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Abstract: The classification of 4D reflexive polytopes by Kreuzer and Skarke allows for a
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on these orientifolded Calabi-Yaus for which the D3-charge contribution coming from
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further consider non-local D7-tadpole cancellation through Whitney branes. We argue that
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1 Introduction

Within the general context of flux compactifications in string theory, the goal of this paper
is twofold: first, to discuss the size of D3-tadpoles in the presence of local and non-local
D7 configurations. Secondly, to generate a database of Calabi-Yau (CY) orientifolds from
reflection involutions that allows us to explicitly determine the size of D3-tadpoles in
concrete models and that may have further applications.

Regarding the second goal, we provide a complete scan of type IIB orientifold models
with O3/O7-planes for h1,1 ≤ 7 for CY hypersurfaces obtained from the Kreuzer-Skarke
(KS) database [1] via reflection involutions z → −z of toric coordinates. For 8 ≤ h1,1 ≤ 12,
we compute one triangulation per polytope to search for further appropriate models. We
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stress that our methods are easily applied to any triangulation of any polytope in the
KS database.

The KS database [1] has received substantial attention in recent years, especially with the
advent of software developments such as CYTools [2], making geometries at h1,1 > 10 readily
accessible. Our investigation complements the analysis of [3, 4] for exchange involutions
in the KS database for h1,1 ≤ 6 as well as of [5] for Complete Intersection Calabi-Yaus
(CICYs). Our database contains 71,941,643 orientifolds and extends previous orientifold
databases of 2,004,513 CICY orientifolds [5] and 28,463 divisor exchange involutions [3].1
The full data can be found in the following GitHub repository together with a jupyter
notebook providing instructions on how to read and work with the data.

The size of the D3-tadpole is critical for stabilising moduli with fluxes [6, 7]. Recently,
it has been argued that the required size of the D3-tadpole to stabilise all complex structure
moduli with fluxes is −QD3 > αh1,2 [8] where α > 2/3 in our convention.2 This is known
as the tadpole problem since it is challenging to obtain such large D3 charges in typical
type IIB orientifold models [8, 9].3

The cancellation of D7 tadpoles also plays a role in determining the size of the maximum
possible D3 charge, as D7-branes and O7-planes induce some D3-charge. Usually this is
done locally in terms of stacks of D7-branes on top of O7 orientifold planes. However,
there are other means to cancel the tadpoles. In particular the consideration of Whitney
branes, that cancel non-locally the D7-charge of the O7-planes, since they are not localised
on top of the O7 planes, allows the possibility of substantially enhancing the maximum
value of the D3 charge needed to cancel the D3 tadpoles. We argue that construction
with Whitney branes [11, 12] significantly surpass estimates for the D3-charge from SO(8)
stacks of D7-branes on top of O7-planes. Similar observations have been made in [5] for
general orientifolds of CICYs. Our models beat previous records for the total D3-charges
obtained in type IIB setups as exemplified by table 1. Ultimately, the goal is to combine our
investigation with de Sitter constructions which we will explore in an upcoming paper [13].

This paper is organised as follows. Next section is devoted to introductory material
regarding the construction of CY orientifolds in terms of hypersurfaces of 4-dimensional
reflexive polytopes. We describe the different types of toric divisors and their topological
properties that are relevant for our subsequent discussions. In section 3 we discuss the
orientifold involution and determine the different brane configurations needed to cancel
the tadpoles induced by the O3 and O7 orientifold planes. In particular we point out the
difference between local D7-branes and non-local D7 or Whitney branes and how they

1To be more concrete, we are working at the level of triangulations and not at the level of geometries.
Hence, some triangulations may correspond to the same favourable Calabi-Yau geometry. In [3], the 28,463
triangulation-wise involutions reduced to 5,660 geometry-wise proper involutions out of which 4,482 are
obtained from favourable geometries. In contrast, the CICY orientifolds of [5] are counted as distinct
geometries. In this sense, the stated number of ∼ 7.2 · 107 should be taken with a grain of salt.

2In [8], QD3 = χ(Y4)/24, while in our convention QD3 = −χ(Y4)/12 as we compute the D3-charge in the
perturbative type IIB double cover set up.

3As pointed out e.g. in [10], the tadpole conjecture could be phrased more precisely by stating that the
landscape of vacua at large number of (complex structure) moduli may require singular geometries since the
smoothness of the manifold was assumed to reach the conclusion.
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|QD3| Type D7-tadpole cancellation h1,1 Reference

≤ 428 KS non-local 3 [14]

≤ 72 CICY local ≤ 19 [5]

≤ 264 CICY non-local ≤ 19 [5]

≤ 272 CICY local 4 [15]

≤ 60 KS local ≤ 6 [3]

≤ 504 KS local ≤ 12 our database

≤ 6664 KS non-local ≤ 12 our database

Table 1. List of values for the total D3-charge contribution to the D3-tadpole.

contribute differently to the D3 tadpoles.
Section 4 describes in detail our database including the corresponding Hodge numbers

and D3-brane charges, focusing on the general dependence of the D3 charges on the Hodge
numbers and illustrating the maximum number of D3 charges that are relevant for the
tadpole problem. First, we present a full scan for orientifold models for h1,1 ≤ 7. Then
we perform a random sampling for geometries with 8 ≤ h1,1 ≤ 12 and identify the largest
values of D3 charges for both local and non-local D7-brane configurations.

We describe the model with the largest D3-charge contribution in our database explicitly
in section 5. We summarise our conclusions in section 6. In appendix A we provide concrete
examples of Whitney branes analysing their factorisation property depending on the topology
of the divisors. In a second appendix B, we present a simple example of a CY threefold
with genus one fibration.

2 From polytopes to Calabi-Yau hypersurfaces

Here we collect some elementary definitions and formulae necessary for constructing CY
hypersurfaces from 4-dimensional reflexive polytopes in the Kreuzer-Skarke (KS) database [1],
see [16–18] for details of the construction.

2.1 Triangulations of 4D reflexive polyhedra

We construct CY threefolds as anti-canonical hypersurfaces in 4D Gorenstein toric Fano
varieties [19]. To this end, we use combinatorial information encoded in 4-dimensional
reflexive lattice polytopes. A complete list of 4D reflexive polytopes was initiated by
Kreuzer and Skarke [1]. A database of CY threefolds with h1,1 ≤ 6 was generated in [3,
16, 20], while [2, 18, 21, 22] explored regimes up to h1,1 = 491 and their phenomenological
implications in [23, 24].
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To construct CY threefolds, one begins with two reflexive polytopes ∆ and ∆◦ based
on two 4D lattices M ∼= Z4 and N ∼= Z4 with a pairing 〈· , ·〉 so that ∆ ∈MR = M ⊗R and
∆◦ ∈ NR = N ⊗ R satisfy

〈∆,∆◦〉 ≥ −1 . (2.1)

We associate to the polytope ∆◦ a fan Σ in the following way. Reflexivity of ∆◦ implies
that the origin of N is the unique interior lattice point of ∆◦. We denote all other lattice
points of ∆◦ by νi. The latter correspond to primitive generators of the rays of the fan
Σ. The cones of Σ are given by a triangulation of ∆◦, i.e., special subsets of the νi with
each containing the generators of a cone. We will focus on so-called fine, regular, star
triangulations4 (FRSTs), whose fan describes a simplicial toric 4-fold denoted PΣ. One can
introduce weighted, homogeneous coordinates zi on PΣ. Within PΣ, the CY threefold X
is found as the zero locus of a polynomial P = ∑

m cm pm, where pm are monomials in
zi’s and cm are coefficients related to the complex structure moduli of X. The individual
monomials pm appearing in P are encoded by ∆, also called the Newton polytope of the
hypersurface. They are easily computed from (see e.g. eq. (A.8) in [16])

pm =
∏
i

z
〈m,νi〉+1
i , m ∈ ∆ ∩M . (2.2)

Although PΣ does not need to be smooth, every FRST leads to a smooth hypersurface
X [19]. We focus exclusively on favourable geometries where

h1,1(X) = dim(Pic(PΣ)) , (2.3)

that is, the Kähler moduli on X descend from those of the ambient space PΣ.
Computationally, it is generically expensive to compute all triangulations for a given

∆◦. For sufficiently simple polytopes, that is, those with few lattice points, all triangulations
were obtained in [16] up to h1,1(X) = 6. Here, only a small subset of the triangulation data
was required to define the geometry of X. Specifically, everything happening inside faces
of co-dimension one can be ignored. In our scan, we check all favourable geometries for
h1,1(X) ≤ 7 and provide partial results up to h1,1(X) = 12.

2.2 Toric divisors and their topologies

Each weighted, homogeneous coordinate zi of PΣ corresponds to a point on the boundary
of ∆◦. The loci D̃i = {zi = 0} are called prime toric divisors (see e.g. [18] for details). The
subset of such divisors which intersect X transversely corresponds to points that lie in faces
of ∆◦ of dimension ≤ 2. Intersecting such a locus with the CY hypersurface equation, one
gets a divisor Di ∈ H1,1(X,Z) which defines a 4-cycle in X dual to a 2-cycle ωi. Since
we focus exclusively on favourable polytopes and geometries, all such prime toric divisors
are irreducible on X. Hence, H4(X,Z) is generated by any basis constructed from {Di},
i = 1, . . . , h1,1(X) + 4.

4A triangulation is fine if all points not interior to facets appear as vertices of a simplex. Further, it is
star if the origin is a vertex of each full-dimensional simplex. Regularity implies that Σ is the normal fan of
a polytope and essentially ensures that PΣ and X are projective, see [25].
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The Hodge numbers of divisors are collectively denoted as

h• (D) =
{
h0,0 (D) , h0,1(D), h0,2(D), h1,1(D)

}
. (2.4)

A rigid divisor Drig is defined as

h• (Drig) =
{

1, 0, 0, h1,1(Drig)
}
. (2.5)

Prototypical examples include del Pezzo divisors dPn, n = 0, . . . , 8 (where dP0 = P2) and
the Hirzebruch surface F0 = P1 × P1, for which h(1,1)(DdPn) = n+ 1 and h(1,1)(DF0) = 2.
These divisors play a special role since they can be shrunk to a point allowing for SM
realisations on D3-branes placed at the tip of the singularity [15]. Rigid divisors with
h(1,1)(D) > 9 are typically referred to as non-shrinkable.

For later purposes, we distinguish other common types of divisors as follows, see also [3]:

1. Wilson divisors: h•(D) = {1, h1,0, 0, h1,1} with both h1,0 6= 0 and h1,1 6= 0,

2. K3 divisor: h•(D) = {1, 0, 1, 20},

3. SD1: h•(D) = {1, 0, 1, 21},

4. SD2: h•(D) = {1, 0, 2, 30}.

To compute these Hodge numbers, we follow the steps outlined in [17, 26], that we now
review.5 As said above, each toric divisor Di ∈ H1,1(X,Z) is associated with a lattice point
νi on ∆◦. Its Hodge numbers h0,p can be obtained from the location of νi inside ∆◦. In
fact, one finds the following [19, 29]:

1. Rigid divisors: a toric divisor Di is rigid if

`∗(Θ) = 0 , (2.6)

where `∗ is the sum of all interior points of the face Θ, which is the dual of the face
containing νi.

2. Deformation divisors: divisors with h0,2(Di) > 0 and h0,1(Di) = 0 are associated with
points νi corresponding to vertices of ∆◦ so that

h0,1 (Di) = 0 , h0,2 (Di) = `∗
(
Θ[3]

)
, (2.7)

in terms of the dual face Θ[3] to νi = Θ◦[0].

3. Wilson divisors: lastly, divisors Di associated with points νi inside a one-dimensional
face Θ◦[1] of ∆◦ give rise to

h0,1 (Di) = `∗
(
Θ[2]

)
, h0,2(Di) = 0 , (2.8)

in terms of the dual face Θ[2] to Θ◦[1].
5Another way to computing divisor topologies uses the cohomCalg package [27, 28] which is however

limited when applied to models with h1,1(X) ≥ 6. In particular, the authors of [3] computed the Hodge
numbers of divisors up to h1,1(X) = 6 in this way.

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
0

The above conditions can easily be checked using Sage [30]. The remaining Hodge numbers
can then be inferred from the Euler characteristic and the arithmetic genus

χ(D) = 2h0,0 − 4h0,1 + 2h0,2 + h1,1 =
∫
D
c2(D) , (2.9)

χ0(D) = h0,0 − h0,1 + h0,2 = 1
12

∫
D

(
c1(D)2 + c2(D)

)
. (2.10)

The r.h.s. can be easily computed from the CY data, by using adjunction formula c2(X) =
c2(D)− c1(D)2 and c1(D) = −ι∗D for a CY:∫

D
c2(D) =

∫
D

(D2 + c2(X)) ,
∫
D

(
c1(D)2 + c2(D)

)
=
∫
D

(2D2 + c2(X)) . (2.11)

The above can be solved for h0,0 and h1,1 as

h0,0 = χ0(D) + h0,1 − h0,2 , h1,1 = χ(D)− 2χ0(D) + 2h0,1 . (2.12)

Instead of computing Hodge numbers explicitly, it can also be useful to check the
sufficient conditions for del Pezzo divisors using their intersection numbers. Indeed, a del
Pezzo divisor must satisfy the following topological conditions∫

X
D3
s = ksss = 9− n > 0 ,

∫
X
D2
s Di ≤ 0 ∀ i 6= s . (2.13)

We moreover look for divisors Ds that satisfy the following diagonality condition [31]

ksss ksij = kssi kssj ∀ i, j . (2.14)

If this condition is satisfied, then the volume of the associated 4-cycle Ds is a
complete-square:

τs = 1
2 ksijt

i tj = 1
2 ksss

kssi kssjt
i tj = 1

2 ksss

(
kssi t

i
)2

, (2.15)

where we sum over i, j but not over s. This condition is commonly used in the LVS [32, 33]
by ensuring that the volume form is of swiss cheese type. Furthermore, it allows to generate
del Pezzo singularities by shrinking the divisor to a point along one direction of the Kähler
moduli space which is heavily utilised in constructions of branes at singularities, see [15] for
a recent discussion and further references.

3 Orientifold configurations

We focus on involutions of toric coordinates of the form σk : zk → −zk for which h1,1
− = 0 (if

the corresponding geometry is favourable, see e.g. [3] for a discussion). For each involution,
we obtain configurations of Op-planes given by fixed point loci of the associated involution
σk. Tadpole and anomaly cancellation is ensured by adding an appropriate D-brane setup.

– 6 –
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3.1 Orientifold data

We consider involutions with O3/O7 orientifold planes. An O7-plane wraps a fixed surface
Di in the CY three-fold, while an O3-plane is at an isolated fixed point of the involution.

An important topological invariant that we will need later to compute the D3-charge
contributions is the Euler characteristic (2.9) of a (smooth) divisors Di. As said above, it is
given by the integral

∫
Di

c2(Di) which is computed from the topological data

χ(Di) = kiii +
∫
Di

c2(X) (3.1)

= 2h0,0(Di)− 4h1,0(Di) + 2h2,0(Di) + h1,1(Di) . (3.2)

The knowledge of the topology of the fixed point set allows to compute other integers
invariants of the CY orientifold. In particular the cohomology groups Hp,q(X) split into
even and odd subspaces of the (pull-back of the) orientifold involution. Their dimensions
are called hp,1+ (X) and hp,1− (X) respectively. To compute them, we use Lefschetz fixed point
theorem which states that∑

i

(−1)i(bi+(X)− bi−(X)) = χ(Oσ) , bi±(X) =
∑
p+q=i

hp,q± (X) (3.3)

in terms of the even/odd Betti numbers bi±(X). Here, we will have

χ(Oσ) =
∑
i

χ(O7i) +
∑
k

χ(O3k) , with χ(O3k) = 1 . (3.4)

For CY threefolds, the expression (3.3) simplifies to

2 + 2
(
h1,1

+ (X)− h1,1
− (X)

)
− 2

(
h1,2

+ (X)− h1,2
− (X)− 1

)
= χ(Oσ) . (3.5)

Since we know h1,1
± (X) (in cases under study h1,1

− (X) = 0 and h1,1
+ (X) = h1,1(X)), we can

use this relation to obtain the Hodge numbers h1,2
± (X). We need to solve the equations:

h1,2
+ (X) + h1,2

− (X) = h1,2(X) , h1,2
+ (X)− h1,2

− (X) = h1,1(X) + 2− χ(Oσ)
2 . (3.6)

Below, we use this data to discard models where the computation of h1,2
± (X) lead to

non-integer values, as this is a signal of possible unwanted singularities.
To detect more subtle singularities which are not manifest in the orientifold data, we

look at the underlying polytopes. Let us just reiterate again that we are interested in
involutions of a single homogeneous toric coordinate zk → −zk which is associated with one
of the boundary lattice points νk of ∆◦ not interior to facets (i.e., 3-faces). Recalling (2.2),
the invariant CY equation for zk → −zk is obtained from the monomials

p(k)
m =

∏
i

z
〈m,νi〉+1
i , m ∈ ∆k ∩M (3.7)

where we define
∆k = {m ∈ ∆ : 〈m, νk〉+ 1 ∈ 2N} . (3.8)

– 7 –
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We argue that the properties of ∆k are in one-to-one correspondence with the hypersurface
obtained from tuning the CY equation to be invariant under zk → −zk.

Removing (the non-invariant) monomials for the CY defining equation can force some
singularities: either 1) the hypersurface is forced to touch singularities of the ambient
space, or 2) the defining polynomial describes now a singular hypersurface (there are points
where the differential of the equation and the equation itself vanish simultaneously). Since
we want to work with smooth spaces, we need to discard models where the involution
forces singularities.

The desired invariant CY X can be obtained from triangulations of the polar dual ∆◦k.
Since we are interested in collecting big numbers, we decide to keep in the analysis only
invariant CY’s corresponding to favorable ∆◦k and reflexive ∆k. For these CY we can claim
smoothness. We checked in several models that the excluded CY’s were actually singular.6

3.2 D7-branes

In order to cancel the D7-tadpole induced by the O7-planes, we add D7-branes on the
appropriate divisors.

The D7-charge of an O7-plane wrapping the divisor Di is −8[Di]. The easiest way to
cancel the D7-tadpole is then to put 4 D7-branes plus their 4 images on top of the O7-plane.
The D7-brane configuration is given in this case by z8

i = 0. The gauge group supported on
such a stack is SO(8).

The other extreme case is to cancel the D7-tadpole by a fully recombined D7-brane in
the homology class 8[Di]. This is called Whitney brane, as it is forced to have a singular
worldvolume of the form of the Whitney umbrella [11, 12, 34]:

η2 − z2
i χ = 0 , (3.9)

where zi ∈ O(Di), η ∈ O(4Di) and χ ∈ O(6Di). The sections η and χ are invariant under
the orientifold involution, while zi 7→ −zi. This brane supports no continuous gauge group
and has zero chiral intersection with (fluxless) D7- or E3-branes supported on an intersecting
divisor [12].

For a generic toric divisor with high weights, the locus (3.9) is connected. However, there
can be particular cases when the generic sections η, χ of the line bundles O(4Di),O(6Di)
factorise. For instance, it may happen that

η = zmj η
′ , χ = z2m

j χ′ . (3.10)

Then the equation of the configuration will be

z2m
j

(
η′2 − z2

i χ
′
)

= 0 . (3.11)

If this happens, we recover a stack of D7-branes on zj = 0 plus a Whitney brane of lower
degree in the homology class 8[Di]− 2m[Dj ] (see e.g. [14]).

6Of course, string theory is well defined also on singular spaces. In the database we provide on GitHub,
the reader can find also the data of the singular models. However we decide to stay on the safe side, studying
models with smooth geometry where the usual formulae to compute topological invariants work well.
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A particular important example of a factorisation like (3.10) appears when Di is a
rigid divisor. In this case η ∝ z4

i and χ ∝ z6
i and we are left with a configuration, whose

locus is z8
i = 0, i.e. we have four D7-branes plus their four images on top of the O7-plane,

generating an SO(8) D7-brane stack.
Also special non-rigid divisors can lead to a factorisation of the Whitney brane. In fact,

whenever Di is a K3 surface the Whitney brane splits into a U(1)4 configuration with four
D7-branes plus their four images. In our analysis we found that this kind of factorization
often happens for divisors with h2,0 = 1. We provide two explicit examples in appendix A.

3.3 D-brane worldvolume flux

Let us assume that the orientifold model contains stacks of E3/D7-branes wrapped on a
divisors D. We can then turn on a gauge flux

F = F2 − ι∗B2 , (3.12)

where F2 is the field strength of the worldvolume U(1) gauge theory, B2 is the NSNS 2-form
potential and ι∗ : H2(X)→ H2(D) is the pull-back map on D.

Freed-Witten anomaly cancellation [35] requires the following quantization condition
on F2:

F2 + c1(D)
2 ∈ H2(D,Z) , (3.13)

where c1(D) = −ι∗D for X a CY. This implies that the following expression for F fulfills
this condition:

F =
h1,1(X)∑
k=1

nk ι
∗Dk + 1

2 ι
∗D − ι∗B2 with nk ∈ Z (3.14)

and with {Dk} an integral basis of H2(X,Z).
If D is wrapped by an O(1) ED3-instanton, then the orientifold invariance of the

configuration requires
FED3 = 0 . (3.15)

This can be achieved by properly choosing the background of B2, i.e. s.t.

ι∗B2 = ι∗DZ −
1
2 ι
∗D with DZ ∈ H2(X,Z) . (3.16)

Rank-2 E3 instantons with a non-trivial gauge bundle can also be allowed by a B2 that
does not fulfill (3.16) [36].

Let us come to the Whitney brane (3.9) in the homology class 8[Di]. The Whitney
brane can support an integral flux, that as we will see contribute to the D3-charge. When
this flux is present, the defining polynomial χ is forced to take the form χ = ψ2 − ρτ with
ψ ∈ O(3Di), ρ ∈ O(3Di − 2F + 2B2) and τ ∈ O(3Di + 2F − 2B2), where F ∈ H2(X,Z)
and B2 is the B-field [11]. The flux data is encoded in the choice of the line bundles

O(3Di − 2F + 2B2) and O(3Di + 2F − 2B2), (3.17)

– 9 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
0

i.e. in the choice of the integral two-form F . One gets a zero flux when one of these line
bundles is trivial. Notice that this can be achieved when Di+2B is an even form (remember
that B can take half-integral values), that may not happen.

When one of the line bundles in (3.17) has no holomorphic sections, then either ρ or τ
is forced to vanish. In this case, the Whitney brane locus factorizes as

(η + ziψ)(η − ziψ) = 0 , (3.18)

i.e. it splits into a pair of one D7-brane and its orientifold image, both in the homology
class [4Di]. Hence, in order for the Whitney brane to be non-factorised one requires that
the line bundles (3.17) have holomorphic sections, i.e.

− 3Di

2 +B2 ≤ F ≤
3Di

2 +B2 . (3.19)

Even when the condition (3.19) holds, one can set ρ = τ = 0 by a deformation of
the Whitney brane. Correspondingly, the Whitney branes splits as in (3.18). The U(1)
D7-brane has then a flux F = ι∗(F −B2), where F is the same two-form appearing in (3.17).
When this happens, the D7-brane can have chiral intersections with some E3-instantons.
This will be counted by the formula

0 =
∫
D7∩ED3

(FD7 −FED3) = DD7 ·DED3 · FD7 . (3.20)

A non-perturbative instanton contribution to the 4D superpotential requires the absence of
chiral modes (for non-chiral modes, see footnote 21 in [15]) at the intersection of D7-branes
and ED3-instantons. This generally limits the flux allowed on the D7-branes.

A U(1) D7-brane with fluxes supports a generically non-zero FI-term:

ξD7 = 1
4πV

∫
Di

FD7 ∧ J . (3.21)

This term, if non-zero, requires a non-vanishing VEV for scalar modes at the intersection
between D7 and its image in order to cancel the D-term potential.7 If F satisfies (3.19),
this corresponds to deforming the branes switching on non-zero ρ and τ ; this recombines
the two branes into a Whitney brane. If the condition (3.19) is not fulfilled, then only ρ or
τ can be non-zero and we generate a T-brane background, i.e. the two branes form a bound
state whose locus is still (3.18) [37].

3.4 The D3-tadpole

We now compute the induced D3-charge from the orientifold configuration. Generally, the
D3-tadpole cancellation condition reads

ND3 +ND3′ +Nflux = −QD3 , with QD3 = Qtot
D7 +Qtot

Op , (3.22)

7There is also the possibility that the sign of ξ generates a D-term that is strictly positive; in this case
this leads to SUSY breaking [37].
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where

Qtot
D7 =

∑
i

(
QiD7 +QiD7′

)
, Qtot

Op =
∑
k

QkO3 +
∑
l

QlO7 . (3.23)

For O7/O3-planes, we collect

QiO7 = −χ(Di)
6 , QiO3 = −1

2 , (3.24)

whereas a U(1) D7-brane contributes as

QiD7 = −χ(Di)
24 − 1

2

∫
Di

F ∧ F . (3.25)

For later convenience, we refer to Qtot
SO(8) and Qtot

WD7 as the D3-charge contribution
coming from rigid D7-branes and Whitney branes respectively. The first one is easy to
compute: when all the four D7 branes have the same flux F , then the group is broken to
SU(4) (the diagonal U(1) get a Stückelberg mass due to Green-Schwartz mechanism) and
the contribution of the stack to the D3-tadpole is

Qtot
SO(8) = 8Qone D7 = −χ(Di)

3 − 4
∫
Di

F ∧ F . (3.26)

For the Whitney brane the situation is a bit different. The expression of its total
D3-charge can be derived in a simple way [12]: the D3-charge does not change under
recombination or splitting of branes; hence we can compute it in the phase where the
Whitney brane splits into a U(1) brane and its image. Hence, for a Whitney brane in the
class 8Di

QiWD7 = −χ(4Di)
12 −

∫
X
Di ∧ (F −B2) ∧ (F −B2) . (3.27)

with F given in (3.19). The geometric contribution of the Whitney brane is different
from the geometric contribution of the brane/image-brane system [11]. In fact, the D3-
charge contributions from geometry and from the flux encoded into the line bundles (3.17)
are [11, 38]

QiWD7,geom = −1
3

∫
X
Di ∧ (43Di ∧Di + c2(X)) = −χ(4Di)

12 − 9
∫
X
D3
i , (3.28)

QiWD7,flux =
∫
X
Di ∧ (3Di − 2F + 2B2) ∧ (3Di + 2F − 2B2) . (3.29)

One can easily check that the sum of the two gives (3.27) and that QiWD7,flux is identically
zero when the line bundles (3.17) are trivial. If Di + 2B2 is an even integral form, one can
actually take zero flux and make QiWD7,flux vanish.8 Generically this is not possible, but it
is always possible to choose F such that QiWD7,flux � QiWD7,geom. This will justify, in our
analysis, to approximate the D3-charge of a Whitney brane by its geometric contribution.

8Actually, it is enough that ι∗Di
(3Di + 2B2 − 2F ) vanishes, in order to have Qi

W D7,flux = 0.
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Before we continue, let us make a few estimates on the D3-charge contributions. Let us
start from

−Qtot
O7 =

∑
i

χ(Di)
6 = χ(Oσ)−NO3

6 = h1,1(X) + h1,2
− (X)− h1,2

+ (X) + 2
3 − NO3

6 ,

where we used (3.4) and (3.5) (with h1,1
− (X) = 0) and where NO3 is the number of isolated

fixed points in X. We conclude that there are two possibilities of increasing this value by
investigating models with either many Kähler or instead many complex structure moduli.
We are going to observe this scaling with respect to h1,2

− quite frequently below for orientifolds
with h1,2

+ = 0, see in particular figure 3.
Now, assume we have O7-planes on divisors Di and that we cancel their D7-charge by

putting 4 D7-branes plus their 4 images in each Di (producing a bunch of SO(8) stacks).
This is the choice that minimize the D3-charge contribution from O7/D7’s. Let us now
consider several CY’s X and involutions and let us estimate what is the maximum that we
can get for the D3-charge for this minimal configuration, where we cancel the D7-tadpole
locally (i.e. with only SO(8) stacks). One may use (3.26) and write (in the absence of
worldvolume fluxes)

−Qtot
SO(8) =

∑
i

χ(Di)
3 = 2h

1,1(X) + h1,2
− (X)− h1,2

+ (X) + 2
3 − NO3

3 (3.30)

to arrive at [5, 8, 10, 11]

−QD3 = −Qtot
O3 −Qtot

O7 −Qtot
SO(8) ≤ 2 + h1,1 + h1,2 , (3.31)

where in the last step we used Qtot
O3 = −NO3

2 and the fact that h1,2
− (X)− h1,2

+ (X) ≤ h1,2(X).
In the KS database, this implies −QD3 ≤ 504 for e.g. CYs with Hodge numbers

(h1,1, h1,2) = (11, 491) which we discuss further below.

D3-tadpole in F-theory. A perturbative type IIB orientifold compactification can always
be described in F-theory language. The F-theory compactification manifold is a CY fourfold
that is an elliptic fibration over the base space B3 = X/σ, that is the quotient of X by the
orientifold involution. If the involution allows to cancel all the D7-tadpoles by Whitney
branes, this corresponds to a smooth CY fourfold in F-theory. Splitting the Whitney branes
in type IIB, producing a non-trivial gauge group G, corresponds to deforming the fourfold
generating codimension-3 (abelian G) or codimension-2 (non-abelian G) singularities. If
the fixed point locus includes a rigid divisor, then the D7-branes on that divisor support an
SO(8) gauge group that cannot be deformed; this corresponds to a so called non-Higgsable
cluster in the F-theory fourfold [39, 40], i.e. in this case a non-deformable D4 singularity.

The D3-tadpole cancellation condition in F-theory takes the form:9

1
2

∫
Y4
G4 ∧G4 +ND3 = χ(Y4)

24 , (3.32)

9We note that χ(Y4)/24 = −QD3/2 when compared to D3-tadpole in (3.22) given that we work with the
double cover in section 3.4.
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where10 χ(Y4) = 6
(
8 + h1,1(Y4) + h1,3(Y4)− h1,2(Y4)

)
is the Euler characteristic of the

fourfold. When the fourfold is singular, this formula still applies, provided one uses the
resolved fourfold [11, 38, 41]. However, the geometric contribution to the tadpole decreases
as one makes a deformation from a smooth to a singular fourfold (with some gauge group
and matter). This is consistent with what one observes in type IIB: splitting the Whitney
brane, the D3 contribution decreases (in absolute value) [11].

The large D3-charges that are usually mentioned in literature as coming from F-theory
backgrounds, correspond typically to smooth fourfold (with no gauge group or matter).
These large D3-charges can be reached in type IIB by canceling the D7-tadpole by means
of Whitney branes.

4 Orientifold database

In this section, we generate a database of CY orientifolds models based on the general
information summarised in section 3. An essential tool in this context is the CYTools
package [2] which allows us to construct FRSTs from polytopes at arbitrary h1,1. Beyond
that, we implemented a basic algorithm to construct CY orientifolds from the polytope and
triangulation data from reflection involutions. We test this implementation up to h1,1 = 12.
As an application of our database, we investigate the size of D3-charge contributions.

4.1 An algorithm for finding orientifold configurations

For each CY X and each choice of involution, we determine the fixed point set in the
following way.

1. We first find the CY equation that is symmetric under the chosen involution, by
determining the set of invariant monomials under σk (keeping only those in (2.2)
involving even powers of zk).

2. We determine loci of points of the toric ambient fourfold PΣ that are fixed under σk:
in practice, we consider the action on the coordinates zj of σk and σk · ζa, with ζa the
C∗ toric equivalences, and taking into account the SR ideal.

3. We check whether the invariant CY equation vanishes at a given locus. If no, a
complex co-dimension n locus in PΣ determines the presence of an Om-plane with
m = 3 + 2(3− n). If yes, a co-dimension n locus corresponds to an Om-plane with
m = 3 + 2(4− n).

We consider involutions that generate O3- and O7-planes, so in our scan there are no
O5/O9-planes which can however arise for exchange involutions [3].

The number of O3-planes is determined from the intersection numbers either in the
CY for co-dimension 3 or in the ambient fourfold for co-dimension 4 fixed point loci. The
latter can be obtained from CYTools where we take special care of singularities in the
ambient space.

10This is obtained from χ(Y4) = 4+2h1,1−4h1,2+2h1,3+h2,2 together with h2,2 = 44+4h1,1−2h1,2+4h1,3.
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h1,1 2 3 4 5 6 7 total

polytopes 36 244 1,197 4,990 17,101 50,376 73,944

fav. polytopes 36 243 1,185 4,897 16,608 48,221 71,190

fav. FRSTs 48 525 5,330 56,714 584,281 5,990,333 6,637,231

involutions 184 3,035 39,653 495,854 5,777,640 65,625,277 71,941,643

smooth invol. 138 1,975 22,933 230,886 2,081,080 17,875,12211 20,212,134

only O7 49 598 3,896 25,391 177,468 1,336,960 1,544,362

≥ 2 coin. O3 71 1,089 15,497 164,634 1,480,968 12,596,558 14,258,817

Table 2. Number of CY orientifolds obtained in our scan. We also collected the numbers of the
models with only O7-planes or more than one coincident O3-plane.

A similar algorithm to determine the O-plane configurations in the context of exchange
involutions was introduced in [3]. In this sense, our work provides a complementary analysis
for the geometries with h1,1 ≤ 6, while providing additional statistics up to h1,1 = 12. What
sets our database apart is the study of Whitney brane configurations as opposed to simple
SO(8) stacks of D7-branes.

4.2 Complete scan for CYs with h1,1 ≤ 7 and random CYs at h1,1 ≤ 12

The database we produce consists of two sets of data:

1. We compute all FRSTs of all favourable polytopes at h1,1 ≤ 7. For each toric
coordinate zk, we construct the orientifold configuration associated with the involution
zk → −zk. This data is summarised in table 2.

2. For each combination of Hodge numbers (h1,1, h1,2) up to h1,1 = 12, we generate up
to 20 random FRSTs of ≤ 20 favourable polytopes. Again, we build orientifolds for
involutions of each toric coordinate zk → −zk. The results are given in table 3.

The full data are collected in a GitHub repository which can be found here: https://github.
com/AndreasSchachner/CY_Orientifold_database.

As we said, for each triangulation, we analyse each involution zk 7→ −zk and determine
the fixed point set. In table 2 and in table 3 we report the numbers of independent12
involutions. Some of these involutions lead to singularities in the CY threefold. As explained

11Parts of the orientifold data for h1,1 = 7 are still work in progress and will be updated in the repository
as soon as possible.

12We count the number of inequivalent involutions given that inverting coordinates with the same weight
vector gives rise to equivalent involutions up to coordinate redefinitions.
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h1,1 7 8 9 10 11 12 total

fav. polytopes 1,219 1,498 1,587 1,555 1,623 1,807 8,980

fav. FRSTs 4,560 6,897 9,968 12,189 15,748 15,430 64,792

involutions 49,326 81,911 128,403 169,775 235,216 245,989 910,620

smooth invol. 6,491 9,102 13,041 15,713 21,892 24,154 90,393

only O7 1,769 2,608 3,493 3,543 4,330 4,772 20,515

≥ 2 coin. O3 3,168 4,084 5,865 6,692 9,978 9,507 39,294

Table 3. Random FRSTs for favourable polytopes between 7 ≤ h1,1 ≤ 12. We selected up to 20
polytopes for each combination of Hodge numbers (h1,1, h1,2) available in the KS database.

at the end of section 3.1, we can detect the singular models. We refer to models that do
not present manifest pathologies as smooth involutions.

We finally report the number of models that contain only O7-planes and those that
contain at least two O3 planes that can collide by a complex structure deformation of the
threefold. Models in both classes will be suitable for T-brane de Sitter uplift, while models
in the last class are needed in order to implement de Sitter uplift by an anti-D3-brane at
the tip of a highly warped throat realising the scenario outlined in [42–44].

As observed in [15], there is a trend that del Pezzo divisors dPn with 1 ≤ n ≤ 5
embedded into CY threefolds obtained from the KS database never satisfy the diagonality
condition (2.14), cf. table 4. Our analysis extends the conjecture of [15] to all FRSTs
at h1,1 = 6, 7.

4.3 Hodge and Euler numbers of toric divisors

In this section, we investigate the divisor data of CY threefolds with h1,1 ≤ 6. We computed
the Hodge numbers of prime toric divisors via the methods described in section 2.2 which
is largely consistent with the data presented in [3]. We compare the D3-charge contribution
of SO(8) stacks (local D7-tadpole cancellation) with that of Whitney branes (non-local
D7-tadpole cancellation). We argue that there is an enhancement of about a factor of 5
between local and non-local D7-tadpole cancellation.

Recalling (3.2), it is clear that divisors with h(0,1)(D) = 0 lead to the largest Euler
characteristic. That is, it seems to be profitable to have O7-planes and D7-branes wrapping
divisors with Hodge numbers

h• (D) =
{

1, 0, h(0,2)(D), h(1,1)(D)
}
, (4.1)

for which (3.2) leads to

χ(D) = 2
(
1 + h2,0(D)

)
+ h1,1(D) . (4.2)
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Figure 1. Histogram plots for Hodge numbers hp,q of all divisors at h1,1 ≤ 6. We ignore h0,0 given
that h0,0(D) = 1 for all D. The bottom right plot shows a correlation map for the relevant divisor
and CY data.

Clearly, maximising χ(D) is beneficial from the perspective of the tadpole (3.22). Using
the results computed in our database for h1,1 ≤ 6, we compute the Euler characteristic for
every divisor finding that the maximal value is13

χ(D)
∣∣
max= 549 . (4.3)

A complete overview of the distribution of both Hodge numbers as well as Euler charac-
teristics of (prime toric) divisors appearing in the KS database up to h1,1 = 6 is shown in
figure 1 and figure 2 respectively.

In figure 2, we show the distribution of Euler numbers for different types of divisors.
Clearly, non-rigid divisors result in the largest χ(D) with the maximum given by (4.3),
while χ(Drigid)

∣∣
max= 111 for rigid divisors. Those divisors D with non-positive χ(D) are

in fact associated with Wilson divisors14 with h0,1(D) > 0 and h0,2(D) = 0 out of which
44.67% are Exact-Wilson divisors with h0,1(D) = 1.

In figure 1, we present a correlation map for Hodge and Euler numbers of divisors. The
correlations between χ(D) and the corresponding Hodge numbers is clear from (3.2). In
our data, there are no significant correlations between any of the variables shown on the

13For models that admit exchange involutions, one verifies that χ(D)
∣∣
max

= 492 in agreement with [10].
14We compared these results to the Hodge numbers obtained from the database [3] and found overall

agreement.
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Figure 2. Histogram plots for Euler numbers of divisors. In the first row, we computed the
distribution of Euler numbers for all divisors D on the left and for only non-rigid divisors Dnr with
either h0,1(D) > 0 or h0,2(D) > 0. The second row shows the Euler characteristic for divisors which
are rigid (left) or Wilson (right) with h1,0 6= 0, h2,0 = 0.

bottom right of figure 1 with the number of Kähler moduli h1,1(X) of the CY X nor with
h0,0(D) which is why we omitted the later two. Interestingly, we observe that there is an
anti-correlation between h0,1(D) with h0,2(D) and h1,1(D), while at the same time h0,2(D)
and h1,1(D) are strongly correlated. This implies that there is an obvious trend where
larger h1,1(D) implies large h0,2(D) plus small h0,1(D) and, hence, larger χ(D). We observe
similar correlations of χ(D) and χ(4D) with h1,2(X) which will be confirmed further below
in figure 3.

4.4 D3-charge in the database and non-local D7-tadpole cancellation

In this section, we will study how the D3-tadpole contribution from localised sources varies
in the dataset we are taking into account.

We begin by considering only the D3-charge coming from the O-planes. We present an
overview of their D3-charge contribution in figure 3. We ignored models with positive Qtot

Op.
The colouring indicates the value of h1,2

+ where we clearly see the trend expected from (3.4):
non-vanishing h1,2

+ decreases the absolute value of the D3-charge contribution. The models
on the diagonal line have h1,2

+ = 0 and follow the expected scaling ∼ −h1,2
− /3 as derived

in (3.4).

– 17 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
0

Figure 3. Overview of the D3-charge contribution contributed by Op-planes only. For h1,1 ≥ 7,
we present the data for models collected in table 3, while for h1,1 ≤ 6 we use the models of
table 2. The maximal absolute value for the D3-charge comes from orientifolds with Hodge numbers
(h1,1, h1,2

− , h1,2
+ ) = (11, 491, 0) where we find Qtot

Op = −168.
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Let us introduce the D7-branes. We analyse the situation in the absence of gauge
flux on the D7-branes.15 For each model (derived from a choice of CY X and involution),
we try to cancel the D7-tadpole generated by the O7-planes by a D7-brane configuration
that maximizes their (absolute value of the) contribution to the D3-charge. For each
O7-plane that we find we then work out the topology of the wrapped divisor. If we have
O7-planes on rigid or Wilson divisors, we cancel the D7-tadpole by a SO(8) stacks. For
O7-planes on deformation divisors with h0,2(D) > 1, we cancel the D7-tadpole non-locally
through Whitney branes, see appendix A for details. Finally, whenever h0,2(D) = 1, we
construct (3.9) explicitly to check for eventual factorisation; if no factorization is forced, we
add a Whitney brane.

For each h1,1(X), we pick the model (X and involution) whose localised sources
contribute most to the total D3-charge. In table 4, we report the absolute value of the
total D3-charge from these localised sources for two cases: 1) the D7-tadpole is canceled
by putting 4 + 4 D7-branes on top of all the O7-planes (local D7-tadpole cancellation)
and 2) we put Whitney branes on all non-rigid O7-plane divisors (non-local D7-tadpole
cancellation).

Let us stress the difference between local and non-local D7-tadpole cancellation. If
we were to simply add (4+4) D7-branes on top of each of the D7-branes to cancel the
D7-tadpole locally, this would amount to16

QD3 ≈ −(4 + 4)χ(Di)
24︸ ︷︷ ︸

D7

−χ(Di)
6︸ ︷︷ ︸

O7

, (4.4)

which leads to the conservative estimate

local D7-tadpole cancellation: |QD3| ≤ 504 , (4.5)

as one can check in table 4. This is precisely the upper bound obtained in (3.31) for
(h1,1, h1,2) = (11, 491). In figure 4, we show that the D3-tadpole is significantly enhanced by
considering more generic brane configurations, as we argued in section 3.4. The results in
table 4 show that in this case the total D3-charge extraordinarily exceeds the bound (4.5).
In particular, as we argue below in section 5, using instead Whitney branes, the total
D3-charge is increased by about a factor of 13, obtaining the following bound on localised
sources D3-charge:

non-local D7-tadpole cancellation: |QD3| ≤ 6, 664 . (4.6)

The values stated in table 4 give an upper bound on the total D3-charge. For models with
multiple O3-planes at the tip of a throat which are suitable for anti-D3 uplift [43], we
obtain |QD3| ≤ 3592 with the maximal value realised for orientifolds with Hodge numbers
(h1,1

+ , h1,2
− ) = (12, 274).

15Freed-Witten anomaly cancellation may force some flux to be non-zero; however one can always choose
a flux that minimise its contribution to the D3-charge; in this situation our results are good approximations
for the total D3-charge coming from localised sources.

16We ignore the contribution from O3-planes here. For models with the minimal Qtot
Op on the diagonal in

figure 3, there are actually no O3-planes which justifies the bound given in (4.5).
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Complete scan at h1,1(X) ≤ 6

Random data at 7 ≤ h1,1(X) ≤ 12.

Figure 4. Local vs. non-local tadpole cancellation for data at h1,1(X) ≤ 6. Left: distribution of
QSO(8)(D) for divisors with h0,2(D) > 1 and h0,1(D) = 0. Right: distribution of QWD7(D) for the
same divisors.

We finally note that we neglected the D3-contribution from fluxes. The fluxes change
the total QD3, both decreasing it (it is the case of a supersymmetric flux, including the
flux on the Whitney brane) and increasing it (it is the case of a flux generating a non-zero
FI-terms inducing e.g. a T-brane background [45]). These fluxes typically do not change
the order of magnitude of our estimations. However they must be taken into consideration
in explicit models when computing D3-tadpole cancellation.

Cancelling the tadpole locally through (4+4) D7-branes on top of O7-planes has led
to charges [−72, 8] in [5] for CICY orientifolds and [−60, 0] in [3] for toric CY orientifolds
with h1,1 ≤ 6 from exchange involutions.17 In the analysis in [5], it has been shown how
non-local tadpole cancellation through generic D7-branes can lead to a significantly larger
range [−264,−24]. This had consciously been used in many previous applications involving
Whitney branes [11, 12, 14, 44], or mild splitting of them [15, 26, 47, 48]

We collect all divisors with Hodge numbers h0,2(D) > 1 and h0,1(D) = 0 at h1,1(X) ≤ 6
as computed in [3]. It is then instructive to compare the total D3-charge contribution from

17We note that QD3 = −2QD3
SO(8) in the conventions of [5], while QD3 = −2Qloc

D3 in the convention of [3].
Our convention for the D3-tadpole (3.22) is based on eq. (3.81) in [46] where QD3 = 2Qc.
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Complete scan at h1,1 ≤ 6

h1,1(X) QSO(8)(D) QWD7(D)

2 −25.82 −269.77

3 −28.31 −316.69

4 −29.78 −342.26

5 −30.27 −344.21

6 −30.53 −339.49

7 −30.16 −321.89

Random data at h1,1 ≤ 12

h1,1(X) QSO(8)(D) QWD7(D)

7 −35.21 −391.76

8 −37.82 −428.97

9 −40.12 −458.18

10 −40.27 −457.08

11 −42.90 −497.89

12 −42.23 −480.87

Table 5. Average D3-charge contribution for local and non-local D7-tadpole cancellation for
complete scan (left) and randomise data (right).

a stack of (4+4) D7-branes (local) and Whitney branes (non-local), as shown in figure 4 for
h1,1(X) ≤ 6 and 7 ≤ h1,1(X) ≤ 12 respectively, where

QSO(8)(D) = −(4 + 4) · χ(D)
24 , QWD7(D) ' −χ(4D)

12 − 9
∫
X
D3 . (4.7)

In the last definition we have neglected the flux contribution (3.29) depending on F −B2,
as it does not change the order of magnitude of the Whitney brane D3-charge.

The maximal D3-charge contribution from D7-branes on a single divisor are given by

|QSO(8)(D)| |max =

183 h1,1(X) ≤ 6

329.3 7 ≤ h1,1(X) ≤ 12
,

|QWD7(D)| |max =

3, 585 h1,1(X) ≤ 6

6489.3 7 ≤ h1,1(X) ≤ 12
. (4.8)

We collected the average D3-charge for both sources in table 5 where QWD7(D) is enhanced
by a factor of 11 on average.

Large D3-charge and genus-one fibrations. An interesting observation concerns the
behaviour of the D3-charge distribution at large h1,2. While one discovers no particular
structure at small h1,2 < 100, the regime at large h1,2 > 100 exhibits, instead of a uniform
distribution, two distinct dominant lines. We believe that this emergent structure in the
distribution of D3-charges has not yet been observed in the literature.

A hint for what is going on is obtained from previous investigations into the underlying
fibration structure of toric CY threefolds at large h1,2, see [49–52] and references therein. It
is in fact true that CY threefolds in the KS database at sufficiently large Hodge numbers
(h1,2 larger than 240) are associated with elliptic fibrations over complex base surfaces [49].
At the level of 4D reflexive polytopes ∆◦, it is quite straight forward to identify the

– 22 –



J
H
E
P
0
8
(
2
0
2
2
)
0
5
0

Figure 5. Total D3-charge contributions from O-planes for orientifold models with colours indicating
the presence of an underlying F10 = P[2, 3, 1] fibration.

corresponding fibrations. Namely, whenever ∆◦ contains a 2D reflexive sub-polytope, the
associated CY manifold enjoys a genus one fibration [53].18 This is indeed a quite common
feature: out of the 473.8 million polytopes listed in [1], only 29,223 do not contain any such
2D reflexive polytope [52].19

There are only 16 distinct types of genus one fibrations Fi which can be easily identified
from the classification of 2D reflexive polytopes.20 At least at large Hodge numbers, the KS
database is dominated by polytopes exhibiting a description of a standard F10 fibration [49]
(the elliptic fiber is a hypersurface in P[2, 3, 1]) which therefore also plays a distinguished
role in our analysis.

Utilising the algorithm of [52], we computed the 2D reflexive sub-polytopes and the
fibration type for each of the favourable 4D polytopes appearing in our analysis, checking
that the presence of F10 is dominant. We computed the D3-charge distribution for the
different types of fibres. In figure 5 we report that the generic elliptic fibre F10 dominates
especially at h1,2 > 200 as expected from [49]. Not surprisingly, it is responsible for the
universal structure observed in figure 3 independently of h1,1(X). In the regime h1,2 < 200,
similar sub-dominant patterns are found also for elliptic F6 and F8 as well as non-elliptic
F4 (the fiber is an hypersurface in P2[2, 1, 1]) fibrations. All other fibrations as well as the
polytopes without any fibration seem not to experience any enhancement in their D3-charge
contribution (i.e. they are mostly constant as functions of h1,2) nor are they showing any
particularly interesting patterns.

18We stress that there are some subtleties occurring when relating the fibration of the polytopes to the
actual toric variety, see [52] for a detailed discussion.

19In our analysis, we encounter 2,857 (60) of these polytopes in the complete (random) data at h1,1 ≤ 7
(7 ≤ h1,1 ≤ 12).

20A classification of the 16 distinct polytopes is provided in appendix A of [51] which were previously
studied in [54] and play a role in F-theory [50, 55–57].
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Let us try to explain what happens for the F10 case. The CY equation takes the
Weierstrass form, i.e.,

y2 = x3 + f(w)xz4 + g(w)z6 . (4.9)

Here, w denotes collectively coordinates on the toric two-dimensional base B, whereas
x, y, z are projective coordinates on P[2, 3, 1] with x and y being sections respectively of
K̄⊗2
B and K̄⊗3

B . For consistency of the equation, f and g must be sections respectively of
K̄⊗4
B and K̄⊗6

B

At fixed w, the equation (4.9) describes a torus. The Z2 involution of the torus (with
four fixed points) is implemented in this algebraic setup by taking y 7→ −y (or equivalently
z 7→ −z). The Weierstrass form is already invariant. Hence, if one takes (4.9) as the defining
equation for the CY three-fold, one has the involution that inverts y. This toric coordinate
is manifestly of high degree (and among the coordinates of this threefold, y is the highest
degree one) and correspondingly the Euler characteristic of Dy is large. This is the main
reason why we find the largest D3-charges for these models.

In studying the F10 case, we realise another fact: one may add to (4.9) also a term
proportional to x2z2 and then consider the involution x 7→ −x. x is also high degree and
the D3-charge one would obtain from such an involution is still large, even if lower than
the one obtained by y 7→ −y. However, there is a pathology: the invariant CY equation
would be

y2 =
(
a(w)x2 + g(w)z4

)
z2 , (4.10)

that has a manifest (non crepantly resolvable) singularity at z = y = 0. Since xyz is the
SR-ideal, the D7/O7’s do not touch the singularity and their topological invariants do not
feel the pathology. However, we excluded it from our analysis as ∆k is not reflexive because
the monomial x3 is associated with a vertex in the full dual polytope ∆. If we had included
such models, we would have obtained a second diagonal line in our plots of models with
large D3-charge.

5 Example with (h1,1, h1,2) = (11, 491)

To be more specific, let us describe in more detail the model with the potentially largest
D3-tadpole reported in table 4. It turns out that this model is obtained from an involution of
a CY threefold X with Euler characteristic χ(X) = −960 and Hodge numbers (h1,1, h1,2) =
(11, 491). The GLSM charges of X are collected in table 6; the SR ideal is given by

ISR = {z1z2, z3z6, z3z7, z3z8, z3z9, z3z10, z3z11, z3z12, z3z13, z3z14, z4z6, z4z7, z4z8, z4z9,

z4z10, z4z11, z4z12, z4z14, z5z6, z5z7, z5z8, z5z9, z5z10, z5z12, z6z8, z6z10, z6z12, z6z13,

z6z14, z6z15, z7z10, z7z12, z7z13, z7z14, z7z15, z8z12, z8z13, z8z14, z8z15, z9z12, z9z14,

z9z15, z10z14, z10z15, z11z15, z12z15, z4z5z15, z5z13z14, z5z13z15, z7z9z11, z8z9z11,

z9z10z11, z10z11z13, z11z12z13, z11z13z14} . (5.1)

The 2nd Chern numbers are:∫
Di

c2(X) = {24, 24, 168, 368, 548,−4,−4,−4,−4,−4,−4,−4,−4,−4,−4} . (5.2)
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z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15

1 1 12 28 42 0 0 0 0 0 0 0 0 0 0 84

0 0 6 14 21 1 0 0 0 0 0 0 0 0 0 42

0 0 5 12 18 0 1 0 0 0 0 0 0 0 0 36

0 0 4 10 15 0 0 1 0 0 0 0 0 0 0 30

0 0 4 9 14 0 0 0 1 0 0 0 0 0 0 28

0 0 3 8 12 0 0 0 0 1 0 0 0 0 0 24

0 0 3 7 10 0 0 0 0 0 1 0 0 0 0 21

0 0 2 6 9 0 0 0 0 0 0 1 0 0 0 18

0 0 2 4 7 0 0 0 0 0 0 0 1 0 0 14

0 0 1 4 6 0 0 0 0 0 0 0 0 1 0 12

0 0 0 2 3 0 0 0 0 0 0 0 0 0 1 6

Table 6. Weights for the model with h1,1 = 11 and h1,2 = 491.

Finally, the Hodge numbers of the divisors can be computed to be:

h• (D1) = h• (D2) = {1, 0, 1, 20} , h• (D3) = {1, 0, 13, 140} ,
h• (D4) = {1, 0, 51, 392} , h• (D5) = {1, 0, 118, 750} ,
h• (Di) = {1, 0, 0, 2} , i = 6, . . . , 15 . (5.3)

Related to the discussion above, one finds that this CY exhibits an F10 fibration with
coordinates z4, z5, z15 = x, y, z over the Hirzebruch surface F12 as can be seen from the last
line in the GLSM charge matrix in table 6.21 Our analysis shows that the allowed values of
the D3-charge from Op-planes are 8 ≤ |Qtot

Op| ≤ 168. The maximally allowed D3-charge from
O7-planes is actually obtained from (recall (3.4) and that all other Di>5 are dP1 divisors)

χ(D5) + χ(D15) + 4 · χ(dP1) = 2
(
h1,2 + h1,1 + 2

)
= 1, 008 . (5.4)

It is associated with the standard involution of the torus fibre z5 → −z5 as argued above.

For this reason, let us study this involution

z5 → −z5 (5.5)

which gives rise to O7-planes on D5, D6, D8, D12, D13 and D15 and invariant Hodge
numbers (h1,2

− , h1,2
+ ) = (491, 0). There are no O3-planes. As it can be read from the Hodge

21In fact, h1,2 = 491 is the largest possible value for any elliptic CY threefold [58].
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numbers (5.3), the Euler characteristic of the O7 divisors are χ(D5) = 988 and χ(Di) = 4
for i = 6, 8, 12, 13, 15. Hence, The O7-planes contribute to the D3 charge with:

Qtot
O7 = −

∑
k=5,6,8,12,13,15

χ(Dk)
6 = −168 . (5.6)

As concerns the branes configuration, the divisors D6, D8, D12, D13 and D15 are rigid
and then support an SO(8) stack.22 The D7-tadpole from the D5 divisors will instead be
canceled by a Whitney brane.

We choose a B-field that allow to have zero flux on each D7-brane:

B2 = 1
2 (D6 +D8 +D12 +D13 +D15) . (5.7)

Since the divisors D6,8,12,13,15 do not intersect each other, the pull-back of the B-field on the
divisor Di is equal to ι∗Di

B2 = Di
2 and then it cancels the non-integral flux that is necessary

for Freed-Witten anomaly cancellation, leading to Fi = 0. As regarding the Whitney brane,
we need to check that there exists an integral 2-form F that cancels either 3

2D5 + B2 or
3
2D5 −B2 in (3.17). This happens, because D5 +B2 is an even form, as it can be checked
from the GLSM weights in table 6.

Taking vanishing fluxes on each D7-brane, the D3-charge contribution is only geometrical.
The SO(8) stacks contribute to the D3-charge as

Qtot
SO(8) = −

∑
i=6,8,12,13,15

χ(Di)
3 = −5 · 4

3 = −20
3 , (5.8)

while the main contribution to the D3-charge comes from the Whitney brane, whose
geometric contribution (3.28) is

QWD7,geom = −χ(4D5)
12 − 9

∫
X
D3

5 = −19, 468
3 , (5.9)

where we used χ(4D5) = 30, 352 and D3
5 = 440. Cancelling the D7-tadpole from D5 by

a Whitney brane, instead of an SO(8) stack, increases the D3-charge from 7-branes by
approximately a factor of

QD5
WD7,geom

QD5
SO(8)

≈ 20 , (5.10)

where
QD5

SO(8) = −χ(D5)
3 = −988

3 . (5.11)

The total D3-charge contribution from localised sources is then

QD3 = Qtot
O7 +Qtot

SO(8) +QWD7,geom = −6664 , (5.12)

as reported in table 4.

22The SO(8) stacks do not intersect each other.
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To stabilise all the moduli via non-perturbative effects, it would be favourable to
have instantons on the other rigid divisors. Since the B-field (5.7) does not allow to have
vanishing fluxes FE3 on any of these divisors we cannot have O(1) instantons. On the other
side, rank-2 instantons might be allowed [36] provided that one checks that no chiral modes
arise at the intersection with the SO(8) stacks. This model is of course not suitable for
anti-D3 uplift since there are no O3-planes, but in principle we could engineer a T-brane
background that allows for de Sitter minima [45].

6 Conclusions

In this paper, we generated a database of CY orientifolds from holomorphic reflection
involutions of CY hypersurfaces. We determined the orientifold configurations for all
favourable FRSTs for h1,1 ≤ 7. We found more than 70 million involutions of which over 20
million correspond to smooth compactifications. Singular involutions were identified and
their structure deserves further investigation. We also specified the number of cases with
either O3 or O7 planes suitable for antibrane or T-brane uplifts.

We plotted several relevant quantities such as the Euler number and Hodge numbers of
the divisors and the value of the D3 brane charges. We observed some interesting patterns
in the distribution of the models. In particular the values of the D3 charges show non-trivial
structures, such as higher concentration of models in some particular directions, that would
be interesting to understand from the more mathematical perspective.

Our algorithm is in principle capable of computing orientifolds for any h1,1. We provided
partial results for triangulations up to h1,1 = 12. We found several classes of models with
different behaviour in their D3-charge and O-plane configuration. Most importantly, we
provided evidence for a large class of models for which the D3-charge from Op-planes grows
∼ −(h1,1

+ + h1,2
− )/3, i.e., linearly with the number of invariant geometric moduli. This

constitutes an upper bound on the absolute value of the total D3-charge from D7/O7’s
and O3’s.

We further showed that cancelling the D7-tadpole non-locally via Whitney branes
as opposed to locally via SO(8) stacks on top of O7-planes increases the overall D3-
charge by up to factors of 12. We presented an explicit orientifold with Hodge numbers
(h1,1, h1,2) = (11, 491) = (h1,1

+ , h1,2
− ) which led to a total D3-charge of |QD3| = 6, 664. This

value beats previous D3-charge records in type IIB by a large margin (recall table 1). It
provides the necessary space to turn on background fluxes which in turn are relevant for
stabilising moduli and model building. Beyond that, our database contains a plethora of
other models, 357, 730 to be precise, with |QD3| > 504 making it an excellent starting point
for the construction of trustable string vacua. An explicit calculation of moduli stabilisation
for these vacua is beyond the scope of this paper.

An important result of this paper concerns the non-trivial D3-charge distribution
as a function of h1,2. We provided evidence based on the existence of 2D reflexive sub-
polytopes that this is mainly a result of special genus one fibrations of the associated CY
threefolds, especially elliptic F10 (hypersurface in P[2, 3, 1]) and non-elliptic F4 (hypersurface
in P[1, 1, 2]) fibrations. The patterns observed in figure 3 are directly linked to reflecting
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either coordinates along fibre or the base. Further, we put forward an argument for F10
fibrations that involutions involving coordinates along the fibre generically maximise the
bound on the D3-charge. It would be interesting to further explore the role of genus one
fibrations in the context of N = 1 compactifications of type IIB to 4 dimensions.

In the future, it is desirable to extend the database in the regime h1,1 ≥ 12. Recent
works [2, 18, 59] demonstrated that triangulations of polytopes with large h1,1 can be
constructed efficiently. However, exhaustive scans or random sampling might be impractical
which is why a more targeted approach by employing optimisation methods would be
favourable as previously applied in the search for string vacua [60–67]. In the same spirit,
it would also be exciting to relate our database to the one of CICYs [5] and combine it with
the one for divisor exchange involutions [3]. For instance, as compared to [3], we have not
glued together the Kähler cones of equivalent triangulations. Similar to [5], a large fraction
of the orientifolds contained in the database are singular which can in special cases like the
conifold be resolved as discussed in [68] for the CICY landscape. Such resolutions might
lead to new CY threefolds that are not contained in the KS database.
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A Examples with Whitney branes

In this appendix, we study two CYs at h1,1 = 3 which admit divisors of different topologies.
For each toric divisor Di we study a Whitney brane given by the equation

η2
i − z2

i χi = 0 , (A.1)

in order to see whether the line bundles O(4Di) and O(6Di) force the locus (A.1) to factorise.
All in all, our analysis suggests that h0,2(D) > 1 always leads to proper Whitney branes,

while for divisors with h0,2(D) = 1 the factorisation depends on the actual GLSM weight
matrix. In any case, we are mostly interested in divisors of maximal Euler number for
which generically h0,2, h1,1 � 1.

A.1 Example with an SO(8) stack for a non-rigid SD1 divisor

We consider the model (POLYID: 237, TRIANGN: 1 in [16]) with weight matrix in table 7 and
SR ideal

ISR = {z1z6, z2z5, z3z4z7} . (A.2)
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z1 z2 z3 z4 z5 z6 z7 DH

0 0 1 1 1 1 4 8

0 1 0 0 1 1 3 6

1 0 1 0 1 2 5 10

Table 7. Weights for polytope with ID 237 at h1,1 = 3.

Following the procedure outlined in section 2.2, we computed the Hodge numbers

h•(D1) = {1, 0, 0, 9} , h•(D2) = {1, 0, 0, 8} , h•(D3) = {1, 0, 1, 21} ,
h•(D4) = {1, 0, 0, 12} , h•(D5) = {1, 0, 2, 29} , h•(D6) = {1, 0, 3, 38} ,
h•(D7) = {1, 0, 26, 177} . (A.3)

We have three rigid divisors D1, D2, D4 with D1 a dP8 and D2 a dP7, one SD1 divisor D3
and three non-rigid (deformation) divisors D5, D6, D7.

Let us now study the defining equation (A.1) for D7-brane configurations on each of
the divisors. For the rigid divisors D1, D2, D4, the generic section of O(4Di),O(6Di) are
forced to factorise as

ηi = z4
i , χi = z6

i , i ∈ {1, 2, 4} . (A.4)

giving an SO(8) stack. In contrast, we have generic polynomials for the non-rigid divisors
D5, D6, D7 and hence proper Whitney brane configurations.

The more interesting scenario concerns the SD1 divisor D3 = {z3 = 0}. Looking at the
GLSM charges in table 7, the degrees for z3 are given by (1, 0, 1) which implies that z3 = 0
can be modified only through combinations of z1 and z4 with weights (0, 0, 1) and (1, 0, 0)
respectively. This is because all other coordinates zi, i 6= 1, 3, 4, have degrees (∗, 1, ∗). Thus,
we may equivalently write

z3 + αz1z4 = 0 (A.5)

which is the only possible deformation of D3 and hence h0,2(D3) = 1.
The Whitney brane is a representative of the class 8[D3] with degrees (8, 0, 8). A generic

element of this class is of the form

P8(z3 , z1z4) ≡
8∑
i=0

αi z
i
3 (z1z4)8−i = 0 , (A.6)

where P8 is a homogeneous polynomial of degree 8 in two variables. Clearly, the equation
P8(X,Y ) = 0 admits precisely 8 zeros which allows us to write it as

4∏
i=1

(z3 − βi(z1z4))(z3 + βi(z1z4)) = 0 , (A.7)
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0 0 1 1 1 2 1 6

0 1 0 0 1 1 0 3

1 0 2 3 2 4 0 12

Table 8. Weights for polytope with ID 57 at h1,1 = 3.

where we also imposed that our representative is an invariant locus under the involution
z3 7→ −z3. This generic factorisation is valid for all invariant representatives of 8[D3], hence
also for the Whitney brane in this class.

The equation (A.7) tells us that the Whitney brane corresponding to the divisor D3 is
forced to factorise into 4 pairs of brane/image-brane, that need not necessarily be parallel,
i.e., they can in principle intersection23

Notice that the above argument would fail if there was an additional coordinate z0
with degrees (2, 0, 1) for which e.g. the class 2[D3] is represented by

z2
3 + z3z1z4 + (z1z4)2 + z0z1 = 0 . (A.8)

The additional monomial z0z1 spoils the factorisation of the branes discussed above. We
see no reason for why such situations should not be realised in the KS database. Indeed,
the next section provides an explicit example with a divisor with h0,2 = 1 that looks
topologically like a K3 divisor, but whose Whitney brane does not factorise.

A.2 Example with a divisor with hp,q = hp,q(K3)

We consider the model (POLYID: 57, TRIANGN: 3 in [16]) with weight matrix in table 8 and
SR ideal

ISR = {z1z4, z2z5, z3z6z7} . (A.9)

We find that the Hodge numbers for the toric divisors are given by

h•(D1) = {1, 0, 0, 10} , h•(D2) = {1, 0, 0, 8} , h•(D3) = {1, 0, 1, 20} ,
h•(D4) = {1, 0, 2, 30} , h•(D5) = {1, 0, 2, 28} , h•(D6) = {1, 0, 6, 56} ,
h•(D7) = {1, 1, 0, 2} . (A.10)

We have two rigid divisors D1, D2 with D2 a dP7, one Wilson divisor D7, one SD2 divisor
D4 and two additional non-rigid (deformation) divisors D5, D6. The last divisor D3 looks
topologically like a K3 surface. Below we argue why it is not actually the case.

For the rigid divisors D1, D2 and the Wilson divisor D7, we have SO(8) stacks. For
the non-rigid divisors D4, D5, D6, we have generic polynomials and hence proper Whitney
brane configurations.

23For K3 divisors, we expect to find similar situations where the D7-branes are however expected to be
parallel without any intersection.
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For the would-be K3 divisor D3, a closer inspection of the weight system in table 8
shows that the equation z3 = 0 can be deformed such that

z3 + αz2
1z7 = 0 (A.11)

and, given that this is the only possible deformation, h0,2(D3) = 1. On the other hand, the
class 2[D3] may be represented by

z2
3 + α1z3z

2
1z7 + α2

(
z2

1z7
)2

+ βz1z4z7 = 0 . (A.12)

This implies that z8
3 = 0 can be modified in such a way that

8∑
i=0

4∑
j=0

αijz
8−i−2j
3

(
z2

1z7
)i

(z1z4z7)j = 0 . (A.13)

This is a non-homogeneous polynomial in the three coordinates z3, z2
1z7 and z1z4z7. In

particular, it does not factorise which suggests that we obtain a fully recombined D7-brane
in the class 8[D3].

We now argue that the above obstruction to the factorisation of the Whitney brane
appears because D3 is not a K3 surface. In fact, a K3 surface has trivial first Chern class
c1(K3). If it is embedded as a divisor S into a CY threefold, c1(S) = −ι∗SS, then

ι∗SS = 0 ⇒
∫
X
S ∧ S ∧D = 0 ∀D ∈ H1,1(X) (A.14)

The Hodge numbers are basically determined (when h1,0 = 0) by the Euler characteristic
and arithmetic genus of S, that only depend on (see (2.9), (2.10))

∫
X S

3 and
∫
X S

2 · c2(X).
In our example,

∫
X D

3
3 = 0 and

∫
X D

2
3c2(X) = 24 (and h1,0(D3) = 0), hence giving the

Hodge numbers of a K3. However,∫
X
D3 ∧D3 ∧Di = k33i = 2 , i = 2, 5, 6 . (A.15)

The above situation seems to be quite generic and happens for several other examples
such as in the polytopes (triangulations) with IDs 193 (3), 60 (1), 205 (6), 247 (2) and 57
(2) in the database of [16].

B Simple example of CY with genus one fibrations: P[1, 1, 1, 6, 9]

Let us show an established example with a fibration, namely the degree 18 hypersurface in
P[1, 1, 1, 6, 9] [69–71] which is also prominently featured in the LVS [32]. It corresponds to an
elliptic fibration over P2 with fibres F10 (hypersurface in P[2, 3, 1]) and weights summarised
in table 9. The SR-ideal reads

ISR = {z1z2z3, z4z5z6} (B.1)
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1 1 1 6 9 0 18

0 0 0 2 3 1 6

Table 9. Weights for P[1, 1, 1, 6, 9].

and the topology of divisors is

h•(Di) = {1, 0, 2, 30} , χ(Di) = 36 , i = 1, 2, 3 , (B.2)
h•(D4) = {1, 0, 28, 218} , χ(D4) = 276 , (B.3)
h•(D5) = {1, 0, 65, 417} , χ(D5) = 549 , (B.4)
h•(D6) = {1, 0, 0, 1} , χ(D6) = 3 . (B.5)

This CY threefold X3 has Hodge numbers (h1,1, h1,2) = (2, 272) and Euler characteristic
χ(X) = −540. The most general CY equation with degrees DH in table 9 reads

z2
5 = z3

4 + h9(z1, z2, z3) z5z
3
6 + h12(z1, z2, z3)z4z

4
6 + h18(z1, z2, z3)z6

6

+ h3(z1, z2, z3)z4z5z6 + h6(z1, z2, z3)z2
4z

2
6 , (B.6)

that, by a coordinate change can be brought in a Weierstrass form. Let us denote the
P2 base of X3 as B and the associated canonical class as KB. Then h3n are sections
of O(−nKB).

In the notation of [69], we may write D6 = H − 3L where D4 = 2H, D5 = 3H and
Di = L, i = 1, 2, 3. The intersection pattern is

L3 = 0 , L2H = 1 , LH2 = 3 , H3 = 9 . (B.7)

From c2(X3) · L = 36 and c2(X3) ·H = 102 we compute

χ(L) = 36 , χ(H) = 111 , χ(H − 3L) = χ(H)− χ(3L) . (B.8)

This example is a good arena to understand the emergence of the three lines persisting
at large h1,2 > 100 independently of h1,1 as shown in figure 3. The orientifolds obtained
from reflection involutions of one of the coordinates zi, i = 1, . . . , 6, fall precisely in three
categories. A simple analysis shows that the O-plane configurations are given by:

• zi → −zi, i = 1, 2, 3: a single O7-plane wrapping Di, one O3-plane at zj = zk =
z6 = 0 and three coinciding O3-planes at zj = zk = z5 = 0 where (i, j, k) ∈
{(1, 2, 3), (2, 3, 1), (3, 1, 2)}. The Hodge numbers are (h1,2

+ , h1,2
− ) = (128, 144).

• z4 → −z4: a single O7-plane wrapping D4 and Hodge numbers (h1,2
+ , h1,2

− ) = (69, 203).

• zi → −zi, i = 5, 6: two O7-planes wrapping both D5, D6 and Hodge numbers
(h1,2

+ , h1,2
− ) = (0, 272).
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The D3-charges from Op-planes are computed as

Qtot
Op =


−8 reflecting z1, z2, z3 ,

−46 reflecting z4 ,

−92 reflecting z5, z6 .

(B.9)

Reflecting along the base P2 described by {z1, z2, z3} gives the minimal D3-charge contribu-
tion. The P[2, 3, 1]-fibre is parametrised by {z4, z5, z6} for which we distinguish two cases:

1. If we reflect z5 → −z5 (or equivalently z6 → −z6), we get four fixed point in the
fiber: fibering these points over the base B one obtains the two divisors D5 and
D6, that will be wrapped by O7-planes. Given that z5 ∈ O(3H), the corresponding
O7-plane/D7-brane setup provides the largest contribution to the D3-charge.

2. Let us now consider the involution z4 → −z4: the fiber is invariant under it only when
it degenerates to

z2
5 = z2

6

(
az2

4 + bz4
6

)
. (B.10)

Unfortunately this singularity is inherited by the CY. Ignoring such a singularity,
one may conclude that there is an O7-plane wrapping D4, that does not touch the
singularity because of the SR ideal.
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