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1 Introduction

Non-topological solitons, or Q-balls, are extended configurations of a scalar field whose
stability is typically ensured by a conserved charge. Self-interactions ensure that the energy
of the extended configuration with charge Q is less than the energy of Q quanta of the scalar
field [2–5]. For models with a global charge, this occurs when

√
V (φ)/φ2 is minimized at

nonzero VEV φ [4].
In this work, we first observe that in a wide range of models, finite temperature

corrections can allow Q-balls which do not existence at zero temperature. (This is different
than studying thermal corrections in systems which admit Q-balls at zero temperature, as
in e.g. [6].) In particular, symmetry principles generally forbid a tree level cubic φ3 term in
the potential. However, finite temperature corrections to the potential generally scale as
V1−loop ∝ T 4 ∫∞

0 dxx2 ln(1∓ e−
√
x2+y), where y = m2/T 2. In the high temperature limit,

the expansion of the logarithm generates terms ∝ T |φ|3 (assuming the mass is proportional
to the scalar VEV). Furthermore, because the coefficient is generically negative, the
potential grows slower than quadratically when this term dominates.
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The complex doublet Higgs field in the Standard Model provides an excellent playground
to explore these states. Because the Higgs field is responsible for mass generation, the
finite temperature corrections have the necessary form. Furthermore, because the running
quartic term is small, there is a comparatively large regime in which the cubic term is
relevant. In this paper, we will explore the properties of these “Higgs balls”. We emphasize
that these non-topological solitons are made of Higgs quanta; this is different from other
models in which non-topological solitons form from other scalar quanta whose interactions
are mediated by Higgs bosons [7, 8].

However, one complication is that the Standard Model Higgs carries gauged, not global,
charge. When a field carries gauged (as opposed to global) symmetry, Q-balls may still
exist [2, 9, 10], although only for sufficiently small charges [9, 11]. (See also the review
ref. [12].) As we discuss, this has implications for the existence of Q-balls, both in the
Standard Model and in extensions. We also focus on Higgs balls because they illustrate
many non-trivial aspects that can arise in thermal balls. In addition to being gauged (not
global) Q-balls, they are also not absolutely stable.

Like global Q-balls, gauged Q-balls may be long-lived but not absolutely stable. As
mentioned, our Higgs balls will be of this type, because the Higgs quanta can decay (for
example, through the Yukawa interactions). Since the Higgs field is the only scalar field
that carries SU(2) and U(1) charge, we note that we can consider the Higgs balls as carrying
a global “Higgs charge”. When the rate of Higgs-particle-number-changing processes inside
the soliton is smaller than the Hubble parameter, Higgs charge is effectively conserved.
Therefore, we show the Higgs balls are long lived for sufficiently high temperatures. This
can be generalized to other gauged thermal balls.

This paper is organized as follows: first, in section 2 we discuss how thermal effects
can produce Q-balls at finite temperature in models which do not have Q-balls at zero
temperature. We then turn to Higgs balls as a specific illustration of these “thermal balls”.
In section 3, we first study Higgs balls in a Standard Model-like scenario in which the
U(1)×SU(2) symmetry is a global symmetry. We see that the finite temperature corrections
allow for the existence of (global) Q-balls.

In section 4, we then include gauge interactions by generalizing results for U(1) gauged
Q-balls to SU(2)×U(1). We see that even in the static charge limit, the gauge interactions
are sufficient to destabilize Higgs balls in the Standard Model; they have higher energy
than an equivalent number of free Higgs quanta.

However, it is not necessarily the case that the gauge interactions always destabilize
the Q-balls, and in section 5, we consider an extension of the Standard Model in which
non-topological solitons remain stable against decay into separate Higgs quanta.

Finally, although the Higgs balls are stable against decay into individual Higgs quanta,
the Standard Model Yukawa couplings enable them to decay into fermions. This decay rate
is suppressed since it can only occur at the surface, and we make brief remarks on this in
section 6.

Finally we conclude, emphasizing both the general features that enable the existence of
“thermal balls” in various models, as well as the specific features of Higgs balls.
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2 Thermal balls

In this section, we discuss how thermal effects can generally create non-topological solitons
in models which have no Q-balls at zero temperature.

We consider a scalar field φ with vacuum expectation value (VEV) v, which at zero
temperature is determined by minimized a potential V (v). The one-loop finite temperature
corrections to this potential can be expressed as [13, 14]

V1−loop(v, T ) =
∑

bosons

niT
4

2π2 JB

(
m2
i

T 2

)
+

∑
fermions

niT
4

2π2 JF

(
m2
i

T 2

)
, (2.1)

where

JB(y) =
∫ ∞

0
dxx2 ln

(
1− e−

√
x2+y

)
,

JF (y) =
∫ ∞

0
dxx2 ln

(
1 + e−

√
x2+y

)
. (2.2)

Although we use the full finite temperature corrections, the high temperature limit is
helpful in understanding this phenomenon. In this limit, the functions above become

JB(x) = −π
4

45 + π2

12x−
π

6x
3/2,

JF (x) = 7π4

360 −
π2

24x, (2.3)

with the next order corrections of order x2 ln(x). If the bosons have a mass ∼ gv, the bosonic
loops will produce a term of the form −g3T |v|3, which is effectively an attractive interaction.

As has been noted [15], second order loop corrections also contribute to this cubic term,
due to the regularization of infrared divergences. These can be calculated through the ring
(or daisy) diagrams, which we include in our calculations below. We also note that although
the conceptual explanation above makes use of the high temperature expansion, in the
results presented below we numerically integrate the JB and JF functions in the regime in
which the high temperature expansion is not valid.

The importance of these cubic terms in spontaneous symmetry beaking has long been
noted; when they are sufficiently large the phase transition is first order [15]. In this work,
we demonstrate their importance to the existence of solitons.

The bosonic contributions can come from either scalar or vector fields. Scalar fields
can have a mass term generated by interactions with the φ field. We assume that φ
carries a global charge, in which case non-topological solitons (Q-balls) exist if V (v, T )/v2

is minimized at non-zero v. We see immediately that the existence of a −Ag3T |v|3 term
ensures that this is satisfied. We note that this can occur even in a model in which φ is the
only field, provided that at sufficiently large VEVs its mass is given by its self-interaction
times its VEV. As we will see below, in the Standard Model the small Higgs self-coupling
suppresses this contribution, but this will be explored further in section 5, when we consider
BSM (beyond the Standard Model) scenarios.
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This situation is more complicated when vector bosons are used. Vector bosons generally
acquire masses of the form gv through spontaneous symmetry breaking, in which case the
scalar field φ carries gauge charge. The gauge fields mediate self-interactions, which can
increase the energy of the Q-ball. If the gauge group in question is U(1), the energy per
unit charge of the gauged Q-ball (in the thin wall limit) is given by [1]

ω(R) = ω0(R)gv0R coth(gv0R) (2.4)

where ω0 is the energy per unit charge of a global Q-ball (i.e., calculated ignoring gauge
self-interactions of the scalar field), and v0 is the VEV inside this Q-ball. Provided that
ω(R) < mφ, the mass of a scalar quanta outside the soliton, non-topological soliton solutions
exist. For sufficiently small gv0R, the additional energy from gauge-self interactions is small
and non-topological solitons will exist.

However, ω0 (and v0) will generally depend on g, and therefore the existence of gauged
thermal Q-balls has to be considered in each individual model. Since the only scalar field
confirmed to exist is the Higgs field, we are particularly interested in it, which requires us
to generalize the above results.

The second condition for a Q-ball is traditionally the presence of a conservation law for
particle number, such that the quanta cannot lose energy by decaying into lighter particles.
In the early Universe, we argue that this condition is too strict and one merely requires
that the decay rate of the quanta be smaller than the expansion rate of the Universe.

We will call the non-topological solitons produced by thermal corrections, and therefore
which do not exist at zero temperature, thermal balls. We now turn our attention to
determining whether such thermal balls exist in the Standard Model Higgs sector.

3 Higgs balls in the global Standard Model

As the Standard Model of particle physics has a single scalar field, the Higgs field, it
is natural to first ask whether these exist within the Standard Model. To answer this
question, we first study the non-topological solitons that would exist if the Standard Model
SU(2)×U(1) symmetry were not gauged. More specifically, we ignore repulsive interactions
mediated by the gauge bosons, which allows us to use global soliton equations. (We do
keep all Standard Model interactions when calculating corrections to the Higgs potential,
including those involving the gauge bosons.) We do this for two reasons: first, to show
the qualitative features that determine the existence of thermal balls, and secondly, as we
demonstrate in section 4, the energy of gauged Higgs balls can be found using the energy of
this global model. (This is expected from the U(1) results in ref. [1]; see equation (2.4).)

In this section, we consider the Standard Model Higgs, whose running quartic coupling
becomes small (and even negative) at large field values before increasing again, and therefore
there is a regime in which the potential grows slower than quadratically. If the Higgs field
carried only global charge, then V (h)/h2 would be minimized at non-zero h, indicating the
existence of thin wall Q-balls [4]. However, such Q-balls would typically have V (h) < 0 in
their interiors, and they would induce a phase transition to the true vacuum at large VEVs
via the process of solitosynthesis [16–19]). We do not consider these states.
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Figure 1. Left: V (h)/h2 as a function of Higgs VEV h, at a fixed temperature of T = 1014 GeV.
Because this is minimized at nonzero VEV, thin wall Q-ball solutions exist. Right: V (h) as a
function of Higgs VEV, at a fixed temperature of T = 1014 GeV. The Higgs potential remains
positive throughout the regime of interest, avoiding solitosynthesis.

The measured top quark pole mass is 173.1± 0.9 GeV, and for the central value, the
Higgs potential becomes unstable around 1010 GeV. However, the scale of the instability
depends strongly on the top quark mass. In order to better illuminate our solitons, we will
impose that the Higgs potential is stable up to 1017 GeV, which corresponds to a pole top
quark mass of 170.5 GeV, which is within 3σ of current observations [20].

To generate our solitons, we note that in the early universe, finite temperature correc-
tions modify the Higgs potential [21]. In the work the follows, we have included one-loop
corrections to the Standard Model potential and one-loop and ring (“daisy”) finite tem-
perature corrections. The renormalization group equations governing the running coupling
constants have been evaluated to two loop order. For the finite temperature corrections, we
include contributions from the gauge bosons as well as the Higgs and the top quark, but
other fermions are neglected due to their small Yukawa masses. Details on how we calcu-
lated the finite temperature Standard Model potential and evaluated the running coupling
constants can be found in appendix A, and details of how we matched the parameters to
observables are in appendix B.

The left side of figure 1 shows the V (h)/h2 at temperature T = 1014 GeV, and it is
clearly minimized at nonzero field values h ∼ 1015 GeV. To demonstrate that this is not a
solitosynthesis scenario, we show the potential V (h) as a function of the Higgs VEV on the
right; as expected, it is positive up to the stabilization scale of 1017 GeV.

Figure 2 illustrates concretely how finite temperature contributions lead to the Q-ball
minimum. This figure compares the potential to the temperature-dependent quadratic
and quartic terms. At low VEVs, we see that the temperature-dependent quadratic term
dominates. However, as the VEV increases, the potential begins to drop below the quadratic
terms, indicating the existence of thin wall Q-balls. This continues until h ∼ 1015 GeV,
when the quartic term dominates.

Before discussing gauge effects, it is helpful to study the properties of these Q-balls,
including their stability. Despite being large classical states, they behave like radiation.
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Figure 2. The potential V (h) (black) compared to the quadratic (blue, dashed) and quartic (red,
dotted) terms at T = 1014 GeV. Before the quartic terms dominate around h = 1015 GeV, the
potential is below the quadratic contribution due to finite temperature corrections.

The left plot of figure 3 shows the energy per unit charge of the Higgs ball, as a function
of temperature, and we see that it scales linearly. This plot also shows the Higgs VEV
in the interior of the thin wall Q-ball, determined by minimizing V (h, T )/h2. This is
also approximately linear in temperature, although the linearity begins to break down at
larger scales.

Finally, we discuss the stability of the Higgs balls. Figure 2 shows that V (h, T )/h2

is only slightly smaller than the quadratic term, which is likewise dominated by finite
temperature corrections. Frequently this would be sufficient to show that the Higgs ball has
lower energy the equivalent number of free quanta, but we must be careful when evaluating
the mass of the free Higgs quanta. Inside the Higgs ball, we have used the maximum of the
temperature or Higgs VEV as our renormalization scale for our running couplings, but in
the plasma outside the Higgs ball the temperature should be used. Therefore, the mass of a
Higgs quanta outside the Q-ball is not necessarily the same as the one determined from the
quadratic contribution to the potential inside the Q-ball. We compare the energy per unit
charge ω0 to the mass of a Higgs quanta outside the Q-ball in the left plot of figure 4, and
see that the Q-ball is stable against decay into free Higgs quanta for T & 1010 GeV. (As we
will discuss below, Yukawa couplings still allow these to decay into fermions, although they
are long-lived.)

This ensures the stability of thin wall Q-balls, in which the surface tension contribution
is neglected. Given the small difference between ω0 and mh,ext, we should be concerned
that the small contribution to the energy from the surface tension may be sufficient to
destabilize them. (By this, we mean that the energy per unit charge is greater than the
mass of a Higgs quanta outside the Q-ball.) For a Q-ball of charge Q, the total energy
including the surface contribution is

E = Qω0 + 4π
3 h2

0R ·
√
m2
h,ext − ω2

0, (3.1)

and we calculate the radius using the thin wall approximation, since we are in the regime
in which the surface tension energy is small compared to Qω0. This is plotted for a variety
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Figure 3. The energy per unit charge ω0 of the thin-wall Higgs ball (black) and the Higgs VEV h0
inside the Higgs ball (blue, dashed) as a function of temperature.
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Figure 4. Left: the ratio of the energy per unit charge of the Higgs ball to the mass of a Higgs
quanta outside of the Higgs ball, as a function of temperature. The Higgs ball is stable when this
is less than 1. Right: the total energy of the Higgs ball, including surface effects, as a function of
temperature for a variety of charges. (Color online.)

of charges in the right plot of figure 4, showing that for charges Q & 106, surface tension is
not sufficient to destabilize the Q-ball.

Therefore, in the (unphysical) scenario in which the Standard Model SU(2)×U(1) is
ungauged, we see that thermal effects produce non-topological solitons with charge greater
than 105 in the temperature range 1010 GeV and 1014 GeV.

4 Gauge effects: Higgs balls in the Standard Model

The Standard Model Higgs carries gauged, not global charge. Q-balls carrying gauged U(1)
charge have been studied in ref. [1], which showed that in the thin wall limit the energy per
unit charge of the gauged Q-ball ω is related to that of a global Q-ball, ω0. In appendix C,
we generalize these first to a scalar field carrying gauged SU(2) charge, and then to the
Higgs field, which carries both SU(2) and U(1) gauged charge.

We note that as in ref. [1], we make the static charge approximation. This approximation
is perhaps more problematic for gauged charge, as the assumption that only the zero
component of the gauge fields is nonzero removes SU(2) self-interactions between the gauge
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fields in the Q-ball. The breakdown of the static charge approximation is connected to the
confining aspect of SU(N) gauge interactions. In this work, we will ensure that the radii of
our Q-balls is less than the SU(2) confinement scale, as calculated outside the Q-ball where
the symmetry is unbroken. We discuss this further in appendix C.

As shown in the appendix, the energy per unit charge of the Higgs ball is related to
that of the ungauged Higgs ball by

ω = 1
2Rh0ω0

√
g2
W + g2

Y coth
(1

2Rh0

√
g2
W + g2

Y

)
. (4.1)

A Q-ball made of the Higgs field will carry both U(1) and SU(2) charge; the amount of
SU(2) charge is described by the weak isospin. A quanta of the Higgs field has hyperchange
1/2 and weak isospin −1/2, so the charges of the Higgs ball satisfy QY = −QW =
− i2

∫
d3x

(
Φ†D0Φ− h.c.

)
, as it must for it to be electrically neutral. As shown in the

appendix, the charge is related to the large radii behavior of the gauge fields. As shown in
the appendix,

QY = −QW =
8πRω0

(
Rh0

√
g2
W + g2

Y coth
(

1
2Rh0

√
g2
W + g2

Y

)
− 2

)
g2
W + g2

Y

. (4.2)

We note that the appendix includes explicit expressions for the gauge fields are derived in
the static charge limit, thin wall case.

For a chosen charge Q = |QY | = |QW |, equation (4.2) can be numerically solved to
find the radius of the gauged Q-ball, which can then be substituted into equation (4.1) to
find the energy per unit charge, including the potential energy from gauge interactions
between the Higgses. To determine stability, this should be compared to the mass of a
Higgs quanta in the plasma outside the Higgs ball. This is shown in figure 5, which shows
that the ratio is generally larger than one. This means the Q-ball could lower its energy by
becoming separate free Higgs quanta. In fact, such states would not be produced, as the
repulsion force mediated by the gauge bosons would push the Higgs quanta apart, to the
lower energy state.

We could solve for the radius at which the energy per unit charge for the gauged
Q-ball is equal to the external Higgs mass, and then use equation (4.2) to determine the
charge of this state. Across the temperature range of interest it is O(0.1), well outside the
thin wall regime of validity. Therefore, we conclude that Higgs balls do not exist in the
Standard Model, as the contribution to the energy from gauge interactions is sufficient to
destabilize them.

5 Higgs balls beyond the Standard Model

As the above makes clear, non-topological solitons cannot be constructed with the Standard
Model Higgs because the increased energy from gauge interactions makes them unstable
into decay into individual Higgs quanta. However, there is no fundamental reason why
such states could not exist, and since the behavior of the Higgs potential at high scales is
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Figure 5. Ratio of energy per unit charge to Higgs mass outside the Q-ball, as a function of
temperature, for a range of charges. Because this ratio is larger than one, if such Higgs balls were
produced they would immediately decay into individual quanta.

unknown, the existence of such states is an open question. In this section, we explore Higgs
balls in an extension of the Standard Model.

Higgs balls are unstable due to the increased energy from gauge self-interactions; these
are decreased if the gauge couplings gY and gW decrease. Although this can be accomplished
by changing their running (for example, through additional fermionic contributions with
a negligible coupling to the Higgs, which would provide a negative contribution to the
beta functions of the gauge couplings while leaving the Higgs quartic unaffected), this is
insufficient to stabilize the Higgs balls. The finite temperature corrections which produce
the minimum in V (h)/h2 arise from the bosonic JB functions and scale as powers of the
bosonic masses. The contributions of the gauge bosons disappear as the gauge couplings
decrease, leaving only the much suppressed Higgs and ghost contributions.

Therefore, in addition to modifying the gauge couplings at large scales, we additionally
include a singlet field S. The potential is

V (H,S) = −µ2H†H + λH(H†H)2 + m2
S

2 S2 + λSS
4 + λHSH

†HS2, (5.1)

where we have imposed a Z2 symmetry on the scalar. We assume the mass of the scalar
singlet mS is above the LHC scale, but when the Higgs acquires a large VEV h the singlet’s
mass is given by

mS,eff =
√
m2
S + λHSh2 ≈

√
λHSh. (5.2)

This mass is independent of the gauge couplings, which consequently decouples the depth
of the V (h)/h2 minimum from the gauge coupling. We note that the scalar field S does
not acquire a vacuum expectation value and will not mix with the Standard Model Higgs
boson. Furthermore, in our benchmark scenario we will take λHS = 0.9, forbidding Higgs
decays into these scalars even at large VEVs.

Now that we have decoupled the depth of the H-ball minimum from the gauge couplings,
we modify the running gauge couplings. We assume that at some scale above the LHC scale
but below the temperatures of interest here, new states cause the Standard Model gauge
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couplings to run to significantly smaller values. As noted above, this can be implemented
through the introduction of additional fermions; if these carry gauge charge, they contribute
to the gY and gW gauge functions. We note that at least at the one loop level, it is impossible
for the running couplings to become negative, as each beta function is proportional to the
cube of the coupling. Consequently, it becomes arbitrarily small.

We note that the fermions do not necessarily couple to the Standard Model Higgs,
although in the absence of a new gauge interaction such couplings are generically expeccted.
We assume that either a new gauge interaction forbids such couplings or the couplings are
exceedingly small, so that the effect of the new fermions on the Higgs potential is negligible.

Since the only impact of the fermions is to decrease the running gauge couplings from
their relatively large Standard Model values, we do not present a complete discussion of the
fermionic sector, but rather parameterize our results by the decrease in the gauge couplings.
We will focus primarily on a benchmark in which the gauge couplings at large VEVs are
1/100th their running Standard Model values, although we will also briefly discuss the case
in which they are 1/10th their running Standard Model values. Finally, to preserve the
running of the Standard Model Higgs quartic coupling to small values over many orders of
magnitude, we also introduced a fermion which is at the same scale as the singlet, with a
Yukawa coupling related λHS . Full details of the modifications made in this scenario are in
appendix D.

Figure 6 is the analog of figure 2 in our beyond-the-Standard-Model (BSM) scenario.
By comparison, we see that the new scalar field causes the full potential to be beneath the
quartic contribution, indicating the existence of Q-balls. We also see that the potential is
positive throughout this region, and thus this scenario is protected from solitosynthesis.
Although this plot may appear similar to the Standard Model plot in figure 2, we emphasize
that the source of the relevant finite temperature terms is different. In the pure Standard
Model scenario, the gauge bosons were responsible for the dip. Here, their contribution is
negligible because the gauge couplings are significantly smaller. Instead, the dip is caused
by the scalar field. However, the effective coupling λHS is of order O(0.1), the same order
as the (original) Standard Model gauge couplings. For this reason, the dip produced by the
singlet in our BSM scenario is comparable to the dip produced in the pure Standard Model
scenario produced by the gauge bosons. (Additionally, the fact that we adjust the top pole
mass to the maximum value consistent with the potential being stable to scales of 1017 GeV
also contributes to the similar appearance of the potentials in the two scenarios.)

As discussed above, gauged Q-balls are closely related to their global counterparts, and
therefore as above, we first consider global Q-balls in this scenario. (As above, by global
Q-balls we mean neglected gauged self-interactions.) The VEV and energy per unit charge
ω0 are shown in the left plot of figure 7, and the ratio of the energy per unit charge to the
mass of a Higgs quanta is shown on the right. These again are very similar to the Standard
Model values, for the reasons outlined above. Additional, we have studied the thin wall
range of validity like we did for the Standard Model; the contribution of surface tension is
negligible for global Higgs balls with charges & 105.

Thus, the energy of these Higgs balls (and their energy difference compared to an
equivalent number of free Higgs quanta) is not significantly different from the pure Standard
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(red, dotted) terms at T = 1014 GeV, for our beyond-the-Standard-Model scenario. Before the
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to finite temperature corrections.
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Figure 7. Left: the energy per unit charge ω0 of the thin-wall global Higgs ball (black) and the
Higgs VEV h0 inside the global Higgs ball (blue, dashed), as a function of temperature, for our
BSM scenario. Right: the ratio of the energy per unit charge of the global Higgs ball to the mass of
a Higgs quanta outside of the Higgs ball, as a function of temperature. The global Higgs ball is
stable when this is less than 1.

Model scenario. However, because we have decreased the strength of the hypercharge
and weak gauge couplings by a factor of 100, the destabilizing gauge self-interactions are
significantly weaker. We can use equations (4.1) and (4.2) to determine the energy per unit
charge of a thin-wall gauged Higgs ball, and compare this to the mass of a Higgs quanta
outside the Higgs ball. This is shown in the plot of the left side of figure 8. We see that
Higgs balls with charges of order O(106) are stable across our temperature range. On the
right side, we present the analog of figure 5 in our BSM scenario. As expected from the left
figure, we see that across the temperature range of interest, Higgs balls with charges up to
O(6) are stable.

Furthermore, while surface effects have not been studied for gauged Q-balls, we expect
the thin wall regime to be valid for these. We note that global Q-balls with these charges
are indeed in the thin wall regime, as mentioned above, and repulsive gauge self-interactions
generally increase the size of the Q-balls, pushing them towards the thin wall regime.
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scenario, as a function of temperature. Right: ratio of energy per unit charge to Higgs mass outside
the Q-ball, as a function of temperature, for a range of charges.

We note that we also studied a model in which the gauge couplings gY and gW were
modified to their running Standard Model values, divided by a factor of 10. In this case,
the maximum charge of stable Higgs balls was around 5000. As we were not confident
these would be in the thin wall regime, we instead will focus on this benchmark scenario, in
which the couplings are modified at high scales to be their running Standard Model values,
divided by a factor of 100.

6 Decay rate of Higgs balls

We have ensured that the Higgs balls discussed exist; that is, that they are stable against
decay into individual Higgs quanta. However, they are not absolutely stable as inside the
Q-ball, where the Higgs VEV is nonzero, the Yukawa couplings allow Higgs quanta to decay
into fermions (and to photons via fermionic loops). Additionally, the gauge couplings allow
the Higgs quanta to decay into vector bosons. These decays of individual quanta can lower
the energy of the Higgs ball, and ultimately lead the overall soliton to decay.

First, let us discuss new decays which may appear in our BSM mode.In the specific
BSM scenario outlined above, the scalar singlet does not carry gauge charge and so the
Higgs ball cannot decay into scalar quanta. We also ensure the inside the Higgs ball, where
SU(2)×U(1) is broken, decays to the scalar and its associated fermion are kinematically
forbidden. As noted above, we have assumed that the fermions which modify the running of
the gauge couplings do not directly couple to the Higgs boson, and so any decays to these
are loop suppressed (and furthermore, those loops involve the now-small gauge couplings).

Therefore, in this section, we calculate the decay rate of the Q-balls using Standard
Model decays. In alternative BSM scenarios, new decay channels may be opened and in
such cases, the rates considered here should be considered a lower bound on the decay rates.

In appendix E, we present the rates for a single Higgs quanta inside the Q-ball to decay
into gauge bosons, photons, gluons, and fermions. Bosonic decays can occur throughout
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Figure 9. The ratio of the mean free path of a b-quark produced via decay to the radius of the
Higgs ball, for a variety of charges. We observe that the quark can efficiently diffuse out of the
Higgs ball.

the Q-ball, and therefore the Higgs ball’s rate of decay into bosons is given by

ΓQ-ball→bosons = QΓh→bosons. (6.1)

It has been noted that frequently fermionic decays occur only at the surface of a
Q-ball [22, 23], due to one of two factors [24]: first, decays can be kinematically forbidden
due to the large VEV inside the Q-ball, which makes the fermions heavy. However, our
energy per unit charge is only about one order of magnitude smaller than the Higgs VEV,
and therefore only the top quark decay is kinematically forbidden.

Secondly, inside the Q-ball the Fermi sea can fill up with the produced decay prod-
ucts, preventing further fermionic decays. This occurs only if the decay products can-
not diffuse out efficiently. The mean free path is λ ∼ 1/σψφn, where number density
n = 3Q0/(4πR3) refers to the density of Higgs quanta inside the Q-ball. To calculate
the cross section, we consider scatterings via the gauge interactions and the Yukawa cou-
plings, and approximate the momentum as ω/2. Thus the cross section is taken to be
σ ∼ Max

(
g4
Y /(ω/2)2, g4

W /(ω/2)2, y4
i /(ω/2)2). Comparing the mean free path to the radius

of the gauged Higgs ball, we see that all the fermions are able to efficiently diffuse out; results
for the b-quark are shown in figure 9. Therefore, fermionic decays also occur throughout
the volume of the Higgs ball, giving a total decay rate for the overall Higgs ball of

ΓQ-ball→ff̄ = QΓh→ff̄ . (6.2)

The production of Higgs balls is beyond this paper, as the production of gauged Q-balls
is a complicated and not yet well-understood process. However, as thermal Q-balls, Higgs
balls require a large temperature, and a natural environment for them would be the early
universe. Therefore, we will consider their lifetime in this environment. Cosmologically,
Q-balls decay efficiently once the decay rate per unit charge is larger than the Hubble
parameter, and therefore we consider

ΓQ-ball
QH

= Γh
H
, (6.3)
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since all of our decays occur throughout the volume of the Q-ball. The only dependence
on Q is through the frequency of the gauged Q-balls, which varies weakly with charge as
shown in the right plot of figure 8. As shown on this plot, the variation between Q = 106

and Q = 100 (assuming the thin wall approximation is valid) is only a few percent, and
therefore the results presented below are to high degree of precision independent of charge
(although they are temperature dependent).

This ratio is shown in figure 10, along with the net gauge boson and net fermionic
contribution. As explained in the appendix, the gauge boson decay rate is dominated by
longitudinal modes, while the fermion decay rate is dominated by b quarks. The photon
and gluon decay rates are highly suppressed. We see that if they are produced in the early
universe, Higgs balls are generally long lived at temperatures above about 2.6× 1013 GeV.

As mentioned in the introduction, this can be usefully thought of in terms of an
approximate conservation of Higgs number. Because the Higgs field is the only scalar field
that carries SU(2) and U(1) charge, to change the charge carried by the Q-ball the number
of Higgs quanta must change. As long as these processes are slow compared to the Hubble
rate, there is approximate conservation of Higgs number charge, and the Higgs balls are
long-lived. Once these decays become efficient, this is no longer a conserved charge and the
Higgs balls decay. (We note that the decay of the Higgs quanta does not violate SU(2) and
U(1) conservation, although the charge of the Q-ball changes; the gauge charge is carried
out of the Q-ball by the decay products.)

Since the gauge charge must be carried by scalar fields to produce a soliton, conserving
gauge charge inside the Q-ball will generally be connected to keeping some sum of scalar
field quanta constant. Therefore, an approximate global symmetry can be usefully defined,
which can be used to study stability, as we did here with Higgs number.
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7 Discussion and conclusion

In this work, we have demonstrated the possibility of thermal balls, non-topological solitons
that exist due to finite temperature corrections, even in models which have no attractive
interactions at zero temperature and thus no Q-ball solutions at zero temperature. The
generic condition for the existence of such thermal balls is bosonic fields whose mass is
determined by the scalar VEV.

If the bosonic field is a scalar, then the mere existence of a term proportional to
−AT |φ|3 at high temperatures ensures the existence of these states, unless the scale at
which these terms become relevant is unphysical (e.g., above the Planck scale).

If the bosonic field is a gauge boson, then it’s necessary to consider gauge effects,
which can prevent such thermal balls from existing. We have shown that this occurs in the
Standard Model Higgs sector.

To show that thermal balls made of Higgs bosons (Higgs balls) can exist in extensions
of the Standard Model, we have considered a model with two modifications: first, to weaken
the gauge self-interactions, we have modified the running of the gauge couplings so that
they are smaller at high scales. Secondly, we have introduced an additional scalar field,
which contributes to the thermal corrections as explained above. Even with gauge effects
included, Higgs balls exist in this model.

We noted that Higgs balls won’t be absolutely stable; even though they cannot decay
into a set of Higgs quanta, they can decay into fermions and gauge bosons. While the
production of gauged Q-balls in the early universe has not been studied, we have shown
that if they are produced, then for sufficiently high temperatures they will be long-lived.
Of course, in other models, the thermal balls may be completely stable if no decays
are permitted.

We generally leave potential phenomenological implications for future work, as we have
not discussed production of thermal balls. However, we will note one intriguing connection.
Thermal balls require the existence of large cubic terms from thermal corrections. If the
model undergoes spontaneous symmetry breaking and these terms are relevant at those
scales, then the phase transition will be first order [15]. In the minimal modification
of the Standard Model here, we have been agnostic about the scale of new physics; the
existence of Higgs balls does not necessarily ensure a first order electroweak phase transition.
However, a first order electroweak phase transition, as envisioned in many models of
baryogenesis [25–38] and other well motivated scenarios involving phase transitions [39–45],
does require significant cubic terms and hence we would expect thermal Higgs balls to exits
in such models.

We also note that if produced in the early universe, Higgs balls could provide a novel
means of dark matter production. As figure 7 demontrates, as the temperature changes the
Higgs VEV also changes, and therefore the effective mass of the Higgs quanta inside the
Higgs ball similar changes. We consider models in which a new annihilation channel exists,
which has a resonance at a specific Higgs mass (see for instance [46–50]). As the Higgs
mass evolves with temperature it will can pass through this resonance and thus produce
dark matter [51]. However, since Higgs balls are only a fraction of the volume, production
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will be suppressed. This is desirable in e.g. Wimpzilla scenarios, in which one must avoid
overproducing dark matter and overclosing the universe. However, specific abundances
cannot be calculated without knowing the Higgs ball production rate which we leave to
future work.
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A Standard model potential

In this appendix, we discuss how we calculate the Standard Model potential at zero and
finite temperature. Our conventions and resummations follow [13]. We use the Landau
gauge, following [14, 21]. The renormalization group improved tree potential is

Vtree(h) = −µ(h)2

2 h2 + λ(h)
4 h4, (A.1)

where, inside the H-ball, we set our renormalization scale to be the Higgs VEV. We use
SARAH [52] to evaluate our running coupling constants, which evaluates the renormalization
group equations to two-loop order.

We initialize the Standard Model parameters in SARAH at the Z pole, following
the procedure in [53], although with all parameters related to the singlet set to zero. In
particular, in matching the MS parameters to observed pole masses, we include one loop
corrections for the Standard Model Higgs parameters µ and λ, the top quark Yukawa yt,
and the electroweak gauge coupling g. All other parameters are matched at tree-level. This
is explained further in appendix B.

In the potential, we also include the one-loop corrections [14, 21]

V1−loop(h) =
∑

W,Z,t,χ,h

ni
64π2mi(h)4

[
ln
(
mi(h)2

h2

)
− Ci

]
(A.2)

(where the contributions of all other fields are subdominant). In this expression, we again
take the renormalization scale to be the Higgs VEV; the coefficients are:

nW = 6, nZ = 3, nt = −12, nχ = 3, nh = 1,
CW = CZ = 5/6, Ct = Cχ = Ch = 3/2. (A.3)
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The masses are

mW (h)2 = 1
4g2(h)2h2,

mZ(h)2 = 1
4(g1(h)2 + g2(h)2)h2,

mt(h)2 = 1
2yt(h)2h2,

mχ(h)2 = −µ(h)2

2 + λ(h)h2,

mh(h)2 = −µ(h)2

2 + 3λ(h)h2, (A.4)

with all running parameters evaluated at the Higgs VEV inside the H-ball. (We note that
at the scales of interest, −µ(h)2 � λ(h)h2 and this contribution to the Higgs and χ masses
can be neglected.)

As noted in section 3, finite temperature corrections are important to H-ball existence.
We include the one-loop finite temperature correction,

V1−loop(h, T ) =
∑

bosons

niT
4

2π2 JB

(
m2
i

T 2

)
+

∑
fermions

niT
4

2π2 JF

(
m2
i

T 2

)
, (A.5)

where

JB(y) =
∫ ∞

0
dxx2 ln

(
1− e−

√
x2+y

)
,

JF (y) =
∫ ∞

0
dxx2 ln

(
1 + e−

√
x2+y

)
. (A.6)

Again we neglect contributions from fermions other than the top, as they are highly
suppressed. (We note that the constant term proportional to T 4, which does not depend on
the Higgs VEV, has no impact on our solitons and therefore can be neglected.)

We also include the so-called daisy diagrams via

Vring(h, T ) =
∑

WL,ZL,γL,χ,h

niT
4

12π

(m2
i

T 2

)3/2

−
(
M2

i

T 2

)3/2
 , (A.7)

where the Debye masses for h, χ, and the longitudinal mode of the W boson are given by
M2

i (h) = m2
i (h) + Πi(h, T ) with

Πh(h, T ) = Πχ(h, T ) =
(

3g2
2 + g2

1
16 + λ

2 + y2
t

4

)
T 2

ΠWL
(h, T ) = 11

6 g
2
2T

2. (A.8)
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Due to the mixing between the Z boson and the photon, their Debye masses are

M2
ZL

(h) = 1
2

(
m2
Z + 11

6
g2

2T
2

cos2(θW ) + ∆(h, T )
)

M2
ZL

(h) = 1
2

(
m2
Z + 11

6
g2

2T
2

cos2(θW ) −∆(h, T )
)
, (A.9)

where

∆2(h, T ) = m4
Z + 11

3
g2 cos2(θW )

cos2(θW ) ·
(
m2
Z + 11

12
g2

2T
2

cos2(θW )

)
T 2. (A.10)

In this expression, all couplings (including the Weinberg angle) are running couplings,
evaluated at a renormalization scale set by the Higgs vacuum expectation value. As above,
we have also subtracted off the h-independent terms proportional to T 4, which do not
impact our solitons.

In our analysis we have integrated JB and JF numerically; however, we note that in
the high temperature limit,

V (h, T ) = V1−loop(h, T ) + Vring(h, T )
≈ κT 2h2 −ATh3, (A.11)

where

κ = 1
32
(
g2

1 + 3g2
2 + 8λ+ 4y2

t

)
− λ

6π

√
g2

1 + 3g2
2 + 8λ+ 4y4

t + 1
32π

√
11
6 (g3

1 + 3g3
2),

A =
8
(√

3 + 1
)
λ3/2 +

(
g2

1 + g2
2
)3/2 + 2g3

2

32π , (A.12)

which illustrates the −ATh3 term that allows for Higgs balls to exist.
In discussions of the stability of the H-balls, we have compared the energy of the H-ball

to the energy of Q free Higgs quanta. For this, we used the thermal mass of the Higgs
boson in the true vacuum, given by mh(T ) =

√
2κ. In the true vacuum (where the Higgs

VEV is zero) we have evaluated the running couplings at a renormalization scale set by the
temperature.

B Matching Standard Model parameters to observables

As mentioned in section 3, we want to avoid Q-balls that induce solitosynthesis, which
means that we want to ensure the Standard Model vacuum remains stable. The stability
of the Standard Model vacuum is sensitive to the precise values of measured parameters
such as the top mass, and therefore one must take care when matching observables to the
running Standard Model parameters. We describe our procedure here.

Following ref. [53], the one loop self energy for the top quark can be written as

1
2y

2
t v

2 = M2
t

(
1 + 2Re

(
Σv(M2

t ) + Σs(M2
t )
))
, (B.1)
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where

Σv(M2
t )+Σs(M2

t ) = 3
16

g2
2

(4π)2

(
−2−4 1

h2 −2h2− 256
9 s2 +2t2 +16 t

4

h2

− 2
27

(
39− 64

z2 +25z2 +18z
4−1
h2

)

+
(

4h2− 8
3 t

2 + 4
3 t

2 2t2 +h2

t2−h2

)
ln(h)− 8

9

(
−9 z

4

h2 +4(4−5z2 +z4)
t2−z2

)
ln(z)

+
(

128
3 s2−32 t

4

h2 −
4
3
t2(2t2 +h2)
t2−h2 − 32

9
(z2−1)(t2−4)

z2− t2

)
ln(t)

+ 2
3
(
4t2−h2

)
F (Mt,Mt,Mh)+ 2

3
(t2 +2)(t2−1)

t2
F (Mt,MW ,0)

− 2
27

(
64−80z2 +7z4

z2 + 32−40z2 +17z4

t2

)
F (Mt,Mt,MZ)

+
[
2
(
−6 1

h2 −h
2− 32

3 s
2 + t2 +8 t

4

h2

)

− 4
9

(z2−1)(9+4h2 +9z2)
h2

]
ln
(
Q2

M2
W

))
, (B.2)

δg2

g2
0

= 1
(4π)2 g

2
0

(
−257

72 −
1
24h

2 + 20
9 NF + 1

4 t
2−2 ln(t)

+ 1
12(12−4h2 +h4)F (MW ,Mh,MW )− (t2 +2)(t2−1)

2 F (MW ,Mt,0)

− 33
4 F (MW ,MW ,MW )+

(4
3NF −

43
6

)
ln
(
Q2

M2
W

))
, (B.3)

and where the mass ratios are {h, t, z} = {Mh/MW ,Mt/MW ,MZ/MW }. (In this section,
we use v for the Higgs VEV.) The MS RG scale is denoted by Q, and F (k,m1,m2) is a
loop function given in ref. [54]. We adjusted the top mass pole mass away from its central
value of 172.4 ± 0.7GeV [20] as explained in section 3 to stabilize the vacuum up to the
desired scale.

For the Higgs sector parameters we again use the self energies of the W and Higgs
bosons,

µ2
h = −1

2M
2
h

(
1 + ReΠh(M2

h)
M2
h

)
(B.4)

λ = 1
8g

2
2
M2
h

M2
W

(
1 + ReΠh(M2

h)
M2
h

− ReΠW (M2
W )

M2
W

)
(B.5)
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where to one loop, the self energies have the form

Πh(M2
h) = 3

8
g2

0M
2
h

(4π)2

(
−4

3 − 8 1
h2 − 2h2 + 16 t

4

h2 −
2
3z

2 − 4 z
4

h2

+ 3h2F (Mh,Mh,Mh) + 4t2
(

1− 4 t
2

h2

)
F (Mh,Mt,Mt)

+ 2
3
h4 − 4h2 + 12

h2 F (Mh,MW ,MW )

+
(

1
3

1
h2 −

4
3z

2 + 4 z
4

h2

)
F (Mh,MZ ,MZ)

− 2h2 ln(h)− 8t2 ln(t) +
(
−2

3h
2 + 4z2

)
ln(z)

+
(
− 4 + 2h2 + 4t2 − 2z2

)
ln
(
Q2

M2
W

)

+ 64c6
M2
W

g4
0h

4

[
−2 + 12t4 − z4 + 3h4F (Mh,Mh,Mh)− 6h4 ln(h)

− 24t4 ln(t) + 6z4 ln(z) +
(
− 2 + h4 + 4t4 − z4

)
ln
(
Q2

M2
W

)])
, (B.6)

and

ΠW (M2
W ) = 3

8
g2

0M
2
W

(4π)2

(
−212

9 −
8
3

1
h2 −

22
9 h

2 + 4
27(40NF −17)− 4

3 t
2 +16 t

4

h2 + 14
9 z

2− 4
3
z4

h2

+ 4h2(h2−2)
h2−1 ln(h)−8

(
2
3− t

2 +4 t
4

h2

)
ln(t)+4

(
2 z

4

h2 −
z4−4z2−8
z2−1

)
ln(z)

+ 2
9
(
12−4h2 +h4

)
F (MW ,Mh,MW )− 4

3(t2 +2)(t2−1)F (MW ,Mt,0)

− 32
3
z2−1
z2 F (MW ,MW ,0)+ 2

9
(z4 +20z2 +12)(z2−4)

z2 F (MW ,MW ,MZ)

+2
[
−1+ 2

h2 +
(
−59

9 −6 1
h2 −h

2 + 16
9 NF −2t2 +8 t

4

h2

)
+z2−2 z

4

h2

]
ln
(
Q2

M2
W

))
.

(B.7)

C Gauged Q-balls in the static charge approximation

In this appendix, we consider gauged Q-balls in the static charge approximation following
ref. [1], which studies gauged U(1) Q-balls. We first consider a gauged SU(N) scenario
before discussing the Standard Model Higgs, which carries SU(2)×U(1) charge.

As we show, the static charge approximation does not include the effects of gauge
boson self-interactions, which generally occur in non-Abelian gauge theories. Therefore
it is valid when the size of the Q-ball is less than the confinement scale. All unbroken
SU(N) interactions other than U(1) confine on some scale, and therefore it is expected that
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the static charge approximation breaks down. We note that a Q-ball which carries SU(N)
charge will necessarily be screened by charges exterior to the Q-ball at the confinement
scale. To estimate the SU(2) confinement scale we run g2 using the one loop RGE

µ
dαW
dµ

= −bW2π αW (C.1)

with
bW = 22

3 −
nF
3 −

ns
6 . (C.2)

As a result we find that the SU(2) confinement scale is at µ = O(10−10)(GeV). This
gives a confinement scale Rconf ∼ 1/µ which is significantly larger than the radii of our
Q-balls throughout the temperature ranges considered in this work. We can therefore ignore
macroscopic confinement effects.

We start with a complex scalar field φ which transforms under a gauged SU(N), with
generators ta and structure constant fabc. The relevant Lagrangian density is

L = |Dµφ|2 − U(|φ|)− 1
4F

a†
µνF

aµν , (C.3)

where the field strength tensor is

F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν (C.4)

and the gauged covariant derivative is

Dµ = ∂µ − igAaµta. (C.5)

We introduce a generalized static charge ansatz

φ(t, ~x) = 1√
2
φ0F (r)eiωt, (C.6)

where F (r) is real, although φ0 can be complex. In this ansatz, the gauge fields are

Aa0(t, ~x) = Aa0(r), Aia(t, ~x) = 0, (C.7)

where Aa0(r) will be taken to be real.
After simplifying, we have the Lagrangian

L= (4π)
∫
dr r2

[
1
2φ
†
0φ0

(
ω2F (r)2−(F ′(r))2

)
−ωgAa0(r)φ†0taφ0F (r)2

+ g2

4 A
a
0A

b
0F (r)2φ†0 {ta, tb}φ0−U

(1
2φ
†
0φ0F (r)2

)
+ 1

2(Aa′0 (r))2
]
. (C.8)

We now specialize to SU(2) and assume that φ0 transforms in the fundamental repre-
sentation. Without a loss of generality we take the VEV to be

φ0 =
(

0
v

)
, (C.9)

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
0
3
3

giving

L = (4π)
∫
dr r2

[
v2

2
(
ω2F (r)2 − (F ′(r))2

)
+ ωg

2 A3
0(r)v2F (r)2 + g2v2

8 Aa0A
a
0F (r)2

−U
(
v2

2 F (r)2
)

+ 1
2(Aa′0 (r))2

]
, (C.10)

where our choice of the VEV direction selects the A3 gauge field.
Next, we introduce rescalings like those in ref. [1]. In particular, we define:

Φ0 = v0√
m2
φ − ω2

0
, ρ = r

√
m2
φ − ω2

0, Ω = ω√
m2
φ − ω2

0
,

Aa(ρ) = Aa0(ρ)
v

, α = gΦ0, κ2 = Ω2 − Ω2
0, Ω0 = ω0√

m2
φ − ω2

0
, (C.11)

and now we will use a prime to indicate a derivative with respect to ρ. The Lagrangian is
then

L= 4πΦ2
0

√
m2
φ−ω2

0

∫
dρρ2

[
−1

2(F ′(ρ))2 + 1
2(Aa′(ρ))2 + 1

2F
2
(

Ω2 +ΩαA3(ρ)+ α2

4 (Aa)2
)

− U
(
F (ρ)2)

Φ2
0(m2

φ−ω2
0)2

]
(C.12)

from which we find the equations of motion

0 = F ′′ + 2
ρ
F ′ + F

(
Ω2 + ΩαA3(ρ) + α2

4 (Aa)2
)
− 1

Φ2
0(m2

φ − ω2
0)2

dU

df

0 = (A3)′′ + 2
ρ

(A3)′ − α

2F
2
(

Ω + α

2A
3
)

0 = (A1)′′ + 2
ρ

(A1)′ − α

2F
2
(
α

2A
1
)

0 = (A2)′′ + 2
ρ

(A2)′ − α

2F
2
(
α

2A
2
)
. (C.13)

Assuming the scalar field carries unit charge, the charge of the Q-ball, Q =
−i
∫
d3x (Φ†D0Φ− h.c.), is given by

Q = 4π
∫
dρ ρ2F (ρ)2Φ2

0

(
Ω + α

2A
3(ρ)

)
, (C.14)

which after using the equations of motion and an integration by parts, is

Q = 4πΦ3
0

α/2 lim
ρ→∞

ρ2A′3, (C.15)

similar to U(1) gauged Q-balls. In particular, we see that

lim
ρ→∞

A3 = − αQ/2
4πΦ2

0ρ
. (C.16)
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We observe that regardless of the function F (ρ), A1 = A2 = 0 is a solution to the
equations of motion, and so therefore we set these fields to zero inside the Q-ball. The
resulting equations for F and A3

0 are identical to those in ref. [1] with α→ −α/2. Following
this reference, we similarly impose the boundary conditions

lim
ρ→0

F ′ = lim
ρ→∞

F = lim
ρ→0

A′3 = lim
ρ→∞

A3 = 0 (C.17)

Therefore, if we approximate the scalar field profile with a step function F (ρ) =
1−Θ(ρ−R∗), and impose A3 and (A3)′ are continuous at the boundary, we find

A3(ρ) = −2Ω
α


1− sinh(αρ/2)

cosh(αR∗/2)(αρ/2) , ρ < R∗

αR∗/2− tanh(αR∗/2)
αρ/2 , ρ ≥ R∗.

(C.18)

The derivative of αA3 is small if the radius is large, and therefore in the equation of
motion for F we can approximate A3 with its value at the radius. Then we recognize that
the equation for F is that of a global Q-ball, but with the frequency given by

ΩG = Ω + α

2A
3(R∗), (C.19)

giving a relation between the energy per unit charge of the gauged Q-ball and the energy
per unit charge of the ungauged Q-ball,

Ω = ΩG ·
αR∗

2 coth
(
αR∗

2

)
. (C.20)

In the thin wall limit, this becomes

ω = ω0 ·
αR∗

2 coth
(
αR∗

2

)
. (C.21)

Now we turn our attention to the Standard Model Higgs, which carries both SU(2) and
U(1) charge. We start with the Lagrangian density

L = |Dµφ|2 − U(|φ|)− 1
4G

a†
µνG

aµν − 1
4F
†
µνF

µν , (C.22)

where the field strength tensors are

Gaµν = ∂µA
a
ν − ∂νAaµ + gW f

abcAbµA
c
ν

Fµν = ∂µBν − ∂νBµ (C.23)

and the gauged covariant derivative is

Dµ = ∂µ − igWAaµta −
i

2gYBµ. (C.24)
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We use the convention that the Higgs has hypercharge 1/2. Proceeding as above, and
making the static charge ansatz for both the SU(2) gauge field Aµa and the U(1) gauge
field Bµ, we find the Lagrangian

L= 4πΦ2
0

√
m2
φ−ω2

0

∫
dρρ2

[
−1

2(F ′(ρ))2 + 1
2(Aa′(ρ))2−

U
(
F (ρ)2)

Φ2
0(m2

φ−ω2
0)2

+ 1
2F

2
(

Ω2 +ΩαWA3(ρ)+ α2
W

4 (Aa(ρ))2−ΩαYB(ρ)+ α2
Y

4 (B(ρ))2− αWαY
2 B(ρ)A3(ρ)

)]
.

(C.25)

In this expression, αW = gWΦ0, αY = gY Φ0, Aa(ρ) = Aa0(ρ)/v, and B(ρ) = B0(ρ)v.
We note that again the equation of motion for the radial F (ρ) matches that of a global

Q-ball, with a shifted frequency,

0 = F ′′ + 2
ρ
F ′ + F

(
Ω + αW

2 A3 − αY
2 B

)2
− 1

Φ2
0(m2

φ − ω2
0)2

dU

df

0 = (A3)′′ + 2
ρ

(A3)′ − αW
2 F 2

(
Ω + αW

2 A3 − αY
2 B

)
,

0 = B′′ + 2
ρ
B′ + αY

2 F 2
(

Ω− αY
2 B3 + αW

2 A3

)
, (C.26)

and the other fields A1 and A2 may be set to zero. We see that the equations of motion
mix A3 and B, as is expected for the Higgs sector.

A Q-ball made of the Higgs field will carry both U(1) and SU(2) charge. We note that
since we have chosen the VEV in the form above, the amount of SU(2) charge is described
by the weak isospin. A quanta of the Higgs field has hyperchange 1/2 and weak isospin
−1/2, so the charges of the Higgs ball satisfy QY = −QW = − i2

∫
d3x

(
Φ†D0Φ− h.c.

)
, as

it must for it to be electrically neutral. Using our equation of motion above, we see that
this can be expressed using either gauge field

QY = −QW = 4πΦ2
0

αW /2
lim
ρ→∞

ρ2A′3 = −4πΦ2
0

αB/2
lim
ρ→∞

ρ2B′, (C.27)

which again determines their behavior at large radii.
Although the equations are coupled, they can be solved in the thin wall approximation.

Taking F (ρ) = 1−Θ(ρ−R∗) and imposing the boundary conditions

lim
ρ→0

F ′ = lim
ρ→∞

F = lim
ρ→0

A′3 = lim
ρ→∞

A3 = 0 = lim
ρ→0

B′ = lim
ρ→∞

B = 0, (C.28)

as well as imposing the continuity of A3 and B at R∗ (as well as their derivatives), gives

A3(ρ) =


2αWΩ

(
2 sinh

(
1
2ρ
√
α2
W+α2

Y

)
sech
(

1
2R

∗
√
α2
W+α2

Y

)
ρ(α2

W+α2
Y )3/2 − 1

α2
W+α2

Y

)
ρ < R∗

−2αWΩ
(
R∗
√
α2
W+α2

Y −2 tanh
(

1
2R

∗
√
α2
W+α2

Y

))
ρ(α2

W+α2
Y )3/2 ρ ≥ R∗
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and:

B(ρ) =


2αY Ω

(
1

α2
W+α2

Y
− 2 sinh

(
1
2ρ
√
α2
W+α2

Y

)
sech
(

1
2R

∗
√
α2
W+α2

Y

)
ρ(α2

W+α2
Y )3/2

)
ρ < R∗

2αY Ω
(
R∗
√
α2
W+α2

Y −2 tanh
(

1
2R

∗
√
α2
W+α2

Y

))
ρ(α2

W+α2
Y )3/2 ρ ≥ R∗

We note that in the large ρ regime, B(ρ) = − αY
αW

A3(ρ), as required by QY = −QW .
We remind the reader that in this expression, αW and αY are the quantities defined under
equation (C.25), and not the couplings squared over 4π.

From the equation for F above, we observe that the energy per unit charge is related
to that of a global Q-ball by

ΩG = Ω + αW
2 A3(R∗)− αY

2 B(R∗), (C.29)

which gives us

ω = 1
2Rv0ω0

√
g2
W + g2

Y coth
(1

2Rv0

√
g2
W + g2

Y

)
. (C.30)

Substituting the solutions into (C.27), we find

QY = −QW =
8πRω0

(
Rv0

√
g2
W + g2

Y coth
(

1
2Rv0

√
g2
W + g2

Y

)
− 2

)
g2
W + g2

Y

, (C.31)

which scales as R3ω0v
2
0 in the appropriate limit. Replacing v0 with h0 for the Higgs VEV

gives the expression in section 4. We also note that since we have used the step function
ansatz, F = 1 inside the Higgs ball, and therefore the VEV is h0, the same value as for the
global Higgs ball.

D Modifications for our BSM scenario

In this appendix, we will summarize the changes we made in our BSM (Beyond-the-
Standard-Model) scenario. We assume that somewhere between the scales probed by
current experiments and the lowest scales relevant (temperature and/or Higgs VEV of
order O(108)) new fermions affect the running of the Standard Model gauge couplings,
suppressing them. Since we are interested in the general phenomenon of Higgs balls, we
implemented this simply by dividing the running Standard Model couplings by a factor
of 100.

The primary modification to the Higgs potential comes from the additional scalar S. This
scalar field generally helps to stabilize the Higgs potential through a positive contribution
to the running quartic coupling. The quartic term in the potential will typically dominate
at scales slightly above the mass of the singlet. Consequently, Q-balls would exist only
in a narrow temperature regime around the mass of the singlet, and a broad study of
thermal balls is difficult. (This would also likely decrease any phenomenological impact
they may have.)
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Therefore, we also introduce a fermion ψ at the same scale as the scalar, with a coupling
constant yf =

√
2λHS . With this choice, the one-loop corrections to the Standard Model

Higgs sector quartic coupling λ from the scalar and fermion cancel with each other. This
could perhaps be justified via an embedding in a supersymmetric model, although we leave
the for future study. Therefore, we use the Standard Model running couplings (with gY
and gW modified as explained above).

As mentioned above, we assume the fermions either do not couple to the Standard
Model Higgs directly, or such couplings are suppressed so that their contribution to the
Higgs potential is negligible.

As in appendix A, we follow the approach in ref. [13]. As the scalar does not acquire
a vacuum expectation value, Vtree(h) is unchanged. The scalar and fermion contributions
to ∆V1−loop exactly cancel, due to the relation between λHS and the Yukawa coupling
discussed above.

The contribution to the finite temperature potential is

∆V1−loop(h, T ) = T 4

2π2JB

(
m2
S,eff
T 2

)
− T 4

2π2JF

(
m2
f

T 2

)
, (D.1)

where mS,eff =
√
λHSh and the mass of the fermion is

√
λHSh. We note that this is

independent of the gauge couplings, as desired.
Finally, the contribution to the daisy diagrams is

∆Vring(h, T ) = T 4

12π

(m2
S,eff
T 2

)3/2

−
(
M2

S

T 2

)3/2
 , (D.2)

where the Debye mass isM2
S = m2

S,eff + ΠS(h, T ) and

ΠS(h, T ) = λHS
12 T 2. (D.3)

As before, we have taken care to subtract off terms proportional T 4 which are independent
of the VEV h are therefore do not affect our solitons. Finally, we note that the Debye
masses of the Higgs and Goldstone bosons χ are also modified by the scalar and fermion.
We add to these

∆Π2
h,χ =

(
λHS
12 +

y2
f

4

)
T 2. (D.4)

E Decay rates of Higgs quanta inside the Higgs ball

In this appendix, we describe our calculations for the decay rate of Higgs quanta inside
the Higgs ball into Standard Model particles, which is used in section 6 to calculate the
decay rate of the Higgs ball. At tree-level, the Higgs quanta inside the Higgs ball can decay
directly to gauge bosons and fermions. In addition to considering these, we note that at
loop level it can decay to photons and gluons. We also consider these decays, and show
that they are suppressed.
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Before proceeding, we note the following: in appendix C we showed that the Higgs
VEV inside the gauged Q-balls is the same as in the global Q-ball, and so we evaluate the
decay rates at h = h0. We also made sure to evaluate these at the energy per unit of the
gauged, not global, Higgs balls.

Gauge boson decay. As noted in appendix A, the longitudinal and transverse modes
of the gauge bosons receive different corrections to their masses at finite temperature.
Consequently, we consider their decay rates separately. The decay rates for a single Higgs
quanta inside the Higgs ball to decay to gauge bosons are given by

Γh→WW,trans = g4
Wh

2

32π ·
√

1− 4xW,trans
ω

,

Γh→ZZ,trans = 1
2

(g2
W + g2

Y )2h2

32π ·
√

1− 4xZ,trans
ω

,

Γh→WW,long = 1
256π ·

g4
Wh

2ω3

m4
W,long

·
√

1− 4xW,long (1− 2xW,long)2 ,

Γh→ZZ,long = 1
2 ·

1
256π ·

(g2
W + g2

Y )2h2ω3

m4
Z,long

·
√

1− 4xZ,long (1− 2xZ,long)2 , (E.1)

where xi = M2
i /ω

2, where inside the Higgs ball the effective mass of a single Higgs quanta is
ω, the energy per unit charge. We note that at zero temperature, in which mW,long = gWh/2
and mZ,long =

√
g2
W + g2

Y h/2, the longitudinal decay rates have a piece independent of the
gauge coupling, as required by the Golstone Boson Equivalence Theorem. Using these
relations and summing over the modes reproduces the standard result (e.g., [55]), provided
that one also replaces ω with the Higgs mass.

Because gW and gY are suppressed in our BSM model, the decays to the transverse
modes are also highly suppressed. However, the decays to the longitudinal modes are not,
and it turns our these will be the dominant decay modes of the quanta inside the Higgs ball.

Photon decay. The decay of the Higgs quanta to photons (and gluons) is suppressed by
loop effects. At zero temperature, the photon decay rate is given by [55]

Γ(h→ γγ) = GFα
2m3

h

128
√

2π3

∣∣∣∣∑
f

Ncfe
2
fA

H
f (τf ) +AHW (τW )

∣∣∣∣2, (E.2)

where

AHF (τ) = 2τ (1 + (1− τ)f(τ)) ,
AHW (τ) = − (2 + 3τ + 3τ(2− τ)f(τ)) , (E.3)

and τi = 4M2
i /m

2
h. Ncf is one for leptons and three for quarks, and ef is the charge of each

species in units of the proton charge. In these relations, the function f is given by

f(τ) =


arcsin (1/

√
τ)2

τ ≥ 1,

−1
4

[
log

(
1 +
√

1− τ
1−
√

1− τ

)
− iπ

]2

τ < 1.
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The first term, from fermion loops, can be easily generalized to decays of Higgs quanta
inside Q-balls at finite temperature, by replacing mH with ω and using GF = 1/(

√
2h2).

However, the second term, from W boson loops, is more complicated. At finite temperature,
it should be evaluated in the Landau gauge, and since the transverse and longitudinal parts
of the gauge boson receive different Debye masses, these should be separately identified;
for example, by using a gauge boson propagator which projects out the longitudinal and
transverse components [15].

As we expect the photon contribution to be negligible due to loop suppression, and the
smallness of α, we will not carefully calculate it but estimate it as follows. First, we write
GF = g4

Wh
2/(
√

2m4
W ), motivated by the fact that the hWW vertex introduces a factor of

g2
W into the matrix element. At zero temperature, when mW = gh/2, this reduces to the
familiar 1/(

√
2h2). Secondly, we note that the first term in AHW , which is independent of the

W boson mass, must come from the longitudinal mode by the Goldstone Boson Equivalence
Theorem, as this gives the contribution which is independent of the gauge coupling. The
remaining pieces of AHW are a sum of the longitudinal and transverse contributions.

We will thus overestimate the decay rate if we calculate:

Γ(h→ γγ) ≤ α2ω3

256π3

∣∣∣∣1h∑
f

Ncfe
2
fA

H
f (τf ) + g2

Wh

m2
W,long

AHW (τW,long) + g2
Wh

m2
W,trans

ÃHW (τW,trans)
∣∣∣∣2,

(E.4)
where ÃHW simply leaves off the first term of AHW , and we also replace mH with ω when
calculating τ (in addition to including thermal masses). Using this, we have verified that
Γh→γγ is many orders of magnitude smaller than the gauge boson decay rate throughout
the temperature range of interest.

Gluon decay. In general, the Higgs quanta may also decay to gluons via fermion loop
effects. The leading order decay rate is [55]

Γ(h→ gg) = α2
sω

3

72v2π3

∣∣∣∣∑
Q

AHQ (τQ)
∣∣∣∣2, (E.5)

where

AHQ (τ) = 3
2τ (1 + (1− τ)f(τ)) (E.6)

and the function f(τ) was given above. The sum is over all the quarks, using thermally
corrected mass. However, the gluon also has an induced thermal mass [56], which are

mG,long = g2
ST

mG,trans =
√

2g2
ST

2 + 3
4πg

2
ST ln


√

3 + nQ/2
gS

 , (E.7)

where nQ is the number of quarks in the thermal plasma. These thermal masses are sufficient
to make the decay kinematically forbidden throughout the region of interest, due to the
smallness of the energy per unit charge ω.
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Figure 11. The ratio of 2mS,eff = 2mψ = 2
√
λHSh to the energy per unit charge inside the Higgs

ball. Since this is greater than one, decays into the scalar S and fermion ψ are kinematically
forbidden. This is evaluated at Q = 106, but it depends on the charge very weakly for reasons
explained in section 6.

Fermionic decays. Next we turn our attention to fermionic decays. As noted in section 6,
fermionic decays occur throughout the Higgs ball as the decay products are able to efficiently
diffuse out. The rate for a single Higgs quanta to decay into fermions is

Γh→ff̄ =
3ωy2

f

8π , (E.8)

where we use the running Yukawa couplings. The Higgs can decay to all fermions except the
top quark, although we neglect neutrino decays as they are highly suppressed. As expected,
decays to bottom quarks dominate due to the larger Yukawa coupling.

BSM decays. Our BSM model introduced several new states: a set of fermions which
alter the running of the gY and gW couplings, a scalar singlet S, and a fermion Ψ whose
role is to cancel the singlet’s contribution to the running Higgs quartic coupling. All of
these could introduce new decay channels for the Higgs.

Since we are primarily interested in long-lived Higgs balls, we want to suppress these
decays. Therefore, we do not couple the fermions which alter the gauge running to the
Higgs boson, or we restrict their Yukawa couplings to be highly suppressed so that these
decays are negligible.

The large value λHS = 0.9 induces a large mass for the singlet, and since yf =
√

2λHS ,
for the fermion also. In particular, mS,eff = mψ =

√
λHSh. In figure 11, we show the ratio

2
√
λHSh/ω, which shows that it is kinematically forbidden in the range of interest.
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