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1 Introduction

As a type of Witten index, the superconformal indices [1] encode the BPS spectrum of the
theory, and have been studied extensively in the literature. The case of N = 4 super-Yang-
Mills theory with SU(N) gauge group is particularly interesting due to the holographic
duality with type IIB string theory on AdS5×S5 background [2]. The superconformal indices
have many important applications. Most notably, they are essential for the understandings of
the microscopic entropy of supersymmetric AdS5 black holes [3–5]. Their various expansions
can be interpreted as the contributions of D-branes, studied e.g. recently in [6–10].

For theories with a Lagrangian description, the d-dimensional superconformal index
can be computed by path integral formalism as the supersymmetric partition function on
S1×Sd−1, which localizes to a matrix integral, see e.g. an early paper on the case of N = 4
super-Yang-Mills [11]. A particular specialization of the 4d superconformal index, known as
the Schur index [12], has some further nice mathematical properties. For example, in some
cases it can be computed from the q-deformed 2d Yang-Mills [13], or the vacuum character
of a corresponding chiral algebra [14]. For the case of N = 4 supersymmetry, besides a
universal fugacity parameter denoted as q, the Schur index may have an extra flavor fugacity
from the symmetry SU(2)F ⊂ SU(4)R. In this paper we will simply consider the unflavored
index without the extra fugacity. Some remarkable (quasi)-modular properties of the index
are studied recently in [15, 16] in the context of a larger class of theories, based on some
earlier works in e.g. [17, 18].

On the other hand, topological string theory on Calabi-Yau three-folds has been an
active research area for decades, with many sophisticated available techniques. The goal of
the present paper is to apply one of these techniques to the calculations of Schur index. The
relation between superconformal index and topological string amplitude has appeared before,
in e.g. [19, 20]. In those cases, one has a 5d supersymmetric field theory from compactifying
M-theory on a Calabi-Yau three-fold, and the 5d Nekrasov partition function on the Omega
background S1 × R4

ε1,ε2 is simply equivalent to the refined topological string amplitude on
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the Calabi-Yau space. The 5d superconformal index at the fixed point of renormalization
group flow can be computed by localization method as the partition function of the 5d field
theory on S1 × S4, and is written as an integral of a product of two complex conjugate
refined topological string amplitudes. This is similar to Pestun’s calculation [21] of N = 2
supersymmetric partition function on S4, which localizes to a matrix integral in terms of 4d
Nekrasov partition function. Similar relations appear also for 5d supersymmetric partition
function on S5 and 6d superconformal index, which are computed by an integral of a triple
product of refined topological string amplitudes [22].

Our setting is somewhat different from those of [19, 20, 22], as the 4d superconformal
index considered here seems much simpler than the 5d or 6d cases. We will directly apply
topological string method of modular anomaly equation to the calculations of 4d Schur index,
instead of writing it as an integral of topological string amplitudes. We will encounter the
Eisenstein series and Jacobi Theta functions, where some of the basic properties are listed in
appendix A. It is well known that the Eisenstein series E4, E6 freely generate the modular
forms of SL(2,Z). The second Eisenstein series E2 is not exactly modular but transforms
with a shift. The ring of polynomials of E2, E4, E6, known as quasi-modular forms, is closed
under the derivative action q ddq . For a general introduction see [23]. The quasi-modular
forms appear in many studies in topological string theory, especially in geometries containing
elliptic curves, e.g. in early papers [24–27]. In some cases there is a modular anomaly
equation containing derivative with respect to the quasi-modular E2, which is related to
the holomorphic anomaly equation for general Calabi-Yau geometries without necessarily
elliptic curves [28]. See e.g. the recent papers [29, 30] for more discussions.

We will propose an analogous modular anomaly equation for Schur index in our context.
During our study we will utilize the interesting connection to the seemingly remote topic of
number theory through the MacMahon’s sum-of-divisors functions, whose mathematical
properties [31, 32] provide a proof of our proposal as well as elucidate the connections with
available results in the literature.

2 Modular anomaly equation

According to the localization method, the unflavored Schur index of the N = 4 SU(N)
super-Yang-Mills theory can be written in terms of a unitary matrix integral. As in the
literature [15, 16], it is convenient to treat the even and odd ranks of the gauge groups
separately. We consider first the simpler SU(2N + 1) case. The formula for Schur index is

I2N+1(q) = q
N(N+1)

2

(2N+1)!

∞∏
n=1

(
1−qn−

1
2

1−qn

)2 ∮ 2N+1∏
i=1

dzi
2πizi

∏
i 6=j

(
1− zi

zj

)
PE

iV (q 1
2
)2N+1∑

i,j=1

zi
zj

 ,
(2.1)

where iV (q) = 2q
1+q is the 1/8 BPS letter index, and PE denotes the well known plethystic

exponential applied to all variables q, zi. Here the factor
∏∞
n=1(1−qn− 1

2
1−qn )2 accounts for the

difference between special unitary group and unitary group. We have also chosen the
prefactor q

N(N+1)
2 in the convention so that the results would have nice modular properties.

For a finite N , it is not difficult to perform the contour integrals which are residues around
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zi ∼ 0 to obtain the q-expansion series to a finite order. For special unitary group, the
integration variables would satisfy the product constraint

∏2N+1
i=1 zi = 1, so we only need to

do the first 2N contour integrals and the last variable z2N+1 will automatically drop out.
Although the formula appears to have half integer powers in the q-expansion, the result
actually has only integer powers. From the formula (2.1) it is obvious that the q-expansion
starts at a high power as

I2N+1(q) = O
(
q

N(N+1)
2

)
. (2.2)

The exact calculations of (2.1) were first performed in [17] in terms of elliptic integrals
and there is also an all order q-series formula

I2N+1(q) =
∞∏
m=1

(1− qm)−3
∞∑
n=0

(−1)n[
(

2N + 1 + n

2N + 1

)
+
(

2N + n

2N + 1

)
]q

(n+N)(n+N+1)
2 . (2.3)

The results were organized into nice formulas in terms of quasi-modular forms in [15, 16].
We can list the formulas in term of Eisenstein series for the first few orders

I1(q) = 1, I3(q) = E2
2 + 1

24 ,

I5(q) = E2
2

8 −
E4
4 + E2

16 + 3
640 ,

I7(q) = E3
2

48 −
E2E4

8 + E6
6 + 5E2

2
192 −

5E4
96 + 37E2

3840 + 5
7168 .

(2.4)

A general formula for all N ’s is also conjectured by Pan and Peelaers [15] as

I2N+1 =
N∑
k=0

λ
(N)
k Ẽ2k, (2.5)

where λ(N)
k ’s are constants determined by some rather complicated relations, and we will

instead give a simpler recursion relation as well as an elementary generating function for
computing them below. Ẽ2k is a quasi-modular form of homogeneous weight 2k defined by

Ẽ0 = 1, Ẽ2k =
∑∑

j≥1 jnj=k

∏
p≥1

1
np!

(
−E2p

2p

)np

. (2.6)

So the weight 2k component in the Schur index I2N+1 is universal, i.e. independent of N
up to a constant factor.

Inspired particularly by the studies of the BPS partition functions of E-strings in [26],
we propose the following modular anomaly equation for the Schur index

∂E2I2N+1 =
N∑
k=1

ckI2N+1−2k, (2.7)

where ck are some constants to be determined in a moment. We note that by string duality,
the partition function in [26] is equivalent to genus zero sector of topological string theory on
a local half K3 Calabi-Yau space, and the modular anomaly equation has been subsequently
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generalized to higher genus [33] and to refined theory [34]. The modular anomaly equation
in [26] is recursive in the number of E-strings, which is identified with the rank of gauge
group in another equivalent description in terms of N = 4 topological Yang-Mills theories
on a half K3 surface [27]. Therefore it is reasonable that we can also have an equation (2.7)
recursive in the rank of the gauge group. There are certainly some notable differences with
the usual form of modular anomaly equation familiar in topological string theory. First,
the right hand side of our equation (2.7) is purely linear in the lower rank indices, without
the usual quadratic terms. Secondly, as seen from (2.4), the Schur index is inhomogeneous,
i.e. a combination of quasi-modular forms of different weights, unlike the usual homogenous
forms.

The modular anomaly equation (2.7) determines the Schur index up to an E2 indepen-
dent term, a modular ambiguity which is polynomial of E4, E6. Since the index I2N+1 has
a maximal weight of 2N , the number of unknown coefficients in the ansatz for modular
ambiguity can be easily counted. In general, the dimension of the space of modular forms
of weight 2N is no more than [N6 ] + 1. So in our case we can estimate the number of
unknown coefficients

∑N
k=0([k6 ] + 1) ∼ N2

12 for large N . On the other hand, for a generic
modular ambiguity, the q-expansion of the Schur index starts from the lowest constant
q0 term. Similar to the case in [27], the vanishing condition (2.2) imposes very strong
constrains, generically fixing N(N+1)

2 unknown coefficients, always overdetermining the
ansatz. Staring from a very simple initial condition I1(q) = 1, c1 = 1

2 , we can recursively
efficiently compute all Schur indices I2N+1 and also determine the constants ck’s in (2.7),
which are 1

2 ,
1
24 ,

1
180 ,

1
1120 ,

1
6300 , · · · . We then observe a general formula for the constants

ck = (k − 1)!2

(2k)! . (2.8)

Our anomaly equation (2.7) is compatible with the general formula (2.5). It is easy to
see that ∂E2Ẽ2k+2 = −1

2 Ẽ2k, so the weight 2k components of each term in (2.7) are always
proportional to Ẽ2k. More precisely, comparing the coefficients in (2.7) and (2.5) we find
the relation

λ
(N)
k+1 = −2

N∑
l=1

clλ
(N−l)
k , k ≥ 0. (2.9)

There is also another interesting method to compute the Schur index. It is pointed out
in [18] that in this case, the Schur index is simply a MacMahon’s generalized sum-of-divisors
function

I2N+1(q) =
∑

0<m1<···<mN

qm1+···+mN

(1− qm1)2 · · · (1− qmN )2 . (2.10)

In [31], a recursion relation for the MacMahon’s function is derived

I2N+1(q) = 1
2N(2N + 1)

[
(6I3(q) +N(N − 1))I2N−1(q)− 2q d

dq
I2N−1(q)

]
. (2.11)

Using the derivative relations of quasi-modular forms (A.2), it is the clear that I2N+1 is
a inhomogeneous quasi-modular form of weight 2N , and it can be also easily computed
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recursively. The q-series formula (2.3) was also proved in [31], therefore the equivalence of
Schur index and MacMahon’s function in this case is clear. The structure of formula (2.5)
of Schur index is preserved by the recursion (2.11) due to the following derivative formula

q
d

dq
Ẽ2k−2 = k(2k + 1)Ẽ2k − 3Ẽ2Ẽ2k−2, (2.12)

which is a generalization of Ramanujan formulas (A.2) and can be certainly checked for
any finite k. It should be derivable from the differential equations of the twisted Eisenstein
series used in [15]. The relation (2.11) is then equivalent to a recursion for the coefficients

λ
(N)
k = 1

8N(2N + 1)[(2N − 1)2λ
(N−1)
k − 8k(2k + 1)λ(N−1)

k−1 ], (2.13)

where in the derivation we only need to look at the E2 monomial term in Ẽ2k in (2.6). For
k < 0 or k > N the coefficients are defined as λ(N)

k = 0. From a simple initial condition
λ

(0)
0 = 1 we can then use the recursion (2.13) to compute all coefficients. For the special

cases k = 0 or k = N , simple formulas λ(N)
0 = (2N)!

24N (2N+1)N !2 and λ
(N)
N = (−1)N can be

easily derived from the recursion. The recursion (2.13) looks much simpler than those given
in [15] but they should certainly give the same result.

In the paper [32], Rose further considered more general MacMahon’s sum-of-divisors
functions, and provide formulas for the generating functions in terms of Jacobi forms. A key
ingredient in the proofs of the formulas in [31, 32] is the well known Jacobi triple product
identity. For an introduction of Jacobi forms, see [35, 36]. This turns out to provide a proof
of the anomaly equation (2.7). In our case, the generating function for Schur index can be
written in terms of the Jacobi theta function as

F (q, x) :=
∞∑
N=0

(−1)NI2N+1(q)x2N+1 = iθ1(q, z)
η(q)3 , (2.14)

with identification of parameters x = eπiz − e−πiz. It is known that a Jacobi forms φm of
index m satisfies a modular anomaly equation

(∂E2 −m(2πz)2)φm = 0. (2.15)

This has been applied successfully in topological string theory for making ansatz, see e.g. [29].
In our context, the generating function is not exactly a Jacobo form of SL(2,Z), but of a
subgroup with index 1

2 [32]. The modular anomaly equation can be still applied similarly(
∂E2 −

1
2(2πz)2

)
F (q, x) = 0. (2.16)

Using the relation x = eπiz − e−πiz as mentioned below (2.14), we can solve for the inverse
relation

πiz = arcsinh
(
x

2

)
= log

[1
2
(
x+

√
4 + x2

)]
. (2.17)

– 5 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
9

Denoting f(x) := (πz)2, it is easy to check that f(x) satisfies a differential equation
(x2 + 4)f ′′(x) + xf ′(x) + 2 = 0. So we can straightforwardly prove by induction that it has
the following series expansion

f(x) = − log2
[1

2
(
x+

√
4 + x2

)]
= 1

2

∞∑
n=1

(−1)n (n− 1)!2

(2n)! x2n. (2.18)

Thus we have derived the modular anomaly equation (2.7) with the formulas (2.8) for the
coefficients.

We can define a generating function G(x, y) :=
∑∞
N=0

∑N
k=0 λ

(N)
k x2N+1y2k+1. Using

the relation (2.9), we have

G(x, y) + 2y2G(x, y)f(ix) =
∞∑
N=0

(2N)!
24N (2N + 1)N !2x

2N+1y = 2yf(ix)
1
2 . (2.19)

So we can also get a solution in terms of elementary functions

G(x, y) = 2yf(ix)
1
2

1 + 4y2f(ix) . (2.20)

One can check the recursion (2.13) is satisfied due to the differential equation

[4∂2
x − (x∂x)2 + 4y2∂2

yy
2]G(x, y) = 0. (2.21)

3 The SU(2N) case

Next we consider the SU(2N) case, which is a little more complicated but similar. The
Schur index formula in our convention is

I2N (q) = q
N2

2

(2N)!

∮ 2N∏
i=1

dzi
2πizi

∏
i 6=j

(
1− zi

zj

)
PE

iV (q 1
2
) 2N∑

i,j=1

zi
zj

 , (3.1)

similar to (2.1) but with a different prefactor. We have omitted the factor
∏∞
n=1

(
1−qn− 1

2
1−qn

)2

so that the expression would have better modular property in this case. So strictly speaking
this is a “rescaled” Schur index, but for convenience of notation we simply work with this
better definition in our context. The vanishing constrains for the index is

I2N (q) = O
(
q

N2
2

)
. (3.2)

In this case, the q-expansion has half integer powers, so this generically will impose N2

constrains on the ansatz. In this case the q-series expansion in [17] is

I2N (q) =
∞∏
m=1

1 + q
m
2

1− q
m
2

∞∑
n=0

(−1)n[
(

2N + n

2N

)
+
(

2N + n− 1
2N

)
]q

(n+N)2
2 . (3.3)

The modular group is now Γ0(2), whose modular forms are generated by

Θr,s(q) = θ2(q)4rθ3(q)4s + θ2(q)4sθ3(q)4r, (3.4)
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which has weight 2(r + s). Some low order formulas for the Schur indices are also available
in [15, 16]

I2(q) = E2
2 + Θ0,1

24 ,

I4(q) = E2
2

8 + E2Θ0,1
48 + Θ0,2

1152 −
Θ1,1
576 + E2

24 + Θ0,1
288 .

(3.5)

Similarly, in this case we propose the modular anomaly equation

∂E2I2N =
N∑
k=1

ckI2N−2k, (3.6)

with a convention for initial index I0 = 1. The number of unknown coefficients in the
modular ambiguity in I2N is counted by Θr,s(q)’s with r + s ≤ N, r ≤ s, and goes like
N2

4 for large N , much smaller than the number of constrains N2. It also turns out that
there is no weight zero constant term in the modular ambiguity, as can be seen from the
examples in (3.5). So starting also from the simple initial condition I0 = 1, c1 = 1

2 , we can
compute all Schur indices and fix the constants ck’s which turn out to be the same as in
the SU(2N + 1) case (2.8). Of course we can also include the constant term in the ansatz
for modular ambiguity, then we simply require the extra initial conditions for I2, c2 to start
the recursive algorithm.

The Schur index can be represented by another MacMahon’s generalized sum-of-divisors
function appeared in [31] as

I2N (q) =
∑

0<m1<···<mN

qm1+···+mN−N
2(

1− qm1− 1
2
)2
· · ·
(
1− qmN− 1

2
)2 , (3.7)

where the same series expansion (3.3) was also derived. Furthermore a recursion relation is
proved in [31]

I2N = 1
2N(2N − 1)

[
(2I2 + (N − 1)2)I2N−2 − 2q d

dq
I2N−2

]
. (3.8)

From the recursion and the initial formula I2, it is clear that the Schur index I2N is
an inhomogeneous Γ0(2) quasi-modular form of weight 2N . A general formula is also
conjectured in [15] in this case. In our convention it is

I2N =
N∑
k=0

λ̃
(N)
k

k!(2k − 1)!!θ
−1
4

(
q
d

dq

)k
θ4 =

N∑
k=0

λ̃
(N)
k

k!

(
−E2

2

)k
+ · · · , (3.9)

where analogous to the SU(2N + 1) case in the previous section, we denote the coefficients
of E2 monomial terms with the same prefactor. It is easy to check that the recursion (3.8)
preserves the structure the general formula (3.9) using derivative formula q ddq log θ4 = −I2.
Furthermore it provides a recursion for the coefficients

λ̃
(N)
k = 1

2N(2N − 1)
[
(N − 1)2λ̃

(N−1)
k − 2k(2k − 1)λ̃(N−1)

k−1

]
. (3.10)

– 7 –



J
H
E
P
0
8
(
2
0
2
2
)
0
4
9

From the initial condition λ̃(0)
0 = 1 we can compute all coefficients (again λ̃(N)

k = 0 for k < 0
or k > N). In this case it is easy to see λ̃(N)

0 = 0 for all N ≥ 1, which explain the absence of
constant term in the Schur index observed earlier. The other special formula λ̃(N)

N = (−1)N

is the same as in the previous section. Finally from the anomaly equation (3.6) we also
have the relation

λ̃
(N)
k+1 = −2

N∑
l=1

clλ̃
(N−l)
k . (3.11)

Similarly the Jacobi form formula in this case [32] provides a proof of the anomaly equa-
tion (3.6), and we skip the details here.

Similarly we can define the generating function G̃(x, y) :=
∑∞
N=0

∑N
k=0 λ̃

(N)
k x2Ny2k.

The anomaly equation (3.11) then provides a solution

G̃(x, y) = 1
1 + 4y2f(ix) , (3.12)

where f(x) is the same function (2.18) appeared before. The recursion (3.10) is satisfied
since G̃(x, y) is annihilated by the same differential operator as in (2.21).

4 Discussions

Although the results for Schur index in the current study have been available in the literature,
we find our method of using the anomaly equation (2.7) and the vanishing conditions (2.2)
provides so far the simplest approach with minimal assumptions. The vanishing conditions
are in fact highly redundant, providing consistency checks by themselves and automatically
giving the coefficients (2.8) in the anomaly equation. Furthermore, using the anomaly
equation we are able to solve the generating functions (2.20), (3.12) for the coefficients in
the general formulas (2.5), (3.9) conjectured in [15].

The non-trivial existence of such over-constrained systems likely suggests a natural
underlying geometric explanation, as mentioned in [31, 32]. It is would also be interesting
to check whether the more general MacMahon’s sum-of-divisors functions studied in [32]
have connections with Schur indices of some other superconformal field theories.

Our anomaly equation (2.7) seems universally simple that it should have a wider
applicability. It would be interesting to apply our proposal to more general superconformal
indices, including more flavor fugacities. A better understanding of the modular property
would help the analysis of the asymptotic behavior of the index, which is essential for
accounting for the black hole entropy in holographic duality.
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A Eisenstein series and Jacobi theta functions

We use the following convention for the weight 2k Eisenstein series

E2k = − B2k
(2k)! + 2

(2k − 1)!

∞∑
n=1

n2k−1qn

1− qn . (A.1)

The well known derivative formulas are due to Ramanujan

q
d

dq
E2 = −E2

2 + 5E4, q
d

dq
E4 = −4E2E4 + 14E6,

q
d

dq
E6 = −6E2E6 + 60E2

4
7 .

(A.2)

In the modular anomaly equation we need to take derivative with respect to E2. Sometimes
a commutation relation between the derivative actions is potentially helpful, see e.g. [30].
For a homogeneous quasi-modular form Gk of weight k, in the current convention for E2
we have

∂E2q
d

dq
Gk =

(
q
d

dq
∂E2 − k

)
Gk. (A.3)

The Jacobi theta function is defined by

θ

[
a

b

]
(τ, z) =

∑
n∈Z

eπi(n+a)2τ+2πiz(n+a)+2πinb , (A.4)

with q = e2πiτ and the usual auxiliary theta functions are θ1 = −iθ
[

1
2
1
2

]
, θ2 = θ

[ 1
2
0

]
,

θ3 = θ
[

0
0

]
and θ4 = θ

[
0
1
2

]
. Often we set the elliptic parameter z = 0 and denote

θ2(q) =
∞∑

n=−∞
q

1
2 (n+ 1

2 )2
, θ3(q) =

∞∑
n=−∞

q
n2
2 , θ4(q) =

∞∑
n=−∞

(−1)nq
n2
2 . (A.5)

Then there is a relation θ4
3 = θ4

2 + θ4
4, and the derivative formulas

q
d

dq
log θ2 = −1

2E2 + 1
24(θ4

3 + θ4
4), q

d

dq
log θ3 = −1

2E2 + 1
24(θ4

2 − θ4
4),

q
d

dq
log θ4 = −1

2E2 −
1
24(θ4

2 + θ4
3).

(A.6)
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