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Abstract: Realistic models based on the renormalizable grand unified theories have va-
rieties of scalars, many of which are capable of mediating baryon (B) and lepton (L)
number non-conserving processes. We identify all such scalar fields residing in 10, 126
and 120 dimensional irreducible representations of SO(10) which can induce baryon and
lepton number violating interactions through the leading order d = 6 and d = 7 opera-
tors. Explicitly computing their couplings with the standard model fermions, we derive
the effective operators including the possibility of mixing between the scalars stemming
from a given representation. We find that such interactions at d = 6 are mediated by only
three sets of scalars: T (3, 1,−1/3), T (3, 1,−4/3) and T(3, 3,−1/3) and their conjugates.
In the models with 10 and 126, only the first has appropriate couplings to mediate the
proton decay. While T and T can induce baryon number violating interactions when 120
is present, T does not contribute to the proton decay at tree level because of its flavour
antisymmetric coupling. Three additional colour triplets and their conjugates can mediate
nucleon decay via d = 7 operators which violate also the B − L. We give general expres-
sions for partial widths of proton in terms of the fundamental Yukawa couplings and use
these results to explicitly compute the proton lifetime and branching ratios for the minimal
non-supersymmetric SO(10) model based on 10 and 126 Higgs. We find that the proton
preferably decays into ν K+ or µ+K0 and list several distinct features of scalar mediated
proton decay. If the latter dominates over the gauge mediated contributions, the proton
decay spectrum provides a direct probe to the flavour structure of the underlying grand
unified theory.
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1 Background

Unification of the Standard Model (SM) gauge symmetries in simple gauge groups [1–3]
often implies the existence of a rich spectrum of the scalars beyond the electroweak doublet
Higgs. The latter is just one of the many submultiplets of an irreducible representation
(irrep) of the underlying unified symmetry group. The dimensions of these representations
are typically larger than the ones which unify, partially or completely, the SM quarks and
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leptons of a given generation. This is particularly the case in renormalizable models in
which more than one type of Yukawa interactions are needed to reproduce the realistic
flavour spectrum including neutrino masses and mixing parameters [4–8]. For example,
in renormalizable models based on SO(10) Grand Unified Theory (GUT), one needs at
least two of the three, namely 10, 126 and 120, irreps for this purpose [9, 10]. They
respectively contain 4, 22 and 24 numbers of SM scalar multiplets with diverse colour
and electroweak charges, see table 1. Their non-trivial charges under the SM gauge sym-
metries and couplings with the SM quarks and leptons make them interesting from the
phenomenological considerations. Potential new physics effects of many of these scalars
have been explored in the context of the recent flavour anomalies (see for example, [11–
14]), muon g − 2 anomaly [15–17], some events at the direct search experiments [18–20],
GUT scale baryogenesis [21, 22] and precision unification of gauge couplings in the absence
of low energy supersymmetry [18, 19, 21–23]. All these require at least a few scalars at the
sub GUT scale.

Some of the scalars with non-zero B − L charges are capable of mediating baryon
number (B) and lepton number (L) violating decays of baryons [24–26] (see also [27–31]
for reviews) depending on their couplings with the SM quarks and leptons. In typical
bottom-up approaches, the freedom to choose their couplings is often exploited to avoid
dangerously fast proton decays. However, if these scalars are part of GUT multiplets which
also contains the SM Higgs like fields, their couplings are often the same couplings that
determine the low energy quark and lepton mass spectrum. Hence, there may exist strong
constraints on the masses of these scalar fields in these models from the stability of the
proton. Such constraints may then forbid them from being light from the perspective of
top-down approaches. Therefore, it is important to derive explicitly the exact nature of the
couplings of various scalars in the underlying GUT framework and their precise predictions
for the nucleon decay spectrum. Such an analysis has been carried out earlier for SU(5)
and flipped SU(5) GUTs in [32, 33]. We perform a comprehensive study for a class of
renormalizable SO(10) GUTs which has a relatively richer spectrum of scalars and more
constrained coupling structure for Yukawa interactions than those in SU(5) GUTs because
of a complete unification of quarks and leptons.

Scalar induced contribution to the proton decay has received less attention in compari-
son to the one mediated by vector bosons in GUTs. The latter has been extensively studied
including the flavour effects [34–37]. Firstly, this is because the vector boson induced con-
tributions dominate over the scalar mediated ones if the mass scale of both the mediators is
of similar magnitude as the latter are suppressed by the first generation Yukawa couplings.
The ratio of scalar to vector induced contributions in the proton decay width is naively
given by

y4
u/M

4
S

g4/M4
V

∼
(
O(10−4) MV

MS

)4
, (1.1)

where g is unified gauge coupling, yu is up-type quark Yukawa coupling and MV,S are
masses of vector and scalar mediators, respectively. Therefore, scalar contributions becomes
significant only if MS . O(10−4)MV . Secondly, the scalar mediated contributions depend
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on the Yukawa sector of the theory and are model-dependent to a large extent.1 Many
of the important aspects of the scalar induced nucleon decays depend on the nature of
the mediator and its exact couplings with the SM quarks and leptons. These details are
not completely captured in the generic model-independent effective theory based anal-
ysis [25, 26].

This work is aimed to provide a complete classification of the scalar induced nucleon
decays in the models based on renormalizable SO(10) GUTs. Identifying various scalar
fields residing in 10, 126 and 120 which carry B − L current, we determine their explicit
couplings with the SM quarks and leptons with appropriate Clebsch-Gordan coefficients.
Interactions that can give rise to nucleon decays at tree level through effective dimension-6
(d = 6) and dimension-7 (d = 7) are then listed out and used to determine explicitly
the proton decay widths in terms of the fundamental Yukawa couplings. In the predic-
tive versions of these GUTs, the latter can be determined, partially or fully, from the
observed masses and mixing parameters of the quarks and leptons. This enables computa-
tion of the proton decay widths with less ambiguity in comparison to the effective theory
based estimations. We demonstrate this by estimating proton decays for the minimal non-
supersymmetric SO(10) GUT which uses 10H and 126H to account for realistic fermion
spectrum. The proton decay pattern is found significantly different from the one induced
by vector bosons in this case.

We give a complete spectrum of various scalar sub-multiplets which may arise in renor-
malizable SO(10) models in the next section and compute their couplings relevant for nu-
cleon decays. In sections 3 and 4, we derive effective operators after integrating out the
relevant scalars and give the explicit expressions of proton decay widths in terms of these
effective couplings in section 5. These results are used to compute the scalar mediated pro-
ton decay spectrum in a minimal model based on two GUT representations in the section 6.
Finally, we summarize in section 7.

2 Scalar spectrum and couplings

In the renormalizable versions of SO(10) gauge theory, the Yukawa sector, in general,
can consist of scalars which are 10, 126 and 120 dimensional irreps of the underlying
gauge group. These irreps, when decomposed under the SM gauge group, contain several
multiplets charged under B − L which can give rise to baryon and/or lepton number
violating interactions. The SM and B − L charges of these fields and their multiplicity in
10H , 126H and 120H are listed in table 1. We use convention in which,

B − L = 4
5Y −

1
5X , (2.1)

where X and Y are the charges under U(1)X and U(1)Y subgroups of SO(10), respec-
tively [38]. The hypercharge generator is normalized in such a way that the electric charge
Q = T3 + Y .

1The vector boson induced contributions also depend on the Yukawa interactions through unitary rota-
tions which relate physical basis with the field basis. This dependency, however, is indirect and relatively
mild in comparison to the scalar mediated contributions.
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SM charges Notation B − L 10H 126H 120H
(1, 1, 0) σ −2 0 1 0
(1, 1, 1) s 2 0 0 1

(1, 1,−1) s −2 0 1 1
(1, 1,−2) X −2 0 1 0(
1, 2,−1

2

)
Da 0 1 1 2(

1, 2, 1
2

)
Da 0 1 1 2

(1, 3, 1) tab 2 0 1 0(
3, 1,−1

3

)
Tα −2

3 1 2 2(
3, 1, 1

3

)
Tα

2
3 1 1 2(

3, 1, 2
3

)
Θαβ −2

3 0 1 1(
3, 1,−2

3

)
Θαβ 2

3 0 0 1(
3, 1,−4

3

)
T α −2

3 0 1 1(
3, 1, 4

3

)
T α 2

3 0 0 1(
3, 2, 1

6

)
∆αa 4

3 0 1 1(
3, 2,−1

6

)
∆αa −4

3 0 1 1(
3, 2, 7

6

)
Ωa
αβ

4
3 0 1 1(

3, 2,−7
6

)
Ωαβ
a −4

3 0 1 1(
3, 3,−1

3

)
Taαb −2

3 0 0 1(
3, 3, 1

3

)
Tabα

2
3 0 1 1(

6, 1, 1
3

)
Sαβγ

2
3 0 1 1(

6, 1,−1
3

)
Sβγα −2

3 0 0 1(
6, 1,−2

3

)
Σαβ 2

3 0 1 0(
6, 1, 4

3

)
Sαβγ

2
3 0 1 0(

6, 3,−1
3

)
Sαβaγb −2

3 0 1 0(
8, 2, 1

2

)
Oαaβ 0 0 1 1(

8, 2,−1
2

)
O
β
αa 0 0 1 1

Table 1. Classification of different scalar fields residing in 10H , 126H and 120H with their charges
under the SM gauge group (SU(3)C , SU(2)L, U(1)Y ), B − L charge and multiplicities in the given
GUT representation.
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To derive couplings of these scalars with the SM quarks and leptons, we decompose
each of the SO(10) invariant Yukawa terms into the ones invariant under the SM gauge
symmetry. This is done by first decomposing the underlying SO(10) interactions into
SU(5) and then the latter is further decomposed in terms of the interactions involving the
SM fermions and appropriately normalised scalars. In the following, we use i, j, k, . . . to
represent SU(5) tensors, α, β, γ, . . . and a, b, c, . . . to represent SU(3) and SU(2) tensors,
respectively. The three generations of fermions are denoted by A,B = 1, 2, 3. The irreps
of SO(10) are distinguished from those of SU(5) by indicating the former in bold.

2.1 16F -16F -10H couplings

The interactions of 16-plet fermions with 10H is parametrized by

− L10
Y = HAB 16TAC−1 16B 10H + h.c. , (2.2)

where HAB = HBA. C is the Lorentz charge conjugation matrix. For brevity, we have
suppressed the equivalent matrix in the gauge space while writing the above term. For
complex scalar 10H , one can also have an additional gauge invariant Yukawa term with
10†H . However, to derive the couplings of scalars with SM quarks and leptons, it is sufficient
to use one of these. The SO(10) invariant terms can be translated into the SU(5) language
following a procedure discussed in [39–41]. Under the SU(5) decomposition, eq. (2.2)
becomes

− L10
Y = i2

√
2HAB

(
10ijA

T
C−15iB5j + 1

8εijklm10ijTAC−110klB5m − 1TAC−15iB5i
)

+ h.c. .
(2.3)

All the SU(5) representations appearing above are defined in such a way that their kinetic
terms are normalized.

The SU(5) fields are further decomposed in the SM fields as the following. The fermions
residing in 10, 5 and 1 dimensional irreps can be identified with the SM fermions as

10αβ ≡ εαβγ uCγ , 10αa ≡ qαa , 10ab ≡ εab eC , (2.4)
5α ≡ dCα , 5a ≡ εab lb , 1 ≡ νC , (2.5)

where all the fermion fields are left-handed Weyl fermions. Similarly, the scalars identified
in 5- and 5-plet can be written as

5α ≡ Tα , 5a ≡ Da , 5α ≡ Tα , 5a ≡ Da . (2.6)

such that their kinetic terms are also in the canonically normalized form. Substitution of
eqs. (2.4), (2.5), (2.6) in eq. (2.3) leads to the following terms involving B − L charged
scalar fields.

−L10/5
Y ⊃ i2

√
2HAB

(
uC TγA C−1 eCB −

1
2εαβγ εab q

αaT
A C−1 qβbB

)
T γ + h.c. ,

−L10/5
Y ⊃ i2

√
2HAB

(
εαβγ uC TαA C−1 dCβB − εab q

γa T
A C−1 lbB

)
T γ + h.c. . (2.7)

Consequently, both T and T have diquark and leptoquark couplings and each can mediate
B and L violating decays of baryons.
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2.2 16F -16F -126H couplings

The 126H has a very rich scalar spectrum. The Yukawa Lagrangian involving this field is
written as

− L126
Y = FAB 16TAC−1 16B 126H + h.c. , (2.8)

where FAB = FBA. In the SU(5) notations, the above Lagrangian can be written as [40]

−L126
Y = i

2√
15
FAB

[
− 1TAC−1 1B 10 + 1TAC−1 10ijB 10ij − 5TiAC−1 5jB 15ij

−
√

3
2

(
1TAC−1 5iB 5i + 1

24εijklm 10ij TA C−1 10klB 5m
)

+10ij TA C−1 5kB 45kij −
1

4
√

3
εijklm 10ij TA C−1 10rsB 50klmrs

]
+ h.c. . (2.9)

The first term above does not involve the SM fermions. Similarly, the second term gives
rise to lepto-quark coupling with only the SM singlet leptons which are typically heavier
than the nucleon. Hence, both these terms are not relevant for the proton decay.

The 126H contains a 5-plet of SU(5) whose decomposition is given earlier in eq. (2.6).
Using this and the second line in eq. (2.9), we get

−L126/5
Y ⊃ i

√
2
5 FAB

(
−1

3u
CT
γA C

−1 eCB + 1
6εαβγ εab q

αaT
A C−1 qβbB

)
T γ1 + h.c. . (2.10)

Since 126H has more than one color triplet fields, we distinguish them by assigning a
subscript. Decomposition of 15-plet into the normalized irreps of SU(5) is given by

15αβ = Σαβ , 15αa = 1√
2

∆αa , 15ab = tab . (2.11)

Σαβ (tab) is color sextet (weak triplet) and has only diquark (dilepton) couplings. Therefore,
they do not contribute in the proton decay. The color triplet weak doublet field ∆αa has
Y = 1/6 and its couplings with the SM fermions are obtained as

−L126/15
Y ⊃ i2

√
2
15 FAB εab d

CT
αA C

−1 laB ∆αb + h.c. . (2.12)

∆αb has only the lepto-quark coupling and hence it cannot induce proton decay by itself.
Next, we consider 45-plet which decomposes into various irreps of SU(5) as:

45γαβ ≡
1√
2
Sγαβ + 1

2
√

2

(
δγαT β − δ

γ
βTα

)
, 45aαβ ≡

1√
2

Ωa
αβ ,

45βαa ≡
1√
2
O
β
αa + 1

2
√

6
δβαDa , 45βab ≡

1√
2
εabT β ,

45abα ≡
1√
2
Tabα −

1
2
√

2
δabTα , 45cab ≡ −

√
3

2
√

2

(
δcaDb − δcbDa

)
. (2.13)

The SM and B−L charges of these fields are listed in table 1. All the fields other than Oβαa
and Da carry non-trivial B − L charges. However, Sγαβ couples to the quarks only while
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Ωa
αβ = (3, 2, 7/6) has only lepto-quark vertex. The couplings of the remaining multiplets

with the SM quarks and leptons are obtained as

−L126/45
Y ⊃ i

√
2
15 FAB

[(
εαβγ uCTαA C

−1 dCβB + εab q
γaT
A C−1 lbB

)
T γ

+ 2 eCTA C−1 dCαB T α + 2 εbc qαaTA C−1 lbB Tcaα
]

+ h.c. . (2.14)

Note that the chromo-weak triplet Tabα and Y = −4/3 color triplet T α also have only
lepto-quark coupling at this stage. This, along with quark-quark couplings arising from
120H , can induce the nucleon decay if there exists a mixing between these scalars in the
underlying model.

Finally, the coupling with 50-plet of SU(5) can be computed from its following decom-
position:

50αβγσρ ≡
1
6
[(
δασ δ

β
ρ − δαρ δβσ

)
T γ +

(
δαρ δ

γ
σ − δασ δγρ

)
T β +

(
δβσδ

γ
ρ − δβρ δγσ

)
Tα
]
,

50αβγσa ≡
1

2
√

3

(
δασΩβγ

a + δβσΩγα
a + δγσΩαβ

a

)
,

50αβaσρ ≡
1

2
√

6

(
δασO

βa
ρ − δαρOβaσ + δβρO

αa
σ − δβσOαaρ

)
,

50αβγab ≡
1

2
√

3
εαβγεabX , 50αβaσb ≡

1√
6
Sαβaσb + 1

12δ
a
b

(
δασT

β − δβσTα
)
,

50αabσρ ≡
1

2
√

3
εabSασρ , 50αβabc ≡

1
2
√

3

(
δacΩαβ

b − δabΩαβ
c

)
,

50αabσc ≡
1

2
√

6

(
δbcO

αa
σ − δacOαbσ

)
, 50αabcd = 1

6
(
δac δ

b
d − δadδbc

)
Tα . (2.15)

It is straightforward to see from the above decomposition and eq. (2.9) that the B − L
carrying fields Sασρ and Sαβaσb couple to quarks only while the Ωαβ

a has only a lepto-quark
vertex. Similarly, X couples to the leptons only. As a result, only Tα can contribute to
the nucleon decays. The corresponding couplings are given by

− L126/50
Y ⊃ −i 2

3
√

5
FAB

(
uCTγA C

−1 eCB + 1
2εαβγ εab q

αaT
A C−1 qβbB

)
T γ2 + h.c. . (2.16)

2.3 16F -16F -120H couplings

Finally, consider the Yukawa interactions with 120H as

− L120
Y = GAB 16TAC−1 16B 120H + h.c. , (2.17)

where GAB = −GBA is anti-symmetric coupling unlike the previous cases. One can also
have a similar but independent couplings with 120†H if the latter is complex scalar. Under
SU(5), the above can be written as

−L120
Y = i

2√
3
GAB

[
− 21TAC−15iB5i − 10ijTA C−15iB5j +

√
25TiAC−15jB10ij

−
√

21TAC−110ijB10ij −
1

2
√

2
εijklm10ijTA C−110mnB 45kln +

√
25TiAC−110jkB 45ijk

]
+ h.c.

(2.18)
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The coupling with 5-plet involves only the SM singlet leptons. Using the decomposi-
tions of 5, we find that

−L120/5
Y ⊃ −i 2√

3
GAB

(
εαβγ uCTαA C

−1 dCβB − εab q
γaT
A C−1 lbB

)
T 1γ + h.c. . (2.19)

Like in the case of 126H , the 10 belonging to 120H also couples to νC only and hence does
not play any role in the nucleon decay. The 10-plet can be decomposed as

10αβ = Θαβ
, 10αa = 1√

2
∆αa , 10ab = εab s . (2.20)

Apparently, s couples to the leptons only. The field ∆αa has the same quantum charge as
the one in eq. (2.11). As it is evident from eq. (2.18), ∆ and Θ couple to the right-handed
neutrinos. The interactions with ∆αa and Θαβ are obtained as

− L120/10
Y ⊃ −i 2√

3
GAB

(
2εab dCTαA C−1 laB ∆αb −

√
2 dCTαA C−1 dCβB Θαβ

)
+ h.c. . (2.21)

The first term is similar to eq. (2.12) which has only lepto-quark couplings. Θαβ has only
the diquark couplings. Therefore, none of these scalars residing in 10 and 10 can induce
proton decay through d = 6 operators. However, they can contribute to B − L violating
decays of nucleon as we discuss later.

The couplings of remaining fields residing in the 45- and 45-plets can straightforwardly
be computed using the decomposition already given in eq. (2.13). We find

−L120/45
Y ⊃ i 2√

3
GAB

(
2uCTαA C−1 eCB T

α + εαβγ uCTαA C
−1 uCβB T γ

+ εαβγ εab q
αaT
A C−1 qβcB Tbγc − εαβγ eCTA C−1 qγaB Ωαβ

a

)
+ h.c. . (2.22)

−L120/45
Y ⊃ −i 2√

3
GAB

[(
εαβγ uCTαA C

−1 dCβB + εab q
γaT
A C−1 lbB

)
T 2γ

+ 2 eCTA C−1 dCαB T α + 2 εbc qαaTA C−1 lbB Tcaα
− εαβγ εab l

bT
A C−1 uCγB Ωa

αβ

]
+ h.c. . (2.23)

Note that the triplet residing in 45 of SU(5) does not couple to the quarks because of
flavour anti-symmetric couplings. Moreover, unlike in eq. (2.14), the fields T α and Taαb
have quark-quark couplings. Their conjugate fields have lepto-quark couplings. Ωa

αβ and
its conjugate partner have only the lepto-quark couplings and therefore they do not induce
d = 6 operator but contribute to the d = 7 operators.

All together the couplings in eqs. (2.7), (2.10), (2.14), (2.16), (2.19), (2.22), (2.23)
determine the amplitude of nucleon decays in the most general renormalizable versions of
the SO(10) GUTs. The noteworthy features are:

• Out of the six pairs of colour triplets with different electroweak charges (see table 1),
only three pairs have couplings suitable for destabilizing protons at the tree level
through d = 6 operators. They are T -T , T -T and T-T. The remaining three pairs,
namely Θ-Θ, ∆-∆ and Ω-Ω can induce nucleon decay through d = 7 operators.

– 8 –
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• If the underlying model does not contain 120H then nucleon decay is induced only
by pair of colour triplets T , T with |Y | = 1/3. The 10H contains a pair of such
fields while 126H contains a pair and additional T . While the other two triplets are
present in 126H , they have only the lepto-quark couplings. Moreover, ∆ together
with T can also induce nucleon decay through B − L breaking.

• In the presence of 120H , the nucleon decays can also receive contributions from T -T
and T-T. These fields can contribute by themselves as well as by mixing with the
fields of same charges residing in 126H in the models in which both 126H and 120H
are present.

The results obtained in this section can also be used to derive the couplings relevant for
proton decays in the most general renormalizable SU(5) GUT models.

3 Dimension-6 effective operators

We now compute the leading d = 6 effective operators relevant for the B and L violating
decays of baryons by integrating out the relevant scalar fields. We treat each case of 10H ,
126H and 120H separately and comment on the possibility of mixing between the scalar
fields at the end of this section.

3.1 From 10-plet

The contribution to the nucleon decay in models with only 10H arises from a pair of color
triplet and anti-triplet, T and T , as can be seen from eq. (2.7). The most general mass
terms for these triplets can be written as:

m2
T T
†T +m2

T
T
†
T +

(
µ2 T T + h.c.

)
(3.1)

where the first two terms can originate from SO(10) invariant combination 10†H10H and
the last term from 102

H [42]. In general, mT 6= mT as the mass splitting can arise if the
model also contains 45H and/or 54H . Because of the presence of the mixing term, the
physical states are different and can be obtained by the following replacements:

T → T cos θT + T
∗ sin θT , T → T cos θT − T ∗ sin θT , (3.2)

Here, the mixing angle is obtained from eq. (3.1) as

tan 2θT = 2µ2

m2
T
−m2

T

. (3.3)

With the above replacements, eq. (3.1) becomes

M2
T T
†T +M2

T
T
†
T . (3.4)

Substituting eq. (3.2) in eq. (2.7) and integrating out the physical triplet and anti-
triplet, we obtain the following effective Lagrangian relevant for B violating baryon decays
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after some straight-forward algebraic manipulations:

L10
eff = 8

(
c2
T

M2
T

+ s2
T

M2
T

)
HABH

†
CD εαβγ uTαAC

−1dβB e
C
C
†
C−1uCγD

∗

+8
(
s2
T

M2
T

+ c2
T

M2
T

)
HABH

†
CD εαβγ uCTαAC

−1dCβB

(
e†CC

−1u∗γD − ν
†
CC
−1d∗γD

)
+8sT cT

(
1
M2
T

− 1
M2
T

)
HABH

T
CD εαβγ uCTαAC

−1dCβB e
CT
C C−1uCγD

+8sT cT
(

1
M2
T

− 1
M2
T

)
HABH

T
CD εαβγ uTαAC

−1dβB
(
eTCC

−1uγD − νTCC−1dγD
)

+h.c. , (3.5)

where cT = cos θT and sT = sin θT . We have used the identity C† = CT = C−1 = −C in
determining eq. (3.5).

The effective operators in the physical basis of fermions can be obtain by replacing
f → Uff in the above L10

eff . The unitary matrices Uf and UfC (with f = u, d, e, ν) can be
explicitly computed from the corresponding fermion mass matrices. In the physical basis,
we get

L10
eff = h[uA, dB, eCC , uCD] εαβγ uTαAC−1 dβB e

C
C
†
C−1 uC∗γD

+h[uCA, dCB, eC , uD] εαβγ uCTαA C−1 dCβB e
†
C C

−1 u∗γD

+h[uCA, dCB, νC , dD] εαβγ uCTαA C−1 dCβB ν
†
C C

−1 d∗γD

+h′[uCA, dCB, eCC , uCD] εαβγ uCTαA C−1 dCβB e
CT
C C−1 uCγD

+h′[uA, dB, eC , uD] εαβγ uTαAC−1 dβB e
T
C C

−1 uγD

+h′[uA, dB, νC , dD] εαβγ uTαAC−1 dβB ν
T
C C

−1 dγD + h.c. , (3.6)

with

h[uA, dB, eCC , uCD] = 8
(
c2
T

M2
T

+ s2
T

M2
T

)(
UTu HUd

)
AB

(
U †
eCH

†U∗uC

)
CD

,

h[uCA, dCB, eC , uD] = 8
(
s2
T

M2
T

+ c2
T

M2
T

)(
UTuCHUdC

)
AB

(
U †eH

†U∗u

)
CD ,

h[uCA, dCB, νC , dD] = −8
(
s2
T

M2
T

+ c2
T

M2
T

)(
UTuCHUdC

)
AB

(
U †νH

†U∗d

)
CD ,

h′[uCA, dCB, eCC , uCD] = 8sT cT
(

1
M2
T

− 1
M2
T

)(
UTuCHUdC

)
AB

(
UTeCH

TUeD

)
CD ,

h′[uA, dB, eC , uD] = 8sT cT
(

1
M2
T

− 1
M2
T

)(
UTu HUd

)
AB

(
UTe H

TUu
)
CD

,

h′[uA, dB, νC , dD] = −8sT cT
(

1
M2
T

− 1
M2
T

)(
UTu HUd

)
AB

(
UTν H

TUd
)
CD

. (3.7)

In the absence of mixing term between T and T (i.e. θT = 0), all h′ = 0. Moreover, the
coefficients of the first and the next two operators become independent from each other.
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3.2 From 126-plet

Unlike in the case of 10H , the color triplets and anti-triplet do not mix with each other
in this since (126H)2 is forbidden by SO(10) gauge symmetry [42]. The triplets residing
in 5 and 50 belonging to 126H can mix with each other in general but such a mixing can
arise from the gauge invariant interactions with other fields and hence is model dependent.
Further, as noted earlier, T α and Tcaα have only the lepto-quark couplings. Therefore,
the effective operators relevant for the nucleon decay take simple form in case of 126H .
Integrating out the triplets and ant-triplet from eqs. (2.10), (2.14), (2.16), we find

L126
eff = 2

45

(
1

M2
T1

− 2
M2
T2

)
FABF

†
CD εαβγ uTαAC

−1dβB e
C
C
†
C−1uCγD

∗

− 2
15

1
M2
T

FABF
†
CD εαβγ uCTαAC

−1dCβB

(
e†CC

−1u∗γD − ν
†
CC
−1d∗γD

)
+ h.c. ,

(3.8)

where MTi and MT are masses of triplets Ti and anti-triplet T , respectively.
In the physical basis, the above can be rewritten as

L126
eff = f [uA, dB, eCC , uCD] εαβγ uTαAC−1 dβB e

C
C
†
C−1 uC∗γD

+f [uCA, dCB, eC , uD] εαβγ uCTαA C−1 dCβB e
†
C C

−1 u∗γD

+f [uCA, dCB, νC , dD] εαβγ uCTαA C−1 dCβB ν
†
C C

−1 d∗γD + h.c. , (3.9)

with

f [uA, dB, eCC , uCD] = 2
45

(
1

M2
T1

− 2
M2
T2

)(
UTu FUd

)
AB

(
U †
eCF

†U∗uC

)
CD

,

f [uCA, dCB, eC , uD] = − 2
15

1
M2
T

(
UTuCFUdC

)
AB

(
U †eF

†U∗u

)
CD ,

f [uCA, dCB, νC , dD] = 2
15

1
M2
T

(
UTuCFUdC

)
AB

(
U †νF

†U∗d

)
CD . (3.10)

The structure of these operators is same as of the ones obtained in case of 10H with
a noteworthy difference of relative factor between the contributions mediated by color
triplets and anti-triplet.

3.3 From 120-plet

Since (120H)2 is a gauge invariant, T ∈ 45 and T 2 ∈ 45 can have a mixing term. Similarly,
T and Taαb can mix with their conjugate partners appearing in eqs. (2.22), (2.23). Adopting
the similar procedure discussed in the first subsection, we obtain the following operators
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after eliminating the different colour triplet scalars:

L120
eff = 4

3

 1
M2
T 1

− c2
T

M2
T 2

− s2
T

M2
T

GABG†CDεαβγuCTαAC−1dCβB

(
e†CC

−1u∗γD − ν
†
CC
−1d∗γD

)

+8
3sT cT

 1
M2

T

− 1
M2
T 2

GABGCDεαβγuCTαAC−1dCβBe
CT
C C−1uCγD

−8
3sT cT

(
1
M2
T
− 1
M2
T

)
GABGCDε

αβγuCTαAC
−1uCβBe

CT
C C−1dCγD

−8
3sTcT

(
1
M2

T
− 1
M2

T

)
GABGCDε

αβγεbcεdaq
aT
αAC

−1lbBq
dT
βCC

−1qcγD + h.c. (3.11)

Here, θT , θT and θT are angles which parametrize mixing term between T -T , T -T and T-T,
respectively, in an analogous way to eq. (3.3). Since T has only the lepto-quark couplings,
its contribution to the nucleon decays arises only through the mixing term.

Using the Fierz rearrangement

(
ψT1 C

−1ψ2
) (
ψT3 C

−1ψ4
)

= −
(
ψT1 C

−1ψ3
) (
ψT4 C

−1ψ2
)
−
(
ψT1 C

−1ψ4
) (
ψT2 C

−1ψ3
)
,

(3.12)
we rewrite the operator given in the third line in eq. (3.11) as

GABGCD ε
αβγ uCTαA C

−1 uCβB e
CT
C C−1 dCγD = 2GADGCB εαβγ uCTαA C

−1 dCβB e
CT
C C−1 uCγD ,

(3.13)
where we also use GAB = −GBA. Further, using εbcεda = δbdδca − δbaδcd and eq. (3.12) the
fourth operator can be simplified to

GABGCDε
αβγεbcεda q

aT
αAC

−1 lbB q
dT
βC C

−1 qcγD

= − (GABGCD − 2GADGCB) εαβγ uTαAC−1 dβB e
T
C C

−1 uγD

− (GABGCD − 2GACGBD) εαβγ uTαAC−1 dβB ν
T
C C

−1 dγD . (3.14)

Substituting eqs. (3.13), (3.14) in eq. (3.11) and using the physical basis for fermions,
we get

L120
eff = g[uCA, dCB, eC , uD] εαβγ uCTαA C−1 dCβB e

†
C C

−1 u∗γD

+g[uCA, dCB, νC , dD] εαβγ uCTαA C−1 dCβB ν
†
C C

−1 d∗γD

+g′[uCA, dCB, eCC , uCD] εαβγ uCTαA C−1 dCβB e
CT
C C−1 uCγD

+g′[uA, dB, eC , uD] εαβγ uTαAC−1 dβB e
T
C C

−1 uγD

+g′[uA, dB, νC , dD] εαβγ uTαAC−1 dβB ν
T
C C

−1 dγD + h.c. , (3.15)
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with

g[uCA, dCB, eC , uD] = 4
3

 1
M2
T 1

− c2
T

M2
T 2

− s2
T

M2
T

 (
UTuCGUdC

)
AB

(
U †eG

†U∗u

)
CD ,

g[uCA, dCB, νC , dD] = −4
3

 1
M2
T 1

− c2
T

M2
T 2

− s2
T

M2
T

 (
UTuCGUdC

)
AB

(
U †νG

†U∗d

)
CD ,

g′[uCA, dCB, eCC , uCD] = 8
3sT cT

 1
M2
T

− 1
M2
T 2

 (
UTuCGUdC

)
AB

(
UTeCGUuC

)
CD

−16
3 sT cT

(
1
M2
T
− 1
M2
T

)(
UTuCGUuC

)
AD

(
UTecGUdC

)
CB

,

g′[uA, dB, eC , uD] = 8
3sTcT

(
1
M2

T
− 1
M2

T

)[(
UTu GUd

)
AB

(
UTe GUu

)
CD

−2
(
UTu GUu

)
AD

(
UTe GUd

)
CB

]
,

g′[uA, dB, νC , dD] = 8
3sTcT

(
1
M2

T
− 1
M2

T

)[(
UTu GUd

)
AB

(
UTν GUd

)
CD

−2
(
UTu GUν

)
AC

(
UTd GUd

)
BD

]
. (3.16)

The structure of effective couplings g′ are very different from h′ due to additional contri-
butions supplied by the new triplets.

Altogether, the operators listed in eqs. (3.6), (3.9), (3.15) quantify the B and L vio-
lating but B−L conserving baryon decays mediated by scalars residing in 10H , 126H and
120H , respectively, where we have also considered the possibility of the mixing between
the various scalars arising from the given representation. In general, the scalar fields of
the same SM charges belonging to different GUT representations can also mix. For ex-
ample, in the models with at least two of these scalar representations, different triplets
and anti-triplets can mix and the lightest pair would be a particular linear combination of
them. Since the contribution of the lightest pair is expected to be the most dominant, the
operators obtained by integrating out this pair would be the most relevant in quantifying
the proton decays. In general, such operators can be obtained with coefficients which are
linear combinations of the relevant h, f and g, for example. However, the exact quan-
tification of these mixing depends not only on the specification of the Yukawa sector but
also on the full scalar potential of the underlying model. Therefore, this exercise is highly
model-dependent. Nevertheless, the results obtained above can straightforwardly be used
to compute proton decay in specific models in which mixing between the various triplets
and anti-triplets is deterministic.

4 Dimension-7 effective operators

In the previous section, we consider the leading order d = 6 operators which violate B and
L but conserve B − L. A new class of operators which violate B − L by two units arise at
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d = 7 [43, 44]. Such operators are induced by quartic couplings involving the SM singlet
field σ, one of the electroweak doublets and two color triplet fields. Using the fields listed
in table 1, the following invariants can be constructed for this kind of quartic term:

σDaTα∆αa, σDaTα∆αa; (4.1)

σDaΘαβΩαβ
a , σDaΘ

αβΩa
αβ ; (4.2)

σDaΘαβ∆γbεαβγεab, σDaΘαβ∆γbε
αβγεab; (4.3)

σDa∆αbTαba , σDa∆αbTaαb. (4.4)

When σ acquires a VEV, B −L symmetry is broken and the above quartic terms can give
rise to d = 7 operators involving four fermions and a Higgs doublet. After the electroweak
symmetry breaking, this generates effective four-fermion operators with ∆(B − L) = −2.
Because of the latter, they give rise to novel decay channels for the proton and neutron [21,
22].

The quartic terms listed in eqs. (4.1)–(4.4) can arise from various SO(10) invariant
combinations of the scalar irreps, for example (126H)4, (126H)2(120H)2, etc. Such a term
must contain atleast one 126H (or 126H) as a source of σ while the electroweak doublets
can come from either of 10H , 126H or 120H . Various triplets appearing in eqs. (4.1)–(4.4)
can come from 10H , 126H , 120H or even from the scalars like 126H which are not part of
the Yukawa sector. Although the latter does not directly couple to quarks and leptons but
can still induce nucleon decay by mixing with the scalar sub-multiplets residing in 10H ,
126H and 120H . The determination of exact operators in this case, therefore, requires
complete specification of the scalar sector of the underlying model beyond the ones which
take part into the Yukawa interactions. As we remain agnostic about the complete model
in this study, we perform the subsequent analysis assuming that the color triplets fields in
eqs. (4.1)–(4.4) arise from either of 10H , 126H or 120H .

4.1 From 10-plet

The generation of d = 7 operators requires presence of atleast two different kinds of color
triplets as it can be seen from eqs. (4.1)–(4.4). Since 10H contains only one kind of color
triplets, it cannot give rise to such operators at the leading order by itself.

4.2 From 126-plet

As it can be seen from table 1, 126H does not contain Θαβ and Taαb . Among the remaining
fields responsible for generating d = 7 operators, Θαβ and ∆αa reside in 10 of SU(5) which
couple to the RH neutrinos only, see eq. (2.9). Moreover, ∆αa, Ωαβ

a and Taαb have only the
lepto-quark couplings. Therefore, only the second term in eq. (4.1) can induce the required
operator. Using eqs. (2.12), (2.14) and integrating out ∆αa and Tα, we get

L126
eff = 4λvσ

15M2
∆M

2
T

F ∗ABF
∗
CD ε

αβγ εabDa u
C†
αAC

−1 dCβB
∗
l†bC C

−1 dCγD
∗ + h.c. , (4.5)
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where λ is a coupling of the quartic term and vσ is the VEV that breaks B−L. The above
can be identified with operator Õ1 listed in [22].2

After the electroweak symmetry breaking, the above operator reduces to d = 6 operator
containing three quarks and a neutrino field. In the physical basis, it can be parametrized as

L126
eff = f̃ [uCA, dCB, νC , dCD] εαβγ uCTαA C−1 dCβB ν

T
C C

−1 dCγD + h.c. , (4.6)

with

f̃ [uCA, dCB, νC , dCD] = −
4λvσvD

15M2
∆M

2
T

(
UTuCFUdC

)
AB

(
UTν FUdC

)
CD

, (4.7)

where vD is a VEV of D residing in 126.

4.3 From 120-plet

In comparison to the previous two, 120H offers more variety of d = 7 operators because
of the mixing term allowed between various scalar sub-multiplets and their conjugates.
All four invariants listed in eqs. (4.1)–(4.4) give rise to B − L violating operators. Using
eqs. (4.1)–(4.4) and couplings for various triplet fields evaluated in section 2, we find the
following leading order operators after some straight-forward computation:

L120
eff = −8λvσ

3

 1
M2

∆M
2
T 1

+ c∆cT
M2

∆M
2
T 2

+ s∆sT
M2

∆
M2
T

 ∗
G∗ABG

∗
CD ε

αβγ εabDa u
C†
αAC

−1 dCβB
∗
l†bC C

−1 dCγD
∗

−4
√

2λvσ
3

(
cΘcΩ
M2

ΘM
2
Ω

+ sΘsΩ
M2

ΘM
2
Ω

)
G∗ABG

∗
CD ε

αβγ εabDa d
C†
αAC

−1 dCβB
∗
l†bC C

−1 uCγD
∗

−4
√

2λvσ
3

(
cΘsΩ
M2

ΘM
2
Ω
− sΘcΩ
M2

ΘM
2
Ω

)
G∗ABGCD ε

αβγ Da d
C†
αAC

−1 dCβB
∗
eCTC C−1 qaγD

+8
√

2λvσ
3

(
cΘc∆
M2

ΘM
2
∆

+ sΘs∆
M2

ΘM
2
∆

)
G∗ABG

∗
CD ε

αβγ Da dC†αAC
−1 dCβB

∗
l†aC C

−1 dCγD
∗

−8λvσ
3

(
cTs∆
M2

∆
M2

T
− sTc∆
M2

∆M
2
T

)
G∗ABGCD ε

αβγ Da q†αbAC
−1 q∗βaB l

bT
C C−1 dCγD

+h.c. , (4.8)

where cχ = cos θχ, sχ = sin θχ and θχ is the angle denoting the mixing between χ-χ fields
analogous to the one defined earlier in eqs. (3.2), (3.3). The operator in the first line in
eq. (4.8) can be identified with Õ1, second with Õ2, third with Õ5, fourth with Õ6 and the
last with operator Õ4 as listed in [22]. Note that the operator Õ3 does not arise as coupling
of T with pair of quark doublets are forbidden by flavour anti-symmetry of G.

2Note that we have assumed absence of 126H which forbids T -T mixing as it was also the case while
deriving d = 6 operators earlier. If such mixing is allowed, one also finds an operator similar to Õ3 given
in [22].
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Using the Fierz rearrangement, eq. (3.12), the operator in the second line of eq. (4.8)
can be expressed in terms of the one in the first line. Once the electroweak doublets
acquire VEVs, the four-fermion operator arising from eq. (4.8) in the physical basis can be
parametrized as the following:

L120
eff = g̃[uCA, dCA, νC , dCD]εαβγuCTαAC−1dCβBν

T
CC
−1dCγD

+g̃′[dCA, dCB, eCC , dD]εαβγdC†αAC
−1dC∗βBe

CT
C C−1dγD

+g̃[dCA, dCB, eC , dCD]εαβγdCTαAC−1dCβBe
T
CC
−1dCγD

+g̃′[uA, dB, νC , dCD]εαβγu†αAC
−1d∗βBν

T
CC
−1dCγD

+g̃′[dA, dB, eC , dCD]εαβγd†αAC
−1d∗βBe

T
CC
−1dCγD + h.c., (4.9)

with

g̃[uCA, dCB, νC , dCD] =

8λvσvD
3

 1
M2

∆M
2
T 1

+ c∆cT
M2

∆M
2
T 2

+ s∆sT
M2

∆
M2
T

(UTuCGUdC

)
AB

(
UTν GUdC

)
CD

+
8
√

2λvσvD
3

(
cΘcΩ
M2

ΘM
2
Ω

+ sΘsΩ
M2

ΘM
2
Ω

)(
UTνGUuC

)
CA

(
UTdCGUdC

)
BD

,

g̃′[dCA, dCB, eCC , dD] = −
4
√

2λvσvD
3

(
cΘsΩ
M2

ΘM
2
Ω
− sΘcΩ
M2

ΘM
2
Ω

)(
U †
dCG

∗U∗dC

)
AB

(
UTeCGUd

)
CD

,

g̃[dCA, dCB, eC , dCD] = 8
√

2λvσvD
3

(
cΘc∆
M2

ΘM
2
∆

+ sΘs∆
M2

ΘM
2
∆

)(
UTdCGUdC

)
AB

(
UTe GUdC

)
CD

,

g̃′[uA, dB, νC , dCD] = −8λvσvD
3

(
cTs∆
M2

∆
M2

T
− sTc∆
M2

∆M
2
T

)(
U †uG

∗U∗d

)
AB

(
UTν GUdC

)
CD

,

g̃′[dA, dB, eC , dCD] = −8λvσvD
3

(
cTs∆
M2

∆
M2

T
− sTc∆
M2

∆M
2
T

)(
U †dG

∗U∗d

)
AB

(
UTe GUdC

)
CD

. (4.10)

As in the earlier case, primed and unprimed coefficients are defined in such a way that all
the g̃′ = 0 there is no mixing between the different scalars and their conjugate partners.

In summary, the operators listed in eqs. (4.6), (4.9) quantify the B, L and B − L

violating baryon decays mediated by scalars residing in 126H and 120H , respectively, at
the leading order. Like in the previous section, we have considered the possibility of the
mixing between the various scalars arising from the given representation. It can be noted
that the masses of T , T , T and T are already constrained by the leading order d = 6
operators considered in the previous section. The B − L violating decays of nucleon can,
therefore, provide lower bounds on the masses of ∆, ∆ residing in 126H and ∆, ∆, Θ, Θ,
Ω and Ω belonging to 120H depending on their couplings with quarks and leptons and the
scale of B − L breaking.
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5 Nucleon decay partial widths

In this section, we give explicit expressions of the proton decay widths in various channels
evaluated from the derived effective operators.

5.1 B − L conserving decays

The d = 6 operators listed previously in eqs. (3.6), (3.9), (3.15) can be parametrized in
terms of the following six independent operators:

Leff = y[uA, dB, eCC , uCD] εαβγ uTαAC−1 dβB e
C
C
†
C−1 uCγD

∗

+y[uCA, dCB, eC , uD] εαβγ uCTαA C−1 dCβB e
†
C C

−1 u∗γD

+y[uCA, dCB, νC , dD] εαβγ uCTαA C−1 dCβB ν
†
C C

−1 d∗γD

+y′[uCA, dCB, eCC , uCD] εαβγ uCTαA C−1 dCβB e
CT
C C−1 uCγD

+y′[uA, dB, eC , uD] εαβγ uTαAC−1 dβB e
T
C C

−1 uγD

+y′[uA, dB, νC , dD] εαβγ uTαAC−1 dβB ν
T
C C

−1 dγD + h.c. , (5.1)

where y = h, f or g if a single GUT scalar representation is considered. y can also be
a linear combination of h, f and g when more than one scalar fields are considered as
discussed in the previous section. These operators match with the most general dimension
six operators derived from effective theory [25, 26] but now the coefficient can be explicitly
computed in terms of fundamental Yukawa couplings of a given GUT model.

To write the above operators in the usual left- and right-chiral fields, we use

ψ = ψL , ψC = C ψ∗R , (5.2)

where C = −iσ2 in Weyl basis. This leads to

ψT C−1 χ = (ψL)C χL , ψC
†
C−1 χC

∗ = (ψR)C χR , (5.3)

where ψC ≡ ψTC−1. Using the above identities and ψC χ = χC ψ, the baryon number
violating operators listed in eq. (5.1) can be brought into the following convenient form:

Leff = y[uA, dB, eCC , uCD] εαβγ (dβBL)C uαAL (uγDR)C eCR
+y∗[uCA, dCB, eC , uD] εαβγ (dβBR)C uαAR (uγDL)C eCL
+y∗[uCA, dCB, νC , dD] εαβγ (dβBR)C uαAR (dγDL)C νCL
+y′∗[uCA, dCB, eCC , uCD] εαβγ (dβBR)C uαAR (uγDR)C eCR
+y′[uA, dB, eC , uD] εαβγ (dβBL)C uαAL (uγDL)C eCL
+y′[uA, dB, νC , dD] εαβγ (dβBL)C uαAL (dγDL)C νCL + h.c. . (5.4)

where y∗[A,B,C,D] = (y[A,B,C,D])∗ and the same for y′.
All the operators listed in eq. (5.4) violate both B and L but conserve B − L leading

to decays of baryon into meson and anti-lepton. The hadronic matrix element between the
baryon and meson states can be computed using the chiral perturbation theory [45, 46].
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Using the results from [47], one finds the following expressions for the partial decay widths
for the proton decaying into various mesons [28]:

Γ[p→ e+
i π

0] =
(m2

p −m2
π0)2

32πm3
pf

2
π

A2
(

1 + D̃ + F̃√
2

)2( ∣∣∣αy[u1, d1, e
C
i , u

C
1 ] + βy′∗[uC1 , dC1 , eCi , uC1 ]

∣∣∣2
+
∣∣∣αy∗[uC1 , dC1 , ei, u1] + βy′[u1, d1, ei, u1]

∣∣∣2 ),
Γ[p→ νπ+] =

(m2
p −m2

π±)2

32πm3
pf

2
π

A2
(
1 + D̃ + F̃

)2 3∑
i=1

∣∣∣αy∗[uC1 , dC1 , νi, d1] + βy′[u1, d1, νi, d1]
∣∣∣2 ,

Γ[p→ e+
i K

0] =
(m2

p −m2
K0)2

32πm3
pf

2
π

A2 1
2
[∣∣∣C−Li − C−Ri + mp

mB
(D̃ − F̃ )

(
C+
Li − C

+
Ri

) ∣∣∣2
+
∣∣∣C−Li + C−Ri + mp

mB
(D̃ − F̃ )

(
C+
Li + C+

Ri

) ∣∣∣2],
Γ[p→ νK+] =

(m2
p −m2

K±)2

32πm3
pf

2
π

A2
3∑
i=1

∣∣∣2D̃3 mp

mB
CνL1i +

(
1 + D̃ + 3F̃

3
mp

mB

)
CνL2i

∣∣∣2,
Γ[p→ e+

i η] =
(m2

p −m2
η)2

32πm3
pf

2
π

A2 1
6
[∣∣∣C+

Li(1− D̃ + 3F̃ )− 2C−Li
∣∣∣2

+
∣∣∣C+

Ri(1− D̃ + 3F̃ )− 2C−Ri
∣∣∣2], (5.5)

where

C±Li = α y∗[uC1 , dC2 , ei, u1]± β y′[u1, d2, ei, u1] ,
C±Ri = α y[u1, d2, e

C
i , u

C
1 ]± β y′∗[uC1 , dC2 , eCi , uC1 ] ,

CνL1i = α y∗[uC1 , dC2 , νi, d1] + β y′[u1, d2, νi, d1] ,
CνL2i = α y∗[uC1 , dC1 , νi, d2] + β y′[u1, d1, νi, d2] . (5.6)

Here, mH denotes the mass of hadron H (H = p, π0, π±,K0,K±, η), mB is average baryon
mass and fπ is pion decay constant. α, β, D̃ and F̃ are the parameters of the chiral
Lagrangian. The factor A accounts for the renormalization effects in hadronic matrix
elements from the weak scale to the mp.

It can be noticed from eqs. (5.5), (5.6) that the relevant couplings for the proton
decay into the charged leptons are y[u1, di, e

C
j , u

C
1 ], y[uC1 , dCi , ej , u1], y′[uC1 , dCi , eCj , uC1 ],

y[u1, di, ej , u1] and for the proton decay into the neutrinos are y[u1, di, νj , dk] and
y[uC1 , dCi , νj , dk]. Considering this, the tree-level contribution mediated by T , T (see
eq. (3.16)) vanishes due to anti-symmetric G as(

UTuCGUuC

)
11

= 0 . (5.7)

These fields can induce proton-decay through dimension-6 operators which arise at loop
level. The same result has been found earlier in the context of SU(5) GUTs in [33] and
the 1-loop diagrams which arise through an additional W -boson exchange have also been
evaluated. Therefore, at tree-level through dimension-6 operators, the proton decays are
mediated by only T , T and T, T in the models with 120H .
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5.2 B − L non-conserving decays

The B − L non-conserving decays of nucleons arise from the operators derived in
eqs. (4.6), (4.9). They can be further generalized as

Leff = ỹ[uCA, dCA, νC , dCD] εαβγ uCTαA C−1 dCβB ν
T
C C

−1 dCγD

+ỹ′[uA, dB, νC , dCD] εαβγ u†αAC
−1 d∗βB ν

T
C C

−1 dCγD

+ỹ[dCA, dCB, eC , dCD] εαβγ dCTαA C−1 dCβB e
T
C C

−1 dCγD

+ỹ′[dA, dB, eC , dCD] εαβγ d†αAC
−1 d∗βB e

T
C C

−1 dCγD

+ỹ′[dCA, dCB, eCC , dD] εαβγ dC†αAC
−1 dC∗βB e

CT
C C−1 dγD + h.c. , (5.8)

where y = f or g. The above operators can be rewritten in a usual left- and right-chiral
fields using identities given in eq. (5.3) and

ψTC−1χC =
(
ψL χR

)∗
ψCTC−1χ = ψR χL . (5.9)

The above identities are obtained from the definitions given in eq. (5.2). In the new
notation, we find

Leff = ỹ∗[uCA, dCA, νC , dCD] εαβγ (dβBR)C uαAR dγDR νCL

+ỹ′∗[uA, dB, νC , dCD] εαβγ (dβBL)C uαAL dγDR νCL
+ỹ∗[dCA, dCB, eC , dCD] εαβγ (dβBR)C dαAR dγDR eCL

+ỹ′∗[dA, dB, eC , dCD] εαβγ (dβBL)C dαAL dγDR eCL
+ỹ′[dCA, dCB, eCC , dD] εαβγ (dβBR)C dαAR dγDL eCR + h.c. . (5.10)

The operators obtained above violate B−L by two units and lead to processes in which
a nucleon decays into lepton and a meson. The first two operators in eq. (5.10) contribute
in the proton decay through channels p→ ν π+ and p→ ν K+.

Γ[p→ νπ+] =
(m2

p−m2
π+)2

32πm3
pf

2
π

A2
(
1+D̃+F̃

)2 3∑
i=1

∣∣∣αỹ∗[uC1 , dC1 , νi, dC1 ]+βỹ′∗[u1, d1, νi, d
C
1 ]
∣∣∣2 ,

Γ[p→ νK+] =
(m2

p −m2
K+)2

32πm3
pf

2
π

A2
3∑
i=1

∣∣∣2D̃3 mp

mB
C̃νL1i +

(
1 + D̃ + 3F̃

3
mp

mB

)
C̃νL2i

∣∣∣2, (5.11)

where

C̃νL1i = α ỹ∗[uC1 , dC2 , νi, dC1 ] + β ỹ′∗[u1, d2, νi, d
C
1 ] ,

C̃νL2i = α ỹ∗[uC1 , dC1 , νi, dC2 ] + β ỹ′∗[u1, d1, νi, d
C
2 ] . (5.12)

Experimentally, the above decay modes are indistinguishable from p→ ν π+/K+.
The remaining three operators in eq. (5.10) do not contribute in the proton decay but

induces the B and B − L violating decays of the neutron, for example n → e− π+. The
decay width for this can be estimated as

Γ[n→ e−i π
+] =

(m2
n −m2

π+)2

32πm3
nf

2
π

A2
(

1 + D̃ + F̃√
2

)2 ( ∣∣∣β ỹ′∗[dC1 , dC1 , eCi , d1]
∣∣∣2

+
∣∣∣α ỹ∗[dC1 , dC1 , ei, dC1 ] + β ỹ′∗[d1, d1, ei, d

C
1 ]
∣∣∣2 ) . (5.13)
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It can be noticed that for y = g, i.e. when the operators are induced only trough the triplets
residing in 120H , one finds vanishing decay width for n→ e−i π

+ at the leading order due
to anti-symmetric nature of G, see eq. (4.10).

6 Estimation for a 10H + 126H model

Using the general results obtained above, we now compute the partial decay widths of the
proton in a specific SO(10) model. The Yukawa sector of the model consists of a complex
10H and 126H scalar fields. Each of these contains a pair of colour singlets and SU(2)
doublets with Y = ±1/2, see table 1. A pair of linear combinations of these doublets,
namely hu and hd, is assumed to remain much lighter than the GUT scale and induce the
electroweak scale. The Vacuum Expectation Values (VEVs) of hu and hd also generate
masses for all the charged fermions. 126H also contains an SM singlet but B − L charged
field, VEV of which gives rise to masses for heavy RH neutrinos. This, along with the
Dirac masses generated by the VEVs of hu,d generates naturally suppressed mass for the
SM neutrinos through the type I seesaw mechanism. The viability of this framework in
reproducing the correct spectrum of fermion masses and mixing parameters has been ex-
tensively studied in several works, see [5, 9, 10, 48–54] for example. In the most recent
study [54], several viable solutions have been obtained for this model which not only re-
produces the known fermion mass spectrum but can also account for the observed baryon
asymmetry through Leptogenesis.

The absence of 120H in this model implies that the proton decay in this class of theories
is mediated by only the Y = ±1/3 colour triplet scalars as derived in section 2. Moreover,
the minimal model uses a U(1) Peccei-Quinn symmetry [55] under which 16F has charge
+1 while 10H and 126H each has charge −2. This allows Yukawa couplings with 10H but
forbids the ones with 10†H leaving only two Yukawa coupling matrices making the model
predictive [10]. As a consequence of Peccei-Quinn symmetry, the gauge invariant term 102

H

is forbidden and hence the components of T and T of 10H do not mix. Therefore, we have
θ = 0 in eq. (3.3) and all the h′ vanish in eq. (3.6). The proton decay, in this case, is
governed by only three independent operators, listed as the first three in eq. (5.4).

In general, the interaction terms in the scalar potential which gives rise to mixing of
electroweak doublets can also induce mixing between different T and T residing in 10H
and 126H . In this case, the coefficients of the effective operators given in eq. (5.4) are
linear combinations of corresponding h and f . The determination of the exact combination
however depends on the full scalar potential. To compute the proton lifetime in this model,
we adopt a simplified approach and assume that the lightest pair of triplets is dominantly
arising from either of 10H and 126H . The coefficients y, in this case, are either h or
f and can be fully determined from the fundamental Yukawa coupling matrix H and F

and from the flavour rotation matrices Uf . These parameters can be extracted from the
fermion mass fit performed in [54]. The parameters corresponding to the best fit solution
are given in [54] which we reproduce here in the appendix A for convenience. We also list
the diagonalizing matrix obtained from the various Yukawa coupling matrices.
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Branching ratio [%] MT �MT MT �MT MT = MT

BR[p→ e+π0] < 1 < 1 < 1
BR[p→ µ+π0] 7 < 1 < 1
BR[p→ ν̄π+] 0 15 14
BR[p→ e+K0] < 1 < 1 < 1
BR[p→ µ+K0] 93 < 1 2
BR[p→ ν̄K+] 0 84 83
BR[p→ e+η] < 1 < 1 < 1
BR[p→ µ+η] < 1 < 1 < 1

Table 2. Proton decay branching fractions estimated for the best fit solution for various hierarchies
among the masses of T and T residing in 10H .

The Yukawa coupling matrices H and F are obtained as

H = 1
2
√

2α1
H ′ F =

√
3

4
√

2α2
F ′ , (6.1)

where α1,2 are factors that quantify the mixing of electroweak doublets with a constraint
|α1|2 + |α2|2 ≤ 1, see [54] for the details. H ′ and F ′ can be determined from the fermion
mass spectrum and an example numerical solution is given in appendix A. Note that H can
be chosen diagonal and real without the loss of generality while F is complex symmetric in
this basis. The fermion mass matrices, which are linear combinations of H and F , remains
complex symmetric. Hence, one finds Ufc = U∗f for f = u, d, e. The coefficients h and f
then can be determined from the values of H ′, F ′ and Uf given in appendix A for the best fit
solution. For the parameters in eq. (5.5), we use α = 0.01 GeV3, D̃ = 0.8, F̃ = 0.46 [47, 56].
Further, the average baryon mass mB = 1.15GeV, the pion decay constant fπ = 130MeV
and the values of various hadron masses are taken from the PDG [57]. The parameter
A = 1.43 captures running effects from MZ to mp. To account for the running effects
between MGUT to MZ one needs to use the values of H and F extracted at MZ . However,
we use the values obtained from the fit carried out at the GUT scale as the change in Yukawa
couplings due to running is of O(1) and does not change the results significantly [58].

6.1 Proton decay pattern

The results obtained for various branching ratios are given in table 2 assuming that the
lightest T and T are dominantly the ones residing in 10H . Similarly, the branching ratios
computed, assuming that the lightest pair of triplets originates from 126H , are listed in
table 3. Note that the branching ratios determined in table 2 and 3 do not depend on the
unknown parameter α1,2 appearing in eq. (6.1).

The branching ratios of proton decay obtained in table 2 and 3 are qualitatively very
different from the ones computed assuming the dominant contribution from the gauge boson
mediation. For transparent comparison, we also compute the latter taking into account the
flavour effects for the best fit solution. The details of computation are given in appendix B
and the results are listed in table 4. The important observations are:
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Branching ratio [%] MT1,2 �MT MT1,2 �MT MT1,2 = MT

BR[p→ e+π0] < 1 < 1 < 1
BR[p→ µ+π0] 11 < 1 < 1
BR[p→ ν̄π+] 0 11 11
BR[p→ e+K0] < 1 < 1 < 1
BR[p→ µ+K0] 88 10 11
BR[p→ ν̄K+] 0 78 77
BR[p→ e+η] < 1 < 1 < 1
BR[p→ µ+η] < 1 < 1 < 1

Table 3. Proton decay branching fractions estimated for the best fit solution for various hierarchies
among the masses of T1,2 and T residing in 126H .

(a) Unlike in the case of gauge boson mediation in which the proton preferably decays into
π0 e+ or π+ν, the scalar induced proton decay favours the channels involving K0 µ+

or K+ ν.

(b) Typically, one finds BR[p→ e+π0]� BR[p→ µ+π0]. This is in contrast to the gauge
boson mediated decays in which one typically finds BR[p→ e+π0]� BR[p→ µ+π0].

(c) When T is lighter than T , the proton decays dominantly in the channels involving
charged mesons and neutrinos. As T does not couple to the neutrinos, proton decays
mediated by it results into the neutral mesons and charged leptons.

(d) A comparison between table 2 and 3 suggests that the decay patterns of the proton do
not significantly depend on whether the lightest T and T originate dominantly from
10H or 126H . This indicates that the qualitative results would remain unaltered even
if the lightest pair, T and T , are general linear combinations of triplets and anti-triplets,
respectively, residing in 10H and 126H .

To check the robustness of the above observations, we evaluate the proton decay branching
ratios for several solutions, with acceptable χ2 values at the minimum, determined in [54].
The results are displayed in figures 1 and 2. It can be observed from these figures that the
predictions of various branching ratios reported in tables 2 and 3 do not change significantly
even for the other viable solutions.

The noteworthy features of the proton decay spectrum listed as a), (b), (c), (d can
be understood from the flavour structure. The realistic fermion mass spectrum in the
underlying model leads to the following hierarchical structures for H and F :

H ∼ λ4

α1

 λ
7 0 0

0 λ3 0
0 0 1

 , F ∼ λ4

α2

 λ
5 λ4 λ3

λ4 λ3 λ2

λ3 λ2 λ

 , (6.2)

where λ = 0.23 is Cabibbo angle and we have suppressed O(1) coefficients. The Yukawa
matrices of the charged fermions, Yu,d,e, are linear combinations of H and F . The unitary
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Figure 1. Scalar mediated proton decay spectrum for solutions obtained in case of the minimal
renormalizable non-supersymmetric SO(10) model. Various branching ratios are evaluated assuming
that the lightest pair of colour triplets, T and T , arise dominantly from 10H .

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Branching Ratio

F
re
q
u
e
n
c
y

MT1,2
≪MT

_

p→ μ+
K

0
p→ μ+π0

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

Branching Ratio

F
re
q
u
e
n
c
y

MT1,2
≫MT

_

p→νK +p→νπ+

p→ μ+
K

0

0 20 40 60 80 100
0.00

0.05

0.10

0.15

0.20

Branching Ratio

F
re
q
u
e
n
c
y

MT1,2
=MT

_

p→νK +p→νπ+

p→ μ+
K

0

Figure 2. Same as figure 1 but assuming that the lightest triplets arise dominantly from 126H .

matrices which diagonalize Yu,d,e and the neutrino mass matrix have the following generic
form

Uu ∼ Ud ∼ Ue ∼

 1 λ λ3

λ 1 λ2

λ3 λ2 1

 , Uν ∼

 O(1)

 (6.3)

where Uν is matrix with all the elements of O(1). Uu,d,e are CKM-like and lead to
small quark mixing while the large mixing in PMNS matrix arise through Uν . From
eqs. (6.2), (6.3), we find

UTf H Uf ′ ∼
λ4

α1

 λ
5 λ4 λ3

λ4 λ3 λ2

λ3 λ2 1

 , UTf F Uf ′ ∼
λ4

α2

 λ
5 λ4 λ3

λ4 λ3 λ2

λ3 λ2 λ

 ,

UTν H Ud ∼
λ4

α1

 λ
3 λ2 1
λ3 λ2 1
λ3 λ2 1

 , UTν F Ud ∼
λ4

α2

 λ
3 λ2 λ

λ3 λ2 λ

λ3 λ2 λ

 , (6.4)

where f, f ′ = u, d, e.
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Substitution of the above results in eqs. (3.7), (3.10), (5.5), one finds

Γ[p→ e+
i π

0]
Γ[p→ e+

i K
0]
'

(m2
p −m2

π0)2

(m2
p −m2

K0)2
(1 + D̃ + F̃ )2

2
(
1 + mp

mB
(D̃ − F̃ )

)2 λ
2 ' 3λ2 ,

Γ[p→ ν π+]
Γ[p→ ν K+] '

(m2
p −m2

π+)2

(m2
p −m2

K+)2
(1 + D̃ + F̃ )2(

1 + mp

mB
(D̃ + F̃ )

)2 λ
2 ' 2λ2 . (6.5)

This explains the observation listed as point (a) above. Further,

Γ[p→ e+ π0]
Γ[p→ µ+ π0] '

Γ[p→ e+K0]
Γ[p→ µ+K0] ' λ

2 , (6.6)

leads to the result (b). Moreover, (c) can be understood from the fact that

Γ[p→ µ+K0]
Γ[p→ ν K+] '

(m2
p −m2

K0)2

(m2
p −m2

K+)2

(
1 + mp

mB
(D̃ − F̃ )

)2

(
1 + mp

mB
(D̃ + F̃ )

)2
4λ2

9 ' 0.2λ2 . (6.7)

Also, it can be seen from eq. (6.4) that the flavour structure of couplings relevant for the
proton decay are similar in case of 10H and 126H . This provides justification for the
observation made in (d).

6.2 Limits on the masses of T and T

Finally, we use the current experimental limits on the lifetime of proton decay in various
channels to obtain the most stringent limit on the masses of T and T in the considered
model. When the lightest T is dominantly given by the one residing in 10H , the strongest
limit on its mass comes from the decay channels involving µ+. We find from explicit
computation for the best fit solution,

τ/BR[p→ µ+K0] = 1.6× 1033 yrs ×
(
α1
0.1

)4
×
(

MT

1.4× 1011 GeV

)4
,

τ/BR[p→ µ+ π0] = 1.6× 1034 yrs ×
(
α1
0.1

)4
×
(

MT

1.3× 1011 GeV

)4
, (6.8)

where the first factor on the right hand side in the above equations are the current ex-
perimental lower bounds on the lifetime of proton decaying in the respective channels.
Similarly for T dominantly arising from 10H , the most stringent upper bound comes from
the proton decaying into neutrinos and K+:

τ/BR[p→ ν K+] = 5.9× 1033 yrs ×
(
α1
0.1

)4
×
(

MT

6.4× 1011 GeV

)4
, (6.9)

The experimental limits on the lifetimes used for various channels in the above equations
are taken from [59–61].

If the lightest T and T arise dominantly from 126H , we find

τ/BR[p→ µ+K0] = 1.6× 1033 yrs ×
(
α2
0.1

)4
×
(

MTi

2.5× 1010 GeV

)4
,

τ/BR[p→ µ+ π0] = 1.6× 1034 yrs ×
(
α2
0.1

)4
×
(

MTi

2.7× 1010 GeV

)4
, (6.10)
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and

τ/BR[p→ ν K+] = 5.9× 1033 yrs ×
(
α2
0.1

)4
×
(

MT

1.1× 1011 GeV

)4
. (6.11)

It can be noticed that the limits on the masses of T and T are slightly lower than the ones
given in eqs. (6.8), (6.9). This is due to the fact that the magnitude of Yukawa couplings
with 126H are somewhat smaller than those with 10H .

6.3 Limit on the mass of ∆

In addition to the d = 6 operators discussed above, a d = 7 operator arises within the
model through B − L violating mixing between T and ∆ as discussed in section 4. This
induces decay p → ν π+ and p → ν K+. Since the mass of T is already constrained by
d = 6 operators, the lower bound on the mass of ∆ can be inferred from non-observation
of the proton decay. To estimate this, we take λ = 1, α2 = 0.1, vD = 174GeV and
MT = 1.1 × 1011 GeV from eq. (6.11). Substituting these values in eqs. (4.7), (5.11),
we find

τ/BR[p→ ν K+] = 5.9× 1033 yrs ×
(

1011 GeV
vσ

)2

×
(

M∆
7.0× 106 GeV

)2
. (6.12)

The obtained lower bound onM∆ is two orders of magnitude smaller than the one obtained
in [22] for the same value of B − L breaking scale. The difference is due to the values
of Yukawa couplings and an additional factor of (4/15)2 in eq. (4.7) which arise due to
Clebsch-Gordan coefficient.

7 Summary and discussions

Proton decay is a window to peep high energy phenomena from low energy. Its observation
would conclusively discard the conservation of the baryon number and strengthen the
ambition to unify fundamental interactions. Moreover, it can also provide useful insight
into the nature of theory in ultra-violet from which B and L violations originate. The
latter requires the computation of nucleon decay widths in specific models identifying all
possible sources. We carry out such an exercise for renormalizable SO(10) GUT models.
Classifying the most general scalar spectrum of such theories, we compute explicitly the
couplings of various scalars which can induce baryon and lepton number violating decays
of baryons at the tree level. Effective operators are computed by integrating out the scalar
fields considering also possible mixing terms between the scalars residing in the given GUT
multiplet. We compute d = 6 operators which conserve B − L and also derive d = 7
operators which violate B − L. The latter can lead to nucleon decay modes which are
less studied. We then express the proton decay widths in terms of these operators and
provide a comprehensive analysis of scalar mediated proton decay in a particular model.
The noteworthy features of our general analysis are the following:

• Even though there exists several multiplets charged under B−L in models with 10H ,
126H and 120H , the d = 6 operators which can induce B and L non-conserving (but
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B − L conserving) baryon decays arise from only three pairs of color triplet fields:
T (3, 1,−1

3), T (3, 1,−4
3), T(3, 3,−1

3) and their conjugates.

• In the models with 10H and/or 126H , only T and T mediate the proton decay.
Although 126H contains T and T fields, they have only lepto-quark couplings.

• When 120H is present in the model, the contribution to proton decay from T -T
vanishes at tree-level due to the anti-symmetric nature of Yukawa couplings with
120H . Therefore, these fields can contribute to proton decay only at the loop level.

• The B−L non-conserving nucleon decays, which arise through d = 7 operators at the
leading order, can be mediated in general by Θ(3, 1, 2

3), ∆(3, 2, 1
6), Ω(3, 2, 7

6) and their
conjugate partners. In the models without 120H , only ∆ can induce such decays.

In the context of a minimal model based on 10H and 126H with Peccei-Quinn symme-
try, we find that when scalar mediated contributions dominate, the proton decay spectrum
can be quite different from the one typically anticipated. Several important aspects of the
proton decay spectrum are listed in the section 6. Proton dominantly decays into ν K+

or µ+K0 for lighter T or T , respectively. Moreover, one finds BR[p → µ+π0] � BR[p →
e+π0]. Both these features are distinct from gauge boson mediated proton decays in which
proton preferably decays into ν π+ or e+ π0 and typically BR[p→ µ+π0]� BR[p→ e+π0].
These features mainly arise from the difference between the Yukawa and gauge couplings.
The first is more sensitive to the flavour structure of the underlying GUT model and hence,
if scalar mediated contributions dominate, the proton decay can provide very useful insight
into the Yukawa structure of the theory.
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A Solution for 10H + 126H model

In this appendix, we give necessary parameters of the best fit solution obtained in the
recent work [54]. The solution is obtained for a minimal non-supersymmetric 10H + 126H
model with U(1) Peccei-Quinn symmetry. One finds the best fit parameters for the Yukawa
couplings as

H ′ =

 0.00023 0 0
0 −0.04811 0
0 0 −5.79504

× 10−3 ,

F ′ =

−0.0088 + 0.0178i 0.0475 − 0.0889i 0.4635 + 0.6797i
0.0475 − 0.0889i 1.1279 + 0.5108i −1.2218− 2.5921i
0.4635 + 0.6797i −1.2218− 2.5921i 5.4683 − 5.9856i

× 10−4 . (A.1)
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The above with r = 77.4189, s = 0.3140− 0.0282 i and v′S = 9.84× 1014 GeV leads to the
following effective Yukawa matrices for the quark and leptons:

Yd = H ′ + F ′ , Yu = r (H ′ + sF ′) ,
Ye = H ′ − 3F ′ , Yν = r (H ′ − 3sF ′) , MR = v′S F

′ . (A.2)

The light neutrino mass matrix is obtained as Mν = −v2
u YνM

−1
R Y T

ν , where vu,d = 〈hu,d〉,
v2
u + v2

d ≡ v2 = (174 GeV)2 and vu/vd ≡ tan β = 1.5. The mass matrices for the charged
fermions are given by Md,e ≡ vd Yd,e and Mu ≡ vuYu.

The unitary matrices Uf and UfC diagonalizeMf (f = d, u, e, ν) such that U †fMfM
†
fUf

= U †
fCM

†
fMfUfC ≡ D2

f . Since Mf are symmetric, one finds Uf = U∗
fC . Numerically

obtained Uf are as the following.

Ud = U∗dC =

−0.9497− 0.2658i −0.0895 + 0.1388i −0.0101− 0.0116i
−0.1053 + 0.1272i −0.5434− 0.8213i 0.0276 + 0.0463i

−0.0157 0.0538 0.9984

 ,

Uu = U∗uC =

−0.4028− 0.8952i 0.1456 + 0.123i −0.003− 0.0034i
−0.0213− 0.1895i −0.5203− 0.8323i 0.0086 + 0.0135i

−0.0016 0.0165 0.9999

 ,

Ue = U∗eC =

 −0.3995− 0.916i −0.0093 + 0.0126i 0.0115 + 0.03i
−0.0161− 0.0074i −0.2511− 0.9618i −0.0268− 0.1043i

0.031 −0.108 0.9937

 ,

Uν =

−0.4683 + 0.689i 0.3113 − 0.4343i 0.0721 − 0.1233i
0.151 − 0.2689i 0.3553 − 0.5592i −0.357 + 0.5818i

0.4591 0.5249 0.7168

 . (A.3)

The matrices H ′, F ′ and Uf are used to compute the proton decay spectrum as explained
in the section 6.

B Proton decay spectrum from gauge boson mediations

In this appendix, we compute gauge mediated proton decay partial widths for quantitative
comparison with the scalar induced contributions. The currents associated with B − L

charged gauge bosons, X ∼ (3, 2,−5/6) and Y ∼ (3, 2, 1/6) with belong to adjoint repre-
sentation of SO(10), are given by3[62]

−LX,Y = i
g10√

2

[
Xµ

(
qAγ

µuCA + eCAγ
µqA − dCAγµlA

)
+Y µ

(
qAγ

µdCA + νCAγ
µqA − uCAγµlA

) ]
+ h.c. , (B.1)

where g10 is unified gauge coupling and we have supressed the SU(3) and SU(2) indices for
simplicity. Eliminating X and Y boson using classical equations of motions, the effective

3There also exists vector boson Z ∼ (3, 1, 2/3) with B − L charge 4/3. However, it does not induce
proton decay by itself [38].
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Branching ratio [%] MX �MY MX �MY MX = MY

BR[p→ e+π0] 63 33 47
BR[p→ µ+π0] 1 1 < 1
BR[p→ ν̄π+] 26 55 46
BR[p→ e+K0] < 1 < 1 < 1
BR[p→ µ+K0] 9 < 1 4
BR[p→ ν̄K+] 3 15 1
BR[p→ e+η] < 1 < 1 < 1
BR[p→ µ+η] < 1 < 1 < 1

Table 4. Proton decay branching fractions estimated for the best fit solution for various hier-
archies among the masses of X and Y gauge bosons in case of the minimal renormalizable non-
supersymmetric SO(10) model.

operators relevant for the proton decay are derived as:

Leff = g2
10

2M2
X

(
uCAγ

µqA
(
eCBγµqB − dCBγµlB

))
− g2

10
2M2

Y

(
dCAγ

µqA uCBγµlB
)

+ h.c. . (B.2)

Using Fierz reordering and fermion field redefinitions, f → Uff , we obtain (see [38]
for details)

Leff = k[uA, dB, eCC , uCD]
(
eCC uCD uA dB

)
+k[uCA, dCB, eC , uD]

(
dCB uCA uD eC

)
+k[uCA, dCB, νC , dD]

(
dCB uCA dD νC

)
+ h.c. , (B.3)

with

k[uA, dB, eCC , uCD] = g2
10

M2
X

[(
U †
eCUd

)
CB

(
U †
uCUu

)
DA

+
(
U †
eCUu

)
CA

(
U †
uCUd

)
DB

]
,

k[uCA, dCB, eC , uD] = − g2
10

M2
X

(
U †
dCUe

)
BC

(
U †
uCUu

)
AD
− g2

10
M2
Y

(
U †
dCUu

)
BD

(
U †
uCUe

)
AC

,

k[uCA, dCB, νC , dD] = g2
10

M2
X

(
U †
dCUν

)
BC

(
U †
uCUd

)
AD

+ g2
10
M2
Y

(
U †
dCUd

)
BD

(
U †
uCUν

)
AC

. (B.4)

Decay widths of proton in various channels then can be obtained by using y[f1, f2, f3, f4]
= k[f1, f2, f3, f4] and y′[f1, f2, f3, f4] = 0 in the expressions listed in eq. (5.5). Flavour ef-
fects arising through various unitary matrices are evaluated from the best-fit solutions
determined in [54] for the minimal non-supersymmetric SO(10) model with Peccie-Quinn
symmetry. The results obtained for the best fit solution and for different hierarchy among
the X and Y gauge bosons are given in table 4. We also give the spectrum of branching
ratios for several solutions with acceptable χ2 in figure 3. It can be seen from figure 3 that
the results in table 4 are robust predictions for the proton decays induced by the vector
bosons. Proton decay branching ratios are qualitatively very different from those obtained
by scalar mediation.
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Figure 3. Gauge boson mediated proton decay spectrum for several solutions obtained in case of
the minimal renormalizable non-supersymmetric SO(10) model.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.

References

[1] H. Fritzsch and P. Minkowski, Unified Interactions of Leptons and Hadrons, Annals Phys. 93
(1975) 193 [INSPIRE].

[2] H. Georgi and S.L. Glashow, Unity of All Elementary Particle Forces, Phys. Rev. Lett. 32
(1974) 438 [INSPIRE].

[3] M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf.
Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

[4] S. Dimopoulos, L.J. Hall and S. Raby, A Predictive framework for fermion masses in
supersymmetric theories, Phys. Rev. Lett. 68 (1992) 1984 [INSPIRE].

[5] K.S. Babu and R.N. Mohapatra, Predictive neutrino spectrum in minimal SO(10) grand
unification, Phys. Rev. Lett. 70 (1993) 2845 [hep-ph/9209215] [INSPIRE].

[6] T.E. Clark, T.-K. Kuo and N. Nakagawa, A SO(10) supersymmetric grand unified theory,
Phys. Lett. B 115 (1982) 26 [INSPIRE].

[7] C.S. Aulakh and R.N. Mohapatra, Implications of Supersymmetric SO(10) Grand
Unification, Phys. Rev. D 28 (1983) 217 [INSPIRE].

[8] C.S. Aulakh, B. Bajc, A. Melfo, G. Senjanović and F. Vissani, The Minimal supersymmetric
grand unified theory, Phys. Lett. B 588 (2004) 196 [hep-ph/0306242] [INSPIRE].

[9] B. Bajc, A. Melfo, G. Senjanović and F. Vissani, Yukawa sector in non-supersymmetric
renormalizable SO(10), Phys. Rev. D 73 (2006) 055001 [hep-ph/0510139] [INSPIRE].

[10] A.S. Joshipura and K.M. Patel, Fermion Masses in SO(10) Models, Phys. Rev. D 83 (2011)
095002 [arXiv:1102.5148] [INSPIRE].

– 29 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0003-4916(75)90211-0
https://doi.org/10.1016/0003-4916(75)90211-0
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C93%2C193%22
https://doi.org/10.1103/PhysRevLett.32.438
https://doi.org/10.1103/PhysRevLett.32.438
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C32%2C438%22
https://arxiv.org/abs/1306.4669
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.4669
https://doi.org/10.1103/PhysRevLett.68.1984
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C68%2C1984%22
https://doi.org/10.1103/PhysRevLett.70.2845
https://arxiv.org/abs/hep-ph/9209215
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9209215
https://doi.org/10.1016/0370-2693(82)90507-X
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB115%2C26%22
https://doi.org/10.1103/PhysRevD.28.217
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD28%2C217%22
https://doi.org/10.1016/j.physletb.2004.03.031
https://arxiv.org/abs/hep-ph/0306242
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0306242
https://doi.org/10.1103/PhysRevD.73.055001
https://arxiv.org/abs/hep-ph/0510139
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0510139
https://doi.org/10.1103/PhysRevD.83.095002
https://doi.org/10.1103/PhysRevD.83.095002
https://arxiv.org/abs/1102.5148
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.5148


J
H
E
P
0
8
(
2
0
2
2
)
0
4
2

[11] M. Bordone, G. Isidori and A. Pattori, On the Standard Model predictions for RK and RK∗ ,
Eur. Phys. J. C 76 (2016) 440 [arXiv:1605.07633] [INSPIRE].

[12] G. Bélanger et al., Leptoquark manoeuvres in the dark: a simultaneous solution of the dark
matter problem and the RD(∗) anomalies, JHEP 02 (2022) 042 [arXiv:2111.08027]
[INSPIRE].

[13] P. Fileviez Perez, C. Murgui and A.D. Plascencia, Leptoquarks and matter unification:
Flavor anomalies and the muon g-2, Phys. Rev. D 104 (2021) 035041 [arXiv:2104.11229]
[INSPIRE].

[14] S. Sahoo, S. Singirala and R. Mohanta, Dark matter and flavor anomalies in the light of
vector-like fermions and scalar leptoquark, arXiv:2112.04382 [INSPIRE].

[15] M. Bauer and M. Neubert, Minimal Leptoquark Explanation for the RD(∗) , RK , and (g − 2)µ
Anomalies, Phys. Rev. Lett. 116 (2016) 141802 [arXiv:1511.01900] [INSPIRE].

[16] C.-H. Chen, T. Nomura and H. Okada, Excesses of muon g − 2, RD(∗) , and RK in a
leptoquark model, Phys. Lett. B 774 (2017) 456 [arXiv:1703.03251] [INSPIRE].

[17] I. Doršner, S. Fajfer and O. Sumensari, Muon g − 2 and scalar leptoquark mixing, JHEP 06
(2020) 089 [arXiv:1910.03877] [INSPIRE].

[18] I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand
unification and the forward-backward asymmetry in t t-bar production, Phys. Rev. D 81
(2010) 055009 [arXiv:0912.0972] [INSPIRE].

[19] K.M. Patel and P. Sharma, Forward-backward asymmetry in top quark production from light
colored scalars in SO(10) model, JHEP 04 (2011) 085 [arXiv:1102.4736] [INSPIRE].

[20] I. Doršner, S. Fajfer, A. Greljo, J.F. Kamenik and N. Košnik, Physics of leptoquarks in
precision experiments and at particle colliders, Phys. Rept. 641 (2016) 1
[arXiv:1603.04993] [INSPIRE].

[21] K.S. Babu and R.N. Mohapatra, B-L Violating Proton Decay Modes and New Baryogenesis
Scenario in SO(10), Phys. Rev. Lett. 109 (2012) 091803 [arXiv:1207.5771] [INSPIRE].

[22] K.S. Babu and R.N. Mohapatra, B-L Violating Nucleon Decay and GUT Scale Baryogenesis
in SO(10), Phys. Rev. D 86 (2012) 035018 [arXiv:1203.5544] [INSPIRE].

[23] P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton Stability, Dark Matter and Light
Color Octet Scalars in Adjoint SU(5) Unification, Phys. Rev. D 78 (2008) 015013
[arXiv:0803.4156] [INSPIRE].

[24] J.C. Pati and A. Salam, Unified Lepton-Hadron Symmetry and a Gauge Theory of the Basic
Interactions, Phys. Rev. D 8 (1973) 1240 [INSPIRE].

[25] S. Weinberg, Baryon and Lepton Nonconserving Processes, Phys. Rev. Lett. 43 (1979) 1566
[INSPIRE].

[26] F. Wilczek and A. Zee, Operator Analysis of Nucleon Decay, Phys. Rev. Lett. 43 (1979) 1571
[INSPIRE].

[27] P. Langacker, Grand Unified Theories and Proton Decay, Phys. Rept. 72 (1981) 185
[INSPIRE].

[28] P. Nath and P. Fileviez Perez, Proton stability in grand unified theories, in strings and in
branes, Phys. Rept. 441 (2007) 191 [hep-ph/0601023] [INSPIRE].

– 30 –

https://doi.org/10.1140/epjc/s10052-016-4274-7
https://arxiv.org/abs/1605.07633
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1605.07633
https://doi.org/10.1007/JHEP02(2022)042
https://arxiv.org/abs/2111.08027
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2111.08027
https://doi.org/10.1103/PhysRevD.104.035041
https://arxiv.org/abs/2104.11229
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2104.11229
https://arxiv.org/abs/2112.04382
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2112.04382
https://doi.org/10.1103/PhysRevLett.116.141802
https://arxiv.org/abs/1511.01900
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01900
https://doi.org/10.1016/j.physletb.2017.10.005
https://arxiv.org/abs/1703.03251
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03251
https://doi.org/10.1007/JHEP06(2020)089
https://doi.org/10.1007/JHEP06(2020)089
https://arxiv.org/abs/1910.03877
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.03877
https://doi.org/10.1103/PhysRevD.81.055009
https://doi.org/10.1103/PhysRevD.81.055009
https://arxiv.org/abs/0912.0972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.0972
https://doi.org/10.1007/JHEP04(2011)085
https://arxiv.org/abs/1102.4736
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1102.4736
https://doi.org/10.1016/j.physrep.2016.06.001
https://arxiv.org/abs/1603.04993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1603.04993
https://doi.org/10.1103/PhysRevLett.109.091803
https://arxiv.org/abs/1207.5771
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.5771
https://doi.org/10.1103/PhysRevD.86.035018
https://arxiv.org/abs/1203.5544
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.5544
https://doi.org/10.1103/PhysRevD.78.015013
https://arxiv.org/abs/0803.4156
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0803.4156
https://doi.org/10.1103/PhysRevD.8.1240
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD8%2C1240%22
https://doi.org/10.1103/PhysRevLett.43.1566
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C43%2C1566%22
https://doi.org/10.1103/PhysRevLett.43.1571
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C43%2C1571%22
https://doi.org/10.1016/0370-1573(81)90059-4
https://inspirehep.net/search?p=find+J%20%22Phys.Rept.%2C72%2C185%22
https://doi.org/10.1016/j.physrep.2007.02.010
https://arxiv.org/abs/hep-ph/0601023
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0601023


J
H
E
P
0
8
(
2
0
2
2
)
0
4
2

[29] K.S. Babu et al., Working Group Report: Baryon Number Violation, in Community Summer
Study 2013: Snowmass on the Mississippi, 11, 2013 [arXiv:1311.5285] [INSPIRE].

[30] S. Raby, Supersymmetric Grand Unified Theories: From Quarks to Strings via SUSY GUTs,
vol. 939, Springer (2017), 10.1007/978-3-319-55255-2 [INSPIRE].

[31] T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac and N. Okada, SO(10) group theory for
the unified model building, J. Math. Phys. 46 (2005) 033505 [hep-ph/0405300] [INSPIRE].

[32] E. Golowich, Scalar mediated proton decay, Phys. Rev. D 24 (1981) 2899 [INSPIRE].

[33] I. Dorsner, S. Fajfer and N. Kosnik, Heavy and light scalar leptoquarks in proton decay, Phys.
Rev. D 86 (2012) 015013 [arXiv:1204.0674] [INSPIRE].

[34] I. Dorsner and P. Fileviez Perez, Could we rotate proton decay away?, Phys. Lett. B 606
(2005) 367 [hep-ph/0409190] [INSPIRE].

[35] P. Fileviez Perez, Fermion mixings versus d = 6 proton decay, Phys. Lett. B 595 (2004) 476
[hep-ph/0403286] [INSPIRE].

[36] I. Dorsner and P. Fileviez Perez, How long could we live?, Phys. Lett. B 625 (2005) 88
[hep-ph/0410198] [INSPIRE].

[37] H. Kolešová and M. Malinský, Flavor structure of GUTs and uncertainties in proton lifetime
estimates, Phys. Rev. D 99 (2019) 035005 [arXiv:1612.09178] [INSPIRE].

[38] W. Buchmüller and K.M. Patel, Proton decay in flux compactifications, JHEP 05 (2019) 196
[arXiv:1904.08810] [INSPIRE].

[39] R.N. Mohapatra and B. Sakita, SO(2n) Grand Unification in an SU(N) Basis, Phys. Rev. D
21 (1980) 1062 [INSPIRE].

[40] P. Nath and R.M. Syed, Analysis of couplings with large tensor representations in SO(2N)
and proton decay, Phys. Lett. B 506 (2001) 68 [Erratum ibid. 508 (2001) 216]
[hep-ph/0103165] [INSPIRE].

[41] R.M. Syed, Couplings in SO(10) grand unification, thesis (2005) [hep-ph/0508153] [INSPIRE].

[42] R. Slansky, Group Theory for Unified Model Building, Phys. Rept. 79 (1981) 1 [INSPIRE].

[43] S. Weinberg, Varieties of Baryon and Lepton Nonconservation, Phys. Rev. D 22 (1980) 1694
[INSPIRE].

[44] H.A. Weldon and A. Zee, Operator Analysis of New Physics, Nucl. Phys. B 173 (1980) 269
[INSPIRE].

[45] M. Claudson, M.B. Wise and L.J. Hall, Chiral Lagrangian for Deep Mine Physics, Nucl.
Phys. B 195 (1982) 297 [INSPIRE].

[46] S. Chadha and M. Daniel, Chiral Lagrangian Calculation of Nucleon Decay Modes Induced by
d = 5 Supersymmetric Operators, Nucl. Phys. B 229 (1983) 105 [INSPIRE].

[47] JLQCD collaboration, Nucleon decay matrix elements from lattice QCD, Phys. Rev. D 62
(2000) 014506 [hep-lat/9911026] [INSPIRE].

[48] G. Altarelli and D. Meloni, A non supersymmetric SO(10) grand unified model for all the
physics below MGUT , JHEP 08 (2013) 021 [arXiv:1305.1001] [INSPIRE].

[49] A. Dueck and W. Rodejohann, Fits to SO(10) Grand Unified Models, JHEP 09 (2013) 024
[arXiv:1306.4468] [INSPIRE].

– 31 –

https://arxiv.org/abs/1311.5285
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.5285
https://doi.org/10.1007/978-3-319-55255-2
https://inspirehep.net/search?p=find+doi%20%2210.1007%2F978-3-319-55255-2%22
https://doi.org/10.1063/1.1847709
https://arxiv.org/abs/hep-ph/0405300
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0405300
https://doi.org/10.1103/PhysRevD.24.2899
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD24%2C2899%22
https://doi.org/10.1103/PhysRevD.86.015013
https://doi.org/10.1103/PhysRevD.86.015013
https://arxiv.org/abs/1204.0674
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.0674
https://doi.org/10.1016/j.physletb.2004.12.015
https://doi.org/10.1016/j.physletb.2004.12.015
https://arxiv.org/abs/hep-ph/0409190
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0409190
https://doi.org/10.1016/j.physletb.2004.06.061
https://arxiv.org/abs/hep-ph/0403286
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0403286
https://doi.org/10.1016/j.physletb.2005.08.039
https://arxiv.org/abs/hep-ph/0410198
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0410198
https://doi.org/10.1103/PhysRevD.99.035005
https://arxiv.org/abs/1612.09178
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.09178
https://doi.org/10.1007/JHEP05(2019)196
https://arxiv.org/abs/1904.08810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.08810
https://doi.org/10.1103/PhysRevD.21.1062
https://doi.org/10.1103/PhysRevD.21.1062
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD21%2C1062%22
https://doi.org/10.1016/S0370-2693(01)00392-6
https://arxiv.org/abs/hep-ph/0103165
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0103165
https://arxiv.org/abs/hep-ph/0508153
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0508153
https://doi.org/10.1016/0370-1573(81)90092-2
https://inspirehep.net/search?p=find+J%20%22Phys.Rept.%2C79%2C1%22
https://doi.org/10.1103/PhysRevD.22.1694
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD22%2C1694%22
https://doi.org/10.1016/0550-3213(80)90218-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB173%2C269%22
https://doi.org/10.1016/0550-3213(82)90401-1
https://doi.org/10.1016/0550-3213(82)90401-1
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB195%2C297%22
https://doi.org/10.1016/0550-3213(83)90355-3
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB229%2C105%22
https://doi.org/10.1103/PhysRevD.62.014506
https://doi.org/10.1103/PhysRevD.62.014506
https://arxiv.org/abs/hep-lat/9911026
https://inspirehep.net/search?p=find+EPRINT%2Bhep-lat%2F9911026
https://doi.org/10.1007/JHEP08(2013)021
https://arxiv.org/abs/1305.1001
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1305.1001
https://doi.org/10.1007/JHEP09(2013)024
https://arxiv.org/abs/1306.4468
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1306.4468


J
H
E
P
0
8
(
2
0
2
2
)
0
4
2

[50] D. Meloni, T. Ohlsson and S. Riad, Effects of intermediate scales on renormalization group
running of fermion observables in an SO(10) model, JHEP 12 (2014) 052
[arXiv:1409.3730] [INSPIRE].

[51] D. Meloni, T. Ohlsson and S. Riad, Renormalization Group Running of Fermion Observables
in an Extended Non-Supersymmetric SO(10) Model, JHEP 03 (2017) 045
[arXiv:1612.07973] [INSPIRE].

[52] K.S. Babu, B. Bajc and S. Saad, Yukawa Sector of Minimal SO(10) Unification, JHEP 02
(2017) 136 [arXiv:1612.04329] [INSPIRE].

[53] T. Ohlsson and M. Pernow, Running of Fermion Observables in Non-Supersymmetric
SO(10) Models, JHEP 11 (2018) 028 [arXiv:1804.04560] [INSPIRE].

[54] V.S. Mummidi and K.M. Patel, Leptogenesis and fermion mass fit in a renormalizable
SO(10) model, JHEP 12 (2021) 042 [arXiv:2109.04050] [INSPIRE].

[55] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev.
Lett. 38 (1977) 1440 [INSPIRE].

[56] N. Cabibbo, E.C. Swallow and R. Winston, Semileptonic hyperon decays, Ann. Rev. Nucl.
Part. Sci. 53 (2003) 39 [hep-ph/0307298] [INSPIRE].

[57] Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020)
083C01 [INSPIRE].

[58] R. Alonso, H.-M. Chang, E.E. Jenkins, A.V. Manohar and B. Shotwell, Renormalization
group evolution of dimension-six baryon number violating operators, Phys. Lett. B 734
(2014) 302 [arXiv:1405.0486] [INSPIRE].

[59] Super-Kamiokande collaboration, Search for proton decay via p→ e+π0 and p→ µ+π0

with an enlarged fiducial volume in Super-Kamiokande I-IV, Phys. Rev. D 102 (2020) 112011
[arXiv:2010.16098] [INSPIRE].

[60] Super-Kamiokande collaboration, Search for Proton Decay via p→ µ+K0 in
Super-Kamiokande I, II, and III, Phys. Rev. D 86 (2012) 012006 [arXiv:1205.6538]
[INSPIRE].

[61] Super-Kamiokande collaboration, Search for proton decay via p→ νK+ using 260
kiloton·year data of Super-Kamiokande, Phys. Rev. D 90 (2014) 072005 [arXiv:1408.1195]
[INSPIRE].

[62] M. Machacek, The Decay Modes of the Proton, Nucl. Phys. B 159 (1979) 37 [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP12(2014)052
https://arxiv.org/abs/1409.3730
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1409.3730
https://doi.org/10.1007/JHEP03(2017)045
https://arxiv.org/abs/1612.07973
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.07973
https://doi.org/10.1007/JHEP02(2017)136
https://doi.org/10.1007/JHEP02(2017)136
https://arxiv.org/abs/1612.04329
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1612.04329
https://doi.org/10.1007/JHEP11(2018)028
https://arxiv.org/abs/1804.04560
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.04560
https://doi.org/10.1007/JHEP12(2021)042
https://arxiv.org/abs/2109.04050
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2109.04050
https://doi.org/10.1103/PhysRevLett.38.1440
https://doi.org/10.1103/PhysRevLett.38.1440
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C38%2C1440%22
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://doi.org/10.1146/annurev.nucl.53.013103.155258
https://arxiv.org/abs/hep-ph/0307298
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0307298
https://doi.org/10.1093/ptep/ptaa104
https://doi.org/10.1093/ptep/ptaa104
https://inspirehep.net/search?p=find+J%20%22PTEP%2C2020%2C083C01%22
https://doi.org/10.1016/j.physletb.2014.05.065
https://doi.org/10.1016/j.physletb.2014.05.065
https://arxiv.org/abs/1405.0486
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.0486
https://doi.org/10.1103/PhysRevD.102.112011
https://arxiv.org/abs/2010.16098
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2010.16098
https://doi.org/10.1103/PhysRevD.86.012006
https://arxiv.org/abs/1205.6538
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1205.6538
https://doi.org/10.1103/PhysRevD.90.072005
https://arxiv.org/abs/1408.1195
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.1195
https://doi.org/10.1016/0550-3213(79)90325-0
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB159%2C37%22

	Background
	Scalar spectrum and couplings
	16F-16F-10H couplings
	16F-16F-126H couplings
	16F-16F-120H couplings

	Dimension-6 effective operators
	From 10-plet
	From 126-plet
	From 120-plet

	Dimension-7 effective operators
	From 10-plet
	From 126-plet
	From 120-plet

	Nucleon decay partial widths
	B-L conserving decays
	B-L non-conserving decays

	Estimation for a 10H+126H model
	Proton decay pattern
	Limits on the masses of T and T
	Limit on the mass of Delta

	Summary and discussions
	Solution for 10H+126H model
	Proton decay spectrum from gauge boson mediations

