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1 Introduction

Since many years the heavy-to-light semileptonic transitions are very intriguing processes
mainly because a long-standing tension affects the inclusive and the exclusive determinations
of the CKM matrix element |Vub|. The most recent version of the FLAG report [1] quotes for
the exclusive estimate of |Vub| the value |Vub|excl·103 = 3.74 (17) from B → π`ν` decays, while
the inclusive determination performed by HFLAV [2] reads |Vub|incl · 103 = 4.52 (15) (+11

−14),
implying a ∼ 3σ discrepancy between them. However, a recent measurement of the inclusive
value of |Vub| made by Belle [3] has changed the picture. In fact, the collaboration has
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presented the result of an average over four theoretical calculations (BLNP [4], DGE [5, 6],
GGOU [7], ADFR [8, 9]), which reads

|Vub|incl · 103 = 4.10± 0.09± 0.22± 0.15 [0.28] , (1.1)

where the first two errors represent the statistical and systematic uncertainties respectively,
the third one denotes the theoretical model uncertainty and the fourth one is their sum
in quadrature. The FLAG review [1] quotes the inclusive value |Vub|incl · 103 = 4.32 (29),
which does not include the Belle result (1.1), but takes into account in the error the spread
among various theoretical calculations. The FLAG inclusive value differs from the exclusive
one by ' 1.7 standard deviations. The last PDG review [10] includes both the recent Belle
result and the spread among various theoretical calculations. For the exclusive and inclusive
determinations of |Vub| the PDG [10] quotes the values |Vub|excl · 103 = 3.70 (10)exp (12)th =
3.70 (16) from B → π`ν` decays and |Vub|incl ·103 = 4.13 (12)exp (+13

−14)th (18)model = 4.13 (26),
which differ by ' 1.4 standard deviations. New analyses of the exclusive b→ u transitions,
claiming that their exclusive determinations of |Vub| are consistent with the estimate (1.1)
at the 1÷ 1.5σ level, also appeared [11–13]. Note that the latter results were obtained by
adopting for the hadronic Form Factors (FFs) the Bourrely-Caprini-Lellouch (BCL) [14] or
the Bharucha-Straub-Zwicky (BSZ) [15] parameterizations or the Padé approximants [16].

In this work our aim is to re-examine the b→ u transition through the Dispersive Matrix
(DM) method, originally proposed in ref. [17] and recently reapprised in ref. [18]. The DM
method can be applied to any semileptonic decays once lattice QCD (LQCD) computations
of the relevant susceptibilities and of the FFs are available. As for the susceptibilities,
we present here their computation for b→ u transitions following the same strategy and
the same gauge ensembles considered in the case of the b→ c transition in ref. [19]. The
FFs, instead, are taken from the results of the RBC/UKQCD [20] and FNAL/MILC [21]
Collaborations for the B → π`ν` decays, and from RBC/UKQCD [20], HPQCD [22] and
FNAL/MILC [23] Collaborations for the Bs → K`ν` decays. As already done for the
analysis of the exclusive B → D(∗) decays [24, 25], we stress that only LQCD computations
of the FFs for small values of the recoil will be used to determine the shape of the FFs in the
whole kinematical range without making any assumption on their momentum dependence.
Moreover, the experimental data are not used to constrain the shape of the FFs, but only
to obtain the final exclusive determination of |Vub|. In this way, our calculation of the
FFs allows to obtain pure theoretical estimates of several quantities of phenomenological
interest, namely the τ/µ ratio of the decay rates Rτ/µπ(K), which is important for testing
Lepton Flavour Universality (LFU), the normalized forward-backward asymmetry Ā`,π(K)

FB

and the normalized lepton polarization asymmetry Ā`,π(K)
polar .

The paper is organized as follows. In section 2 we review the main properties of the
DM method [18]. In section 3 we apply our procedure to predict the FFs of interest in the
whole kinematical range relevant for the semileptonic B → π and Bs → K decays. The
non-perturbative computation of the unitarity bounds for the b→ u (and as a by-product for
the c→ d) transition is based on suitable lattice two-point correlation functions, evaluated
using the gauge configurations produced by the Extended Twisted Mass Collaboration

– 2 –



J
H
E
P
0
8
(
2
0
2
2
)
0
2
2

(ETMC), and it is presented in the appendix A. Then, the experimental data are used to
determine |Vub| from a bin-per-bin analysis in the case of the B → π`ν` decays and from the
total branching ratio for the Bs → K`ν` decays. In section 4 we investigate the issue of LFU
by evaluating the ratio of the τ/µ decay rates Rτ/µπ(K) from theory. We determine also the
forward-backward Ā`,π(K)

FB and lepton polarization Ā`,π(K)
polar asymmetries. Finally, in section 5

we summarize the main results of this work and sketch possible future developments in the
extraction of |Vub| from exclusive semileptonic decays.

2 The DM method

In this section we review the main properties of the non-perturbative DM approach to the
description of the semileptonic FFs, proposed in ref. [18] and already applied to the study
of B → D(∗)`ν` decays in refs. [24, 25].

2.1 The unitarity bounds on the FFs

The dispersion relation for a given spin-parity channel can be written in a compact form
as [26–28]

1
2πi

∫
|z|=1

dz

z
|φ
(
z, q2

0

)
f (z) |2 ≤ χ

(
q2

0

)
, (2.1)

where f(z) is the FF of interest, φ(z, q2
0) is a kinematical function (whose definition depends

on the spin-parity channel), χ(q2
0) is related to the derivative of the Fourier transform

of suitable Green functions of bilinear quark operators [27] and q2
0 is an auxiliary value

of the squared 4-momentum transfer. Hereafter, we will refer to the functions χ(q2
0) as

the susceptibilities.
By introducing the inner product defined as [17, 29]

〈g|h〉 = 1
2πi

∮
|z|=1

dz

z
ḡ(z)h(z) , (2.2)

where ḡ(z) is the complex conjugate of the function g(z), eq. (2.1) can be also written as

0 ≤ 〈φf |φf〉 ≤ χ
(
q2

0

)
. (2.3)

As for the B → D(∗) case [24, 25], in this work we limit ourselves to the case q2
0 = 0 and

we postpone the discussion of the phenomenological implications of the choice q2
0 6= 0 to a

forthcoming work.
Following refs. [17, 29] we introduce the set of functions

gt(z) ≡ 1
1− z̄(t)z ,

where z is the integration variable of eqs. (2.1)–(2.2) and z̄(t) is the complex conjugate of
the conformal variable z(t), defined as

z(t) =
√
t+ − t−

√
t+ − t−√

t+ − t+√t+ − t−
(2.4)
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with t ≡ q2 being the squared 4-momentum transfer and

t± ≡
(
mB(s) ±mπ(K)

)2
. (2.5)

Using the Cauchy’s theorem one has

〈gt|φf〉 = φ
(
z (t) , q2

)
f (z (t)) ,

〈gtm |gtl〉 = 1
1− z̄ (tl) z (tm) .

The central ingredient of the DM method is the matrix [17, 29]

M ≡



〈φf |φf〉 〈φf |gt〉 〈φf |gt1〉 · · · 〈φf |gtN 〉
〈gt|φf〉 〈gt|gt〉 〈gt|gt1〉 · · · 〈gt|gtN 〉
〈gt1 |φf〉 〈gt1 |gt〉 〈gt1 |gt1〉 · · · 〈gt1 |gtN 〉

...
...

...
...

...
〈gtN |φf〉 〈gtN |gt〉 〈gtN |gt1〉 · · · 〈gtN |gtN 〉


, (2.6)

where t1, . . . , tN are the values of the squared 4-momentum transfer at which the FF f(z) is
known. In the DM method we consider only values f(z(ti)) (with i = 1, 2, . . . N) computed
nonperturbatively on the lattice.

The important feature of the matrix M is that, thanks to the positivity of the inner
products, its determinant is positive semidefinite, i.e. det M ≥ 0. This property is not
modified when the first matrix element in eq. (2.6) is replaced by the susceptibility χ(q2

0)
through the dispersion relation (2.1). Thus, using also the fact both z and f(z) can assume
only real values in the allowed kinematical region for semileptonic decays, the original
matrix (2.6) can be replaced explicitly by

Mχ =



χ φf φ1f1 φ2f2 . . . φNfN

φf 1
1−z2

1
1−zz1

1
1−zz2

. . . 1
1−zzN

φ1f1
1

1−z1z
1

1−z2
1

1
1−z1z2

. . . 1
1−z1zN

φ2f2
1

1−z2z
1

1−z2z1
1

1−z2
2

. . . 1
1−z2zN

. . . . . . . . . . . . . . . . . .

φNfN
1

1−zNz
1

1−zNz1
1

1−zNz2
. . . 1

1−z2
N


, (2.7)

where φifi ≡ φ(zi)f(zi) (with i = 1, 2, . . . N) represent the known values of φ(z)f(z)
corresponding to the given set of values zi. Furthermore, in order to simplify the notation
we indicate z and the corresponding unknown value φf as z0 and φ0f0 ≡ φ(z0)f(z0),
respectively, so that the index i now runs from 0 to N .

By imposing the positivity of the determinant of the matrix (2.7) it is possible to
compute explicitly the lower and the upper unitarity bounds for the FFs of interest,
namely [18]

β −√γ ≤ f0 ≤ β +√γ , (2.8)
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where

β ≡ 1
φ0d0

N∑
j=1

φjfjdj
1− z2

j

z0 − zj
, (2.9)

γ ≡ 1
1− z2

0

1
φ2

0d
2
0

(χ− χDM ) , (2.10)

χDM ≡
N∑

i,j=1
φifiφjfjdidj

(
1− z2

i

) (
1− z2

j

)
1− zizj

, (2.11)

d0 ≡
N∏
m=1

1− z0zm
z0 − zm

, (2.12)

dj ≡
N∏

m 6=j=1

1− zjzm
zj − zm

. (2.13)

Unitarity is satisfied only when γ ≥ 0, which implies χ ≥ χDM . Since χDM does not depend
on z0, the above condition is either never verified or always verified for any value of z0.
This means that the unitarity filter χ ≥ χDM represents a parameterization-independent
test of unitarity for a given set of input values fj of the FF f .

We remind also an important feature of the DM approach. When z0 coincides with
one of the data points, i.e. z0 → zj , one has β → fj and γ → 0. In other words the
DM method reproduces exactly the given set of data points. This is at variance with
what may happen using truncated BCL parametrisations, since there is no guarantee that
such parametrizations can reproduce exactly the set of input data. Thus, it is worthwhile
to highlight the following important feature: the DM band given by eqs. (2.8)–(2.13) is
equivalent to the results of all possible fits which satisfy unitarity and at the same time
reproduce exactly the input data.

2.2 The kinematical constraint at q2 = 0

In the semileptonic B → π and Bs → K decays there are two FFs, the vector f+(q2) and
the scalar f0(q2) one, which are related at zero 4-momentum transfer by the following
kinematical constraint (KC)

f0(0) = f+(0).

As in ref. [17], we consider

f∗lo (0) = max [f+,lo (0) , f0,lo (0)] ,

f∗up (0) = min [f+,up (0) , f0,up (0)] ,

where in terms of eq. (2.8) one has f+(0),lo(up)(0) = β+(0) ∓
√
γ+(0) for z0 = z(t = 0).

Putting f(0) ≡ f0(0) = f+(0) one gets

f∗lo(0) ≤ f(0) ≤ f∗up(0) . (2.14)
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We now consider the FF at zero 4-momentum transfer to be uniformly distributed in the
range given by eq. (2.14). The resulting value is considered as a new input at tN+1 = 0.
Thus, for each of the two FFs we consider a new matrix, MKC , that has one more row and
one more column with respect to M in order to contain the common value f(tN+1 = 0),
namely

MKC =



χ φ0f0 φ1f1 φ2f2 . . . φNfN φN+1fN+1

φ0f0
1

1−z2
0

1
1−z0z1

1
1−z0z2

. . . 1
1−z0zN

1
1−z0zN+1

φ1f1
1

1−z1z0
1

1−z2
1

1
1−z1z2

. . . 1
1−z1zN

1
1−z1zN+1

φ2f2
1

1−z2z0
1

1−z2z1
1

1−z2
2

. . . 1
1−z2zN

1
1−z2zN+1

. . . . . . . . . . . . . . . . . .

φNfN
1

1−zNz0
1

1−zNz1
1

1−zNz2
. . . 1

1−z2
N

1
1−zNzN+1

φN+1fN+1
1

1−zN+1z0
1

1−zN+1z1
1

1−zN+1z2
. . . 1

1−zN+1zN
1

1−z2
N+1



.

(2.15)
In order to predict the DM bands for f+,0(q2) in the whole kinematical range, we consider the
matrix MKC at any value of the momentum transfer and, by using the explicit forms (2.8)–
(2.13), we get the corresponding unitarity bounds.

Finally, as discussed in refs. [18, 24, 25], we use the mean values, the uncertainties
and (when available) the correlations of the LQCD computations of the FFs and the
susceptibilities to construct a multivariate Gaussian distribution for generating a sample of
bootstrap events to each of which the DM method is applied.

3 Semileptonic B → π and Bs → K decays

In this section we apply the DM method to the study of the semileptonic B → π and
Bs → K decays. First we describe the state of the art of the LQCD computations of
the relevant FFs, which are limited to large values of the 4-momentum transfer q2, and
then we apply the DM method to get the FFs in the whole kinematical range accessible to
experiments. To this end another nonperturbative input is used, namely the values of the
longitudinal and transverse vector susceptibilities, χ0+(0) and χ1−(0), whose determination
based on suitable lattice two-point correlation functions for the b→ u transition is illustrated
in the appendix A. Finally, we compare our theoretical results with the experimental data
in order to extract |Vub| from the semileptonic B → π and Bs → K channels.

3.1 State of the art of the LQCD computations of the FFs

The FFs entering semileptonic B → π decays have been studied by the RBC/ UKQCD [20]
and the FNAL/MILC [21] Collaborations. In the case of the Bs → K transition sev-
eral LQCD computations of the FFs are available, namely from the RBC/UKQCD [20],
HPQCD [22] and FNAL/MILC [23] Collaborations. For both channels the lattice computa-
tions of the FFs are available in the large-q2 region, 17 GeV2 . q2 ≤ q2

max ≡ (mB(s)−mπ(K))2.
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The authors of ref. [20] provide synthetic LQCD values of the FFs (together with their
statistical and systematic correlations) at three values of q2 in the large-q2 regime, namely
q2 = {19.0, 22.6, 25.1}GeV2 for the B → π transition and q2 = {17.6, 20.8, 23.4}GeV2 in
the case of the Bs → K transition. These data can be directly used as inputs for our DM
method. In the other works [21–23] the results of BCL fits of the FFs extrapolated to the
continuum limit and to the physical pion point are available. Thus, from the marginalized
BCL coefficients we evaluate the mean values, uncertainties and correlations of the FFs at
the three values of q2 given in ref. [20]. The LQCD results used as inputs for our DM method
are collected in tables 1 and 2 for the B → π and Bs → K decays, respectively. In the next
future new LQCD computations of the FFs are expected to become available [30, 31].

For both B → π and Bs → K decays we have also combined all the LQCD deter-
minations of the FFs corresponding to the same values of the momentum transfer. We
have followed the procedure already applied in ref. [24] to the B → D∗ case: starting from
N computations of the FFs with mean values x(k)

i and uncertainties σ(k)
i (k = 1, · · · , N)

corresponding to a given value q2
i of the squared 4-momentum transfer, the combined LQCD

average xi and uncertainty σi are given by (see ref. [32])

xi =
N∑
k=1

ω(k)x
(k)
i , (3.1)

σ2
i =

N∑
k=1

ω(k)
(
σ

(k)
i

)2
+

N∑
k=1

ω(k)
(
x

(k)
i − xi

)2
, (3.2)

where ω(k) represents the weight associated to the k-th calculation (∑N
k=1 ω

(k) = 1). Since
the uncertainties of the various lattice computations are comparable, in what follows
we assume the same weight for all the computations, i.e. we consider the simple choice
ω(k) = 1/N . The results of eqs. (3.1)–(3.2) are shown in the last columns of the tables 1
and 2 for both the B → π and the Bs → K cases, respectively. Moreover, the covariance
matrix C of the combined data can be easily evaluated in terms of the covariance matrices
C(k) of each single LQCD computation as

Cij ≡
1
N

N∑
k=1

C
(k)
ij + 1

N

N∑
k=1

(
x

(k)
i − xi

)
(x(k)
j − xj) , (3.3)

where the indices i and j run over the number of values of the 4-momentum transfer at which
the LQCD computations of the FFs have been performed, namely in this work i, j = 1, 2, 3.

3.2 Theoretical expression of the differential decay width

For the semileptonic B → π`ν` and the Bs → K`ν` decays the vector fπ(K)
+ (q2) and scalar

f
π(K)
0 (q2) FFs are related to the matrix elements of the weak vector current V µ ≡ b̄γµu by〈

π(K)
∣∣∣V µ

∣∣∣B(s)
〉

= f
π(K)
+ (q2)

(
Pµ − P · q

q2 qµ
)

+ f
π(K)
0 (q2)P · q

q2 qµ , (3.4)

where Pµ = pµB(s)
+ pµπ(K), q

µ = pµB(s)
− pµπ(K) and P · q = m2

B(s)
−m2

π(K). We remind that
the two FFs in eq. (3.4) are constrained at zero momentum transfer by the kinematical
relation fπ(K)

+ (0) = f
π(K)
0 (0).
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RBC/UKQCD FNAL/MILC Combined
fπ+(19.0GeV2) 1.21(10)(9) 1.17(8) 1.19(11)
fπ+(22.6GeV2) 2.27(13)(14) 2.24(12) 2.25(16)
fπ+(25.1GeV2) 4.11(51)(29) 4.46(23) 4.29(48)
fπ0 (19.0GeV2) 0.46(3)(5) 0.46(3) 0.46(5)
fπ0 (22.6GeV2) 0.68(3)(6) 0.65(3) 0.66(5)
fπ0 (25.1GeV2) 0.92(3)(6) 0.86(3) 0.89(6)

Table 1. Mean values and uncertainties of the LQCD computations of the FFs fπ+,0(q2) obtained
at three selected values of q2 from the results of the RBC/UKQCD [20] and FNAL/MILC [21]
Collaborations. For the RBC/UKQCD computations the first error is statistical while the second
one is systematic. The last column contains the results of the combination procedure given in
eqs. (3.1)–(3.2) with ω(k) = 1/N .

A direct computation of the two-fold differential decay width within the Standard
Model gives the final expression

d2Γ
(
B(s)→π (K)`ν`

)
dq2dcosθ`

= G2
F |Vub|2

128π3m2
B(s)

(
1−m

2
`

q2

)2

·
{

4m2
B(s)
|~pπ(K)|3

(
sin2 θ`+

m2
`

2q2 cos2 θ`

)
|fπ(K)

+

(
q2
)
|2

+ 4m2
`

q2

(
m2
B(s)
−m2

π(K)

)
mB(s) |~pπ(K)|2 cosθ`<

(
f
π(K)
+

(
q2
)
f
∗π(K)
0

(
q2
))

+m2
`

q2

(
m2
B(s)
−m2

π(K)

)2
|~pπ(K)||f

π(K)
0

(
q2
)
|2
}
, (3.5)

where GF is the Fermi constant, ~pπ(K) the 3-momentum of the π(K) meson in the B(s)-
meson rest frame, m` the mass of the produced lepton and θ` represents the angle between
the final charged lepton and the B(s)-meson momenta in the rest frame of the final state
leptons. By integrating out the dependence on the angle θ` one gets

dΓ
(
B(s) → π (K) `ν`

)
dq2 = G2

F |Vub|2

24π3

(
1− m2

`

q2

)2 [
|~pπ(K)|3

(
1 + m2

`

2q2

)
|fπ(K)

+

(
q2
)
|2

+ m2
B(s)
|~pπ(K)|

(
1− r2

π(K)

)2 3m2
`

8q2 |f
π(K)
0

(
q2
)
|2
]
, (3.6)

where explicitly

|~pπ(K)| = mπ(K)

√√√√√1 + r2
π(K) − q2/m2

B(s)

2rπ(K)

2

− 1 (3.7)

with rπ(K) ≡ mπ(K)/mB(s) .
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RBC/UKQCD HPQCD FNAL/MILC Combined
fK+ (17.6GeV2) 0.99(4)(5) 1.04(5) 1.01(4) 1.01(6)
fK+ (20.8GeV2) 1.64(6)(7) 1.68(7) 1.68(5) 1.67(8)
fK+ (23.4GeV2) 2.77(9)(11) 2.94(13) 2.91(9) 2.87(15)
fK0 (17.6GeV2) 0.48(2)(3) 0.53(3) 0.44(2) 0.48(4)
fK0 (20.8GeV2) 0.63(2)(4) 0.64(3) 0.59(1) 0.62(4)
fK0 (23.4GeV2) 0.81(2)(5) 0.79(4) 0.76(2) 0.79(5)

Table 2. Mean values and uncertainties of the LQCD computations of the FFs fK+,0(q2) ob-
tained at three selected values of q2 from the results of the RBC/UKQCD [20], HPQCD [22] and
FNAL/MILC [23] Collaborations. For the RBC/UKQCD computations the first error is statistical
while the second one is systematic. The last column contains the results of the combination procedure
given in eqs. (3.1)–(3.2) with ω(k) = 1/N .

3.3 Application of the DM method to the description of the FFs

The kinematical functions φ0 and φ+ corresponding to the scalar and vector FFs of the
B(s) → π(K) decays are given by [27]

φ0(z, 0) =
√

2nI
3

√
3t+t−

4π
1

t+ − t−
1 + z

(1− z)5/2

(√
t+

t+ − t−
+ 1 + z

1− z

)−4

,

φ+(z, 0) =
√

2nI
3

√
1

π(t+ − t−)
(1 + z)2

(1− z)9/2

(√
t+

t+ − t−
+ 1 + z

1− z

)−5

. (3.8)

where z ≡ z(t = q2) is defined in eq. (2.4) and nI is an isospin Clebsh-Gordan factor equal
to nI = 3/2 for the B → π decays and to nI = 1 for the Bs → K case. In order to take
into account the B∗ pole in the transverse channel, the transverse kinematical function φ+
is modified as

φ+ (z, 0)→ φ+ (z, 0) · z − z
(
m2
B∗
)

1− z z̄
(
m2
B∗
) (3.9)

with mB∗ = 5.325GeV from the PDG [10].
The evaluation of the unitarity bound χ(0) ≥ χDM (see eq. (2.11)) requires the

knowledge of the susceptibilities χ(0) appearing in the DM matrix (2.7). For the b →
u transition we have been computed them nonperturbatively using suitable two-point
lattice correlators, as described in the appendix A. The nonperturbative values for the
susceptibilities relevant for the scalar f0(q2) and vector f+(q2) FFs are respectively

χ0+(0) = (2.04± 0.20) · 10−2 , (3.10)

χ1−(0) = (4.45± 1.16) · 10−4 GeV−2 (3.11)

after subtraction of the contribution of the B∗-meson bound state (see appendix A).
We now apply the DM method to the B → π decay using as inputs the lattice data of

table 1 corresponding to the three sets labelled RBC/UKQCD, FNAL/MILC and combined.
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A total of 5 · 104 events are generated using the multivariate Gaussian distribution including
the correlations among the LQCD data. It turns out that the unitarity bounds for both fπ0
and fπ+ as well as the KC fπ0 (0) = fπ+(0) ≡ fπ(0) are satisfied by 98÷100% of the events and,
therefore, neither the skeptical nor the iterative procedures described in refs. [18, 24, 25]
need to be applied. In figures 1 and 2 we show the resulting bands of the two FFs. The
extrapolation to q2 = 0, which is crucial in order to analyze the experimental data, reads

fπ(q2 = 0)|RBC/UKQCD = −0.06± 0.25 ,

fπ(q2 = 0)|FNAL/MILC = −0.01± 0.16 ,

fπ(q2 = 0)|combined = −0.04± 0.22 .

The above results exhibit large uncertainties due to the long extrapolation from the high-q2

region of the input data down to q2 = 0. We stress again that our results do not depend
on any parameterization of the shape of the FFs. This is at variance with what happens
with the BCL parameterizations of refs. [20, 21], where the extrapolated mean values and
uncertainties of the FFs at q2 = 0 are plagued by instabilities with respect to the order of
the truncation of the expansion.

Our results for the FFs at q2 = 0 are consistent within 1.4÷ 1.8 standard deviations
with the recent estimate obtained in ref. [11] using Light Cone Sum Rules (LCSR), namely

fπ
(
q2 = 0

)
LCSR

= 0.28± 0.03.

As for the semileptonic Bs → K decays few differences have to be considered with
respect to the B → π case besides the obvious changes in the masses of the mesons involved.
First, in the kinematical functions (3.8) the isospin factor nI is now equal to unity instead of
3/2 as in the B → π case. This is due to the fact that in the Bs → K decays only the strange
quark can be the spectator quark of the transition. Second, following refs. [20, 22, 23] a
modification like the one in the eq. (3.9) has to be applied also to φ0(z, 0) due to the presence
of a scalar resonance B∗(0+) with a mass close to 5.68GeV, expected from the lattice results
of ref. [33], lying below the pair production threshold located at MBs +MK ' 5.86GeV.
For the susceptibilities χ0+(0) and χ1−(0) we adopt conservatively the same values of the
B → π case.

We apply the DM method using as inputs the various sets of LQCD data of table 2. A
total of 5 · 104 events are generated using the multivariate Gaussian distributions including
the correlations among the LQCD computations. As in the B → π case, the unitarity
bounds for both fK0 and fK+ as well as the KC fK0 (0) = fK+ (0) ≡ fK(0) are satisfied by
98 ÷ 100% of the events. The DM bands for the FFs corresponding to the use of the
combined LQCD data of table 2 are shown in figure 3. Note the impact of the KC at q2 = 0
on the extrapolation of the FFs in the low-q2 region.
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Figure 1. The scalar fπ0 (q2) (left panel) and vector fπ+(q2) (right panel) FFs entering the semileptonic
B → π`ν` decays computed by the DM method as a function of the 4-momentum transfer q2 using
the LQCD inputs from RBC/UKQCD [20] and FNAL/MILC [21] Collaborations (see table 1). For
both FFs the red and blue bands correspond to the DM results obtained at 1σ level using the
RBC/UKQCD data (red circles) and FNAL/MILC (blue squares) data, respectively. In the right
panel the vector FF is multiplied by the factor (1− q2/m2

B∗) with mB∗ = 5.325GeV. .
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Figure 2. The bands of the scalar fπ0 (q2) (left panel) and vector fπ+(q2) (right panel) FFs entering
the semileptonic B → π`ν` decays computed by the DM method at 1σ level using as lattice inputs
the combined LQCD data of table 1, shown as green diamonds. In the right panel the vector FF is
multiplied by the factor (1− q2/m2

B∗) with mB∗ = 5.325GeV. .
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Figure 3. The bands of the scalar fK0 (q2) (left panel) and vector fK+ (q2) (right panel) FFs entering
the semileptonic Bs → K`ν` decays computed by the DM method at 1σ level using as inputs the
combined LQCD data of table 2, shown as green diamonds. In the left panel the scalar FF is
multiplied by the factor (1− q2/m2

B∗
0
) with mB∗

0
= 5.68GeV, while in the right panel the vector FF

is multiplied by the factor (1− q2/m2
B∗) with mB∗ = 5.325GeV. .

The extrapolation of the FFs to q2 = 0 reads

fK
(
q2 = 0

)
|RBC/UKQCD = 0.08± 0.15 ,

fK
(
q2 = 0

)
|HPQCD = 0.28± 0.21 ,

fK
(
q2 = 0

)
|FNAL/MILC = 0.07± 0.11 ,

fK
(
q2 = 0

)
|combined = 0.15± 0.21 .

The above results can be compared with the recent LCSR estimate of ref. [34], which is

fK
(
q2 = 0

)
LCSR

= 0.336± 0.023 .

It can be seen that the results based on the RBC/UKQCD and FNAL/MILC data differ
respectively by 1.7 and 2.4 standard deviations from the LCSR estimate, while the results
based on the HPQCD data and the combined LQCD ones are in agreement thanks to larger
mean values and uncertainties.

The DM results presented so far indicate clearly that for both the B → π and Bs → K

channels the extension of direct LQCD computations of the FFs toward values of q2 lower
than ∼ 17GeV2 is crucial for improving the precision of their extrapolation to q2 = 0
without resorting to the use of the experimental data.
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3.4 New estimate of |Vub|

In order to obtain |Vub| we use our results for the FFs in the whole kinematical range
and the experimental data. For the semileptonic B → π decays the BaBar and the Belle
Collaborations [35–38] have measured the differential branching ratios (BRs) in different
bins of the 4-momentum transfer q2. Instead, for the Bs → K decays only the ratio of the
total branching fractions of the semileptonic Bs → K and Bs → Ds decays is available at
present [39].

3.4.1 |Vub| from B → π`ν` decays

For the extraction of the CKM matrix element we follow the procedure used in refs. [24, 40]
in the case of several semileptonic heavy-meson decays characterized by the production of a
final pseudoscalar meson. In what follows, we will distinguish the two different channels
that have been measured by the experiments, i.e. B0 → π−`+ν and B+ → π0`+ν with
` = e, µ. Starting from the eq. (3.6), for the generic i-th bin in q2 we have [38]

|Vub|i =
√
Cv
τBv
· ∆B|expi

∆ζi
, (3.12)

where ∆B|expi is the experimental branching fraction and ∆ζi the corresponding theoretical
decay width (without |Vub| therein) in the given bin. Since |π0〉 ≡

(
|uū〉 − |dd̄〉

)
/
√

2, the
isospin coefficient Cv is equal to 2 for the B+ → π0`+ν decays and to 1 for the B0 → π−`+ν

transitions. Finally, τBv is the lifetime of the decaying B-meson.
Our procedure can be summarised as follows:

• using the mean values and the covariance matrices available for the of the FFs
and of the susceptibilities computed in LQCD we generate a multivariate Gaussian
distribution of events of input data to each of which the DM method is applied for
obtaining the subset of events passing the unitarity filter and satisfying the KC at
q2 = 0 (see section 3.3);

• for each of the surviving events we evaluate the vector FF f+(q2) at several values of
q2, which allow to perform the partial integration needed to calculate the theoretical
differential decay width ∆ζi in each of the experimental q2-bins (in the massless lepton
limit);

• from the resulting distribution of values of ∆ζi we evaluate the mean values 〈∆ζi〉 for
each bin and the corresponding covariance matrix;

• through multivariate Gaussian distributions we generate Nboot events of the measured
differential branching fraction ∆B|expi for each bin in q2 and experiment [35–38] and,
independently, Nboot events of the theoretical decay widths ∆ζi;

• we compute Nboot values |Vub|i for each q2-bin and each experiment through eq. (3.12);

• using the distributions of values of |Vub|i we calculate the corresponding mean values
〈|Vub|i〉 and covariance matrix Cij among the bins for each experiment;
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experiment BaBar 2011 BaBar 2012 (B0 → π−) BaBar 2012 (B+ → π0)
|Vub| · 103 3.25± 0.33 3.58± 0.34 3.51± 0.46
experiment Belle 2011 Belle 2013 (B0 → π−) Belle 2013 (B+ → π0)
|Vub| · 103 3.74± 0.32 4.03± 0.41 3.64± 0.51

Table 3. The correlated weighted averages (3.13) for each of the six experiments of refs. [35–38].
The theoretical DM bands of the FFs correspond to the use of the combined LQCD data of table 1
as inputs.

• we evaluate the CKM matrix element |Vub| for the n-th experiment (n = 1, . . . , 6 for
the semileptonic B → π decays) as the best constant fit over all the bins of the given
experiment, i.e. through the following formulae

|Vub|n =
∑
i,j(C−1)ij〈|Vub|i〉∑

i,j(C−1)ij
, σ2

|Vub|n = 1∑
i,j(C−1)ij

, (3.13)

where the indices i, j run over all the q2-bins of the n-th experiment.

In figure 4 we show our results for |Vub| for each of the semileptonic B → π experiments,
together with the mean values (3.13), adopting the DM results for the FFs obtained using
as inputs the combined LQCD data of table 1. For each experiment the corresponding
correlated mean values (3.13) are collected in table 3.

As shown in figures 1 and 2, the form factor f+(q2), which is the only one contributing
to the decay rate in the limit of massless leptons, may become numerically very small
(in absolute value) below q2 ≈ 10GeV2. Since the theoretical decay rate appears in
the denominator of eq. (3.12), the resulting values of |Vub| for the bins corresponding to
q2 . 10GeV2 exhibit a tendency to larger values. However, the uncertainties are quite
large for those bins (due to the present uncertainties of the input lattice data for f+(q2)
and to the long extrapolation to low values of q2) and, therefore, for each experiment
the average (3.13) is dominated by the contributions of the large-q2 bins. Direct lattice
calculations at smaller values of q2 will allow in the future to clarify this point.

Our final results for |Vub|, evaluated making use of the averaging procedure given by
eqs. (3.1)–(3.2), read

|Vub|BπRBC/UKQCD · 103 = 3.52± 0.49 ,

|Vub|BπFNAL/MILC · 103 = 3.76± 0.41 , (3.14)

|Vub|Bπcombined · 103 = 3.62± 0.47 ,

which are consistent with the latest exclusive determination |Vub|excl · 103 = 3.70 (16) from
PDG [10]. Our uncertainties are larger than the PDG one, because we do not mix the
theoretical calculations of the FFs with the experimental data to constrain the shape of the
FFs in order to avoid possible biases. We are currently investigating strategies to improve
the precision of the determination of |Vub| within our DM approach.
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Figure 4. Bin-per-bin estimates of |Vub| obtained using eq. (3.12) for each of the six experiments of
refs. [35–38] specified in the insets of the panels as a function of q2. The theoretical DM bands of
the FFs correspond to the use of the combined LQCD data of table 1 as inputs. The black dashed
bands represent the correlated weighted averages (3.13) for each experiment, shown in table 3.

3.4.2 |Vub| from Bs → K`ν` decays

The LHCb Collaboration has observed for the first time the semileptonic Bs → K`ν`
decays [39] and measured the ratio of the branching fractions of the B0

s → K−µ+νµ and
the B0

s → D−s µ
+νµ processes,

RBF ≡
B
(
B0
s → K−µ+νµ

)
B
(
B0
s → D−s µ+νµ

) ,
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q2-bin RBC/UKQCD FNAL/MILC HPQCD combined

low 6.70± 3.26 6.43± 2.03 3.57± 1.94 5.31± 3.02
high 4.20± 0.56 4.10± 0.38 3.54± 0.43 3.94± 0.59

Table 4. Values of |Vub| · 103 extracted from the Bs → K`ν` decays measured at LHCb in the low
(q2 ≤ 7GeV2) and high (q2 ≥ 7GeV2) q2-bins using the DM bands for the theoretical FFs.

in two different q2-bins, namely

RBF (low) = (1.66± 0.08± 0.07± 0.05) · 10−3 for q2 ≤ 7GeV2 , (3.15)

RBF (high) = (3.25± 0.21+0.16
−0.17 ± 0.09) · 10−3 for q2 ≥ 7GeV2 , (3.16)

where the first error is statistical, the second one is systematic and the third one is due to
the uncertainty on the D−s → K+K−π− branching fraction.

In order to obtain an exclusive estimate of |Vub| we make use of the life time of the
Bs-meson, τB0

s
= (1.516±0.006) ·10−12 s [10], and of the experimental value of the branching

ratio B(B0
s → D−s µ

+νµ) measured by the LHCb Collaboration [41]

B
(
B0
s → D−s µ

+νµ
)

= (2.49± 0.12± 0.14± 0.16) · 10−2 ,

where the first error is statistical, the second one is systematic and the third one is due to
limited knowledge of the normalization branching fractions.

Then, we use the FFs obtained with our DM method to compute the differential decay
width dΓ/dq2 according to the formula (except |Vub|2) given in eq. (3.6). Our results for
|Vub| are collected in table 4.

Assuming (conservatively) that the systematic errors of the two experimental re-
sults (3.15)–(3.16) are 100% correlated (which corresponds to a correlation coefficient equal
to 0.486 in the experimental, statistical plus systematic covariance matrix), the weighted
averages of the two bins, carried out following eqs. (3.1)–(3.2) for each set of FFs, read

|Vub|BsKRBC/UKQCD · 103 = 3.93± 0.46 ,

|Vub|BsKFNAL/MILC · 103 = 3.93± 0.35 , (3.17)

|Vub|BsKHPQCD · 103 = 3.54± 0.35 ,

|Vub|BsKcombined · 103 = 3.77± 0.48 ,

which are consistent with our results (3.14), obtained from the analysis of the B → π`ν`
decays, and with the latest exclusive determination |Vub|excl · 103 = 3.70 (16) from PDG [10].
We remind that the PDG uncertainty results from analyses in which theoretical calculations
of the FFs and experimental data are mixed in order to constrain the shape of the FFs.

4 Theoretical estimate of Rτ/µ
π(K), Ā`,π(K)

FB and Ā`,π(K)
polar

In this section we give pure theoretical estimates of various quantities of phenomenological
interest, which are independent of |Vub|, namely the ratio of the τ/µ decay rates Rτ/µπ(K), the
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normalized forward-backward asymmetry Ā`,π(K)
FB and the normalized lepton polarization

asymmetry Ā`,π(K)
polar .

The τ/µ ratio Rτ/µπ(K) is defined as

R
τ/µ
π(K) ≡

Γ(B(s) → π(K)τντ )
Γ(B(s) → π(K)µνµ) , (4.1)

where

Γ
(
B(s) → π (K) `ν`

)
= G2

F |Vub|2

24π3

∫ (mB(s)−mπ(K)

)2

m2
`

dq2
[
|~pπ(K)|3L+

(
m2
`

q2

)
|fπ(K)

+

(
q2
)
|2

+ m2
B(s)

(
1− r2

π(K)

)2
|~pπ(K)|L0

(
m2
`

q2

)
|fπ(K)

0

(
q2
)
|2
]

with m` being the lepton mass (` = τ, µ) and

L+(x) = (1− x)2
(

1 + x

2

)
, L0(x) = (1− x)2 3x

8 .

The forward-backward asymmetry A`,π(K)
FB is defined as

A`,π(K)
FB (q2) ≡

∫ 1

0

d2Γ
dq2d cos θl

d cos θl −
∫ 0

−1

d2Γ
dq2d cos θl

d cos θl ,

where from eq. (3.5) one has

A`,π(K)
FB (q2) = G2

F |Vub|2

32π3mB(s)

(
1− m2

`

q2

)2

|~pπ(K)|2
m2
`

q2

(
m2
B(s)
−m2

π(K)

)
· <
[
f
π(K)
+ (q2)f∗π(K)

0 (q2)
]
.

Then, the normalized forward-backward asymmetry Ā`,π(K)
FB is given by

Ā`,π(K)
FB ≡

∫
dq2A`,π(K)

FB

(
q2)∫

dq2 dΓπ(K)/dq2 . (4.2)

We compute also the lepton polarization asymmetry A`,π(K)
polar defined as

A`,π(K)
polar

(
q2
)
≡
dΓπ(K)
−
dq2 −

dΓπ(K)
+
dq2 ,

where [42]

dΓπ(K)
−
dq2 = G2

F |Vub|2

24π3

(
1− m2

`

q2

)2

|~pπ(K)|3|f
π(K)
+

(
q2
)
|2 ,

dΓπ(K)
+
dq2 = G2

F |Vub|2

24π3

(
1− m2

`

q2

)2
m2
`

q2 |~pπ(K)|

·

3
8

(
m2
B(s)
−m2

π(K)

)2

m2
B(s)

|fπ(K)
0

(
q2
)
|2 + 1

2 |~pπ(K)|2|f
π(K)
+

(
q2
)
|2

 .
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RBC/UKQCD FNAL/MILC combined
R
τ/µ
π 0.767(145) 0.838(75) 0.793(118)
Āµ,πFB 0.0043(39) 0.0018(14) 0.0034(31)
Āτ,πFB 0.219(25) 0.221(19) 0.220(24)
Āµ,πpolar 0.985(11) 0.991(4) 0.988(9)
Āτ,πpolar 0.294(87) 0.309(82) 0.301(86)

Table 5. The theoretical values of the quantities (4.1)–(4.3) in the case of the semileptonic B → π`ν`
decays with ` = µ, τ adopting the RBC/UKQCD, the FNAL/MILC and the combined LQCD data
of table 1 as inputs for our DM method. .

RBC/UKQCD FNAL/MILC HPQCD combined
R
τ/µ
K 0.845(122) 0.816(64) 0.680(134) 0.755(138)
Āµ,KFB 0.0032(18) 0.0024(12) 0.0059(29) 0.0046(28)
Āτ,KFB 0.257(14) 0.246(14) 0.278(19) 0.262(23)
Āµ,Kpolar 0.990(5) 0.992(4) 0.982(8) 0.986(7)
Āτ,Kpolar 0.172(54) 0.254(64) 0.112(79) 0.172(91)

Table 6. The same as in table 5, but in the case of the semileptonic Bs → K decays adopting the
RBC/UKQCD, the FNAL/MILC, the HPQCD and the combined LQCD data of table 2 as inputs
for our DM method. .

The normalized lepton polarization asymmetry Ā`,π(K)
polar is given by

Ā`,π(K)
polar ≡

∫
dq2A`,π(K)

polar
(
q2)∫

dq2 dΓπ(K)/dq2 . (4.3)

In tables 5 and 6 we collect our theoretical estimates of the quantities (4.1)–(4.3)
for each set of LQCD computations of the FFs in the case of the B → π and Bs →
K decays, respectively. Within the uncertainties our results are consistent with recent
estimates [11, 43, 44] based on the BCL or BSZ parameterizations of the FFs.

As for the experimental side, only one measurement of Rτ/µπ by Belle is presently
available, namely [45]

Rτ/µπ |exp = 1.05± 0.51 , (4.4)

which still has a large uncertainty compared to our theoretical ones. Note that the
uncertainty on the above ratio expected by Belle II at 50 ab−1 of luminosity [46] is
δR

τ/µ
π ' 0.09, which will be comparable to our present theoretical uncertainties.
Since it is likely that experimental measurements of Rτ/µπ(K), Ā

`,π(K)
FB and Ā`,π(K)

polar will be
carried out in limited regions of the phase space, we provide in appendix B our theoretical
estimated of these quantities in three selected q2 regions.

5 Conclusions

In this work we have analysed the available lattice and experimental data concerning the
semileptonic B → π and Bs → K decays. We have obtained new exclusive estimates of the
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CKM matrix element |Vub| in a rigorous model-independent way in order to shed a new light
onto the tension between its inclusive and exclusive determinations. This has been achieved
by evaluating the semileptonic FFs according to the non-perturbative and model-independent
DM method proposed in ref. [18] and by computing for the first time non-perturbatively
the susceptibilities relevant for the unitarity bounds in the b→ u transition.

Our results for |Vub| can be summarized as

• from the semileptonic B → π decays

|Vub| · 103 = 3.62± 0.47 ,

• from the semileptonic Bs → K processes

|Vub| · 103 = 3.77± 0.48 .

They are compatible with each other and also consistent within 1σ level with the latest
exclusive and inclusive determinations of |Vub|, |Vub|excl · 103 = 3.70 (16) and |Vub|incl · 103 =
4.13 (26), taken from PDG [10].

Then, by averaging the above results corresponding to the B → π and Bs → K channels
our final estimate of |Vub| reads

|Vub| · 103 = 3.69± 0.34 .

We have also investigated the issue of LFU by computing the τ/µ ratio Rτ/µπ(K) given in
eq. (4.1). Our results read

Rτ/µπ = 0.793± 0.118 , R
τ/µ
K = 0.755± 0.138 .

Our estimate of Rτ/µπ is compatible with the Belle measurement (4.4) within the present
large experimental uncertainty [45].

We have computed also the normalized forward-backward asymmetry Ā`,π(K)
FB and the

normalized lepton polarization asymmetry Ā`,π(K)
polar given in eqs. ˙ (4.2)–(4.3). For ` = µ, τ

we have got

Āµ,πFB = 0.0034± 0.0031 , Āµ,KFB = 0.0046± 0.0028 ,

Āτ,πFB = 0.220± 0.024 , Āτ,KFB = 0.262± 0.023 ,

Āµ,πpolar = 0.988± 0.009 , Āµ,Kpolar = 0.986± 0.007 ,

Āτ,πpolar = 0.301± 0.086 , Āτ,Kpolar = 0.172± 0.091 .

We stress that other exclusive estimates of |Vub| can be obtained by investigating the
semileptonic B → ρ and B → ω decays. In these cases the analysis is more involved due to
the vector nature of the final ρ and ω mesons. Nevertheless, once LQCD computations of
the FFs of interest for these processes will be available, our DM method can be applied, as
already demonstrated in ref. [24] for the case of the semileptonic B → D∗`ν` decays.
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A Lattice computation of the susceptibilities for the b → u transition

In this appendix we describe the non-perturbative computation of the unitarity bounds
for the b → u (and as a by-product for the c → d) transition based on suitable lattice
two-point correlation functions. We strictly follow the procedure adopted already in ref. [19]
for our determination of the susceptibilities in the case of the b→ c transition. The above
procedure includes the ETMC ratio method [47, 48] for reaching the physical b-quark point.

A.1 Basic definitions

Let us first recall the basic definitions of the susceptibilities χ(Q2) we are interested in this
work, namely

χ0+

(
Q2
)
≡ ∂

∂Q2

[
Q2Π0+

(
Q2
)]

=
∫ ∞

0
dt t2j0 (Qt) C0+ (t) , (A.1)

χ1−

(
Q2
)
≡ −1

2
∂2

∂2Q2

[
Q2Π1−

(
Q2
)]

= 1
4

∫ ∞
0

dt t4
j1 (Qt)
Qt

C1− (t) , (A.2)

χ0−

(
Q2
)
≡ ∂

∂Q2

[
Q2Π0−

(
Q2
)]

=
∫ ∞

0
dt t2j0 (Qt) C0− (t) , (A.3)

χ1+

(
Q2
)
≡ −1

2
∂2

∂2Q2

[
Q2Π1+

(
Q2
)]

= 1
4

∫ ∞
0

dt t4
j1 (Qt)
Qt

C1+ (t) , (A.4)

where the quantities Πj(Q2) with j = {0+, 1−, 0−, 1+} are the vacuum polarization functions
corresponding to definite spin-parity channels (see for more details refs. [18, 19]), Q is an
Euclidean 4-momentum, j0(x) = sin(x)/x and j1(x) = [sin(x)/x− cos(x)]/x are spherical
Bessel functions and the Euclidean correlators Cj(t) are given by

C0+(t) =
∫
d3x〈0|T

[
b̄(x)γ0u(x) ū(0)γ0b(0)

]
|0〉 , (A.5)

C1−(t) = 1
3

3∑
j=1

∫
d3x〈0|T

[
b̄(x)γju(x) ū(0)γjb(0)

]
|0〉 , (A.6)

C0−(t) =
∫
d3x〈0|T

[
b̄(x)γ0γ5u(x) ū(0)γ0γ5b(0)

]
|0〉 , (A.7)

C1+(t) = 1
3

3∑
j=1

∫
d3x〈0|T

[
b̄(x)γjγ5u(x) ū(0)γjγ5b(0)

]
|0〉 (A.8)
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with u(x) representing the light-quark u field. Note that the longitudinal (first) deriva-
tives (A.1) and (A.3) are dimensionless, while the transverse (second) ones (A.2) and (A.4)
have the dimension of [E]−2, where E is an energy.

As shown in ref. [18], eqs. (A.1)–(A.4) are obtained in the Euclidean region Q2 ≥ 0,
but they can be easily generalized also to the case Q2 < 0. In the Euclidean region Q2 ≥ 0
a good convergence of the perturbative calculation of the above derivatives is expected
to occur far from the kinematical regions where resonances can contribute. In the case
of the b → u weak transition this means down to Q2 = 0 [17] and, indeed, this is the
value of Q2 that has been generally employed in the evaluation of the dispersive bounds for
heavy-to-light [14, 17] and also for heavy-to-heavy [27, 28, 49–51] semileptonic form factors.
By contrast, with a non-perturbative determination of the two-point correlation functions
we can use the most convenient value of Q2 at disposal, namely the value which will allow
the most stringent bounds on the semileptonic form factors. In this work we will limit
ourselves to the usual choice Q2 = 0, which will allow the comparison with perturbative
results, and we will leave the investigation of the choice Q2 6= 0 to a future, separate work.

At Q2 = 0 the derivatives of the longitudinal and transverse polarization functions
correspond to the second and fourth moments of the longitudinal and transverse Euclidean
correlators, respectively. However, the evaluation of the longitudinal susceptibilities (A.1)
and (A.3) is plagued by contact terms related to the product of two current operators, since
only the second moment of the longitudinal correlators are involved. In ref. [18] it has been
shown that the use of the Ward Identities (WIs), which should be satisfied by the vector
and axial-vector quark currents, allow to avoid the effects of the contact terms. Indeed,
thanks to the WIs all the susceptibilities at Q2 = 0 can be written as the fourth moment of
suitable Euclidean correlators, namely

χ0+

(
Q2 = 0

)
= 1

12(mb −mu)2
∫ ∞

0
dt t4 CS(t) , (A.9)

χ1−

(
Q2 = 0

)
= 1

12

∫ ∞
0

dt t4 C1−(t) , (A.10)

χ0−

(
Q2 = 0

)
= 1

12(mb +mu)2
∫ ∞

0
dt t4 CP (t) , (A.11)

χ1+

(
Q2 = 0

)
= 1

12

∫ ∞
0

dt t4 C1+(t) , (A.12)

where CS(t) and CP (t) are the scalar and pseudoscalar Euclidean correlators

CS(t) =
∫
d3x〈0|T

[
b̄(x)u(x) ū(0)b(0)

]
|0〉 , (A.13)

CP (t) =
∫
d3x〈0|T

[
b̄(x)γ5u(x) ū(0)γ5b(0)

]
|0〉 . (A.14)

A.2 Lattice correlators

The gauge ensembles used in this work have been generated by ETMC with Nf = 2 + 1 + 1
dynamical quarks, which include in the sea, besides two light mass-degenerate quarks

– 21 –



J
H
E
P
0
8
(
2
0
2
2
)
0
2
2

(mu = md = mud), also the strange and the charm quarks with masses close to their
physical values [52, 53]. They are the same adopted in the case of the study of the b→ c

transition and details can be found in the appendix A of ref. [19].
Here, we mention that the simulations have been carried out at three values of the lattice

spacing (a ' 0.062, 0.082, 0.089 fm) and with pion masses in the range ' 210− 450MeV.
The physical up/down, strange and charm quark masses have been determined in ref. [32]
obtaining mphys

ud = 3.72± 0.17MeV, mphys
s = 99.6± 4.3MeV and mphys

c = 1.176± 0.039GeV
in the MS scheme at a renormalization scale of 2GeV. In ref. [48] the physical b-quark mass
has been determined adopting the ETMC ratio method [47], obtaining mphys

b (mphys
b ) =

4.26± 0.10GeV which corresponds to mphys
b = 5.198± 0.122GeV in the MS(2 GeV) scheme.

Using the ETMC gauge ensembles the computation of the susceptibilities (A.9)–(A.12)
require the evaluation of the following two-point correlation functions

CS(t) = Z̃2
S

∫
d3x〈0|T [q̄1(x)q2(x) q̄2(0)q1(0)] |0〉 , (A.15)

C1−(t) = Z̃2
V

1
3

3∑
j=1

∫
d3x〈0|T [q̄1(x)γjq2(x) q̄2(0)γjq1(0)] |0〉 , (A.16)

CP (t) = Z̃2
P

∫
d3x〈0|T [q̄1(x)γ5q2(x) q̄2(0)γ5q1(0)] |0〉 , (A.17)

C1+(t) = Z̃2
A

1
3

3∑
j=1

∫
d3x〈0|T [q̄1(x)γjγ5q2(x) q̄2(0)γjγ5q1(0)] |0〉 , (A.18)

where q1 and q2 are the two valence quarks involved in the weak transition with bare
masses aµ1 and aµ2 given in table VII of ref. [19], while the multiplicative factor Z̃O
(O = {S, V, P,A}) is an appropriate renormalization constant (RC), which will be specified
in a while. Indeed, we consider either opposite or equal values for the Wilson parameters
r1 and r2 of the two valence quarks, namely either the case r1 = −r2 or the case r1 = r2.
Since our twisted-mass setup is at its maximal twist, in the case r1 = −r2 we have
Z̃O = {ZP , ZA, ZS , ZV }, while in the case r1 = r2 we have Z̃O = {ZS , ZV , ZP , ZA}, where
the RCs of the various bilinear operators have been determined in ref. [32] (using the
RI′-MOM scheme for ZP , ZA and ZS , and the vector WI for ZV ).

Once renormalized, the correlation functions (A.15)–(A.18) and, consequently, also the
susceptibilities (A.9)–(A.12) corresponding to either opposite or equal values of the Wilson
parameters r1 and r2 differ only by effects of order O(a2). For the sake of simplicity, in
what follows we will denote by χj with j = {0+, 1−, 0−, 1+} the susceptibilities evaluated
at Q2 = 0.

For each ETMC gauge ensemble the susceptibilities χj have been evaluated for many
combinations of the two valence quark masses m1 = aµ1/(ZPa) and m2 = aµ2/(ZPa),
namely for 14 values in the light, strange, charm and heavier-than-charm sectors in the case
of aµ1, while the values of aµ2 have been chosen in the light, strange and charm regions for
a total of 7 values (see table VII of ref. [19]).
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A.3 The h → u transition

In this work we limit ourselves to the quark mass combinations aµ1 = aµh ≥ aµc and
aµ2 = aµud, which in our isosymmetric QCD setup correspond to h→ u transitions.

The values of the simulated susceptibilities χ0±(1±) are smoothly interpolated at a
series of values of the heavy-quark mass mh = aµh/(ZPa), dictated by the analysis of
ref. [48], namely

mh(n) = λn−1 mphys
c for n = 1, 2, . . . (A.19)

with λ ≡ [mphys
b /mphys

c ]1/10 = [5.198/1.176]1/10 ' 1.1602, and starting from mh(1) = mphys
c .

The value of λ, which is the same as the one adopted in ref. [48], is such that mh(n = 11) =
mphys
b . Correspondingly, the uncertainty δmh(n) is given by

δmh(n) = εn−1δmphys
c for n = 1, 2, . . . (A.20)

with ε ≡ [δmphys
b /δmphys

c ]1/10 = [0.122/0.039]1/10 ' 1.1208. Given the number of simulated
values of mh > mphys

c , the susceptibilities χj are interpolated at the series of values (A.19)
up to n = 9, which corresponds to mh(9) ' 3.9 GeV ' 0.75 mphys

b .
Following ref. [19] the analysis is split into the eight branches originally introduced

in ref. [32]. They differ in: i) the continuum extrapolation adopting for the matching
of the lattice scale either the Sommer parameter r0 or the mass of a fictitious P-meson
made up of two valence strange(charm)-like quarks; ii) the chiral extrapolation performed
with fitting functions chosen to be either a polynomial expansion or a Chiral Perturbation
Theory Ansatz in the light-quark mass; and iii) the choice between the methods M1 and
M2, which differ by O(a2) effects, used to determine the RCs in the RI′-MOM scheme. For
each branch the central values and the errors of the input parameters are evaluated using a
bootstrap sample with O(100) events (see tables VIII and IX of ref. [19]). Unless otherwise
stated, the results that will be shown in the figures of this appendix correspond to the
average of the first four branches of the bootstrap analysis.

Using the gauge ensemble B25.32 as a representative case, our results for the vector
and axial-vector, longitudinal and transverse susceptibilities χ0±(1±) are shown in figure 5
at either opposite or equal values of the valence-quark Wilson parameters, which will be
denoted hereafter by (r,−r) and (r, r). It can be seen that the difference between the
susceptibilities corresponding to the two different r-combinations does not exceed ∼ 25%.

A.4 The ETMC ratios

According to the ETMC ratio method of ref. [47] we now consider the ratios of the lattice
susceptibilities χj = χj [mh(n); a2,mud] interpolated for each ETMC gauge ensemble at
subsequent values of the heavy-quark mass mh(n) given by eq. (A.19), namely

Rj
(
n; a2,mud

)
≡ χj

[
mh (n) ; a2,mud

]
χj [mh (n− 1) ; a2,mud]

ρj [mh (n)]
ρj [mh(n− 1)] , (A.21)

where n = 2, 3, . . . 9 for j = {0+, 1−, 0−, 1+}.
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Figure 5. The susceptibilities χ0+ (left top panel), χ0− (right top panel), χ1− (left bottom panel)
and χ1+ (right bottom panel) corresponding to the gauge ensemble B25.32 for the h→ u transitions
as a function of the heavy-quark mass mh given by eq. (A.19) up to n = 9, i.e. up to mh(9) ' 3.9GeV.
The red circles correspond to the choice of opposite values (r,−r) of the two valence-quark Wilson
parameters, while the blue squares refer to the case of equal values (r, r).

In eq. (A.21) the factor ρj(mh) is introduced to guarantee that in the heavy-quark
limit mh →∞ (i.e., n→∞) one has Rj → 1. Using the perturbative results of ref. [27] the
above condition is satisfied by

ρ0+(mh) = ρ0−(mh) = 1 , (A.22)

ρ1− (mh) = ρ1+ (mh) =
(
mpole
h

)2
, (A.23)

where mpole
h is the pole heavy-quark mass. The latter one can be constructed from the

MS(2 GeV) mass mh in two steps. First, the PT scale is evolved from µ = 2GeV to the
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Figure 6. Light-quark mass dependence of the ratio of the susceptibilities corresponding to eq. (A.21)
for j = 1− and n = 5 for the two combinations (r,−r) (left panel) and (r, r) (right panel) of the
Wilson r-parameters. The solid lines represent the results of the fitting function (A.25) evaluated in
the continuum and infinite volume limits, while the dashed ones correspond to the fitting function
evaluated at each value of β and for the largest value of L/a. The crosses represent the value of
the ratio extrapolated at the physical pion point (mud = mphys

ud ) and in the continuum and infinite
volume limits.

value µ = mh using N3LO perturbation theory [54] with four quark flavors (n` = 4) and
ΛNf=4
QCD = 294 (12)MeV [55], obtaining in this way mh(mh). Then, at order O(α2

s) the pole
quark mass mpole

h is given in terms of the MS mass mh(mh) by

mpole
h = mh(mh)

{
1 + 4

3
αs(mh)
π

+
(
αs(mh)
π

)2

·
[
β0
24(8π2 + 71) + 35

24 + π2

9 ln(2)− 7π2

12 −
ζ3
6

]
+O(α3

s)
}
, (A.24)

where β0 = (33 − 2n`)/12 and ζ3 ' 1.20206. The relation between mpole
h and mh(mh) is

known up to order O(α3
s) (see refs. [56, 57]), but the ratios of the transverse factors (A.23)

appearing in eq. (A.21) turn out to be almost insensitive to such high-order corrections.
Thanks to the large correlation between the numerator and the denominator in eq. (A.21)

the statistical uncertainty of the ETMC ratios Rj(n; a2,mud) is much smaller than those of
the separate susceptibilities and it may reach the permille level, as it is shown in figure 6 in
the case j = 1− and n = 5 as an illustrative example.

The light-quark mass dependence of the ratios (A.21) turns out to be very mild and,
therefore, for each value of the heavy-quark mass mh(n) we fit the lattice data by adopting
a simple linear Ansatz both in the light-quark mass mud and in the values of the squared
lattice spacing a2 (since in our lattice setup the susceptibilities are O(a)-improved) with an
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additional phenomenological term aimed at describing finite volume effects (FVEs), namely

Rj(n; a2,mud) = Rj(n)
[
1 +A1

(
mud −mphys

ud

)
+D1

a2

r2
0

]
(A.25)

·
(

1 + F1
M

2

(4πf)2
e−ML

(ML)p

)
,

where r0 is the Sommer parameter, M2 ≡ 2Bmud and Rj(n) stands for Rj(n; 0,mphys
ud ). The

values of r0 and of the low-energy constants B and f have been determined for our lattice
setup in ref. [32].1 For sake of simplicity, in eq. (A.25) we have dropped in the notation of
the coefficients A1, D1 and F1 their dependence on the specific channel j as well as on the
specific value of the heavy-quark mass mh. The fitting procedure (A.25) is applied for each
of the four channels j = {0−, 0+, 1−, 1+}, for eight values of n (n = 2, 3, . . . , 9) and for the
two r-combinations. For each of the 64 fits the number of data points is 15 and the number
of free parameters is 4.

The results obtained with the fitting function (A.25) are shown in figure 6 in the case of
the ratio R1− for n = 5. The quality of the fitting procedure may be quite good in several
cases, as shown in the left panel of figure 6 where the value of χ2/(d.o.f.) is significantly
less than 1, but it may be also quite poor, as shown in the right panel of figure 6 where the
value of χ2/(d.o.f.) is significantly larger than 1. In the latter cases discretization effects
beyond the order O(a2) seem to be required. Moreover, in eq. (A.25) the coefficient Rj(n)
represents the value of the ETMC ratio extrapolated to the physical pion point and to
the continuum and infinite volume limits. However, the susceptibilities corresponding to
the two combinations (r,−r) and (r, r) of the Wilson r-parameters should differ only by
discretization effects (at least of order O(a2) in our maximally twisted setup). This means
that the value of Rj(n) should be independent of the choice of the Wilson r-parameters.
The conclusion is that the Anstaz (A.25) is not sufficient for describing the lattice data,
since discretization effects beyond the order O(a2) should be taken into account.

Following ref. [19] a possible option is to add a term proportional to a4, namely

Rj(n; a2,mud) = Rj(n)
[
1 +A1

(
mud −mphys

ud

)
+D1

a2

r2
0

+D2
a4

r4
0

]
(A.26)

·
(

1 + F1
M

2

(4πf)2
e−ML

(ML)p

)
.

Since our lattice setup includes only three values of the lattice spacing, it would be reasonable
to expect that eq. (A.26) would require the use of a (gaussian) prior on the two parameters
D1 and D2. However, at variance with the case of the b→ c transition analyzed in ref. [19]
there is no need to introduce a prior for describing the discretization effects for the ETMC
ratios of the b→ u transition. This is clearly illustrated in figure 7, where the introduction
of a discretization term proportional to a4 is greatly beneficial for obtaining fits with good
quality for both r-combinations.

1As for the FVEs, they appear to be generally small. Nevertheless, we have tried several values of the
power p finding that the optimal choice is p = 1.5, which is the value adopted in what follows.
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Figure 7. The same as in figure 6, but here the solid and dashed lines represent the results of the
fitting function (A.26) evaluated in the continuum and infinite volume limits and at each value of β
(for the largest value of L/a).

It turns out that for mh(n) . 2.5GeV the ratios Rj(n) corresponding to the two
combinations (r,−r) and (r, r) of the Wilson r-parameters and extrapolated to the physical
pion point and to the continuum and infinite volume limits agree within the errors, while for
mh(n) & 2.5GeV the agreement deteriorates and holds only within ∼ 2.5 standard deviations.
Consequently, we enforce that the extrapolated values Rj(n) must be independent of the
specific r-combination by performing the following combined extrapolation

R
(r,±r)
j

(
n; a2,mud

)
= Rj(n)

[
1 +A1

(
mud −mphys

ud

)
+D

(r,±r)
1

a2

r2
0

+D
(r,±r)
2

a4

r4
0

]
(A.27)

·
(

1 + F1
M

2

(4πf)2
e−ML

(ML)p

)
,

where now only the coefficients D(r,±r)
1 and D(r,±r)

2 depend explicitly on the r-combination.
The quality of the combined fitting procedure (A.27) is always good for all channels

and heavy-quark masses (χ2/(d.o.f.) . 0.7 with 30 data points and 7 free parameters for
each of the 32 fits). The results obtained for Rj(n) are shown in figure 8.

A.5 Extrapolation to the b-quark point

The important feature of the ETMC ratio method is that the extrapolation to the phys-
ical b-quark point of the ratios Rj can be carried out taking advantage of the fact that
by construction

limn→∞ Rj(n) = 1 . (A.28)
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Figure 8. The susceptibility ratios R0+ (left top panel), R0− (right top panel), R1− (left bottom
panel) and R1+ (right bottom panel) after extrapolation to the physical pion point and to the
continuum and infinite volume limits based on the combined fit (A.27) of the data corresponding to
the two combinations (r,−r) and (r, r) of the Wilson r-parameters, versus the inverse heavy-quark
mass 1/mh. The dashed lines are the results of the fitting procedure (A.29), described in the next
subsection, and the crosses represent the values of the ratios Rj at the physical b-quark point, shown
as a vertical dotted line.

Thus, we fit the lattice data for the ratios Rj(n) adopting the following Ansatz

Rj(n) = 1 +
M∑
k=1

[
Ak +Ask

αs(mh(n))
π

]( 1
mh(n)

)k
, (A.29)

which contains 2M parameters to be determined by a χ2-minimization procedure.2 We have
considered either M = 2 or M = 3 in eq. (A.29), i.e. either 4 or 6 free parameters, obtaining

2We remind that, for sake of simplicity, we have dropped in the notation of all the parameters their
dependence on the specific channel j.
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Figure 9. Light-quark mass dependence of the longitudinal vector susceptibility χ0+(mphys
c ) for

the two combinations (r,−r) (left panel) and (r, r) (right panel) of the Wilson r-parameters. The
solid lines represent the results of the combined fit evaluated in the continuum and infinite volume
limits, while the dashed ones correspond to the fitting function evaluated at each value of β and for
the largest value of L/a (see text). The crosses represent the value of the susceptibility extrapolated
to the physical pion point (mud = mphys

ud ) and to the continuum and infinite volume limits.

very similar results. The quality of the fitting procedure (A.29) with M = 3 is shown by
the dashed lines in figure 8, where the values corresponding to the physical b-quark point
are represented by the crosses and are obtained after a quite short extrapolation from the
lattice data.

The susceptibilities χj(mphys
b ) at the physical b-quark point for j = {0+, 1−, 0−, 1+}

can be expressed in terms of the corresponding ones χj(mphys
c ) at the physical c-quark

point as

χj
(
mphys
b

)
= χj

(
mphys
c

)
·
ρj
(
mphys
c

)
ρj
(
mphys
b

) · 11∏
n=2

Rj (n) , (A.30)

where the functions ρj are given by eqs. (A.22)–(A.23) and the product over n include the
lattice data up to n = 9 and, then, the results of the fitting function (A.29) only for n = 10
and n = 11 (namely, after a quite short extrapolation up to the physical b-quark point).

The ingredients that remain to be determined are the susceptibilities χj(mphys
c ) evalu-

ated at the physical c-quark point, which represent upper limits to the dispersive bounds for
the semileptonic FFs related to the c→ d transition. The extrapolation to the physical pion
point and to the continuum and infinite volume limits is performed using a fitting function
similar to the one given in the r.h.s. of eq. (A.27), i.e. a combined fit of the lattice data
corresponding to the two r-combinations. As an illustrative example, the results obtained
in the case of the longitudinal vector susceptibility χ0+(mphys

c ) are shown in figure 9.
After averaging over all the branches of our bootstrap analysis the final, nonper-

turbative values for the susceptibilities χj(mphys
c ) and χj(mphys

b ) are collected in table 7.
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channel j χj(mphys
c ) χj(mphys

b )
0+ (1.50± 0.13) · 10−2 (2.04± 0.20) · 10−2

1− (4.81± 1.14) · 10−3 GeV−2 (4.88± 1.16) · 10−4 GeV−2

0− (2.36± 0.15) · 10−2 (2.34± 0.13) · 10−2

1+ (3.61± 0.81) · 10−3 GeV−2 (4.65± 1.02) · 10−4 GeV−2

Table 7. Values of the longitudinal and transverse, vector and axial-vector susceptibilities evaluated
in this work at the physical c- and b-quark points after extrapolation to the physical pion point and
to the continuum and infinite volume limits.

Our non-perturbative result for χ1−(mphys
b ) is consistent with the corresponding estimate

χ1−(mphys
b ) = 5.01 · 10−4 GeV−2 made in ref. [14] using perturbative QCD with the addition

of small contributions from quark and gluon condensates.

A.6 Subtraction of bound-state contributions

The results of the previous subsection represent upper limits to the dispersive bounds on
the form factors relevant in the semileptonic c→ d`ν` and b→ u`ν` transitions, respectively.
Such limits can be improved by removing the contributions of the bound states lying below
the pair production threshold.

In the case of the semileptonic B → π`ν` decays the above situation occurs in the
longitudinal axial-vector and the transverse vector channels due to the presence of the B- and
B∗-meson ground states, respectively. Their contributions, χ(gs)

0− (mphys
b ) and χ(gs)

1− (mphys
b ),

are explicitly given by

χ
(gs)
0−

(
mphys
b

)
= f2

B

M2
B

, (A.31)

χ
(gs)
1−

(
mphys
b

)
= f2

B∗

M4
B∗

, (A.32)

where fB(B∗) and MB(B∗) are respectively the B(B∗)-meson decay constant and mass.
Adopting the experimental value of the B-meson mass [10] and the lattice values fB =
0.193 (6)GeV, fB∗ = 0.1859 (72)GeV and MB∗ = 5.3205 (76)GeV, obtained in refs. [48, 58]
using the same ETMC gauge ensembles of this work, one gets

χ
(gs)
0−

(
mphys
b

)
= (0.134± 0.008) · 10−2 , (A.33)

χ
(gs)
1−

(
mphys
b

)
= (0.431± 0.033) · 10−4 GeV−2 , (A.34)

leading to the following upper bound for the longitudinal axial-vector and transverse vector
channels at the physical b-quark point

χ0−

(
mphys
b

)
= (2.20± 0.13) · 10−2 , (A.35)

χ1−

(
mphys
b

)
= (4.45± 1.16) · 10−4 GeV−2 . (A.36)

The values of the susceptibilities χ0+(mphys
b ) and χ1−(mphys

b ) relevant in this work are given
in eqs. (3.10)–(3.11).

– 30 –



J
H
E
P
0
8
(
2
0
2
2
)
0
2
2

low-q2 intermediate-q2 high-q2

R
τ/µ
π 0.250(120) 0.852(69) 1.152(57)
Āµ,πFB 0.0092(105) 0.00113(27) 0.00115(9)
Āτ,πFB 0.223(133) 0.220(32) 0.208(6)
Āµ,πpolar 3.32(1.13) 1.16(29) 1.06(30)
Āτ,πpolar 14.6(13.4) 1.16(29) 1.06(30)

Table 8. The theoretical values of the ratio of the τ/µ decay rates Rτ/µπ(K), the normalized forward-
backward asymmetry Ā`,π(K)

FB and the normalized lepton polarization asymmetry Ā`,π(K)
polar evaluated

in the three selected q2-bins in the case of the semileptonic B → π`ν` decays with ` = µ, τ adopting
the combined LQCD data of table 1 as inputs for our DM method. .

low-q2 intermediate-q2 high-q2

R
τ/µ
K 0.249(85) 0.889(72) 1.163(54)
Āµ,KFB 0.0105(73) 0.00159(29) 0.00132(9)
Āτ,KFB 0.341(82) 0.268(23) 0.225(5)
Āµ,Kpolar 4.15(1.98) 0.88(27) 1.04(29)
Āτ,Kpolar 11.4(16.7) 0.88(27) 1.04(29)

Table 9. The same as in table 8, but in the case of the semileptonic Bs → K`ν` decays with
` = µ, τ adopting the combined LQCD data of table 2 as inputs for our DM method. .

B Theoretical estimate of Rτ/µ
π(K), Ā`,π(K)

FB and Ā`,π(K)
polar in selected q2-bins

In this appendix we collect our theoretical predictions for the ratio of the τ/µ decay rates
R
τ/µ
π(K), the normalized forward-backward asymmetry Ā`,π(K)

FB and the normalized lepton
polarization asymmetry Ā`,π(K)

polar evaluated in limited regions of the phase space. In other
words we evaluate the quantities (4.1)–(4.3) restricting the integration over q2 in both the
numerator and the denominator to limited kinematical regions.

We have selected three different q2-bins, namely for the B(s) → π(K) decays

• low-q2 region: from q2 = 0 to q2 = 9GeV2 (8GeV2);

• intermediate-q2 region: from q2 = 9GeV2 (8GeV2) to q2 = 18GeV2 (16GeV2);

• high-q2 region: from q2 = 18GeV2 (16GeV2) to q2 = t− = 26.4GeV2 (23.7GeV2).

Note that in the low-q2 region, when the τ -lepton is involved, the minimum value of q2 is
equal to m2

τ .
The results, based on the combined LQCD data of tables 1 and 2 used as inputs for our

DM method, are collected in tables 8 and 9 for the B → π and Bs → K decays, respectively.
It can be seen that large (and even quite large) uncertainties affect the theoretical predictions
of some of the quantities in the low-q2 bin. This is related to the large uncertainties of the
hadronic form factors at low values of q2 (see figures 2–3), which are a consequence of the
present uncertainties of the input lattice data and of the long extrapolation to low values
of q2. Direct lattice calculations at smaller values of q2 will allow in the future to reach a
more significative precision also in the low-q2 bin.
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