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1 Introduction and main results

String theory backgrounds with a maximally symmetric spacetime are central in many
research questions. De Sitter, Minkowski or anti-de Sitter backgrounds appear in a wide
range of topics going from phenomenology to holography and quantum field theory. Part
of this variety is captured by the swampland program [2–4], which aims at characterising
outcomes of quantum gravity theories, such as string theory. Consequently, backgrounds
with maximally symmetric spacetimes are subject to several conjectures regarding their
existence and properties, currently under scrutiny. With these motivations in mind, we
provided in a companion paper [1] a classification of certain 10d type IIA/B supergravity
solutions with a maximally symmetric spacetime, which are candidates for classical and
perturbative string backgrounds. This classification led us in particular to find new kinds
of solutions. In this paper, we study various properties of these solutions and compare
them to swampland conjectures; this analysis will reveal some interesting novelties.

The solutions classified share an ansatz which is common in the literature. It typically
allows for a consistent truncation towards 4d gauged supergravities [5]. The 10-dimensional
(10d) spacetime is a direct product of a 4d maximally symmetric spacetime and a 6d group
manifold. In a certain basis, flux components are constant, as well as Dp-brane and ori-
entifold Op-plane contributions, which are smeared. The work of [1] classifies such solu-
tions having non-zero source contributions appearing in the Bianchi identities, sometimes
referred to as having a non-vanishing tadpole. Many well-known solutions enter this clas-
sification: the de Sitter ones of [6, 7], the Minkowski ones of [8, 9], the anti-de Sitter ones
of [10–12], to cite just a few; a complete list is provided in [1].

This classification led us to two important results. First, we could search and find
new solutions in previously unexplored solution classes: for instance, we found de Sitter
solutions with O4 and O6 (class m46), Minkowski solutions with O5 along 3 different direc-
tion sets (class s555), or anti-de Sitter solutions with O5 along 2 different sets (class s55).
Second, the classification and searches gave us an overview of the possible solutions, and
it led us to Conjecture 4 on de Sitter solutions: those need at least 3 intersecting sets of
Op/Dp, which means that they can only be found in corresponding 4d theories having at
most N = 1 supersymmetry.

In this paper, we study these new solutions on several important aspects, allowing us
to compare them to related swampland conjectures. We develop on the way methods and
numerical tools, that we describe and make available. We present in the following three
different aspects and the main results obtained for each of them.

For completeness, let us add that we do not include in our solution ansatz other ingredi-
ents a priori allowed in 10d supergravities: NS5-branes, Kaluza-Klein monopoles (KKm) or
anti-Dp-branes (Dp). KKm look promising for de Sitter solutions, see e.g. [13–15]. The cor-
responding sourced Bianchi identity is a violation of Jacobi identities or Riemann Bianchi
identity [16, 17], and may lead to a tadpole. On a compact manifold, one may wonder
whether this would require the analogue of an orientifold, sometimes denoted KKO [16, 18].
Having a localized 10d solution with a KKm, possibly a KKO, together with Op/Dp seems
to us so far out of sight (localized Op/Dp solutions can already be very difficult to obtain);
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the same goes for NS5-branes. So for simplicity we do not include any of those NSNS
objects in our ansatz. The Dp have been argued to help regarding the stability of de Sitter
solutions [19] (without however finding a 10d supergravity solution realising this idea).
But Dp have the disadvantage of being unstable in presence of a Dp, so one has to make
sure that they are not along the same directions. We thus focus on the simpler setting
with only Op/Dp as sources. Note also that the classification made in [1] does not re-
strict to supersymmetry-preserving Op/Dp configurations; rather the amount of preserved
supersymmetry is determined a posteriori for each solution class in [1, section 2.4.2].

Group manifolds. The supergravity solutions found on 4d maximally symmetric space-
times admit as extra dimensions a 6d group manifoldM. The latter is encoded in structure
constants fabc of an underlying Lie algebra g. Contrary to previous approaches [6, 9], the
search for solutions performed in [1, 7, 20] does not fix this algebra from the start, but leaves
the structure constants free as variables; they are still bound to verify the Jacobi identities,
and the orientifold projections. This approach provides more freedom in the search for new
solutions, but it has the drawback that the algebra, and subsequent group manifoldM, have
to be identified a posteriori. In particular, the compactness ofM is a priori not guaranteed.
The group manifold will be compact if the algebra is, or if one can find a discrete subgroup
that makes the group compact after quotienting, a.k.a. a lattice (see [21, 22]). Most of the
time, this can only be settled once the algebra g is identified. This identification is also
needed to study whether a solution can be a classical string background, as done e.g. in [23];
we do not perform this further analysis here, but hope to come back to it in future work.
In section 2, we thus tackle this task of identifying the algebras of the new solutions found,
having only their structure constants. We develop a method, and the numerical tools AlgId
and AlgIso. This eventually allows us to identify algebras of all solutions. We present these
results and discuss the compactness of M in section 2.4. We prove this way that the de
Sitter solution s+

55 19 of [20] is on a compact manifold, a point not previously established.
Being only mildly unstable (see section 3), this solution is even more interesting.

In more detail, let us mention that there exist 100 (isomorphism classes of) real 6d
indecomposable unimodular solvable Lie algebras, classified in tables [21, 24], to which one
should add the decomposable ones, and the 16 real 6d unimodular non-solvable Lie algebras.
These numbers imply that identifying the algebra, simply with the structure constants, is
at first sight not trivial. In addition, the structure constants in our solutions have been
obtained in a certain basis of the algebra; typically an isomorphism or change of basis is
required to match the algebra as listed in known tables. This makes the identification
even more difficult. Our tools and method make use of basis-invariant properties to help
with this identification. Let us stress once again that this way, algebras of all solutions are
eventually identified, and a compact manifold is found in almost all solution classes, so the
difficulties raised by this approach can be considered as overcome.

Stability. The stability of solutions with maximally symmetric spacetime is the topic of
several swampland conjectures, claiming in particular instability for non-supersymmetric
backgrounds: see for instance [25–28] for de Sitter, [29, 30] for Minkowski and [31] for anti-
de Sitter solutions. In section 3, we study the perturbative stability of the new solutions
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found in [1], which are likely to be non-supersymmetric (see section 3.4.2). Since these so-
lutions were found in previously unexplored solution classes, they could in principle exhibit
new physics that would contradict expectations formulated in the swampland conjectures;
we make this comparison in section 3.4 when presenting our results on the stability of all
these solutions. We find in particular the anti-de Sitter solutions s−55 2,3,4 to be perturba-
tively stable (in the fields considered), motivating further study in view of the conjecture
of [31]. We propose also a new conjecture for Minkowski solutions, detailed below.

We first consider certain 4d scalar fluctuations around our solutions, then determine
their mass spectrum and read from it the perturbative stability of the solutions. More
precisely, these fluctuations are governed by a 4d effective action of the form

S =
∫

d4x
√
|g4|

(
M2
p

2 R4 −
1
2gij∂µφ

i∂µφj − V
)
, (1.1)

where gij is the field space metric, V a scalar potential for the scalar fields φi, and Mp

the 4d reduced Planck mass, given by M2
p = 1

κ2
10

∫
d6y

√
|g6| g−2

s . This action is obtained
after dimensional reduction from the 10d type II supergravities, as a consistent truncation.
Our 10d solutions correspond to critical points of the 4d potential, ∂φiV = 0, with the
cosmological constant given at this point by Λ = V

M2
p

= 1
4R4. The perturbative stability of

our solutions can be read from the 4d mass spectrum, given by the eigenvalues of the mass
matrix M , with M i

j = gik∇φk∂φjV , at the critical point.
The set of 4d scalar fields φi considered will be restricted to (ρ, τ, σI), with ρ the (6d)

volume, τ the 4d dilaton, and σI related to internal volumes wrapped by each Op/Dp

source set I. This is motivated by the well-verified proposal of [32]. It states that the
tachyon systematically observed in 10d supergravity de Sitter solutions (see e.g. [20]) lies
only among these fields. We then consider these fields, and for each source configuration
of each solution class, we need to provide the kinetic terms in the action (1.1), i.e. the field
space metric gij , and the scalar potential V (ρ, τ, σI). We do so building on [5, 13, 32–35].
One difficulty to overcome is a possible redundancy among the fields σI , when the internal
volumes wrapped by the sources are not independent. Redundant fields should then be
identified and removed through a field redefinition. All these tasks have been automatized
in the numerical tool MaxSymSolSpec: after identifying independent fields, computing gij
and V , it determines the mass spectrum for a given solution. We obtain this data for
all solutions of [1], and determine this way their stability: see section 3.4. The complete
stability data will be provided for each solution in appendix C of the revised version of [1].

As for de Sitter solutions in [1], the overview of our Minkowski solutions allows us here
to formulate in (3.17) and (3.18) a conjecture related to their stability:

Massless Minkowski Conjecture: (1.2)

10d supergravity solutions compactified to 4d Minkowski always admit a 4d flat direction,
i.e. a massless 4d scalar, among the fields (ρ, τ, σI).

We refer to section 3.4.2 and appendix D (mass spectra) for support and discussion of this
conjecture. In comparison to previous related statements, let us emphasize the specification
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of the fields (ρ, τ, σI), and the fact that the claim does not depend on supersymmetry
(neither that of the solution, nor of the 4d theory). These two points directly hint at
a possible relation between this flat direction in Minkowski and the de Sitter tachyon.
Let us add that it would be interesting to investigate whether the (non-perturbative)
instability, conjectured for non-supersymmetric Ricci flat compactifications to Minkowski
in [29, 30], has any relation to the flat direction mentioned here. The above conjecture
is also reminiscent of the tadpole conjecture [36], however, with several differences. Last
but not least, we discuss in section 3.4.2 the possibility of a swampland corollary, together
with a strong version of the conjecture. In the latter, we propose in addition the absence
of a 4d tachyon in a Minkowski solution. This implies that the inequalities of the refined
de Sitter conjectures of [26–28] are saturated, meaning

0 = min ∇∂V = V

Mp
2 = |∇V |

Mp
. (1.3)

Scale separation. In section 4, we study the question of scale separation in the solutions
found in [1]. Having scale separation in 4d is the requirement that energy scales associated
to towers of modes, for instance the first non-zero mass in a scalar Kaluza-Klein tower,
is much higher than a typical 4d effective theory energy scale, for example that of a non-
zero cosmological constant. Having such a separation of scales is needed for a low energy
truncation, i.e. having a 4d effective theory while infinite towers of modes are above a cut-off
energy. For anti-de Sitter solutions, where the matter is mostly discussed, this is expressed
by m2/|Λ| � 1, where m typically refers to the first non-zero mass of a tower. The same
requirement can be made for de Sitter solutions, and was for instance discussed in [23].
For Minkowski solutions where Λ = 0, one would rather require a mass gap, between light
modes whose mass is typically set by the scalar potential, and the first massive mode of a
tower, e.g. the first massive eigenmode of the Laplacian operator. In section 4, we focus
on the anti-de Sitter and Minkowski solutions of [1]: since they were found in new solution
classes, whether they exhibit scale separation is unknown and should be investigated.

While being an old topic (see e.g. [12, 37–39]), scale separation in anti-de Sitter solu-
tions has received renewed attention following swampland conjectures on the topic [40–45],
leading to many recent works, for instance on concrete anti-de Sitter solutions [46–50]. Of
particular interest are the so-called DGKT solutions [10, 11, 51]: 10d supergravity solutions
with 4d anti-de Sitter spacetime (and smeared sources) that fall, at least for some of them,
in our solution class s6666. These solutions were classified in [52] and new concrete examples
were found in [53]. Not only do these solutions exhibit scale separation, they do so with
parametric control, meaning that the separation can be tuned thanks to a parameter. It
is important to distinguish the two concepts, as stressed in [23] for de Sitter solutions (see
also [54]): one can simply look for a satisfactory hierarchy of scales in a given solution, with-
out asking for this hierarchy to be tunable. Another concept is that of classicality of a 10d
supergravity solution, namely whether it belongs to the classical regime of string theory.
DGKT solutions have the property that they can be classical, with the same parametric
control. On the contrary, anti-de Sitter solutions exhibiting scale separation and belonging
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to the class m5577 [12, 38] cannot be made classical [53]. We will not study classicality here,
but it is interesting to note such a difference between two seemingly close solution classes.

Scale-separated solutions of 10d supergravity with a 4d anti-de Sitter spacetime have
been found in s6666 on a 6d torus, or in m5577 on a 6d nilmanifold; the two settings are at
first sight T-dual. There are reasons to believe that these two geometries, together with
manifolds with a Ricci flat metric, are preferred among group manifolds to achieve scale
separation. First, it has been argued [25, section III] that other group manifolds have
structure constants (i.e. spin connection components) leading to energy scales higher than
the first massive Kaluza-Klein scale. These structure constants, giving the curvature of
some internal subspaces, cannot be truncated for the solution to exist; in particular they
must be present in the 4d theory if one wants to recover there the 10d solution as a critical
point. Therefore they prevent from achieving scale separation. A second argument is that if
the Kaluza-Klein scale is comparable to the 6d curvature R6, then scale separation cannot
be achieved [39]. As shown however in [55] and [5, Foot. 8], nilmanifolds precisely allow
for a gap between R6 and the Kaluza-Klein scale; this is obviously true for a Ricci flat
manifold. In section 4.2, we then study the possibility of finding anti-de Sitter solutions in
the new solution classes s55 and m46 on nilmanifolds or Ricci flat ones, and we conclude
negatively with no-go theorems. This hints at an absence of scale separation; a comparison
is made to the seemingly close solution classes s6666 and m5577. The presence of internal
directions with Dp but no Op appears as a key difference.

2 Algebra identification and compactness

In this section, we focus on the identification of Lie algebras g underlying the 6d group man-
ifoldsM in the solutions found, and the compactness ofM. We first recall in section 2.1 a
few useful elements of algebras. We illustrate those in various examples in section 2.2. We
then present in section 2.3 the method used for this identification, as well as the (partly
numerical) tools developed. We finally present our results in section 2.4, namely the iden-
tification of all 6d algebras appearing in the solutions found in [1, 7, 20], and what can be
said on the compactness of the corresponding group manifoldM.

2.1 Elements of algebra

We consider a real 6d Lie algebra g. In a given basis, it is expressed by the commutation
relations of the 6 vectors {Ea}, a = 1, . . . , 6, in terms of the structure constants fabc

g : [Eb, Ec] = fabcEa , (2.1)

and the structure constants are bound to verify the Jacobi identities. Real 6d Lie algebras
are classified. Levi’s decomposition indicates that any Lie algebra g is the semi-direct sum
of a semi-simple algebra s and a solvable ideal r called the radical of g

g = s +⊃ r . (2.2)
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We will distinguish two cases:

• g = r is solvable (to be defined below).

• g is not solvable. This last case can be further divided in three situations: g = s

is semi-simple, g = s ⊕ r is a direct sum, or g = s +⊃ r is a (non-trivial) semi-direct
sum. This division will however not be crucial to us since we will only consider few
algebras that are not solvable.

We now introduce a few elements to define solvability, and a particular case, nilpo-
tency, of a Lie algebra; a mathematical review on solvable algebras and the corresponding
solvmanifolds can be found in [22]. We first recall that an ideal i of an algebra g is a
subalgebra that verifies [g, i] ⊆ i. Any Lie algebra g possesses three series of ideals: the
derived series, the lower central series, and the upper central series. We will only need the
first two: the lower central series

{
g(k)

}
k∈N

is defined recursively as follows

g(k) =
[
g(k−1), g

]
, g(0) = g , (2.3)

while the derived series
{
g(k)

}
k∈N

is defined as

g(k) =
[
g(k−1), g(k−1)

]
, g(0) = g . (2.4)

The sets of successive dimensions of ideals in the lower central and derived series are
respectively denoted CS and DS. These two sets of integers are readily computable from
the list of structure constants, and are often different from one Lie algebra to another one.
They are basis independent: they will then be useful for the identification of algebras. And
indeed, a first use can be seen through the following definitions. An algebra is solvable iff
∃k s.t. g(k) = 0; in other words, its DS ends with 0. An algebra is nilpotent iff ∃k s.t.
g(k) = 0; in other words, its CS reaches 0. The latter is a particular case of the former.

Another useful definition is that of the nilradical n of a solvable Lie algebra g: n is the
maximal nilpotent ideal of g. It is unique, and solvable algebras are classified according
to their nilradical. Determining it is thus an important step towards identifying a solvable
algebra.

A necessary condition for compactness of the group manifold is the unimodularity (also
known as unipotence) of the Lie algebra: this is defined as

∀b,
∑
a

faab = 0 . (2.5)

The ansatz used to find solutions required a stronger condition, namely faab = 0 without
sum on a. This is motivated by an appropriate choice of basis [1, 22]. The list of (isomor-
phism classes of) indecomposable unimodular real solvable Lie algebras up to dimension 6
is given in [21]; there are 100 6-dimensional ones. The list of unimodular real non-solvable
6d Lie algebras is given in [6] and below in table 1: there are only 16 of them. We will also
make use of the classification given in [24], which does not restrict to unimodular algebras,
but gives the CS and DS values for all algebras.
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A last element which will be useful is the Killing form. It is a symmetric bilinear form
on the algebra g

B(x, y) = Tr (ad(x) · ad(y)) , x, y ∈ g ⇐⇒ Bab = f cda f
d
cb . (2.6)

This (0,2)-tensor, equivalently represented by a (symmetric) matrix, has interesting prop-
erties. To start with, one has

• g is semi-simple iff B has a non-zero determinant,

• g is solvable iff B(g, [g, g]) = 0,

• If g is nilpotent then B is identically zero.

In addition, the signature of B is invariant under a real change of basis. This will be
of interest to us for the identification of algebras: we will be interested in the number of
positive and negative eigenvalues of B. Finally, if B only has negative eigenvalues (implying
that it is semi-simple) then g is compact.

A solvable algebra g gives rise to a compact group manifoldM whenever a lattice can
be found. Let us consider a discrete subgroup Γ of the group G associated to g. This Γ is a
lattice if the quotient G/Γ is compact. This quotient is then precisely the group manifold
M, and it is called a solvmanifold. A particular case is a nilmanifold, the quotient of a
nilpotent group by a lattice. Given an indecomposable solvable algebra, whether or not a
lattice can be found is not always settled. As a consequence, we cannot always conclude on
the compactness ofM once the algebra is identified. We refer to [21, 22] for more details
on this matter of compactness.

Beyond the elements presented above, many more exist, with associated methods to
help identifying Lie algebras given in terms of their structure constants. We can mention,
among others, the upper central series and their dimensions (US), the number of generalized
Casimir invariants, decomposability properties, etc. We refer the interested reader to [24].
The above will be enough for our purposes.

2.2 Examples of algebras

Let us illustrate the previous definitions with a few examples. We start with low dimen-
sional real unimodular Lie algebras. In 1 or 2 dimensions, there are only u(1) and 2 u(1). In
3 dimensions, there are six of them. We give them below in terms of their non-zero structure
constants in some basis; the directions numbering, 123 or 456, is chosen for convenience

3 u(1) : (fabc = 0) (nilpotent) (2.7)
Heis3 : f4

56 = 1 (nilpotent)
g0

3.5 = iso(2) : f4
56 = 1, f5

46 = −1 (solvable)
g−1

3.4 = iso(1, 1) : f4
56 = 1, f5

46 = 1 ⇔ f4
46 = 1, f5

56 = −1 (solvable)
so(3) = su(2) : f1

23 = 1, f2
31 = 1, f3

12 = 1 (simple)
so(2, 1) = sl(2,R) : f1

23 = 1, f2
31 = 1, f3

12 = −1 (simple)
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Algebra M compactness CS DS Eigenvalues
so(3,1) × 6 6 3+,3-

Semi-simple so(3)⊕so(3) X 6 6 6-
so(3)⊕so(2,1) × 6 6 2+,4-
so(2,1)⊕so(2,1) × 6 6 4+,2-
so(3)⊕3u(1) X 6,3 6,3 3-
so(3)⊕Heis3 X 6,4,3 6,4,3 3-
so(3)⊕g0

3.5 X 6,5 6,5,3 4-
Direct sum so(3)⊕g−1

3.4 X 6,5 6,5,3 1+,3-
simple ⊕ solvable so(2,1)⊕3u(1) × 6,3 6,3 2+,1-

so(2,1)⊕Heis3 × 6,4,3 6,4,3 2+,1-
so(2,1)⊕g0

3.5 × 6,5 6,5,3 2+,2-
so(2,1)⊕g−1

3.4 × 6,5 6,5,3 3+,1-
so(3) +⊃ 3u(1) X 6 6 3-

Semi-direct sum so(2,1) +⊃ 3u(1) × 6 6 2+,1-
simple +⊃ solvable so(2,1) +⊃ 2u(1)⊕u(1) × 6,5 6,5 2+,1-

so(2,1) +⊃Heis3 × 6 6 2+,1-

Table 1. All 6-dimensional real unimodular Lie algebras, that are not solvable. The compactness
is that of an associated group manifoldM, possibly thanks to a lattice. CS denotes the successive
dimensions of the ideals in the lower central series, and DS those of the derived series. Eigenvalues
with p+,m− denotes that the Killing form admits p positive eigenvalues and m negative ones, the
remaining 6− p−m eigenvalues being 0.

Of those, only so(2, 1) does not lead to a compact group manifold. Others are either
compact, or admit lattices giving compact group manifolds.

In 4, 5 or 6 dimensions, the only (semi)-simple real unimodular Lie algebra that is
indecomposable, is the following 6-dimensional one

so(3, 1) : f1
23 = 1, f2

31 = 1, f3
12 = 1, f1

56 = −1, f5
61 = 1, f6

15 = 1 (2.8)
f2

46 = 1, f4
62 = −1, f6

24 = −1, f3
45 = −1, f4

53 = 1, f5
34 = 1 .

This algebra is not compact. From these ingredients, one can build all 6-dimensional real
unimodular Lie algebras, that are not solvable. Following [6, 24] (and notations of [21]),
we list them here in table 1, and determine some of their properties. We provide below
few more comments on them, before turning to solvable algebras in 4, 5 or 6 dimensions.
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For completeness, we give as follows the structure constants for the semi-direct sum
algebras appearing in table 1

so(3) +⊃ 3 u(1) : f1
23 = 1, f2

31 = 1, f3
12 = 1, f4

35 = −1, f5
34 = 1,

f4
26 = 1, f6

24 = −1, f5
16 = −1, f6

15 = 1 (2.9)
so(2, 1) +⊃ 3 u(1) : f1

23 = −1, f2
31 = −1, f3

12 = 1, f4
15 = −1, f5

14 = −1,
f4

26 = 1, f6
24 = 1, f5

36 = −1, f6
35 = 1 (2.10)

so(2, 1) +⊃ 2 u(1)⊕ u(1) : f1
12 = 2, f2

13 = −1, f3
23 = 2, f4

24 = 1, f5
25 = −1,

f5
14 = 1, f4

35 = 1 (2.11)
so(2, 1) +⊃ Heis3 : f1

12 = 2, f2
13 = −1, f3

23 = 2, f5
25 = 1, f6

26 = −1,
f6

15 = 1, f5
36 = 1, f4

56 = 1 .

For the last two, there could be no basis where faac = 0 without sum on a.
Let us comment on the compactness ofM indicated in table 1. Most of the time, its

non-compactness is due to so(2, 1). The semi-direct sum b +⊃ f can be interpreted geomet-
rically as leading for M to a fibration, where the fiber comes from f and is over a base
generated by b. Indeed, when one moves in b, there is a change on the elements of f. In
addition, if the base in a fiber bundle is non-compact, the manifold is non-compact as well.
We conclude that so(2, 1) +⊃ f are non-compact.

There are many more real unimodular solvable Lie algebras, in 4, 5 or 6 dimensions.
Let us first focus on 6d decomposable ones. Those are a direct sum of lower dimensional
real unimodular solvable algebras. If one of those is a 4d or 5d indecomposable one, then
the rest can only be 2 u(1) or u(1). Otherwise, either the 6d algebra is 6 u(1) or it contains
a 3d indecomposable real unimodular solvable algebra: we list the 6d algebras built in this
way in table 2, together with some properties.

Finally, real 6d unimodular solvable Lie algebras that are indecomposable are classified
according to their nilradical as e.g. in [21], into so-called “isomorphism classes”: for any
such algebra, one can find an isomorphism or change of basis that maps it to one (and
only one) of these classes. Let us give one example: those whose nilradical is g5.4. These
algebras are listed in tables 28 and 29 of [21]. We have worked out some of their properties
as before, and summarize them in table 3. Let us also mention a typo in g0,l

6.83, whose
correct structure constants are provided in the following for completeness

g0,l
6.83 : f1

24 = f1
35 = 1 , f2

26 = f3
36 = −f4

46 = −f5
56 = l , f3

26 = −f4
56 = 1 . (2.12)

In this algebra, as well as others, appears a parameter l. We comment in appendix A on
various subtleties related to such parameters.

2.3 Method and tools for the identification

2.3.1 General method

A 6d Lie algebra obtained in one of our solutions is given in terms of its structure constants
fabc in an arbitrary basis of vectors {Ea}. It must correspond to one (and only one) of the
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Algebra M compactness CS DS Eigenvalues
3 u(1)⊕ 3 u(1) X 6,0 6,0 0
Heis3 ⊕ 3 u(1) X 6,1,0 6,1,0 0
g0

3.5 ⊕ 3 u(1) X 6,2 6,2,0 1-
g−1

3.4 ⊕ 3 u(1) X 6,2 6,2,0 1+
Heis3 ⊕Heis3 X 6,2,0 6,2,0 0
g0

3.5 ⊕Heis3 X 6,3,2 6,3,0 1-
g−1

3.4 ⊕Heis3 X 6,3,2 6,3,0 1+
g0

3.5 ⊕ g0
3.5 X 6,4 6,4,0 2-

g−1
3.4 ⊕ g0

3.5 X 6,4 6,4,0 1+,1-
g−1

3.4 ⊕ g−1
3.4 X 6,4 6,4,0 2+

Table 2. 6-dimensional real unimodular solvable Lie algebras, that are decomposable and do not
contain a 4d or 5d indecomposable subalgebra; rather they are a direct sum of 3-dimensional subal-
gebras. We also give some properties: the compactness of an associated group manifoldM (thanks
to a lattice), the CS and DS, and the number of positive and negative eigenvalues of the Killing form.

Algebra M compactness CS DS Eigenvalue
g0,l

6.83 (l 6= 0) ? 6,5 6,5,1,0 4l2

g6.84 ? 6,4,3 6,4,1,0 2
g0,µ0,ν0

6.88 µ0ν0 6= 0 6,5 6,5,1,0 4(µ2
0 − ν2

0)
(|µ0|+ |ν0| 6= 0)

g0,ν0,s
6.89 ν0 6= 0 sν0 6= 0: 6,5 sν0 6= 0: 6,5,1,0 2(s2 − ν2

0)
(|s|+ |ν0| 6= 0) sν0 = 0: 6,3 sν0 = 0: 6,3,1,0

g0,ν0
6.90 ν0 6= 0 ν0 6= 0: 6,5 ν0 6= 0: 6,5,1,0 2(1− ν2

0)
ν0 = 0: 6,3 ν0 = 0: 6,3,1,0

g6.91 ? 6,5 6,5,1,0
g0,µ0,ν0

6.92 (µ0ν0 6= 0) X 6,5 6,5,1,0 −4µ0ν0

g0
6.92∗ X 6,5 6,5,1,0 −4
g0,ν0

6.93 |ν0| > 1
2 ν0 6= 0: 6,5 ν0 6= 0: 6,5,1,0 2(1− 2ν2

0)
ν0 = 0: 6,3 ν0 = 0: 6,3,1,0

Table 3. 6-dimensional real unimodular (indecomposable) solvable Lie algebras with nilradical
g5.4, from tables 28 and 29 of [21], and their properties. Conditions imposed on the parameters
are further discussed in appendix A. The compactness of an associated group manifold M, when
settled, is read from the last remarks of section 8.3 and 8.4 in [21]; the conditions indicated here on
parameters are sufficient, we do not know if they are necessary. We also give the CS and DS. The
Killing form for these algebras admits at most one non-zero eigenvalue, that we indicate explicitly.
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algebras appearing in the tables of [21, 24]. Those are however given a priori in a different
basis {E′a}, typically with a minimal amount of non-zero structure constants fabc′. This
is the reason why the identification of our algebras is challenging. The two algebras are
isomorphic if and only if there exists a change of basis M such that

E′a = Eb (M−1)ba ⇔ ea
′ = Ma

b e
b , detM 6= 0 , (2.13)

where we also indicate the transformation of 1-forms {ea}. The two sets of structure
constants are equivalently related in the following way

fade = (M−1)akM b
dM

c
e f

k
bc
′
. (2.14)

The relations (2.14) amount to a high number of non-linear equations (depending on M),
and it would be computationally too involved to try to solve them for every tabulated
algebra. Rather, the method will consist in making use of the (basis) invariants and ideals
defined in section 2.1 to reduce as much as possible the number of candidate algebras
among the tabulated ones. Only then, and if there is more than one candidate algebra, we
will find an explicit change of basis verifying (2.14).

In more detail, to identify a 6d Lie algebra obtained in one solution in terms of its
structure constants, we proceed as follows:

• We start by computing its CS, DS and the eigenvalues of its Killing form. The DS
tells us if it is solvable or not. If it is not, it must be one of the 16 listed in table 1. As
can be seen there, the properties of the algebras allow to discriminate among all of
them except for two. In this last case, we need an explicit change of basis to conclude.
Apart from the latter, the procedure described so far has been automatized into the
numerical tool AlgId, that we present below.

• In case the 6d algebra is solvable, we identify its nilradical. This is easily done using
the definition given in section 2.1 and comparing to tables of nilpotent algebras.
If necessary, one can compute as well the CS, DS of the nilradical to help in this
comparison. If the CS indicates that the 6d algebra is nilpotent, then the nilradical is
the algebra itself. Let us now consider that we face a solvable non-nilpotent algebra.
In case it is indecomposable, one uses the nilradical to find a table of candidate
algebras in [21, 24]. For all these candidate algebras, the CS, DS and eigenvalues can
again be computed and compared: see for instance table 3. Once one is left with
only few candidate algebras, an explicit change of basis needs to be found towards
one of them. A dedicated numerical tool, AlgIso, is presented below, providing a
numerical matrix M verifying (2.14). Another option is to find an analytical change
of basis; we will give a few examples below.

• A last possibility is that the 6d (real unimodular) non-nilpotent solvable algebra
is decomposable. In that case, the tables of 6d indecomposable algebras are not
useful and one has to devise what are the possibilities, according to the nilradical.
One particular case is that of a decomposition into two 3d solvable algebras: such
algebras are listed in table 2, and their comparison is automatized in the tool AlgId.

We summarize our procedure in figure 1.
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Algebra g

g is not solvable g is solvable

g contains 1 or 2
u(1) factor(s)

g is nilpotent

g is decomposable g is not decomposable

g is a direct sum of
3d solvable algebras

→ compute the CS/DS
→ compute the signature of B
(AlgId)

→ identify the 4d/5d part [21]

algebras in [21, 24]
→ if needed, solve (2.14) for

→ determine the→ identify in Table 1
(AlgId)

(AlgIso)

(AlgIso)

→ identify in Table 2
(AlgId)

→ identify the candidate

an explicit change of basis

nilradical

DS does not reach 0
DS reaches 0

CS reaches 0

Figure 1. Summary of the procedure used for the identification of 6d unimodular Lie algebras.

2.3.2 Numerical tools AlgId and AlgIso

We present in the following the numerical tools AlgId and AlgIso that we developed to help
us identifying the algebras of our solutions. These tools are however built for a broader use.

The main input of the code AlgId is a set of structure constants of a Lie algebra, as
well as its dimension. The first part of the code computes the CS, DS, the Killing form
eigenvalues, and its signature. In a second part, these results are compared to a data base
of 6d algebras, namely the 16 of table 1 and the 9 of table 2 (without 6 u(1)), and the code
indicates any match. These outputs should help identifying the initial algebra.

This code is meant to work not only for structure constants taking integer or round
values, as e.g. in classification tables, but also when having numerical values as those
obtained in our solutions. Because of the latter, a precision parameter ε needs to be
specified, and the code then interprets as vanishing, or sets to zero, various key quantities
smaller than ε: this avoids problems related to “numerical zeros” which are not exactly
zero. In our case, a suitable value turns out to be ε = 10−10.

To compute the CS and DS of an algebra g with vectors {Ea}, the code proceeds as
follows. The CS and DS are the set of dimensions of the series of ideals g(k) and g(k). Each
of these ideals is obtained by brackets between elements of subalgebras of g. The idea
of the code is to compute all these brackets, and store their result. More precisely, each
bracket gives a vector, which is stored as the rows of a matrix Mv, when expressed in the
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initial basis {Ea}. Here is an example

[E1, E2] = f3
12E3

[E1, E3] = f2
13E2 + f4

13E4
...

→ Mv =


0 0 f3

12 0 . . .

0 f2
13 0 f4

13 . . .
...

 . (2.15)

Determining the dimension of one ideal amounts to finding how many of these vectors are
linearly independent. This could be done by computing the rank of the matrix Mv. But
this option is not flexible enough in the case of numerical input, for instance in the case
where two vectors are very similar, and should be equal up to a numerical error. What
is rather done is then to complete the matrix Mv into a square one, by determining the
orthogonal space to the rows of Mv, and then compute the determinant of the square
matrix. If the determinant is too small, the code considers it to be zero and decides
that the vectors in Mv are not independent. On the way, the vectors are normalised to
1 to allow for a fair evaluation of the determinant. This method to determine the linear
independence is actually implemented every time a new vector is added to Mv: if it is
found linearly independent, the dimension of the ideal is increased by one; if the vector is
not independent, then it is not added to Mv. This is done recursively until one has tested
all vectors obtained by all brackets defining the ideal. One obtains in this manner the
dimension of the ideal, and builds this way the CS and DS of the algebra considered.

The rest of AlgId is straightforward, so let us now present AlgIso. That code aims
at finding an isomorphism between two algebras that are specified as input. If one of
the algebra depends on parameters, as e.g. some of the tabulated ones, these parameters
are automatically turned into variables and the code also searches for appropriate values.
To find an isomorphism between the two algebras, the method amounts to solving the
equations (2.14), where the variables are the matrix elements of M , the change of basis.
To solve these equations, we proceed via a two-step minimisation of a loss function, built
from the equations to solve. More details on this procedure can be found e.g. in [1], where
this approach was used to find supergravity solutions. If a solution to the equations is
found, then the isomorphism M and possible values of algebra parameters are provided.

2.3.3 Analytical changes of basis

While most non-nilpotent solvable algebras are identified, following the method described
in section 2.3.1, thanks to a final numerical change of basis, a few can still be determined
by an analytical one. We present some examples below. In appendix B, we present another
one for a non-solvable algebra. For the latter, table 1 is enough for the identification. The
analytical change of basis in that case can still serve further purposes, such as a classicality
study [23].

Solutions s+
66663, 4. We start with solutions s+

66663, 4 which have the following non-zero
structure constants

s+
66663, 4 : f1

45, f
5

14, f
3

46, f
6

34, f
2

13, f
2

56 . (2.16)
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From this set, one identifies the nilradical to be g5.4, with directions and non-zero structure
constants

n = {1, 2, 3, 5, 6}, f2
13, f

2
56 . (2.17)

These algebras are thus among those of table 3. To completely identify them, we determine
in the following an analytical isomorphism. A first step is a relabeling on the set (2.16)

1→ 2, 2→ 1, 3→ 4, 4→ 6, 5→ 3, 6→ 5 : f2
63, f

3
26, f

4
65, f

5
46, f

1
24, f

1
35 . (2.18)

This small set of structure constants obeys a few relations, thanks to the Jacobi identities

f1
e[3f

e
46] = 0 ⇔ f1

53
f124

= f2
36

f546
, (2.19)

f1
e[2f

e
56] = 0 ⇔ f1

53
f124

= f4
56

f326
. (2.20)

We then perform the following rescaling

ea 6=1′,4′ = ea , e1′ = 1
f1

35
e1 , e4′ = f1

24
f153

e4 , (2.21)

leading, thanks to the above relations, to the new structure constants

f2
36
′ = −f5

46
′ = f2

36 , f3
26
′ = −f4

56
′ = f3

26 , f1
35
′ = f1

24
′ = 1 . (2.22)

We introduce the parameters µ0 = −f2
36 and ν0 = f3

26. Given that µ0 6= ν0 in our
solutions, we identify the algebra to be g0,µ0,ν0

6.92 , for both solutions.

Solution m+ ∗
55771. For this solution, we have the following set of non-vanishing structure

constants:
m+ ∗

55771 : f6
23 = f6

14 , f
2

35 = f1
45 , f

4
15 = f3

25 . (2.23)

The nilradical is identified to be g5.4 with

n = {1, 2, 3, 4, 6} , and f6
23 = f6

14 , (2.24)

so the algebra can be found in table 3. One can perform the following relabeling of directions

1→ 2 , 2→ 3 , 3→ 5 , 4→ 4 , 5→ 6 , 6→ 1 : f1
35 = f1

24 , f
3

56 = f2
46 , f

4
26 = f5

36 .

(2.25)
We have in addition the following signs: f3

56 > 0, f5
36 < 0. We then perform the following

rescaling on forms

e1′ = 1
f135

√
−f356f536

e1 , e2,3′ = 1√
f356

e2,3 , e4,5′ = 1√
−f536

e4,5 , e6′ =
√
−f356f536 e

6 .

(2.26)
The new normalization allows to directly identify the algebra to be g0

6.92∗ .
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algebra so(3)⊕so(3) so(3)⊕3u(1) so(3)⊕Heis3 so(3)⊕g−1
3.4 g0

3.5⊕g0
3.5

solutions s+
6666 1 m+

46 10 s+
55 20, 21 s+

55 19 s+
55 14

compactness X X X X X

algebra g−1
3.4⊕g−1

3.4 g−1
3.4⊕g0

3.5 g−1
6.76 g0,µ0,ν0

6.92 g0
6.92∗

solutions s+
55 15 s+

55 22 - 27 s+
55 16, 17 s+

6666 3, 4, m+
5577 3 - 6 m+∗

5577 1
compactness X X X X X

Table 4. Algebras identified in de Sitter solutions, leading to compact group manifolds.

algebra so(3,1) so(2,1)⊕so(2,1) so(3)⊕so(2,1) so(2,1)⊕3u(1)
solutions m+

55 1, s+
6666 2 m+

55 2 - 4, m+
5577 2, 7, 12 m+

5577 1 m+
46 1 - 9

compactness × × × ×

algebra so(2,1)⊕Heis3 so(2,1)⊕g0
3.5 so(2,1)⊕g−1

3.4

solutions s+
55 18 s+

55 12, m+
5577 9, 10 s+

55 1 - 11, 13, 28,
m+

5577 8, 11
compactness × × ×

Table 5. Algebras identified in de Sitter solutions, leading to non-compact group manifolds.

algebra Heis3⊕Heis3 g0,µ0,ν0
6.88 g0,ν0,s

6.89 g0
5.14⊕u(1) so(3)⊕so(2,1) so(2,1)⊕3u(1)

solutions s0
55 1 s0

555 4 s0
555 2, 3 m0

466 4 s0
555 1 m0

46 1
compactness X X X X × ×

Table 6. Algebras identified in Minkowski solutions, leading to compact (X) or non-compact (×)
group manifolds.

2.4 Results

Using the method and tools described in section 2.3.1, we have identified all algebras of
the solutions found in [1], as well as the algebras of the previously found solutions s0

55 1
and s+

55 1 - 28 [7, 20]. This allows in particular to discuss the compactness of the group
manifolds, using the material of section 2.2 or further results in [21]. We summarize our
findings as follows.

De Sitter solutions. Finally, the solution s+
66 1 was identified to be on g0,µ0,0

6.88 = g0,1,0
6.88

(see appendix A), but we do not know whether this algebra can provide compact group
manifolds.

Minkowski solutions. Several other Minkowski solutions were found with algebras that
may or may not provide compact group manifolds: we refer in the following to related
propositions in [21] that could help in settling this matter, in case there is a particular
interest in a specific solution. This is the situation encountered for solutions m0

46 2 and
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algebra so(3)⊕ 3u(1) so(3)⊕ g0
3.5 g0

3.5 ⊕ g0
3.5 g0,0

6.10

solutions m−46 1, 2 s−55 1 s−55 2, 3, 4 m−46 4, 5
compactness X X X X

Table 7. Algebras identified in anti-de Sitter solutions, leading to compact group manifolds.

m0
466 3, 5 with algebra g0,0,r

5.17 ⊕ u(1) (Prop. 7.2.13), m0
466 1, 2 with g−1,0,r

5.13 ⊕ u(1) (Prop.
7.2.6), and m0

466 6 with gp,−p,−1
5.7 ⊕ u(1) (Prop. 7.2.1).

Anti-de Sitter solutions. Finally, solution m−46 3 was found on the algebra g0,0,0
6.34 , and

we do not know if the latter can provide a compact manifold.

3 Stability

In this section, we present the key elements of the 4d effective action (1.1), obtained
after dimensional reduction and consistent truncation of our 10d solutions, allowing us to
determine their stability. We first discuss in section 3.1 the scalar fields considered and the
scalar potential V , then in section 3.2 the field space metric gij and the problem of field
redundancy. We present in section 3.3 the numerical tool that we have developed for these
computations, and we finally discuss in section 3.4 the stability of our solutions, inferred
from these considerations, and compare it to various conjectures.

3.1 Scalar fields and potential

As explained in the Introduction, we consider a restricted set of 4d scalar fields (ρ, τ, σI),
where I = 1, . . . , N runs over the sets of (parallel) sources. The 6d volume ρ and 4d
dilaton τ were introduced together with their potential in [33]. The σI , related to internal
volumes wrapped by the sources, can be defined independently: they were introduced and
motivated in [32, 56]. The generic scalar potential depending on σI was obtained in [34]
for N = 1, and in [5] for N > 1, with a single source dimensionality p; here we will extend
it to multiple dimensionalities.

All these scalar fields are obtained as specific fluctuations around the background
6d metric and dilaton. To obtain the 4d scalar potential, one should introduce these
fluctuations in the 10d action. A first result is the following potential V depending on ρ, τ

2
M2
p

V = −τ−2
(
ρ−1R6 −

1
2ρ
−3|H|2

)
− gsτ−3∑

p,I

ρ
p−6

2
T

(p)I
10
p+ 1 + 1

2g
2
sτ
−4

6∑
q=0

ρ3−q|Fq|2 , (3.1)

while R6, H, Fq, T
(p)I
10 should still be fluctuated with respect to the σI ; we will do so in the

following. Let us emphasize that in this potential, the terms in F5 or F6 are not obtained in
the same way as the others, because of the contribution of corresponding 4d components;
we refer the interested reader to the appendix of [35], which completes the derivation of
the potential. It is shown there that eventually, these terms can be recast in the same form
as the other Fq, including the fluctuation to come with respect to σI , so we treat here all
fluxes together.
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Each σI is defined with respect to a given set I of parallel sources. For this reason, while
fluctuations with respect to σI were generically described in the aforementioned papers, the
resulting potential (and kinetic terms described in section 3.2) is dependent on each specific
source configuration. We need here these results for each solution class of [1], because we
have found solutions on a compact manifold for almost all of them (see section 2.4), justify-
ing the study of a corresponding 4d theory. In addition, the formulas of [5] need a slight gen-
eralization to the case of multiple dimensionalities, as we encounter in some solution classes.
For these reasons, we present here once again the definition of these fields and correspond-
ing fluctuations, introducing however new notations and tools allowing a more systematic
treatment for any solution class. This will be used in the numerical tool MaxSymSolSpec
(MSSSp) that we have developed, to provide the potential for any source configuration.

For each set I of p-sources, with certain parallel and transverse directions, one defines
as follows a 4d scalar fluctuation σI on the 6d vielbeins

ea||I m → σI
AI
2 ea||I m , ea⊥I m → σI

BI
2 ea⊥I m , AI = p− 9 , BI = p− 3 . (3.2)

The exponents AI and BI are chosen in such a way that the determinant |g6| is left invariant
under this fluctuation. This should be done for all sets I of sources (with possibly different
p). Overall, each 6d vielbein eam gets multiplied by a product of powers of σI that we
denote πa, as follows

eam → πa e
a
m (no sum) , where πa =

∏
I

σI
PI (a)

2 , PI(a||I ) = AI , PI(a⊥I
) = BI . (3.3)

Introducing these πa is a convenient novelty. From there, one gets the fluctuations of each
quantity entering the potential (3.1) by going to the orthonormal coframe and following
the vielbein dependence:

Habc → (πaπbπc)−1 Habc , Fq a1...aq → (πa1 . . . πaq )−1 Fq a1...aq , f
a
bc → πa(πbπc)−1 fabc

(3.4)
The dependence in R6 is then obtained using the standard formula

− 2R6 = δce f bac f
a
be + 1

2 δ
eb δfc δga f

g
ef f

a
bc , (3.5)

while the square of fluxes in the potential give rise to the sum of the squares of fluctuated
components. Finally, the fluctuation of the source term T

(p)I
10 corresponds to that of the

internal volume form vol||I : we get for each set I

T
(p)I
10 → T

(p)I
10

∏
a=a||I

πa . (3.6)

One deduces from these fluctuations and (3.1) the complete potential V (ρ, τ, σI), for each
source configuration.

As an example, the complete potential for the solution class s55 was given in [20]. Let
us give here the potential for the class m46 with only 1 D6: interestingly, it admits sources
of multiple dimensionalities. The sets are I = 1 with an O4 along 4 and contribution T (4)

10 ,

– 18 –



J
H
E
P
0
8
(
2
0
2
2
)
1
0
9

I = 2 with an O6 along 123 and T (6)1
10 , I = 3 with D6 along 156 and T (6)2

10 . The potential
is then given by

2
M2
p

V (ρ,τ,σ1,σ2,σ3)=−τ−2ρ−1R6(σ1,σ2,σ3) (3.7)

+1
2τ
−2ρ−3σ−3

1 σ3
2

(
σ−3

3 |H
(1)3 |2+σ3

3|H(2)3 |2
)

−gsτ−3
(
ρ−1σ

− 5
2

1 σ
3
2
2 σ

3
2
3
T

(4)
10
5 +σ

3
2
1 σ
− 9

2
2 σ

3
2
3
T

(6)1
10
7 +σ

3
2
1 σ

3
2
2 σ
− 9

2
3

T
(6)2
10
7

)

+1
2g

2
sτ
−4
(
ρσ−2

1

(
|F (1)3

2 |2+σ6
3|F

(2)3
2 |2

)
+ρ−1σ2

1

(
σ−6

3 |F
(1)3
4 |2+|F (2)3

4 |2
))
,

where we recall the flux notation H(n)I=3 , of components having n indices along the set
I = 3. We refer to the result given by MSSSp for the precise expression of R6(σ1, σ2, σ3) as
a sum of powers of σI times structure constants.

Let us finally recall that in our conventions, the background (i.e. our solutions) is
recovered at ρ = τ = σI = 1. Since we have a consistent truncation, this corresponds in 4d
to a critical point ∂φiV = 0, while at this point one also has 2

M2
p
V = 1

2R4. This is checked
on each of our solutions.

3.2 Field space metric and redundancy

Following appendix D of [7], the kinetic terms appearing in (1.1) are given by

1
M2
p

gij∂µφ
i∂µφj = 2τ−2(∂τ)2 + 3

2ρ
−2(∂ρ)2 − 1

4 ∂µ(mab)∂µ((m−1)ab) , (3.8)

where mab is the diagonal 6d metric in orthonormal coframe fluctuated with σI ; it has
determinant 1. Using the convenient notation introduced in (3.3), we obtain

mab = π2
a δab (without sum) . (3.9)

By (m−1)ab we denote in (3.8) the coefficients of the inverse of m. It is then straightforward
to obtain the kinetic terms. In particular, the expression for mab leads to many cross terms
∂µσI∂

µσJ , i.e. non-diagonal elements of the field space metric gij .
An issue is however that the fields σI are sometimes redundant. This can be understood

as follows: each σI is a metric fluctuation, in correspondence with an internal volume
wrapped by a source set. The independence of the σI can be seen as the independence of
these volumes: for instance if one has O5 along 12, 34 and D7 along 1234, the volumes are
not independent and there would be a redundancy in the σI . This depends entirely on the
source configuration, and for each of them, we need to specify a set of independent σI .

The problem of the redundancy is equivalently seen through the field space metric gij :
it has vanishing determinant if there are redundant fields. Indeed, redundant fields can
be removed by a field redefinition. But removing some σJ would lead to vanishing field
metric coefficients along the ∂µσJ , hence a vanishing determinant. A set of independent
fields must then be identified before computing the metric. A concrete way to determine
redundant fields is to find a field redefinition that removes one or more σJ fields completely
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from the πa defined in (3.3) (or equivalently sets these fields to 1). Since the πa are the
building blocks for the potential and the field space metric (see (3.9)), fields σJ removed
from the πa will not appear anywhere and were certainly redundant.

A field redefinition to remove fields {σX} from πa and keep {σM} can be designed as
follows; it is not the most general, but it will be enough for our purposes

σM → σM
∏
X

σsXM
X , σX → σX . (3.10)

One verifies that σX are removed from all πa if and only if one finds exponents sXM
satisfying

∀a, X, PX(a) +
∑
M

sXMPM (a) = 0 . (3.11)

Let us consider a first particular solution: sXM = 1, and there is a single field to remove,
the last one, i.e. X = N . The field redefinition (3.10) becomes

σI 6=N → σI 6=N σN , σN → σN . (3.12)

This field redefinition was used already successfully in s6666 [5, 32] and s55 [7]. One verifies
indeed that the condition (3.11) holds, with∑I PI(a) = 2(A+B) for p = 6 and∑I PI(a) =
2B + A for p = 5, and both vanish. We verify that the same holds for m5577 and m∗5577,
allowing there again to remove the last field, curing the redundancy.

Other cases require different solutions to (3.11) to remove differently redundant fields,
for instance when ∃ a s.t. ∑I PI(a) 6= 0. This happens for m46 with O4 along 4, O6 along
123, and D6 along 156, 256, 356; these five sets defining σ1,...,5 respectively. The field space
metric determinant vanishes for five σI , but not for four. We find the appropriate field
redefinition (3.10) to take the form

σ1 → σ1 σ
3
5 , σ2 → σ2 σ

2
5 , σ3,4 → σ3,4 σ5 , σ5 → σ5 , (3.13)

removing σ5 from the πa.
Another case is that of m55 with 7 sets in the following order: O5 along 12, 34, D5

along 56, D7 along 2456, 2356, 1456, 1356. Solutions have been found with all or some of
these sets turned on. We consider the corresponding 7 fields σI . Solving (3.11), we find
the following general field redefinition

σ1,2 → σ1,2 σ3 σ5 σ7 , σ4 → σ4 σ7 , σ6 → σ6 σ5 , σ3,5,7 → σ3,5,7 . (3.14)

It allows to remove σ3,5,7 from the πa, in the case where all sources are present. In the
case where T 3

10 = 0, one can still use (3.14), setting σ3 = 1 and removing σ5,7. Similarly,
for T 3

10 = T 5
10 = 0, one can use (3.14) setting σ3,5 = 1 and removing σ7. All these cases

amount in the end to setting σ3,5,7 to 1.1
Once we know which fields σI are redundant and should be removed (or equivalently

set to 1), we are left with a set of independent fields, and correspondingly a non-degenerate
field space metric. Let us give this data in one example, with the source sets considered and
ordered, the corresponding independent scalar fields, and the field space metric expressed
in that field basis:

1In the case where T 3
10 = T 5

10 = T 6
10 = 0, one can use (3.14), setting σ3,5,6 = 1 and removing σ7: this

redefinition matches the more standard one (3.12). We however do not encounter this case in our solutions.
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m46 (1 D6): O4 (4), O6 (123), D6 (156), or m466: O4 (4), O6 (123, 156).
Fields: (ρ, τ, σ1, σ2, σ3)

gij = M2
p



3
2ρ2 0 0 0 0

0 2
τ2 0 0 0

0 0 15
2σ2

1
− 9

2σ1σ2
− 9

2σ1σ3

0 0 − 9
2σ1σ2

27
2σ2

2
− 9

2σ2σ3

0 0 − 9
2σ1σ3

− 9
2σ2σ3

27
2σ2

3



. (3.15)

The data for the other cases encountered in our solutions is given in appendix C; we refer
to the code MSSSp for further cases.

3.3 Numerical tool MaxSymSolSpec (MSSSp)

The computation of the scalar potential and the field space metric, as described in sec-
tion 3.1 and 3.2, has been automatized in the numerical tool MaxSymSolSpec (MSSSp) that
we have developed. The code first takes as input the list of source sets. From this data, the
fields (ρ, τ, σI) can be defined. A first task is to determine a set of independent fields, and
remove the redundant ones. The user can specify a complete list of redundant fields, based
for instance on section 3.2 and appendix C. Otherwise, the code determines such a list by
itself. To that end, the field space metric is computed and its rank is checked, row after
row, allowing to identify redundant fields. Once a set of independent fields is identified,
a proper field space metric is computed, as well as the scalar potential V . The latter is
obtained by considering the fluctuations πa as described in section 3.1.

With a set of independent fields, the corresponding field space metric and the scalar
potential, the code can compute the mass spectrum, following definitions of section 3.4.
This is done for a 10d supergravity solution provided as an input. The code verifies that
it is a critical point of the potential. It then computes the parameter ηV , the masses2

and their associated field space eigenvectors. Note that the mass matrix M transforms
covariantly under (field space) diffeomorphisms, i.e. field redefinitions. So its eigenvalues,
namely the mass spectrum, and in particular the value of ηV , are unchanged when choosing
a different (diffeomorphic) set of independent fields.

3.4 Results: stability of the solutions and (swampland) conjectures

Having determined the scalar potential and the field space metric of the 4d effective the-
ory (1.1), for a set of independent scalar fields (ρ, τ, σI), we can compute the corresponding
mass spectrum for each solution of [1]. It is given by the eigenvalues (masses2) of the mass
matrix, with coefficients M i

j = gik∇φk∂φjV , at the critical point ρ = τ = σI = 1. The con-
nection term due to ∇ vanishes at an extremum, since it is proportional to a first derivative
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class s+
66 s+

6666 m+
46

solution 1 1 2 3 4 1 2 3 4
−ηV 3.6170 18.445 2.6435 2.3772 3.6231 3.6764 3.7145 2.2769 2.8266

class m+
46

solution 5 6 7 8 9 10
−ηV 0.36462 3.0124 2.0672 2.3554 2.6418 1.2539

Table 8. Values of −ηV obtained with the set of independent fields considered for each de Sitter
solution in type IIA.

class s+
55 m+

55 m+
5577

solution 28 1 2 3 4 1 2 3 4
−ηV 3.2374 2.5435 2.6059 2.7126 3.3574 4.7535 3.5034 3.2722 3.1779

class m+
5577 m∗+

5577

solution 5 6 7 8 9 10 11 12 1
−ηV 4.7957 4.9129 3.4210 3.5611 2.9333 2.9003 3.4806 2.8966 5.0483

Table 9. Values of −ηV obtained with the set of independent fields considered for each de Sitter
solution in type IIB.

of the potential. Therefore, one only needs to compute the eigenvalues of g−1 times the
Hessian of the potential V , at this point. All these computations are performed using MSSSp.

From the mass spectrum, one reads the stability of the solution (at least due to this
set of scalar fields). For de Sitter and anti-de Sitter solutions where V 6= 0, this is better
captured by the parameter ηV that we recall here

ηV = Mp
2 min ∇∂V

V
, (3.16)

where the numerator stands for the minimal eigenvalue among the masses2. The ηV is
computed at the critical point. Note that we use the same definition for de Sitter and
anti-de Sitter extrema, although the sign of V changes.

Let us finally recall from [7] that the minimal eigenvalue of a mass matrix can only
get lowered if one adds more fields. Therefore, if an instability is detected within our set
of fields, it will not be cured with more fields, and we can conclude on a unstable solution.
We now study the stability of each solution of [1] according to the sign of the cosmological
constant.

3.4.1 De Sitter

The values of ηV for each de Sitter solution of [1] are given in table 8 and 9.
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A first observation is that ηV < 0 for all de Sitter solutions, in agreement with Con-
jecture 2 of [5]. This means that the solutions are unstable, and that a tachyon can be
found among the fields (ρ, τ, σI) considered, in agreement with the proposal made in [32].
While always successfully tested (see however [20] for a counter-example on a non-compact
manifold), the check of this proposal is here extensive, since many different solution classes
have been considered, including some (e.g. m+

46) where de Sitter solutions are found for the
first time. We finally point out that for each solution, there is one and only one tachyonic
mass in the spectrum.

A second observation is that most values are of order -1, in agreement with the refined
de Sitter conjecture [26, 27]. This is not surprising from the perspective of [20], where it is
argued that less generic stability behaviours need to be searched in specific corners of the
parameter space, and here, we have not performed such dedicated searches. Our aim was
rather to get (generic) solutions in many different classes.

Two exceptions are nevertheless worth being mentioned. The first one is m+
465, which

admits a comparatively low value |ηV | = 0.36462. As indicated in table 5, the group
manifold is however non-compact. The second one is s+

66661, which admits a comparatively
high value |ηV | = 18.445. There, the group manifold is compact, see table 4. However,
such a high instability is phenomenologically uninteresting.

Last but not least, let us add a word on the solution s+
5519 found in [20]. Back then,

its algebra was not identified. Thanks to the work of section 2, we now know this algebra,
and as indicated in table 4, the group manifold is compact. This is interesting, because
this solution admits the lowest |ηV | value known for a solution on a compact manifold:
ηV = −0.12141. This emphasizes the need for dedicated searches when it comes to stability
of de Sitter solutions.

3.4.2 Minkowski, and a new conjecture

For Minkowski solutions, we do not compute ηV but look directly at the mass spectrum, pro-
vided in appendix D. Interestingly, we observe the systematic presence of a massless mode,
in all solutions, the other masses being non-tachyonic. In solutions m0

462 and m0
4661 − 6,

there are even two massless modes. The systematic presence of such a 4d flat direction
in classical, or at least 10d supergravity, Minkowski solutions is commonly believed to be
true.2 Examples are ubiquitous in the literature, a first one being Calabi-Yau compact-
ifications (with h1,1 ≥ 1). There, the presence of flat directions is related to the more
general no-scale property of the potential [57, 58], which can in some models remove the
dependence on some fields in the scalar potential. Less common examples include M-theory
compactifications [15], compactifications to 6d [18], or maximal supergravity in 4d [59], all
having Minkowski solutions with flat directions. The systematic presence of such a flat
direction was even proven in compactifications to 4d N = 1 supergravity, coming from su-
persymmetric Minkowski solutions of 10d type IIA supergravity with certain O6/D6 [60, 61]
(see also [62]). This idea goes along with that of a systematic tachyon in de Sitter solu-

2We thank T. Van Riet for repeated support to this idea in private exchanges.
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tions.3 Following this line of thoughts and our observation, we propose here the following
conjecture:

Massless Minkowski Conjecture: (3.17)

10d supergravity solutions compactified to 4d Minkowski always admit a 4d flat direction,
i.e. a massless 4d scalar, among the fields (ρ, τ, σI).

The fact the massless mode should be among (ρ, τ, σI), and the claim not depending on
supersymmetry (of the solution or of the 4d theory), are important additions with respect
to previous related statements. They make the conjecture more interesting, connecting
directly to the proposal of [32] stating a systematic de Sitter tachyon among the same fields.
In addition, the complete set (ρ, τ, σI) is necessary: the massless mode is indeed not among
(ρ, τ) alone in s0

55 1, m0
46 1,2, m0

466 1-6, as can be tested with MSSSp; it is however in s0
555 1-

4, probably because of the more limited supergravity contributions. Note that in heterotic
string at order α′0, the field τ is massless in a Minkowski solution so the conjecture is valid,
while fields σI cannot be defined. Let us finally mention the recent apparent counter-
example [66], where Minkowski solutions are found with all moduli stabilized. Those are
however obtained on mirrors of rigid Calabi-Yau manifolds, which are better described as
Landau-Ginzburg models, having h1,1 = 0. As indicated there, since these models have
no Kähler moduli, they do not have a proper 10d target space geometric description, and
circumvent our conjecture by being not describable in 10d supergravity.4

An option would be to restrict the conjecture to solutions with 4d effective theories
preserving at most N = 1 supersymmetry. Such a weaker statement could then be related
to the Conjecture 4 of [1], requiring at most N = 1 in the 4d effective theory for de
Sitter solutions: the massless mode of Minkowski may then, once again, be related to the
tachyon of de Sitter, both observed to be among (ρ, τ, σI). Nevertheless, preserving more
supersymmetry typically corresponds to having less supergravity ingredients, leading to a
simpler scalar potential, that would be less likely to generate a mass. So we stick to the
above version of the conjecture. In addition, there exist examples of Minkowski solutions
leading to a 4d theory with N ≥ 2 and having a flat direction, starting with solution s0

551
of [7] considered here in appendix D.

The conjecture applies in particular to classical Minkowski string backgrounds (see
however below about corrections), and can as such get a swampland interpretation. Of
course, it agrees with the anti-de Sitter distance conjecture [41], which provides in the
asymptotics of field space a Minkowski solution with a massless mode coming from a tower.
The conjecture (3.17) is however stronger as it is not strictly about the asymptotics, and

3Relations between the tachyon in a de Sitter solution and the sgoldstino in a (no-scale) Minkowski
solution, the latter being the limit of the former, have been discussed in [32, 56, 63–65]. At first sight, we
do not know whether our conjecture matches such a sgoldstino interpretation, but it would be interesting
to investigate this further.

4Similarly, without Kähler moduli, one cannot define internal volumes related to our ρ and σI , and
maybe not even the 4d dilaton τ which needs ρ. From this perspective, that example may even be viewed
as being in agreement with the conjecture.
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the massless mode is rather to be found among the light modes of the 4d theory (see a
related discussion in section 4.1). A swampland-type corollary statement would then be
the following:

Massless Minkowski Conjecture (swampland corollary): (3.18)

In a quantum gravity 4d effective theory with a scalar potential V (φi), if a critical point
(∂φjV = 0) can be found in a region of field space corresponding to a classical and per-
turbative quantum gravity regime, and if this critical point is Minkowski (V = 0), then
the mass matrix admits a vanishing eigenvalue.

In addition, the conjecture (3.17) specifies among which fields the massless mode can be
found. Note that a vanishing mass matrix eigenvalue is equivalent to a degenerate Hessian
of V . The above leads us to propose the following strong version of the conjecture:

Strong version: (3.19)

If the above Minkowski critical point is realized, then there is no 4d tachyon, meaning

0 = min ∇∂V = V

Mp
2 = |∇V |

Mp
.

In other words, the inequalities of the refined de Sitter conjectures of [26–28] are
saturated.

The strong version adds the information that the massless mode is the minimal eigenvalue
of the mass matrix, meaning that there is no tachyon. This is indeed what we observe in
our solutions.

There are two reasons to be careful about these swampland versions (3.18) and (3.19).
First, a quantum gravity effective theory would a priori contain many corrections going
beyond the classical and perturbative regime. Even though they would be small in such a
regime, there is no reason here (e.g. without supersymmetry) for them to vanish. Any such
non-vanishing correction could alter the claim of a vanishing mass. One should then be care-
ful with the interpretation of the “classical and perturbative regime”: whether this means a
truncation of corrections (10d supergravity interpretation) or whether these are small, could
change the statement. Second, we know that any additional scalar field with respect to our
set (ρ, τ, σI) can a priori lower the value of min ∇∂V (see below (3.16)). From this per-
spective, there is no reason for having no tachyon. In the literature, tachyons are however
not observed in Minkowski compactifications (we do not consider here open string moduli,
and e.g. Dp-brane instabilities). So the strong version remains plausible. This conjecture
deserves in any case more investigation, and we hope to come back to it in future work.

Contrary to other swampland conjectures related to stability, the conjecture (3.17)
does not depend on whether the solution is supersymmetric or not. Let us add here a word
on this last question. The solutions found in [1] were obtained by solving the equations
of motion and Bianchi identities. Conditions for supersymmetry, as e.g. phrased in the
language of generalized complex geometry with SU(3)×SU(3) structures [9, 67], were not
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class s−55 m−46

solution 1 2 3 4 1 2 3 4 5
ηV 0.7785 -4 -3.8495 -2.4901 1.2531 1.5483 1.5537 1.3004 1.2548

Table 10. Values of ηV obtained with the set of fields considered for each anti-de Sitter solution.

considered. Therefore, we see no reason for our solutions to be supersymmetric. For
Minkowski solutions, a quick test goes as follows. Supersymmetric Minkowski solutions
with O3 typically need to have their H- and F3-flux related through the ISD condition:
∗6H = ε gsF3 [8], where for simplicity we do not specify the sign ε and we fix eφ = gs.
The class of Minkowski solutions with Op/Dp found in [68] generalises this relation to
∗⊥H(0) = ε gsF

(0)
6−p. The latter can be read in the smeared limit from the supersymmetry

conditions as a particular solution, using the calibration condition ι∗[8 ImΦ2] = vol||. Then,
a hint for supersymmetry in a Minkowski solution is that appropriate components of H
and gsF6−p take the same value. It is not the case in any of our solutions, except when
both vanish. We conclude again that our solutions are unlikely to be supersymmetric.

3.4.3 Anti-de Sitter

The values of ηV for each anti-de Sitter solution of [1] are given in table 10. We note
already that all values satisfy ηV & −1, in agreement with the conjecture of [40] (see also
Footnote 5).

The stability of anti-de Sitter solutions is more delicate. Let us first recall useful
formulas valid for a 4d anti-de Sitter spacetime, extremum of a potential

R4
4 = − 3

l2
= Λ = V

M2
p

, (3.20)

where l is the so-called anti-de Sitter radius, appearing in the standard metric as follows
ds2 = l2

z2 (dz2 + dxµdxµ). Perturbative stability then requires for any scalar of mass m to
verify the Breitenlohner-Freedman (BF) bound, expressed in 4d as

m2 > − 9
4 l2 ⇒ ηV <

3
4 , (3.21)

from which we deduced an upper bound on ηV in an anti-de Sitter solution. From this
criterion, we see that all solutions with positive ηV in table 10 are perturbatively unstable.

Of interest are then the three anti-de Sitter solutions found with a negative ηV (on
compact group manifolds): not only those are perturbatively stable (at least within these
fields), but their mass spectrum only has positive masses2. This perturbative stability
may challenge to some extent the swampland conjecture on non-supersymmetric anti-de
Sitter solutions [31], in case these solutions are non-supersymmetric. The latter is not
straightforward to determine, and the quick test proposed for Minkowski solutions at the
end of section 3.4.2 would not work for anti-de Sitter solutions, because of an extra term
in the supersymmetry conditions, depending on the cosmological constant [67]. However,
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as argued for Minkowski solutions, we still believe that our anti-de Sitter solutions are
unlikely to be supersymmetric, making the above perturbative stability interesting.

Finally, we notice also the surprising values taken by ηV in these perturbatively stable
solutions. Of particular interest is s−552 which gets ηV = −4.0000 and s−554 with ηV ≈
−2.5. The reason for such specific values might come from the particular field content of
these solutions. Such choices for a solution ansatz may be of interest, and deserve more
investigation. We will come back to these peculiar values in section 4.1.

4 Scale separation

In this section we discuss the possibility of having scale separation in new anti-de Sitter
solutions, found in previously unexplored solution classes s−55 andm−46 [1]. We also comment
on a corresponding mass gap in Minkowski solutions. We first provide a general discussion
and few observations in section 4.1. We then prove in section 4.2 no-go theorems for anti-de
Sitter solutions in s−55 and m−46 on nilmanifolds (including the torus) or manifolds with a
Ricci flat metric, both argued in the Introduction to be relevant for scale separation.

4.1 General comments on mass gap and scale separation

As recalled in the Introduction, scale separation is a gap between the first non-zero mass of
a tower of states (here taken as the Kaluza-Klein tower) and a 4d effective theory typical
energy scale; such a gap then allows for an appropriate cut-off scale that truncates the
tower. For anti-de Sitter, the 4d scale considered is given by the cosmological constant,
while for Minkowski, it is set by the mass of light modes. To determine whether there is
a scale separation with the first massive Kaluza-Klein state, one should access the latter
scale. Beyond the torus, e.g. on group manifolds, this is not an easy task: it typically
requires to determine the eigenvalues of the Laplacian operator, as done e.g. in [55, 69] for
nilmanifolds. In particular, the first non-zero eigenvalue, of interest here, is not necessarily
related to R6, the internal scalar curvature which sets another scale.

Beyond the Laplacian eigenvalues, another contribution to the mass of 4d modes is
(the second derivative of) the scalar potential. In this paper, we only access the latter, and
deduce from this potential our mass spectrum, displayed in appendix D. In addition, we
only consider scalar fields with a dependence on 4d coordinates, i.e. our truncation could
be viewed as limited to the zero-modes of Kaluza-Klein towers. Their vanishing masses
then get corrected by the scalar potential contribution: such fields are typically thought
of as light modes. This interpretation is at least valid on a Ricci flat 6d manifold; a more
careful analysis might be necessary here on group manifolds. Still, from this point of view,
the mass spectrum we have at hand should not allow us to identify any scale separation.
In our perturbatively stable anti-de Sitter solutions, s−552-4, this seems consistent with the
fact we do not observe important hierarchies between the masses2 and R4. In particular,
|ηV | is of order 1 (see table 10).5

5This agrees with the anti-de Sitter conjecture of [40] which compares the mass of light modes to the
cosmological constant, analogously to the criterion on ηV of the refined de Sitter conjecture [27]. The former
differs from considering the mass scale of a tower, and the discussion on scale separation of [41].
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Despite the fact that we may not access the right scales to discuss scale separation,
we will provide in the following two hints, that would conclude on the absence of scale
separation in the new anti-de Sitter solutions found in the classes s−55 and m−46. A first
hint is about integer values of conformal dimensions that we discuss below, a second one is
given by no-go theorems for anti-de Sitter solutions discussed in section 4.2. Prior to this,
we will also say a word on Minkowski solutions.

As mentioned in the Introduction, so-called DGKT anti-de Sitter solutions, that we
interpret as being part of s−6666, exhibit scale separation. Through the standard holographic
correspondence, the light mode spectrum of these solutions with masses m2 corresponds
to dual CFT operators with conformal dimensions ∆, via the relation

∆(∆− 3) = m2l2 ⇔ ∆± = 3
2 ±

1
2
√

9 + 4m2l2 , (4.1)

where l is the anti-de Sitter radius defined in (3.20). As first discussed in [49, 70] and
computed more generally in [71], supersymmetric DGKT solutions satisfy the surprising
property that the ∆ take integer values. As pointed out in [72], it is also the case of some
non-supersymmetric solutions, but not of all of them.

One may wonder whether this specificity of integer conformal dimensions is related to
having scale separation, at least for some solutions of this class. If this would hold, one
could simply test the light mode spectrum of other solutions: getting integers would at
least be a hint of scale separation. For ∆ being an integer, one gets, using (3.20) at an
anti-de Sitter extremum, the following first possible values

−M2
p

m2

V
= −2

3 , 0 , 4
3 ,

10
3 , 6 , 28

3 ,
40
3 , 18 , 70

3 ,
88
3 , . . . (4.2)

We can then compare these numbers to our anti-de Sitter solutions found in new classes:
none of them has a spectrum giving values close to the above. One could argue that we
are considering a limited set of scalar fields, and adding more fields could alter our values,
but we believe the modification would not be important. Let us also emphasize that some
of the solutions were noticed in section 3.4.3 to have integer or half integer values of ηV .
These seemingly special values however do not match any entry of the list (4.2). Following
this line of thoughts, one may conclude on the absence of scale separation in these new
anti-de Sitter solutions.

Before presenting another argument, let us say a word on the new Minkowski solutions
found in [1]. We already mentioned in section 3.4.2 the apparent systematic presence of a
massless mode, from which we draw the Massless Minkowski Conjecture (3.17). We note
in addition for some solutions, namely s0

5551, m0
461 and m0

4662, 3, 5, the presence of a gap in
the mass spectrum: see appendix D. The most important is in m0

461: a ratio between two
consecutive masses2 is 7390.9. While such a gap is important, it remains hard, as discussed
above, to conclude anything with respect to the first massive mode of a tower. But these
examples deserve more investigation, such as the study of the Laplacian spectrum. We
note however that according to table 6 and the discussion below, none of these gapped
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solutions were shown to be on a compact manifold, while compactness remains crucial in
this discussion, e.g. with respect to the Kaluza-Klein towers.

4.2 No-go theorems for anti-de Sitter on Ricci flat or nilmanifolds

As motivated in the Introduction, scale separation in anti-de Sitter solutions on group
manifolds could be limited to those on nilmanifolds, including the torus, or manifolds
with a Ricci flat metric. It is the case for the solutions found in the solution classes
s−6666 [10, 11, 51–53] and m−5577 [12, 38, 53]. In [1], two new solution classes with anti-de
Sitter solutions on group manifolds were discovered, s−55 and m−46, sharing the same T-
duality relation as the former two classes. We prove however in this section that anti-de
Sitter solutions cannot be found in these classes on nilmanifolds, or manifolds with a Ricci
flat metric, giving a hint against scale separation in these classes. We also compare this
situation to that of the first two classes.

We start with the solution class s55 with O5 along 12, 34 and D5 along 56. We
first consider the 6d (trace-reversed) Einstein equation combined with the 4d Einstein
equation [1, (B.23) & (B.24)]. We take the trace of the former along 56. Using the field
content of that solution class [1, (2.14)], we obtain

2
∑

a,b=5,6
δabRab = R4 + |H|2 + g2

s

(
|F1|2 + |F3|2 + |F5|2

)
+ gs

3
(
T 3

10 − T10
)
, (4.3)

where T 3
10 ≡ T

(5)3
10 ≤ 0 because it corresponds to the contributions of D5 along 56. Using

further Einstein traces and the dilaton e.o.m., namely [1, (B.1) & (B.22)], to eliminate
some fluxes, we get

2
∑

a,b=5,6
δabRab − 2R6 = 2R4 + gs

3 T
3
10 . (4.4)

One has

2
∑

a,b=5,6
δabRab − 2R6 = −2

4∑
a,b=1

δabRab . (4.5)

The field content of s55 indicates that all structure constants have one index which is 5 or
6. Therefore, using the Ricci tensor on a group manifold

2 Rcd = −f bacfabd − δbgδahfhgcfabd + 1
2δ

ahδbjδciδdgf
i
ajf

g
hb , (4.6)

we obtain

2
∑

a,b=5,6
δabRab − 2R6 =

6∑
a,b=1

4∑
c,d=1

(
δcdf bacf

a
bd + (fabd)2 − 1

2(fdab)2
)

=
6∑

a,b=1

4∑
c,d=1

δcdf bacf
a
bd +

∑
a=5,6

4∑
b,d=1

(fabd)2 . (4.7)

The first term in (4.7) is a partial trace of the Killing form. The Killing form identically
vanishes for nilmanifolds. In addition, a manifold with Ricci flat metric, i.e. Rab = 0,
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has (4.7) vanishing. We deduce

Nilmanifold or Ricci flat in s55 : 2
∑

a,b=5,6
δabRab − 2R6 ≥ 0 . (4.8)

For an anti-de Sitter solution in s−55, the right-hand side of (4.4) is however negative.
This leads to a no-go theorem on anti-de Sitter solutions in the class s55 on nilmanifolds
(including the torus) or manifolds with Ricci flat metric. Interestingly, as can be seen in
table 7, solutions s−552-4 of [1] were found on the algebra g0

3.5 ⊕ g0
3.5, which can lead to a

solvmanifold with a Ricci flat metric (see e.g. [73]). Of course, it is not the case for these
solutions, which have R6 < 0.

We turn to the solution class m46. It has O4 along 4, O6 along 123, and possible D6
along 156, 256, 356. The contributions of the latter are denoted T (6)2

10 , T
(6)3
10 , T

(6)4
10 and are

negative. We proceed as above, taking the trace along 56, to first get

2
∑

a,b=5,6
δabRab =R4 + |H|2 +g2

s

(
|F2|2 + |F4|2

)
+2gs

(
1
7(T (6)2

10 +T
(6)3
10 +T

(6)4
10 )−

∑
p

T
(p)
10

p+1

)
,

using that F0 = F6 = 0 in this solution class, and then

2
∑

a,b=5,6
δabRab − 2R6 = 2R4 + 2

7gs
(
T

(6)2
10 + T

(6)3
10 + T

(6)4
10

)
. (4.9)

The field content of m46 indicates that structure constants always have one index which is
5 or 6. We conclude as above

Nilmanifold or Ricci flat in m46 : 2
∑

a,b=5,6
δabRab − 2R6 ≥ 0 , (4.10)

and deduce from (4.9) a no-go theorem on anti-de Sitter solutions in the class m46 on
nilmanifolds (including a torus), or manifolds with a Ricci flat metric.6

These no-go theorems are certainly consistent with our searches for solutions in s−55
and m−46. Whether or not they prevent from getting scale separation is not established, but
as argued in the Introduction, this is possibly a relevant criterion. Let us finally compare
to the situation in the other classes. Proceeding similarly for m5577 with O5 along 12, 34
and O7 along 2456, 1356, we obtain the following equality

2
∑

a,b=5,6
δabRab − 2R6 = 2R4 + gs

4 T
(7)
10 . (4.12)

For the same reason as above, the left-hand side has to be positive or zero on nilmani-
folds (including a torus) and manifolds with a Ricci flat metric. To avoid a no-go theorem

6As a side remark, one deduces the following constraints for Minkowski solutions

Minkowski solutions in s55 on a nilmanifold : f5,6
bd = 0 , T 3

10 = 0 , (4.11)

Mink. sol. in m46 on a nilmanifold : f5,6
bd = 0 , T (6)2

10 = T
(6)3
10 = T

(6)4
10 = 0 ,

leading to the conclusion that only two sets of sources can be present in either of those classes. This is
consistent with our solutions in s0

55 and m0
46, and those already known.
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for an anti-de Sitter solution in m−5577 on such a manifold, we deduce the requirement
T

(7)
10 = T

(7)1
10 + T

(7)2
10 > 0. This means that the positive contribution of O7 in those should

not be dominated by that of possible D7, negative. Getting such a requirement is in-
teresting, but we also identify an important difference with s−55 and m−46: the absence of
directions with only Dp-branes. This difference is even stronger with s6666 where we have
difficulties identifying relevant directions over which to trace as above: doing so brings
further contributions to the equations, leading to looser requirements, not worth being
indicated here. The presence or absence of directions with only Dp-branes is related this
way to the possibility of getting anti-de Sitter solutions on Ricci flat or nilmanifolds, which
in turn could be related to scale separation. These relations deserve more investigation.

Acknowledgments

We thank H. Skarke and D. Tsimpis for helpful exchanges during the completion of this
work. P. M. thanks the ITP at TU Wien for hospitality and for the opportunity to work on
this project. L. H. acknowledges support from the Austrian Science Fund (FWF): project
number P34562-N, doctoral program W1252-N27.

A Subtleties on the parameters in solvable algebras

Real 6d indecomposable unimodular solvable Lie algebras are classified in [21] according to
their nilradical, into so-called “isomorphism classes”. This means that for any such algebra,
an isomorphism can be found that maps it to one (and only one) of these classes. Some of
these classes, as presented in [21], however depend on continuous parameters: for instance,
g0,ν0

6.93 depends on ν0. These real parameters sometimes take values in a certain range, to
which we come back below. Contrary to what one would expect from the name “isomor-
phism class”, one can actually not set the parameter to any fixed value with an isomorphism;
in other words, one “class” with a parameter actually corresponds to an infinite number
of non-isomorphic algebras. Another interpretation is to view g0,ν0

6.93 as a different “isomor-
phism class” for every (allowed) value of the continuous parameter ν0. This subtlety helps
understanding that properties such as the Killing form signature or the CS and DS, meant
to be basis independent, can actually depend (and change) with the continuous parameter:
see table 3. The nilradical however does not change, in agreement with the classification.

Everything just written holds given a properly specified allowed range of the parame-
ters. Such a range is however rarely given in [21], and this leads to a few issues that we now
mention. In some cases, special values of the parameters actually allow to have them set to
a fixed value thanks to an isomorphism. This hints at a possible better characterisation of
their range preventing any such issue. For example, we consider g0,µ0,ν0

6.88 in the case where
ν0 = 0, µ0 6= 0. In that case, a rescaling allows to bring µ0 to 1, meaning that it is not
a true parameter anymore. In other words, for µ0 6= 0, g0,µ0,0

6.88 = g0,1,0
6.88 . This seems to be

generalizable beyond the case ν0 = 0.
Another issue is the following. When computing the CS for the algebras of table 3

but following [21], we noticed that for some parameter values, the CS would reach 0.
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Algebra Parameters CS DS Nilpotent algebra
g0,l

6.83 l = 0 6,3,1,0 6,3,0 g−1
6.N14

g0,µ0,ν0
6.88 µ0 = ν0 = 0 6,1,0 6,1,0 g5.4 ⊕ u(1)
g0,ν0,s

6.89 s = ν0 = 0 6,1,0 6,1,0 g5.4 ⊕ u(1)
g0,µ0,ν0

6.92 µ0ν0 = 0, |µ0|+ |ν0| 6= 0 6,3,1,0 6,3,0 g−1
6.N14

µ0 = ν0 = 0 6,1,0 6,1,0 g5.4 ⊕ u(1)

Table 11. For some algebras of table 3, further values for the parameters and corresponding CS
and DS. The CS reaching 0, one concludes on nilpotent algebras, so the parameter values cannot
be allowed. We give the corresponding nilpotent algebra, with notations of [21].

This implies that the algebra is nilpotent, which cannot be the case since the algebra is
6-dimensional and the nilradical is 5-dimensional. Based on this, we indicated ourselves
restrictions (i.e. the range) on the parameters in table 3. In table 11, we indicate what the
CS and DS would be if we allow for different values of the parameters, and the corresponding
nilpotent algebra.

B An analytical change of basis

We present here a general analytical change of basis for solutions m+
464, 5, identifying the

algebra to be non-solvable. The table 1 could have been enough for this identification, but
this explicit change of basis could serve further purposes.

The solutions m+
464, 5 have the following non-zero structure constants

m+
464, 5 : f1

45, f
1

46, f
2

45, f
2

46, f
3

45, f
3

46, f
4

15, f
4

16, f
4

25, f
4

26, f
4

35, f
4

36,

f5
14, f

5
24, f

5
34, f

6
14, f

6
24, f

6
34 . (B.1)

We first perform the following change of basis

ea 6=6′ = ea, e6′ = e6 + f4
25

f4
26
e5 . (B.2)

Using the Jacobi identities fae[6f eb5] = 0, a, b = 1, 2, 3, one can show that the above ratio
enters the following equalities

f4
b5

f4
b6

= fa45
fa46

, a, b = 1, 2, 3 . (B.3)

This allows to reduce the set of structure constants to the following

f1
46
′
, f2

46
′
, f3

46
′
, f4

16
′
, f4

26
′
, f4

36
′
, f5

14
′
, f5

24
′
, f5

34
′ : unchanged

f6
a4
′ = f6

a4 + f4
25

f4
26
f5

a4 , a = 1, 2, 3 . (B.4)
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We now consider the Jacobi identities f5,6
e[af

e
b6]
′ = 0, for a, b taking values among 1, 2, 3.

From those we deduce the following equalities

f4
a6
′

f4
b6
′ = f6

a4
′

f6
b4
′ = f5

a4
′

f5
b4
′ ⇒

f6
14
′

f5
14
′ = f6

24
′

f5
24
′ = f6

34
′

f5
34
′ = α̃ . (B.5)

We then perform the change of basis

ea 6=5′′ = ea
′
, e5′′ = e6′ − α̃e5′ . (B.6)

This allows to set to zero the f5
a4
′′ without changing the others. We are left with

f1
46
′′
, f4

16
′′
, f2

46
′′
, f4

26
′′
, f3

46
′′
, f4

36
′′ : unchanged

f6
a4
′′ = f6

a4 + f4
25

f4
26
f5

a4 , a = 1, 2, 3 (i.e. unchanged) . (B.7)

To reduce further the number of structure constants, we consider the general transformation

ea 6=1′′′,3′′′ = ea
′′
, e1′′′ = e1′′ − βe3′′ , e3′′′ = e1′′ + δe3′′ , β + δ 6= 0 . (B.8)

With β = f1
46
′′

f3
46
′′ , δ = f4

36
′′

f4
16
′′ , this allows us to get rid of one pair of structure constants,

namely set to zero f1
46
′′′ = f4

16
′′′ = 0, while some of the new structure constants are

f2
46
′′′ = f2

46
′′
, f4

26
′′′ = f4

26
′′
, f3

46
′′′ = f1

46
′′ + f3

46
′′ f4

36
′′

f4
16
′′ , f

4
36
′′′ = f4

16
′′
. (B.9)

Verifying β + δ 6= 0 amounts here to

f3
46
′′
f4

16
′′ = f3

46f
4

16 6= 0 , f1
46
′′
f4

16
′′ + f3

46
′′
f4

36
′′ = f1

46f
4

16 + f3
46f

4
36 6= 0 , (B.10)

which is satisfied in our solutions. We should still determine the resulting f6
a4
′′′. The

Jacobi identity f6
e[1
′′
f e36]

′′ = 0 gives us (as above) the equality f6
14
′′
f4

36
′′ = f4

16
′′
f6

34
′′.

This allows us first to verify that f6
14
′′′ = 0. We obtain in addition

f6
34
′′′ = f4

16
′′ f1

46
′′
f6

14
′′ + f3

46
′′
f6

34
′′

f1
46
′′f4

16
′′ + f3

46
′′f4

36
′′ = f6

14
′′
, (B.11)

which gets simplified as indicated thanks again to the above Jacobi identity. We eventually
get the following remaining structure constants

f2
46
′′′
, f4

26
′′′
, f6

24
′′′ : unchanged

f3
46
′′′ = f1

46
′′ + f3

46
′′ f4

36
′′

f4
16
′′ , f

4
36
′′′ = f4

16
′′
, f6

34
′′′ = f6

14
′′
. (B.12)

We can then iterate the process, considering

ea 6=2′′′′,3′′′′ = ea
′′′
, e2′′′′ = e2′′′ − βe3′′′ , e3′′′′ = e2′′′ + δe3′′′ , β + δ 6= 0 . (B.13)

Verifying β + δ 6= 0 means

f3
46
′′′
f4

26
′′′ 6= 0 , f2

46
′′′
f4

26
′′′ + f3

46
′′′
f4

36
′′′ 6= 0 , (B.14)
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which can be reformulated, given (B.10) and that f4
26 6= 0 was already required in the

first transformation, as

f2
46f

4
26 + f1

46f
4

16 + f3
46f

4
36 6= 0 . (B.15)

Once again, the Jacobi identity f6
e[2
′′′
f e36]

′′′ = 0 gives us the equality f6
24
′′′
f4

36
′′′ =

f4
26
′′′
f6

34
′′′ which can be used to simplify the results. We obtain the following remaining

structure constants

f3
46
′′′′ = f2

46
′′′ + f3

46
′′′ f4

36
′′′

f4
26
′′′ , f

4
36
′′′′ = f4

26
′′′
, f6

34
′′′′ = f6

24
′′′
, (B.16)

or simplified

f3
46
′′′′ = 1

f4
26

(
f2

46f
4

26 + f1
46f

4
16 + f3

46f
4

36

)
, f4

36
′′′′ = f4

26

f6
34
′′′′ = f6

24 + f4
25

f4
26
f5

24 . (B.17)

This eventually gives the numerical values

m+
464 : f3

46
′′′′ = −0.0871207 , f4

36
′′′′ = −0.628272 , f6

34
′′′′ = 1.70966 ,

m+
465 : f3

46
′′′′ = −2.13542 , f4

36
′′′′ = −0.0047329 , f6

34
′′′′ = 0.00142542 . (B.18)

The relative signs allow us to identify the algebras to be all the same

m+
464, 5 : so(2, 1)⊕ 3 u(1) . (B.19)

Interestingly the same procedure to get the change of basis can be applied to solu-
tions m+

466 and m+
468, which admit as starting structure constants a subset of the above

ones (B.1).

C Independent fields and field space metric

In section 3.2, we explained how to identify a set of independent fields and compute the
associated non-degenerate field space metric. We give in the following this data for each
case encountered in our solutions, beyond the example given in (3.15). We present the
source sets ordered, the corresponding independent scalar fields, and the field space metric
expressed in that field basis.

s55: O5 (12, 34), D5 (56), or s555: O5 (12,34,56). Fields: (ρ, τ, σ1, σ2)

gij = M2
p



3
2ρ2 0 0 0

0 2
τ2 0 0

0 0 12
σ2

1
− 6
σ1σ2

0 0 − 6
σ1σ2

12
σ2

2


. (C.1)
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s66: O6 (123, 145), D6 (256, 346), or s6666: O6 (123, 145, 256, 346). Fields: (ρ, τ, σ1, σ2, σ3)

gij = M2
p



3
2ρ2 0 0 0 0

0 2
τ2 0 0 0

0 0 27
2σ2

1
− 9

2σ1σ2
− 9

2σ1σ3

0 0 − 9
2σ1σ2

27
2σ2

2
− 9

2σ2σ3

0 0 − 9
2σ1σ3

− 9
2σ2σ3

27
2σ2

3



. (C.2)

m46 (3 D6): O4 (4), O6 (123), D6 (156, 256, 356). Fields: (ρ, τ, σ1, σ2, σ3, σ4)

gij = M2
p



3
2ρ2 0 0 0 0 0

0 2
τ2 0 0 0 0

0 0 15
2σ2

1
− 9

2σ1σ2
− 9

2σ1σ3
− 9

2σ1σ4

0 0 − 9
2σ1σ2

27
2σ2

2
− 9

2σ2σ3
− 9

2σ2σ4

0 0 − 9
2σ1σ3

− 9
2σ2σ3

27
2σ2

3

9
2σ3σ4

0 0 − 9
2σ1σ4

− 9
2σ2σ4

9
2σ3σ4

27
2σ2

4



. (C.3)

m55: O5 (12, 34), D5 (56), D7 (2456, 2356, 1456, 1356), or O5 (12, 34), D7 (2456, 2356,
1456, 1356), or O5 (12, 34), D7 (2456, 1456, 1356). Fields: (ρ, τ, σ1, σ2, σ4, σ6)

gij = M2
p



3
2ρ2 0 0 0 0 0

0 2
τ2 0 0 0 0

0 0 12
σ2

1
− 6
σ1σ2

− 3
σ1σ4

− 3
σ1σ6

0 0 − 6
σ1σ2

12
σ2

2
− 3
σ2σ4

− 3
σ2σ6

0 0 − 3
σ1σ4

− 3
σ2σ4

12
σ2

4

3
σ4σ6

0 0 − 3
σ1σ6

− 3
σ2σ6

3
σ4σ6

12
σ2

6



. (C.4)
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m5577: O5 (12, 34), O7 (1356, 2456), or m∗
5577: O5 (12, 34), O7 (1456, 2356).

Fields: (ρ, τ, σ1, σ2, σ3)

gij = M2
p



3
2ρ2 0 0 0 0

0 2
τ2 0 0 0

0 0 12
σ2

1
− 6
σ1σ2

− 3
σ1σ3

0 0 − 6
σ1σ2

12
σ2

2
− 3
σ2σ3

0 0 − 3
σ1σ3

− 3
σ2σ3

12
σ2

3



. (C.5)

D Mass spectrum of Minkowski and anti-de Sitter solutions

We provide in this appendix few information on the Minkowski and anti-de Sitter solutions
found in [1]; more can be found in that reference. We also consider s0

551 found in [7]. For
each solution, we give the 4d Ricci scalar R4, the 6d one R6 and the mass spectrum. For
anti-de Sitter solutions, we give in addition the value of the parameter ηV . Definitions and
comments on these quantities can be found in sections 3 and 4. The numerical values are
given in units of 2πls.

D.1 Minkowski solutions

s0
551.

R4 = 0 , R6 = −1.0206 ,
masses2 = (3.6377, 1.5406, 0.33559, 0) .

s0
5551.

R4 = 0 , R6 = −0.017241 ,
masses2 = (0.052928, 0.0021215, 0.00005291, 0) .

s0
5552.

R4 = 0 , R6 = −0.11649 ,
masses2 = (0.83127, 0.07301, 0.068032, 0) .

s0
5553.

R4 = 0 , R6 = −0.14383 ,
masses2 = (0.2163, 0.098852, 0.045967, 0) .

s0
5554.

R4 = 0 , R6 = −0.11298 ,
masses2 = (0.27831, 0.077819, 0.032095, 0) .
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m0
461.

R4 = 0 , R6 = −0.015368 ,
masses2 = (3.3631, 0.45394, 0.067729, 9.1638 · 10−6, 0) .

m0
462.

R4 = 0 , R6 = −0.023897 ,
masses2 = (0.52608, 0.077079, 0.021226, 0, 0) .

m0
4661.

R4 = 0 , R6 = −0.026276 ,
masses2 = (0.26972, 0.074729, 0.020261, 0, 0) .

m0
4662.

R4 = 0 , R6 = −0.039542 ,
masses2 = (0.23513, 0.03448, 0.00023868, 0, 0) .

m0
4663.

R4 = 0 , R6 = −0.00043667 ,
masses2 = (0.026127, 0.015642, 0.00062489, 0, 0) .

m0
4664.

R4 = 0 , R6 = −0.036741 ,
masses2 = (0.17069, 0.012707, 0.0044701, 0, 0) .

m0
4665.

R4 = 0 , R6 = −0.034908 ,
masses2 = (0.32049, 0.11059, 0.0073101, 0, 0) .

m0
4666.

R4 = 0 , R6 = −0.059001 ,
masses2 = (0.21201, 0.035651, 0.013395, 0, 0) .

D.2 Anti-de Sitter solutions

s−
551.

R4 = −0.033561 , R6 = −0.0073162 , ηV = 0.7785 ,
masses2 = (0.19854, 0.060726, 0.04147,−0.0065318) .
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s−
552.

R4 = −0.015208 , R6 = −0.017287 , ηV = −4 ,
masses2 = (0.070021, 0.044657, 0.027383, 0.015208) .

s−
553.

R4 = −0.036862 , R6 = −0.023797 , ηV = −3.8495 ,
masses2 = (0.20393, 0.11596, 0.074406, 0.035475) .

s−
554.

R4 = −0.024424 , R6 = −0.023691 , ηV = −2.4901 ,
masses2 = (0.15904, 0.067206, 0.039032, 0.015205) .

m−
461.

R4 = −0.048164 , R6 = −0.02412 , ηV = 1.2531 ,
masses2 = (0.49918, 0.13392, 0.060085, 0.054407,−0.015089) .

m−
462.

R4 = −0.019002 , R6 = −0.012892 , ηV = 1.5483 ,
masses2 = (0.38901, 0.18817, 0.031941, 0.013066,−0.0073556) .

m−
463.

R4 = −0.1534 , R6 = −0.11122 , ηV = 1.5537 ,
masses2 = (3.2576, 1.5711, 0.26172, 0.109,−0.059584) .

m−
464.

R4 = −0.020509 , R6 = −0.053926 , ηV = 1.3004 ,
masses2 = (0.4783, 0.10213, 0.034824, 0.030265,−0.0066676) .

m−
465.

R4 = −0.019001 , R6 = −0.072802 , ηV = 1.2548 ,
masses2 = (0.4181, 0.16632, 0.043898, 0.028584,−0.0059604) .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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