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1 Introduction

The LHC is a designated discovery machine. It has delivered the discovery of a Standard
Model-like Higgs particle [1, 2] almost ten years ago and has also provided a wealth of
precision measurements. However, new physics beyond the Standard Model (SM) has not
been found in direct searches, yet. This is in contrast to our hope that there is a link
between LHC physics and dark matter. The LHC experiments will increase the amount of
collected data in the coming years, and even more so in the high luminosity phase of the
LHC. This vast amount of data has to be scrutinized in all possible ways, in particular also
expecting the unexpected.

Model-agnostic Machine Learning (ML) techniques have been shown to provide sen-
sitivity to various new physics signatures. Completely unsupervised methods based on
learning a representation of the data to find anomalies in a completely data-driven way
have been introduced in refs. [3–9]. Guiding ML methods with simulations while keeping
an open mind to what new physics might look like has been used in refs. [10–14]. It is the
ultimate vision to have a model-agnostic ML algorithm that uncovers new physics even
if it has never been considered by any human physicist. However, there is a long way to
go. Being able to tag potential signal events, e.g. with autoencoders or any other anomaly
search algorithm, does not mean that one can make a statistically meaningful discovery [15]
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if there is no strategy to compare to the SM expectation. Only recently, first steps have
been made to develop such a general, complete strategy [16].

It is at the heart of any LHC new physics search to compare the background expec-
tation with a measurement. If the background expectation can be measured in a control
region (usually involving some theory assumptions), only data needs to be examined for po-
tential discoveries. ML methods have been proposed to increase the sensitivity of searches
employing control regions [17–28] and applied to experiment [29]. In a traditional resonance
search or bump hunt, one simply counts events in side bands and signal regions and looks
for deviations from a smooth distribution. In such a setup, model-agnostic ML is partic-
ularly promising since it can go far beyond counting events. ML can discover patterns in
the signal region which are absent in the control regions, e.g. investigating jet substructure
in the dijet invariant mass spectrum. To examine the potential of in this context, two
community challenges have recently collected many interesting ideas [30, 31].

In this work we employ the Classification Without Labels (CWoLa) method [18] which
is designed to uncover any difference between a control and a signal region. A supervised
classifier is trained to tag any event as belonging to the signal or the control region. If the
control and the signal region have identically distributed features in the absence of new
physics this is supposed to be an impossible task. The events being tagged as most signal
like will be equally distributed between the control and the signal region. However, if there
is a different signature in the signal region due to new physics, the supervised classifier will
recognize it and tag it as most signal like. Moreover, the method can provide a statistically
meaningful discovery. Labels for new physics events, which are unavailable in real data,
are not needed. Only a control region is needed which contains less new physics events
than the signal region.

CWoLa has been successfully used for bump hunts [20, 24] and combined with den-
sity estimation to improve the sensitivity of the corresponding searches [22]. In the present
work, we go beyond bump hunting. We show how to improve mono-jet searches at the LHC
using CWoLa. The dominant background in a mono-jet search stems from invisibly decay-
ing weak vector bosons. Hence, events with visibly decaying vector bosons naturally provide
a suitable control region. A standard mono-jet search is a cut-and-count search, where fea-
tures such as the structure of the observed jets do not play a role. Looking for any difference
in the jet structure can boost the sensitivity to models with modified jet dynamics. This has
been shown for a specific model using supervised ML for example in ref. [32]. Here, we show
how the use of CWoLa improves the sensitivity to differences in jet structure in a model
unspecific way. We demonstrate the general idea following the most recent ATLAS mono-
jet search [33]. A similar search has also been performed by the CMS collaboration [34].
The discovery potential for new physics is illustrated employing a specific dark matter
model with a strongly interacting dark sector [32, 35], highlighting the potential as well
as the limitations of the method. In particular, we demonstrate that signal regions which
are already limited by systematic uncertainties in a standard search, gain sensitivity using
model-agnostic ML and will profit in particular from the high luminosity phase at the LHC.

This work is organised as follows: in section 2, we introduce the ATLAS mono-jet
search and describe the simulation of all the required data to be used in the following

– 2 –



J
H
E
P
0
8
(
2
0
2
2
)
0
1
5

investigations, i.e. the SM backgrounds and the strongly interacting dark-matter model
used as an example. Section 3 summarizes the general CWoLa idea, before the specific
CWoLa setup for the mono-jet search is described in section 4. In section 5, we highlight
the discovery potential of the method under simplifying assumptions, before we scrutinize
and reinforce our findings in section 6. We conclude in section 7 and refer to appendices A
and B for more details on the setup and the results, respectively.

2 Setup

The strategy to search for new physics as outlined in this paper is not tied to a specific
mono-jet analysis, and it might also be promising for searches with a well-defined control
region beyond a mono-jet analysis. However, for concreteness, we follow the ATLAS mono-
jet search in ref. [33]. In this search, events with Emiss

T > 200GeV and a leading anti-kT
jet with jet radius 0.4, pjet

T > 150GeV and |ηjet| < 2.4 are analysed using an integrated
luminosity of 139 fb−1 of proton-proton collision data collected between 2015 and 2018
at the LHC in several inclusive and exclusive Emiss

T regions. At most three additional
jets with pjet

T > 30GeV and |ηjet| < 2.8 are allowed in an event. Events with identified
leptons are vetoed. We focus on an inclusive signal region with Emiss

T > 250GeV and
∆φ(pjet

T ,pmiss
T ) > 0.4 for all jets (denoted as IM1 in ref. [33]). For this region more than

106 events have been recorded. The choice of this signal region is motivated by the fact
that the CWoLa method benefits from large amounts of training data and will in particular
improve searches which are systematics limited. In the high-luminosity phase of the LHC,
our machine-learning approach will become more and more applicable also at higher Emiss

T

thresholds as more and more events are collected. Other machine learning applications for
improving the sensitivity of mono-jet searches can be found in refs. [36–38].

2.1 SM backgrounds

The SM background in the signal region consists mainly of Z+jet production where the
Z-boson decays invisibly into neutrinos (61%), followed by W+jet production where the
W-boson decays invisibly, i.e. it decays leptonically and the charged lepton is not identified
(31%). Smaller backgrounds are associated with top-quark production where one top quark
decays leptonically (3.5%) and diboson production where one boson decays invisibly (2%).

To reduce the systematic errors of the theory prediction, the background estimate of
the ATLAS search [33] uses dedicated control samples where charged leptons from the Z-
boson or W-boson decays are identified. The control region is defined by the same cuts as
the signal region, but the cut on Emiss

T is replaced by a cut on the recoil momentum precoil
T ,

where precoil
T = plT + pmiss

T and plT is the transverse momentum of the identified leptons
(one for W-boson decays, two for Z-boson decays). Whether an event belongs to the signal
or the control region therefore only depends on the decay products of the vector boson.
We make use of this control sample in our CWoLa approach as discussed in section 4.

Since we do not have access to LHC data, we investigate our CWoLa based approach
using Monte-Carlo simulations. All events are simulated at 13TeV center-of-mass energy
using MadGraph5 [39] for the hard process, Pythia8.2 [40] as a parton shower, Delphes3 [41]
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for a basic detector simulation using the ATLAS Card, and FastJet [42] for jet-clustering,
with the default settings for all tools.

The CWoLa method is sensitive to differences in jet structure, comparing the jets in
the control and the signal region. The leading QCD jets in the Z+jet and W+jet back-
ground processes are generated through initial-state radiation (ISR), so their structure is
determined by QCD dynamics and independent of the decay channel and the decay dy-
namics of the vector boson. If the Z boson in the Z+jet process decays into neutrinos
or charged leptons, the corresponding ISR QCD jet belongs to the signal or the control
region, respectively. Also for W+jet production, the leading jets from ISR can populate
the signal or the control region, depending on whether the charged lepton from the W de-
cay is identified or not. As the structure of the ISR jets is the same for all Z+jet and
W+jet background processes, we simulate only Z+jet production followed by a Z decay
into neutrinos and use the corresponding jets for both the signal and the control region.
These events are the basis for the discussion in section 5 where we show the applicability
of the CWoLa method in a simplified setup.

As discussed above, the signal region also contains smaller admixtures from top-quark
and diboson production. Fat jets (with a jet-radius R = 0.8, see section 4) in those
processes might have a multi-prong structure since they can contain more than one subjet
emerging from the decay products of a top quark or a vector boson. Since the CWoLa
method tags those jets as different if they are not present in the control region as well,
they have to be treated with some care as discussed in section 6. To keep things simple, we
only simulate tt̄ production in the semi-leptonic channel, where the transverse momentum
of the leptonically decaying W-boson has to fulfill precoil

T > 250GeV. The leading jets
from those tt̄ events can populate the signal and the control region, depending on whether
the charged lepton is identified or not. Concerning the diboson events, we simulate W(→
jets)Z(→ νν̄) events with Emiss

T > 250GeV and ∆φ(pjet
T ,pmiss

T ) > 0.4. Again, we assume
that a more realistic composition of the diboson events in the signal and control regions
would not qualitatively change the jet characteristics of the sample we are interested in.
Other backgrounds are strongly suppressed and are thus ignored in this work for the sake
of simplicity. The importance of potential additional reducible backgrounds (e.g. electrons
being mis-measured as jets) can only be quantified by a proper experimental analysis.
Addressing such backgrounds is thus beyond the scope of the present work.

2.2 New physics example: strongly interacting dark matter model

The CWoLa strategy outlined in section 3 and section 4 is completely model agnostic.
However, to show the discovery potential, we employ a specific new physics model. Since
we are sensitive to modified jet dynamics, we use the strongly interacting dark matter
model introduced in ref. [35]. How the modified jet dynamics of this model can be used to
improve a mono-jet analysis in a supervised setup has been discussed in ref. [32]. Other
machine learning applications to strongly interacting dark matter models can be found in
refs. [9, 43, 44]. For our choice of parameters, the model contains a heavy vector boson Z ′

with mass mZ′ = 2 TeV interacting with standard model quarks with a coupling gd = 0.1.
It couples the Standard Model to a sector of dark quarks qd with a coupling ed = 0.4.
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These quarks are also charged under a dark SU(3) gauge group with a confinement scale
Λd = 5 GeV. Hence, being pair-produced in a Z ′ decay they shower and hadronize to form
dark pions πd and dark rho mesons ρd with masses mπd = mρd = 5 GeV. While the neutral
rho mesons ρ0

d mix with the Z ′ and decay back to SM quarks promptly, the other mesons
are stable dark-matter candidates and escape the detector. Hence, the jets in these models
are usually called semi-visible jets. On average the invisible fraction of the jet energy
amounts to rinv = 0.75, leading to a specific modified jet structure. Furthermore, the dark
jets differ from ordinary QCD jets due to the different running of the dark gauge coupling,
the absence of heavy quarks in the shower and the presence of substructure from the decays
of dark mesons. Because of the invisible fraction, the Z ′ decays into dark quarks do not
lead to a resonance in the dijet invariant mass. Moreover, a certain fraction of jets turns
out to be completely invisible and populates the signal region of our mono-jet search.

We use the UFO [45, 46] implementation of the model to simulate the pair-production
of dark quarks starting with Madgraph and using the same tool-chain as discussed in
section 2.1. The hidden-valley module of Pythia [47] is used to handle the dark showering,
hadronisation and the decay of the ρ0

d mesons into SM quarks. The subsequent showering
and hadronisation of these quarks as well as the detector simulation and the event selection
for our signal region are performed as for the SM backgrounds. The same model parameters
and the same tool chain have been also used to produce the Aachen benchmark data set
introduced in ref. [48].

3 The CWoLa method

Classification Without Labels (CWoLa) is based on the typical setup in high energy physics
experiments: one defines a signal region (SR) and a control region (CR). The signal region
is chosen to optimize the fraction fSR = NSR

A /NSR
B for a certain class of models, where NSR

A
is the number of new physics or anomalous events/data instances and NSR

B is the number of
background events/data instances. The control region should be free of anomalous events
or should at least contain a smaller fraction fCR = NCR

A /NCR
B of anomalous events, i.e.

fCR < fSR. The expected number of background events NSR
B measured in the signal region

is assumed to be known up to a certain relative error σ which includes statistical as well as
systematic uncertainties. The control region is used to minimize the systematic uncertainty
using data driven methods. For fSR > σ the measurement is sensitive, e.g. for fSR > 5σ
one would expect a discovery.

There are features in each event that are used for the definition of the signal and the
background region. CWoLa is based on the crucial assumption that there is an additional
set of features such that background events from the signal and the control region are
indistinguishable using only those features, i.e. the events in the signal and the control
region are drawn from an identical probability distribution concerning this restricted feature
space. These features will be called CWoLa features in the following.

In the CWoLa setup, a standard supervised binary classifier is trained to tag each event
as belonging to the signal or the control region, using the CWoLa features as input. These
labels are available for real experimental data. No reference is made to labeling events as
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background or new physics events, which are the labels one would actually like to know,
hence the name Classification Without Labels.

In the absence of new physics events and taking the above assumption for granted, the
classifier has to fail because the task is impossible. The predicted labels cannot be better
than random guessing. However, if there are anomalous events which are drawn from a
different probability distribution and fCR < fSR, the classifier should assign a higher score
for those anomalous events to belong to the signal region. Thus, for a given score threshold,
the classifier will predominantly select anomalous events.

It is worth stressing the model-agnostic nature of this approach. Searching for a specific
new physics model, a difference between the new physics and the background events in
some feature will already be used to define the signal region to boost the sensitivity of
a simple cut-and-count analysis. However, in this case one has sensitivity to this feature
only. CWoLa instead is sensitive to all potential differences in the CWoLa features.

It has been shown that this setup leads to an optimal classifier [18], i.e. it can have the
same performance as a supervised classifier working with events labeled as being anomalous
or belonging to the background. However, this finding does not imply that the method is
guaranteed to work in practice.

CWoLa has been shown to improve the sensitivity of bump-hunt searches [20]. In
this context, the control region consists of the side bands of a specified signal region.
For concreteness, consider a resonance search using dijet events. An interval in the dijet
invariant mass is selected as signal region. It would be populated by new physics events if
there was a resonance with a mass in the signal region decaying into a dijet final state. If
the structure of new physics jets differs from QCD jets, the CWoLa method can boost the
sensitivity of the search by only taking into account events with a classifier score beyond a
certain threshold. However, the CWoLa features for the classifier have to be chosen with
care since they might be correlated with the dijet mass which defines the signal region.
Otherwise the assumption that background jets from the signal and the control region are
indistinguishable using the CWoLa features is violated. The corresponding decorrelation
of observables has been discussed in ref. [24] and methods to improve on those limitiations
for bump hunts have also been suggested [22].

4 CWoLa for anomalous mono-jets

To improve an existing or a future mono-jet search, we suggest to use the CWoLa setup
in the following way: the signal region consists of events with large missing transverse
energy. As discussed in section 2, we search for an excess of events in a signal region
defined by Emiss

T > 250GeV and ∆φ(pjet
T ,pmiss

T ) > 0.4 for all jets as a concrete example.
The control region is defined by events where neutrinos are replaced by charged leptons (see
also section 2). Data in the control regions has been recorded in past experimental analyses
for most of those backgrounds to control systematics. Details can be also found in ref. [33].

As CWoLa features to the classifier, low level information of the leading fat jet in
each event is used. To find the leading fat jet, the constituents of the events in the signal
and background region are reclustered into anti-kT jets with a jet radius R = 0.8. In our
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simulation based studies, we use the 40 jet constituents with largest transverse momentum
in the constituents branch of the Delphes output (see section 2 for the simulation details).
The assumption that the CWoLa features are uncorrelated with respect to the definition of
signal and background regions, i.e. the leptonic decays of weak bosons, is physically sound:
the evolution of the jets from initial-state radiation is driven by QCD dynamics and not
influenced by the decay properties of a leptonically decaying weak boson which recoils
against the jet. We have verified the independence of the jet structure with respect to the
weak-boson decays in our simulation and simplify the simulation accordingly as detailed in
section 2. Replacing simulated by experimentally recorded data should be straightforward.

As the binary classifier, we use a Dynamic Graph Convolutional Neural Network
(DGCNN) [49] which is based on the ParticleNet architecture [50] and has proven to be an
extremely powerful jet tagger [51]. Architecture, preprocessing, and training are discussed
in appendix A. Note that instead any powerful supervised classification algorithm could be
used, e.g. the recently proposed graph-based LundNet [52] or LorentzNet [53].

The score s ∈ [0, 1] of the trained classifier for each event can be interpreted as the
probability of the event to belong to the signal region (see appendix A for details). For
few anomalous events, the output distribution for background events is expected to peak
close to s = 0.5. As discussed in section 3, anomalous events are expected to be tagged as
belonging to the signal region.

Given the classifier score s for each event, we choose a threshold t. For s > t, the event
is selected as being potentially anomalous. The threshold t is chosen such that one permille
of the events in the control region is selected, i.e. nCR = εCRNCR with εCR = 0.001. We
will comment on this choice below. Here we always assume that there is only background
in the control region. Hence, we work with a background rejection 1/εCR

B = 1/εCR = 1000.
For a given 1/εCR

B , corresponding to a specific threshold t, the classifier selects a number of
anomalous events nSR

A = εSR
S NSR

A in the signal region, where εSR
S is the signal efficiency and

depends on t. In our weakly supervised setup, εSR
S is unknown. In analogy, the classifier

selects a certain number of background events from the signal region nSR
B = εSR

B NSR
B . If

the CWoLa assumptions hold, we have εSR
B = εCR

B = 0.001.
If there are no anomalies in the signal region, the fraction of selected events from the

signal region will be identical to that of the control region, i.e. the expected number of
selected events is nSR

exp = εCR
B NSR. This is the Null hypothesis. If nSR

exp and nSR differ only
as expected from statistical fluctuations, no indication of new physics is observed. If there
are anomalous events in the signal region and the classifier is successful in identifying them
with some εSR

S > εSR
B , the fraction of selected events from the signal region will be larger. If

it exceeds the expectation for statistical fluctuations the Null hypothesis can be excluded
in the usual way. Due to the model agnostic nature of the method, there are no exclusion
limits to be derived for any models. The CWoLa method is a discovery tool.

The choice for the background rejection 1/εCR
B is to a certain extent arbitrary. Our

choice 1/εCR
B = 1000 is driven by the following considerations: although εSR

S is unknown,
the signal-to-background ratio nSR

A /nSR
B is usually a monotonically growing function of

the background rejection 1/εCR
B which favours to choose 1/εCR

B large. In particular, the
signal-to-background ratio for a discovery should not be too small such that one is not too
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sensitive to small unknown systematics concerning the validity of the CWoLa assumptions.
On the other hand, for increasing 1/εCR

B , a classifier is often not performant enough to not
only improve the signal-to-noise ratio but also the significance nSR

A /
√
nSR

exp of an observed
excess. Hence, the minimal acceptable signal-to-background ratio for a discovery is a good
guide for 1/εCR

B .
As a default, we use one million events in both the signal and the control region which

is close to the actual number of observed events in the IM1 signal region of the most
recent ATLAS search [33]. For εCR

B = 0.001, this corresponds to nCR = 1000 selected
events. Although nCR is fixed by choosing the threshold t for our data set, nCR for the
same t is distributed with the usual statistical uncertainty

√
nCR for independent data sets.

Therefore the corresponding relative statistical uncertainty due to the limited size of the
control region for nSR is roughly σCR = 3%. Having a signal sample of the same size (nSR

exp =
nCR) and adding the corresponding relative statistical uncertainty σSR in quadrature, a
5σ discovery needs at least 5

√
(σCR)2 + (σSR)2 nSR

exp = 5
√

2σCR nSR
exp = 5

√
2nSR

exp ∼ 224
additional events.

In principle, one could also scan the background rejection. However, here we do not
follow this idea in order to avoid discussions about the look-elsewhere effect. The chosen
value has not been tuned to the success of finding our example signal. Moreover, as we
will see in the following sections, a discovery using our CWoLa setup will most likely be an
iterative process which is driven not so much by statistical considerations but by iterated
efforts to understand the quality of the control region.

In this setup we are sensitive to modified jet structures which occur in events with
large missing transverse energy. A physically well motivated example for such a model is
discussed in section 2.2 and used in the following sections to demonstrate the sensitivity of
the method.

5 Proof of principle

In this section, we take the CWoLa assumptions for granted. The simulated background
events in the signal and the control region are indeed drawn from the same probability
distribution since we use the same simulation setup to generate them. We only use Z+jet
events which are simulated as discussed in section 2.1. Therefore, we investigate the per-
formance of the CWoLa setup under ideal circumstances. The problems which might arise
for more complicated samples of background jets or in defining a suitable control sample
are discussed in section 6.

As a default, we use NCR = NSR = 106 events in the control region and in the signal
region. We use a fraction fCR = 0 of anomalous events in the control region, i.e. we have
NCR

B = NCR and only Z+jet events. In the signal region, we have NSR
B = (1 − fSR)NSR

Z+jet events and NSR
A = fSRNSR new physics events, simulated as detailed in section 2.2.

We take the number of new physics events NSR
A as a free parameter. Note that not all new

physics events have anomalous leading fat jets since also initial-state radiation QCD jets
can be leading. This is making the task to identify new physics even harder.
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fSR nSR
exp nSR nSR

A nSR
B (nSR − nSR

exp)/
√

2nSR
exp

0% 1000 1048 0 1048 1.07
0.2% 1000 1065 47 1018 1.45
0.4% 1000 1107 100 1007 2.39
0.5% 1000 1175 184 991 3.91
0.6% 1000 1306 247 1059 6.84
0.7% 1000 1389 367 1022 8.70
0.8% 1000 1500 419 1081 11.18
1% 1000 1666 625 1041 14.89
2% 1000 2357 1392 965 30.34
4% 1000 4182 3269 913 71.15

Table 1. Number of events nSR selected from the signal region for NCR = NSR = 106 and several
signal fractions fSR. We have used the mean score of five classifiers trained on the same data. We
also show the number of events expected to be selected in the absence of a new physics signal,
nSR

exp, and the number of selected anomalous and background events (nSR
A and nSR

B ). The latter
two numbers are not known for real data. The last column shows an estimate of the statistical
significance of a possible discovery.

Using εCR
B = 0.001, as discussed in section 4, the number of events nSR = nSR

A + nSR
B

selected by the classifier in the signal region is shown in table 1 for several signal fractions
fSR. To be less vulnerable to fluctuations in the training process we train five classifiers on
the same data and average their scores. Most importantly, the Null test works fine. If there
are no anomalous events in the data (fSR = 0), the selected number is, within statistical
fluctuations, in agreement with the expected value nSR

exp = 1000. CWoLa does not provide
any false indication for new physics. Hence, overfitting is no issue. Moreover, a signal
rate fSR = 1%, which is still consistent with constraints from the latest ATLAS mono-jet
search, leads to nSR = 1666. Without statistical doubts, such a finding would indicate that
there is something to be understood about the data. Ideally, a thorough investigation of
the selected jets will uncover the unexpected jet structure and hint towards a suitable new
physics model.

Around a signal fraction fSR = 0.6%, the statistical significance rapidly drops below
5σ. Even under the ideal circumstances which are assumed in this section, the classifier is
then not able to identify the new physics events as anomalous. Note that only NSR

A = 6000
anomalous events are in the training sample with NSR + NCR = 2 · 106 events. It is
extremely challenging for a classifier to efficiently learn the anomalous structures under
these circumstances. In a supervised setup, the data instances would be weighted according
to their abundance to help the classifier. In our weakly supervised setup, however, this is
not possible.

Moreoever, our studies show that the absolute number of anomalous events is an
essential parameter. If the number of background events is increased for a fixed number of
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NSR nSR
exp nSR nSR

A nSR
B (nSR − nSR

epx)/
√

2nSR
epx

250k 250 916 686 230 29.78
500k 500 1113 660 453 19.38
1000k 1000 1666 625 1041 14.89

Table 2. Same as table 1 but for a fixed number of anomalous events NSR
A = 10k in a signal region

with NSR events.

NSR nSR
exp nSR nSR

A nSR
B (nSR − nSR

epx)/
√

2nSR
epx

250k 250 362 126 236 5.01
500k 500 680 258 422 5.69
1000k 1000 1666 625 1041 14.89

Table 3. Same as table 1 but for a fixed fraction fSR = 0.01 of anomalous events in a signal region
with NSR events.

anomalous events in the signal region, the performance of the CWoLa method is relatively
stable, although the signal fraction is decreasing. In table 2, we show the tagged number of
events from the signal region for several NSR, with the number of anomalous events fixed at
NSR

A = 10k. Moreover, table 3 shows the improving performance for a fixed signal fraction
fSR = 0.01 if the collected data increase. This is good news for the high-luminosity phase
of the LHC. Whether improved training strategies or more powerful classifiers can improve
the overall performance is left for future research.

We have also investigated the effect of the control region being smaller than the signal
region; in the analysis we have considered as an example, the smaller branching ratio of
the Z boson into charged leptons leads to a smaller number of events in the control sample.
Weighting the events accordingly, we do not observe a significant loss of discovery power
beyond the increased statistical error.

6 Reality checks

In section 5, we have shown the sensitivity of the CWoLa method under idealized conditions.
In this section, we study how a non-trivial and more realistic composition of the signal and
control samples impacts the performance. Here, we assume that the background events
in the signal region contain rSR

tt̄
= 3.5% tt̄ events and rSR

V V = 2% diboson events (see
section 2.1). In particular, we investigate how well this composition has to be understood
and reflected in the control region.

In the absence of any new physics events (fCR = fSR = 0), we show the results of
the CWoLa tagging for several values of rCR

tt̄
and rCR

V V in table 4. For rCR
tt̄

= rCR
V V = 0,

i.e. the additional backgrounds are absent from the control region, the CWoLa method
correctly identifies the different jet structures from the top-quark and weak-boson decays
in the signal region. However, this is of course not a sign for new physics but a consequence
of our poor modeling of the control region. Although this is a naive example, it highlights
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rCR
tt̄

rCR
V V nCR

Z+jet nCR
tt̄

nCR
V V nSR

Z+jet nSR
tt̄

nSR
V V nSR

0% 0% 1000 0 0 1053 1127 2043 4223
1.75% 1.0% 541 247 212 581 557 420 1558
2.80% 1.6% 980 3 17 1065 6 17 1088
3.15% 1.8% 957 24 19 962 26 32 1020
3.50% 2.0% 823 160 17 793 175 21 989
5.00% 3.0% 966 18 16 960 22 3 985
3.50% 1.6% 903 89 8 821 93 26 940
2.80% 2.0% 983 5 12 996 7 12 1015

Table 4. Number of events selected by the classifier from the different background classes in the
signal and control region for different compositions of the control region. There are no anomalous
events (fSR = 0) and we have rSR

tt̄
= 3.5% and rSR

V V = 2%.

the challenge of the CWoLa approach: tagging more signal-region events than expected
can always either be due to new physics or due to a mismodeling of the control region. For
real data, the leading jets for the control region have to be measured from different event
topologies and then combined to form a proper control region that matches the expected
rates of the different backgrounds in the signal region, where input from theory and Monte
Carlo is required. Therefore, it is a relevant question to which extent the control region
needs to be understood. The results in table 4 show, that the understanding and the
inclusion of the backgrounds are crucial at the percent level, as it is already the case for
the standard searches. However, variations of backgrounds between the control and signal
region at the level of a few permille (i.e. a relative understanding at the level of 10%) are
tolerable. Hence, one does not need to be perfect. In particular, the CWoLa setup is not
too sensitive to overestimating small background components. Other small backgrounds
with a different jet structure at the level of a permille or below might be even tolerable in
the signal region without including them in the control region at all.

Moreover, in a certain sense, we propose a self-correcting setup. Tagging more events
from the signal region than expected in real data would first of all prompt more efforts to
better understand the control region. The tagged events might also help in understanding
which backgrounds are mismodeled. Only after all those studies one would want to pursue
an interpretation of the selected signal events in terms of new physics, also aided by the
investigation of the tagged jet’s structure.

In table 5 we again study if the exemplary semivisible jets can be tagged, using a
more realistic background sample in the signal as well as in the control region. We see
that excesses in nSR over the expected number of observations are dominated by these
semivisible jets, even for slightly mismodeled control regions. Completely neglecting addi-
tional backgrounds in the control region, however, results in an excess dominated by these
backgrounds and only minor enhancement of the fraction of signal jets.
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rCR
tt̄

rCR
V V nCR

Z+jet nCR
tt̄

nCR
V V nSR

Z+jet nSR
tt̄

nSR
V V nSR

A nSR

0% 0% 1000 0 0 1089 1245 1826 223 4383
2.80% 1.6% 876 108 16 838 134 37 456 1465
3.50% 2.0% 963 23 14 996 25 32 633 1686
5.00% 3.0% 971 12 17 1034 8 10 575 1627

Table 5. Number of events selected by the classifier from the different classes in the signal and
control region for different compositions of the control region. There is a fixed fraction of anomalous
events (fSR = 0.01) and we have rSR

tt̄
= 3.5% and rSR

V V = 2%.

Throughout our studies, we have assumed that there are no anomalous new physics
events in the control region (fCR = 0). This is a valid assumption if the new physics model
does not predict events with isolated leptons. For the strongly interacting dark matter
model under consideration, this is the case as the dark mesons have no leptonic decay
modes. However, in general new physics models might predict fCR 6= 0. Increasing fCR

has the same effect as increasing rCR
tt̄

and rCR
V V in table 4, where one could view top pair and

diboson events as a potential new physics signal. As fCR approaches fSR the method fails.
In contrast, small admixtures of new physics events in the control region (fCR � fSR) do
not qualitatively change our conclusions.

In appendix B, we further discuss the classifier score using the Monte Carlo labels of
the events which are not available for real data.

7 Conclusion

We have demonstrated that the Classification Without Labels (CWoLa) method [18] is a
powerful tool to boost the LHC discovery potential for new physics models with anomalous
jet dynamics and a mono-jet signature. There are no model-specific assumptions, and the
proposed setup can be implemented directly using collected data. The CWoLa method
relies on a background-dominated control sample, which is in general available for LHC
searches.

Using Monte Carlo simulation and a well-motivated specific new physics model with
a strongly interacting hidden sector [35], we show that less than 1% of new physics events
in inclusive signal regions would be sufficient to discover signs of new physics. In contrast,
the corresponding traditional search [33] is not even sensitive enough to exclude the model
at 95% confidence level (the systematics dominated error on the SM prediction for signal
region IM1 is 1.2%). We consider the hidden sector model to be a rather challenging test
case since the modified jet dynamics of the model is difficult to recognize by unsupervised
methods [48] and by dedicated supervised taggers [32].

The CWoLa setup, as a weakly supervised method, is not as sensitive as a dedicated
model-specific and Monte Carlo-based approach using supervised methods. Moreover, as
a discovery tool, it will not provide exclusion limits for specific model parameters. On the
other hand, we emphasise again that the CWoLa method is model agnostic and can be
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applied directly to data. We have also demonstrated that the CWoLa method provides a
useful data-driven tool to improve the understanding of the signal and control regions.

We have shown that the CWoLa discovery potential is increasing with more data, while
traditional searches might already be limited by systematic uncertainties. The method
should therefore continue to gain importance with, in particular, the large amounts of
data expected in the high-luminosity phase of the LHC. Given that the CWoLa method is
model-agnostic and data-driven and that it only requires a background-dominated control
sample, we consider CWoLa-assisted searches for new physics and reanalyses of data already
collected by the LHC experimental collaborations to be very promising.
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A The DGCNN classifier

As input for our Dynamic Graph Convolutional Neural Network (DGCNN) we use the
40 leading pT constituents of each jet, zero padded when needed. From the 4-momentum
of each jet constituent we construct the set of seven input features {∆η, ∆φ, log(pT ),
log(pT /pjet

T ), log(E), log(E/Ejet), ∆R} with ∆η = η − ηjet, ∆φ = φ − φjet and ∆R =√
∆η2 + ∆φ2; η, φ, pT and E refer to the rapidity, the azimuthal angle, the transverse mo-

mentum (in GeV), and the energy (in GeV) of the constituent, respectively. The quantities
with superscript “jet” refer to the respective characteristics of the jet.

The DGCNN constructs a k-nearest-neighbors (knn) graph with these particles as
nodes. We use k = 16. The initial graph is constructed using the Euclidean distances of
the particles in ∆η and ∆φ. The network’s architecture is almost identical to the one used in
ref. [32] for supervised classification on similar data sets, i.e. we use three EdgeConv blocks
with three convolutions each. The number of features is increased successively from the
seven input features to 64, 128 and finally 256. The graph is dynamically updated as knn
graph after the first and second block using the Euclidean distances between nodes/particles
based on all features. The outputs of each block are concatenated with the input resulting
in 455 features per particle. After global average pooling the 455 features are fed into
a fully connected network with 256, 128 and 2 nodes. We regularize the fully connected
network using dropout with a fraction of 0.1 after the first two layers. We apply softmax
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activation to the last layer, allowing for a probability interpretation of the output. The
two outputs then correspond to the probability of the input to belong to the control region
or the signal region. We use the probability for the signal region as score s (see section 4).
The only difference to ref. [32] is that we use Leaky ReLU with α = 0.1 instead of ReLu
as activation function, since we observed that it leads to more stable results.

We implement the network using TensorFlow 2.6.0 [54] and the build-in version of
Keras [55]. We use the Adam optimizer [56] with its default settings to minimize the
categorical cross entropy. During training we reduce the learning rate by a factor of 0.1
when the training loss does not improve for 8 epochs. If the loss still does not improve for
an additional four epochs, we stop the training. We set the maximum number of training
epochs to 75, which is hardly ever reached. Note that we evaluate the network on the
same data that we use to train. This corresponds to the procedure one would use on
experimental data. The results in section 5 show that overfitting is not a problem for such
a large dataset, as we see no excess in selected events in the signal region in the absence of
signal (see table 1).

B Classifier output

In this appendix we show and analyze the classifier score for the training sample. Here,
we make use of the Monte Carlo labels for anomalous/new physics events and background
events of the different types. Hence, this information is not available for data collected at
the LHC. However, it is nevertheless instructive to investigate it.

In figure 1, we show the signal score s for the simplified setup used in section 5. The
scores peak at s = 0.5, as this minimizes the loss function if all jets in the control and the
signal region are drawn from identical probability distributions. For a well-defined control
region there are no jets which are present only in the control region but not in the signal re-
gion, such that scores well below s = 0.5 would be a sign of overfitting and should not be ob-
served. In the signal region, we distinguish jets from Z+jet background events and semivis-
ible jets from new physics events. For a signal fraction fSR = 1% (and fCR = 0), there are
enough semivisible jets such that the training is successful in at least identifying the most
anomalous jets. Most jets from new physics events are not identified, but this is not a prob-
lem for the CWoLa method to work. For fSR = 0.5%, those anomalous jets are still there,
but the training procedure is not able to distinguish them in an efficient way. In particular
the range of classifier scores is significantly reduced to s < 0.55 (s < 0.8 for fSR = 1%).

In figure 2 and figure 3, we show the signal score s including subdominant backgrounds
as discussed in section 6. The signal fraction is always fixed at fSR = 1% (and fCR = 0).
We use the nominal fractions rSR

tt̄
= 3.5% and rSR

V V = 2% for the subdominant backgrounds
in the signal region and vary rCR

tt̄
and rCR

V V in the control region. If the mismodelling is too
severe (right plot in figure 2), the classifier mainly tags tt̄ and diboson events as signal-
like, as expected and also shown in table 5. If the mismodelling is reduced (right plot in
figure 3) the semi-visible events dominate at large scores as it should be. This is even more
so the case for perfect modelling (left plot in figure 2). The left plot in figure 3 shows that
slightly overestimating distinct (multi-prong) jets in the control region is less dangerous to
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Figure 1. The absolute number of events in the signal region (Z+jet events in red, semivisible jets
in blue) and the control region (only Z+jet events in black) is shown as a function of the classifier
score s ∈ [0, 1] for fSR = 1% (left) and fSR = 0.5% (right). Note the different scale on the x-axis
in the two plots. We also show the threshold value t for εCR = 0.001 as a vertical line.
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Figure 2. The absolute number of events in the signal region (Z+jet events in red, semivisible jets
in blue, tt̄ events in orange, diboson events in green) is shown as a function of the classifier score
s ∈ [0, 1]. We have rSR

tt̄
= 3.5% and rSR

V V = 2.0% and use rCR
tt̄

= rSR
tt̄

and rCR
V V = rSR

V V (left) or
rCR

tt̄
= rCR

V V = 0 (right). We also show the threshold value t for εCR = 0.001 as a vertical line.
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Figure 3. Same as figure 2 but for overestimated (left) additional backgrounds in the control region
(rCR

tt̄
= 5.0% and rCR

V V = 3.0%) and underestimated (right) additional backgrounds (rCR
tt̄

= 2.8%
and rCR

V V = 1.6%). We also show the threshold value t for εCR = 0.001 as a vertical line.
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the CWoLa method than an underestimation. In this case, these jets are more abundant
in the (not perfectly modeled) control region leading to scores s < 0.5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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