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1 Introduction

The proton and neutron, known as nucleons, are the fundamental building blocks of all
atomic nuclei, and themselves are emerged as strongly interacting and relativistic bound
states of quarks and gluons of Quantum Chromodynamics (QCD). Understanding the in-
ternal structure of nucleons in terms of their constituents, quarks and gluons, and their
interactions has been one of the central goals of modern particle and nuclear physics.
However, owing to the color confinement of QCD, it has been an unprecedented intel-
lectual challenge to explore and quantify the structure of nucleons without being able to
see quarks and gluons directly. QCD color interaction is so strong at a typical hadronic
scale O(ΛQCD) ∼ 1/R with a typical hadron radius R ∼ 1 fm that any cross section with
identified hadron(s) cannot be calculated fully in QCD perturbation theory.

Fortunately, with the help of asymptotic freedom of QCD by which the color inter-
action becomes weaker and calculable perturbatively at short distances, the QCD factor-
ization theorem [1] has been developed to factorize the dynamics at different momentum
scales to identify good cross sections (or good physical observables) whose leading non-
perturbative dynamics can be organized into universal distribution functions, while other
non-perturbative contributions are shown to be suppressed by inverse power of the large
momentum transfer of the collision. Predictions follow when cross sections with different
hard scatterings but the same nonperturbative distributions are compared. It is the QCD
factorization for physical scattering processes with a large momentum transfer Q � 1/R
that has enabled us to probe the particle (or partonic) nature of quarks and gluons at the
short-distance, and to connect them to observed hadron(s) in terms of universal distribution
functions. With a set of well determined universal distribution functions to find a quark
(q), antiquark (q̄), or gluon (g) with a momentum fraction x inside a colliding hadron of
momentum p with xp ∼ Q, known as the parton distribution functions (PDFs) fi/h(x, µ2)
for finding a parton of type i = q, q̄, g inside a colliding hadron h probed at a hard scale
µ ∼ Q, QCD factorization formalism has been extremely successful in interpreting high
energy experimental data from all facilities around the world, covering many orders in
kinematic reach in both x and Q and as large as 15 orders of magnitude in difference in the
size of observed scattering cross sections, which is a great success story of QCD and the
Standard Model at high energy and has given us the confidence and the tools to discover
the Higgs particle in proton-proton collisions [2, 3], and to search for the new physics [4].

However, the probe with a large momentum transfer Q (� 1/R) is so localized in
space that it is not very sensitive to the details of confined three-dimensional (3D) internal
structure of the colliding hadron, in which a confined parton should have a characteristic
transverse momentum scale 〈kT 〉 ∼ 1/R � Q and an uncertainty in transverse position
〈bT 〉 ∼ R � 1/Q. Recently, new and more precise data are becoming available for two-
scale observables with a hard scale Q to localize the collision to probe the partonic nature
of quarks and gluons along with a soft scale to be sensitive to the dynamics taking place
at O(1/R). In addition, theoretical advances over the past decades have resulted in the
development of QCD factorization formalism for two types of two-scale observables, distin-
guished by their inclusive or exclusive nature, which enables quantitative matching between
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the measurements of such two-scale observables and the 3D internal partonic structure of a
colliding hadron. For inclusive two-scale observables, one well-studied example is the pro-
duction of a massive boson that decays into a pair of measured leptons in hadron-hadron
collisions (known as the Drell-Yan process), as a function of the pair’s invariant mass Q
and transverse momentum QT in the Lab frame [5]. When Q � 1/R, the production is
dominated by the annihilation of one active parton from one colliding hadron with another
active parton from the other colliding hadron, including quark-antiquark annihilation to a
vector boson (γ, W/Z) or gluon-gluon fusion to a Higgs particle. When Q � QT & 1/R,
the measured transverse momentum of the pair is sensitive to the transverse momenta
of the two colliding partons before they annihilate into the massive boson, providing the
opportunity to extract the information on the active parton’s transverse motion inside the
colliding hadron, which is encoded in transverse momentum dependent (TMD) PDFs (or
simply, TMDs), fi/h(x, kT , µ2) [6]. Like PDFs, TMDs are universal distribution functions
to find a quark (or gluon) with a momentum fraction x and transverse momentum kT from
a colliding hadron of momentum p with xp ∼ µ ∼ Q � kT , and describe the 3D motion
of this active parton, its flavor dependence and its correlation with the property of the
colliding hadron, such as its spin [7–11]. However, the probed transverse momentum kT of
the active parton in the hard collision is not the same as the intrinsic or confined trans-
verse momentum of the same parton inside a bound hadron. When the colliding hadron
is broken by the large momentum transfer of the collision, a parton shower (the collision
induced partonic radiation) is developed during the collision, generating additional trans-
verse momentum to the probed active parton, which is encoded in the QCD evolution of
the TMDs and could be non-perturbative, depending on the hard scale Q and the phase
space available for the shower [5, 12]. With more data from current and future experiments,
including lepton-hadron semi-inclusive deep inelastic scatterings, better understanding of
the scale dependence of TMDs could provide us with valuable information on the confined
motion of quarks and gluons inside a bound hadron [13–15].

Without breaking the colliding hadron, the exclusive observables could provide dif-
ferent aspects of the hadron’s internal structure. Since any cross section with identified
hadron(s) cannot be calculated fully in QCD perturbation theory, it is necessary to have a
hard scaleQ� 1/R for good exclusive observables for studying hadron’s partonic structure.
One classic example of exclusive hadronic observables is the high energy elastic π-scattering
from atomic electrons [16], from which the electromagnetic form factor Fπ(Q2) of the pion
could be extracted as a function of the invariant mass of the exchanged virtual photon
momentum q in the collision with Q2 ≡ −q2 ≥ 0. But, with the size and limited range
of Q2, the extracted form factor Fπ(Q2) did not reveal much information on the partonic
nature of the pion. On the other hand, when Q2 � 1/R2, Fπ(Q2) could be factorized in
terms of a convolution of two pion distribution amplitudes (DAs), φπ(x, µ) with momen-
tum fraction x for an active quark, 1−x for the corresponding antiquark and factorization
scale µ, along with a perturbatively calculable short-distance coefficient function, as seen
in eq. (4.1).1 The contributions from the pion’s partonic states beyond a pair of active

1Where instead of x, variables z1 and z2 are used for parton momentum fractions of DAs.
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Figure 1. Sample two-scale observables from exclusive deeply virtual lepton-hadron scattering:
(a) deeply virtual Compton scattering (DVCS), (b) deeply virtual meson production (DVMP), and
(c) deeply virtual heavy quarkonium production (DVQP).

quark and antiquark are expected to be suppressed by powers of 1/(QR) [17]. Various ex-
perimental efforts have been devoted to measure the pion form factors at larger momentum
transfers, from which the pion DAs could be extracted [18–20]. However, with the localized
single hard interaction from the exchanged virtual photon, the factorized pion form factor
Fπ(Q2) is not very sensitive to the detailed shape of φπ(x, µ) as a function of x, other than
the integral of φπ(x, µ) over x; see the discussion following eq. (4.2).

Nucleon’s internal structure could be much more rich and complex than the pion struc-
ture. QCD factorization of hard exclusive processes involving nucleons, such as large angle
exclusive hadronic scattering, could be worked out, but, the corresponding calculations are
much more difficult [17]. On the other hand, exclusive lepton-nucleon scattering with a
virtual photon of invariant mass Q2 � 1/R2 could provide various two-scale observables,
such as those in figure 1, where the hard scale is Q2 ≡ −q2 and the soft scale is t ≡ (p−p′)2.
When Q2 � |t|, which is equivalent to requiring the time scale of the partonic hard collision
∼ 1/Q to be much shorter than the lifetime of the exchanged partonic states ∼ 1/

√
|t|,

these two-scale exclusive processes are dominated by the exchange of an active qq̄ or gg
pair, as shown in figure 1, and can be systematically treated in QCD factorization ap-
proach [21–23]. The hadronic properties of the diffracted nucleon, the bottom part of the
diagrams in figure 1, could be represented by generalized parton distribution functions (or
simply, GPDs), fi/h(x, ξ, t, µ), where ξ ≡ (p−p′)+/(p+p′)+. The (p−p′)+ = 2ξ[(p+p′)+/2]
represents a total light-cone momentum transfer between the diffracted nucleon h and the
hard partonic collision, where the light-cone components are defined as v± = (v0± vz)/

√
2

for any four vector vµ. The GPDs were introduced by D. Müller et al. in 1994 [24], and
their important roles in charactering hadron’s partonic structure were further established
by pioneering work in [25, 26] and many years’ theoretical development since then, which
could be summarized in the reviews [27–30] and references therein.

By Fourier transforming the transverse component of the momentum transfer (p−p′)T
to position space bT in the forward limit, p′+ → p+ (or ξ → 0), the transformed GPD as a
function of bT provides a transverse spatial distribution of quarks or gluons inside a colliding
hadron at different values of momentum fraction x [31], That is, measuring GPDs could
provide an opportunity to study QCD tomography to obtain images of the transverse
spatial densities of quarks and gluons slicing at different momentum fraction x inside a
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Figure 2. Exclusive massive photon-pair (a) and lepton-pair (b) production in pion-nucleon colli-
sion, and (c) the photon-pair productions when |t| ≡ |(p− p′)2| → 0.

colliding hadron. Their spatial bT dependence could allow us to define an effective hadron
radius in terms of its quark (or gluon) spatial distributions, rq(x) (or rg(x)), as a function
of x, in contrast to its electric charge radius, allowing us to ask some interesting questions,
such as should rq(x) > rg(x) or vice versa, and could rg(x) saturate if x → 0, which
could reveal valuable information on how quarks and gluons are bounded inside a hadron.
Although we could expect that rq(x) (or rg(x)) is small at large x and increases when x

decreases, as demonstrated in explicit model calculations [32], it is the precise knowledge
of GPDs as functions of the parton flavor and kinematic variables, (x, ξ, t), that is needed
for us to address these kinds of interesting and fundamental questions about the hadron, in
particular, the proton and neutron, the fundamental building blocks of our visible world.

However, as clearly evident from the leading order diagrams in figure 1, the scattering
with the exchange of a single virtual photon in figure 1 is effectively an exclusive 2 → 2
process: γ∗(q) + h(p)→ X(q′) + h′(p′) with a final-state particle X = γ, π, J/ψ, . . ., whose
momentum is uniquely fixed by the virtual photon momentum q and total momentum trans-
fer (p−p′) from the diffracted hadron (or ξ- and t-dependence of GPDs). Any sensitivity to
the dependence of GPDs on the momentum fraction x, which is proportional to the relative
momentum of the active quark and antiquark in figure 1(a) and (b), or the two gluons in
figure 1(c), has to come from high order contribution and scale dependence of the pro-
cess. More specifically, let’s consider the deeply virtual Compton scattering (DVCS), first
introduced in [33], as sketched in figure 1(a). The DVCS cross section can be naturally ex-
pressed in terms of Compton form factors (CFFs), which are then factorized as convolutions
of GPDs with perturbatively calculable coefficients according to QCD factorization [23, 26,
34]. Extracting full details of GPDs from CFFs is a challenging inverse or deconvolution
problem [35]. Due to the lack of sensitivity on the x-dependence for CFFs, it was shown [36]
that based on a next-to-leading order analysis and a careful study of evolution effects, the
reconstruction of GPDs from DVCS measurements does not possess a unique solution.
Actually, two sample GPDs with different x-dependence can both fit the same CFFs [36].

Meanwhile, new exclusive diffractive processes have been introduced to enhance our
capability to extract various GPDs from experimental measurements. Instead of the lepton-
nucleon scattering in figure 1, it was proposed to study the diffractive photo-production of
a massive photon pair: γ(q) + N(p1) → γ(k1) + γ(k2) + N ′(p2) with the pair’s invariant
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massMγγ � ΛQCD [37–40]. Similarly, the diffractive photo-production of a massive photon
and meson pair: γ(q) +N(p1)→ γ(k1) + ρ(k2) +N ′(p2) [41] and γ(q) +N(p1)→ γ(k1) +
π±(k2) +N ′(p2) [42], as well as the diffractive production of two jets with a large invariant
mass [43–45] were also proposed. Unlike the lepton-scattering processes in figure 1, whose
factorization was proved by Collins et al. [21–23], the challenge for these new processes has
been the lack of the same level of justification for the QCD factorization.

In this paper, we study exclusive pion-nucleon diffractive production of a pair of high
transverse momentum photons: π(pπ) + N(p) → γ(q1) + γ(q2) + N ′(p′), as sketched in
figure 2(a), with the photon’s transverse momentum with respect to the collision axis be-
tween the colliding pion and the quark-antiquark pair from the diffracted nucleon being
qT = |q1T | = |q2T | � ΛQCD. Similar to the exclusive Drell-Yan process in pion-nucleon col-
lision in figure 2(b) [46], or the exclusive deeply virtual lepton-hadron scattering processes
in figure 1, the πN scattering process of our consideration in figure 2(a) is also a 2 → 3
exclusive process with a diffractive nucleon. Instead of measuring the lepton pair from the
decay of a massive virtual photon in figure 2(b), or the scattered lepton to have the deeply
virtual photon in figure 1, the hard scale of this new type of exclusive two-scale processes is
provided by the large transverse momentum qT , which flows between the two back-to-back
photons. The soft scale of this new type of two-scale processes is provided by t = (p− p′)2,
the invariant mass squared of momentum transfer from the diffractive nucleon, which is the
same as the soft scale of those exclusive processes in figure 1 and 2(b). With qT �

√
−t,

we demonstrate that this new observable can be systematically studied in terms of QCD
factorization approach with the same level of justification as those in figure 1, and our
factorization arguments can be generalized to the similar type of exclusive processes, in-
cluding some mentioned above. We also show that this observable can be not only a good
probe of the factorized GPDs, complementary to those known exclusive processes, but also
capable of providing more sensitivity to the much needed x-dependence of GPDs.

When the hard scale qT is sufficiently large, the diffractive scattering on the nucleon
N(p) is likely dominated by an exchange of a quark-antiquark pair, as indicated in fig-
ure 2(a), pulling more physically polarized partons into the hard collision would be sup-
pressed by powers of q−1

T /R. Depending on the momentum flow of the active quark and
antiquark, there are two distinctive kinematic regions for this exclusive process: (1) both
active quark and antiquark have their momenta flowing into the hard part, as indicated in
figure 2(c), and (2) only one of the active partons (quark or antiquark) has its momentum
entering into the hard collision while the other has its momentum flowing out the hard
collision to recombine with the spectators to form the diffracted hadron N ′(p′), as sketched
in figure 2(a). As explained in section 3, the factorization proof for these two regions
requires different consideration due to the characteristic difference of soft gluons in the
Glauber region. Once factorized, the region (1) gets contribution from the ERBL region
of GPDs, while the other is relevant to the GPDs’ DGLAP region [28]. When |t| → 0,
while q2

T � Λ2
QCD, the diffractive scattering with the nucleon in figure 2(c) is kinematically

similar to the Sullivan process in lepton-nucleon scattering [47] and becomes sensitive to
the nucleon’s pion cloud. The production of the massive photon-pair in this kinematic
regime (|t| → 0) could be viewed approximately as an annihilation of a real pion and a
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virtual (or almost real) pion of the colliding nucleon. To help present our justification of
QCD factorization for exclusive massive photon-pair production in pion-nucleon collision
in figure 2(a), we first demonstrate how the exclusive scattering amplitude of a simpler
exclusive process, π+(p1) + π−(p2) → γ(q1) + γ(q2) with qT � ΛQCD in figure 3, can be
systematically factorized into a convolution of two pion DAs along with an infrared safe
and perturbatively calculable short-distance coefficient in section 2. With the large trans-
verse momentum flow from one photon to the other through the hard scattering, interfering
with the relative momentum flow between the active quark and antiquark of the colliding
pion(s), the qT distribution of one of the two produced photons (or the equivalent cos θ
distribution of the photon with respect to the collision axis in the pair’s rest frame) can be
sensitive to the momentum difference between the quark and antiquark of colliding pion(s),
providing the sensitivity to the shape of factorized pion DAs.

In section 3, we extend our collinear factorization arguments for the single-scale ex-
clusive process: π+(p1) + π−(p2) → γ(q1) + γ(q2) to the two-scale exclusive observable:
π(pπ) + N(p) → γ(q1) + γ(q2) + N ′(p′) with qT �

√
|t|. With the nonlocal color co-

herence between the incoming and the outgoing (or diffracted) nucleon, the N and N ′,
we need additional discussions and reasoning for justifying the factorization of soft gluon
interactions for this two-scale observable. We argue that when qT �

√
|t|, the leading

contribution to exclusive scattering amplitude of π(pπ) + N(p) → γ(q1) + γ(q2) + N ′(p′)
can be factorized into the universal GPDs convoluted with a pion DA along with infrared
safe and perturbatively calculable coefficients. The corrections to this factorized expression
is suppressed by powers of |t|/q2

T . We show that by extending the π+π− process to πN
process, the scattering amplitude develops both real and imaginary parts, both of which
contribute to the cross section, and contains contributions from both unpolarized and po-
larized GPDs. Consequently, this new type of two-scale exclusive processes can be sensitive
to both unpolarized and polarized GPDs.

In section 4, we demonstrate numerically the sensitivity of this new type of exclusive
high transverse momentum observables to the functional forms of pion DAs and nucleon
GPDs in terms of their x-dependence. We introduce a flexible parametrization for DAs
and a simplified version of the GK model for nucleon GPDs [48–50] with parameters to
adjust their dependence on the parton momentum fraction. With our perturbatively calcu-
lated short-distance coefficients and our models for nucleon GPDs and pion DAs, we show
explicitly how sensitive this exclusive production of a pair of high-qT photons can be to
the shape of nucleon GPDs and pion DAs as functions of x. We also point out that such
sensitivity could be enhanced with improved high-order calculation of the short-distance
coefficients so that they are more perturbatively reliable at the end points where the mo-
mentum fraction of active parton from DAs and GPDs vanishes. Finally, in section 5, we
present our summary and outlook on opportunities to measure this new type of exclusive
process at J-PARC and other facilities. We also discuss possibilities of additional two-scale
observables of this type, which have the hard scale provided by the large transverse mo-
mentum qT of two exclusively produced “back-to-back” final-state particles (or jets) with
qT �

√
|t| & ΛQCD. The results of the hard coefficients are presented in the appendix.
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Figure 3. (a) Exclusive massive photon-pair production in π+π− annihilation, and (b) sample
diagram to show the existence of perturbative pinch needed to separate the dynamics at different
scales.

2 Exclusive production of a pair of high transverse momentum photons
in a π+π− annihilation

Exclusive production of a pair of high transverse momentum photons in π+π− annihilation,
as sketched in figure 3, has a single observed hard scale, qT , the transverse momentum of
one of the two produced photons with respect to the π+π− collision axis. The large scale qT
leads to a point-like interaction that is sensitive to the partonic structure of the pions. It is
then natural to consider QCD collinear factorization approach for studying this exclusive
process. We show in this section that when qT � ΛQCD, the scattering amplitude of this
exclusive process can be factorized in terms of two pion DAs and a perturbatively calculable
hard part, with corrections suppressed by powers of 1/qT . One of the main steps in deriving
the factorization is to deform the soft gluon momenta out of the Glauber region. This is
straightforward for the π+π− annihilation process because there is no pinch in the Glauber
region, as we will show below. When we generalize the factorization formalism to the
diffractive πN process in section 3, an additional kinematic region, referred to as DGLAP
region for GPD, appears, for which the soft gluon momentum is partly pinched in the
Glauber region, and some modification is needed to prove the factorization.

2.1 The process and corresponding kinematics

We study the exclusive production of a pair of high transverse momentum back-to-back
photons in π+π− annihilation in the center-of-mass (CM) frame of the collision,

π+(p1) + π−(p2) −→ γ(q1) + γ(q2) , (2.1)

as sketched in figure 3(a), where π+ moves along +ẑ direction and π− along −ẑ direction.
The scattering amplitude of this exclusive process is defined as

Mπ+π−→γ(λ)γ(λ′) ≡ ελ∗µ (q1) ελ′∗ν (q2)Mµν
π+π−→γγ , (2.2)

where ελµ(q) is the polarization vector for a photon of momentum q and polarization λ.
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In the CM frame of this 2→ 2 process, the energy of the colliding pion is the same as
the energy of the observed photon and equal to

√
s/2 with s = (p1 + p2)2 = (q1 + q2)2 =

ŝγγ � Λ2
QCD. By requiring qT � ΛQCD, we can safely neglect the pion mass mπ in the

following discussion of the leading power QCD factorization of this process in the power
expansion of 1/qT .

Using the light-cone coordinates defined with respect to the ẑ axis, we define all the
relevant momenta as follows,

p1 =
(
p+

1 ,
m2
π

2p+
1
, 0T

)
'
(
p+

1 , 0−, 0T
)
, (2.3a)

p2 =
(
m2
π

2p−2
, p−2 , 0T

)
'
(
0+, p−2 , 0T

)
, (2.3b)

q1 =
(
q+

1 ,
q2
T

2q+
1
, −qT

)
, (2.3c)

q2 =
(
q2
T

2q−2
, q−2 , qT

)
, (2.3d)

where qT ≡ |qT |. Introducing the light-cone unit vectors,

n̄µ = (1, 0,0T ), nµ = (0, 1,0T ), nµT = (0, 0,1T ), (2.4)

with n̄2 = n2 = 0, n̄ ·n = 1, n̄ ·nT = n ·nT = 0, and n2
T = −1, we can express the momenta

of colliding pions as pµ1 =
√
s/2 n̄µ and pµ2 =

√
s/2 nµ in the CM frame. Similarly, the

observed photon momenta q1 and q2 are fully determined once qT is specified,

q1 =
(
p+

1
2
(
1±
√

1− κ
)
,
p−2
2
(
1∓
√

1− κ
)
, −qT

)
, (2.5a)

q2 =
(
p+

1
2
(
1∓
√

1− κ
)
,
p−2
2
(
1±
√

1− κ
)
, qT

)
, (2.5b)

where κ = 4q2
T /s ≤ 1, p+

1 = p−2 =
√
s/2 in the CM frame, and the ± solution refers to q1

goes to the forward (+ẑ) or backward (−ẑ) direction.

2.2 All-order factorization of exclusive scattering amplitude

The development of factorized cross sections starts with an examination of scattering am-
plitudes in terms of general properties of Feynman diagrams in QCD perturbation theory.
When qT ∼

√
s becomes large, the exclusive π+π− annihilation process, as sketched in fig-

ure 3(a), is associated with two distinctive scales: (1) the hard scale qT characterizing the
short-distance (perturbative) hard collision to produce the massive photon pair, as shown
by the middle blob of the diagram in figure 3(b), and (2) the soft scale O(mπ) ∼ ΛQCD
characterizing the long-distance (non-perturbative) hadronic dynamics associated with the
colliding pions. A consistent separation of QCD dynamics taking place at these two distinc-
tive scales can lead to a factorization formalism, which is an approximation up to corrections
suppressed in power of mπ/qT . The validity of perturbative QCD factorization formalism
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requires the suppression of quantum interference between the dynamics taking place at
these two different momentum scales. That is, the dominant contributions to the factorized
formalism should necessarily come from the phase space where the active parton(s) linking
the dynamics at two different scales are forced onto their mass shells, and are consequently
long-lived compared to the time scale of the hard collision. For example, for the exclusive
scattering amplitude in figure 3(b), the suppression of quantum interference between the
dynamics taking place in the middle blob at O(qT ) and the blobs on its left and right asso-
ciated with the colliding pions requires us to demonstrate that the active quark, antiquark
and gluon(s) from the colliding pions are effectively forced to be near their mass shells.

However, all internal loop momentum integrals to any scattering amplitude are defined
by contours in complex momentum space, and it is only at momentum configurations where
some subset of loop momenta are pinched that the contours are forced to or near mass-shell
poles that correspond to long-distance behavior. These “pinch surfaces” in multidimen-
sional momentum space can be classified according to their reduced diagrams, found by
contracting off-shell lines to points, from which we then derive the factorization formalism.

2.2.1 Reduced diagrams and leading pinch surfaces

Reduced diagrams specify the regions in the multidimensional loop momentum space that
give dominant contributions to the loop integrals. Such leading regions are more con-
veniently realized in cut diagram notation of inclusive cross sections, in which graphical
contributions to the cross sections are represented by the scattering amplitude to the left
of the final state cut and the complex conjugate amplitude to the right. In the complex
conjugate graphs all roles of momentum integrals are reversed with an opposite sign of iε,
which are responsible for the pinched poles associated with initial- and final-state inter-
actions. However, for the factorization of exclusive scattering amplitudes, like the one in
figure 3(b), all partons are internal and virtual. Their pinched poles, if there is any, do not
come from the pair of the same propagators in the amplitude and its complex conjugate
amplitude, since the momentum flows through them do not have to be the same in the
amplitude and its complex conjugate amplitude. For the exclusive scattering amplitudes,
like the one in figure 3(b), it is the integration of the relative momentum of any two active
partons that pinches their momenta to be approximately on mass-shell if the invariant mass
of these two active partons from the colliding pion is much smaller than their total energy.

We illustrate this pinch of loop momenta by using the sample diagram in figure 3(b)
and labeling the active quark and antiquark momenta from π+ on the left as kq = K/2 +k

and kq̄ = K/2−k, respectively. The scattering amplitude in figure 3(b) then takes the form,

M(qT , s) ∝
∫

d4K

(2π)4

∫
d4k

(2π)4 Tr
[
R̂π−(p2, lj)⊗lj Ĥ(K, k, ki; lj ; qT , s) (2.6)

⊗ki

γ · (K/2 + k)
(K/2 + k)2 + iε

D̂π+(p1,K, k, ki)
−γ · (K/2− k)
(K/2− k)2 + iε

]
,

where Ĥ and R̂π− represent the middle blob and right-hand-side of the diagram, respec-
tively, the ⊗lj and ⊗ki

indicate the convolution of parton momenta lj and ki, respectively,
with i, j = 1, 2, . . ., D̂π+ represents the DA of the π+ of momentum p1, and K and k are
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π+

π−

+

−

p1

p2

q1

q2· · ·

· · · ...

...
D̂2

S

D̂1

Ĥ

Figure 4. General reduced diagram for the scattering amplitude of exclusive annihilation process
for π+π− → γγ. Both dashed and solid lines can represent quarks and/or gluons.

the total and relative momentum of the active quark-antiquark pair on the left. If the
total momentum of the pair is dominated by K+, we can identify the relevant perturbative
contribution from the integration of k in eq. (2.6) by examining the pole structure of its
k− integration. From the denominators of eq. (2.6), we have the two poles for k−,

k− = −1
K+

[
K2

4 −
k2
T

1 + 2k+/K+

]
− iε sgn

(
K+ + 2k+

)
→ 0− iε, (2.7a)

k− = 1
K+

[
K2

4 −
k2
T

1− 2k+/K+

]
+ iε sgn

(
K+ − 2k+

)
→ −0 + iε , (2.7b)

where we neglected the quark mass and overall transverse momentum of the pair KT .
These two denominators pinch the k− integral, when the total energy of the pair (or its
light-cone momentum K+) is much larger than the virtuality of the pair, so long as we are
away from the region k+ → ±K+/2, where the quark (or antiquark) of the pair carries all
the momentum while the other carries none. We should assume that this region is strongly
suppressed by the π’s DA when p+

1 � mπ. It is then clear from eq. (2.7) that the con-
tributions from the diagram in figure 3(b) are forced into the region of phase space where
the active quark and antiquark are both close to their mass shells. The same consideration
can be applied to any pair of almost parallel active partons from the nonperturbative blob
either on the left or the right in figure 3(b). That is, at the amplitude level, pinches hap-
pen among each pair of collinear partons from either the π+ or π− side, as long as their
total energy (or light-cone plus or minus momentum) is much greater than their invariant
mass, which means that those partons evolve well before they enter the short-time hard
interaction. Therefore, it is possible to factorize the two non-perturbative blobs associated
with π+ and π−, respectively, from the short-distance hard scattering process.

The generalization of the above pinch analysis leads to the so-called Libby-Sterman
analysis [51, 52], by which all loop momenta can be categorized into three groups: hard,
collinear and soft, which we do not repeat here. Each external particle is associated with
a group of collinear lines. With the assumption that the two observed high-qT photons
are produced in the same hard scattering, the relevant reduced diagrams for the exclusive
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π+π− → γγ scattering amplitude are illustrated in figure 4. At the pinch surfaces, there
are two groups of collinear lines associated with the directions of colliding π+ and π−,
respectively, shown as solid lines, and a hard part for the exclusive production of two back-
to-back high-qT photons. We can have an arbitrary number of collinear lines attaching the
collinear subgraph D̂1 or D̂2 to the hard subgraph Ĥ. In addition, we can have an arbitrary
number of soft lines attaching to D̂1, D̂2 and/or Ĥ, represented by the dashed lines.

Important contributions to the exclusive scattering amplitude come from the neigh-
borhood of the pinch surfaces characterized by the reduced diagram in figure 4, but, not
all of them contribute to the leading power term in 1/qT expansion. The leading pinch
surfaces, contributing to the leading power, can be identified and determined by performing
a power-counting analysis for the neighborhood of the reduced diagram in figure 4.

We characterize these regions of momentum space by introducing dimensionless scaling
variables, denoted as λ, which control the relative rates at which components of loop
momenta vanish near the pinch surfaces. A leading region is the one for which a vanishing
region of loop momentum space near a pinch surface produces leading power behavior in
1/qT expansion. For the loop momenta ki and lj , which attach D̂1 and D̂2 to the Ĥ,
respectively, we choose

ki ∼
(
1, λ2, λ

)
Q and lj ∼

(
λ2, 1, λ

)
Q , (2.8)

with Q ∼ O(qT ) � ΛQCD as a characteristic hard scale and λ ∼ O(ΛQCD/Q). We have
k2
i ∼ O(λ2Q2) → 0 and l2j ∼ O(λ2Q2) → 0 to quantify how the loop momenta approach

to the pinch surface as λ → 0. We choose the momentum of the soft loops to have the
following scaling behavior,

ks ∼ (λs, λs, λs)Q , (2.9)

with all components vanishing at the same rate, maintaining k2
s ∼ O(λ2

sQ
2) → 0. In

principle, the two scaling variables, λ and λs, need not be the same or related. In our
discussion of power-counting, we choose λs ∼ λ2. Considering the sample diagram in
figure 5, we have

(ki + ks)2 ∼ 2k+
i k
−
s [∼ λ2Q2] +O(λ3) , (lj − ks)2 ∼ −2l−j k

+
s [∼ λ2Q2] +O(λ3) . (2.10)

That is, for the leading power contribution, we only need to keep the components k−s and k+
s

for soft gluon momentum ks to enter the D̂1 and D̂2, respectively. A more comprehensive
discussion including power-counting for subdivergences, as some loop lines approach the
mass-shell faster than others, can be found in [53].

Following the power-counting analysis arguments in [6, 22], we obtain the scaling be-
havior for the reduced diagram in figure 4 as

Mπ+π−→γγ ∼ Ĥ ⊗ D̂1 ⊗ D̂2 ⊗ S ∝ λα , (2.11)

where ⊗ indicates both the contraction of Lorentz indices, spinor indices and convolution
of loop momenta, and the power α is given by

α = Nq(D1→H) +Nq(D2→H) − 2 +Ng(D1→H) +Ng(D2→H)

+Nq(S→D1) +Nq(S→D2) + 3Nq(S→H) +Ng(S→D1) +Ng(S→D2) + 2Ng(S→H) , (2.12)
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p1

π−
p2

ki

lj

ks

q2

q1

D̂1

Ĥ

D̂2

Figure 5. Sample diagram for identifying the leading soft contribution.

π+

p1

π−

p2

ki

ks

q2

q1

lj

D̂1

S

D̂2

Ĥ

(a)

ki

π+

p1

π−

p2

ks

q2

q1

lj

S

D̂1

D̂2

Ĥ

(b)

Figure 6. Two possible leading regions for the exclusive π+π− annihilation to two photons. An
arbitrary number of longitudinally polarized gluons can connect the collinear subgraph D̂1 or D̂2
to Ĥ or S.

where Nq(A→B) , Ng(A→B) and Ng(A→B) represent, respectively, the number of quarks, glu-
ons and physically polarized gluons connecting from subgraph A to B. It is clear from
eqs. (2.11) and (2.12) that the leading pinch surfaces (or leading regions) to the scattering
amplitude are those in figure 6 with the minimal power α = 2. Given the fact that the me-
son π± has one valence quark and antiquark, we must have a pair of quark and antiquark
lines out of both D̂1 and D̂2 for this exclusive scattering process in figure 6. At α = 2, all
the gluons linking D̂1 (and D̂2) to Ĥ (and S) are longitudinally polarized.

Although the pinch surfaces in figure 6b are expected to provide the leading contri-
butions from the perturbative power-counting analysis, reasonable arguments would make
these contributions power suppressed. One simple argument is to recognize that with the
quark lines from the soft factor S, these contributions are likely proportional to the end
point of the pion wave function, where one of the two valence quarks carries almost no
momentum. Since the pion wave function is expected to vanish at this point, we could
conclude that figure 6b does not contribute at the leading power, but, might impact fac-
torization at higher powers. Another possible argument for the contribution from figure 6b
to be power suppressed could be achieved by studying the situation in which the soft loop
momentum is scaled with λs ∼ λ [22].
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2.2.2 Approximations

With the leading region identified as figure 6a, we introduce some controllable approxima-
tions to pick up the leading power contributions from the Feynman diagrams to prepare
ourselves for performing the factorization of the collinear and soft gluons in next two sub-
sections, respectively.

We first introduce two sets of auxiliary vectors to help extract leading contributions
from the collinear and soft regions, respectively,

w1 = (1, 0,0T ) , (2.13a)
w2 = (0, 1,0T ) , (2.13b)

n1 = w1 − e−2y1w2 =
(
1,−e−2y1 ,0T

)
, (2.13c)

n2 = w2 − e2y2w1 =
(
−e2y2 , 1,0T

)
, (2.13d)

where the non-light-like vectors n1 and n2 are introduced to regulate rapidity divergence
with finite parameters y1 and y2 to keep them slightly off light cone. To avoid confusion
of notations, in this subsection, we do not use the n and n̄ as in eq. (2.4).

The leading reduced diagram in figure 6a can be formally expressed and approximated
at the leading power as,

Mπ+π−→γγ = Ĥ
{a},{b},{µ},{ν}
i,j;m,n (kq, kq̄, {k}; lq, lq̄, {l}; q1, q2)

× D̂ {a},{c}1 j,i,{µ},{ρ}(kq, kq̄, {k}; {ks}) D̂
{b},{d}
2n,m,{ν},{σ}(lq, lq̄, {l}; {ls})

× S{c},{d},{ρ},{σ}({ks}, {ls}) (2.14)

≈
[
Ĥ
{a},{b},{µ},{ν}
i,j;m,n (k̂q, k̂q̄, {k̂}; l̂q, l̂q̄, {l̂}; q1, q2) · {k̂µ} · {l̂ν}

]
×
{

wµ̄2
k · w2 + iε

}
·
[
D̂
{a},{c}
1 j,i,{µ̄},{ρ̄}(kq, kq̄, {k}; {k̂s}) · {k̂

ρ̄
s }
]

×
{

wν̄1
l · w1 + iε

}
·
[
D̂
{b},{d}
2n,m,{ν̄},{σ̄}(lq, lq̄, {l}; {l̂s}) · {l̂

σ̄
s }
]

×
[{

n1ρ
ks · n1 + iε

}
·
{

n2σ
ls · n2 + iε

}
· S{c},{d},{ρ},{σ}({ks}, {ls})

]
, (2.15)

where kq and kq̄ (lq and lq̄) are the active quark and antiquark momenta from the collinear
part D̂1 (D̂2) to the hard part Ĥ, respectively, {k} = k1, k2, . . . ({l} = l1, l2, . . .) are mo-
menta of longitudinally polarized gluons flowing from D̂1 (D̂2) into Ĥ, {ks} = ks1 , ks2 , . . .

({ls} = ls1 , ls2 , . . .) are soft gluon momenta flowing from S into D̂1 (D̂2); {µ} = µ1, µ2, . . .

({ν} = ν1, ν2, . . .) are Lorentz indices for gluons attached from D̂1 (D̂2) to Ĥ, and {ρ} =
ρ1, ρ2, . . . ({σ} = σ1, σ2, . . .) are Lorentz indices for gluons attached from S to D̂1 (D̂2);
and i, j (m,n) are color indices for active quark and antiquark, {a} = a1, a2, . . . ({b} =
b1, b2, . . .) are color indices for gluons linking D̂1 (D̂2) and Ĥ, and {c} = c1, c2, . . . ({d} =
d1, d2, . . .) are color indices for gluons linking S to D̂1 (D̂2). In eq. (2.15), we used some
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simplified notations,

{k̂µ} ≡
∏

i=1,2,...
k̂iµi , {l̂ν} ≡

∏
i=1,2,...

l̂iνi ,

{k̂ρ̄s} ≡
∏

i=1,2,...
k̂ρ̄i
si
, {l̂σ̄s } ≡

∏
i=1,2,...

l̂σ̄i
si

; (2.16)

and similarly,{
wµ̄2

k · w2 + iε

}
=

∏
i=1,2,...

wµ̄i
2

ki · w2 + iε
,

{
wν̄1

l · w1 + iε

}
=

∏
i=1,2,...

wν̄i
1

li · w1 + iε
,

{
n1ρ

ks · n1 + iε

}
=

∏
i=1,2,...

n1ρi

ksi · n1 + iε
,

{
n2σ

ls · n2 + iε

}
=

∏
i=1,2,...

n2σi

lsi · n2 + iε
. (2.17)

In deriving eq. (2.15), we made the following approximations for all parton momenta
to pick up leading power contribution,

ki 7→ k̂i = w1
ki · w2
w1 · w2

=
(
k+
i , 0,0T

)
, i = q, q̄, 1, 2, · · · , (2.18a)

lj 7→ l̂j = w2
lj · w1
w1 · w2

=
(
0, l−j ,0T

)
, j = q, q̄, 1, 2, · · · , (2.18b)

ksi 7→ k̂si = w2
ksi · n1
w2 · n1

=
(
0, k−si

− e−2y1k+
si
,0T

)
, i = 1, 2, · · · , (2.18c)

lsj 7→ l̂sj = w1
lsj · n2

w1 · n2
=
(
l+sj
− e2y2 l−sj

, 0,0T
)
, j = 1, 2, · · · . (2.18d)

In eqs. (2.14) and (2.15), corresponding convolution of loop momenta (or momentum com-
ponents) are suppressed. In deriving the first three lines of eq. (2.15), we used

Ĥ{µ},{ν}(kq, kq̄, {k}; lq, lq̄, {l}; q1, q2) D̂1{µ},{ρ}(kq, kq̄, {k}; {ks}) (2.19a)

7→ Ĥ{µ},{ν}(k̂q, k̂q̄, {k̂}; l̂q, l̂q̄, {l̂}; q1, q2) ·
{

k̂µw
µ̄
2

k · w2 + iε

}
· D̂1{µ̄},{ρ}(kq, kq̄, {k}; {ks}) ,

Ĥ{µ},{ν}(kq, kq̄, {k}; lq, lq̄, {l}; q1, q2) D̂2{ν},{σ}(lq, lq̄, {l}; {ls}) (2.19b)

7→ Ĥ{µ},{ν}(k̂q, k̂q̄, {k̂}; l̂q, l̂q̄, {l̂}; q1, q2) ·
{

l̂νw
ν̄
1

l · w1 + iε

}
· D̂2{ν̄},{σ}(lq, lq̄, {l}; {ls})

to pick up gluons’ Lorentz components that give the leading power contribution in the
Feynman gauge, where we suppressed the color indices. In eq. (2.19), the iε prescription
is chosen such that the poles of ki · w2 = k+

i and lj · w1 = l−j introduced by the inserted
factors do not affect the deformation of soft Glauber gluon momentum discussed later.
Even though we are considering the collinear gluons now, the same momenta can also
reach soft region and especially the Glauber region, which are treated coherently, and the
approximators must be applied on the whole momentum integration regions in order for
the use of subtraction formalism for the overlapping regions [6]. In deriving the last line of
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eq. (2.15), we used

D̂1{µ},{ρ}(kq, kq̄, {k}; {ks})S{ρ},{σ}({ks}, {ls})

7→ D̂1{µ},{ρ}(kq, kq̄, {k}; {k̂s}) ·
{

k̂ρs n1ρ̄
ks · n1 + iε

}
· S{ρ̄},{σ}({ks}, {ls}) , (2.20a)

D̂2{ν},{σ}(lq, lq̄, {l}; {ls})S{ρ},{σ}({ks}, {ls})

7→ D̂2{ν},{σ}(lq, lq̄, {l}; {l̂s}) ·
{

l̂σs n2σ̄
ls · n2 + iε

}
· S{ρ},{σ̄}({ks}, {ls}) , (2.20b)

where the color indices are again suppressed and the sign of iε as well as the space-like n1,2
vectors in eq. (2.20) are chosen to be compatible with the contour deformation of “+” and
“−” components of soft momenta when they are in the Glauber region as discussed later.
With the large {k+} in D̂1 and {l−} in D̂2, we only need to keep {k−s } in D̂1 and {l+s } in
D̂2, respectively, in eq. (2.15) for ensuring the leading power contributions, as indicated in
eq. (2.10).2 This is justified for the canonical scaling in eq. (2.9), but may not be valid for
the soft momenta ks in the Glauber region, where we have soft gluons with

kGlauber
s ∼

(
λ2, λ2, λ

)
Q (2.21)

connecting D̂1 and D̂2. See figure 5 as an example, where the propagator (ki + kGlauber
s )2

[or (lj − kGlauber
s )2] can get additional O(λ2) leading contribution from kiT · kGlauber

sT [or
ljT ·kGlauber

sT ] and (kGlauber
sT )2 terms. As part of the soft region that also gives leading-power

contribution, the Glauber region endangers factorization since it forbids the approximations
made in eq. (2.15) or (2.20) which are key to the use of Ward identities (to be discussed in
the next two subsections) to factorize soft gluons out of the collinear subgraphs D̂1 and D̂2.

Fortunately, in the Glauber region, we can approximate the propagator of the soft gluon
of momentum ks as 1/(k2

s + iε) 7→ 1/(−k2
sT + iε) to be independent of k+

s and k−s . Then
with neglect of k+

s in D̂1 and k−s in D̂2, the only poles of k+
s (k−s ) come from the propagators

in D̂2 (D̂1), which all lie on one side of integration contour in the complex plane because
all the collinear parton lines in D̂2 (D̂1) move into the hard part with positive minus (plus)
momenta, as a special feature of π+π− → γγ annihilation process. The integrations of k+

s

and k−s are thus not pinched in the Glauber region, so that we can get out of it by deforming
the contours of integration over k+

s , k−s . Specifically, for a soft gluon of momentum ks in
the Glauber region to enter D̂1, we deform the k−s contour as k−s 7→ k−s + iO(λQ), and for
a soft gluon of momentum ls in the Glauber region to enter D̂2, we deform the l+s contour
as l+s 7→ l+s + iO(λQ). This deformation keeps all the components, k+

s , k−s and ksT (or l+s ,
l−s and lsT ), effectively in the same order ∼ O(λQ), allowing us to keep only {k−s } in D̂1,
and {l+s } in D̂2. Unfortunately, for the meson-baryon case, πN → γγN ′ to be discussed in
the next section, the soft gluon momentum component k−s can be trapped in the Glauber
region if N is moving in the “+” direction, and additional discussion is needed for treating
the Glauber region.

2In the actual treatment, we also use the space-like vectors n1 and n2 to introduce some small components
{k+

s } ({l−s }) in D̂1(D̂2) to regulate rapidity divergences, which does not affect the leading-power accuracy.
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k kq̄kq

Ĥ

D̂1

= −
kq

k kq̄

Ĥ

D̂1

− kq k
kq̄

D̂1

Ĥ

=
kq + k k kq̄

k̂q k̂q̄

Ĥ

D̂1

+
k̂q̄

kq k kq̄ − k

k̂q

Ĥ

D̂1

Figure 7. Graphic representation of the two steps to detach a longitudinally polarized collinear
gluon from the D̂1 to the Ĥ, and reconnect it to corresponding gauge links of the D̂1. The triangles
at the end of gluon lines mean the use of Ward identity, and the red thin dashed lines represent the
color flows.

For extracting the leading power contribution from the spinor of active quark entering
Ĥ from D̂1 or leaving Ĥ into D̂2, we insert the following spinor projector [6],

PA = 1
2γ
−γ+ . (2.22)

For a quark line entering Ĥ from D̂2 or leaving Ĥ into D̂1, we have corresponding spinor
projector,

PB = 1
2γ

+γ− . (2.23)

These projectors effectively project out the largest components of the spinor indices of
active quarks and antiquarks, which give the leading power contributions to the exclusive
scattering amplitude in the 1/qT expansion.

Among all approximations listed above, the biggest error comes from neglecting the
transverse components of active parton momenta entering into H, which leads to an error
of order ΛQCD/qT .

The approximate expression in eq. (2.15), with the spin projections in eqs. (2.22)
and (2.23) applied to active quark and antiquark lines, represents the leading power con-
tribution to the exclusive ππ → γγ scattering amplitude in 1/qT expansion. In next two
subsections, we demonstrate that this leading power contribution can be factorized into
a convolution of two universal pion distribution amplitudes with a perturbatively calcula-
ble short-distance hard part that produces the two observed high transverse momentum
photons.

2.2.3 Ward identity and factorization of collinear gluons

With the leading power contribution to the scattering amplitude given in eq. (2.15), we
can use Ward identity to factorize all collinear and longitudinally polarized gluons from
the hard part Ĥ.

From the first line in eq. (2.15), all Lorentz indices of attached gluon lines are effectively
contracted by corresponding gluon momenta, Ĥ{µ},{ν}(k̂q, k̂q̄, {k̂}; l̂q, l̂q̄, {l̂}; q1, q2){k̂µ}{l̂ν},
which enables the use of Ward identity. We will first consider the situation with one
longitudinally polarized collinear gluon of momentum k from D̂1 to Ĥ, as shown in figure 7.
As an identity, summing over all the possible attachments of a longitudinally polarized
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Figure 8. Factorization of longitudinally polarized collinear gluons to the H into the Wilson lines
in the fundamental representation of the SU(3) color. The arrows on the Wilson line indicate the
color flow. See text for the meaning of other symbols.

gluon to the Ĥ is equivalent to attaching it to the active quark and antiquark lines of the
Ĥ with a minus sign, as illustrated by the first equal sign in the graphic representation
in figure 7. With the spinor projectors in eqs. (2.22) and (2.23) for the active quark and
antiquark lines linking the Ĥ and D̂1 and the use of the graphic Ward identity, we can
move the attachment of a longitudinally polarized gluon to an active quark (or antiquark)
line of the Ĥ to a gauge link of the same active quark (or antiquark) of the D̂1 along
the direction w2, as illustrated by the second equal sign in the graphic representation in
figure 7, multiplied by the same Ĥ without the gluon attachment while its active quark
(or antiquark) momentum is adjusted,

Ĥ
a,{b},µ,{ν}
i,j;m,n (k̂q, k̂q̄, k̂; l̂q, l̂q̄,{l̂};q1, q2) k̂µ

[
wµ̄2

k ·w2 + iε

][
PAD̂a,{c}

1j,i,µ̄,{ρ}(kq,kq̄,k;{ks})PB
]

= Ĥ
{b},{ν}
i,j′;m,n(k̂q+ k̂, k̂q̄; l̂q, l̂q̄,{l̂};q1, q2)

×
( −i
k ·w2 + iε

)(
−igs(ta)j′jwµ̄2

)[
PAD̂a,{c}

1j,i,µ̄,{ρ}(kq,kq̄,k;{ks})PB
]

+Ĥ
{b},{ν}
i′,j;m,n(k̂q, k̂q̄+ k̂; l̂q, l̂q̄,{l̂};q1, q2)

×
(

i

k ·w2 + iε

)(
−igs(ta)ii′wµ̄2

)[
PAD̂a,{c}

1j,i,µ̄,{ρ}(kq,kq̄,k;{ks})PB
]

(2.24a)

= Ĥ
{b},{ν}
i,j;m,n (k̂q, k̂q̄; l̂q, l̂q̄,{l̂};q1, q2)

×
( −i
−k ·w2 + iε

(
−igs(ta)jj′wµ̄2

)[
PAD̂a,{c}

1j′,i,µ̄,{ρ}(kq+k,kq̄,k;{ks})PB
]

+ i

k ·w2 + iε

(
−igs(ta)i′iwµ̄2

)[
PAD̂a,{c}

1j,i′,µ̄,{ρ}(kq,kq̄−k,k;{ks})PB
])

, (2.24b)
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where gs is the strong coupling constant and ta is the generator for the fundamental rep-
resentation of SU(3) color. In order to formally factor out the Ĥ without attachment from
D̂1 in eq. (2.24b), we shifted the active quark and antiquark momenta in D̂1 accordingly.
And in the second line of eq. (2.24b), we also reversed the gluon momentum k such that it
flows along the same direction of the gauge link. Eq. (2.24) and its graphic representation
in figure 7 clearly indicate that the attachment of a longitudinally polarized gluon of mo-
mentum k̂ from D̂1 to Ĥ can be effectively detached from Ĥ and connected to the gauge
links of active quark of momentum kq and antiquark of momentum kq̄ along the direction
of w2 with its momentum effectively flowing through the active quark (or antiquark) line
into the Ĥ. Similarly, by applying the Ward identity to the attachment of a longitudinally
polarized gluon of momentum l̂ from D̂2 to Ĥ, we can effectively detach this gluon from
the Ĥ with its momentum effectively flowing through the active quark (or antiquark) line
from D̂2, as sketched in figure 8, where the hooks on the external quark lines of Ĥ indicate
the amputation with the spinor projectors in eqs. (2.22) and (2.23).

The attachment of multiple collinear and longitudinally polarized gluons of momenta
k̂µi
i with i = 1, 2, . . . , I from D̂1 (l̂νj

j with j = 1, 2, . . . , J from D̂2) to Ĥ can be detached
in the same way, by summing over all possible attachments and using the Ward identity
multiple times. The corresponding factor from detaching such gluons from D̂1 (D̂2) to Ĥ
can be combined with the factor in front of D̂1 (D̂2) in the second (third) line of eq. (2.15)
to make up the eikonal vertices and eikonal propagators that match the expansion of a
product of two gauge links in the fundamental representation along the direction of w2
(w1), one from the active quark of momentum kq (lq) and the other to the active antiquark
of momentum kq̄ (lq̄), to the order with a total of I (J) gluons [54]. And then by summing
over all possible numbers of attachments of collinear and longitudinally polarized gluons
with I, J = 1, 2, . . . ,∞, we are able to detach all of them from the Ĥ and attach them to
two gauge links along the direction of w2 (w1), or the Wilson lines in momentum space,
one from the active quark of momentum kq (lq) and the other to the active antiquark
of momentum kq̄ (lq̄). That is, we are able to factorize all attachments of collinear and
longitudinally polarized gluons from D̂1 (or D̂2) to the Ĥ into the well-defined gauge links
that become a part of the D̂1 (or D̂2), as shown in figure 8, where the red thin lines indicate
the color flow between collinear subgraphs, D̂1 and D̂2, and the hard subgraph, Ĥ.

As pointed out above, the Wilson lines in figure 8 are in the fundamental 3 or 3̄ color
representation, indicated by the arrows on the Wilson line which denote the color flow.
With the signs of iε necessitated by the deformation out of the Glauber region, we have
the Wilson line as

Φij(∞, x;−n) = P exp
{
ig

∫ ∞
0

dλnµAaµ (x− λn) (taij)
}
, (2.25)

where ta is again the generator for the fundamental representation of SU(3) color and will
be suppressed in the rest of this paper, and the indices i, j are color indices in fundamental
representation. This Wilson line in eq. (2.25) points from x to −∞ along the direction
−nµ(n0 > 0), and is a past-pointing Wilson line, like those in parton distribution functions
from factorized Drell-Yan process, which is consistent with the picture that all the collinear
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Figure 9. The result of using Ward identity for attachments of soft gluons to D̂1 and D̂2. The
Wilson lines are in fundamental 3 or 3̄ color representation. The Wilson lines on D̂1 side come from
the past along n1, and those on D̂2 side come from the past along n2. The red and blue dashed
lines indicate the color flow among collinear, soft and hard subgraphs. i, j,m, n, i′, j′,m′, n′ are the
color indices.

parton lines from colliding pions come from the past to the hard collision, Ĥ, to produce
a pair of high transverse momentum photons.

2.2.4 Ward identity and cancellation of the soft factor

It was demonstrated in the last subsection that the collinear factors D̂1 and D̂2 can be
detached from the hard part Ĥ. But, they are still connected by soft gluons from the soft
factor S, which can communicate the colors between them. In this subsection, we use the
approximations in eq. (2.20), which lead to the second and third lines of eq. (2.15), and
the Ward identity to decouple the soft gluon attachments between D̂1 and D̂2 to achieve
the factorization that we hope to derive.

As discussed in the subsection 2.2.2, we only need to consider the “−” component of
the soft momentum ks flowing from S to D̂1, and “+” component of the soft momentum
ls flowing from S to D̂2 for the leading power contribution to the amplitude. Similar to
the collinear gluons, we can apply the Ward identity to D̂1 {µ̄},{ρ̄}(kq, kq̄, {k}; {k̂s}){k̂ ρ̄s }
and D̂2 {ν̄},{σ̄}(lq, lq̄, {l}; {l̂s}){l̂ σ̄s } in the second and third lines of eq. (2.15), respectively,
trying to detach all the soft gluons from their attachments to D̂1 and D̂2. However, with
the Wilson lines from detaching collinear longitudinal gluons from the Ĥ, the collinear
subgraphs, D̂1 and D̂2, are more complicated. Fortunately, as in eq. (2.18c), the soft
momentum ks flowing into D̂1 is approximated by k̂s ∝ w2 and since the Wilson line on D̂1
has the vertices proportional to w2, the attachment of soft gluon of momentum k̂s to the
gauge links of D̂1 vanishes. Therefore, we are allowed to sum over all possible attachments
of the soft gluons to D̂1, including to the gauge links. Consequently, the use of Ward identity
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allows to detach all the soft gluons that are attached to D̂1 and group them into two gauge
links along the direction n1 in the same way as we detach collinear gluons from the Ĥ.
Similarly, since l̂s ∝ w1, we can apply the Ward identify to D̂2 {ν̄},{σ̄}(lq, lq̄, {l}; {l̂s}){l̂ σ̄s }
to detach all the soft gluons that are attached to D̂2 and group them into two gauge links
along the direction n2 on the side of D̂2, as shown in figure 9.

With all collinear and longitudinally polarized gluons detached from the hard part Ĥ
and their impact represented by the Wilson lines to D̂1 and D̂2, as shown in figure 8, and
all soft gluons detached from the D̂1 and D̂2 and included into gauge links to the S, as
shown in figure 9, we can express the exclusive scattering amplitude for π+π− → γγ as

Mµν
π+π−→γγ =

∫
dz1dz2 Sij,i′j′;mn,m′n′ [PA D̂1(z1, p1)PB]i′j′ [PB D̂2(z2, p2)PA]m′n′ (2.26)

× Ĥµν
ij;mn(k+

1 = z1 p
+
1 ; k−2 = z2 p

−
2 ; qT ) ,

where i, j,m, n, etc. are color indices as labeled in figure 9, the sum of repeated color indices
is understood, and z1 ≡ k+

1 /p
+
1 and z2 ≡ k−2 /p

−
2 are momentum fractions. In eq. (2.26),

the soft factor is given by

Sij,i′j′;mn,m′n′ = 〈0|Φ(0,−∞;n1)ii′Φ†(0,−∞;n1)j′j
× Φ(0,−∞;n2)mm′Φ†(0,−∞;n2)n′n|0〉 . (2.27)

In deriving the collinear factors D̂1 and D̂2 in eq. (2.26), we took into account the fact
that at the leading power, only k̂1 and k̂2 flow into the hard part Ĥµν . For a generic pion
distribution amplitude (suppressing the Wilson lines),

D(k, p) =
∫

d4ξ eik·ξ〈0|ψ(0)ψ(ξ)|π(p)〉 , (2.28)

we apply the following identify,∫ d4k1
(2π)4D(k1, p1) Ĥ(k̂1; k̂2; qT )

=
∫

dz1

[∫ d4k1
(2π)4 δ

(
z1 −

k+
1
p+

1

)
D(k1, p1)

]
Ĥ(k̂1 = z1 p

+
1 ; k̂2; qT ) (2.29)

=
∫

dz1

∫ d
(
p+

1 ξ
−
)

2π eiz1p
+
1 ξ
−〈0|ψ(0)ψ(ξ−)|π(p)〉|ξ+=0, ξ⊥=0⊥

 Ĥ(k̂1 = z1 p
+
1 ; k̂2; qT ),

to D̂1(k1, p1) and similar identity to D̂2(k2, p2), and obtain the collinear factors in eq. (2.26),

D̂1(z1, p1)i′j′ =
∫ d

(
p+

1 ξ
−
)

2π eiz1p
+
1 ξ
−〈0|T d̄j(0)Φ†(∞, 0;w2)jj′

× Φ(∞, ξ−;w2)i′i ui(ξ−)|π+(p1)〉 , (2.30)

and

D̂2(z2, p2)m′n′ =
∫ d

(
p−2 ζ

+
)

2π eiz2p
−
2 ζ

+〈0|T ūn(0)Φ†(∞, 0;w1)nn′

× Φ(∞, ζ+;w1)m′m dm(ζ+)|π−(p2)〉 , (2.31)

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
1
0
3

where T represents the time-ordering and u and d are up and down quark fields, respec-
tively. In eq. (2.26), the spinor projectors PA and PB are given in eqs. (2.22) and (2.23),
respectively, and the superscripts, µ and ν, are Lorentz indices of the two produced pho-
tons. The spinor indices in eq. (2.26), convoluting between Ĥ and D̂’s, are suppressed, and
their factorization will be discussed in the next subsection.

The colliding hadrons, π+ and π− in our case, are color neutral. With all the soft
gluons factored out of them, the collinear factors must be in a color singlet state,

D̂1i′j′ ≡ D̂1
δi′j′

Nc
, D̂2m′n′ ≡ D̂2

δm′n′

Nc
, (2.32)

where D̂1(2) = δij D̂1(2)ij . This color contraction connects the two Wilson lines in each
collinear factor to give

D̂1(z1, p1) =
∫ d

(
p+

1 ξ
−
)

2π eiz1p
+
1 ξ
−〈0|T d̄m(0)Φ(0, ξ−;w2)mn un(ξ−)|π+(p1)〉, (2.33)

and

D̂2(z2, p2) =
∫ d

(
p−2 ζ

+
)

2π eiz2p
−
2 ζ

+〈0|T ūm(0)Φ(0, ζ+;w1)mn dn(ζ+)|π−(p2)〉, (2.34)

where the sum of repeated color indices is understood, while the spinor indices are not
summed over. Φ(0, ξ−;w2) and Φ(0, ζ+;w1) are the Wilson lines in the fundamental rep-
resentation, joining the u and d quark fields to make the DAs gauge invariant, which is a
result of factorization. Substituting eq. (2.32) into eq. (2.26), we have

Mµν
π+π−→γγ = 1

N2
c

∫
dz1dz2 Sij,i′i′;mn,m′m′ [PA D̂1(z1, p1)PB] [PB D̂2(z2, p2)PA] (2.35)

× Ĥµν
ij;mn(k+

1 = z1 p
+
1 ; k−2 = z2 p

−
2 ; qT ) ,

where the repeated color indices, i′ and m′ are summed. The soft factor now becomes

Sij,i′i′;mn,m′m′ = 〈0|
[
Φ(0,−∞;n1)Φ†(0,−∞;n1)

]
ij

[
Φ(0,−∞;n2)Φ†(0,−∞;n2)

]
mn
|0〉

= δijδmn. (2.36)

That is, the soft factor S is in fact an identity matrix in the color space, and the exclusive
scattering amplitude in eq. (2.26) is effectively factorized in color space,

Mµν
π+π−→γγ =

∫
dz1dz2 Tr

{
[PA D̂1(z1, p1)PB][PB D̂2(z2, p2)PA]

×
[ 1
N2
c

Ĥµν
ii;mm(k+

1 = z1 p
+
1 ; k−2 = z2 p

−
2 ; qT )

]}
, (2.37)

where the repeated color indices, i and m are summed, and averaged with the factor 1/N2
c ,

and the “Tr” indicates the trace over all spinor indices between D̂1, D̂2, and Ĥ. The hard
part Ĥ that produces the pair of high-qT photons is given by the collision of two color-
singlet, collinear, and on-shell quark-antiquark pairs, one from each colliding hadron (π+

or π− in this case).
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Figure 10. The factorized form for the exclusive ππ annihilation process.

The cancellation of long-range soft gluon interactions between the colliding hadrons
is essential to the factorization. It means that long-distance connections between the two
collinear subgraphs are canceled, so that the evolution of each collinear part is independent.
Therefore, the collinear functions can be universal. In our case, the soft gluon cancellation
happens because the active parton lines entering the hard interactions are collinear and
color-neutral pairs, so that the soft gluons only see a color-neutral object from each col-
liding hadron, and thus there are no color correlations between the two collinear systems.
This is the feature for exclusive processes, which is also seen in the factorization of two-
quarkonium exclusive production in e+e− annihilation [55]. But, this is different from the
soft gluon cancellations for inclusive processes, for example in [56], where it is the unitarity
(inclusiveness of the final states) that guarantees the soft cancellation.

We also stress that the above steps of factorizing collinear gluons and soft cancellation
should be viewed as for a given order of perturbative diagram expansion with a given num-
ber of soft gluon lines and D̂1- and D̂2-collinear lines. Summing over different attachments
of gluon lines in the same kinematic region amounts to summing over different diagrams
with the same region decomposition, along with subtractions of smaller regions to avoid
double counting. Since such subtraction does not affect the used of Ward identity, after
factorizing the whole amplitude into D̂1, D̂2 and Ĥ, each factor should be regarded as sub-
tracted ones. Due to the cancellation of soft gluons, the subtracted collinear factors D̂1 and
D̂2 are the same as the unsubtracted ones in eqs. (2.33) and (2.34). And the subtracted hard
factor Ĥ can be derived perturbatively order-by-order by using the factorization formula.

2.2.5 Factorization formula

After the cancellation of soft gluons, the leading power contributions to the exclusive
scattering amplitude of π+π− → γγ can be factorized into the structure shown in figure 10,
while the spinor indices from D̂1, D̂2 and Ĥ are still convoluted, as indicated in eq. (2.37),
which need to be disentangled.

The factor D̂1 is sandwiched between PA and PB, which indicates that only the term
in D̂1 proportional γ−, γ5γ

− or γ5γ
−γi with i = 1, 2 survives. Since π+ has negative parity

and zero spin, only γ5γ
− contributes. Similarly, D̂2 only has its γ5γ

+ term that contributes.
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The result is [
PAD̂1(z1, p1)PB

]
αβ

= 1
2p+

1
Tr
[
γ+γ5 D̂1(z1, p1)

] [1
2γ5(p+

1 γ
−)
]
αβ

≡ Dπ+(z1)
[1

2γ5(p+
1 γ
−)
]
αβ

, (2.38)
[
PBD̂2(z2, p2)PA

]
ρσ

= 1
2p−2

Tr
[
γ−γ5 D̂2(z2, p2)

] [1
2γ5(p−2 γ+)

]
ρσ

≡ Dπ−(z2)
[1

2γ5(p−2 γ+)
]
ρσ
, (2.39)

where the indices α, β, ρ, σ here are the spinor indices, and the distribution amplitudes for
π± are given by

Dπ+(z1) =
∫ dξ−

4π eiz1p
+
1 ξ
−〈0|d̄(0)γ+γ5 Φ(0, ξ−;w2)u(ξ−)|π+(p1)〉 , (2.40a)

Dπ−(z2) =
∫ dζ+

4π eiz2p
−
2 ζ

+〈0|ū(0)γ−γ5 Φ(0, ζ+;w1)d(y+)|π−(p1)〉 . (2.40b)

Charge conjugation and isospin symmetry imply Dπ+(z) = −Dπ−(z), following the conven-
tion of taking (π+, π0, π−) state as an isospin triplet. This particular choice does not affect
our prediction for the cross section, since it is proportional to the squared amplitude. With
the separation of spinor indices, we have our final factorized expression for the exclusive
π+π− annihilation amplitude,

Mµν
π+π−→γγ =

∫ 1

0
dz1

∫ 1

0
dz2 Dπ+(z1)Dπ−(z2)Cµν(z1, z2; p+

1 , p
−
2 , qT ) , (2.41)

where the short-distance hard coefficient function Cµν is given by

Cµν(z1, z2; p+
1 , p

−
2 , qT ) ≡

[
γ5(p+

1 γ
−)

2

]
αβ

Ĥµν
βα;σρ(k̂1 = z1p

+
1 , k̂2 = z2p

−
2 ; qT )

[
γ5(p−2 γ+)

2

]
ρσ

,

(2.42)
where a sum over repeated indices is understood, which is effectively the trace of spinor
indices. The correction to the factorized formula in eq. (2.41) is suppressed by powers
of mπ/qT . With the renormalization group improvement from the fact that the exclusive
scattering amplitude for π+(p1)+π−(p2)→ γ(q1)+γ(q2) should not depend on the specific
hard scale (or, the factorization scale) at which we perform our factorization steps. And
with the choice of this factorization scale, the pion distribution amplitudes and the short-
distance coefficient function in eq. (2.41) become dependent on the factorization scale µ.

2.3 Gauge invariant tensor structures for the hard coefficient

The short-distance hard coefficient, Cµν(z1, z2; p+
1 , p

−
2 , qT ) in eq. (2.42), is a function of the

external momenta, and its tensor structure is constrained by the symmetry of the under-
lying theory. The most important constraint comes from electromagnetic gauge invariance
or current conservation for the two external photons

q1µC
µν = Cµνq2ν = 0 , (2.43)
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which requires Cµν to be expressed in terms of independent and gauge invariant tensor
structures.

Because of the explicit light-cone projection γ± in eq. (2.42), we express all external
momenta, p1, p2, q1, q2, in light-cone coordinates,

pµ1 = p+
1 n̄

µ , pµ2 = p−2 n
µ , qµ1,2 = q+

1,2 n̄
µ + q−1,2 n

µ ∓ qµT , (2.44)

as we have done for qµ1,2 in eq. (2.5). We choose three independent vectors, pµ1 , p
µ
2 and qµT .

Using q1 · qT = −qµT qνT gµν = q2
T and q2 · qT = −q2

T , we can write down all the independent
parity-even (P-even) current-conserving tensor structures,

g̃µν⊥ , p̃µ1 p̄
ν
1 , p̃µ2 p̄

ν
2 , p̃µ1 p̄

ν
2 , p̃µ2 p̄

ν
1 , (2.45)

where we defined

g̃µν⊥ = gµν⊥ + qµT q
ν
T

q2
T

with gµν⊥ = gµν − n̄µ nν − nµ n̄ν ,

p̃µ1 = pµ1 −
p1 · q1
q2
T

qµT , p̃µ2 = pµ2 −
p2 · q1
q2
T

qµT ,

p̄ν1 = pν1 + p1 · q2
q2
T

qνT , p̄ν2 = pν2 + p2 · q2
q2
T

qνT , (2.46)

so that

q1µ p̃
µ
i = 0 , q2ν p̄

ν
i = 0 , and q1µ g̃

µν
⊥ = g̃µν⊥ q2ν = 0 , (2.47)

with i = 1, 2. Similarly, we have parity-odd (P-odd) current-conserving tensor structures

p̃µ1ε
νρ
⊥ qTρ , p̃µ2ε

νρ
⊥ qTρ , p̄ν1ε

µρ
⊥ qTρ , p̄ν2ε

µρ
⊥ qTρ , (2.48)

where we used the abbreviation εµν⊥ = ε+−µν , with the convention ε12
⊥ = −ε21

⊥ = 1. One
might consider another P-odd tensor structure q2

T ε
µν
⊥ +qµT ε

ρν
⊥ qTρ+qνT ε

µρ
⊥ qTρ, which satisfies

the current conservation in eq. (2.43). But, this tensor itself vanishes for any components
of µ and ν.

The next constraint is from parity conservation. If we have n γ5’s in a given diagram,
parity conservation requires corresponding scattering amplitude to satisfy

Cµν(p1α, p2α, q1α, q2α) = (−1)nCµν(pα1 , pα2 , qα1 , qα2 ) , (2.49)

which holds for each individual diagram. For π+π− scattering, n = 2 and parity conser-
vation excludes the tensor structures in eq. (2.48). In next section, we will generalize the
pion-pion process to pion-nucleon scattering, for which we will have both P-even and P-odd
tensor structures.

For the exclusive π+π− scattering in this section, we can express the hard coefficient
in terms of a linear combination of the P-even tensors in eq. (2.45),

Cµν ≡ − ie
2g2

2s2
CF
Nc

(
C0 g̃

µν
⊥ s+ C1 p̃

µ
1 p̄

ν
1 + C2 p̃

µ
2 p̄

ν
2 + C3 p̃

µ
1 p̄

ν
2 + C4 p̃

µ
2 p̄

ν
1

)
, (2.50)

– 25 –



J
H
E
P
0
8
(
2
0
2
2
)
1
0
3

where we introduced an overall factor −ie2g2(CF /Nc)/(2s2) with electric charge e, strong
coupling constant g, color factor CF /Nc for the leading order contribution, and collision
energy squared s = 2p+

1 p
−
2 to make the scalar coefficients Ci = Ci(z1, z2;κ) dimensionless

for i = 0, · · · , 4, with κ introduced in eq. (2.5).
Substituting eq. (2.50) in eq. (2.41), we obtain

Mµν
π+π−→γγ = − i e

2g2f2
π

8s2
CF
Nc

(
M0 g̃

µν
⊥ s+M1 p̃

µ
1 p̄

ν
1 +M2 p̃

µ
2 p̄

ν
2 +M3 p̃

µ
1 p̄

ν
2 +M4 p̃

µ
2 p̄

ν
1

)
,

(2.51)
whereMi is the convolution of the hard scalar coefficient Ci with the normalized DA φ(z)

Mi =
∫ 1

0
dz1

∫ 1

0
dz2 φ(z1)φ(z2)Ci(z1, z2;κ) , (i = 0, · · · , 4), (2.52)

with φ(z) defined as

φ(z) ≡ − 2i
fπ
Dπ+(z) ,

∫ 1

0
dz φ(z) = 1, (2.53)

and fπ = 130 MeV being the pion decay constant.
To help simplify some long expressions in this paper, we introduce a notation

M[C;D1, (zm1 , zM1 );D2, (zm2 , zM2 )] ≡
∫ zM

1

zm
1

dz1

∫ zM
2

zm
2

dz2 D1(z1)D2(z2)C(z1, z2). (2.54)

We can then express our factorization formalism in eq. (2.41) as

Mµν
π+π−→γγ = M[Cµν ;Dπ+ , (0, 1);Dπ− , (0, 1)] , (2.55)

and all scalar functionsMi in eq. (2.51) as

Mi = M[Ci;φ, (0, 1);φ, (0, 1)] , (2.56)

with i = 0, 1, . . . , 4.

2.4 The leading-order hard coefficients

At leading-order of αs, there are two types of Feynman diagrams contributing to the short-
distance hard coefficients: A) the two observed photons are radiated from the different
fermion lines, which we refer to as Type-A diagrams shown in figure 11, and B) they
are radiated from the same fermion line, which we refer to as Type-B diagrams shown in
figure 12. With the two identical photons in the final-state, we need to consider additional
diagrams that are the same as those in figure 11 and 12, but with the two photons switched.
That is, we need to evaluate a total of 8 Type-A diagrams and 12 Type-B diagrams for
the leading-order hard coefficients.

In the CM frame of this exclusive scattering process, the large transverse momentum
qT of one-photon should be balanced by that of the other photon. This large transverse
momentum qT flows through the gluon connecting the two fermion lines for all Type-A dia-
grams, while it does not flow through the gluon for all Type-B diagrams. Since the relative
momentum of the quark and antiquark of the colliding pion, represented by the z1 (or z2)
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k̂′

l̂′k̂

l̂

q

q1, µ

q2, ν

k1

k2

(a)

q1, µ

q2, ν

(b)

q1, µ

q2, ν

(c)

q1, µ

q2, ν

(d)

Figure 11. The Type-A diagrams, plus those with q1 and q2 switched. Relatively thicker gluon
lines are used to indicate the large transverse momentum flow from one photon to another, in
contrast to those in figure 12.

q

q1, µ q2, ν

k1 k2

(a)

q

q1, µ q2, ν

(b)

q2, νq1, µ

q

(c)

q

q1, µ q2, ν

(d)

q2, ν

q

q1, µ

(e)

q1, µ q2, ν

q

(f)

Figure 12. The Type-B diagrams, plus those with q1 and q2 switched.

dependence of the pion DA in eq. (2.41), flows through the gluon line of the hard scatter-
ing back to the pion, the qT -dependence of the gluon propagator of the Type-A diagrams
makes the hard coefficient, and hence, the cross section dσ/dq2

T of this exclusive process,
be a sensitive probe for the z1 (or z2) dependence of pion DA. Its sensitivity depends on
the relative size of contributions to the cross section from these two-types of diagrams.

For our calculation of the leading-order hard coefficients, we denote the diagrams in
figure 11(a)-(d) by A1, · · · , A4, sequentially, and the ones with q1 and q2 switched by
A1′, · · · , A4′, respectively. Their contributions to the hard coefficient Cµν are denoted
sequentially by CµνA1, C

µν
A2, etc. Similarly, we label the individual contribution from the

Type-B diagrams in a similar way. We use CµνA and CµνB to represent total contribution
from the Type-A and Type-B diagrams, respectively.

The contribution from each individual diagram in figure 11 and 12 can be evaluated
by using eq. (2.42). The collinear momenta of colliding partons, as labeled in figure 11
and 12, are defined as

k̂ = z1 p1, k̂′ = (1− z1) p1, l̂ = z2 p2, l̂′ = (1− z2) p2, (2.57)

and the photon momenta are given in eq. (2.5) and also in (2.44). The external collinear
quark and antiquark lines from π+ on the left are contracted with γ5(p+

1 γ
−)/2, while the

collinear quark and antiquark lines from π− on the right are contracted with γ5(p−2 γ+)/2.
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At this order, all momenta of internal propagators are completely determined. For
example, for figure 11(a), we have

k1 = q1 − l̂′ , k2 = q2 − k̂′ ,
q = k̂ − k1 = k̂ + l̂′ − q1 = k2 − l̂ = q2 − l̂ − k̂′ , (2.58)

and its contribution to Cµν is given by

CµνA1 = ieued e
2g2 · CF

Nc
· 1
k2

1 + iε
· 1
k2

2 + iε
· 1
q2 + iε

× Tr
[(

γ5
2 (p−2 γ+)

)
γµ/k1γ

α
(
γ5
2 (p+

1 γ
−)
)
γν/k2γα

]
= −ieued e2g2 · CF

Nc
· 1
k2

1 + iε
· 1
k2

2 + iε
· 1
q2 + iε

× 2s
[
gµν⊥ p2 · q1 + l̂µqνT − k̂νq

µ
T − q

2nµn̄ν
]
, (2.59)

where eu = 2/3 and ed = −1/3, s = 2p+
1 p
−
2 and the observed photon momenta are defined

in eq. (2.44). In eq. (2.59), the momenta of internal fermion propagators are fixed as

k2
1 = −2 l̂′ · q1 = −2(1− z2) (p2 · q1), (2.60a)
k2

2 = −2 k̂′ · q2 = −2(1− z1) (p1 · q2), (2.60b)

where the dependence on the parton momentum fractions z1,2 is factored out from the
external kinematic variables. On the other hand, the exchanged gluon momentum between
the two fermion lines, which is the same for the gluon propagators in all the diagrams in
figure 11, is given by

q2 = 2q+q− − q2
T = s

[(
z1 −

q+
1
p+

1

)(
1− z2 −

q−1
p−2

)
− κ

4

]
= −s4

[(
2z1 − 1∓

√
1− κ

) (
2z2 − 1∓

√
1− κ

)
+ κ

]
, (2.61)

for which the parton fractions z1,2 cannot be factorized out of the dependence on qT . It is
this entanglement of parton momentum fractions z1,2 and external variable qT that makes
Type-A diagrams sensitive to the DA’s functional form.

For the Type-B diagrams in figure 12, the momenta of the internal propagators are
different, although they have the same external parton momenta. For example, we have
the contribution from figure 12(a),

CµνB1 = i e2
u e

2g2 · CF
Nc
· 1
k̃2

1 + iε
· 1
k̃2

2 + iε
· 1
q̃2 + iε

× Tr
[(
γ5
2 (p+

1 γ
−)
)
γα
(
γ5
2 (p−2 γ+)

)
γν /̃k2γα/̃k1γ

µ
]

= −i e2
u e

2g2 · CF
Nc
· 1
k̃2

1 + iε
· 1
k̃2

2 + iε
· 1
q̃2 + iε

× s
[
gµν⊥ q

2
T + 2qµT q

ν
T − 4n̄µnν

(
k̂+ − q+

1

) (
l̂′− − q−2

)
+2n̄µqνT

(
k̂+ − q+

1

)
− 2nνqµT

(
l̂′− − q−2

)]
, (2.62)
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where the momenta of internal propagators are given by

k̃1 = k̂ − q1, k̃2 = q2 − l̂′, q̃ = k̂′ + l̂. (2.63)

Similar to eq. (2.60), all the three internal propagators, including the gluon propagator,

k̃2
1 = −2k̂ · q1 = −2z1(p1 · q1), (2.64a)

k̃2
2 = −2l̂′ · q2 = −2(1− z2)(p2 · q2), (2.64b)
q̃2 = 2k̂′ · l̂ = z2(1− z1)s, (2.64c)

have their dependence on parton momentum fractions z1,2 factored out from the external
kinematic variables. This is actually true for all the diagrams in figure 12. Consequently,
when the hard coefficient CµνB is convoluted with DAs in eq. (2.41), the measured kinematic
variables are factored out of the z1 and z2 integration. Therefore, for the contribution from
the Type-B diagrams, changing external kinematics does not directly probe the functional
form of DAs. That is, the contribution from the Type-B diagrams in figure 12 to the
factorized scattering amplitude in eq. (2.41) is not directly sensitive to the functional form
of DAs, but rather to their integrated values or some kind of “moments”.

The contribution from one single diagram, such as that in eq. (2.59) or in eq. (2.62), is
not gauge invariant, and does not have the invariant form in eq. (2.50), while the sum over
all the diagrams at the same order should be gauge invariant and can be organized in the
form in eq. (2.50). Actually, the sum of all Type-A diagrams and the sum of all Type-B
diagrams are gauge invariant separately, and each of them can be organized into the form
in eq. (2.50). We can get the contribution to the scalar coefficient Ci in eq. (2.50) from each
diagram by extracting the coefficient of gµν⊥ , pµ1pν1 , p

µ
2p

ν
2 , p

µ
1p

ν
2 and pµ2pν1 sequentially. The

terms containing qµT or qνT will be naturally organized such that we have the gauge-invariant
form of eq. (2.50), and can be used as a cross-checking. For example, for the diagram in
figure 11a, we have its contribution to each scalar coefficient Ci,

C
(A1)
0 = eued ·

s2

(p1 · q2)q2 ·
1

(1− z1)(1− z2) , (2.65a)

C
(A1)
4 = −eued ·

2s2

(p1 · q2)(p2 · q1) ·
1

(1− z1)(1− z2) , (2.65b)

C
(A1)
1 = C

(A1)
2 = C

(A1)
3 = 0, (2.65c)

where we have omitted the +iε since for the simple π+π− case, those poles happen at
the end points where the DA vanishes, and it does not matter to which side of the z1(2)
integration contour the poles lie. The complete contribution to the scalar coefficients Ci in
eq. (2.50) from all diagrams are reorganized in compact forms and given in the appendix,
where the interplay between measured qT distribution and the z-dependence of the DA is
further discussed.

Charge conjugation sets some useful relations among the results of individual diagrams.
Applying charge conjugation on a diagram effectively exchanges the u and d quark lines,
and can be visualized by simply reversing the fermion arrows and reassigning the parton
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momenta such that we still have u quark carrying the momentum fraction z1 or z2. At the
level of calculating Feynman diagrams, this simply reverses the order of the γ matrices,
which does not change the value of the Dirac trace. However, for the contraction with
γ5γ
∓ on the π± sides, we need to reverse γ∓γ5 back to γ5γ

∓, so one γ5 would bring one
extra minus sign, which leads to the following relations among the diagrams,

{CA1, CA1′ , CA3, CA4}µν(z1, z2) = {CA2′ , CA2, CA3′ , CA4′}µν(1− z1, 1− z2), (2.66)

for Type-A diagrams, and

{CB1, CB1′ , CB2, CB2′ , CB3, CB3′}µν(z1, z2)

= {CB4, CB4′ , CB5, CB5′ , CB6, CB6′}µν(1− z1, 1− z2)
∣∣∣∣
eu↔ed

(2.67)

for Type-B diagrams, where we also need to exchange eu and ed. Consequently, we have
the symmetry

CµνA (z1, z2) = CµνA (1− z1, 1− z2), (2.68)

for Type-A diagrams, while for CB this symmetry is broken by the difference of e2
u and e2

d.
These relations carry through to the scalar coefficients Ci (i = 0, · · · , 4), which can also
serve as a useful check; see the appendix for some more discussion.

2.5 Exclusive differential cross section

In this paper, we focus on the exclusive production of two unpolarized back-to-back photons
in π+(p1)π−(p2) collisions, and derive the differential cross section as follows,

dσ = 1
2s

∣∣∣M∣∣∣2 d3q1
(2π)32|q1|

d3q2
(2π)32|q2|

(2π)4 δ(4)(p1 + p2 − q1 − q2) , (2.69)

where
∣∣∣M∣∣∣2 represents scattering amplitude squared, with final-state photon polarizations

summed, ∣∣∣M∣∣∣2 =
∑
λλ′

|Mπ+π−→γ(λ)γ(λ′)|2 = gµρ gνσMµν
π+π−→γγM

ρσ∗
π+π−→γγ , (2.70)

where
∑
λ ε

λ ∗
µ ελµ′ = −gµµ′ was used.

From the factorized scattering amplitude in eq. (2.51), and using

p̃2
1 = −(p1 · q1)2

q2
T

, p̃2
2 = −(p2 · q1)2

q2
T

, p̄2
1 = −(p1 · q2)2

q2
T

, p̄2
2 = −(p2 · q2)2

q2
T

,

p̃1 · p̃2 = p̄1 · p̄2 = 1
2p1 · p2 , (2.71)

we obtain the scattering amplitude square as

∣∣∣M∣∣∣2 =
(
e2 g2 f2

π

8s
CF
Nc

)2 [
|M0|2 +

∣∣∣∣M1 +M2
4 − (p1 · q1)2M3 + (p1 · q2)2M4

s q2
T

∣∣∣∣2] , (2.72)
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whereMi with i = 0, 1, . . . , 4 can be factorized if qT � ΛQCD and are given in eq. (2.56).
In eq. (2.72), the terms in the bracket are dimensionless and only functions of κ = 4q2

T /s.
Therefore, from eq. (2.69) with the azimuthal angle of qT integrated, we derive the differ-
ential cross section in qT ,

dσ
dq2
T

= 1√
1− 4q2

T /s

1
16πs2

∣∣∣M∣∣∣2 , (2.73)

with
∣∣∣M∣∣∣2 given in eq. (2.72). The first factor in eq. (2.73) is the Jacobian peak. The dif-

ferential cross section could be smoother if one changes qT -distribution to cos θ-distribution
with θ being the angle between the direction of one of the observed photon and the collision
axis. One should note that the value of qT alone is not enough to completely specify an
event, due to the ambiguity of whether q1 is in the forward or backward direction of p1,
corresponding to the ± solutions in eq. (2.5). However, since the two photons are identical,
the cross section must be the same for the forward and backward configurations. Therefore,
we can take the forward solution in eq. (2.73), without adding a 1/2 factor to account for
the factor that two photons are identical. For the rest of this paper, we will stick to the
forward solution of eq. (2.5). We can also defined the integrated “total” cross section for
q2
T ≥ q2

Tmin as

σ(q2
Tmin) ≡

∫ s/4

q2
T min

dσ
dq2
T

dq2
T , (2.74)

with q2
Tmin � Λ2

QCD to ensure the factorization. In our numerical estimate below, we
choose q2

Tmin = 1GeV2.

3 Exclusive production of a pair of high transverse momentum photons
in diffractive meson-baryon scatterings

Having explained the main steps in factorizing the amplitude for the exclusive photon-pair
production in the π+π− annihilation, we now generalize the factorization formalism to an
exclusive process involving diffractive scattering of a nucleon N of momentum p,

π(p2) +N(p)→ γ(q1) + γ(q2) +N ′(p′), (3.1)

where N can be a neutron (n) or a proton (p) and π can be π+ or π−, making up various
exclusive processes, such as, nπ+ → pγγ, p π− → nγγ, p π− → Λ0γγ, and those that could
be measured with a pion beam at J-PARC and other facilities. The pion beam can also
be replaced by a kaon beam and make up more processes. As shown in figure 2(c), the
exclusive process, p π− → nγγ, could be made analogous to the π+π− collision by thinking
of the p → n transition as taking a virtual π+ out of the proton, carrying momentum
∆ = p − p′ and colliding with π− to produce two hard photons exclusively. Nevertheless,
the factorization cannot be trivially adapted, because that analogy only corresponds to
the ERBL region of GPD for which all the active partons from the nucleon enter into the
hard part and the soft gluon momentum is not pinched in the Glauber region. Now that
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we are considering diffractive scattering, the presence of the spectator particles from the
N → N ′ transition implies another kinematic region where some partons enter into the
hard part and then come out to recombine with the spectators to form the diffracted N ′.
This corresponds to the DGLAP region for GPD, in which the soft gluon momentum can be
partly trapped in the Glauber region. Additional argument is needed for the factorization
proof, which will be given in subsection 3.2.

3.1 Kinematics

In the lab frame, the nucleon (pion) is moving along +ẑ (−ẑ) direction, carrying a large
plus (minus) momentum. Two photons with large and opposite transverse momenta are
produced in the final state, together with a recoiled nucleon, or a baryon in general. We
focus on the region of phase space where −t = −∆2 � (q1 + q2)2. That is, we require that
the proton be recoiled in an approximately collinear direction and the invariant mass of
the momentum transfer ∆ be much smaller than the energy of this transfer. This is the
condition that allows the scattering amplitude of the exclusive process in eq. (3.1) to be
factorized into a transition GPD of the nucleon.

Since ∆ carries a small transverse component and sufficiently large longitudinal com-
ponent, it is convenient for our analysis to boost the lab frame into the CM frame of ∆
and p2 where ~∆ is along +ẑ direction, which is also the rest frame of q1 and q2, so that the
∆ could mimic the momentum p1 of π+ in the section 2. We denote this frame as photon
frame Sγ , distinguished from the lab frame Slab. The transformation from Slab to Sγ can
be done by first boosting along ~∆T such that ~∆ is in parallel and head-to-head with ~p2,
followed by a rotation in the ~∆T -~p2 plane to make ~∆ along +ẑ direction.

In the Sγ frame, we have the momentum conservation,

∆ + p2 = q1 + q2 , (3.2)

and the CM collision energy square ŝ ≡ (∆ + p2)2 = (q1 + q2)2 � Λ2
QCD. For the leading

power contribution, in analog to eq. (2.3), we can parametrize ∆ and p2 as

∆ =
(

∆+,
t

2∆+ , 0T
)
γ
'
(
∆+, 0, 0T

)
γ
,

p2 =
(
m2
π

2p−2
, p−2 ,0T

)
γ

'
(
0, p−2 , 0T

)
γ
, (3.3)

where in the second step (and in the following) the “'” means the neglect of small quantities
suppressed by powers of m2

π/Q
2 or t/Q2 with the hard scale Q ∼ O(qT ) .

√
ŝ. In addition,

we also implicitly take the rescaled light-like ∆ and p2 as the momenta entering the hard
process, with

∆+ = p−2 =

√
(∆ + p2)2

2 =

√
ŝ

2 , (3.4)

to keep the momentum conservation manifest, which is useful for the factorization of this
process.
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The skewness in the lab frame is defined as

ξ = ∆+
lab

2P+
lab
, (3.5)

where P = (p+ p′)/2. We then have p+
lab = (1 + ξ)P+

lab, p
′+
lab = (1− ξ)P+

lab, and

ŝ = (∆ + p2)2 ' 2∆+p−2 = 2ξ
1 + ξ

(2p+p−2 )lab '
2ξ

1 + ξ
s , (3.6)

which defines a unique role of the skewness, quantifying the momentum flowing into the
hard process from the colliding hadron of momentum p.

The invariant mass squared of the momentum transfer, t = ∆2, can be related to ξ
and the transverse component of the momentum transfer ∆T by

t = −
(

4ξ2

1− ξ2m
2
p + 1 + ξ

1− ξ∆2
T

)
, (3.7)

where mp is the proton mass and we neglect the mass difference between proton and
neutron. For a given small t, ∆T is bounded to be small, and ξ is effectively constrained by

0 < ξ ≤

√√√√ −t/m2
p

4− t/m2
p

. (3.8)

Every event of the exclusive process in eq. (3.1) is specified by three momenta p′, q1
and q2, which are constrained by on-shell conditions and momentum conservation, leading
to 9 − 4 = 5 degrees of freedom in kinematics. ∆T and ξ are sufficient to specify the
neutron momentum. The photon momenta are to be described by qT in the photon frame
Sγ , where they are back-to-back. That is, (∆T , ξ, qT ) fixes all the kinematics. Our pro-
cess is insensitive to azimuthal angle in either ∆T or qT , and we will integrate out these
angles, leaving only three degrees of freedom, ∆T , ξ and qT , or equivalently, t, ξ and qT as
independent variables.

3.2 Factorization

We generalize the factorization formula derived in section 2.2 to describe the scattering
amplitude of the exclusive process in eq. (3.1). As indicated by the general pinch-singular
surface in figure 13, the initial-state nucleon momentum p and slightly recoiled hadron
momentum p′ define the direction of a collinear subgraph, D̂1, which is joined by a set of
collinear parton lines to the hard subgraph, from which two photons with large transverse
momenta are produced.

The power counting for a pinch surface is derived in the same way as what was done
in the last section. The only difference is that the dimension for the D̂1 is reduced by 1
because we have an extra external final-state hadron line connected to D̂1 in figure 13.
Like eq. (2.11), we obtain the scaling behavior for corresponding reduced diagram as

MNπ→N ′γγ ∼ Ĥ ⊗ D̂1 ⊗ D̂2 ⊗ S ∝ λα−1 , (3.9)
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Ĥ

Figure 13. The general pinch-singular surface for the process (3.1).
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Ĥ
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Figure 14. Two possible leading regions for the process (3.1). Arbitrary number of gluons can
connect to the collinear subgraphs D̂1 or D̂2 from S or Ĥ, but they have to be longitudinally
polarized.

where α is the same as that in eq. (2.12). With the minimum power α = 2, we obtain
the leading pinch surfaces to the scattering amplitude of exclusive process in eq. (3.1), as
shown in figure 14, which are slightly modified from those in figure 6. Due to the electric
charge or isospin exchange, D̂1 or D̂2 must be connected to other subdiagrams by at least
two quark lines. By the same argument at the end of section 2.2.1, the pinch surface in
figure 14b is power suppressed compared to that in figure 14a.

3.2.1 Deformation out of Glauber region

Before we adopt the approximations listed in section 2.2.2 to start our factorization argu-
ments, we note one complication that distinguishes the diffractive meson-baryon process
in eq. (3.1) from the π+π− case discussed in the last section.

The factorization proof of π+π− process was simplified by the fact that all the collinear
parton lines go from the past to now when the hard collision takes place, without going to
the future as spectators, as shown in figure 5. All the parton lines collinear to π+ (π−) have
positive plus (minus) momenta, and the plus/minus momenta of the soft gluons are not
trapped to be much smaller than their transverse components. We can get those soft gluons
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π
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ks

Ĥ

D̂2
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Figure 15. Difference in soft gluon interaction between ERBL region (a) and DGLAP region (b)
in the elastic πN process. In (a), the k−s integration is not pinched, while in (b), the k−s integration
is pinched to be in the Glauber region.

out of the Glauber region by deforming the contours of their momentum integrations, as
discussed in section 2.2.2. However, in the πN case, or more specifically, in pπ− → nγγ

case, the proton-neutron transition can have either (i) all the collinear parton lines going
from the proton into the hard part, as shown in figure 15a, or (ii) some parton lines going
from the proton into the hard part, but others going to the future as spectators and merging
with partons coming out the hard part to form a neutron, as shown in figure 15b. The type
(i) corresponds to the ERBL region of GPD, and the type (ii) is for the DGLAP region.

For the ERBL region, the contour deformations and approximations made to the lead-
ing regions for every possible diagram are the same as those in section 2.2.2. But for the
DGLAP region, the presence of proton spectator may trap the minus momenta of soft
gluons at small values. For example, as shown in figure 15b, the attachment of a soft gluon
of momentum ks to a spectator of the colliding proton leads to two propagators with the
denominators,

((1− z)p+ ks)2 + iε ≈ 2(1− z)p+k−s − k2
sT + iε ,

⇒ k−s pole ≈ k2
sT

2(1− z)p+ − iε → O(λ2Q)− iε ,

(zp− ks)2 + iε ≈ 2zp+(−k−s )− k2
sT + iε ,

⇒ k−s pole ≈ − k
2
sT

2zp+ + iε → −O(λ2Q) + iε , (3.10)

which pinch the k−s -integration of the soft gluon momentum ks to be O(λ2Q) when ksT =
O(λQ) and trap the k−s in the Glauber region. The same conclusion arrives if we let ks
flow through N ′(p′) in figure 15b. Therefore, the argument that we used in section 2.2.2
to deform the contours of plus/minus components of soft gluon momenta to get them out
of the Glauber region does not work for the soft minus components in the πN case when
the nucleon N is moving in the “+” direction.

Luckily, the poles for the plus components of the soft momenta are solely provided by
the collinear lines from the π, which all go into the hard part with positive minus momenta.
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Figure 16. The result of using Ward identity for D̂2-collinear gluons. The Wilson lines point
along w1 to the past. The notations are similar to figure 8.

All the poles from lj + ks lie on the same half plane, and therefore, we can deform k+
s as

k+
s → k+

s + iO(p+), (3.11)

when it lies in the Glauber region flowing into the D̂2 subgraph. This is the maximal
extent that we can deform k+

s , which leads the soft momentum ks all the way into D̂1-
collinear region. That is, the soft Glauber mode is deformed to be a collinear mode, which
is only possible when all the collinear lines from the π flow into the hard part Ĥ. Had we
considered an exclusive double diffractive process: pn→ pnγγ, with a pair of back-to-back
high transverse momentum photons produced while the nucleons are slightly diffracted,
we would have both plus and minus components of soft momenta pinched in the Glauber
region, which forbids the double diffractive processes, like pn→ pnγγ, pp̄→ pp̄+ jet + jet,
etc., to be factorized into two GPDs and a hard part [57], even though there is indeed a
hard scale provided by the transverse momenta of the photons or the jets.

After the deformation of Glauber gluons, we can apply all the approximations in
section 2.2.2. Since we will not deform k−s in DGLAP region, it does not matter what
iε prescription we assign to k−s . We choose the same convention as in section 2.2.2 to be
compatible with ERBL region, for which we do need to deform k−s .

3.2.2 Soft cancellation and factorization

We first use the same arguments presented in the last section to factorize the collinear
subgraph D̂2 from the hard part Ĥ and the soft factor S. The approximation in eqs. (2.18b)
and (2.19b) allows us to use Ward identity to detach all longitudinally polarized collinear
gluons of D̂2 from the hard part Ĥ, and factorize them into Wilson lines along w1, as shown
in figure 16. Like the π+π− → γγ case in the last section, the Wilson lines connected to
D̂2 point to the past due to the choice of iε in eq. (2.19b).

Next, having eqs. (2.18d) and (2.20b), we can use Ward identity to factorize soft gluons
out of the collinear factor D̂2. This leaves the collinear factor D̂2 uncoupled to D̂1, so that
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Figure 17. The result of using Ward identity for soft gluons coupling to D̂2. Those gluons cancel.
The Wilson line is along w1.

q1

q2

z1∆
+

z2p
−
2

(1− z2)p
−
2

µ

ν

p

N

(1− z1)∆
+

π

p2

p′
N ′

D̂1 Ĥ D̂2

Figure 18. The factorized form for the process (3.1).

D̂2 ends up being color singlet. By the same method of section 2.2.4, the soft gluons
coupling to D̂2 cancel. The rest of the soft gluons only couple to D̂1, as in figure 17, and
can be grouped into D̂1.

We can then use eqs. (2.18a) and (2.19a), and the Ward identity to factorize all lon-
gitudinally polarized collinear gluons of D̂1 out of the hard part Ĥ. This step is similar
to that of the π+π− case, since the soft gluon connection to D̂2 has been canceled, which
would have pinched the minus components of soft gluon momenta into the Glauber region.
After factorizing the longitudinally polarized collinear gluons from the Ĥ into Wilson line,
we get a color singlet D̂1. Therefore, we complete the factorization arguments and have
a factorized result, as shown in figure 18. The color structure of the hard part takes the
same form as in eq. (2.37). But, the spinor indices are still convoluted between D̂1 and Ĥ,
as well as between D̂2 and Ĥ, and will be dealt with in next subsection.
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3.2.3 Factorization formula

Similar to eq. (2.37), we derived the factorized formalism for the scattering amplitude of
the exclusive process in (3.1), corresponding to the factorized diagram in figure 18,

Mµν
Nπ→N ′γγ =

∫
dz1dz2 Tr

{
[PA D̂1(z1, p, p

′)PB][PB D̂2(z2, p2)PA]

×
[ 1
N2
c

Ĥµν
ii;mm(k+

1 = z1 ∆+; k−2 = z2 p
−
2 ; q1, q2;µ)

]}
, (3.12)

where the repeated color indices, i and m are summed, and averaged with the factor
1/N2

c , and the “Tr” indicates the trace over all spinor indices between D̂1, D̂2, and Ĥ. In
eq. (3.12), PA, PB, and D̂2(z2, p2) are the same as those in eq. (2.37), but D̂1(z1, p, p

′) is
different, which now represents the transition GPD of the nucleon N ,

D̂1(z1, p, p
′)αβ =

∫ d
(
∆+y−

)
2π eiz1∆+y−〈N ′(p′)|d̄β(0)Φ(0, y−;w2)uα(y−)|N(p)〉 (3.13)

=
∫ d

(
∆+y−

)
2π ei(2z1−1)ξP+y−〈N ′(p′)|d̄β

(
−y
−

2

)
Φ
(
−y
−

2 ,
y−

2 ;w2

)
uα

(
y−

2

)
|N(p)〉 ,

where α, β are spinor indices, w2 is as in eq. (2.13), color indices have been implicitly
summed, and in the second line, we shifted the position of the operator to be consistent
with the convention in [28]. Now PA and PB sandwiching D̂1 picks out only the term
proportional γ−, γ−γ5 or γ−γ5γi. Because of helicity conservation, the transversity GPD
associated with γ−γ5γi does not contribute at leading power. Effectively, we have[

PAD̂1(z1, p, p
′)PB

]
αβ

= 1
2∆+ Tr

[
γ+D̂1

] [1
2(∆+γ−)

]
αβ

+ 1
2∆+ Tr

[
γ+γ5D̂1

] [1
2γ5(∆+γ−)

]
αβ

≡ FudNN ′(z1, ξ, t)
[1

2(∆+γ−)
]
αβ

+ F̃udNN ′(z1, ξ, t)
[1

2γ5(∆+γ−)
]
αβ

, (3.14)

where FudNN ′(z1, ξ, t) and F̃udNN ′(z1, ξ, t) are GPDs with different chirality characterizing the
amplitude for the transition of hadron N to N ′,

FudNN ′(z1, ξ, t) =
∫ dy−

4π eiz1∆+y−〈N ′(p′)|d̄(0)γ+Φ(0, y−;w2)u(y−)|N(p)〉 (3.15a)

=
∫ dy−

4π ei(2z1−1)ξP+y−〈N ′(p′)|d̄
(
−y
−

2

)
γ+Φ

(
−y
−

2 ,
y−

2 ;w2

)
u

(
y−

2

)
|N(p)〉

= F udNN ′(x = (2z1 − 1)ξ, ξ, t) , (3.15b)

F̃udNN ′(z1, ξ, t) =
∫ dy−

4π eiz1∆+y−〈N ′(p′)|d̄(0)γ+γ5Φ(0, y−;w2)u(y−)|N(p)〉 (3.15c)

=
∫ dy−

4π ei(2z1−1)ξP+y−〈N ′(p′)|d̄
(
−y
−

2

)
γ+γ5Φ

(
−y
−

2 ,
y−

2 ;w2

)
u

(
y−

2

)
|N(p)〉

= F̃ udNN ′(x = (2z1 − 1)ξ, ξ, t) , (3.15d)
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where F udNN ′(x, ξ, t) and F̃ udNN ′(x, ξ, t) are the GPDs defined with the convention in ref. [28].
Note that we are using an unusual variable z1 to label the momentum fraction of an active
parton (u quark here), as indicated in figure 18, in order to have a direct analogy to
the π+π− process that we studied in the last section. As clearly indicated in eqs. (3.15b)
and (3.15d), the momentum fraction z1 is closely related to the common variables of GPDs,
such as x and ξ,

z1 = x+ ξ

2ξ . (3.16)

Consequently, the range of z1 is different from [0, 1] for the nucleon side, as opposed to z2
for the π, and is given by

zm ≡
−1 + ξ

2ξ ≤ z1 ≤
1 + ξ

2ξ ≡ zM . (3.17)

The choice of z1 parameter highlights the so-called ERBL region, which lies between −ξ <
x < ξ, and is now given by 0 < z1 < 1. In this region, a pair of quark and antiquark
with positive momentum fractions enters the hard scattering. On the other hand, one
of the DGLAP regions ξ < x < 1 with a quark scattering configuration corresponds to
1 < z1 < (1 + ξ)/2ξ, while the other DGLAP region −1 < x < −ξ with an antiquark
scattering configuration becomes −(1− ξ)/2ξ < z1 < 0.

Inserting eqs. (3.14) and (2.39) into eq. (3.12) we obtain the factorized scattering
amplitude for the elastic process in eq. (3.1)

Mµν =
∫ zM

zm

dz1

∫ 1

0
dz2

[
F̃udNN ′(z1, ξ, t)Dπ−(z2)Cµν(z1, z2)

+ FudNN ′(z1, ξ, t)Dπ−(z2)C̃µν(z1, z2)
]
, (3.18)

where Cµν is the same as that in eq. (2.42) with p+
1 replaced by ∆+, which has γ5 attached

on both proton and pion sides so is chiral even, while C̃µν is given by

C̃µν(z1, z2) ≡ Tr
[

∆+γ−

2 Hµν(k̂1, k̂2; q1, q2;µ)γ5(p−2 γ+)
2

]
, (3.19)

which only has one γ5 on the pion side and is referred as chiral odd. The correction to the
factorized scattering amplitude in eq. (3.18) is suppressed by an inverse power of the high
transverse momentum of observed photon qT in Sγ .

The hard coefficients Cµν and C̃µν , and the factorized formalism in eq. (3.18) are
manifestly invariant under a boost along ẑ. Since the transformation from Slab to Sγ is
only by a boost along ẑ, up to a boost and rotation characterized by ∆T , which is neglected
at leading power, the factorization formula (3.18) takes the same form in the Sγ frame, and
the hard coefficients Cµν and C̃µν can be calculated in Sγ , in the same way as for π+π− case.

If N = proton and N ′ = neutron, these transition GPDs can be related to the nucleon
GPDs by isospin symmetry [58]

Fudpn (z1, ξ, t) = Fup (z1, ξ, t)−Fun (z1, ξ, t),
F̃udpn (z1, ξ, t) = F̃up (z1, ξ, t)− F̃un (z1, ξ, t). (3.20)

– 39 –



J
H
E
P
0
8
(
2
0
2
2
)
1
0
3

3.3 The leading-order hard coefficients

The leading-order diagrams are the same as those in figure 11 and 12, except that now we
have two sets of hard coefficients, obtained with different spinor projectors on the nucleon
side. The calculation of the chiral-even coefficients is the same as π+π− case, and the results
are reorganized in a compact form in the appendix with z1 taking the value within [zm, zM ].
From the parity constraint (2.49), the chiral-odd coefficient C̃µν can be expanded into the
P-odd gauge invariant tensor structures in eq. (2.48), with p1 replaced by ∆. Similarly to
eq. (2.50), we have

C̃µν = −e
2g2

2 ŝ2
CF
Nc

(
C̃1 ∆̃µενρ⊥ qTρ + C̃2 p̃

µ
2ε
νρ
⊥ qTρ + C̃3 ∆̄νεµρ⊥ qTρ + C̃4 p̄

ν
2ε
µρ
⊥ qTρ

)
, (3.21)

where ∆̃µ and ∆̄ν are defined in the same way as p̃µ1 and p̄ν1 in eq. (2.46), respectively. The
dimensionless scalar coefficients C̃1 to C̃4 can be extracted from the calculated result of
each diagram by using eq. (3.21), and isolating the coefficient of the term proportional to
∆µ, pµ2 , ∆ν and pν2 sequentially. The results are collected in the appendix.

Following the discussion above eqs. (2.66) and (2.67), charge conjugation implies similar
relations for the chiral-odd coefficients, but with a minus sign, i.e.,

{C̃A1, C̃A1′ , C̃A3, C̃A4}µν(z1, z2) = −{C̃A2′ , C̃A2, C̃A3′ , C̃A4′}µν(1− z1, 1− z2) (3.22)

for Type-A diagrams, and

{C̃B1, C̃B1′ , C̃B2, C̃B2′ , C̃B3, C̃B3′}µν(z1, z2)
∣∣∣∣
eu↔ed

= −{C̃B4, C̃B4′ , C̃B5, C̃B5′ , C̃B6, C̃B6′}µν(1− z1, 1− z2) (3.23)

for Type-B diagrams. These relations carry through to each scalar coefficient C̃1, · · · , C̃4,
which has been checked in the calculations. Similar to the symmetric relation in eq. (2.68),
we obtain an antisymmetric relation for C̃µν ,

C̃µνA (z1, z2) = −C̃µνA (1− z1, 1− z2), (3.24)

for Type-A diagrams, while for C̃B this antisymmetry is broken by the difference of e2
u

and e2
d.

3.4 Cross section

Using eqs. (2.50), (3.21) and (3.18), we obtain the factorized scattering amplitudeMµν as

Mµν
Nπ→N ′γγ = ie2g2fπ

4ŝ2
CF
Nc

(3.25)

×
[
i
(
M0 g̃

µν
⊥ ŝ+M1 ∆̃µ∆̄ν +M2 p̃

µ
2 p̄

ν
2 +M3 ∆̃µp̄ν2 +M4 p̃

µ
2 ∆̄ν

)
+
(
M̃1 ∆̃µενρ⊥ qTρ + M̃2 p̃

µ
2ε
νρ
⊥ qTρ + M̃3 ∆̄νεµρ⊥ qTρ + M̃4 p̄

ν
2ε
µρ
⊥ qTρ

) ]
,
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where

Mi =
∫ zM

zm

dz1

∫ 1

0
dz2 F̃udNN ′(z1, ξ, t)φ(z2)Ci(z1, z2)

= M[Ci; F̃udNN ′ , (zm, zM );φ, (0, 1)],

M̃i =
∫ zM

zm

dz1

∫ 1

0
dz2FudNN ′(z1, ξ, t)φ(z2) C̃i(z1, z2)

= M[C̃i;FudNN ′ , (zm, zM );φ, (0, 1)] , (3.26)

with i = 0, · · · , 4 for Mi or 1, · · · , 4 for M̃i. Like eq. (2.72), we have the full scattering
amplitude squared, summing over the photon polarizations,

∣∣∣M∣∣∣2 =
(
e2g2fπ

4ŝ
CF
Nc

)2 [(
|M0|2 +

∣∣∣∣M1 +M2
4 − (∆ · q1)2M3 + (∆ · q2)2M4

ŝ q2
T

∣∣∣∣2) (3.27)

+
∣∣∣∣(∆ · q1)M̃1 − (∆ · q2)M̃2

ŝ

∣∣∣∣2 +
∣∣∣∣(∆ · q2)M̃3 − (∆ · q1)M̃4

ŝ

∣∣∣∣2
]
,

where the average (sum) over the spins of initial-state nucleon N (final-state N ′) is included
in |Mi|2 and |M̃i|2.

Instead of summing (or averaging) over all nucleon spins, we can introduce GPDs
sensitive to the hadron spin by expressing the matrix elements of nucleon states in eq. (3.15)
in terms of independent combinations of nucleon spinors and corresponding “form factors”
or spin dependent GPDs,

FudNN ′(z1, ξ, t) = 1
2P+

[
HudNN ′(z1, ξ, t) ū(p′)γ+u(p)

− EudNN ′(z1, ξ, t) ū(p′) iσ
+α∆α

2mp
u(p)

]
, (3.28)

F̃udNN ′(z1, ξ, t) = 1
2P+

[
H̃udNN ′(z1, ξ, t) ū(p′)γ+γ5u(p)

− ẼudNN ′(z1, ξ, t) ū(p′) iγ5σ
+α∆α

2mp
u(p)

]
. (3.29)

Consequently, all scattering amplitudes corresponding to independent tensor structures,
Mi and M̃i in eq. (3.28) can be expressed in terms of the spin dependent GPDs,

Mi = 1
2P+

[
M[H̃]

i ū(p′)γ+γ5u(p)−M[Ẽ]
i ū(p′) iγ5σ

+α∆α

2mp
u(p)

]
,

M̃i = 1
2P+

[
M̃[H]

i ū(p′)γ+u(p)− M̃[E]
i ū(p′) iσ

+α∆α

2mp
u(p)

]
, (3.30)

where the superscript “[H]” means to replace the corresponding FudNN ′ in eq. (3.26) by
HudNN ′ , etc. Multiplied by their complex conjugate with the spin of N (N ′) averaged
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(summed), we have

|Mi|2 = (1− ξ2)
∣∣∣∣M[H̃]

i

∣∣∣∣2 − 2ξ2 Re
(
M[H̃]

i
∗M[Ẽ]

i

)
− ξ2t

4m2
p

∣∣∣∣M[Ẽ]
i

∣∣∣∣2 , (3.31a)

∣∣∣M̃i

∣∣∣2 = (1− ξ2)
∣∣∣M̃[H]

i

∣∣∣2 − 2ξ2 Re
(
M̃[H]

i
∗M̃[E]

i

)
−
(

t

4m2
p

+ ξ2
) ∣∣∣M̃[E]

i

∣∣∣2 , (3.31b)

where the factor 1/2 for the spin average has been included.
In our numerical analysis in the next section, we take |t| ≤ 0.2 GeV2, which constrains

ξ to be ξ ≤ 0.23 by eq. (3.8). Then the terms containingM[Ẽ]
i or M̃[E]

i are suppressed by a
factor of about 0.1 or smaller, compared to the terms containing |M[H̃]

i |2 or |M̃[H]
i |2 . We

can thus neglect them for a rough estimate. Using eq. (3.31), we can rewrite eq. (3.28) as

∣∣∣M∣∣∣2 ≈ (1− ξ2)
(
e2g2fπ

4ŝ
CF
Nc

)2

×
[(
|M[H̃]

0 |
2 +

∣∣∣∣M[H̃]
1 +M[H̃]

2
4 − (∆ · q1)2M[H̃]

3 + (∆ · q2)2M[H̃]
4

ŝ q2
T

∣∣∣∣2)

+
∣∣∣∣(∆ · q1)M̃[H]

1 − (∆ · q2)M̃[H]
2

ŝ

∣∣∣∣2 +
∣∣∣∣(∆ · q2)M̃[H]

3 − (∆ · q1)M̃[H]
4

ŝ

∣∣∣∣2
]
. (3.32)

As discussed in section 3.1, we can specify an event by ∆T , ξ and qT , with qT being
the transverse momentum of the photons in the photon frame Sγ . This gives

dσ = 1
2s

dξd2∆T

(1− ξ2)(2π)3
d2qT
8π2ŝ

∣∣∣M∣∣∣2
√

1− κ̂
, (3.33)

where
∣∣∣M∣∣∣2 is given in eq. (3.32) and κ̂ = 4q2

T /ŝ ≤ 1 is the analog of κ (defined below
eq. (2.5)) for the photon system in the Sγ frame. The direction of qT can be defined with
respect to the N−N ′ plane, or p-∆T plane. But since

∣∣∣M∣∣∣2 is for unpolarized scattering, it
does not depend on the azimuthal angles of qT and ∆T , so we can integrate them out. That
allows us to only use three scalars ∆T , ξ and qT to describe the events, which by eq. (3.7)
can be transformed to the three scalar variables (t, ξ, qT ), and corresponding differential
cross section,

dσ
d|t| dξ dq2

T

= π

64

(
αeαs

fπ
s2
CF
Nc

)2 (1− ξ2)
ξ2

(1 + ξ)
ξ

B√
1− κ̂

, (3.34)

where B stands for the big square bracket in eq. (3.32), which is dimensionless and can be
evaluated numerically once we know the pion DAs and nucleon’s GPDs. In eq. (3.34), we
have separated the ξ dependent factor into two parts, in which the second part, (1 + ξ)/ξ,
is canceled when we integrate over q2

T from q2
Tmin to ŝ/4 = ξ/(1 + ξ)(s/2).
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Figure 19. (a) Sketch for pion Form Factor; (b) Leading order Feynman diagrams for the partonic
hard part of the factorized pion Form Factor.

4 Numerical results

In this section, we evaluate the cross sections for producing a pair of high transverse momen-
tum photons in exclusive pion-pion and pion-nucleon scattering and test their sensitivity
to the shape of DAs and GPDs in terms of active parton’s momentum fraction.

4.1 End-point sensitivity and improvement from Sudakov suppression

Before we introduce our choices of DAs and GPDs to evaluate the factorized cross sections,
we discuss the well-known “end-point” sensitivity associated with perturbative evaluation of
factorized elastic scattering processes, and its impact on the new type of exclusive processes
introduced in this paper.

For the comparison, we consider the well-known perturbative calculation of pion Form
Factor Fπ(Q2), as sketched in figure 19(a), which can be extracted from elastic electron-pion
scattering: e(`)+π(pπ)→ e(`′)+π(p′π). When the momentum transfer q = `−`′ has a high
virtuality, with Q2 ≡ −q2 � Λ2

QCD, the pion Form Factor takes the factorized form as [59],

Fπ(Q2) ≈
∫ 1

0
dz1

∫ 1

0
dz2 φ(z1)TB(z1, z2, Q

2)φ(z2) , (4.1)

where φ is pion DA, TB(z1, z2, Q
2) represents the hard scattering, and the factorization

scale dependence is suppressed. With the leading order diagrams in figure 19(b), the
short-distance hard part is given by [59]

TB(z1, z2, Q
2) ≈ 16πCF

αs(Q2)
z1z2Q2 , (4.2)

with color factor CF = 4/3 for SU(3) color. By substituting this lowest order hard part in
eq. (4.2) into eq. (4.1), it is clear that the pion Form Factor measurement is only sensitive
to the “moment” of pion DA,

∫ 1
0 dzz

−1φ(z), not the detailed shape of φ(z), even when
the probing scale Q2 varies. Although the “moment”

∫ 1
0 dzz

−1φ(z) is expected to be finite
since φ(z)→ 0 as z → 0, the short-distance hard part in eq. (4.2) is actually singular as z1
(and/or z2)→ 0, corresponding to the situation when the virtuality of the exchanged gluon
in figure 19 goes to zero and the “hard” scattering is actually not taking place at a “short-
distance”. The reliability of this perturbative fixed-order calculation near the “end-point”
region when z1 (and/or z2) → 0 could be improved by taking into account the “Sudakov
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suppression” from resumming high order Sudakov logarithmic contributions. For example,
the leading order perturbatively calculated hard part in eq. (4.2) could be improved as [60]

TB(z1, z2, Q
2) ≈ 16πCF

∫ ∞
0

db αs(t) bK0(
√
z1z2Qb) e−S(z1,z2,b,Q) , (4.3)

where the running coupling constant αs is evaluated at t = max(√z1z2Q, 1/b), K0 is the
modified Bessel function of order zero and the Sudakov factor S(z1, z2, b, Q) is given in
eq. (14) of ref. [60]. In keeping the same factorized form in eq. (4.1) with the modified hard
part in eq. (4.3), an evolution of pion φ(z)’s factorization scale from 1/b to the hard scale
Q was neglected. With the Sudakov suppression, the perturbative hard part TB(z1, z2, Q

2)
in eq. (4.3) is no longer singular as z1 (and/or z2) goes to zero.

Like the pion Form Factor, the perturbative hard part calculated from the Type-B
diagrams in figure 12 is also singular in the “end-point” region when z1 (and/or z2)→ 0 or
1, as clearly evident from the behavior of the three propagators in eq. (2.64). In addition,
like the hard part of pion Form Factor in eq. (4.2), the dependence on active parton
momentum fractions z1 and z2 in eq. (2.64) is completely decoupled from the external
kinematic variables, and consequently, the contribution from the Type-B diagrams to the
exclusive cross section is only sensitive to the “moment” of pion DA.

On the other hand, the three propagators for the Type-A diagrams in figure 11, as
shown in eqs. (2.60) and (2.61), have slightly different features. The contribution from the
Type-A diagrams is less singular in the “end-point” region when z1 or z2 goes to zero. The
dependence on active parton momentum fractions z1 and z2 cannot be completely decoupled
from the external kinematic variables. As shown in eq. (2.61), z1 and z2 are entangled with
externally measured photon transverse momentum qT . It is this entanglement that makes
the qT -distribution of this exclusive cross section to be sensitive to the shape of the z-
dependence of pion DA, or GPDs in pion-baryon scattering.

4.2 Enhanced sensitivity to the shape of pion DAs

To demonstrate that the differential cross section dσ/dq2
T for exclusive π+π− → γγ process

is sensitive to both the “moment” as well as the detailed shape of pion DA, we introduce
a power-form parametrization for the normalized pion DA,

φα(z) = zα(1− z)α

B(1 + α, 1 + α) , (4.4)

with α > 0 so that the “moment”
∫ 1

0 dzz−1φα(z) is finite. When α = 1, this normalized pion
DA is effectively the same as the so-called asymptotic form of pion DA when factorization
scale µ→∞ [61]. In this subsection, we vary the power α to show how dσ/dq2

T changes. In
the following numerical calculation, we use fixed electromagnetic coupling αe = 1/137 and
the one-loop running strong coupling constant αs(µ) evaluated at the scale µ = qT . For
exclusive π+π− → γγ, which could be a Sullivan-type process as a part of the pπ− → nγγ

diffractive scattering when the |t| is small, we choose the collision energy
√
s = 3− 6GeV,

and require qT to be greater than 1 GeV.
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Figure 20. The total cross section (in (a)) for different DAs (shown in (b)) and different CM ener-
gies, where a scaling factor s2 has been multiplied. The total cross section is obtained by integrating
over qT from 1 GeV to

√
s/2. The dots on the curves are the points that were explicitly calculated.

In figure 20(a), we plot the “total” cross section defined in eq. (2.74) with qTmin = 1GeV
as a function of the power α of the normalized pion DA for various collision energies.
Corresponding shapes of the normalized pion DAs are shown in figure 20(b). To minimize
its dependence on the collision energy, we multiplied a scaling factor s2 to the cross section,
which effectively puts all the curves with four different collision energies on top of each
other. However, as shown in figure 20(a), the scaled cross section shows a very strong
dependence on the value of α, which is not because the partonic hard part is a good
probe of the shape of DAs. Instead, such a strong dependence on α is caused by the
“end-point” sensitivity of the perturbatively calculated partonic hard part as discussed in
the last subsection, and the fact, as shown in figure 20(b), that the value of pion DAs at
different α have very different values near the “end-point”.

Like the “Sudakov” suppression treatment for the “end-point” region of the pion Form
Factor, an improvement of the “end-point” sensitivity is also needed to improve the relia-
bility of perturbative calculation of the factorized hard parts for this new type of exclusive
processes, which is beyond the scope of the current paper.

As pointed out in section 4.1, the propagator of the gluon has a very different momen-
tum structure for Type-A diagrams from those of the Type-B diagrams. The entanglement
of momentum fraction z1, z2 and the observed qT in the Type-A diagrams makes the qT
distribution sensitive to the z-dependence of the pion DAs.

In figure 21(a), we plot the normalized qT distribution, defined as dσ/dqT divided by
the total cross section σtot ≡ σ(qTmin = 1 GeV) as defined in eq. (2.74), with respect to
the same normalized qT distribution evaluated with asymptotic pion DA (α = 1). Cor-
responding normalized pion DAs are plotted in figure 20(b). In figure 21(b), we plot the
same normalized qT distribution as a function of the power α at different values of qT .
The normalized qT distribution at different qT values have very different dependence on
the α. Naively, from figure 21, it seems that the qT -dependence provides additional 10%
sensitivity on the shape of the pion DA. Actually, the qT -dependence should have provided
a much stronger sensitivity to the shape of pion DAs, if the “end-point” sensitivity of the
perturbatively calculated partonic hard parts are better controlled. As pointed out in sec-
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Figure 21. (a) The relative qT shape for a few choices of power-form DAs with different values
of α. The relative qT shape is obtained by dividing the normalized qT distribution by the one
with the asymptotic DA form. (b) The same normalized qT distribution as a function of α of the
power-form DAs.

tion 4.1, the Type-B diagrams have a much stronger singular behavior at the “end-point”
than that of Type-A diagrams. Consequently, the Type-B diagrams give a much bigger
fraction of dσ/dqT from the “end-point” region of the pion DAs than what the Type-A
diagrams can give, while the Type-A diagrams are more sensitive to the shape of pion DAs.
If we can improve the reliability of perturbatively calculated partonic hard cross section
near the “end-point” for both Type-A and Type-B diagrams, the Type-A diagrams would
contribute a much bigger fraction to the differential cross section dσ/dqT , making the
measurement of dσ/dqT more sensitive to the shape of the z-dependence of the pion DAs.

4.3 Enhanced sensitivity to the shape of GPDs

In this subsection, we try to demonstrate that the photon qT distribution of exclusive
meson-baryon scattering process is sensitive to the functional shapes of nucleon GPD and
pion DA. The dependence on pion DA was discussed in section 4.2 along with the exclusive
ππ annihilation process. We now focus on the sensitivity to the shape of nucleon GPD, and
fix pion DA to the power-form in eq. (4.4) with α = 0.63, which is the value compatible
with the Lattice QCD calculation of the second moment of DA [62].

As discussed in section 3, the integration range of active momentum fraction z1 of GPDs
is extended from (0, 1) to ((ξ−1)/2ξ, (ξ+ 1)/2ξ), as shown in eq. (3.17), and consequently,
the propagators in partonic diagrams could be on-shell leading to poles along the integration
contour of z1. As discussed in section 2.2, the reduced diagram analysis ensures that the
only perturbative pinch singularity at leading power is on the lines collinear to the external
hadrons, which are systematically removed from the hard part of partonic scattering and
absorbed into universal long-distance DAs or GPDs. The only possible singularities of
the perturbatively calculated partonic hard part could appear at the “end-point” of the
integration, and need to be suppressed by the behavior of non-perturbative DAs and/or
GPDs, or by improving high order perturbative calculations as discussed in section 4.1.
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When the non-pinched pole of z1 locates along the contour, we use the distribution identity

1
z1 − a± iε

= P
1

z1 − a
∓ iπδ(z1 − a) (4.5)

as a practical method to deform the contour [63], where P means the principal-value
integration. Our numerical integration strategy is to individually separate each pole and
use eq. (4.5) to deal with the poles on the integration contour of z1. In this approach,
the non-pinched poles lead to imaginary parts to the scalar coefficientsMi and M̃i of the
factorized scattering amplitude, and both their real and imaginary parts contribute to the
exclusive cross section through the absolute values in eq. (3.32).

For our numerical analysis below, we use the kinematics of J-PARC [64] with a charged
pion beam of energy around 20GeV, as well as that of AMBER [65] with a pion beam of
energy 150 GeV hitting on fixed targets. For nucleon GPD, we choose the GK parametriza-
tion [48–50, 66], which models the GPD using double distribution,

Hi(x, ξ, t) =
∫ 1

−1
dβ
∫ 1−|β|

−1+|β|
dα δ(x− β − ξα) fi(β, α, t) , (4.6)

where the subscript i refers to the choice of parton flavor and nucleon GPDs Hi(x, ξ, t) are
defined with the convention in ref. [28], as specified in eq. (3.15). The double distribution
fi(β, α, t) is parametrized as

fi(β, α, t) = e(bi+α′i ln |β|−1)t · hi(β) · wi(β, α) , (4.7)

where hi(β) is the forward PDF of flavor i, and wi is a weight function

wi(β, α) = Γ(2ni + 2)
22ni+1Γ2(ni + 1)

[
(1− |β|)2 − α2]ni

(1− |β|)2ni+1 , (4.8)

which characterizes the ξ dependence of GPD Hi(x, ξ, t) and is normalized as∫ 1−|β|

−1+|β|
dαwi(β, α) = 1 . (4.9)

The larger the power ni is, the less dependent Hi(x, ξ, t) is on ξ. In the limit that ni →∞,
wi → δ(α), and we have

Hi(x, ξ, t) = e(bi+α′i ln |x|−1)thi(x) , (4.10)

which has no dependence on ξ at all.
The quark double distribution is decomposed into valence and sea components, and

sea quark components are taken to be the same for usea and dsea. Since our process is only
sensitive to Hu −Hd (or H̃u − H̃d) (see eq. (3.20)), the sea components cancel, and only
valence components contribute,3 for which we have

f qval(β, α, t) = [f q(β, α, t) + εff
q(−β, α, t)] θ(β) , (4.11)

3This is also the reason that we neglected the so-called D-term in eq. (4.7) since it only appears for
gluon and sea quarks.
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(b) Chiral-odd GPD without ξ dependence

t = -0.1 GeV2

Figure 22. Chiral-even GPD H(x, ξ, t) (a) and chiral-odd GPD H̃(x, ξ, t) (b) for t = −0.1 GeV2

and different power parameters (ρ, τ).

where ε = +1 for H and −1 for H̃. The condition θ(β) means that Hq
val(x, ξ, t) 6= 0 only

when −ξ < x ≤ 1.
In the GK model, bval = 0 for both H and H̃, and α′val = 0.9 GeV−2 for H and

0.45 GeV−2 for H̃. The forward parton density hi(β) is parametrized as a “power series”
of β, fitted to global-fit PDFs. It is not our purpose to use a realistic GPD, but instead we
want to see how different forms of GPDs affect the qT distribution, so it is convenient to
use a simple functional form for h(β), for which we choose

hud(β) = huv(β)− hdv(β) = N
βρ(1− β)τ

B(1 + ρ, 1 + τ) , (4.12)

which is similar to eq. (4.4) but with possibly different powers ρ and τ . The normalization
factor is N = 1 for H and N = ηu − ηd = 1.267 for H̃ [66]. The parameters ρ and τ are
fitted to the GK model at µ = 2 GeV, and we have the best fit

(ρ0, τ0) = (−0.30, 2.24) for H ,

(ρ0, τ0) = (−0.22, 2.33) for H̃ . (4.13)

This gives a h(β) peaked near β = 0. We will vary the powers (ρ, τ) around the best-fit
values and compare the change of observables.

4.3.1 Sensitivity to GPD’s x dependence

First, we examine the sensitivity of measured photon qT distribution to the x-dependence
of nucleon GPDs. For simplicity we take ni →∞ in eq. (4.8) to remove the ξ dependence
for both H and H̃, and have a simplified model for nucleon transition GPDs

Hud
pn(x, ξ, t) = θ(x)x−0.9 t/GeV2 xρ(1− x)τ

B(1 + ρ, 1 + τ) ,

H̃ud
pn(x, ξ, t) = θ(x)x−0.45 t/GeV2 1.267xρ(1− x)τ

B(1 + ρ, 1 + τ) . (4.14)
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Figure 23. Differential cross section in eq. (3.34) as a function of photon qT for two choices of
pion beam energies, along with two sets of (t, ξ) values. Different curves correspond to different
(ρ, τ) parameters for the GPD models of the chiral-even GPDs followed by that of the chiral-odd
GPDs. The rise at large qT is due to the Jacobian peak of the differential cross section.

Apart from the best-fit parameters in eq. (4.13), we choose an additional set of parameters,

(ρ, τ) = (0.5, 2), (0.8, 1.2), (1.5, 0.3), (4.15)

for both Hud
pn(x, ξ, t) and H̃ud

pn(x, ξ, t). This gives a set of GPDs with their x-dependence
peaked between x = 0 and 1, as shown in figures 22 for t = −0.1 GeV2. Although there
is no explicit ξ dependence in eq. (4.14), the hard-part integration in (3.26) still knows
about ξ since z1 is a function of x and ξ as defined in eq. (3.16). Moreover, ξ characterizes
the CM energy of the hard collision (eq. (3.6)) and thus the range of qT . Therefore, the
integration of qT also differs for different ξ. As a result there will still be substantial ξ
dependence of the cross section.

With the model nucleon GPDs in figure 22, we plot in figure 23 the absolute differential
cross section in eq. (3.34) as a function of measured photon qT at both J-PARC and
AMBER pion beam energies, along with two choices of (t, ξ) values. We have restricted
qT ≥ 1GeV to ensure that power correction to the factorization formalism is sufficiently
small. The upper bound of qT depends on the collision energy and ξ. Different curves
correspond to different choices of (ρ, τ) parameters for the GPD models, which are chosen
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Figure 24. Differential cross section in eq. (3.34) as a function of cos θ of the observed photon
with all parameters chosen to be the same as that in figure 23.

to be the same for both chiral-even and chiral-odd GPDs. The rise at large qT is due to
the Jacobian peak of the differential cross section. We can avoid the Jacobian peak by
plotting the differential cross sections with respect to cos θ =

√
1− 4q2

T /ŝ with θ being
the angle between the observed photon and collision ẑ-axis, instead of qT , as shown in
figure 24. By comparing plots on the left and right — with different ξ, and plots on the
top and bottom — with increase of collision energy

√
s, the qT distribution becomes more

and more dominated by small qT . As
√
s and ξ (or

√
ŝ) increase, more phase space opens

up for the production of the two back-to-back photons. As qT decreases, the virtualities of
the quark propagators in the leading-order diagrams in figure 11 and 12 decrease, leading
to the enhancement of differential cross sections.

To make the difference of qT shapes more manifest to better visualize the sensitivity
of measured qT distribution to the x-dependence of nucleon GPDs, we plot in figure 25
the ratio of the normalized differential cross sections as a function of qT for two different
collision energies, like what we plotted in figure 21. The normalized cross sections are
defined by dividing the differential cross sections by σ(qTmin = 1 GeV). The ratio of
the normalized differential cross sections is defined by dividing by the one evaluated with
the best-fit GPD model parameters in eq. (4.13) — the red curve. Taking the ratio of
normalized differential cross sections effectively removes the huge variation of the absolute
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Figure 25. Ratio of normalized differential cross sections σ−1dσ/dt dξ dqT as a function of observed
photon qT evaluated with the GPD model in eq. (4.14). Different curves correspond to different
parameter sets of the GPD model in eq. (4.14).

values of the cross sections and enhances the dependence on the parameters of GPD models,
as clearly shown in figure 25. It is evident that as the peak in x-distribution of GPD model
in figure 22 shifts from 0 to 1, the qT shape differs by around 10% to 20%, without even
considering the possible improvement from better control of the “end-point” sensitivity as
discussed in section 4.1. And by comparing figure 21 and 25, we find more sensitivity to the
shape of GPD than that of DA, which means the sensitivity comes more from the DGLAP
region than the ERBL region. Hence, we can conclude that the shape of qT distribution has
significant sensitivity to the x-dependence (or equivalently, the z1-dependence) of GPDs.

4.3.2 Sensitivity to GPD’s ξ dependence

In contrast to the x-dependence of GPDs, which is proportional to the relative momentum
of the active quark-antiquark pair from the diffractive nucleon, the ξ and t are direct
kinematic observables once we measure the momentum of the diffracted nucleon in an
event. So, in principle, getting information on ξ and t is much more direct than getting the
x-dependence. However, since GPDs are collective functions of (x, ξ, t), extracting the (ξ, t)
dependence of GPDs from measured (ξ, t) dependence of exclusive cross sections depends
on how x-dependence is entangled with ξ- and t-dependence in GPDs, and also, in practice,
how GPDs are parametrized in terms of their (x, ξ, t)-dependence.
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The measured ξ-dependence of this new type of exclusive processes has three major
sources: (1) ξ-dependence of GPDs, e.g., the parameter ni-dependence of the GK model in
eq. (4.8); (2) ξ-dependence from the factorized scattering amplitudes, i.e., the convolution
in eq. (3.26)); and (3) kinematic effect from the fact that ξ characterizes the CM energy
of the hard collision when cross section is expressed in terms of (t, ξ, q2

T ). The kinematic
effect is reflected by the (1 − ξ2)/ξ2 factor in eq. (3.34) and is independent of (1) and
(2). In principle, it is not possible to separate the x-dependence from the ξ-dependence of
GPD because of (2), i.e., the convolution of GPD and hard coefficient depends on ξ. In
this subsection, we try to explore to what extent the cross section depends on how ξ is
parametrized in the GPD.

To focus on the x-dependence, we set ni → ∞ in our GPD model in eq. (4.8) in our
discussion in last subsection, which led to a model of GPDs that has no dependence on
ξ as shown in eq. (4.14). To test the sensitivity to ξ-dependence, we choose ni = 0 and
ni = 1 as two additional model GPDs. We still keep the same parametrization of hi(β) in
eq. (4.12). The advantage of using small integers for ni is that we can analytically integrate
out eq. (4.6) and express GPD in terms of special functions. Since our proposed process
is only sensitive to the valence region, letting ni → nval, and combining eq. (4.6) with
eqs. (4.7), (4.8), (4.11), and (4.12) gives us the GPD model,

(GPD)udpn(x, ξ, t) = N



Bx1(1 + ρ− α′vt, τ)− Bx2(1 + ρ− α′vt, τ)
2 ξ B(1 + ρ, 1 + τ) x ≥ ξ ,

Bx1(1 + ρ− α′vt, τ)
2 ξ B(1 + ρ, 1 + τ) −ξ ≤ x < ξ ,

0 x < −ξ ,

(4.16)

for nval = 0, and

(GPD)udpn(x,ξ, t) =N (4.17)

×



3(1−ξ2)
4ξ3B(1+ρ, 1+τ)×

[
−Bx1(3+ρ−α′vt,τ−2)+Bx2(3+ρ−α′vt,τ−2)

+(x1 +x2)
(

Bx1(2+ρ−α′vt,τ−2)−Bx2(2+ρ−α′vt,τ−2)
)

−x1x2

(
Bx1(1+ρ−α′vt,τ−2)−Bx2(1+ρ−α′vt,τ−2)

)]
x≥ ξ ,

3(1−ξ2)
4ξ3B(1+ρ, 1+τ)×

[
−Bx1(3+ρ−α′vt,τ−2)

+(x1 +x2)Bx1(2+ρ−α′vt,τ−2)−x1x2Bx1(1+ρ−α′vt,τ−2)
]
−ξ≤x<ξ ,

0 x<−ξ ,

for nval = 1, where
x1 = x+ ξ

1 + ξ
, x2 = x− ξ

1− ξ , (4.18)

and
Bx(a, b) =

∫ x

0
dy ya−1 (1− y)b−1 (4.19)
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Figure 26. Chiral-even GPD H(x, ξ, t) as a distribution of x for three different ξ and three different
values of nval, which controls the GPD ξ dependence in the GK model.
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Figure 27. (a) Absolute and (b) relative distributions of ξ at t = −0.1 GeV2 for 150 GeV pion
beam, for the three different GPD models shown in figure 26. The relative distribution in (b) is
obtained by dividing each curve in (a) by the one with n =∞.

is the incomplete Beta function. The parameter bv in eq. (4.7) has been set to 0. α′v and
N are taken unchanged from ni =∞.

In figure 26, we plot our models for chiral-even GPD H(x, ξ, t) as functions of x for
three values of nval = 0, 1,∞. Our model GPDs for nval = 0 and 1 are given in eqs. (4.16)
and (4.17), respectively. For nval = ∞, the GPDs are given in eq. (4.14). We fix (ρ, τ)
to be the best-fit values (4.13), t = −0.1 GeV2 and show GPDs for three values of ξ(=
0.1, 0.2, 0.3). GPDs with nval = 0 have the maximum ξ dependence while those with
nval =∞ have no ξ dependence, which is clearly evident from the examples of chiral-even
GPD H(x, ξ, t) in figure 26.

By integrating out qT , we plot the cross section as a distribution of ξ in figure 27 for the
AMBER energy Eπ = 150 GeV, where the kinematic factor (1 − ξ2)/ξ2 has been divided
out. We see that different ξ parametrizations do reflect themselves in the ξ-distribution
of differential cross sections. Their relative differences are better seen by taking ratios to
the one with n = ∞, as seen in figure 27(b). Comparing n = ∞ with n = 1, we see that
introducing some ξ dependence to GPDs through n = 1 leads to 20% change to the ξ
distribution of the cross sections. Then increasing the ξ dependence from n = 1 to n = 0
leads to a further 20% ∼ 40% change.
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4.3.3 Sensitivity to GPD’s t dependence

Same as the ξ-dependence, the t-dependence of the diffractive cross section is experimen-
tally determined. On the other hand, the t-dependence of theoretically factorized cross
section comes from (1) the t dependence of GPD and (2) kinematic effect of hard process.
As shown in eq. (3.8) the value of t actually constrains the available range of the ξ.

It is worth emphasizing that t does not enter the hard process directly as an immediate
consequence of the leading-power factorization, which is accurate up to power corrections
of |t|/Q2. However, the information of t is not lost, but is captured by GPDs. The Fourier
transform of GPDs with respect to the transverse component of t leads to transverse spatial
density distributions of quarks and gluons inside a bound hadron, which could reveal very
valuable information on how quarks and gluons are distributed in an environment of a
confined hadron. Comparing with the x-dependence, t-dependence is more visible in a
physical process and will not be explored in more details in this work.

5 Discussion and outlook

Exclusive processes provide valuable information that is different from and complementary
to inclusive processes. Without breaking the hadron, exclusive diffractive processes that can
be factorized into DAs and GPDs provide not only one hard scale to characterize the particle
nature of quarks and gluons inside the hadron, but also a secondary soft scale t that allows
us to probe into the transverse structure of the hadron to explore much needed information
on spatial distributions of quarks and gluons in a bound hadron. However, the hard scale
for many existing exclusive processes, such as pion Form Factor and DVCS on a nucleon,
is provided by a single virtual particle, and measured exclusive cross sections are most
sensitive to the total momentum transfer from the diffracted hadron, but not to the relative
momentum of the quark-antiquark or two gluons from the diffractive hadron. Consequently,
such exclusive processes are only sensitive to the “moments” of DAs and/or GPDs, such as∫ 1

0 dz z−1 φπ(z), as discussed in section 4. The information on such “moments” is far from
enough to constrain the functional forms of DAs and GPDs, and three-dimensional spatial
imaging of quarks and gluons. That is, we need to seek for more exclusive processes, like the
one that we proposed in this paper, to provide better constraints on the hadron tomography.

In this paper, we introduced exclusive production of a pair of high transverse momen-
tum photons in pion-nucleon collisions and demonstrated that this new 2 → 3 exclusive
diffractive process can be systematically factorized into universal pion’s distribution ampli-
tude and nucleon’s generalized parton distributions, which are convoluted with correspond-
ing infrared safe and perturbatively calculable short-distance hard parts. The correction
to the factorization of this exclusive process is suppressed by powers of ΛQCD/qT . We also
showed quantitatively that this new type of exclusive processes is not only complemen-
tary to existing processes for extracting GPDs, but also capable of providing an enhanced
sensitivity to the parton momentum fraction of both DAs and GPDs from the measured
transverse momentum qT distribution. This new 2→ 3 exclusive process could be measured
at J-PARC and AMBER. In addition, our proof of the leading-power factorization for ex-
clusive production of a pair of high transverse momentum photons can be carried through
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for justifying the factorization of exclusive Drell-Yan production in πN → `+`−(Q)N ′ when
Q�

√
|t|, which could be measured at J-PARC and other facilities as well.

We stress that the sensitivity of observed qT shape to the functional form of GPDs
is because there are two back-to-back particles coming out of the hard collision and the
momentum flow between these two back-to-back particles entangles with the relative mo-
mentum of the two active partons from the diffractive hadron. It is this entanglement of
momenta that provides the additional sensitivity to the x-dependence of GPDs.

In addition to the exclusive production of two high transverse momentum photons in
the diffractive pion-nucleon collisions, discussed in this paper, we introduce a new class of
similar 2→ 3 exclusive processes for diffractive production of a back-to-back high transverse
momentum pair of particles (or jets), C(pc) and D(pd), from a hadron h(p) to a hadron
h′(p′),

A(p1) + h(p)→ C(pc) +D(pd) + h′(p′) (5.1)

with
√
|(p− p′)2| � |pcT | ∼ |pdT

|. The exclusive process in eq. (5.1) can be viewed effec-
tively as a combination of a diffractive production of the virtual and “long-lived” partonic
state(s) B∗: h(p) → B∗(p2) + h′(p′) and an exclusive production of two back-to-back
high transverse momentum particles (or jets) on such virtual state(s): A(p1) + B∗(p2) →
C(pc) + D(pd). The necessary condition for QCD factorization of the exclusive process
in eq. (5.1) is that the virtuality of the intermediate state(s) B∗ is much smaller than its
energy, i.e., the lifetime of B∗ is much longer than the timescale of the hard exclusive
scattering to produce the two back-to-back high transverse momentum particles (or jets).
It is the long lifetime of the intermediate state B∗ that effectively suppresses the quantum
interference between the diffractive production of the B∗ and the hard exclusive scattering
between A(p1) and B∗(p2). This necessary condition effectively requires that the trans-
verse momentum pcT ∼ pdT

be much larger than the soft scale,
√
−t =

√
−(p− p′)2. We

will present the sufficient condition(s) for QCD factorization of various 2 → 3 exclusive
processes of the type in eq. (5.1) in a future publication. For example, from the elastic
large angle pion-pion scattering, π(p1)+π(p2)→ π(pc)+π(pd) we can have a new exclusive
2 → 3 diffractive production of a back-to-back pair of high transverse momentum pions:
π(p1) + h(p) → π(pc) + π(pd) + h′(p′) with pcT ∼ pdT

�
√
−(p− p′)2, if the ππ → ππ

large-angle elastic scattering is dominated by a single hard scattering. Similarly, instead
of the exclusive pion-baryon scattering to produce two back-to-back high transverse mo-
mentum photons, we can switch one of the final-state photon with the initial-state pion
to have another 2→ 3 exclusive process: γ(p1) +N(p)→ γ(q1) + π(pπ) +N ′(p′) with the
back-to-back high transverse momentum photon-pion pair [41, 42]. Taking the advantage
of photon polarization at Jefferson Lab, polarization asymmetries of an exclusive diffrac-
tive photo-production of two high transverse momentum and back-to-back particles could
provide additional channels of observables to extract various GPDs with better sensitivities
on their x-dependence, which will be explored in our future publications.
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A Summary of the hard coefficients

In this appendix, we present all leading order contributions to the scalar hard coefficients
for the exclusive π+ + π− → γ + γ and p+ + π− → n+ γ + γ processes from each diagram.

As defined in eq. (2.50), the scalar coefficients from each diagram can be extracted in
the same way as what was done for extracting eq. (2.65). For the pπ− process, the variable
z1 can take values in [zm, zM ] (see eq. (3.17)), so the iε prescription is very important, while
for the π+π− case, z1 is only within [0, 1] and the iε can be neglected. In the following, we
give the hard coefficients for the pπ− case, which contains both chiral-even and chiral-odd
components. The π+π− process only has chiral-even hard coefficients and can be adapted
from those of the pπ− case by the replacement (∆, ŝ, κ̂) → (p1, s, κ) and keeping only the
real parts.

Instead of giving the expression for each individual diagram or scalar coefficient Ci (C̃i),
we define the following combinations of the hard scalar coefficients based on eq. (3.28),

C0 = C0,

C1 = C1 + C2
4 − (∆ · q1)2C3 + (∆ · q2)2C4

ŝ q2
T

= 1
4

C1 + C2 −

(
1−
√

1− κ̂
)2

κ̂
C3 −

(
1 +
√

1− κ̂
)2

κ̂
C4

 ,
C̃1 = (∆ · q1)C̃1 − (∆ · q2)C̃2

ŝ
= 1

4
[(

1−
√

1− κ̂
)
C̃1 −

(
1 +
√

1− κ̂
)
C̃2
]
,

C̃2 = (∆ · q2)C̃3 − (∆ · q1)C̃4
ŝ

= 1
4
[(

1 +
√

1− κ̂
)
C̃3 −

(
1−
√

1− κ̂
)
C̃4
]
. (A.1)

where κ̂ = 4q2
T /ŝ, which was first defined in eq. (3.33) as an analog of the κ for ππ
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annihilation case in eq. (2.5). Then eq. (3.28) and (3.32) can be written as

∣∣∣M∣∣∣2 =
(
e2g2

4
fπ
ŝ

CF
Nc

)2

×
[∣∣∣M[C0; F̃udpn , (zm, zM );φ, (0, 1)]

∣∣∣2 +
∣∣∣M[C1; F̃udpn , (zm, zM );φ, (0, 1)]

∣∣∣2
+
∣∣∣M[C̃1;Fudpn , (zm, zM );φ, (0, 1)]

∣∣∣2 +
∣∣∣M[C̃2;Fudpn , (zm, zM );φ, (0, 1)]

∣∣∣2] (A.2)

' (1− ξ2)
(
e2g2

4
fπ
ŝ

CF
Nc

)2

×
[∣∣∣M[C0; H̃udpn, (zm, zM );φ, (0, 1)]

∣∣∣2 +
∣∣∣M[C1; H̃udpn, (zm, zM );φ, (0, 1)]

∣∣∣2
+
∣∣∣M[C̃1;Hudpn, (zm, zM );φ, (0, 1)]

∣∣∣2 +
∣∣∣M[C̃2;Hudpn, (zm, zM );φ, (0, 1)]

∣∣∣2] (A.3)

The coefficient C0 is given in terms of its real and imaginary part,

Re C0 = (eu − ed)2
[ 8
κ̂z1z2(1− z1)(1− z2)

]
+
(
e2
u − e2

d

) [ 4(z1 − z2)
z1z2(1− z1)(1− z2)

]
+ 8eued
z1z2(1− z1)(1− z2)

(z1(1− z1) + z2(1− z2))(z1z2 + (1− z1)(1− z2))
4z1z2(1− z1)(1− z2) + κ̂(1− z1 − z2)2 , (A.4)

Im C0 = −4π (eu − ed)2
[
δ(1− z1)

z2
+ δ(z1)

1− z2

]
+ 8π

(
e2
u − e2

d

) [δ(z1)− δ(1− z1)
κ̂z2(1− z2)

]
+ 8πeued

κ̂

[(
1

z2 − zas
+
√

1− κ̂
z2(1− z2)

)
δ(z1 − p(z2))sgn(z2 − zas)

+
(

1
z2 − z̃as(κ̂) −

√
1− κ̂

z2(1− z2)

)
δ(z1 − p̃(z2))sgn(z2 − z̃as)

−
(1 + κ̂

z2
+ 2

1− z2

)
δ(1− z1)−

( 1 + κ̂

1− z2
+ 2
z2

)
δ(z1)

]
, (A.5)

where we defined

zas = 1 +
√

1− κ̂
2 , z̃as = 1−

√
1− κ̂

2 ,

p(z2) = −zas
1− z2
z2 − zas

, p̃(z2) = −z̃as
1− z2
z2 − z̃as

. (A.6)

The terms without δ-functions contain z1 poles when convoluting with the GPDs, which
should be understood in the sense of principal value. We have organized the hard coefficient
in terms of (eu−ed)2, (e2

u−e2
d) and eued, where the eued part comes exclusively from Type-

A diagrams. One immediately notices that the (eu − ed)2 and (e2
u − e2

d) terms only give
“moment”-type sensitivity to the functional forms of GPD/DA while the eued terms contain
enhanced sensitivity.

In order to show how the shape of κ̂ is sensitive to the z1 or z2 distribution, we show
in figure 28 the shapes of Re C0 distribution in eq. (A.4) as a function of κ̂ for a few
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Figure 28. The shapes of κ̂ distribution in Re C0 in eq. (A.4), normalized to its value at κ̂ = 1,
for a few different values of (z1, z2), for (a) (eu, ed) = (2/3,−1/3) and (b) (eu, ed) = (2/3, 2/3).

different values of (z1, z2), where the eu and ed refer to the fractional charges of the two
active quark (or antiquark) lines, which are not necessarily the up and down quarks. For
the purpose of illustration, we present two different cases: (a) (eu, ed) = (2/3,−1/3) and
(2) (eu, ed) = (2/3, 2/3). For the case (a), all three terms in eq. (A.4), proportional to
(eu− ed)2, (e2

u− e2
d) and eued, respectively, will contribute, while for the case (b), only the

term proportional to eued contributes. Apart from the evident sensitivity of κ̂ shape to the
z1 and z2 values, which is true for both cases, the sensitivity for the case (b), which does
not have the terms proportional to (eu − ed)2 and (e2

u − e2
d), is much stronger, as shown in

figure 28(b), which indicates that these two terms are larger in the case of Re C0.
The coefficient C1 is given by,

Re C1 = (eu − ed)2
[
− 8(1− 2z1)(1− 2z2)
κ̂z1z2(1− z1)(1− z2)

]
+
(
e2
u − e2

d

) [ 4(z1 − z2)
z1z2(1− z1)(1− z2)

]
(A.7)

+ eued

[ 8
z1z2(1− z1)(1− z2)

(z1(1− z1) + z2(1− z2))(z1z2 + (1− z1)(1− z2))
4z1z2(1− z1)(1− z2) + κ̂(1− z1 − z2)2

]
,

Im C1 = −4π (eu − ed)2
[
δ(z1)
1− z2

+ δ(1− z1)
z2

]
(A.8)

− 8π
(
e2
u − e2

d

) [ (1− 2z2)
κ̂z2(1− z2) (δ(z1) + δ(1− z1))

]
+ 8πeued

κ̂

[( √
1− κ̂

z2(1− z2) + 1
z2 − zas

)
δ(z1 − p(z2))sgn(z2 − zas).

−
( √

1− κ̂
z2(1− z2) −

1
z2 − z̃as

)
δ(z1 − p̃(z2))sgn(z2 − z̃as)

−
( 1 + κ̂

1− z2
− 2
z2

)
δ(z1)−

(1 + κ̂

z2
− 2

1− z2

)
δ(1− z1)

]
.

We note that for the chiral-even hard coefficients, under the exchange (z1, z2) ↔ (1 −
z1, 1 − z2), the (eu − ed)2 and eued terms are invariant, but the (e2

u − e2
d) terms lead to

a minus sign, as a direct result of the isospin breaking effect from Type-B diagrams, cf.
eqs. (2.66)–(2.68).
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The coefficient C̃1 is given by,

Re C̃1 = −8 (eu − ed)2

κ̂

√
1− κ̂ (z1 − z2) + z1z2 − (1− z1)(1− z2)

z1z2(1− z1)(1− z2)

− 8eued
z1z2(1− z1)(1− z2)

√
1− κ̂ (z1 − z2)(1− z1 − z2)2

4z1z2(1− z1)(1− z2) + κ̂(1− z1 − z2)2 , (A.9)

Im C̃1 =
(
e2
u − e2

d

) 8π
κ̂

[(
1

1− z2
+
√

1− κ̂
z2

)
δ(1− z1) +

(
1
z2

+
√

1− κ̂
1− z2

)
δ(z1)

]

+ 8πeued
κ̂z2(1− z2)

[(
|z2 − zas|+

κ̂

4|z2 − zas|

)
δ(z1 − p(z2))

−
(
|z2 − z̃as|+

κ̂

4|z2 − z̃as|

)
δ(z1 − p̃(z2))

+
(√

1− κ̂ (1− z2) + 2z2
)
δ(1− z1)−

(√
1− κ̂ z2 + 2(1− z2)

)
δ(z1)

]
(A.10)

The coefficient C̃2 is given by,

Re C̃2 = − 8 (eu − ed)2

κ̂z1z2(1− z1)(1− z2)
[√

1− κ̂ (z1 − z2)− z1z2 + (1− z1)(1− z2)
]

− 8eued
z1z2(1− z1)(1− z2)

√
1− κ̂ (z1 − z2)(1− z1 − z2)2

4z1z2(1− z1)(1− z2) + κ̂(1− z1 − z2)2 ,

Im C̃2 = 8π
(
e2
u − e2

d

)
κ̂

[(√
1− κ̂
z2

− 1
1− z2

)
δ(1− z1) +

(√
1− κ̂

1− z2
− 1
z2

)
δ(z1)

]

+ 8πeued
κ̂z2(1− z2)

[(
|z2 − zas|+

κ̂

4|z2 − zas|

)
δ(z1 − p(z2))

−
(
|z2 − z̃as|+

κ̂

4|z2 − z̃as|

)
δ(z1 − p̃(z2))

+
(√

1− κ̂ (1− z2)− 2z2
)
δ(1− z1)−

(√
1− κ̂ z2 − 2(1− z2)

)
δ(z1)

]
. (A.11)

The chiral-odd hard coefficients have opposite symmetry behavior to the chiral-even ones
under the exchange (z1, z2)↔ (1− z1, 1− z2). Namely, the (eu − ed)2 and eued terms lead
to a minus sign, but the (e2

u − e2
d) terms are invariant, cf. eqs. (3.22)–(3.24).
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