants by distributing contractions between four
copies of Y . Pick one of these four Y ’s. The contractions of its 5 indices can be distributed
among the three remaining copies of Y as 4 + 1 + 0 or 3 + 2 + 0 or 3 + 1 + 1 or 2 + 2 + 1.
If the pattern is 4 + 1 + 0, there is only one way to complete the remaining contractions,
and it results in the invariant

I
(10d)
4 = YiklmnY

jklmnY ipqrsYjpqrs, (B.13)

analogous to (4.40). If the pattern is 3 + 2 + 0, there is also only one way to complete the
remaining contractions, giving YijklmY pqklmY ijnrsYpqnrs. But then, applying (B.12) to the
first pair of Y ’s reduces this invariant to (4.63). If the contraction pattern is 3 + 1 + 1, the
only way to complete the remaining contractions, giving YijklmY pqklmY iq′nrsYpj′nrs ηqq′ηjj

′ .
Again, applying (B.12) to the first pair of Y ’s reduces this invariant to (4.63). Finally, the
only way to complete the remaining contractions in the 2 + 2 + 1 pattern is

J
(10d)
4 = YijklmY

ijnpqY rsn′lmYrsk′pq η
kk′
ηjj′ . (B.14)

We have verified numerically that the relation J
(10d)
4 = I

(10d)
4 /6 holds for any random

initialization of the independent components of Y . The proof of this identity would use the
analog of (B.12) where one starts with only one contraction of the two Y ’s and expresses
it through double and quadruple contractions. Then acting with this single-contraction
identity on either of the two pairs of indices in (B.14) contracted through the Minkowski
metric η will result in an expression for J (10d)

4 as a linear combination of itself and I(10d)
4 ,

which gives the desired linear relation between the two quartic invariants. Implementing
this process is rather cumbersome as the identities and index permutation counting involved
become rather bulky, hence we see little merit in doing this here explicitly.

We conclude that all quartic invariants of a selfdual fully antisymmetric rank 5 tensor
in 10d can be expressed through (B.13), as claimed in section 4.4.
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C Tensor functions of chiral forms in 6d

We would like to analyze the general equations of motion (5.3) for a chiral form in six
dimensions, and show that they can in fact be reduced to the form (4.32)–(4.33), and
hence derived from the Lagrangian (4.39). To this end, we return to the notation of
section 4.3 and appendix B.1, and introduce Y ≡ H + ?H and M defined by (4.36). In
this language, g(Y ) of (5.3) is a fully antisymmetric rank 3 tensor made by contracting
(a necessarily odd number of) Y ’s. We would like to use the identities for chiral forms
to reduce g to ∂F/∂Y , where F is a polynomial function of the unique functionally
independent invariant I(6d)

4 defined by (B.2).
The reduction algorithm described under (B.8) will still work, whereby any pair of

contracted Y ’s is expressed through M , and any pair of contracted M ’s can be expressed
through I

(6d)
4 , and so on recursively, and if this procedure stalls, it can be restarted

with (B.10). This procedure can be applied to any Y that does not have open indices,
so that any Y ’s without open indices will be converted to powers of I(6d)

4 . One will then
be left with Y ’s that do have at least one uncontracted index, and furthermore cannot be
contracted to each other directly, but only through M , since otherwise we would have been
able to immediately apply (B.3). Since there are only 3 open indices, at most three Y ’s
can be left in this way. If these 3 indices are attached to three different Y ’s, they must be
contracted to form the combination

YilmYjnpYkqsM
lnMpqMms, (C.1)

where the open indices i, j, k may or may not be contracted to extra copies of M . Then,
using the identity

M l
i M

m
j Ylmk = M l

i YjpqY
mpqYmkl = 1

4M
l
i Yjpq

(
M p
k δ

q
l −M

q
k δ

p
l −M

p
l δ

q
k +M q

l δ
p
k

)
= 1

2M
q
i M

p
k Yjpq + I

(6d)
4
12 Yijk, (C.2)

followed by (B.3), two Y ’s will be eliminated, leaving an object with one Y .
The situation where two of the open indices are attached to one Y and the remaining

one to the other Y is impossible, since one would not be able to complete the contractions
to form a rank 3 tensor. We are thus left with a situation where only one Y is left, and its
open indices can be decorated with M ’s in different ways, leaving four distinct cases (each
of these tensor structures may be multiplied by an arbitrary function of the unique quartic
scalar I(6d)

4 ):

1. Yijk;

2. M l
i Yljk +M l

j Ylki +M l
k Ylij ;

3. M l
i M

m
j Ylmk +M l

j M
m
k Ylmi +M l

kM
m
i Ylmj ;

4. M l
i M

m
j M n

k Ylmn.
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Option 1 gives zero identically when substituted to the right-hand side of (5.3), and hence
cannot contribute. Option 2 is precisely in the form of equations of motion of the chiral
Lagrangian theory (4.39). Option 4 is equivalent to option 2 by (B.10). Finally, for option
3, we can use (C.2) to express it through Yijk times I(6d)

4 . It is thus effectively equivalent to
option 1 and cannot contribute for the same reason. The bottom line is that any equations
of motion of the form (5.3) in six dimensions can be re-written as equations of motion of
the Lagrangian theory (4.39). Thus, the Lagrangian (4.39) covers all possible interacting
deformations of a free chiral two-form theory in six dimensions.
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