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Abstract: We use conformal supergravity techniques to study four-derivative corrections
in four-dimensional gauged supergravity. We show that the four-derivative Lagrangian
for the propagating degrees of freedom of the N = 2 gravity multiplet is determined by
two real dimensionless constants. We demonstrate that all solutions of the two-derivative
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tion. The four-derivative terms in the supergravity Lagrangian modify the entropy and
other thermodynamic observables for the black hole solutions of the theory. We calculate
these corrections explicitly and demonstrate that the quantum statistical relation holds for
general stationary black holes in the presence of the four-derivative corrections. Employing
an embedding of this supergravity model in M-theory we show how to use supersymmetric
localization results in the holographically dual three-dimensional SCFT to determine the
unknown coefficients in the four-derivative supergravity action. This in turn leads to new
detailed results for the first subleading N
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of a class of three-dimensional SCFTs on compact Euclidean manifolds. In addition, we
calculate explicitly the first subleading correction to the Bekenstein-Hawking entropy of
asymptotically AdS4 black holes in M-theory. We also discuss how to add matter multiplets
to the supergravity theory in the presence of four-derivative terms and to generalize some
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1 Introduction

Supergravity theories that arise in the low-energy limit of string or M-theory provide an
accessible arena on which to explore the dynamics of a UV complete theory of quantum
gravity. The well-known two-derivative actions of 10d supergravity are corrected by stringy
and quantum effects to yield an infinite series of higher-derivative (HD) corrections. Com-
puting these HD corrections can in principle be done by using the microscopic formulation
of string theory but in practice it is cumbersome to do this efficiently. In the absence of a
first-principle microscopic formulation of M-theory the HD corrections to 11d supergravity
are usually determined by exploiting string dualities which makes them even harder to
access. In many situations one is interested in string or M-theory reduced on a compact
manifold to a lower-dimensional supergravity theory. In favorable circumstances one can
systematically describe the HD corrections to the lower-dimensional supergravity theory
resulting in explicit Lagrangians that can be applied to the physical system of interest.
A well-studied example of this approach is the 4d N = 2 compactifications of string or
M-theory to asymptotically flat supergravity. Many tools have been developed in this con-
text and have been successfully applied to uncover important aspects of the microscopic
dynamics of black holes in string and M-theory, see [1] for a review.

The AdS/CFT correspondence provides another strong incentive to systematically
study HD corrections to supergravity. The classical two-derivative supergravity action
allows for the calculations of physical observables in the dual CFT to leading order in the
large N and large ’t Hooft coupling approximation. There are at least three important
reasons to go beyond this leading order approximation. First, it is desirable to test and
extend the AdS/CFT duality beyond the two-derivative supergravity approximation where
it has been mainly explored. Second, the HD corrections to supergravity offer explicit cal-
culational access to many CFT observables that may be hard to compute by other means.
Third, the physics of black holes is modified by the HD corrections which in turn offers a
window into the quantum gravity corrections to asymptotically AdS black holes. Given this
status quo it is imperative to develop new tools to access the HD corrections to string and
M-theory and their reductions to asymptotically AdS backgrounds in lower dimensions.
Our goal in this paper is to make progress in this direction in the context of 4d N = 2
gauged supergravity.
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In the formalism of conformal supergravity, which we employ in this work, specifying
the HD action of a 4d N = 2 supergravity theory involves making several choices. One has
to specify the matter content of the theory, the prepotential which captures all F-term type
contributions to the Lagrangian, as well as the choice of gauging. In general one may also
have the freedom to specify additional D-term type supersymmetry invariants. For many
4d N = 2 asymptotically flat compactifications of string and M-theory it is known how
to determine this data from geometric and topological properties of the internal manifold.
Much less is known for asymptotically AdS 4dN = 2 compactifications. There are two main
reasons for this. First, all explicitly known N = 2 AdS4 compactifications of string and M-
theory do not have scale separation between the AdS and Kaluza-Klein (KK) scales. This
is in contrast to asymptotically flat compactifications of string theory for which typically
the internal compact manifold can be made parametrically small, justifying the use of a 4d
effective action. This in turn implies that the 4d actions used in AdS4 compactifications of
string and M-theory arise from a consistent truncation to a finite subset of the infinite KK
modes. Such 4d N = 2 consistent truncations are relatively rare and it is not generally
understood how and when they arise. The second reason is that the internal manifolds
for N = 2 AdS4 compactifications are not Ricci flat which makes it harder to identify the
structure of the 4d N = 2 supergravity theory in terms of their topological and geometric
data. To bypass these difficulties we focus on the so-called minimal 4d N = 2 supergravity
which describes the gravity multiplet and has been shown to arise as a universal consistent
truncation for many N = 2 AdS4 compactifications of string and M-theory, see [2] and
references thereof. This theory is also interesting from a holographic perspective where, as
emphasized in [3–5], it captures the universal dynamics of the stress-energy tensor in the
planar limit of the dual 3d N = 2 SCFT and many of its deformations.

Focusing on minimal 4d N = 2 supergravity and using the tools of conformal super-
gravity, see [6] for a review, we explicitly construct the general form of the four-derivative
gauged supergravity Lagrangian. In particular, we show that it is determined by two F-
term type superspace invariants given by the square of the Weyl multiplet and the T-log
multiplet discussed in [7]. After gauge fixing the conformal and gauge symmetries of the
theory one obtains a four-derivative Lagrangian for the propagating degrees of freedom of
the supergravity theory. We explicitly construct this Lagrangian and show that it is fully
determined up to three dimensionless constants. The two-derivative Lagrangian is con-
trolled by the dimensionless ratio of the AdS4 length scale L and the Newton constant GN .
In addition, there are two independent dimensionless coefficients, c1 and c2, that determine
the four-derivative terms in the Lagrangian. These three dimensionless parameters should
be determined by a consistent embedding of the 4d minimal supergravity model in string
or M-theory. The general consistency of the HD expansion of the supergravity theory dic-
tates that given such an embedding the coefficients c1,2 are parametrically smaller than the
dimensionless ratio L2/GN . As a by-product of our general analysis we also notice the pos-
sibility of adding two additional imaginary terms, one at two-derivatives and another one
at four-derivatives, to the Euclidean minimal supergravity action that have a topological
nature and may have applications to holographic setups that involve breaking of parity.

Equipped with this four-derivative action we proceed to analyze its detailed properties.
Interestingly, one can show that all solutions of the equations of motion of the two-derivative
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minimal supergravity theory also solve the equations of motion derived from the more
involved four-derivative Lagrangian. In addition, we show that the number of supercharges
preserved by a given two-derivative solution remains the same after including the four-
derivative corrections. Motivated by black hole physics and holographic applications we
also study in detail the on-shell action of the four-derivative supergravity theory. In order to
find finite and well-behaved results we work with smooth Euclidean supergravity solutions
and employ holographic renormalization adapted to the four-derivative context. We derive
a simple compact formula for the regularized four-derivative on-shell action of any solution
of the two-derivative equations of motion that reads

I
(HD)
on-shell =

[
1 + 64πGN

L2 (c2 − c1)
]
πL2

2GN
F(S) + 32π2c1χ(S) . (1.1)

For a given Euclidean solution S, F(S) is determined by the regularized on-shell action
of the two-derivative supergravity theory calculated by the standard rules of holographic
renormalization and χ(S) is the regularized Euler number of the four-dimensional Euclidean
metric. We show how to apply this formula in detail for a number of well-known solutions
of the minimal supergravity theory and determine F(S) and χ(S) for each of them. By
studying the linearized spectrum of excitations around the AdS4 vacuum of the theory it
is also possible to calculate the coefficient of the two-point function of the stress-energy
tensor in the dual CFT which takes the simple form

CT = 32L2

πGN
+ 2048(c2 − c1) . (1.2)

It is well-known that black hole thermodynamics is modified in the presence of HD
corrections. We explore this in the context of our four-derivative supergravity model and
calculate explicitly the HD corrections to black hole charges and thermodynamic potentials.
In particular, we use the Wald formalism to show that the four-derivative black hole entropy
in 4d N = 2 minimal supergravity takes the form

S =
[
1 + 64πGN (c2 − c1)

L2

]
AH
4GN

− 32π2c1χ(H) , (1.3)

where AH is the area of the horizon and χ(H) is its Euler number. We also discuss a
number of pertinent questions that relate our results to the recent literature on the weak
gravity conjecture and related developments.

The dimensionless coefficients in the four-derivative supergravity Lagrangian are de-
termined by the details of the string theory compactification that leads to the minimal 4d
N = 2 supergravity as a consistent truncation. Unfortunately, it is technically challenging
to perform such a truncation explicitly in the presence of HD corrections to type II or 11d
supergravity. For instance, the leading HD correction to 11d supergravity comes at the
eight-derivative order and it is not known how to reduce these eight-derivative terms to
four-dimensions for N = 2 AdS4 compactifications. To break this impasse we employ the
holographic dictionary and recent results on supersymmetric localization in 3d SCFTs. For
concreteness we focus on 3d SCFTs arising on the world-volume of M2-branes in M-theory.
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In this context the dimensionless constants that determine the 4d supergravity Lagrangian
have the following form

L2

2GN
= AN

3
2 + aN

1
2 , ci = vi

N
1
2

32π . (1.4)

HereN is the number of M2-branes, (A, a, v1, v2) are real numbers of order one, and we have
included the leading two terms in the large N approximation. Since the regularized on-shell
action of a supergravity solution is mapped to the logarithm of the partition function in
the dual SCFT we can combine (1.1) and (1.4) above to derive the following holographic
prediction for the leading terms of the large N SCFT partition function

logZ = πF
[
AN

3
2 + (a+ v2)N

1
2
]
− π (F − χ) v1N

1
2 . (1.5)

From the perspective of the CFT the quantities F and χ are determined by the Euclidean
background metric and U(1) R-symmetry gauge field and the constants (A, a, v1, v2) contain
information about the details of the theory at hand. For certain choices of 3d SCFTs one
can derive these quantities by using results from supersymmetric localization. In particular,
we show in detail how this can be done for the N = 6 ABJM theory holographically dual
to M-theory on AdS4 × S7/Zk as well as for the 3d N = 4 SYM theory with one adjoint
and Nf fundamental hypermultiplets which is dual to M-theory on AdS4×S7/ZNf . These
two classes of SCFTs are distinguished by the difference between the Zk and ZNf orbifold
actions. To determine the unknown coefficients in (1.5) for these two families of SCFTs
we use only supersymmetric localization results for the round S3 partition function and
the coefficient CT of the two-point stress-energy correlator. The holographic result in (1.5)
then leads to new predictions for the large N partition function of the SCFT on many
compact three-dimensional manifolds. Notably, this includes a number of supersymmetric
partition functions like the superconformal index, the topologically twisted index, and the
squashed S3 partition function. Moreover, we are able to use (1.3) to calculate explicitly
the first subleading correction to the black hole entropy of any asymptotically AdS4 black
hole dual to states in these SCFTs, including examples with no supersymmetry like the
AdS-Schwarzschild solution.

While the main focus of our work is on four-derivative 4d N = 2 minimal supergravity
our approach can be extended also to 4d supergravity coupled to matter multiplets as
well as to supergravity Lagrangians with six or higher-order derivatives. In section 7
below we discuss these generalizations in some detail and after making several well-justified
assumptions we arrive at two intriguing conjectures. First, we derive a formula for the
regularized AdS4 on-shell action of 4d N = 2 minimal supergravity in the presence of
any number of HD corrections. Second, we study the four-derivative STU model of 4d
N = 2 supergravity and use supersymmetric localization results for the ABJM theory
with real mass deformations to derive a conjecture for the four-derivative correction to the
prepotential of the theory.

We organize our presentation by starting in the next section with a detailed analysis of
the four-derivative corrections to the 4d N = 2 minimal supergravity action using the con-
formal supergravity formalism. We proceed in section 3 with a discussion of the solutions
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in this four-derivative theory and how to evaluate their on-shell action using holographic
renormalization. We illustrate this with several explicit examples. In section 4 we show
how to calculate the spectrum of linearized fluctuations around the AdS4 vacuum solution
of the supergravity theory and how to compute the coefficient in the two-point function of
the stress-energy tensor in the dual 3d N = 2 SCFT. Section 5 is devoted to the analysis
of black hole thermodynamics in our four-derivative theory. In particular, we calculate the
leading correction to the Bekenstein-Hawking entropy of any stationary black hole solution
in the supergravity theory. In section 6 we show how to use our holographic results in
conjunction with supersymmetric localization to find the first subleading correction to the
supersymmetric partition function on compact closed three-manifolds of two classes of 3d
SCFTs arising from M2-branes. In section 7 we study two possible generalizations of our
results by adding vector multiplets to the 4d supergravity theory and by showing how to
construct supergravity Lagrangians involving six- and higher-order derivative terms. We
conclude in section 8 with a discussion on several possible directions for further study. In
the five appendices we present some of the details of the technical calculations that form
the backbone of our work. This paper is a longer and extended version of [8] and [9]
where we summarized part of the results discussed below. In addition to deriving in detail
all the results announced in [8] we also present many new results that can be found in
sections 2.3, 4.2, and 7.

2 Conformal supergravity and higher-derivative actions

In this section we review the conformal supergravity formalism and explain how to build
the various invariants that enter the higher-derivative action we consider. We work in
Euclidean signature for most of the presentation, and briefly comment on Lorentzian sig-
nature towards the end of the section. For a review of N = 2 conformal supergravity
in four dimensions and Lorentzian signature, we refer the reader to [6]. The Euclidean
version was obtained in [10] by means of an off-shell time-like dimensional reduction from
five dimensions, and we will follow the conventions of the latter. Most of the technical
details are relegated to appendix A. Here we simply recall that the Euclidean conformal
supergravity theory is obtained by gauging the full superconformal algebra SU∗(4|2), which
contains the bosonic subgroup SO(5, 1)×SU(2)R×SO(1, 1)R. The first factor is the confor-
mal group of four-dimensional Euclidean space, and the last two make up the R-symmetry
group (which contains a non-compact factor in Euclidean signature). The gauge fields of
the various transformations are gathered in the so-called Weyl multiplet, together with a
number of auxiliary fields required for off-shell closure of the superconformal algebra. Upon
gauge-fixing the extra superconformal symmetries and eliminating the auxiliary fields, the
superconformal theory reduces to the usual Poincaré supergravity theory. This procedure
can only be carried out consistently provided the Weyl multiplet is supplemented by two
compensating multiplets in order to fix the gauge degrees of freedom. One of these must
be a vector multiplet, and it contains the vector field that will become the graviphoton in
the Poincaré theory. There are three known choices for the other compensator which lead
to different formulations of Poincaré supergravity [11]. For most of the presentation we
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will choose a hypermultiplet, although we will also comment about the formulation using
a compensating tensor multiplet below and in appendix B.

Since in this paper we mostly focus on minimal gauged supergravity, we do not consider
additional matter multiplets.1 Thus, the field content of the theory is that of one Weyl
multiplet, one vector multiplet, and one hypermultiplet. As mentioned above, this theory
is gauge-equivalent to the Poincaré supergravity theory describing the dynamics of the
metric, two gravitini and a graviphoton field, and the gauging will allow for a Euclidean
AdS vacuum with a negative cosmological constant. The first step to show this is the
construction of the action for the theory, which is greatly simplified in the superconformal
formalism. In fact, the formalism also allows for a straightforward construction of higher-
derivative invariants, as we now review.

2.1 Superconformal action

The starting point to build superconformally invariant actions in N = 2, d = 4 supergravity
is the following chiral density formula in Euclidean signature,∫

d4x d4θ E±L± =
∫
d4xL± , (2.1)

with
e−1L± = C±

∣∣
L±

+ 1
16 (T±ab)

2A±
∣∣
L±

+ fermions . (2.2)

Here, L± denotes a chiral (+) or anti-chiral (−) multiplet with Weyl weight w = 2, E±
is the (anti-)chiral superspace measure, and C±

∣∣
L±

, A±
∣∣
L±

denote the highest and lowest
components of L±, respectively. The tensor Tab is one of the auxiliary fields belonging to
the Weyl multiplet, see appendix A. We have refrained from displaying the fermionic terms.
The action on the right-hand side of (2.1) is superconformally invariant by construction [12].
We now briefly review the explicit construction of various actions based on the (anti-)chiral
multiplets available in minimal conformal supergravity.

A first possibility is to consider the compensating vector multiplet. In Euclidean
signature, this multiplet is related to the reducible combination of a chiral and an anti-chiral
scalar multiplet — denoted by X± — on which one imposes a supersymmetric constraint.
This can be done provided X± carry Weyl weight w = 1. Using the superconformal
multiplet calculus [10], one can square these multiplets to obtain the desired (anti-)chiral
multiplets with w = 2. The lowest and highest components read

A±
∣∣
X 2
±

= (X±)2 , C±
∣∣
X 2
±

= 2X±
(

2�cX∓ + 1
4 F̂

±
ab T

ab±
)

+ 1
2 Y

ijYij − (F̂∓ab)
2 , (2.3)

where X± are real scalar fields belonging to X±, the combination F̂±ab ≡ F±ab −
1
4X±T

±
ab

contains the gauge field strength and the T -tensor, Yij is an SU(2)R triplet of auxiliary
fields, and �c = DaDa is the superconformal d’Alembertian. We now consider the following
superspace integral,

1
2

∫
d4x d4θ E± (X±)2 ≡

∫
d4xLV± . (2.4)

1We discuss the addition of vector multiplets to the theory in section 7.
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The bosonic terms of the Lagrangian densities on the right-hand side are2

e−1LV± = 2X±X∓
(1

6 R−D
)
− 2DµX±DµX∓ −

1
2 (F̂∓ab)

2

+ 1
4 X± F̂

±
ab T

ab± + 1
4 Y

ijYij + 1
32 (X±)2 (T±ab)

2 .

(2.5)

Both the chiral and anti-chiral Lagrangian densities (2.5) are manifestly real and in-
variant under superconformal transformations. To construct a suitable real Lagrangian,
we can therefore consider an arbitrary linear combination,

LV = αLV+ + β LV− , with α, β ∈ R . (2.6)

This amounts to rescaling the multiplets X+ and X− by different factors in (2.4). In the
Lorentzian theory, these multiplets are related by complex conjugation [6] and we must
therefore have β = ᾱ = α. We also make this choice in Euclidean signature so that our
theory is related to the standard Lorentzian one by a simple Wick rotation, as discussed
below in section 2.2.1. We further fix α = 1 since it can be reabsorbed by a simple
redefinition of the fields in X±, leading to the Lagrangian density3

LV = LV+ + LV− . (2.7)

At this stage, the first term in (2.5) appears problematic since the auxiliary field D acts
as a Lagrange multiplier imposing the constraint X+X− = 0, which in turn suppresses
the Einstein-Hilbert term in the action. However, the fix is well known [6]: one adds
to LV the Lagrangian density for a hypermultiplet compensator coupled to conformal
supergravity [10],

e−1LH = χH

(1
6 R+ 1

2 D
)
− 1

2 ε
ijΩαβ DµAiαDµAjβ

+ gΩαβ

(
2 g X+X− ε

ijAi
α tβγ t

γ
δ Aj

δ − 1
2 Y

ijAi
α tβγ Aj

γ
)
.

(2.8)

Here, Greek indices α, β, . . . are Sp(1) = SU(2) indices, Ω is the invariant anti-symmetric
tensor for Sp(1), and we have included a coupling to the compensating vector multiplet
which generates local gauge transformations with coupling constant g and generators tαβ .
This will effect the gauging in the Poincaré theory. We also introduced the usual hyper-
Kähler potential in terms of the scalars in the hypermultiplet,

χH ≡
1
2 ε

ijΩαβ Ai
αAj

β . (2.9)

Adding (2.8) to (2.7) shows that the D field now acts as a Lagrange multiplier relating
the combination of vector multiplet scalars X+X− to χH. We thus obtain the following
consistent Lagrangian density,

L2∂ = LV + LH . (2.10)
2To write the result in this form, we make use of the rules for superconformally covariant derivatives

given in appendix A. This makes explicit the presence of the Ricci scalar and the auxiliary scalar field D.
3In section 2.3, we discuss a generalization to complex actions where we allow α, β ∈ C in (2.6).
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The subscript on the left hand side indicates that it contains terms that are at most second
order in derivatives.

To build additional superconformal invariants, we can use other (anti-)chiral multiplets
of weight w = 2. The first is built out of the Weyl multiplet, which in Euclidean signature
is related to a reducible combination of a chiral anti-self-dual tensor multiplet W−ab+ and
an anti-chiral self-dual tensor multiplet W+

ab− [10]. As with the vector multiplet above, one
can square each multiplet to construct scalar (anti-)chiral multiplets of weight w = 2 as
W2
± ≡ (W∓ab±)2, whose lowest and highest components are given by,

A±
∣∣
W2
±

= (T∓ab)
2 ,

C±
∣∣
W2
±

= − 64 (R(M)∓ab
cd)2 − 32 (R(V)∓ab

i
j)2 + 16T ab∓DaD

cTcb
± ,

(2.11)

modulo fermions. The curvatures appearing in these expressions are defined in appendix A.
We now consider the superspace integral,

− 1
64

∫
d4x d4θ E+W2

+ −
1
64

∫
d4x d4θ E−W2

− ≡
∫
d4xLW2 . (2.12)

Unpacking the bosonic terms in the curvature R(M)abcd, we have(
R(M)abcd

)2 =
(
C(ω, e)abcd

)2 + 2
(
R(A)ab

)2 + 6D2 , (2.13)

with
C(ω, e)abcd ≡ R(ω)abcd − 2 δ[a

[cR(ω, e)b]d] + 1
3 δ[a

[c δb]
d]R(ω, e) . (2.14)

Note that this is not (yet) the Weyl tensor, since the curvature R(ω) still contains the
dilatation gauge field bµ through the spin-connection ωµ

ab. This will be remedied when
gauge-fixing to Poincaré supergravity. Staying in the superconformal frame for the moment,
the Weyl-squared density contains the following bosonic terms,

e−1LW2 =
(
C(ω)abcd

)2 + 2
(
R(A)ab

)2 + 6D2 + 1
2
(
R(V)abij

)2
− 1

4 T
ab−DaD

cTcb
+ − 1

4 T
ab+DaD

cTcb
− − 1

512 (T−ab)
2(T+

cd)
2 .

(2.15)

This Lagrangian density contains terms with up to four derivatives. Another invariant of
the same order in derivatives can be built using the so-called kinetic multiplet [13]. Starting
from an arbitrary (anti-)chiral multiplet Φ∓ of weight w 6= 0, one can construct the multi-
plet ln(Φ∓). One then applies four superspace derivatives to this multiplet and constructs
an (anti-)chiral multiplet of weight 2, denoted T± and with highest component [7],

C±
∣∣
T±

=w

[
2
(
R(ω, e)ab

)2 − 2
3
(
R(ω, e)

)2 + 2
(
R(A)ab

)2 + 6D2 +
(
R(V)±ab

i
j
)2

− 1
2 T

ab∓DaD
cTcb
± − 1

512 (T∓ab)
2(T±cd)

2
]
− 1

16 (T±ab)
2A±

∣∣
T±

+DaV a
± ,

(2.16)

again suppressing fermions. Here V a
± is a vector built out of the components of the ln(Φ∓)

multiplet, whose explicit form will not be needed in what follows. We now construct the
superspace integral

− 1
2w

∫
d4x d4θ E+ T+−

1
2w

∫
d4x d4θ E− T− ≡

∫
d4xLT , (2.17)
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where the bosonic terms of the Lagrangian density on the right-hand side are

e−1LT = 2
3
(
R(ω, e)

)2 − 2
(
R(ω, e)ab

)2 − 2
(
R(A)ab

)2 − 6D2 − 1
2
(
R(V)abij

)2 (2.18)

+ 1
4 T

ab−DaD
cTcb

+ + 1
4 T

ab+DaD
cTcb
− + 1

512 (T−ab)
2(T+

cd)
2 − 1

2w Da
(
V a

+ + V a
−
)
.

This form of the Lagrangian density makes it clear that the precise choice of Φ∓ does not
matter in this construction, since the explicit components associated to the multiplet enter
via a total derivative. It is also clear that LT contains terms with up to four derivatives.

An important question is whether the above multiplets exhaust all possible weight 2
(anti-)chiral multiplets we can construct in minimal conformal supergravity. The answer
is of course negative in general. For instance, using the superconformal multiplet calculus,
we can build additional chiral multiplets with weight 2 of the form Φ′+X 2

+, Φ′+W2
+ or Φ′+T+

where Φ′+ has weight zero. In minimal supergravity Φ′+ can be obtained as a composite of
the Weyl, the compensating vector or the T+ multiplets. From the weight zero requirement,
we see that it can take the following form,

Φ′+ =
∑

n1,n2≥0
a(n1, n2)

(
W2

+
X 2

+

)n1 (T+
X 2

+

)n2

, (2.19)

for some (possibly zero) real coefficients a(n1, n2). Here we have assumed that Φ′+ has a
polynomial form in the composite multiplets W2

+X−2
+ and T+X−2

+ . Negative powers would
result in Lagrangians with fields of the Weyl or T+ multiplets in the denominator, which
should not be allowed for dynamical fields. In contrast, the fields of the vector multiplet will
eventually be fixed by a combination of gauge-fixing and equations of motion, so using X+
to compensate for the Weyl weight is a priori allowed. Consider now the Φ′+X 2

+ multiplet.
Its highest component C+

∣∣
Φ′+X 2

+
contains terms of the form

∑
n1,n2≥0

a(n1, n2)
[

(1− n1 − n2)
(
T−ab
)2n1 (A+|T+

)n2 (X+)−2(n1+n2)C+
∣∣
X 2

+

+ n1
(
T−ab
)2(n1−1) (

A+|T+

)n2 (X+)−2(n1+n2−1)C+
∣∣
W2

+

+ n2
(
T−ab
)2n1 (A+|T+

)n2−1 (X+)−2(n1+n2−1)C+
∣∣
T+

]
.

(2.20)

Note that when (n1, n2) = (0, 0) we simply recover C+
∣∣
X 2

+
up to an overall constant a(0, 0),

while for (n1, n2) = (1, 0) and (n1, n2) = (0, 1) we recover C+
∣∣
W2

+
and C+

∣∣
T+

, respectively
(also up to overall constants a(1, 0) and a(0, 1)). For all other values of (n1, n2), we get non-
zero powers of (T−ab)2 or A+

∣∣
T+

multiplying the highest components of the X 2
+,W2

+ and T+
multiplets. The latter contain two or four derivatives, as discussed previously. Anticipating
slightly the formulation in the Poincaré frame detailed in section 2.2, the T -tensor will
eventually be proportional to the graviphoton field strength and thus also increases the
order of derivatives. Finally, the lowest component of the T+ multiplet is given in terms
of the highest component of the ln(Φ−) multiplet, and therefore contains a term of the
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form C−
∣∣
Φ−(A−

∣∣
Φ−)−1. For any choice of Φ−, it will involve two or more derivatives. By a

simple counting, we thus see that the terms in (2.20) are at least of order 2n1 + 2n2 + 2 in
derivatives. For (n1, n2) ≥ (1, 1), this involves at least six derivatives. The same arguments
apply to the other bosonic piece (T−ab)2A+

∣∣
Φ′+X 2

+
of the chiral density formula (2.2). The

situation becomes even more dire when considering the combinations Φ′+W2
+ or Φ′+ T+,

where we obtain six-derivative terms already for (n1, n2) 6= (0, 0). A way out would be to
build Φ′+ out of ratios of vector multiplets, which would lead to ratios in (2.20) without
derivatives. However, this is not possible in minimal supergravity since we have a single
compensating vector multiplet which can only lead to trivial (constant) ratios.

Even at the four-derivative order, there are additional superconformal invariants be-
sides the Weyl-squared and T ones. They are built from tensor multiplets [14–16] and
contain terms quadratic in the Ricci scalar R. Although we have not considered tensor
multiplets so far, we already mentioned that there exists an alternative formulation of
Poincaré gauged supergravity that makes use of a tensor multiplet compensator instead of
the hypermultiplet introduced above [11]. We discuss this formulation and the associated
four-derivative invariant in more details in appendix B. There, we show that introduc-
ing higher-derivative terms for the compensating tensor multiplet in the superconformal
frame leads to pathologies in the Poincaré frame.4 We will therefore not consider such R2

invariants in what follows.
In conclusion, the most general four-derivative Lagrangian density that we can write

using the minimal conformal supergravity field content under consideration is given by a
linear combination of (2.10), (2.15) and (2.18),

LHD = L2∂ + c1 LW2 + c2 LT , (2.21)

where c1 and c2 are arbitrary real constants. We will refer to (2.21) as the superconformal
higher-derivative (SCHD) Lagrangian, to highlight the fact that it involves all the bosonic
fields of conformal supergravity. We will soon discuss how the theory based on the SCHD
Lagrangian is gauge-equivalent to a higher-derivative Poincaré theory, but before doing
so we point out that there is a useful rewriting of (2.21) based on the following identity,
see [7]:

LW2 + LT = LGB , (2.22)
where we define

e−1 LGB ≡ C(ω, e)abcdC(ω, e)abcd − 2R(ω, e)abR(ω, e)ab + 2
3 R(ω, e)2 . (2.23)

In the Poincaré frame where bµ = 0, this reduces to the familiar Gauss-Bonnet density.
Using (2.22), we can eliminate the density (2.18) and write the SCHD Lagrangian as

LHD = L2∂ + (c1 − c2)LW2 + c2 LGB . (2.24)

This form of the SCHD Lagrangian will be particularly useful in the Poincaré frame, since
it is known that the Gauss-Bonnet density is topological in four dimensions and therefore
will not affect the equations of motion (EoMs) in the gauge-fixed theory.

4There might exist a mechanism to fix these pathologies, but finding it or ruling it out is outside the
scope of this paper.

– 10 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
3

2.2 Poincaré action

We now recall how the SCHD Lagrangian (2.24) reduces to the Poincaré supergravity
Lagrangian upon gauge-fixing the extra superconformal symmetries and eliminating the
superconformal fields by putting them on-shell. We begin by fixing the local conformal
boost and SU(2) R-symmetry transformations by means of the

K-gauge : bµ = 0 , (2.25)

and the
V-gauge : Ai

α = χ
1/2
H δi

α . (2.26)

We further gauge-fix the local dilatation symmetry by imposing the

D-gauge : χH = 2κ−2 , where κ2 ≡ 8πGN , (2.27)

and the local SO(1, 1) R-symmetry using the

A-gauge : X+ = X− ≡ X . (2.28)

In this gauge, the equation of motion (EoM) for the auxiliary triplet Yij derived from the
higher-derivative Lagrangian LHD fixes

Yij = g

κ2 εik t
k
j , (2.29)

and the EoM for the real scalar field X is given by,

�X +X

(1
6 R−

2g2

κ2 −D +AµAµ

)
+ 1

16

(
Fab −

1
4 X Tab

)
T ab = 0 . (2.30)

To eliminate the remaining superconformal fields, we now turn to the EoMs for the R-
symmetry connections Vµij and Aµ, and for the (anti-)self-dual projections of the T -tensor.
From (2.24) they are, respectively,

0 = κ−2 (Vνij + 2 gWν t
i
j
)

+ 4 (c2 − c1)DµR(V)µνij ,

0 = X2Aν + (c2 − c1)
(
∇µR(A)µν + 1

16 T
+
ν
ρDµT−µρ −

1
16 T

−
ν
ρDµT+

µρ

)
, (2.31)

0 = X

(
F±ab −

1
4 X T±ab

)
+ (c2 − c1)

(
Πef
± ab

[
DeDcT∓cf + 1

2 T
∓c
eRcf

]
− 1

128 T
±
ab (T∓cd)

2
)
,

where Πab
± cd ≡ 1

2
(
δa[cδ

b
d]±

1
2ε
ab
cd

)
. In contrast to (2.29) and (2.30), these equations explicitly

depend on the higher-derivative couplings. Moreover, the above fields are no longer proper
auxiliary fields from the perspective of the SCHD Lagrangian due to the curvature terms
in LW2 . Note that LGB does not affect the EoMs, in accordance with the topological nature
of the Gauss-Bonnet density in four dimensions. The last field to eliminate is the Weyl
multiplet scalar D, whose EoM is

4X2 − κ−2 + 12 (c2 − c1)D = 0 . (2.32)
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This shows that D is a Lagrange multiplier in the two-derivative theory, and a proper
auxiliary field in the higher-derivative theory.

Solving the EoMs (2.30), (2.31), and (2.32) in full generality is a complicated task.
We can, however, make the following crucial observation: in the two-derivative theory, i.e.
when c1 = c2 = 0, the solutions are simply given by

X = 1
2κ , D = 1

6 R−
2g2

κ2 , Vµij = −2 gWµ t
i
j , Aµ = 0 , Tab = 8κFab . (2.33)

Using this in (2.10) gives the two-derivative piece of the Poincaré Lagrangian as expected,

e−1L2∂ = 1
16πGN

(
R− 6 g2κ−2

)
+ 1

2 FµνF
µν . (2.34)

The two-derivative Einstein equations derived from this Lagrangian density are

Rµν −
1
2 gµν R+ 3 g2κ−2 gµν = 4κ2 F−µρ F

+ρ
ν , (2.35)

and the Maxwell equation and Bianchi identity for the graviphoton amount to

∇µF+
µν = ∇µF−µν = 0 . (2.36)

It is now straightforward to check that (2.33) also solves the higher-derivative EoMs (2.31)
and (2.32) for arbitrary non-zero c1 and c2, by making use of (2.35) and (2.36). In other
words, it is consistent to eliminate all extra superconformal fields using their two-derivative
on-shell values, even in the presence of the higher-derivative couplings!

Following this procedure for the SCHD density given in (2.24) yields the bosonic La-
grangian density for the physical metric and graviphoton fields,5

e−1LPHD = − 1
16πGN

(
R+ 6L−2 − 1

4 FµνF
µν
)

+ (c1 − c2)
[(
Cabcd

)2 − L−2 Fab F
ab + 1

2
(
F+
ab

)2 (
F−ab
)2

− 4F−abR
ac F+

c
b + 8

(
∇aF−ab

) (
∇cF+

c
b) ]

+ c2
[(
Rabcd

)2 − 4RabRab +R2
]
,

(2.37)

where L ≡ g−1κ and Cabcd is the Weyl tensor. We will refer to (2.37) as the Poincaré higher-
derivative (PHD) Lagrangian, to emphasize that it is obtained from the SCHD Lagrangian
by fixing the superconformal gauges (2.25), (2.26), (2.27) and (2.28), and by consistently
eliminating the superconformal fields using their two-derivative on-shell values. In fact,
we can go even further: the four-derivative corrections to the Einstein equations derived
from (2.37) read

Eµν = Tµν , (2.38)
5Here and below, we switch to a more usual convention where the AdS vacuum of the theory has negative

constant curvature. This is ensured by the redefinition Rabcd → −Rabcd. We also canonically normalize the
graviphoton term by sending Fab → (2κ)−1Fab.
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with

Eµν =− 4
(
RµρRν

ρ − 1
4 R

ρσRρσ gµν

)
+ 4

3 R
(
Rµν −

1
4 Rgµν

)
− 2

(
�Rµν + 1

2 gµν �R− 4∇ρ∇(µRν)
ρ
)

+ 4
3

(
gµν �R−∇µ∇νR

)
.

Tµν = 1
4 gµν (F+)2(F−)2 + F+

µρF
+
ν
ρ(F−)2 + F−µρF

−
ν
ρ(F+)2 − 4L−2 F−µρF

+
ν
ρ

+ 4F−µ ρRρσF
+
ν
σ − 2 gµν F−ρσRρλF+

λ
σ − 8Rρ(µF

−
ν)σF

+ρσ

+ 2�
(
F−µ

ρF+
νρ

)
− 8∇ρ∇(µ

(
F−ν)

σF+
σρ

)
.

(2.39)

It is a (slightly) tedious but straightforward exercise to check that the two-derivative solu-
tions for the metric and graviphoton also solve (2.38). We can proceed analogously with
the higher-derivative generalization of the Maxwell equation. The four-derivative equation
of motion for the Maxwell field reads

∇µ[2L−2Fµν − F+
µν(F−ρσ)2 − F−µν(F+

ρσ)2 + 3RµρF ρν −RνρF ρµ −RFµν ] = 0 . (2.40)

To simplify this equation we can take the two-derivative Einstein equation, multiply it with
F and find the relation

RµρF
ρ
ν = −3L−2Fµν + 1

4F
+
µν(F−ρσ)2 + 1

4F
−
µν(F+

ρσ)2 . (2.41)

Using this relation in (2.40) we find that the four-derivative Maxwell equation reduces to
the two-derivative Maxwell equation, i.e. ∇µFµν = 0. We have therefore demonstrated
that there exists a consistent subset of solutions to the higher-derivative EoMs derived
from (2.24), and that this subset simply consists of the two-derivative on-shell values for
all physical and auxiliary fields in the theory. We note that such a phenomenon has also
been exhibited in 4d N = 2 minimal ungauged supergravity [17, 18] as well as in the
non-supersymmetric context, see for instance [19].

We now come to an analysis of the preserved supersymmetries in the Poincaré frame.
For this, we need one more (fermionic) gauge-fixing obtained as the supersymmetry varia-
tion of the D-gauge (2.27). This fixes the

S-gauge : ζα = 0 . (2.42)

The supersymmetry variation of the S-gauge then fixes the parameter of the conformal
S-supersymmetry ηi in terms of the parameter of the Q-supersymmetry εi as

ηi = 2 g X tij ε
j . (2.43)

We can now write down the variation of the gravitino in the Poincaré frame:

δψµ
i = 2∇µεi − L−1Wµ t

i
j ε
j + 1

4iFab γabγµεi − iL−1 tij γµε
j , (2.44)
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4-der. solutions

2-der.
solutions

BPS

BPS
(?)

Figure 1. Schematic diagram of the spectrum of solutions of minimal supergravity with arbitrary
four-derivative terms. The subset of two-derivative solutions and their supersymmetric properties
remain unchanged within the set of all possible four-derivative solutions.

where ∇µ contains the spin-connection, and we have used the values (2.33) for the super-
conformal fields. This is precisely the two-derivative gravitino variation in minimal gauged
supergravity [6]. Thus, if the two-derivative solution (gµν , Fµν) is supersymmetric, so is
the four-derivative solution, and it preserves the same amount of supersymmetry. For
convenience we present a pictorial summary of the discussion in this section in figure 1.
As a final remark on this construction, observe that all the steps leading to (2.37) can be
repeated after setting the gauge coupling g to zero, which amounts to sending the cosmo-
logical constant L−1 to zero. In this limit, we obtain a four-derivative action for ungauged
Poincaré supergravity, suitable to study e.g. asymptotically flat supergravity solutions.

2.2.1 Comments on Lorentzian signature

The construction of the previous sections made use of Euclidean conformal supergravity. Of
course, an analogous construction goes through in Lorentzian signature. We work in mostly
plus Lorentzian signature and discuss the minor differences present in the construction
when changing the signature from Euclidean to Lorentzian below. The starting point is the
Lorentzian version of the chiral density formula (2.2) for the Lorentzian vector multiplet X ,

1
2

∫
d4x d4θ E X 2 + h.c. =

∫
d4xL(L)

V . (2.45)

Note that in Lorentzian the Hermitian conjugate of a chiral multiplet is an anti-chiral
multiplet. We add to this the Lagrangian density for the hypermultiplet compensator in
Lorentzian signature to obtain the two-derivative Lorentizan Lagrangian density

L(L)
2∂ = L(L)

V + L(L)
H . (2.46)

This can be gauge-fixed just as before to obtain the Poincaré action

e−1L(L)
2∂ = 1

16πGN

(
R+ 6L−2 − 1

4 FµνF
µν
)
, (2.47)

where now the D-gauge is fixed by imposing χH = −2κ−2, and we have implemented the
redefinitions mentioned in footnote 5. Notice that the change of signature is reflected in
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an overall sign for the two-derivative action, see the two-derivative terms in (2.37). The
same is true for the four-derivative invariants, and the end result for the PHD Lagrangian
in Lorentzian signature is simply

L(L)
PHD = −LPHD . (2.48)

This simple relation allows us to change signatures in the action at will. For the fermions,
things are a bit more subtle due to the change of reality conditions in Euclidean and
Lorentzian signatures, and we refer to [10] for a more detailed discussion on this point.
Here we simply record the Lorentzian gravitino variation in the Poincaré frame,

δψµ
i = 2∇µεi − L−1Wµ t

i
j ε
j − 1

4 Fab γ
abγµε

ijεj + L−1 tij ε
jk γµεk , (2.49)

where the position of the SU(2)R index on the spinors encodes their chirality [6].

2.3 Reality conditions and topological terms

As alluded to in footnote 3, it is possible to construct an action more general than the
PHD action (2.37) with the technology presented so far, at the expense of relaxing reality
condition requirements. In view of holographic applications, we are interested in evaluating
the higher-derivative minimal gauged supergravity action on-shell for a variety of two-
derivative solutions. According to the AdS/CFT correspondence these Euclidean on-shell
actions are dual to the (logarithm of) partition functions for various three-dimensional
theories on curved backgrounds. The latter can in principle be complex quantities, as
emphasized in e.g. [20, 21], and so it is also natural to consider complex actions in Euclidean
signature in order to compare to the SCFT partition functions.

To this end we consider the Lagrangian in (2.6) and now take α, β ∈ C. Having relaxed
the reality condition of the action, it seems that there is a priori no relation between the
coefficients α and β. Note however that the (anti-)chiral densities (2.5) involve the (anti-)
self-dual parts of the field strength and the T -tensor in an asymmetric manner. In order
to build an action consistent with the Sp(2,R) electric-magnetic duality of the theory [10],
we thus restrict to β = ᾱ in what follows.6 This leads to the following complex Lagrangian
for Euclidean vector multiplets coupled to the Weyl multiplet,

LV
C = Re(α)

(
LV+ + LV−

)
+ i Im(α)

(
LV+ − LV−

)
. (2.50)

The real part of α can be absorbed by simple field redefinitions of the vector multiplets X±
and the first bracket on the r.h.s. of (2.50) is just the Lagrangian LV discussed in section 2.1.
Using (2.5) one finds that the second bracket is given by

e−1(LV+ − LV−
)

= 1
2 Fab F̃

ab , with F̃ab = 1
2 εabcd F

cd . (2.51)

Thus, the complex Euclidean vector multiplet Lagrangian involves a topological term,

LV
C = LV + i θ e Fab F̃ ab , (2.52)

where we defined the real number θ ≡ Im(α)/(2Re(α)).
6We do not dwell here on the subtleties related to electric-magnetic duality on spaces with a boundary,

like AdS4.
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An analogous construction involves the Weyl-squared and T multiplets. In particular,
using (2.11) and (2.16), one finds

e−1(LW2
+
− LW2

−

)
= Cabcd C̃

abcd + 2R(A)ab R̃(A)ab

+ 1
2 R(V)abij R̃(V)abij + 1

4 T
−
ab R̃(A)ac T+

c
b ,

e−1(LT+ − LT−
)

= 1
2 R(V)abij R̃(V)abij −

1
4 T
−
ab R̃(A)ac T+

c
b + 1

2wDa(V
a

+ − V a
−) .

(2.53)

These densities involve a gravitational topological term, as well as topological terms for
the auxiliary SU(2)R and SO(1, 1)R gauge fields.

Due to their topological nature, none of the above terms affect the EoMs for the
superconformal fields. We can therefore proceed to the Poincaré frame just as in section 2.2.
The end result is the following complex Euclidean four-derivative Lagrangian density,

e−1LPHDC = − 1
16πGN

(
R+ 6L−2 − 1

4 Fab F
ab − i θ2 Fab F̃

ab
)

+ (c1 + c2) e−1LW2 + c2 e
−1LGB

+ i c3Cabcd C̃
abcd + 2i (c3 + c4)L−2 Fab F̃

ab ,

(2.54)

where the real PHD Lagrangian (2.37) has been supplemented by two new topological
terms, with imaginary coefficients parametrized by the real constants θ, c3 and c4. Note
that the new gravitational term is the Pontryagin density Cabcd C̃abcd = Rabcd R̃

abcd since
the Weyl tensor is traceless. We will not study this complexified four-derivative Lagrangian
further in this work. It will be interesting to understand how it can be used in a holographic
setting to calculate the complexified partition function of the dual 3d SCFT on compact
Euclidean manifolds, see [22] for a recent discussion on this in the two-derivative context.

3 Solutions and the on-shell action

The upshot of the discussion so far is that the full bosonic four-derivative action of the
minimal supergravity theory can be obtained by integrating the Lagrangian density LPHD
in (2.37). The action then reads

SHD = S2∂ + (c1 − c2)SW2 + c2 SGB , (3.1)

for some real constants c1 and c2, where the two-derivative action S2∂ is the familiar
Einstein-Maxwell action

S2∂ = − 1
16πGN

∫
d4x
√
g

(
R− 1

4FµνF
µν + 6

L2

)
, (3.2)

the four-derivative action SW2 is given by

SW2 =
∫
d4x
√
g

(
CµνρσC

µνρσ − 1
L2FµνF

µν − 1
8 (FµνFµν)2 + 1

2FµνF
νρFρσF

σµ

−2R ν
µ FµρFνρ + 1

2RFµνF
µν + 2(∇µFµρ)(∇νF νρ)

)
,

(3.3)
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and the action SGB is simply the integrated Gauss-Bonnet density

SGB =
∫
d4x
√
g
(
RµνρσR

µνρσ − 4RµνRµν +R2
)
. (3.4)

As already established in section 2.2, any solution to the two-derivative equations of motion
derived from S2∂ is also a solution to the equations of motion for the full higher-derivative
action SHD. Our goal here is to evaluate the action SHD on-shell for arbitrary two-derivative
solutions. In the following, we will use S = (gµν ,Wµ) to denote any two-derivative solution
of interest with metric gµν and graviphoton Wµ. We will consider general asymptotically
locally AdS4 solutions and will not assume anything about the amount of supersymmetry
they preserve, i.e. our on-shell action discussion applies also for non-supersymmetric solu-
tions.

3.1 Holographic renormalization

We first consider the two-derivative action S2∂ in (3.2) and note that it is generically
divergent when evaluated on an asymptotically AdS4 solution S. It is well known how
to regulate this divergence, see [23] for a review. We have to put a boundary cut-off
surface on the spacetime at some finite radial coordinate, add the appropriate boundary
counterterms to the action, and then send the radial coordinate to infinity. In particular,
the counterterms needed to regularize the two-derivative action are the usual Gibbons-
Hawking, curvature, and cosmological constant terms given by the boundary action, see
for instance [24],

SCT
2∂ = 1

8πGN

∫
d3x
√
h

(
−K + L

2R+ 2
L

)
, (3.5)

where hab is the induced metric on the conformal boundary, Kab is the extrinsic curvature,
and Rabcd is the Riemann tensor of this induced metric. The Gibbons-Hawking term is
required not only to remove divergences in the Einstein-Hilbert action but also to have a
well-posed variational principle for the action. The second term in (3.5) is associated with
the curvature of the boundary, and the third term is simply the standard cosmological
constant term. All three pieces in the counterterm action (3.5) are in general divergent,
but they can also yield finite contributions to the action in the limit where the radial cut-off
goes to infinity.7

The regularized two-derivative bosonic on-shell action is then simply the sum of the
two-derivative action and the counterterm action, i.e. I(2∂)

on-shell = S2∂ +SCT
2∂ . We will denote

this two-derivative on-shell action by

I
(2∂)
on-shell ≡

πL2

2GN
F(S) , (3.6)

where F is a quantity that depends on the two-derivative solution S.
The Gauss-Bonnet term (3.4) is similarly divergent, and it can be regularized via the

counterterm
SCT
GB = 4

∫
d3x
√
h
(
J − 2GabKab

)
, (3.7)

7An alternate way of regularizing the two-derivative action is to use the Gauss-Bonnet density as a
counterterm, as discussed in [25].
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where J is the trace of the tensor Jab, defined by

Jab = 1
3
(
2KKacK

c
b +KabKcdK

cd − 2KacK
cdKdb −K2Kab

)
, (3.8)

and Gab = Rab− 1
2habR is the boundary Einstein tensor. This counterterm is also sometimes

referred to as the Gibbons-Hawking-Myers counterterm, as it is precisely the boundary
term needed to make the variational problem associated with the Gauss-Bonnet action well
posed [26]. In contrast to the two-derivative counterterm, where extra counterterms beyond
the Gibbons-Hawking term are required by holographic renormalization, the Gibbons-
Hawking-Myers term in (3.7) is the full boundary counterterm.

The regularized Gauss-Bonnet on-shell action is then given by I(GB)
on-shell = SGB + SCT

GB.
The Gauss-Bonnet theorem then immediately tells us that this on-shell action is given
entirely in terms of topological data, i.e.

I
(GB)
on-shell = 32π2χ(S) , (3.9)

where χ(S) is the Euler characteristic of the full spacetime.
We now move on to consider evaluating the SW2 action on-shell. As a first step, we

choose judiciously to rewrite the action (3.3) by eliminating all instances of the Weyl tensor
with the Gauss-Bonnet density instead, which leaves us with

SW2 = SGB +
∫
d4x
√
g

(
2RµνRµν −

2
3R

2 − 1
L2FµνF

µν − 1
8 (FµνFµν)2

+1
2FµνF

νρFρσF
σµ − 2R ν

µ FµρFνρ + 1
2RFµνF

µν + 2(∇µFµρ)(∇νF νρ)
)
.

(3.10)

We are interested in evaluating SW2 on solutions to the two-derivative equations of motion,
which allows us to eliminate all instances of the Ricci tensor Rµν , the Ricci scalar R, as well
as any term with derivatives acting on the field strength tensor, e.g. ∇µFµν . If we keep the
Gauss-Bonnet contribution separated out explicitly, then we find by explicit computation
that all terms that are quartic in the field strength cancel, and thus the on-shell value of
SW2 , which we denote as IW2 , can be written as

IW2 = IGB +
∫
d4x
√
g

(
− 24
L4 −

1
L2FµνF

µν
)
, (3.11)

where IGB is the on-shell value of SGB in (3.4).
Finally, we note that the two-derivative equations of motion set R = − 12

L2 , which allows
us to rewrite the result (3.11) as

IW2 = IGB + 4
L2

∫
d4x
√
g

(
R− 1

4FµνF
µν + 6

L2

)
= IGB −

64πGN
L2 I2∂ . (3.12)

That is, by a careful reorganization of terms, we find that the W2 action in (3.3) co-
incides on-shell for any two-derivative solution S with a particular combination of the
two-derivative and Gauss-Bonnet actions. This is a highly non-trivial and somewhat un-
expected consequence of supersymmetry, as it relies heavily on the precise combination
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of four-derivative terms that appear in IW2 in order to arrive at such a simple final re-
sult. Moreover, we stress that simply adding the Weyl invariant CµνρσCµνρσ to a general
gravitational action introduces the Bach tensor into the equations of motion, which then
generically become difficult to manage. The supersymmetric completion of the Weyl in-
variant given in (3.3), however, appears to make these difficulties manageable as well as
yielding a very simple final on-shell result.

However, we are not yet done; the two-derivative action and the Gauss-Bonnet action
both can have divergences when evaluated on-shell, and thus those divergences can in
principle be present in our on-shell W2 action (3.12). However, since we know how to
apply holographic renormalization to remove these divergences in these actions, this means
that any divergences that arise in the W2 action can be immediately cancelled by using
a combination of the boundary counterterms for the two-derivative and Gauss-Bonnet
actions, (3.5) and (3.7), respectively. That is, if we define

SCT
W2 ≡ SCT

GB −
64πGN
L2 SCT

2∂ , (3.13)

as a boundary counterterm action, then the full W2 on-shell action I(W2)
on-shell = SW2 + SCT

W2

is finite in the limit where the boundary cut-off surface is pushed off to infinity. Using the
relations (3.12) and (3.13), we then find that this on-shell action takes the simple form:

I
(W2)
on-shell = I

(GB)
on-shell −

64πGN
L2 I

(2∂)
on-shell = 32π2 (χ(S)−F(S)) . (3.14)

The full on-shell action for the higher-derivative theory at hand is therefore given by

I
(HD)
on-shell =

(
1 + 64πGN

L2 (c2 − c1)
)
πL2

2GN
F(S) + 32π2c1χ(S) . (3.15)

This final result for the on-shell action is remarkably simple; it can be obtained purely by
knowing F(S), which is proportional to the two-derivative on-shell action, as well as the
Euler characteristic χ(S). A priori I(HD)

on-shell could have had much more intricate dependence
on the solution S, due to the presence of the four-derivative terms in the action, but instead
the only new piece of data that needs to be computed in order to evaluate I(HD)

on-shell is the
Euler characteristic of the metric.

A crucial point in our analysis is that we have utilized 4d N = 2 supersymmetry
only when constructing the action in (3.1) from conformal supergravity. We have not
assumed anything about the solution S to the two-derivative theory that we are looking
at, and in particular we have made no assumptions that the solution preserves any of the
supersymmetries of the theory. Thus, our result (3.15) applies for both BPS and non-BPS
solutions. It is only supersymmetry at the level of the action that is responsible for the
simplifications we find. The constants c1 and c2 in the action (3.1) should be determined by
embedding the 4d N = 2 supergravity theory in string or M-theory where it should arise as
a consistent truncation from 10d or 11d supergravity. An alternative way to determine the
precise form of the on-shell action in (3.15) is to employ holography and supersymmetric
localization results in the dual 3d N = 2 SCFT. It was shown in [8] and will be discussed
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further in section 6 below how this can be done for SCFTs arising from M2-branes. In [9]
the same approach was generalized to 3d theories of class R obtained form wrapped M5-
branes. Once the dimensionless constants (L2/GN , c1, c2) have been determined by one of
the methods discussed above then we can use the result for the on-shell action in (3.15) to
find the leading and subleading on-shell action for all non-supersymmetric solutions of the
two-derivative theory, including for instance the 4d AdS-Schwarzschild black hole

It is worth noting that the on-shell action analysis above required the use of the
counterterm (3.13), which can be written explicitly as

SCT
W2 =

∫
d3x
√
h

(
4J − 8GabKab + 8

L2K −
4
L
R− 16

L3

)
. (3.16)

To the best of our knowledge this counterterm has not appeared in the literature before
and deserves some further scrutiny. Interestingly on all of the explicit solutions we have
looked at, the counterterm action SCT

W2 yields no contribution to the on-shell action in the
limit where the radial cut-off is sent to infinity. Despite this fact, it is important to always
include the SCT

W2 when performing general holographic renormalization calculations using
our four-derivative supergravity model. For instance, in calculations of general n-point
functions or when studying black hole thermodynamics this counterterm will prove crucial
in obtaining the correct results, as we will see explicitly in section 5.2.

3.2 Examples

To illustrate how the result for the on-shell action in (3.15) works for explicit solutions
we now present several well-known examples of regular Euclidean solutions of 4d N = 2
minimal supergravity and evaluate the quantities F and χ which enter in (3.15). Motivated
by the fact that holography relates these results for the on-shell action to the free energy
of the dual SCFT on various curved manifolds we focus on supersymmetric solutions in
the discussion below. This will allow us to connect our supergravity calculations with
supersymmetric localization results as discussed in section 6.

3.2.1 Euclidean AdS4

The simplest solution of the equations of motion of the two-derivative theory is given by
the Euclidean AdS4 background with an S3 boundary. The metric for this solution can be
written as

ds2 = L2

L2 + r2dr
2 + r2dΩ2

3 , (3.17)

where dΩ2
3 is the metric on the round unit radius S3. The gauge field for this solution

vanishes, i.e. Wµ = 0. One can now plug this metric and gauge field into the regularized
on-shell actions in (3.6) and (3.9) to find

F = 1 , χ = 1 . (3.18)

Note that the boundary topology of the background is important. If we had chosen Eu-
clidean AdS4 with S1 × S2 boundary, i.e. thermal AdS4, the Euler characteristic χ would
be different, namely χ = 0, which in turn will modify the four-derivative corrections to the
on-shell action in (3.15).
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3.2.2 Euclidean Romans solution

A simple solution of the two-derivative equations of motion is given by a supersymmetric
Euclidean version of the dyonic Reissner-Nordström black hole. We refer to this background
as the Euclidean Romans solution, see for instance [3, 27, 28]. The solution takes the
explicit form

ds2 = U(r)dτ2 + dr2

U(r) + r2ds2
Σg
,

U(r) =
(
r

L
+ κL

2r

)2
− Q2

4r2 ,

F = ±κLVΣg + Q

r2dτ ∧ dr .

(3.19)

With ds2
Σg

we denote the metric on a constant curvature Riemann surface of genus g with
normalization chosen such that the curvature κ is given by κ = 1, κ = 0, and κ = −1
for genus g = 0, g = 1, and g > 1, respectively.8 Note that supersymmetry requires the
magnetic flux P across the Riemann surface to have magnitude |P | = |κ|L. The electric
charge Q on the other hand is a free parameter and is not restricted by supersymmetry. We
denote the volume form on the Riemann surface by VΣg , and define ωΣg to be the one-form
potential for this volume form such that dωΣg = VΣg . Integrating the volume form yields:

Vol(Σg) =
∫

Σg

VΣg = 2πη , η ≡
{

2|g− 1| g 6= 1
1 g = 1

. (3.20)

The metric function U(r) has two zeroes r±, given by

r± = L

√
−κ2 ±

|Q|
2L . (3.21)

We impose that the outer radius r+ is real in order for the spacetime to cap off at a real
value of the coordinate r. Additionally, we need to ensure that r+ > 0 to avoid a naked
singularity where the Riemann surface shrinks down to zero size. We therefore have to
demand that

|Q| > κL . (3.22)

This imposes the constraint |Q| > L for g = 0, |Q| > 0 for g = 1, while imposing no
constraint for a higher-genus Riemann surface. Thus, for κ = 0, 1, we cannot take the
Q→ 0 limit if we insist on having a non-singular and real metric.

Assuming that the above conditions are satisfied, then as r → r+, the metric becomes
locally R2 × Σg. The R2 is written in polar coordinates (r, τ) where the τ coordinate has
periodicity

β = 2πLr+
|Q|

= 2πL2

|Q|

√
−κ2 + |Q|2L . (3.23)

8Generalization of this solution to arbitrary, not constant curvature, metrics on the Riemann surface
were constructed in [29].
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To compute the on-shell action of this solution we integrate the radial coordinate from
r = r+ to a cut-off at r = rb, and the time coordinate from τ = 0 to τ = β. Using the
counterterms described above and taking the cutoff to infinity we find

F = 1− g , χ = 2(1− g) . (3.24)

All dependence on the electric charge Q drops out of the final on-shell action, and so once
we fix the genus g of the Riemann surface we have a one-parameter family of solutions
(labelled by the charge Q) all with the same on-shell action. This independence of the
on-shell action on Q was discussed in detail in [28, 30] and here we have shown how the
result extends in the presence of higher derivative corrections. We note that using the
relation (3.23) the independence of the on-shell action on Q implies that it is independent
of the periodicity of the Euclidean time coordinate τ .

The independence of the four-derivative on-shell action on β has a simple interpretation
in the dual 3d CFT. The on-shell action of the Euclidean Romans solutions is dual to the
topologically twisted index of a 3d N = 2 SCFT on S1 × Σg, see for instance [31]. This
index takes the schematic form

Z = Tr (−1)F e−βH , (3.25)

where F is the fermion number, H is the topologically twisted Hamiltonian and β is the
size of the S1. Supersymmetry guarantees that only states with zero energy contribute
to this index, and so the topologically twisted index is independent of β. Therefore the
β-independence of the bulk on-shell action at the four-derivative level is consistent with
the dual topologically twisted index.

There is a family of explicit supersymmetric solutions that generalizes the Euclidean
Romans solution discussed above. They are referred to as AdS-Taub-Bolt solutions and
were discussed in [32], see also [33]. Instead of the S1 × Σg boundary topology of the Eu-
clidean Romans solution these more general backgrounds have a boundary three-manifold
Mg,p which is smooth and has topology O(−p)→ Σg. The explicit form of this solution as
well as some details on the calculation of its on-shell action are discussed in [9]. The end
result is that the quantities (F , χ) take the simple form

F = 4(1− g)∓ p
4 , χ = 2(1− g) . (3.26)

One can simply plug this result in (3.15) to obtain the full four-derivative on-shell action of
this solution. The holographic interpretation of this on-shell action is in terms of the free
energy of the 3d N = 2 SCFT placed on the supersymmetric background studied in [34].

3.2.3 U(1) × U(1) squashed sphere

We now move on to a class of solutions for which the boundary has spherical topology
with a squashed metric. We start by discussing an Euclidean 1

4 -BPS solution which can
be obtained from the Plebanski-Demianski solutions of the Einstein-Maxwell theory, [35].
This solution is holographically dual to a 3d SCFT placed on the squashed S3 background
with U(1)×U(1) invariance studied in [36].
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The Euclidean supersymmetric gravity solution of interest is studied in some detail
in [37], see also [33], and can be written as

ds2 = f1(x, y)2dx2 + f2(x, y)2dy2 + (dΨ + y2dΦ)2

f1(x, y)2 + (dΨ + x2dΦ)2

f2(x, y)2 ,

W = s2 − 1
L(x+ y)(dΨ− xydΦ) ,

(3.27)

where we have defined the metric functions f1 and f2 by

f1(x, y)2 = L2 y2 − x2

(x2 − 1)(s2 − x2) , f2(x, y)2 = L2 y2 − x2

(y2 − 1)(y2 − s2) . (3.28)

This form of the solution makes the U(1) × U(1) isometry manifest, but it is somewhat
inconvenient to use it to compute the on-shell action since the coordinate ranges of Φ and
Ψ are dependent on one another. To ameliorate this, we make the change of variables

Ψ = L2
(
sφ2 − φ1
s2 − 1

)
, Φ = L2

(
sφ1 − φ2
s(s2 − 1)

)
, (3.29)

such that the solution takes the form

ds2 = f1(x, y)2dx2 + f2(x, y)2dy2 + L2
(

(x2 − 1)(y2 − 1)
s2 − 1

)
dφ2

1

+ L2
(

(s2 − x2)(y2 − s2)
s2(s2 − 1)

)
dφ2

2 ,

W = L

x+ y

(
(s2 + xy)dφ2 − (1 + xy)dφ1

)
.

(3.30)

The solution depends on a single real parameter s ≥ 1. In the limit s→ 1 the gauge field
vanishes and we recover the Euclidean AdS4 solution. The coordinate ranges are:

x ∈ [1, s] , y ∈ [s,∞) , φ1 ∈ [0, 2π) , φ2 ∈ [0, 2π) . (3.31)

The conformal boundary is approached as y → ∞, and thus in order to evaluate the on-
shell action we introduce a cut-off on the y range of integration at a finite value yb. Using
the counterterms discussed above and evaluating explicitly this on-shell action we find

F = (s+ 1)2

4s , χ = 1 . (3.32)

To obtain the full result for the on-shell action these values should be plugged in the general
formula (3.15).

3.2.4 SU(2) × U(1) squashed sphere

There is another supersymmetric Euclidean solution with a squashed S3 conformal bound-
ary with SU(2)×U(1) isometry. It is holographically dual to a 3d N = 2 SCFT placed on
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the supersymmetric background studied in [38]. The Euclidean supergravity solution can
be found in [39], see also [33] for its Lorentzian counterpart, and in our conventions reads

ds2 = r2 − s2

Ω(r) dr2 + (r2 − s2)(σ2
1 + σ2

2) + 4s2Ω(r)
r2 − s2 σ

2
3 ,

W = 2s
(
r − s
r + s

)√4s2

L2 − 1σ3 ,

(3.33)

where σi denote the left-invariant Maurer-Cartan one-forms of SU(2), given by

σ1 = sin θ cosψ dφ− sinψ dθ ,
σ2 = sin θ sinψ dφ+ cosψ dθ ,
σ3 = cos θ dφ+ dψ ,

(3.34)

and we have defined the function Ω(r) in the metric as

Ω(r) = (r − s)2
(

1 + (r − s)(r + 3s)
L2

)
. (3.35)

The parameter s has units of length and is chosen such that 0 < s < L
2 . The coordinate r

spans the range s < r < ∞, with the conformal boundary at r → ∞. In the limit where
s → L

2 , the gauge field vanishes, the asymptotic S3 boundary is not squashed and we
recover the Euclidean AdS4 solution. The background described above represents a family
of 1

2 -BPS solutions labelled by the free parameter s. The on-shell action can be computed
using the familiar counterterms and one finds

F = 4s2

L2 , χ = 1 . (3.36)

As usual the full four-derivative on-shell action is obtained by plugging these quantities
in (3.15).

3.2.5 AdS-Kerr-Newman black hole

It is also instructive to study a black hole solution of the two-derivative action. We consider
the 4d AdS-Kerr-Newman (AdS-KN) black hole solution. The metric in Euclidean signature
is given by, see for example [5, 40, 41],

ds2 = ∆r

V

(
dτ + α

Ξ sin2 θdφ

)2
+ V

(
dr2

∆r
+ dθ2

∆θ

)
+ ∆θ sin2 θ

V

(
αdτ − r̃2 − α2

Ξ dφ

)2
, (3.37)

where

r̃ = r + 2m sinh2 δ , Ξ = 1 + α2

L2 , V (r, θ) = r̃2 − α2 cos2 θ ,

∆r(r) = r2 − α2 − 2mr + r̃2

L2 (r̃2 − α2) , ∆θ(θ) = 1 + α2

L2 cos2 θ .

(3.38)

The gauge field is given by

W = 2im sinh(2δ) r̃
V

(
dτ + α

Ξ sin2 θ dφ

)
, (3.39)
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where the factor of i is due to the fact that we work in Euclidean signature. We note that
this solution depends on three parameters (m, δ, α) which are related to the mass, electric
charge, and angular momentum.9 To ensure that the background above is regular one has
to impose that there is an outer horizon, i.e. a locus r+ where the function ∆r vanishes.
To proceed further we define sδ = sinh δ and cδ = cosh δ, and a new radial coordinate R
via r = R−2msδ

2. The quadratic equation ∆r(R+) = 0, which determines the location of
the outer horizon in the new coordinate, is solved for the following (complex) values of m:

m = ± i R
2
+ + 1− (1± i R+) coth(2δ)

2 sδ cδ
. (3.40)

To ensure regularity of the τ circle at the location of the outer horizon we need to impose
that τ is periodic with τ ∼ τ + β where

β = 4π (r̃ 2 − α2)
(
d∆r(r)
dr

)−1 ∣∣∣∣
r=r+

= 2π (R2
+ − α2)

2R3
+ +R+(1− α2)−m cosh(2δ) . (3.41)

Note that the parameter δ controls the electric charge of the AdS-KN solution. The un-
charged AdS-Kerr solution is obtained by setting δ = 0.

The regularized two-derivative on-shell action for this solution, I2∂ , can be computed
using the counterterms above and (3.6). After a lengthy calculation we find

F = − β

π (L2 + α2)

[
r2

+
L2 + 6m r2

+
L2 sδ

2 −
r2

+
L2

(
α2 − 12m2sδ

4
)
−m

− 2msδ
2
(
α2

L2 −
4m
L2 sδ

4 + 1
)
− 4m2 cδ

2sδ
2(2msδ

2 + r+)
α2 − (2msδ2 + r+)2

]
.

(3.42)

To obtain this result we integrated over the radial coordinate from the location of the
outer horizon to asymptotic infinity and made use of the result for β in (3.41) when
integrating over the τ circle. To compute the regularized on-shell GB action we proceed in
a similar fashion and after a tedious calculation, using the counterterms in (3.7), we find
the simple result

IGB = 64π2 or χ = 2 . (3.43)

The three-parameter family of Euclidean AdS-KN solutions above admits a BPS limit
obtained by imposing the relation

α = 2i
e4δ − 1 . (3.44)

As shown in [41], see also [5], the two-derivative regularized on-shell action for these BPS
backgrounds can be written as

F = (ω + 1)2

2ω , (3.45)

where we have defined,
ω = cosh(2δ)− 2 sinh(2δ)

cosh(2δ) + 2iR+ sinh(2δ) . (3.46)

9One could also add a magnetic charge to the solution and study the more general dyonic Kerr-Newman
black hole. We do not present explicitly this solution here, see [40, 42].
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The on-shell GB action is not affected by the BPS limit (3.44) and is the same as in (3.43).
Notice that there is a two-parameter family of supersymmetric Euclidean solutions labelled
by (δ,m) but the on-shell action depends only the specific combination of these parameters
given by ω in (3.46). The interpretation of this in the dual 3d SCFT is similar to the one
discussed below (3.24). The supersymmetric Euclidean KN solution is the gravity dual of
the superconformal index of the 3d SCFT on S1 × S2 [43]. This index is different from
the one discussed around (3.25). Nevertheless, it is still expected on general grounds that
the index does not depend on the size of the S1 which on the gravity side is given by the
combination of parameters that determine β in (3.41). It is reassuring that our explicit
supergravity on-shell action calculations are in harmony with this expectation.

Combining the results above we obtain the following regularized HD Euclidean on-shell
action of the supersymmetric AdS-KN solution,

IKN =
[
πL2

2GN
+ 32π2 (c2 − c1)

] (ω + 1)2

2ω + 64π2 c1 . (3.47)

We discuss this result and its relation to the superconformal index of the dual SCFT further
in section 6.

We end our discussion of the KN solution by noting that the Euclidean KN supersym-
metric solution presented above can be analytically continued into a regular supersymmet-
ric Lorentzian black hole solution by setting

α = ia . (3.48)

This Lorentzian solution is smooth and free of CTCs only if one further relates the mass
and rotation parameters as

m = a(1 + a)
√

2 + a , (3.49)

and restricts the rotation parameter to lie in the range 0 ≤ a < 1. We therefore conclude
that while there is a two-parameter family of regular Euclidean supersymmetric KN solu-
tions there is only a one-parameter family of regular Lorentzian black holes that preserve
supersymmetry.

3.3 Comments on localization of the action

After presenting the calculation for the regularized on-shell action for several non-trivial
supergravity solutions we now pause to comment on the structure of the on-shell action for
general supersymmetric backgrounds in the four-dimensional minimal supergravity. Every
supersymmetric supergravity solution has a canonical Killing vector which can be obtained
as a bilinear from the preserved Killing spinor. An elegant general formula for the on-shell
action of supersymmetric solutions of the two-derivative minimal supergravity was recently
derived in [30] in terms of the fixed loci of this Killing vector. These loci can be either points,
referred to as NUTs, or two-dimensional submanifolds, called Bolts. The two-derivative
on-shell action for a supersymmetric solution of the minimal supergravity theory can then
be expressed as a sum over all these fixed loci with a prescribed contributions from each
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NUT and Bolt. For instance for a solution with several NUTs one finds

INUTs = πL2

2GN
∑

NUTs∓
±(b1 ± b2)2

4 b1b2
. (3.50)

Here the real numbers (b1, b2) determine the precise form of the canonical Killing vector
in the neighborhood of a given NUT and the ± sign is fixed by the chirality of the Killing
spinor at the NUT. Examples of solutions with NUT loci are given by the squashed sphere
solutions and the supersymmetric Euclidean KN solution discussed above. Based on the
explicit results for the four-derivative on-shell action for these solutions it is natural to
conjecture a generalization of the results in [30] to our four-derivative supergravity model.
For a solution with only NUT fixed loci we propose that (3.50) generalizes to

INUTs =
(
πL2

2GN
+ 32π2c2

) ∑
NUTs∓

±(b1 ± b2)2

4 b1b2
− 32π2c1

∑
NUTs∓

±(b1 ∓ b2)2

4 b1b2
. (3.51)

The results above extend also to solutions with Bolts for which the analog of (3.50) involves
integrals over the first Chern class of the tangent and normal bundle to the Bolt, see [30].
These two-derivative results also extend to the four-derivative on-shell action. For instance
for the on-shell action of the Bolt± solution discussed around (3.26) we find the four-
derivative on-shell action

IBolt± =
(
πL2

2GN
+ 32π2c2

) (
1− g∓ p

4

)
− 32π2c1

(
1− g± p

4

)
. (3.52)

It would be desirable and very interesting to repeat the analysis of [30] for the most general
supersymmetric solutions of the four-derivative action (3.1) and establish the results above
for the NUT and Bolt on-shell actions more rigorously.

It is tempting to speculate even further about what the results in (3.51) and (3.52) may
imply for the structure of higher-derivative supergravity more generally. It was suggested
in [44] (see also [45]), based on [46], that the matter-coupled generalization of the two
derivative result (3.50) can be understood in terms of gluing basic gravitational blocks. At
two derivatives one can recover the on-shell action of many different supergravity solutions
by using a single universal building block and a set of gluing rules dictated by the background
at hand. The two separate, albeit very similar, terms in the formulae (3.51) and (3.52)
suggest that at the four-derivative level there are two distinct gravitational building blocks.
This result appears to be compatible with the general field theoretic gluing formula [46]
that includes a summation over different “Bethe vacua” in the 3d SCFT supersymmetric
partition function, see also [47] for a recent discussion. The reason we might be uncovering
the need of a “second building block”, generalizing the analysis in [44], is that the four-
derivative supergravity action has access to the first subleading correction to the SCFT
partition function in the large N limit. Clearly we need a much more detailed study of
matter-coupled higher-derivative supergravity in order to understand this structure better.
We return to this and similar questions in section 7 but leave a more comprehensive analysis
for future work.
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Another generalization of the results in [30] can be found by studying the effect on the
on-shell action of the two- and four-derivative parity violating terms discussed in section 2.3.
A full analysis along these lines is beyond the scope of this work and here we just note that
at the two-derivative level the on-shell action will contain topological information about
the instanton number of the Maxwell field of a given supergravity solution while the four-
derivative on-shell action will contain the Pontryagin number. Both of these topological
invariants should be calculated by adding appropriate boundary terms similar to the ones
in (3.7) needed to compute the Euler number χ in (3.9).

4 Spectrum and two-point functions

After presenting the four-derivative supergravity theory and some of its solutions together
with their on-shell action, we now change gears to study the masses and correlation func-
tions of the fluctuations of the supergravity fields around the AdS4 vacuum solution.

4.1 Stress-energy tensor two-point function

An important observable in any CFT is the two-point correlation function of the stress-
energy tensor operator. For a d-dimensional CFT on Rd it is constrained by conformal
invariance, see [48], to take the form10

〈Tµν(x)Tρσ(0)〉 = d− 1
d

CT
|x|2d

Iµνρσ(x) , (4.1)

where

Iµνρσ(x) = 1
2 [Iµρ(x)Iνσ(x) + Iµσ(x)Iνρ(x)]− 1

d
δµνδρσ , Iµν(x) = δµν − 2xµxν

|x|2
. (4.2)

The coefficient CT is real and positive for a unitary CFT and depends on the dynamics of
the theory.

Holography provides a way to calculate CT in strongly coupled CFTs. One can use
AdS/CFT to map the two-point function of the stress-energy tensor to the two-point func-
tion of the graviton propagating in the AdS vacuum and in this way extract the coefficient
CT . This is a standard calculation for a two-derivative gravitational theory which becomes
more involved in the presence of higher-derivative corrections to the Einstein-Hilbert ac-
tion. In [50] it was shown how to compute two- and three-point functions of the stress
energy tensor in holographic CFTs for a general class of higher-derivative theories of grav-
ity. Here we briefly summarize the results of [50] and apply them to our four-derivative
supergravity action.

In [50], the authors consider a Lorentzian bulk action of the form

SSS =
∫
d4x
√
g

[
b0 + b1∆R+ b4

2 ∆R2 + b5
2 ∆Rµν∆Rµν + b6

2 ∆Rµνρσ∆Rµνρσ
]
, (4.3)

10To make contact with the discussion in section 6 we use the same normalization for CT as in [49].
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where bi are real coefficients and we have ignored boundary terms.11 We set d = 3 in the
results of [50] since we are interested in a theory with d+ 1 = 4 bulk dimensions. We also
note that the coefficients b0,1 are dimensionful, while b4,5,6 are dimensionless. The tensor
∆Rµνρσ in (4.3) is defined as

∆Rµνρσ = Rµνρσ + 1
L2 (gµρgνσ − gµσgνρ) . (4.4)

Using this, we find the following relations:

∆Rµνρσ∆Rµνρσ = RµνρσR
µνρσ + 4R

L2 + 24
L4 ,

∆Rµν∆Rµν = RµνR
µν + 6R

L2 + 36
L4 ,

∆R2 = R2 + 24R
L2 + 144

L4 .

(4.5)

We can apply these results to rewrite the action (4.3) as

SSS =
∫
d4x
√
g

[(
b0 + 12b1

L2 + 72b4 + 18b5 + 12b6
L4

)
+
(
b1 + 12b4 + 3b5 + 2b6

L2

)
R

+ b4
2 R

2 + b5
2 RµνR

µν + b6
2 RµνρσR

µνρσ
]
.

(4.6)

As shown in [50] one can study the linearized fluctuations of the graviton around the AdS4
solution of this general gravitational theory and find the following result for the two-point
function coefficient CT

CSS
T = 48L2

π2

(
b1 + 2b6

L2

)
. (4.7)

Note that we have reinstated a factor of L2 in Equation (1.12) of [50] for dimensional
reasons. More specifically, we have that both CT and b6 are dimensionless, while b1 has
units of inverse length squared.

To apply this result in our setup we need to map the coefficients bi used in [50] to the
constants appearing in the supergravity Lagrangian (2.37) of interest here. Note that in [50]
the authors did not include any Maxwell fields in their action and therefore to compare
with their results we need to study only the terms in (2.37) that involve the metric and its
derivatives. Converting (2.37) to Lorentzian signature we find that it can be written as

S4-deriv =
∫
d4x
√
g

[ 3
8πGL2 + 1

16πGR−
(c1 + 2c2)

3 R2

+ 2(c1 + c2)RµνRµν − c1RµνρσR
µνρσ + (field strength terms)

]
,

(4.8)

11We use bi to denote the coefficients in (4.3), instead of the ci used in [50], to avoid confusion with the
coefficients c1,2 in the four-derivative supergravity action used in this work.
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where we have omitted the terms involving the field strengths of the gauge field. Comparing
the four-derivative action (4.8) to the action of [50] as given in (4.6) above, we find the
following relations:

b0 = − 3
8πGL2 −

24c2
L4 , b1 = 1

16πG + 4c2
L2 ,

b4 = −2(c1 + 2c2)
3 , b5 = 4(c1 + c2) , b6 = −2c1 .

(4.9)

Combining this with (4.7) we find

CSS
T = 48L2

π2

(
b1 + 2b6

L2

)
= 3L2

π3G
+ 192(c2 − c1)

π2 . (4.10)

We note that the authors of [50] used a different normalization for CT than the one employed
above in (4.1). The relation between the two conventions is 3CT = 32π2CSS

T which yields

CT = 32L2

πG
+ 2048(c2 − c1) . (4.11)

This result is an AdS/CFT prediction for CT for any 3d N = 2 SCFT holographically dual
to the four-derivative supergravity theory presented in section 2. Note that for c1 = c2 = 0
the result in (4.11) reduces to the well-known result for CT arising from the two-derivative
Einstein-Hilbert action, see for instance [51]. When c1,2 6= 0 we find small corrections to
this result due to the four-derivative terms in the supergravity action.

For 3d CFTs with N = 2 supersymmetry there is a Ward identity that relates the
coefficient CT to the supersymmetric partition function of the theory on a squashed S3,
see for instance [52]. The Ward identity can be written as

CT = 32
π2

∂2(logZS3
b
)

∂b2

∣∣∣∣
b=1

, (4.12)

where ZS3
b
is the supersymmetric partition function of the SCFT on the U(1) × U(1)

squashed sphere discussed in section 3.2.3 and the squashing parameters s and b are related
by s = b2. The relation in (4.12) provides a non-trivial consistency check of our results.
We can use the on-shell action in (3.15) and (3.32) and the relation I(HD)

on−shell = logZS3
b
to

compute CT . After a short calculation we indeed find that (4.12) leads to the same result
as in (4.11). It is reassuring that we have arrived at the result (4.11) for CT by performing
two non-trivial and distinct calculations in supergravity and holography.

Three-point functions of the stress-energy tensor in CFTs are also largely constrained
by the conformal symmetry. In general number of space-time dimensions the three-point
function is fully determined by three real constants one of which is proportional to the
coefficient CT appearing in the two point function and the other two, typically denoted as
t2 and t4, contain independent dynamical information about the CFT, see [51, 53, 54]. For
3d CFTs the tensor structure associated with the coefficient t2 is absent and thus CT and
t4 fully determine the stress-energy three-point function. Given this, it is natural to ask
whether one can calculate t4 holographically for higher-derivative gravitational theories.
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s 2 3
2 1

∆ 3 5
2 2

r 0 ±1 0

Table 1. Spin s, conformal dimension ∆, and R-charge r of the operators in the stress-energy
tensor multiplet A1Ā1[1](0)

2 . The superconformal primary operator is indicated in red.

In [50] it was shown how to do this for a general class of such models. One finds that
t4 is proportional to the couplings of the six-derivatives term in the gravitational action
and therefore in our setup we find that t4 = 0 since we have restricted to four-derivative
supergravity actions. We note that unitarity of the CFT imposes non-trivial constraints on
the coefficients CT and t4, see [51, 54]. In our four-derivative setup these constraints reduce
to the inequality CT > 0. Since L2/GN is manifestly positive and is parametrically larger
than the coefficients c1,2 we conclude that this inequality is obeyed by the holographic
result in (4.11) and does not lead to non-trivial constraints on the supergravity couplings.
We note in passing that according to the results of [55] a four-derivative gravitational
Lagrangian of the type we study here does not lead to any correction of the ratio between
the shear viscosity and entropy density, η/s = 1/4π, established for the two-derivative
Einstein-Hilbert theory.

4.2 Linearized spectrum

To gain further information about the supergravity model we study it is instructive to
calculate the spectrum of linearized fluctuations of all supergravity fields around the maxi-
mally supersymmetric AdS4 vacuum solution in the theory. In appendix C we show in some
detail how to calculate the masses for all bosonic fluctuations of the supergravity fields.
Similar spectrum calculations in AdS4 for non-supersymmetric higher-derivative gravita-
tional theories were done in [19, 56]. It is important to note that in the presence of the
four-derivative terms in the Lagrangian some of the auxiliary fields used in the conformal
supergravity construction outlined in section 2 acquire kinetic term and lead to dynamical
excitations. Since the AdS4 background is supersymmetric, the linearized bosonic fluctua-
tions in our model should combine with the linearized fluctuations for the fermionic fields
to form supergravity multiplets. While we have not explicitly computed the masses for
all fermionic fluctuations, we have indeed confirmed that the bosonic fluctuations nicely
fit into two supersymmetric multiplets. To discuss these results further it is convenient to
use AdS/CFT and map all linearized supergravity modes around AdS4 to operators in the
dual 3d N = 2 SCFT. In the language of 3d N = 2 superconformal representation theory,
see [57] for the notation we use and a comprehensive review, we find that the supergravity
modes organize into one short and one long multiplet.

The short multiplet is denoted by A1Ā1[1](0)
2 in [57] and is simply the stress-energy

multiplet of the SCFT, see table 1. The supergravity modes in this multiplet are the
massless metric and graviphoton excitations as well as the corresponding gravitino modes.

The long multiplet is denoted by LL̄[1](0)
δ in [57], where [j] indicates the Lorentz spin

of the superconformal primary, the subscript is its conformal dimension and the superscript
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s 2 3
2

3
2 1 1 1 1 1 1

2
1
2 0

∆ δ + 1 δ + 3
2 δ + 1

2 δ + 2 δ + 1 δ + 1 δ + 1 δ δ + 3
2 δ + 1

2 δ + 1

r 0 ±1 ±1 0 ±2 0 0 0 ±1 ±1 0

Table 2. Spin s, conformal dimension ∆, and R-charge r of the operators in the long LL̄[1](0)
δ

multiplet. The superconformal primary operator is indicated in red.

is its R-charge. The operators comprising this multiplet are summarized in table 2. The
conformal dimensions of the operators in this multiplet are not determined in terms of
their r charge and are given in terms of the quantity

δ = 1
2 + 1

2

√
1 + L2

8πGN (c1 − c2) . (4.13)

It is well-known that gravitational theories with higher-curvature corrections often
have ghosts [58], see [59] for a review and further references. These ghosts are manifested
by the fact that the massive spin-2 mode arising from the metric has negative energy due
to a wrong sign kinetic term. Our model is no exception to this general feature of four-
derivative gravitational theories and also suffers from this ghost problem. As can be seen
from (C.22), massive spin-2 modes with negative energy will be present for any value of
the HD coefficients as long as c1 6= c2. In addition to this, our four-derivative supergravity
model can suffer from instabilities associated to the violations of the BF bound by the
massive scalar mode. Violations of the BF bound are associated with complex conformal
dimensions in the dual CFT. Using the form of the conformal dimension in (4.13) we find
that the BF bound is violated when

L2

8πGN (c1 − c2) < −1 . (4.14)

In a specific microscopic model given by the ABJM theory arising from N M2-branes we
find that in the large N limit the 4d supergravity parameters scale as L2/GN ∼ N3/2

and c1,2 ∼ N1/2. Moreover we find that c1 = 3c2 < 0, see the discussion around (7.50),
which indeed leads to a violation of the BF bound according to (4.14). More generally,
we expect that in any supergravity model with a consistent higher-derivative expansion
L2/GN is parametrically larger than c1,2 and thus the BF bound will be violated for all
models with c1 < c2.

Violations of the BF bound and the presence of propagating ghost modes will both
generally lead to violations of unitarity in the theory. In the case at hand it is possible
that the presence of both phenomena simultaneously could somehow be compatible with
unitarity, though concluding this would require a much more thorough exploration of the
dynamics of the theory. If unitarity is violated, it should be viewed as an artefact of the
four-derivative approximation of the gravitational theory that we have used here; the UV
completion of the 4d N = 2 supergravity theory by string or M-theory is expected to
restore unitarity.
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5 Black hole thermodynamics

We now turn our attention to studying black holes. In particular, we study how the HD
terms in our gravitational theory affect the thermodynamic properties of a wide class of
AdS4 black holes. HD effects on black hole thermodynamics in anti-de Sitter spacetimes
have been investigated previously in the literature, but this analysis can typically only be
carried out perturbatively, since the black hole solutions themselves are generically modified
by HD effects. The theory we presented in section 2, by contrast, has the unique property
that any solution to the two-derivative theory is also a solution to the four-derivative
theory. This guarantees that black hole solutions will not be modified by HD effects, thus
allowing us to do an in-depth and complete analysis of HD modifications to the black hole
thermodynamic quantities.

In order to look at proper black hole solutions, we first need to translate the actions
presented in section 2 from Euclidean into Lorentzian signature. In particular, as discussed
in section 2.2.1, this is accomplished simply by a Wick-rotation of one of the Euclidean
tangent space coordinates into a Lorentzian time direction. After implementing this, we
can present the bulk Lorentzian gravitational action Sbulk succinctly as follows:12

Sbulk = −S2∂ + (c2 − c1)SW2 − c2SGB , (5.1)

where S2∂ , SW2 , and SGB, are defined in (3.2), (3.3), and (3.4), respectively
As discussed in section 3.1, these bulk actions must be supplemented with particular

boundary counterterm actions in order to regularize divergences. We studied these bound-
ary counterterms in detail for the Euclidean theory, and a similar analysis holds for the
Lorentzian bulk theory (5.1). The end result is that each of the three pieces of the action
have their own associated counterterm, which read:

SCT
2∂ = − 1

8πGN

∫
d3x
√
−h

(
K − L

2R−
2
L

)
,

SCT
GB = 4

∫
d3x
√
−h (J − 2GµνKµν) ,

SCT
W2 = SCT

GB + 64πGN
L2 SCT

2∂ .

(5.2)

The full counterterm action is therefore given by

SCT = −SCT
2∂ + (c2 − c1)SCT

W2 − c2S
CT
GB =

(
1 + 64πGN (c2 − c1)

L2

)
SCT

2∂ − c1S
CT
GB . (5.3)

The full Lorentzian action for our higher-derivative theory, including both the bulk pieces
and the boundary counterterm pieces, is given simply by the sum of the bulk and boundary
actions:

SHD = Sbulk + SCT . (5.4)

This action SHD is our starting point for analyzing how four-derivative terms affect
black hole thermodynamics in our supergravity theory. We now consider an arbitrary

12Note that the overall minus sign on each term is due to the action picking up a sign when going from
Euclidean to Lorentzian signature, see (2.48).
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stationary black hole solution to the original two-derivative theory, equipped with at least
two Killing vectors: one time-like Killing vector associated with time-translations, and one
space-like Killing vector associated with azimuthal rotations. Correspondingly, the two-
derivative black hole will have conserved total mass and azimuthal angular momentum,
which we denote by M0 and J0, respectively. Additionally, we allow the solution to be
charged under the graviphoton gauge field with electric charge Q0 and magnetic charge P0.
We emphasize that the zero subscript indicates that these conserved quantities are all read
off in the original two-derivative theory.

In the following section, we show how these charges as well as other thermodynamic
properties of the black hole are modified when we consider it as a solution to the four-
derivative theory at hand. We then go on to show how the higher-derivative corrections
to thermodynamic quantities are compatible with the quantum statistical relation, before
moving on to discuss the relations of these results to some recent proposals related to the
weak gravity conjecture.

5.1 Black hole entropy

We first analyze how the entropy of the black holes in consideration is modified in our
theory. We do so using the Wald formalism [60], which generalizes the Bekenstein-Hawking
area law to incorporate the effects of higher-derivative terms in the action.13 The Wald
entropy is given by

SWald = −2π
∫
H
d2x
√
γ

δL
δRµνρσ

εµνερσ , (5.5)

where γ denotes the determinant of the induced metric on the two-dimensional horizon
H, and εµν denotes the unit binormal to the horizon, normalized such that εµνεµν = −2.
Our goal now is to apply this formula to the three different pieces that go into the bulk
action (5.1).

First, we consider the two-derivative action S2∂ and the Gauss-Bonnet action SGB.
Varying their Lagrangian densities with respect to the Riemann tensor yields

δL2∂
δRµνρσ

= 1
16πGN

gµρgνσ ,
δLGB
δRµνρσ

= 2 (Rµνρσ − 4Rµρgνσ +Rgµρgνσ) . (5.6)

From here, it is straightforward to compute their corresponding contributions to the Wald
entropy for general stationary black holes:

S
(2∂)
Wald = AH

4GN
, S

(GB)
Wald = 32π2χ(H) , (5.7)

where AH is the area of the black hole horizon and χ(H) is the Euler characteristic of the
horizon, defined by integrating the Ricci scalar R[γ] of the induced horizon metric over the
entire horizon:

χ(H) ≡ 1
4π

∫
H
d2x
√
γR[γ] . (5.8)

13There are instances that arise in string theory where the Wald formalism does not fully account for the
entropy of black holes, but these situations only arise when there are Chern-Simons terms in the action [61].
In the 4d setting we study, there are no such terms, and so our action is amenable to simply using the Wald
entropy without modification.
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These results are well-established in the literature [62, 63], and we repeat them here for
completeness. The W2 action, on the other hand, is novel to our setup, and so we must
determine its contribution to the Wald entropy carefully. We first compute its variation
with respect to the Riemann tensor:

δLW2

δRµνρσ
= 2Rµνρσ − 4Rµρgνσ + 2

3Rg
µρgνσ − 2FµλF ρλ g

νσ + 1
2FλτF

λτgµρgνσ . (5.9)

This expression has dependence on both the Riemann tensor and the electromagnetic field
strength tensor, and a priori this could result in a Wald entropy contribution that is heavily
dependent on the details of the particular solution of interest. However, by restricting
ourselves to solutions to the original two-derivative equations of motion, we are free to use
them to simplify this expression. In particular, we find that we can trade all instances of
the electromagnetic field strength Fµν for geometric quantities and the AdS length scale
L, resulting in

δLW2

δRµνρσ
= 2 (Rµνρσ − 4Rµρgνσ +Rgµρgνσ) + 4

L2 g
µρgνσ . (5.10)

Upon comparison of (5.6) and (5.10), it is clear that we can express the variation of the
W2 Lagrangian as a linear combination of the variations of the two-derivative and Gauss-
Bonnet Lagrangians:

δLW2

δRµνρσ
= 64πGN

L2
δL2∂
δRµνρσ

+ δLGB
δRµνρσ

. (5.11)

Correspondingly, the Wald entropy associated with the W2 action will be a linear combi-
nation of the entropies in (5.7), and thus we find that

S
(W2)
Wald = 16πAH

L2 + 32π2χ(H) . (5.12)

Remarkably, this demonstrates that the Wald entropy associated with the W2 action can in
general be expressed solely in terms of geometric invariants of the horizon, with no explicit
dependence on any details of the full black hole spacetime. This simplicity is surprising,
since one can expect that the presence of the Weyl tensor in the four-derivative action
will generically introduce complicated dependence on the black hole parameters into the
Wald entropy.

Putting together the Wald entropy results above, we find that the total entropy for
any two-derivative black hole solution to our theory is given by

S =
(

1 + 64πGN (c2 − c1)
L2

)
AH
4GN

− 32π2c1χ(H) . (5.13)

We therefore find that there are two modifications to the black hole entropy. The first is
a new topological term, proportional to the Euler characteristic χ(H) of the black hole
horizon, with the constant of proportionality determined by the constant c1 in the action.
The second is a rescaling of the usual Bekenstein-Hawking area law, the size of which is
controlled by c2 − c1. This result is universal for all stationary black holes, and it yields a
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relatively simple expression for the entropy of even the intricate AdS-Kerr-Newman black
hole solution.

A few comments are in order. We first want to stress that the Euler characteristic χ(H)
is topological and thus insensitive to continuous variations of the black hole parameters. In
particular, this means that a BPS black hole retains the same topological entropy correction
as any of its non-BPS counterparts with the same topology, and so the same correction
will apply arbitrarily far away from extremality. In fact, this same topological term is
also present when higher-derivative corrections are added to ungauged supergravity [17,
18], lending further support to the hope of having precision microstate counting for non-
supersymmetric black holes in string theory.

The last point we want to make is that the rescaling of the Bekenstein-Hawking area
law in (5.13) is most naturally interpreted as a redefinition of Newton’s constant GN .
Dropping the topological correction for now, we can write the entropy as

S = AH
4Geff

,
1
Geff

≡ 1
GN

+ 64π(c2 − c1)
L2 . (5.14)

In other words, the black hole entropy still takes the usual Bekensten-Hawking form, but
with an effective gravitational coupling constant Geff that receives modifications from the
four-derivative operators in the theory. This effective rescaling of Newton’s constant is
interesting because the theory becomes strongly coupled in the UV and so 1

GN
→ 0 as

we go to higher and higher energies. This in turn leads to quadratic divergences in the
spectrum of the theory, despite the fact that all observables (and entropies) must be finite in
a quantum theory of gravity. A possible resolution of this tension is that Geff could remain
finite in the UV even if GN blows up. This is similar in spirit to the mechanisms proposed
in [64, 65] for taming ultraviolet divergences in string theory, and it would be interesting to
investigate this further by studying the ultraviolet behavior of the higher-derivative terms
in our supergravity theory.

5.2 Conserved charges and the quantum statistical relation

We now move on to analyzing how the higher-derivative terms in the action (5.4) alter
the conserved charges that a general stationary black hole solution is imbued with. We
first focus on the mass and angular momentum of the black hole before moving on to
studying the electromagnetic charges. We end with a brief discussion of how our results
are compatible with the quantum statistical relation.

5.2.1 Mass and angular momentum

Any stationary, asymptotically-AdS4 black hole spacetime is equipped with at least two
isometries, one associated with time translations and one associated with azimuthal rota-
tions. We denote the corresponding Killing vectors that generate these isometries by K(t)
and K(φ), respectively. There are conserved quantities associated with these isometries,
namely the mass M and azimuthal angular momentum J , that play an important role in
the thermodynamic properties of the black hole. In order to compute these quantities, we
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follow the formalism developed in [66] for computing conserved charges in asymptotically-
AdS spacetimes via a Komar integral of the boundary stress-tensor. This method is the
most natural in holographic settings, since it yields charges that are automatically free of
divergences while also removing the ambiguities that can arise in other schemes, such as
the Brown-York procedure [67].

Let Σ denote the conformal boundary of the spacetime at spatial infinity, where the unit
normal to the boundary is nµ, the induced boundary metric is hµν , the extrinsic curvature
is Kµν (with K ≡ hµνKµν), and the boundary Riemann tensor is Rµνρσ. We then denote
by ∂Σ a constant time slice of the boundary. The conserved charge Q associated with a
Killing vector K is computed by the Komar integral

Q[K] =
∫
∂Σ
d2x
√
γ uµKντµν , (5.15)

where γ is the induced metric on ∂Σ, u is the unit normal to ∂Σ, and τµν denotes the
boundary stress-tensor, defined by

τµν ≡
2√
−h

δL
δhµν

. (5.16)

Importantly, the boundary stress-tensor is computed by varying both the bulk action as
well as the boundary counterterm action, since the counterterm action is required for a well-
posed variational principle that ensures no derivatives of the metric fluctuation appear.

For the two-derivative minimal supergravity action and the Gauss-Bonnet action, the
boundary stress-tensors are well-known in the literature (see e.g. [68, 69]), and we go
through their computation extensively in appendix D. The results are:

τ (2∂)
µν = 1

8πGN

(
Kµν −Khµν − LGµν + 2

L
hµν

)
, (5.17)

and
τ (GB)
µν = 12Jµν − 4J hµν − 8PµρνσKρσ , (5.18)

where Gµν ≡ Rµν − 1
2hµνR is the boundary Einstein tensor, the boundary tensor Jµν is

defined in (3.8), and Pµνρσ is the divergence-free part of the boundary Riemann tensor:

Pµνρσ ≡ Rµνρσ − 2Rµ[ρhσ]ν + 2Rν[ρhσ]µ +Rhµ[ρhσ]ν . (5.19)

With these boundary stress-tensors, we can now compute the mass M0 and angular mo-
mentum J0 for any black hole in the two-derivative theory simply by utilizing the Komar
integral (5.15) with the corresponding Killing vectors and the two-derivative boundary
stress-tensor:

M0 =
∫
∂Σ
d2x
√
γ uµKν(t)τ

(2∂)
µν ,

J0 =
∫
∂Σ
d2x
√
γ uµKν(φ)τ

(2∂)
µν .

(5.20)

For the Gauss-Bonnet boundary stress-tensor, on the other hand, the corresponding Ko-
mar integrals vanish and thus the Gauss-Bonnet term yields no contribution to the mass
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and angular momentum. The particular sum of boundary tensors that show up in (5.18)
conspire such that τ (GB)

µν becomes very subleading in the radial coordinate, and so in the
limit where the radial cutoff is sent to infinity the Komar integral (5.15) dies out:∫

∂Σ
d2x
√
γ uµKν(t)τ

(GB)
µν =

∫
∂Σ
d2x
√
γ uµKν(φ)τ

(GB)
µν = 0 . (5.21)

Physically, this is simply a manifestation of the topological nature of the Gauss-Bonnet
invariant in four dimensions, which forbids the Gauss-Bonnet term from affecting conserved
charges [70]. In higher dimensions this is no longer the case, and the Gauss-Bonnet term
can yield non-trivial corrections to thermodynamic properties of black holes.

We now have to determine the boundary stress-tensor for the W2 component of the full
HD action (5.4). This is in general a hard problem to tackle, as the variation of SW2 with
respect to the boundary metric is fairly complicated. However, since we are only interested
in considering black holes that are solutions to the original two-derivative equations of
motion, we can apply these equations to drastically simplify the variation. Additionally,
the W2 boundary counterterm SCT

W2 is simply a linear combination of the two-derivative
and Gauss-Bonnet counterterms SCT

2∂ and SCT
GB, and so their variations with respect to the

boundary metric will be similarly related. Putting all of this together, we find that the W2

boundary stress-tensor is simply given by a linear combination of τ (2∂)
µν and τ (GB)

µν , i.e.

τ (W2)
µν = 64πGN

L2 τ (2∂)
µν + τ (GB)

µν . (5.22)

Again, we stress that this boundary stress-tensor will take a more complicated form when
considering the four-derivative equations of motion as a whole, but when we restrict to
only those solutions that satisfy the two-derivative equations of motion, it is forced to take
the simpler form in (5.22).

Putting all this together, we find that the full boundary stress-tensor for our four-
derivative supergravity theory is given by

τµν =
(

1 + 64πGN (c2 − c1)
L2

)
τ (2∂)
µν − c1τ

(GB)
µν . (5.23)

The mass M and angular momentum J in the four-derivative theory are then computed
by inserting the boundary stress-tensor (5.23) into the Komar integral (5.15). Since the
Gauss-Bonnet stress-tensor yields no contribution to the charges and the two-derivative
stress-tensor in (5.23) is modified only by an overall rescaling, we find that

M =
(

1 + 64πGN (c2 − c1)
L2

)
M0 , J =

(
1 + 64πGN (c2 − c1)

L2

)
J0 . (5.24)

That is, the mass M and angular momentum J , as computed in the four-derivative theory,
are related to the original mass M0 and angular momentum J0 in the two-derivative theory
by a constant rescaling. This relation holds for general stationary black hole solutions, so
once the mass and angular momentum in the two-derivative theory are computed, we can
immediately find their values in the four-derivative theory by simply using (5.24).
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The last point we would like to stress is that the W2 counterterm is absolutely essential
for deriving the results (5.24). Indeed, even though it evaluates to zero on-shell for all
explicit solutions we have studied, its variation with respect to the metric is non-zero,
which allows us to cancel bulk terms in the variation of SW2 and end up with a well-
defined boundary stress-tensor. The presence of this novel boundary term also explains
the discrepancy between our results and those of [71], where it was argued that certain
bulk four-derivative terms cannot affect the mass of the black hole. Our results therefore
serve as an important reminder of the significance of finite boundary counterterms in
holographic settings.

5.2.2 Electromagnetic charges

We now turn to studying higher-derivative corrections to the electromagnetic charges of
the black hole solution. In order to do so, we first recall how these charges are computed
in the first place. In the two-derivative Einstein-Maxwell theory, the Maxwell equation of
motion is simply given by

∇µFµν = 0 . (5.25)

Additionally, since the theory is free of any sources, the Maxwell fields must also satisfy
the Bianchi identity ∇[µFνρ] = 0, or equivalently

∇µ ? Fµν = 0 , (5.26)

where ?F denotes the two-form Hodge dual of F . Thus, the combined Maxwell-Bianchi
equations tell us that both Fµν and its Hodge dual ?Fµν are conserved. This in turn means
that integrating ?F and F over a two-dimensional constant time slice ∂Σ of the conformal
boundary will result in conserved charges that are independent of our choice of slice. These
charges are (up to some constants of proportionality that are unimportant for our analysis)
the electric charge Q0 and magnetic charge P0, respectively:

Q0 =
∫
∂Σ
?F , P0 =

∫
∂Σ
F . (5.27)

Again, we use the zero subscript to stress that these are the charges as measured in the
two-derivative theory.

We now move on to the full four-derivative theory. Since the action (5.4) is free of any
electromagnetic sources, the Bianchi identity is untouched, and so the Maxwell field must
still satisfy ∇µ ? Fµν = 0. The Maxwell equations, however, are altered, and are no longer
simply given by ∇µFµν = 0. Instead, if we define a new tensor Gµν via

? Gµν ≡ −32πGN
δLHD
δFµν

, (5.28)

then the four-derivative Maxwell equation can be presented succinctly as ∇µ ? Gµν = 0.
Thus, the combined Maxwell-Bianchi equations are given by

∇µ ? Gµν = ∇µ ? Fµν = 0 . (5.29)
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In form language, this can equivalently be written as dG = dF = 0, and so we can obtain
conserved charges by integrating the two-forms G and F over ∂Σ, by analogy with the
two-derivative case:

Q =
∫
∂Σ
G , P =

∫
∂Σ
F . (5.30)

From this expression, it is clear that the magnetic charge P will take the same value P0
as in the two-derivative theory, as expected since our theory does not modify the Bianchi
identity. The electric charge, on the other hand, is modified, due to the four-derivative
dependence found inside of Gµν .

From the full four-derivative bulk action in (5.1) we can explicitly compute that the
dual of the modified field strength Gµν is given by

?Gµν = Fµν + 32πGN (c1 − c2)
[(
R− 2

L2 −
1
2FρσF

ρσ
)
Fµν +

(
2FµρF σρ − 4R σ

µ

)
Fσν

]
.

(5.31)
Upon implementing the two-derivative Einstein equation, this expression simplifies drasti-
cally and we are left simply with

? Gµν =
(

1 + 64πGN (c2 − c1)
L2

)
Fµν . (5.32)

That is, the four-derivative terms in the action leave ?G ∝ F , albeit with a modified
constant of proportionality. The electric charge Q, defined in (5.30) by integrating G over
the closed surface ∂Σ, will therefore be given by

Q =
∫
∂Σ
G =

(
1 + 64πGN (c2 − c1)

L2

)∫
∂Σ
?F . (5.33)

Putting all of these results together and comparing them to the original two-derivative
electric and magnetic charges in (5.27), we find that the charges in our four-derivative
theory are related to the original ones via

Q =
(

1 + 64πGN (c2 − c1)
L2

)
Q0 , P = P0 . (5.34)

The magnetic charge is unaffected by the four-derivative terms in the theory, while the
electric charge is simply rescaled by a constant. Importantly, this is universally true for
general stationary black hole solutions; we have assumed nothing further about the details
of the solution itself. In fact, the four-derivative charge relation (5.34) will be valid for any
solution imbued with electromagnetic charges and not just black holes; our derivation relies
solely on integrating the Maxwell-Bianchi equations over the boundary, with no reference
to the details of the solution itself.

5.2.3 Quantum statistical relation

Armed with the entropy and charges for any stationary black hole in our theory, we can
perform a consistency check of our results by confirming that they obey the laws of black
hole thermodynamics. In particular, we can check the first law of thermodynamics, or
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equivalently the so-called quantum statistical relation [72, 73], which posits that the ther-
modynamic properties of black holes are related as follows:

I = β (M − TS − ΦQ− ωJ) . (5.35)

This is a relation between the Eucliean on-shell action I, the temperature T = β−1, the
mass M , the entropy S, the electric charge Q, the electrostatic potential Φ, the angular
momentum J , and the angular velocity ω. The extensive quantities in this expression (i.e.
the ones that scale with the size of the system) are I, S, M , Q, and J , all of which receive
modifications from higher-derivative terms in the supergravity theory, as detailed above.
The intensive quantities (i.e. the ones that do not scale with the system size) are T , Φ,
and ω, all three of which can be read off directly from the solution itself. Crucially, since
the black hole solutions we study are not modified by the four-derivative terms in the
supergravity Lagrangian, the intensive quantities will not be modified either.

To be more explicit, we consider each of the three intensive quantities. The temperature
T can be computed via the usual method, where we Wick-rotate the black hole to Euclidean
signature via a time coordinate rotation of the form t → −iτ , and then demand that τ is
periodic with some periodicity β required to avoid conical singularities where the spacetime
caps off in the bulk. Then, by identifying β with T−1, we obtain the temperature of the
black hole. The electrostatic potential Φ is given by

Φ =
(
Kµ(t)Wµ

)
r=rH

−
(
Kµ(t)Wµ

)
r→∞

, (5.36)

where the contraction of the time-like Killing vector Kµ(t) of the spacetime with the gauge
field Wµ is evaluated both at the horizon rH and at the conformal boundary and we take
the difference between the two. The Killing vector Kµ(t) is defined purely from the black
hole geometry, while the gauge field is part of the specified solution. Finally, the angular
velocity ω can be read off by defining the linear combination of Killing vectors

ξ ≡ K(t) + ωK(φ) , (5.37)

and then tuning ω such that ξ is a null vector at the black hole event horizon. Therefore
for all three intensive quantities we have explicit expressions that depend only on the
background two-derivative solution, which we know to be preserved by the four-derivative
operators in our theory.

Now that we have defined all relevant quantities in the quantum statistical rela-
tion (5.35), we can analyze it for the theory at hand. At the two-derivative level, using the
notation defined in (3.2) and throughout this section, it takes the form

πL2

2GN
F(S) = β

(
M0 −

TAH
4GN

− ΦQ0 − ωJ0

)
. (5.38)

The two-derivative quantum statistical relation (5.38) holds for all known asymptotically
AdS4 black hole solutions in Einstein-Maxwell theory. At the four-derivative level, if we
combine the expressions for the on-shell action (3.1), the entropy (5.13), the mass and
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angular momentum (5.24), and the electric charge (5.34), the quantum statistical relation
takes the following form:(

1 + 64πGN (c2 − c1)
L2

)
πL2

2GN
F(S) + 32π2c1χ(S)

= β

(
1 + 64πGN (c2 − c1)

L2

)(
M0 −

TAH
4GN

− ΦQ0 − ωJ0

)
+ 32π2c1χ(H) .

(5.39)

If we compare the four-derivative relation (5.39) to the two-derivative relation (5.38), we
can see that most terms cancel automatically, due to the way in which the higher-derivative
terms in the theory conspire to rescale certain thermodynamic quantities. After eliminating
these terms, we are left with only the topological terms. We therefore find that the quantum
statistical relation holds at the four-derivative level if and only if

χ(S) = χ(H) , (5.40)

i.e. if the Euler characteristic of the full spacetime is equal to the Euler characteristic of
the horizon. The above equality follows from applying the Atiyah-Singer index theorem
to the de Rahm complex on the space-time manifold described by S, which relates χ(S)
to the fixed points of isometries [74]. For black holes, such fixed points are either isolated
(so-called NUTs) or form a two-dimensional surface corresponding to their horizon (so-
called Bolts), and in both cases (5.40) follows. This establishes that our four-derivative
supergravity theory satisfies the quantum statistical relation.

5.3 Implications for the weak gravity conjecture

The weak gravity conjecture (WGC), in its simplest incarnation, posits that in order for a
gravitational theory with a U(1) gauge symmetry to admit a UV completion, there must
exist some state in the Hilbert space of the theory with U(1) charge Q and mass M that
is superextremal, i.e. its charge-to-mass ratio (in appropriate units) exceeds the black hole
extremality bound:

Q

M
>

Q

M

∣∣∣∣
ext.

. (5.41)

To be more precise, given a state with mass M and charge Q, we consider an electrically
charged black hole with the same mass M but whose charge is tuned such that the black
hole is extremal. If the charge-to-mass ratio of the state exceeds that of its extremal black
hole counterpart, it is considered to be superextremal.

One of the primary motivations for the WGC is to ensure that there is a decay channel
for extremal black holes in order to avoid having a large number of black hole remnants
littering the universe. Since its inception, though, the WGC has been shown to be intri-
cately linked to a whole host of other swampland conjectures (see e.g. [75] for a review),
and so its motivation goes far beyond simply avoiding the remnant problem.

One mechanism proposed in [76, 77] for realizing the WGC is to incorporate the effects
of higher-derivative operators in the theory. These higher-derivative operators can modify
the extremality bound for black holes and potentially allow for black holes themselves to
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be superextremal, in the sense that their charge-to-mass ratio exceeds that of an extremal
black hole in the original two-derivative theory. This opens up a scenario where charged
black holes can decay into smaller charged black holes, thus avoiding the remnant problem
in a universal way that makes no reference to the field content of the theory beyond gravity
and the U(1) gauge field. It has been argued in a number of bottom-up approaches that
this black hole version of the WGC will hold if certain assumptions are placed on the
UV-completion of the theory, including positivity of black hole entropy corrections [71, 78–
80], unitarity and causality [81–83], and scattering amplitude positivity [84, 85]. Most of
these analyses are for asymptotically flat black holes, therefore it is worthwhile to further
our understanding of the black hole WGC in asymptotically-AdS spacetimes. Moreover,
as we have shown in section 2.1, supersymmetry leads to powerful constraints on higher
derivative terms in the theory, and it is our goal now to analyze the interplay of these
constraints and the WGC.

For the particular supergravity theory described by the action in (5.4) we have shown
that the higher-derivative terms conspire to rescale the charge Q and mass M of the black
hole by a constant prefactor, as shown in (5.24) and (5.34). Since both quantities are
modified by the same factor the charge-to-mass ratio Q/M is unaltered as compared to the
charge-to-mass ratio in the two-derivative theory:

Q

M
=

(
1 + 64πGN (c2−c1)

L2

)
Q0(

1 + 64πGN (c2−c1)
L2

)
M0

= Q0
M0

. (5.42)

Since there is no way to violate the extremality bound in the original two-derivative theory
without introducing naked singularities, we are left with no possible way to satisfy the
WGC (5.41) by black holes alone in this four-derivative theory. Moreover, our results
hold for general black hole solutions, not just the ones that admit a BPS limit, and so
we can conclude that supersymmetry at the level of the four-derivative theory obstructs
the black hole WGC. This is corroborated by the results of [86], where it was shown that
the charge-to-mass ratio of general black holes in ungauged supergravity are unaffected by
higher-derivative effects as well.

An important aspect to consider in AdS spacetimes is that the WGC presented in (5.41)
is not necessarily sufficient to allow extremal black holes to decay; the charge-to-mass
ratio of the superextremal state must satisfy an even more stringent bound, in order to
overcome the more attractive nature of gravity in spacetimes with a negative cosmological
constant [87]. The precise details of how the WGC (5.41) must be modified so that AdS
black holes can decay depend on the details of the black hole of consideration. However,
for all versions of the WGC based on the kinematics of black hole decay, the end result is
that satisfying the WGC requires a charge-to-mass ratio that at least satisfies (5.41), and
so we can view (5.41) as the most conservative version of the WGC in AdS spacetimes [88].
Since the four-derivative corrections in our theory are such that black holes cannot satisfy
this mildest form of the WGC, they clearly do not satisfy any of the stronger versions
discussed in [87, 88].14

14There are also versions of the WGC in asymptotically-AdS spacetimes that posit the existence of

– 43 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
3

Another proposed version of the WGC for black holes posits that the same combination
of higher-derivative operators control corrections to the charge-to-mass ratio as well as the
entropy of the black hole. This has been demonstrated explicitly in a number of different
examples [71, 78–80], all of which take the schematic form

∆Mext.(Q) ∝ −∆S(M,Q)
∣∣∣
M→Mext.(Q)

. (5.43)

Here, the left-hand side ∆Mext.(Q) denotes the shift in the extremal mass due to higher-
derivative operators when comparing the two-derivative black hole solution to the four-
derivative solution at the same fixed charge Q. The right-hand side ∆S(M,Q) denotes
the change in entropy of the black hole due to higher-derivative corrections at fixed mass
and charge. If the left-hand and right-hand sides of (5.43) are proportional and have the
same sign, then demanding that the black hole is superextremal (i.e. the mass shift at fixed
charge is negative) will correspond to positive entropy corrections. This has led to a new
version of the black hole WGC in [71, 78, 79] that posits that the entropy corrections due
to higher-derivative effects in a UV-complete theory of gravity must be positive:

∆S > 0 . (5.44)

For the supergravity theory of consideration in this work we find that both of the
proposals (5.43) and (5.44) for entropic versions of the WGC are not satisfied in general.
It is easy to see that the mass shift relation (5.43) cannot hold in general, because the
Gauss-Bonnet term in the action yields a topological contribution to the entropy in (5.13),
proportional to the Euler characteristic χ(H) of the horizon, that has no analogue in
the mass M computed in (5.24). Additionally, it is well-known that 4d AdS-Reissner-
Nordström black holes can have horizons with the topology of a Riemann surface Σg with
arbitrary genus g. The Euler characteristic of such a Riemann surface horizon is given by

χ(H) = 2(1− g) . (5.45)

For spherical horizons with g = 0, we find that χ(H) > 0, while for higher-genus surfaces
with g > 1 we find that χ(H) < 0. The topological correction to the black hole entropy
therefore cannot take any definite sign; it instead depends on the solution of interest.
There are therefore no constraints that we can set on the coefficients c1, c2 in our action
that force ∆S > 0 for all black holes, and so we also violate (5.44). Similar violations of
these entropic versions of the WGC can also be found in ungauged supergravity [17] and in
heterotic string theory [89], due again to the presence of a Gauss-Bonnet term in the four-
dimensional low-energy theory. Since the Gauss-Bonnet term in the action is compatible
with supersymmetry, as discussed in section 2.1, there is no way to rule out its existence in
generic 4d string and M-theory compactifications or consistent truncations. We therefore
conclude that the proposed relations (5.43) and (5.44) cannot be used directly as criteria
for delineating the landscape of string theory and should be modified appropriately.
operators in the dual CFT whose conformal dimension ∆ and charge q under the U(1) current in the CFT
satisfy certain inequalities. These are interesting in their own right, but they are beyond the scope of our
discussion.
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Importantly, even if we go beyond the four-derivative truncation used in our theory
and consider six- and higher-derivative operators, the WGC proposals (5.43) and (5.44)
will still be violated in our theory. The mismatch between the mass shift and the entropy
shift in (5.43) arises entirely because of the topological nature of the Gauss-Bonnet term
in the four-derivative Lagrangian, and the same mismatch will be present even if higher-
derivative operators are incorporated into our theory. For the WGC proposal in (5.44), as
long as we consider a sufficiently large black hole, the contributions of any six-derivative or
higher terms in the action to the Wald entropy will be suppressed by powers of the size of
the black hole [78, 79, 90]. This is in contrast to the topological Euler characteristic term in
the Wald entropy in equation (5.13), which is constant and does not scale with the size of
the black hole. Thus, if we consider a sufficiently large black hole for which this topological
term in the entropy causes the entropy shift to be negative in our four-derivative theory,
going beyond four-derivative order for this particular black hole will not ameliorate the
situation, and so the proposal (5.44) will still not hold for general black holes.

The only connection between the charge-to-mass ratio corrections and the entropy
corrections that black holes in our theory satisfy in general is the universal relation proved
in [80], which for the theory at hand takes the form

∂Mext(Q)
∂c1

= lim
M→Mext(Q)

(
−T (M,Q) ∂S(M,Q)

∂c1

)
,

∂Mext(Q)
∂c2

= lim
M→Mext(Q)

(
−T (M,Q) ∂S(M,Q)

∂c2

)
,

(5.46)

where Mext(Q) is the mass of the black hole in the extremal limit at a fixed charge Q,
T (M,Q) and S(M,Q) are the temperature and entropy of the black hole expressed in terms
of the mass and charge, and c1, c2 are the coefficients of the four-derivative terms in the
action. These relations essentially follow from assuming that the laws of thermodynamics
hold even when higher-derivative terms are present, which is a fairly mild assumption.
Unfortunately, these relations are not especially useful in the case at hand because, despite
their appearance, they do not actually lead to useful relations between the entropy and
mass of the black hole. The topological correction to the entropy coming from the Gauss-
Bonnet term is constant in temperature, and so taking the extremal limit on the right-
hand side of (5.46) implies that the topological correction vanishes as T → 0. So, as also
discussed previously in [89], these general relations cannot be leveraged to constrain the
higher-derivative coupling constants when the Gauss-Bonnet term is present in the action.

6 Supersymmetric localization and holography

Our discussion so far has been restricted mostly to 4d supergravity. The connection of
the results in sections 3, 4, and 5 to holography was made without specifying a particular
embedding of the supergravity theory in string or M-theory, or put differently, without
specifying the dual 3d N = 2 SCFT. Here we change gears and show how the unknown
coefficients in the supergravity HD action can be determined using the holographic results
above in conjunction with supersymmetric localization results for specific classes of 3d
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N = 2 SCFTs. Our focus is on 3d SCFTs arising on the world-volume of N coincident M2-
branes in M-theory, i.e. parity invariant rank N Chern-Simons matter theories. In the large
N limit, these models admit a holographic description in terms AdS4 ×X7 Freund-Rubin
solutions of 11d supergravity, where X7 is a 7d Sasaki-Einstein manifold threaded by N
units of flux. As shown in [2] 11d supergravity on such a background admits a consistent
truncation to the minimal 4d N = 2 supergravity we study in this work. This consistent
truncation has been established at the two-derivative level of the 11d and 4d supergravity
theories. We will assume here that the consistent truncation also exists in the presence of
higher-derivative corrections in 4d and 11d. This assumption is justified also by the field
theory universality of partition functions discussed in [3–5, 91], see also [92]. It will be
very interesting to generalize the consistent truncation results of [2] by studying the eight-
derivative corrections to 11d supergravity and reducing the resulting Lagrangian on general
Sasaki-Einstein manifolds. This is a technically involved calculation that we will not pursue
here. The results presented below pass several highly non-trivial consistency checks which
serve as strong additional justification for our assumptions. We note that we focus on
AdS4/CFT3 dual pairs with embedding in M-theory for two main reasons. First, in AdS4
Freund-Rubin backgrounds of 11d supergravity and M-theory there is a single dimensionless
parameter given by the ratio of the AdS4 length scale and the 11d Planck length, which
is related to a power of N . This in turn simplifies the map between the dimensionless
parameters (L2/GN , c1, c2) of the 4d HD theory and this single 11d parameter.15 Second,
for precisely this class of 3d N = 2 SCFTs there are powerful supersymmetric localization
techniques that have been explored in detail in the large N limit and there is a collection
of explicit results that facilitate our analysis.

The two-derivative consistent truncation combined with the flux quantization in M-
theory and the standard holographic dictionary lead to the following leading order scaling
of the dimensionless ratio between the AdS4 scale and the 4d Newton constant

L2

2GN
= AN

3
2 . (6.1)

The real constant A does not scale with N and is determined by the volume of the internal
Sasaki-Einstein manifold. More specifically, one finds A =

√
2π4

27vol(X7) .
16 This result is

also corroborated by supersymmetric localization in the dual CFT, see for instance [93]
for a review.

It is expected that the higher-derivative corrections to M-theory will modify the leading
order relation in (6.1) by a term proportional to N 1

2 . In addition, the coefficients c1,2 in
the four-derivative supergravity Lagrangian (2.37) are also expected to scale as N 1

2 . This
can be summarized as follows

L2

2GN
= AN

3
2 + aN

1
2 , ci = vi

N
1
2

32π . (6.2)

15For AdS4 backgrounds in type II string theory we have an additional dimensionless quantity given by
the string coupling constant gs which in general may complicate the map between 4d and 10d parameters.

16When the Sasaki-Einstein manifold is S7 we take it to have unit radius, i.e. the volume of the sphere
is vol(S7) = π4

3 .
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Here the constants (A, a, v1, v2) are all real numbers of order 1, i.e. they do not scale with
N . We emphasize that the identities in (6.2) should be viewed as valid to leading and
subleading order in the large N expansion, i.e. they are expected to receive additional
corrections that scale with smaller powers of N .

We can now use this information from the semiclassical limit of the UV complete
quantum gravity theory, i.e. M-theory, in the 4d on-shell action in (3.15) to find

IHD = πF
[
AN

3
2 + (a+ v2)N

1
2
]
− π (F − χ) v1N

1
2 . (6.3)

This expression can now be viewed as a supergravity holographic prediction for the free
energy, or logarithm of the partition function, of the dual 3d N = 2 SCFT on a given
compact Euclidean 3-manifold which captures the leading term and the first subleading
correction in the large N limit. The 3-manifold is determined by the conformal boundary
of the asymptotically locally Euclidean AdS4 solution with a given F and χ.

Similarly, we find that in the large N limit the two-point function coefficient CT
in (4.11) of the SCFTs at hand should take the form

CT = 64
π

[
AN

3
2 + (a+ v2 − v1)N

1
2
]
. (6.4)

The round S3 is a compact Euclidean background which preserves the full 3d N = 2
superconformal symmetry and thus plays a special role. In this case we have F = χ = 1
and using (6.3) we find the following result for the SCFT free energy on the round S3

FS3 = π
[
AN

3
2 + (a+ v2)N

1
2
]
. (6.5)

As we discuss below there are supersymmetric localization results in the literature for two
classes of SCFTs which lead to expressions for CT and FS3 of the form in (6.4) and (6.5).17
This allows us to uniquely fix the constants A, a+ v2, and v1 for this class of models.

We have fixed the dependence of the 4d dimensionless constants on the large parameter
N using a microscopic embedding in M-theory. However, one can in principle use more
bottom-up arguments, like the ones in [95], to argue that the four-derivative coefficients c1
and c2 are parametrically smaller than the dimensionless parameter, L2/GN , that controls
the two-derivative supergravity action. By the same token, the coefficients of six- and
higher-derivative terms in the 4d supergravity Lagrangian should be parametrically smaller
than the four-derivative coefficients c1 and c2. In general the large parameter that controls
this higher-derivative expansion is the dimension of the lightest higher-spin single-trace
operator in the CFT. This was denoted by ∆gap in [95] and it will be interesting to revisit
their discussion in the context of the higher-derivative supergravity results discussed here.
We discuss this further in section 7.

6.1 Chern-Simons matter theories and supersymmetric localization

To implement the idea outlined above we focus on two classes of SCFTs arising from M2-
branes. The first is the ABJM theory, see [96]. This is an N = 6 U(N)−k × U(N)k gauge

17See [94] for a review on supersymmetric localization and further references.
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theory coupled to matter where the integer k specifies the Chern-Simons levels for both
gauge groups. This model arises from M2-branes probing C4/Zk where the Zk orbifold acts
on the four complex coordinates as

(z1, z2, z3, z4)→ e2πi/k(z1, z2, z3, z4) . (6.6)

For k = 1, 2 there is supersymmetry enhancement to N = 8, see [97]. The other model
is 3d N = 4 SYM coupled to 1 adjoint hypermultiplet and Nf hypermultiplets in the
fundamental representation. This theory is realized on the worldvolume of M2-branes
probing C4/ZNf where the ZNf orbifold action is

(z1, z2, z3, z4)→ (z1, z2, e
2πi/Nf z3, e

2πi/Nf z4) . (6.7)

See [98] for more details of this model and its embedding in M-theory. As shown in [97]
for Nf = 1 the SYM theory preserves N = 8 supersymmetry and is actually dual to the
ABJM theory at k = 1. We will focus on the large N limit of these two models with the
parameters k and Nf held fixed. In this limit there is a holographically dual description in
terms of 11d supergravity on AdS4×S7/Zk and AdS4×S7/ZNf , respectively. The precise
form of the orbifold action on S7 can be determined from (6.6) and (6.7) by embedding
S7 in C4.

The round S3 free energy of ABJM at large N for general fixed k has the following
leading and subleading terms, see [99, 100],

FABJM
S3 =

√
2kπ
3 N

3
2 −
√

2kπ
6

(
k

8 + 1
k

)
N

1
2 . (6.8)

The round S3 free energy of the SYM theory has also been computed by supersymmetric
localization in the large N , see [98]. For the leading and subleading terms one finds

F
Nf
S3 =

√
2Nfπ

3 N
3
2 −

√
2Nfπ

4

(
1
Nf
− Nf

4

)
N

1
2 . (6.9)

For both families of SCFTs it is possible to compute CT to leading and subleading
order in the large N limit, see [101] as well as the earlier work in [49, 102]. For the ABJM
theory an important ingredient in deriving this result is a supersymmetric Ward identity
that relates derivatives with respect to the real masses of the S3 partition function of the
theory to CT . The dependence of the S3 partition function of the ABJM theory on real
masses was studied in [103].

The expression for CT for the ABJM theory at fixed k in the large N limit can be
found in [49], see also [102] for the expressions for k = 1, 2, and reads18

CABJM
T = 64

√
2k

3π N
3
2 + 4(16− k2)

√
2

3π
√
k

N
1
2 . (6.10)

18Note that there is a typo in Equation (2.11) of [49]. We are grateful to Shai Chester and Silviu Pufu
for a useful communication on this.
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For the SYM theory at fixed Nf the leading terms in the large N limit were found in [101]
and take the form

C
Nf
T = 64

√
2Nf

3π N
3
2 + 4

√
2

3π
8 + 7N2

f√
Nf

N
1
2 . (6.11)

We can now combine the supersymmetric localization results in (6.8), (6.9), (6.10),
and (6.11) with the supergravity calculation in (6.4) and (6.5) to find the constants ap-
pearing in the higher-derivative supergravity on-shell action (6.3). For the ABJM theory
we find

A =
√

2k
3 , a+ v2 = − k

2 + 8
24
√

2k
, v1 = − 1√

2k
. (6.12)

For the N = 4 SYM theory with 1 adjoint and Nf fundamental hypers we have

A =
√

2Nf

3 , a+ v2 =
N2
f − 4

8
√

2Nf
, v1 = −

N2
f + 5

6
√

2Nf
. (6.13)

The results for the round sphere free energy and CT above are sufficient to fix the
unknown coefficients in the supergravity on-shell action (6.3). We can now use this on-
shell action result to calculate the logarithm of the partition function of the ABJM theory
or the N = 4 SYM on any compact three-dimensional manifold to leading and subleading
order in the large N expansion. Before we move on to present a few explicit results that
illustrate the utility of this approach it is worthwhile to demonstrate that our calculations
pass several non-trivial consistency checks.

In [104] it was shown that the large N limit of the squashed S3 partition function with
U(1) × U(1) invariance of the N = 4 SYM theory can be evaluated for the special value
of the squashing parameter b2 = 3 by exploiting a relation to matrix models arising from
topological string theory on a non-compact CY manifold. More specifically it was found
that for b2 = 3 the leading and subleading term in the large N limit are given by

F
Nf
S3
b2=3

= 4
√

2Nf

9 πN
3
2 −

2
√

2Nf

3

(
7

24Nf
− Nf

6

)
πN

1
2 . (6.14)

The result above for Nf = 1 is the same as for the ABJM theory with k = 1.19 This result
can be compared to our holographic calculation. For the squashed sphere partition function
we found that F = 1

4(b + b−1)2 and χ = 1, see (3.32).20 We can combine this with the
results for (A, v1, a+ v2) in (6.13) and the on-shell action result in (6.3) to see that indeed
for b2 = 3, the result for FNf

S3
b2=3

in (6.14) agrees with the holographic prediction. Very
recently, prompted by our results in [8], the subleading terms in the large N expansion of
the ABJM squashed S3 partition function for k = 1, 2 were studied in [105]. The authors
of [105] studied the 4th and 5th derivative of the free energy with respect to b evaluated
at b = 1 and found perfect agreement with our supergravity results for the on-shell action.

19We are not aware of an extension of the calculation of [104] applicable to the ABJM theory at general
level k.

20The supergravity squashing parameter s is related to the parameter b more commonly used in the
supersymmetric localization literature via s = b2.
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We note that the results of [105] can be viewed as computing the leading non-trivial terms
in an expansion of the squashed sphere free energy around b = 1 while our supergravity
on-shell action results in (6.3), see also (6.16) and (6.17) below, are valid for a general
squashing parameter b.

Another supersymmetric partition function for this class of SCFTs that has been stud-
ied to subleading order in the large N expansion is the ABJM topologically twisted index
on S1 × S2. This index was introduced in [106] and was used in the large N limit in [31]
for a microscopic derivation of the Bekenstein-Hawking entropy for supersymmetric AdS4
black holes. The subleading terms in the large N expansion of the ABJM topologically
twisted index on S1×S2 were studied numerically in [107]. To a good numerical accuracy
it was found that for the so-called universal twist, see [3], the index reads

logZABJM
S1×S2 = −

√
2kπ
3 N

3
2 +
√

2kπ
3

(
k

16 + 2
k

)
N

1
2 . (6.15)

This supersymmetric partition function should be compared with the higher-derivative on-
shell action of the g = 0 Euclidean Romans solution for which we found F = 1 − g and
χ = 2(1−g), see (3.24). Using this, together with (6.12) and the on-shell action in (6.3), we
indeed find that the supersymmetric localization result for the topologically twisted index
in (6.15) agrees with our holographic calculation.

6.2 Holographic predictions at order N
1
2

These non-trivial consistency checks of our holographic results increase our confidence that
one can use the results for the constants (A, v1, a+ v2) in (6.12) and (6.13) in conjunction
with the on-shell action in (6.3) to derive supergravity predictions for the leading and
subleading behavior in the large N limit of other SCFT partition functions. Below we
collect some explicit results in this spirit by focusing on the partition functions of the two
classes of 3d SCFTs discussed above placed on compact Euclidean manifolds that arise at
the asymptotic boundary of the supergravity solutions we described in section 3.2.

We start with the U(1) × U(1) squashed sphere partition function with a squashing
parameter b which can be determined from the supergravity solution in section 3.2.3 with
s = b2. For the ABJM theory we find that the result for the free energy to order N1/2 is

FABJM
S3
b

= π
√

2k
12

[(
b+ 1

b

)2
(
N

3
2 + 16− k2

16k N
1
2

)
− 6
k
N

1
2

]
. (6.16)

Similarly for the squashed sphere free energy of the N = 4 SYM theory we find

F
Nf
S3
b

= π
√

2Nf

12

[(
b+ 1

b

)2
(
N

3
2 +

(
1

2Nf
+ 7Nf

16

)
N

1
2

)
−
N2
f + 5
Nf

N
1
2

]
. (6.17)

The topologically twisted index for the universal twist and general smooth Riemann
surface of genus g can be found by using the Euclidean Romans solutions presented in
section 3.2.2. For the ABJM theory we find the result

logZABJM
S1×Σg

= (g− 1)π
√

2k
3

(
N

3
2 − 32 + k2

16k N
1
2

)
. (6.18)
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For the partition function of more general Seifert manifolds determined by an S1 fibration
over Σg we can employ the AdS-Taub-Bolt solution described around (3.26) to find

logZABJM
Mg,p

= π
√

2k
3

((
g− 1± p

4

)(
N

3
2 + 16− k2

16k N
1
2

)
− 3
k

(g− 1)N
1
2

)
. (6.19)

We can proceed similarly for the N = 4 SYM theory and find that the topologically twisted
index takes the form

logZNfS1×Σg
= (g− 1)π

√
2Nf

3

(
N

3
2 −

32 +N2
f

16Nf
N

1
2

)
, (6.20)

while for more general Seifert manifolds we have

logZNfMg,p
= π

√
2Nf

3

((
g− 1± p

4

)(
N

3
2 +

(
1

2Nf
+ 7Nf

16

)
N

1
2

)
−
N2
f + 5
2Nf

(g− 1)N
1
2

)
.

(6.21)

The Euclidean Romans solutions with g > 1 admit an analytic continuation to a regular
supersymmetric Lorentzian black hole. The Bekenstein-Hawking entropy of this universal
black hole is captured by the leading N 3

2 term in the topologically twisted index in (6.18)
and (6.20), see [3, 31]. The results in (6.18) and (6.20) lead to a precise prediction for the
first subleading correction to the black hole entropy which we discuss further below.

The superconformal index of a 3d SCFT is another important physical observable that
contains detailed information about the spectrum of BPS operators. By using the super-
symmetric AdS-Kerr-Newman solution discussed in section 3.2.5 we can find the leading
and subleading terms in the large N limit of the superconformal index. For the ABJM
theory we find

− logZABJM
S1×ωS2 = π

√
2k

3

[
(ω + 1)2

2ω

(
N

3
2 + 16− k2

16k N
1
2

)
− 3
k
N

1
2

]
. (6.22)

We note that this result applies to the superconformal index with vanishing flavor fugacities
and ω is the fugacity for the angular momentum on S2. For the superconformal index of
the N = 4 SYM theory we have the expression

− logZNfS1×ωS2 = π
√

2Nf

3

[
(ω + 1)2

2ω

(
N

3
2 +

(
1

2Nf
+ 7Nf

16

)
N

1
2

)
−
N2
f + 5
2Nf

N
1
2

]
. (6.23)

The superconformal index should account for the entropy of the supersymmetric Kerr-
Newman black hole presented in section 3.2.5 and our results above lead to a prediction
for the leading and subleading terms in this entropy as we show explicitly below.

We note in passing that there is a curious relation between the squashed S3 free energy
and the superconformal index. Namely we find that 2FS3

b
= − logZS1×ωS2 after setting

ω = b2. This relation is valid for the leading and subleading terms in the large N limit of the
SCFT and follows from the specific form of the on-shell action in (6.3) and the particular
values of F and χ for these curved manifolds. It will be interesting to understand whether
this relation between the two supersymmetric partition functions can be extended to more
subleading terms in the large N expansion.
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6.3 Corrections to the Bekenstein-Hawking entropy

As shown in section 5 the Bekenstein-Hawking entropy of a black hole in the two-derivative
Einstein-Maxwell theory is corrected by the four-derivative terms and takes the simple
form in (5.13). Using the same logic we applied above to the on-shell action we can convert
this expression into a prediction for the large N limit of the entropy of the M2-brane
system which comprises a given black hole when it is realized as an M-theory background.
Using (6.2) we find that the black hole entropy takes the form

S =
(
AN

3
2 + (v2 + a− v1)N

3
2
) AH

2L2 − πv1χ(H)N
1
2 . (6.24)

This is a general expression that can be applied to any black hole solution of the 4d
Einstein-Maxwell equations of motion which in turn can be embedded as a solution of
11d supergravity using the consistent truncation results in [2]. Below we present explicit
results for the entropy of three different black hole solutions that should describe the coarse
grained behavior of states in the ABJM and the N = 4 SYM SCFTs.

The Euclidean Romans solution presented in section 3.2.2 with Q = 0 and g > 1 can be
analytically continued to Lorentzian signature where it can be viewed as a supersymmetric
magnetic AdS-Reissner-Nordström black hole, see [40] and also [3] where the universal
nature of this black hole solution and its holographic interpretation were studied in more
detail. The area and the Euler number of the horizon of this black hole are easy to calculate
and read

AH = 2π(g− 1)L2 , χ(H) = 2(1− g) . (6.25)

We can use this in (6.24) together with the results for (A, v1, a+ v2) in (6.12) to find that
the entropy of this black hole, when interpreted as arising from microscopic states in the
ABJM theory, reads

SABJM
RN = π(g− 1)

√
2k
3

(
N

3
2 + 16− k2

16k N
1
2

)
− 2π(g− 1) 1√

2k
N

1
2 . (6.26)

Similarly we can use (6.13) to find that the entropy for the case of the N = 4 SYM theory is

S
Nf
RN = π(g− 1)

√
2Nf

3

(
N

3
2 +

7N2
f + 8

16Nf
N

1
2

)
− 2π(g− 1)

N2
f + 5

6
√

2Nf
N

1
2 . (6.27)

The AdS-Kerr-Newman solution in section 3.2.5 admits a supersymmetric limit in
which it can be interpreted as a black hole with a regular horizon. The thermodynamic
properties of the general non-supersymmetric AdS-Kerr-Newman black hole were studied
in [42]. In the supersymmetric limit the entropy of the black hole simplifies significantly,
see for instance [5, 41], and one finds that the area and the Euler number of the horizon are

AH = 2πL2
[√

1 + 4G2
NQ

2 − 1
]
, χ(H) = 2 . (6.28)

The parameter Q is the electric charge of the black hole solution and is given by

Q = m

GNΞ2 sinh(2δ) , (6.29)
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where in the BPS black hole limit the parameters (m,α, δ) in the general AdS-Kerr-Newman
solution in (3.37)–(3.39) obey the relations in (3.44) and (3.49). Using these results we
find that the supersymmetric AdS-Kerr-Newman black hole entropy with a microscopic
implementation in the ABJM theory is

SABJM
KN = π

[√
1 + 4G2

NQ
2 − 1

] √2k
3

(
N

3
2 + 16− k2

16k N
1
2

)
+ 2π 1√

2k
N

1
2 . (6.30)

Similarly, for the N = 4 SYM the supersymmetric AdS-Kerr-Newman entropy we find

S
Nf
KN = π

[√
1 + 4G2

NQ
2 − 1

] √2Nf

3

(
N

3
2 +

7N2
f + 8

16Nf
N

1
2

)
+ 2π

N2
f + 5

6
√

2Nf
N

1
2 . (6.31)

The final example we consider is the AdS-Schwarzschild metric which describes a non-
supersymmetric black hole. The metric is given by

ds2 =
(
r2

L2 + 1− m

r

)
dτ2 +

(
r2

L2 + 1− m

r

)−1

dr2 + r2dΩ2
2 , (6.32)

where dΩ2
2 is the metric on the round S2. The location of the outer horizon r+ is related

to the mass parameter m as

m = r3
+
L2 + r+ . (6.33)

The area and Euler number of the horizon are given by

AH = 4π r2
+ , χ(H) = 2 . (6.34)

When the AdS-Schwarzschild solution is interpreted holographically as describing a thermal
state in the ABJM theory the leading and subleading terms in the large N expansion of
its entropy can be determined using the results above and take the form

SABJM
Sch = 2πr2

+
L2

√
2k
3

(
N

3
2 + 16− k2

16k N
1
2

)
+ 2π 1√

2k
N

1
2 . (6.35)

Similarly, for the N = 4 SYM AdS-Schwarzschild entropy we find

S
Nf
Sch = 2πr2

+
L2

√
2Nf

3

(
N

3
2 +

7N2
f + 8

16Nf
N

1
2

)
+ 2π

N2
f + 5

6
√

2Nf
N

1
2 . (6.36)

It will be most interesting to understand how to reproduce these expressions for the thermal
entropy in the dual SCFTs. Given that supersymmetry is broken by the finite temperature
this is a hard problem to address in general.

7 Extensions and generalizations

We can generalize the four-derivative supergravity construction in section 2 in two impor-
tant ways while still making use of the two HD invariants W2 and T. The first extension is
to include general higher-derivative terms of order six or higher. This is allowed by N = 2
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supersymmetry and in general there could be an infinite series of such HD corrections. The
other extension is to couple the minimal supergravity theory to physical vector multiplets
and discuss the effect of the four-derivative corrections in this more general setting.21 We
study both of these generalizations below.

Keeping only a single auxiliary hypermultiplet but an arbitrary number of vector mul-
tiplets labelled by I = 0, 1, . . . , nV , we can write a superconformally invariant Lagrangian
density using the chiral density formula (2.1), where L± is now built as homogeneous
functions of the vector multiplets X I± and of the chiral multiplets W2

± and T± presented
in section 2. Such functions are called the prepotentials F±(XI

±,A±), and the bosonic
Lagrangian resulting from the construction is [10]

e−1L = e−K
(1

6 R−D
)
−NIJ DµXI

+DµXJ
− + 1

8 F
+
I F̂+I

ab T
ab+ + 1

8 F
−
I F̂−Iab T

ab−

− 1
4 F

+
IJ F̂

−I
ab F̂

ab−J − 1
4 F

−
IJ F̂

+I
ab F̂

ab+J

+ 1
8 NIJ Y

I
ijY

ijJ + 1
32 F

+(T+
ab)

2 + 1
32 F

−(T−ab)2
+ χH

(1
6 R+ 1

2 D
)
− 1

2 ε
ijΩαβ DµAiαDµAjβ

+ 2 g2 εijΩαβ Ai
α (ξIXI

+)(ξJXJ
−) tβγtγδ Ajδ −

1
2 gΩαβ Ai

α (ξIY ijI) tβγ Ajγ

− 1
2 F

+
A C+ −

1
2 F

−
A C− −

1
4 F

+
AI B

ij
+ Y

I
ij −

1
4 F

−
AI B

ij
− Y

I
ij

+ 1
2 F

+
AI F

−
ab F̂

ab−I + 1
2 F

−
AI F

+
ab F̂

ab+I + 1
8 F

+
AA Bij+B

ij
+ + 1

8 F
−
AA Bij−B

ij
−

+ 1
4 F

+
AAF

−
abF

ab− + 1
4 F

−
AAF

+
abF

ab+ .

(7.1)

We have a free gauging parameter ξI for each vector field, parametrizing the gauging of the
auxiliary hypermultiplet isometry (which is the R-symmetry from an on-shell point of view).
The parameters ξI are called Fayet-Iliopoulos (FI) parameters. They are the natural gen-
eralization of the gauge coupling g in minimal supergravity. The fields (A±, Bij± , F∓ab, C±)
denote the components of the (anti-)chiral multiplets whose lowest components are a linear
combination of the lowest components of the W2

± and T± multiplets,

A± ≡
1
32 c1A±

∣∣
W2
±

+ c2A±
∣∣
T±
. (7.2)

With this choice, supersymmetry uniquely fixes the form of the remaining bosonic fields
(Bij± , F∓ab, C±) that feature prominently in the above Lagrangian density. We have also
defined

e−K ≡ XI
+F
−
I +XI

−F
+
I , and NIJ ≡ F+

IJ + F−IJ , (7.3)

where F±A , F
±
I , etc. . . denote derivatives of the functions F± with respect to the fields

A±, XI
±, and so on. The Lagrangian density (7.1) is fully specified by the choice of gaug-

ing as well as by the choice of prepotentials. The latter are homogeneous functions of
21One could in general also couple the supergravity theory to arbitrary numbers of physical tensor mul-

tiplets or hypermultiplets but we will not discuss this possibility here.
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degree two in the scalars XI
± (each of Weyl weight w = 1) and A± (of Weyl weight w = 2).

Schematically, every additional power of A± in F± leads to new terms with two additional
derivatives in the Lagrangian. Thus, the derivative expansion can be written as an expan-
sion of the prepotentials in powers of A±, while the coupling to physical vector multiplets
leads to additional freedom in the functional form of F±(XI

±) at each power of A±.
The two possible generalizations of the discussion in section 2, i.e. including more

than four derivatives and coupling the minimal theory to physical vector multiplets, are in
principle independent of each other. We could tackle both at once and ask the question of
how to deal with arbitrary higher-derivative terms in matter-coupled gauged supergravity,
which would amount to using the most general prepotentials compatible with the given field
content in the Lagrangian density (7.1). However, since each of the two generalizations
poses its own specific technical challenges, we opt for splitting the discussion in two different
subsections. We begin by analyzing the effect of arbitrary higher-derivative terms on full-
BPS solutions, and in the process make some observations on the possibility of extending
these results to less supersymmetric configurations. The detailed analysis of the BPS
conditions is relegated to appendix E. We then discuss the addition of physical vector
multiplets, and focus more specifically on four-derivative terms in the so-called STU model.
There, we are able to relate our supergravity results to subleading terms in the large N
expansion of the Airy function that controls the supersymmetric partition function of the
ABJM theory on the round S3. This in turn prompts us to make a natural conjecture for
the form of the four-derivative prepotential for the STU model.

7.1 Infinite derivative expansion

Let us consider the case of minimal supergravity already discussed in section 2. The index
I = 0 in the density (7.1) becomes obsolete and we can think of it as only running over the
auxiliary scalars X±, with ξ0 = 1. It is important to note that the W2 and T invariants in
minimal supergravity can already lead to an infinite order of higher-derivatives on-shell.
This was formally discussed in detail already around (2.20). Very concretely, we can take
the following prepotentials:

F±(X±,A±) = (X±)2 +A± +
∞∑
n=1

dn
(A±)n+1

(X±)2n , (7.4)

where dn are real constants and we separated the first order in A± to make it manifest
that it precisely leads to the four-derivative terms we discussed extensively in section 2.
We now turn to analyzing the pure AdS4 solution of this HD supergravity theory and its
on-shell action. We then discuss the near-horizon supersymmetric AdS2 × Σg>0 solution
and comment on the technical challenges arising from the presence of the HD terms.

The AdS4 action at all orders. Let us first look at the simplest case, the maximally
(super)symmetric space AdS4. As a first step, we set dn = 0, ∀ n ≥ 1. In this simple case,
we have

F±I = 2X± , F±IJ = 2 , F±A = 1 , F±AA = F±AI = 0 . (7.5)
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Furthermore, the conformal supergravity formalism allows us to analyze supersymmetry
conditions off-shell. We can thus derive the consequences of demanding that a field con-
figuration be full-BPS independently of the precise form of the prepotentials F±. In ap-
pendix E, we show that maximal supersymmetry highly constrains the value of the su-
perconformal fields. The conditions we obtain after imposing the K-, D- and V-gauges
are

F±ab = T±ab = R(A)±ab = R(V)±ab
i
j = D = Cabcd = 0 , (7.6)

together with
Yij = 4 g X+X− εik t

k
j , and R = 48 g2X+X− , (7.7)

where X± are constant. If we now fix the A-gauge X+ = X− ≡ X, the resulting configura-
tion has vanishing graviphoton and constant negative (after implementing the redefinitions
in footnote 5) scalar curvature. It is therefore pure Euclidean AdS4. On this configuration,
we obtain simple expressions for the components of the (anti-)chiral multiplets beginning
with A± given in (7.2),

A± = 2 c2 (4 g2X2 −D) , B±ij = −16 c2 g X (4 g2X2 +D) εik tkj ,
F±ab = 0 , C± = −2 c2

(
192 g4X4 − 3D2 − 2�D

)
.

(7.8)

Note that we have refrained from imposing the full-BPS D = 0 condition at this stage.
The reason is that we must keep at least the terms linear in D in the Lagrangian density
in order to impose the corresponding equation of motion when going on-shell. On this
full-BPS configuration, (7.1) evaluates to

e−1L = 48 g2X4 +D (κ−2 − 4X2) + 384 c2 g
4X4 − 6 c2D

2 − 4 c2 �D . (7.9)

From this, we find that the D equation of motion imposes

X = 1
2κ , (7.10)

after using the full-BPS condition D = 0. Having fixed the value of the scalar X, we arrive
at the following simple result for the Lagrangian density:

e−1L
∣∣
EAdS4

=
(
1 + α

) 3g2

κ4 , with α ≡ 8 c2 g
2 . (7.11)

This agrees with the result derived in section 3, i.e. we have established that putting all
dn = 0 in (7.4) brings us back to the four-derivative result.

Let us now consider the full prepotential (7.4) and repeat the previous calculation. The
BPS conditions (7.7)–(7.8), being derived off-shell, remain the same. The full Lagrangian
however depends on the quantities

F±I = 2X± −
∞∑
n=1

2ndn
(A±)n+1

(X±)2n+1 , F±IJ = 2 +
∞∑
n=1

2n(2n+ 1) (A±)n+1

(X±)2n+2 ,

F±A = 1 +
∞∑
n=1

(n+ 1) dn
(A±)n
(X±)2n , F±AA =

∞∑
n=1

n (n+ 1) dn
(A±)n−1

(X±)2n ,

F±AI = −
∞∑
n=1

2n (n+ 1) dn
(A±)n

(X±)2n+1 .

(7.12)
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Plugging in the full-BPS configuration (7.8), we can work at first order in the field D

to write down the D equation of motion, since D vanishes on a full-BPS configuration.
This gives

F±I = 2X − 4 c2
X

∞∑
n=1

ndn α
n (4 g2X2 − (n+ 1)D

)
+O(D2) ,

F±IJ = 2 + 4 c2
X2

∞∑
n=1

n(2n+ 1) dn αn
(
4 g2X2 − (n+ 1)D

)
+O(D2) ,

F±A = 1 + 1
4 g2X2

∞∑
n=1

(n+ 1) dn αn
(
4 g2X2 − nD

)
+O(D2) ,

F±AA = 1
4 g2X4

∞∑
n=1

n(n+ 1) dn αn−1 (4 g2X2 − (n− 1)D
)

+O(D2) ,

F±AI = − 1
2 g2X3

∞∑
n=1

n(n+ 1) dn αn
(
4 g2X2 − nD

)
+O(D2) .

(7.13)

Armed with this, we can collect the linear terms in the Lagrangian (7.1) that contribute
to the D equation of motion. They are

e−1L 3 D
[
κ−2 − 4X2 + 4X2

∞∑
n=1

(
2n(n+ 1) + n− n(n+ 1)(2n+ 1)

)
dn α

n+1 (7.14)

− 4X2
∞∑
n=1

(
3n(n+ 1)− 4n(n− 1)(n+ 1) + 2n(n− 3)(n+ 1)

)
dn α

n+1
]
.

The bracket must vanish on-shell, and we find that it simplifies to a rather compact ex-
pression. As a result, the D equation of motion simply implies

κ−2 − 4X2
(

1−
∞∑
n=1

ndn α
n+1

)
= 0 . (7.15)

This fixes the value of the scalar X,

X = 1
2κβ , with β ≡

(
1−

∞∑
n=0

ndn α
n+1

) 1
2

. (7.16)

We can now compute the infinite derivative on-shell action for the maximally supersym-
metric EAdS4 configuration whose conformal boundary is the round three-sphere. First,
the Lagrangian density (7.1) with prepotential (7.4) evaluates to

e−1L
∣∣
EAdS4

= 1
β4

[
1 +

∞∑
n=0

dn α
n+1

]
3g2

κ4 , (7.17)

where we have set d0 ≡ 1 in accordance with the terms linear in A± in (7.4). Clearly,
when all dn>0 vanish, we recover the expression in (7.11). As in section 2, the EAdS4
scale is related to the gauge coupling of the supergravity theory via L = g−1κ. Now, in

– 57 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
3

order to find a finite on-shell action that has a direct holographic meaning we use the
standard holographic renormalization counterterms22 discussed in section 3. After taking
into account a factor of 4π2L4/3 from the integration over the four-dimensional manifold,
we obtain the following result for the regularized on-shell action of Euclidean AdS4 in the
presence of the HD terms in (7.11)

IEAdS4 = 1
β4

[
1 +

∞∑
n=0

dn α
n+1

]
πL2

2GN
. (7.18)

Note that this is independent of the constant c1, meaning that the W2 invariant does not
contribute to the on-shell action of EAdS4. This can be understood intuitively from the
fact that EAdS4 is conformally flat with vanishing Weyl tensor. Note also that the full-
BPS conditions imply all equations of motion on-shell [108], and instead in the off-shell
formalism we needed only the addition of the D equation of motion.

The fact that the field D is forced to vanish for maximally supersymmetric solutions
presents a major technical simplification, since we only needed to keep the linear terms
without any derivatives on D. For solutions that preserve only partial supersymmetry, or
none at all, one immediately faces at least two types of complications: there are a number
of additional equations of motions to be verified and one needs to keep all orders of D
since it does not generically vanish. An illuminating example of these complications is the
half-BPS configuration AdS2 × Σg, that has been worked out in [109] in the presence of
the W2 invariant only. Indeed one finds a non-vanishing off-shell value for D and the need
to additionally verify the Maxwell equations and the equations of motion for the auxiliary
fields Y ij on top of the BPS analysis. In the presence of the T invariant this introduces an
infinite tower of additional terms one needs to keep in the Lagrangian. Analyzing this in
full detail is beyond the scope of this work and is left for the future.

7.2 Coupling to matter

We now study another generalization of the HD supergravity construction in section 2. We
restrict to four-derivative supergravity actions, but couple the theory to a number nV of
Abelian vector multiplets described again by the general Lagrangian in (7.1). To this end
we take the following prepotentials:

F±(XI
±,A±) = F (2)±(XI

±) + F (0)±(XI
±)A± , I ∈ {0, 1, . . . nV } , (7.19)

with A± defined in (7.2), and F (2)±, F (0)± real homogeneous functions of degree two
and zero, respectively. We proceed by analyzing the full-BPS background and its on-shell
action. We focus on the most prominent example of a matter-coupled 4d N = 2 gauged
supergravity theory known as the STU model. At the two-derivative level, this model
admits an embedding in maximal 4d supergravity and can be obtained as a consistent
truncation from 11d supergravity on S7 [110–112]. Part of our motivation to perform
this analysis is to relate our supergravity results to the calculation of the subleading N 1

2

22Here we assume that there are no additional subtleties involving counterterms arising from the full
tower of higher-derivative terms.
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corrections to the S3 free energy of the ABJM theory in the presence of real masses studied
in [103], which we discuss in detail below.

The AdS4 action. To evaluate the supergravity action on the full-BPS EAdS4 back-
ground, we first need to slightly generalize the BPS constraints derived in appendix E to
include the additional constraints coming from matter fermions. In the matter-coupled
theory, the full-BPS conditions we obtain after imposing the K-, D- and V-gauges are

Vµij = −2 g ξIW I
µ t

i
j = 0 , Y I

ij = 4 g εiktkj Ξ∓XI
± , (7.20)

where Ξ± ≡ ξIXI
±, together with

F±ab = T±ab = R(A)±ab = R(V)±ab
i
j = D = R(M)abcd = 0 . (7.21)

In addition, the scalars XI
± must all be constant and such that Ξ−XI

+ = Ξ+X
I
−. We now

fix the A-gauge Ξ+ = Ξ− ≡ Ξ, which also implies that XI
+ = XI

− ≡ XI for all I. This
in turn implies that, just as in the minimal supergravity case, the W2 invariant gives a
vanishing contribution to the on-shell action for any full-BPS configuration.

The contribution of the T invariant is obtained by evaluating the components of the
multiplet starting with A± in (7.2). Recall from section 2 that this invariant is built
starting from an (anti-)chiral multiplet Φ∓ of non-zero Weyl weight. In a supergravity
theory with physical vector multiplets, it seems that we have a priori different choices
for this multiplet. However, since the bosonic components of Φ∓ are also constrained by
the amount of supersymmetry that the background preserves, this ambiguity is in fact
lifted for the full-BPS configuration. We find that the Lagrangian density (7.1) with the
prepotentials (7.19) evaluates on the above full-BPS configuration to

e−1L = 1
6 R

(
e−K + 2κ−2)+ 4 g2 Ξ2NIJ X

IXJ − 16 g2 κ−2 Ξ2 (7.22)

− 2 c2
(
F (0)+ + F (0)−)[RabRab − 1

3 R
2 − 1

3 DaD
aR

]
− 4

3 g
2 Ξ2 c2R

(
F

(0)+
I + F

(0)−
I

)
XI ,

where we have used that F (0)± are homogeneous of degree zero. Because of our gauge-
fixing choice, we have F (0)+ = F (0)− and we simply write this quantity as F (0). The same
is of course true for F (2)±, and for the various derivatives with respect to XI . In the
density (7.22), the quantities e−K and NIJ are built from the full prepotentials (7.19). We
can express them in terms of the two-derivative quantities derived from F (2) as follows,

e−K = e−K
(2) − 16 g2 c2 Ξ2 F

(0)
I XI , NIJ = N

(2)
IJ − 16 g2 c2 Ξ2 F

(0)
IJ , (7.23)

where we made use of the full-BPS constraints. Using this, we rewrite the Lagrangian
evaluated on the full-BPS configuration as

e−1L = 1
6 R

(
e−K

(2) + 2κ−2)+ 4 g2 Ξ2 (N (2)
IJ X

I XJ − 4κ−2)
− 4 c2 F

(0)
[
RabRab −

1
3 R

2 − 1
3 DaD

aR

]
− 16

3 g2 c2R Ξ2 F
(0)
I XI − 64 g4 c2 Ξ2 F

(0)
IJ XI XJ .

(7.24)
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We stress that this form of the Lagrangian is valid for arbitrary functions F (2) and F (0)

since we only made use of homogeneity properties and off-shell BPS constraints.
At this stage, let us first focus on the two-derivative case and set c2 = 0. Using the

last remaining full-BPS condition R = 48 g2 Ξ2, the first line of (7.24) reads

e−1L
∣∣
EAdS4

= 48 g2 Ξ2 F (2) . (7.25)

For the EAdS4 geometry of scale L = g−1κ, the Ricci scalar is given by R = 12L−2,
which fixes

ξIX
I = 1

2κ . (7.26)

To determine the values of the individual scalar fields we can now extremize (7.25) subject to
the above constraint. This is an alternative route to fixing all the scalars instead of explicitly
solving the D equation of motion and using the additional BPS constraints coming from the
variations of the physical gaugini. The reason we take this route is so that we can present
a partially off-shell expression for the AdS4 on-shell action that we find illuminating for
our purposes. The motivation for employing this approach is to relate the on-shell action
result to the field theory calculation of the ABJM S3 partition function with general real
mass parameters. To make the analysis explicit consider the two-derivative STU model
with nV = 3 vector multiplets defined by the following prepotential and FI parameters

F
(2)
STU =

√
X0X1X2X3 , ξI =

(1
4 ,

1
4 ,

1
4 ,

1
4

)
. (7.27)

To evaluate the EAdS4 on-shell action we again take the conformal boundary to be S3 and
we employ holographic renormalization.23 Using the above full-BPS conditions, the finite
EAdS4 on-shell action takes the form

ISTU
EAdS4(z) = 2π L2

GN

√
z0 z1 z2 z3 , with

3∑
I=0

zI = 2 . (7.28)

Here, we introduced the dimensionless variables

zI ≡ κXI . (7.29)

It is worth clarifying the precise meaning of the “on-shell” action in (7.28). It is
computed by setting all the fields of the supergravity theory to their on-shell value, with
the exception of the individual scalar fields XI . An efficient shortcut to find the correct
on-shell values for the scalars is then to extremize ISTU

EAdS4
(z) as a function of zI subject to

the linear constraint in (7.28). Performing this extremization we find

z0 = z1 = z2 = z3 = 1
2 , (7.30)

23Note that we are not discussing possible subtle issues with holographic renormlization in this section.
In particular, in the presence of extra matter fields there could be finite counterterms needed when per-
forming holographic renormalization for supersymmetric solutions of a given supergravity theory, see for
example [113, 114]. Since we are considering the maximally symmetric AdS4 vacuum solution of the theory
we do not expect such subtleties to arise.
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and evaluating (7.25) at this extremum yields

ISTU
EAdS4

∣∣
∗ = π L2

2GN
. (7.31)

This of course agrees with the two-derivative on-shell action in the absence of vector multi-
plets given in (7.18). The main reason to present both the true on-shell value of the AdS4
action in (7.31) as well as the “partially on-shell” expression in (7.28) is that the result for
ISTU

EAdS4
(z) in (7.28) has a clear holographic meaning. Namely, (7.28) can be thought of as

the leading order in the large N supersymmetric S3 partition function of the k = 1 ABJM
theory in the presence of the three independent real mass parameters [115]. The extrem-
ization procedure to go from ISTU

EAdS4
(z) to the on-shell value in (7.31) is the supergravity

analogue of F-maximization [116]. We emphasize that while the supergravity result for
ISTU

EAdS4
(z) agrees with the ABJM S3 free energy in the presence of real masses it is ob-

tained in a somewhat ad-hoc way, see [117] for further discussion. The rigorous method
to derive the gravitational dual of the ABJM theory on S3 in the presence of general real
masses is to construct new Euclidean supergravity solutions asymptotic to AdS4 with an
S3 boundary that have non-trivial profiles for the supergravity scalar fields as in [113].
In the discussion below we will continue to employ the short-hand procedure leading to
the partially on-shell answer in (7.28) even in the presence of the HD corrections to the
supergravity action. It is an interesting open problem to understand how to generalize the
solutions of [113] in the HD context.

We now return to the full-BPS Lagrangian (7.24) and study the effects of the HD
terms. Since F (0) is of degree zero, when c2 6= 0 we find the simple result

e−1L
∣∣
EAdS4

= 12L−2 F (2) + 48 c2 L
−4 F (0) , (7.32)

which, following the short-hand procedure described above, should again be extremized
under the condition (7.26). It is simple to show that the saddle point evaluation of the
scalars XI remains exactly the same as in the two-derivative case, again due to the fact
that F (0) is of degree zero. Therefore, we can take the four-derivative STU model with a
completely arbitrary function F (0)

STU and still find the extremum

z0 = z1 = z2 = z3 = 1
2 . (7.33)

The four-derivative “partially on-shell” action for EAdS4 with an S3 boundary is then

ISTU
EAdS4(z) = 2π L2

GN

√
z0 z1 z2 z3 + 64π2c2 F

(0)
STU(zI) . (7.34)

The on-shell value can be obtained using the extremized zI in (7.33) and reads

ISTU
EAdS4

∣∣
∗ = π L2

2GN
+ 64π2c2 F

(0)
STU

(
zI = 1

2

)
. (7.35)

These results hold for arbitrary functions F (0)
STU(zI) that are homogeneous of degree zero.
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ABJM theory and the Airy function. To find the function F
(0)
STU(zI) that deter-

mines the four-derivative corrections to the STU model we can take advantage of the
supersymmetric localization calculations of the S3 partition function of the ABJM the-
ory, see [99, 100] and references therein. As discussed above, the two-derivative version of
the STU model can be obtained from a consistent truncation of 11d supergravity on S7,
which means that it is holographically dual to the ABJM theory at Chern-Simons level
k = 1. In the brief field theory discussion below we will keep k arbitrary and finite since
the supersymmetric localization results apply for general values of k. In particular, we
will make use of the results of Nosaka [103] who determined the S3 partition function of
the ABJM theory away from the superconformal point, i.e. allowing some freedom in the
R-charge assignment of the bi-fundamental multiplets, or equivalently studying the theory
with non-vanishing real mass parameters.

Let us very briefly recall the basic features of the supersymmetric S3 partition function
of a general 3d N = 2 Chern-Simons-matter theory arising from M2-branes. It can be
written as a function of the gauge group rank N via an inverse transformation of the
so-called grand potential J ,

Z(N) =
∫ dµ

2πi e
J(µ)−µN , (7.36)

where µ is the chemical potential dual to N . The grand potential can be determined from an
alternative formulation of the supersymmetric localization matrix model in terms of a Fermi
gas. For the ABJM theory (and other similar models enjoying additional supersymmetry),
the Fermi gas can be treated in the ideal gas approximation. One can then derive the
following expressions for the perturbative part of the grand potential24

Jpert(µ) = C
3 µ

3 + Bµ+ A , (7.37)

for some constant parameters A, B, C that are specific to the theory in question and do not
depend on N . The result for the perturbative part of Z is then given in terms of the Airy
function and reads

Zpert(N) = eA C−
1
3 Ai[C−

1
3 (N − B)] . (7.38)

The Airy function admits a simple large N expansion given by

− logZ(N →∞) = 2
3
√

C
N

3
2 − B√

C
N

1
2 + 1

4 logN +O(N0) . (7.39)

It is clear that the leading and first subleading term in the above large N expansion are
determined by the constants B and C. One can use this fact, together with the AdS/CFT
correspondence and the bulk on-shell results derived previously, to fix the functions F (2)

and F (0) entering the supergravity prepotentials.
The ABJM theory admits a deformation by three real mass parameters that break the

conformal symmetry of the theory but preserve N = 2 supersymmetry. These deformations
24One can also determine the non-perturbative part, which is related to instanton corrections and is

beyond the reach of HD supergravity.
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can be organized in terms of four parameters ∆i which obey the constraint (see for instance
section 5 in [115])

4∑
i=1

∆i = 2 . (7.40)

In [103] Nosaka calculated the S3 partition function of the ABJM theory in the presence
of two non-vanishing real masses. Translating these results in our notation leads to the
following values of the parameters ∆i

∆1,2 = 1 + ζ1,2
2 , ∆3,4 = 1− ζ1,2

2 . (7.41)

We stress that the results of [103] amount to turning on only two out of the three possible
real mass parameters which is manifested in the following relations obeyed by the ∆i

∆i+2 = 1−∆i . (7.42)

Having fixed our conventions, we can read off the coefficients B and C entering the Airy
function (7.38) from Equation (1.12) in [103],

CABJM = 1
8π2k∆1∆2∆3∆4

, BABJM = 1
48k∆1∆2∆3∆4

(
2k2∆1∆2∆3∆4 +

∑
i

∆2
i

)
.

(7.43)
We note that the result in [103] is derived for ∆i obeying both the supersymmetry relation
in (7.40) and the extra condition in (7.42). We however believe that the expressions (7.43)
are valid for general ∆i obeying only the constraint in (7.40), i.e. for the ABJM theory
in the presence of three generic mass parameters. While we have no rigorous derivation
of this statement it is strongly supported by the permutation symmetry between the four
∆i and by the fact that at k = 1, 2 the ABJM theory enjoys N = 8 symmetry and the
corresponding SO(8) R-symmetry puts the three real mass parameters on equal footing.

Using these results, we arrive at the following large N expansion for the partition
function of the ABJM theory in the presence of three real mass parameters,

− logZABJM = π(16N 3
2 − kN

1
2 )

12
√

2k∆1∆2∆3∆4 −
πN

1
2
∑
i ∆2

i

12
√

2k∆1∆2∆3∆4
+ 1

4 logN . (7.44)

Note that to emphasize the similarity between this result and the HD supergravity action
in (7.34) we have grouped the two terms above in order to make manifest that they are
homogeneous of degree two and zero as a function of the parameters ∆i. We note that
for k = 1, 2, Equation (7.44) is consistent with the relations derived in [105] for 3d N = 2
SCFT partition functions of mass-deformed theories on the squashed 3-sphere. In what
follows, we will work under the assumption that (7.44) holds at general level k and at
strong coupling. It would be interesting to gather further evidence for this.

A conjecture for F
(0)
STU. We can combine the supersymmetric localization results (7.44)

with the “partially on-shell” supergravity action (7.34) to determine the unknown four-
derivative prepotential function F (0)

STU(zI). As discussed below (7.27) and (7.28), and elab-
orated upon in [117], at the two derivative level we have the following relation between the
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S3 partition function and the prepotential,

− logZ(∆i) = I2∂
EAdS4 = 2π L2

GN
F (2)(zI) with ∆i = zI , (7.45)

which holds for a large class of holographically dual pairs. For the ABJM theory and
the STU model at hand we can use (7.27) and (7.28) and the standard two-derivative
holographic relation, see (6.1) and (6.12) above,

L2

2GN
=
√

2k
3 N

3
2 . (7.46)

to reproduce the N 3
2 term in the ABJM partition function in (7.44). It is natural to

conjecture that the relation between the supergravity STU model prepotential and the
ABJM partition function in the presence of real masses continues to hold to subleading
order in the large N expansion and in the presence of higher-derivative terms. In particular,
we conjecture that the result for the ABJM S3 partition function in (7.44) should be related
to the four-derivative partially on-shell action in (7.34) as

− logZABJM(∆i) = ISTU
EAdS4(zI) with ∆i = zI , (7.47)

This in turn allows us to uniquely determine the function F (0)
STU and find

F
(0)
STU(z) = (z0)2 + (z1)2 + (z2)2 + (z3)2

8
√
z0z1z2z3

, (7.48)

with the following holographic relations between the constants in the HD supergravity
action and the field theory parameters

L2

2GN
=
√

2k
48 (16N

3
2 − kN

1
2 ) , 32πc2 = − N

1
2

3
√

2k
. (7.49)

This result is compatible with the minimal supergravity calculation in (6.12) and actually
allows us to determine both the constants a and v2 in (6.12) independently. Given that c1
is already determined in (6.12) we see that the STU model results above combined with
the supersymmetric localization calculation in (7.44) allow us to fully determine the HD
supergravity Lagrangian at the four-derivative order. We note that the relation between
the four-derivative supergravity couplings c1,2 is

c1 = 3 c2 < 0 =⇒ c1 < c2 . (7.50)

In particular this determines the sign of some of the corrections to the black hole entropy
in (5.13).

To the best of our knowledge the four-derivative modification of the prepotential for the
STU model of gauged supergravity in (7.48) has not appeared in the literature. A simple
consistency check for its validity is that after setting ∆i = 1

2 ∀ i, i.e. for ABJM theory at
the conformal point, we reproduce the minimal supergravity results discussed in section 6.
It would certainly be very interesting to devise more consistency checks to establish the
validity of (7.48) or to derive it directly from the HD corrections to 11d supergravity.
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Further speculations. There are a number of natural questions and open problems that
arise from the discussion above. Below we discuss some of them.

• The infinite-derivative Lagrangian for the W2 and T invariants is governed by the
formal expansion of the prepotential (7.4), which admits a natural generalization
to matter-coupled supergravity. This raises the question of how such an infinite
order expansion can arise from a string theory compactification. The analogous
question in ungauged supergravity was addressed by the OSV conjecture [118], where
the prepotential expansion is related to the topological string partition function on
Calabi-Yau manifolds. It is tempting to speculate that a similar result applies to
compactifications of 11d supergravity on Sasaki-Einstein (SE7) manifolds, all of which
lead to minimal N = 2 supergravity at two derivatives [2]. We hope that the general
form of the infinite derivative AdS4 action in minimal supergravity, (7.18), will help
to uncover the underlying structure of SE7 compactifications and its relation to string
or M-theory.

• It is also very interesting to notice that subleading terms in the Airy function, in
particular the coefficient B in (7.37), directly relate to subleading terms in the pre-
potential. This means that the proper understanding of the string theoretic origin
of the prepotential directly relates to the understanding of the exact expression for
the Airy function, and vice versa. It would be interesting if one could explore this
for more general Chern-Simons-matter theories with less supersymmetry than the
ABJM model. For instance, note that the coefficient B for the ABJM theory only has
two distinct terms of degree 2 and degree 0, which map to the respective supergravity
prepotential at two and four derivatives. The lack of further subleading terms in B
therefore suggests the absence of further HD corrections in the 4d consistent trunca-
tion of 11d supergravity on S7. It will be very interesting to prove this conjecture
explicitly.

• As noted above the W2 invariant completely drops out of the pure EAdS4 on-shell
action, at any order of derivatives and with arbitrary matter coupling. This was a
major simplification of our analysis, but also means that we cannot leverage the Airy
function to learn about another infinite tower of possible HD corrections in super-
gravity. On the other hand, the W2 invariant leads to a non-vanishing contribution at
all orders in a derivative expansion and with arbitrary matter coupling for the near-
horizon geometry of static black holes in AdS4, as shown in [109]. It would be very
interesting to generalize this analysis to include the T invariant and then compare
with subleading corrections to the holographically dual topologically twisted index.

• Above we have mostly focused on the AdS4 solution but it is desirable to have calcula-
tional control over the numerous other BPS and non-BPS supergravity backgrounds
of holographic interest. We understood many such solutions in detail in minimal four-
derivative supergravity, but generalizing these results to infinitely many derivatives
looks very cumbersome at present. For example we could consider the Wald entropy
after adding the full expansion for the prepotential in the T-invariant, but we need
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to first deal with the resulting infinite expansion of the Lagrangian in powers of the
field D. It has been suggested before, see [1] and references therein, that one could
deal with such equations of motion order by order. The validity of this perturbative
approach is yet to be carefully explored in gauged supergravity and for solutions of
holographic interest.

• We have focused here on the W2 and T invariants which were sufficient for treating
HD corrections in minimal gauged supergravity. Note however, that there could be
other HD invariants that are relevant for the 4d matter coupled gauged supergravity
theories that can be embedded in string/M-theory. We can again make a comparison
with ungauged supergravity, where for example the infinite tower of D-term HD
invariants were shown to completely vanish on BPS black holes [119]. It would be
very useful to extend such non-renormalization theorems to backgrounds in gauged
supergravity, but this is certainly more technically challenging.

• As we discussed above, the 2-derivative STU model can be embedded in maximal
4d gauged supergravity, and it is therefore natural to expect this to hold for the
conjectured four-derivative prepotential (7.48) and coupling constant relation (7.50)
as well. It would be very interesting to use the constraints of N = 8 supersymmetry
to check whether the four-derivative STU model Lagrangian we presented above is
indeed consistent and unique.

8 Discussion

In this paper we have used the interplay between HD gauged supergravity, holography and
supersymmetric localization to determine the constants controlling the four-derivative min-
imal supergravity action. This in turn allowed us to make detailed quantitative predictions
about the subleading corrections to the entropy of asymptotically AdS4 black holes and to
find the N 1

2 corrections to the partition functions of 3d Chern-Simons matter SCFTs on
compact manifolds. Our results can serve as a blueprint for future research on this topic
and can be extended in numerous different directions. We discuss several of these possible
generalizations below.

As explained in detail in section 2 and summarized in figure 1, all solutions of the
two-derivative equations of motion in the minimal supergravity theory also solve the four-
derivative ones. It is important to understand whether there are interesting new solutions
of the four-derivative equations of motion and what is their holographic interpretation. It
will be also interesting to uncover the structure of the supergravity solution space in the
presence of the six- and higher-derivative corrections discussed in section 7 as well as in
the presence of additional matter multiplets.

In section 6 we employed holography and supersymmetric localization to determine
the two constants appearing in the four-derivative minimal supergravity. It will be most
interesting to establish that four-derivative minimal supergravity, like the two-derivative
theory, arises as a consistent truncation from the HD corrections to 11d supergravity and
to perform an explicit reduction from 11d to 4d in order to determine the full form of the
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4d supergravity Lagrangian and check the results in section 6. It will also be interesting
to understand whether our 4d supergravity approach can be used in conjunction with the
ideas pursued in [49, 120] to relate supersymmetric localization calculations to the HD
corrections to 11d supergravity.

Here we have focused on 4d N = 2 supergravity but it should be possible to apply the
same approach to supergravity theories with more supersymmetry. A natural extension
of our work is to consider 4d N = 4 conformal supergravity where the structure of the
HD terms is more constrained [121–123]. It is natural to expect that when the 4d N = 2
minimal supergravity is embedded in 4d N = 4 supergravity the additional supersymmetry
will lead to a relation between the constants c1 and c2 controlling the four-derivative in-
teractions. We are planning to investigate this question in the near future. The conformal
supergravity approach cannot be applied for 4d supergravity theories with N > 4 super-
symmetry due to the absence of a corresponding superconformal algebra. Therefore, it is
desirable to develop tools to study the HD corrections to 4d N = 8 (or N = 6) supergravity
which will be of relevance for compactifications of 11d supergravity on S7 (or S7/Zk) and
the holographically dual ABJM theory.

In section 6 we used supersymmetric localization results for two families of 3d SCFTs
arising from M2-branes in order to determine the unknown constants in the four-derivative
minimal supergravity action. This in turn leads to a number of new results for the N 1

2

term in the large N expansion of supersymmetric partition functions of these SCFTs. It is
important to revisit supersymmetric localization calculations in the large N limit of these
models in order to verify our holographic predictions.25 Our methods can be applied for
any 3d N = 2 SCFT with a weakly coupled holographic dual. As emphasized in [4], such
theories should admit a universal sector in the large N limit that is captured by the 4d
N = 2 minimal supergravity and its HD extensions we studied here. In addition to the two
classes of M2-brane SCFTs discussed in section 6 we also studied this for class R SCFTs
arising from wrapped M5-branes [9]. It will be most interesting to extend this analysis for
other families of 3d N = 2 SCFTs arising in string and M-theory. This includes Chern-
Simons matter theories that control the low energy dynamics of M2-branes on Sasaki-
Einstein manifolds as well as similar theories arising from D2-D8 branes in massive IIA
supergravity [124, 125]. In addition, one could attempt to extend our results to more
exotic 3d N = 2 SCFTs with an AdS4 holographic duals in string theory, like the S-
fold SCFTs discussed in [126, 127] or the theories obtained from wrapped D4-D8 branes
studied in [128, 129] as well as similar models arising from wrapped (p, q) five-branes in
type IIB supergravity. The supergravity result for the four-derivative on-shell action of the
minimal supergravity theory we derived in (3.15) has a universal nature and it is tempting
to speculate that the corresponding supersymmetric partition functions in these different
classes of holographic SCFTs will have a similar universal structure in the large N limit.
We believe that this universality deserves further exploration by field theory methods.

We have limited our holographic analysis in section 6 to the leading N 1
2 correction

in the large N expansion of physical observables in the ABJM theory and the 3d N = 4
25After some of our results were announced in [8] such analysis was undertaken for the squashed S3

partition function of the ABJM theory in [105].
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SYM theory. In general one should expect further corrections of order N−n+1
2 for n ≥

−1 as well as a log(N) term. This expectation is explicitly confirmed by the large N
expansion of the Airy function that controls the S3 partition function of these theories,
see (7.38) and (7.39). It will be most interesting to calculate these corrections explicitly
in supergravity. The log(N) correction is expected to arise from one-loop contributions
from all supergravity modes and can be computed by applying the methods used in [130,
131]. For general asymptotically AdS4 solutions of minimal supergravity this one-loop
calculation has not been performed and it will be desirable to do so. We expect that
the N−n+1

2 corrections in the supersymmetric partition functions will be controlled by the
six- and higher derivative coefficients dn in (7.18). It will be very interesting, and probably
technically challenging, to calculate these coefficients either from a first principle derivation
using HD terms in 11d supergravity or by using supersymmetric localization. We note in
passing that the Airy function that determines the round S3 partition function of the
ABJM theory (with vanishing real masses) was derived from AdS4 supergravity by using
supergravity supersymmetric localization in [132]. This result of course includes both the
log(N) and N−n+1

2 and it will be interesting to revisit the analysis of [132] in light of the
HD on-shell action calculations we performed in this work.

While many of the details of our calculations were specific to 4d supergravity and 3d
SCFTs it should be possible to apply our HD supergravity approach to theories in higher
dimensions. The natural first target for this is 5d N = 2 gauged supergravity which
admits a conformal supergravity treatment and the leading HD terms have been studied
in [133, 134], see also [135, 136] for a holographic application. It will be interesting to
repeat our analysis above for the special case of minimal 5d N = 2 gauged supergravity
which captures the universal stress-energy tensor dynamics of planar 4d N = 1 holographic
SCFTs and we plan to study this in future work. Studying HD corrections to 6d and 7d
supergravity will also be interesting and should be possible to do using conformal super-
gravity techniques for the half-maximal gauged supergravity theories. These models have
twice the number of supercharges of the 4d N = 2 supergravity we treated in this work
and their structure will be similar to the 4d N = 4 theory discussed above. It is clear that
many of these generalizations should be accessible with currently available techniques and
given the importance of studying HD corrections in top-down holography it will be most
interesting to pursue them in the future.
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Weyl multiplet parameters

field eµ
a ψµ

i bµ Aµ Vµij T±
ab χi D ω abµ fµ

a φµ
i εi ηi

w −1 − 1
2 0 0 0 1 3

2 2 0 1 1
2 − 1

2
1
2

c 0 ∓ 1
2 0 0 0 ±1 ∓ 1

2 0 0 0 ± 1
2 ∓ 1

2 ± 1
2

γ̃5 ± ± ± ± ± ± ± ±

Table 3. Weyl weights w, chiral SO(1, 1) weights c, and chirality/duality γ̃5 of the fields and
spinors for the four-dimensional Euclidean Weyl multiplet.

A Conventions and conformal supergravity details

In this appendix we review some details of the conformal supergravity formalism for four-
dimensional N = 2 theories in Euclidean signature, following [10]. The Lorentzian counter-
part is presented in many papers and reviews, see the recent book [6] for a comprehensive
exposition. Conformal supergravity is based on the gauging of the superconformal al-
gebra SU∗(4|2). This algebra comprises the generators of the spatial diffeomorphisms,
local tangent space rotations, dilatation, special conformal, chiral SU(2) and SO(1, 1)
R-symmetry, supersymmetry (Q) and special supersymmetry (S) transformations. The
gauge fields associated with general coordinate transformations (eµa), dilatations (bµ), chi-
ral R-symmetry (Vµij and Aµ) and Q-supersymmetry (ψµi) are independent fields. The
remaining gauge fields associated with the Lorentz (ωµab), special conformal (fµa) and
S-supersymmetry transformations (φµi) are composite fields. The corresponding super-
covariant curvatures and covariant fields are contained in a tensor chiral multiplet called
the Weyl multiplet, which comprises 24 ⊕ 24 off-shell degrees of freedom. In addition to
the independent superconformal gauge fields, it contains three other fields: a symplectic-
Majorana spinor doublet χi, a real scalar D, and a Lorentz antisymmetric tensor Tab, which
decomposes into a self-dual and an anti-self-dual field. The Weyl and chiral weights for the
fields in this multiplet are presented in table 3.

The composite gauge fields ωµab, φµi and fµ
a, associated with SO(4) tangent space

rotations, S-supersymmetry, and conformal boosts, respectively, are expressed in terms
of the independent fields through the so-called conventional constraints. Their explicit
expressions are

ωµ
ab = − 2 eν[a (∂[µ + b[µ)eν]

b] − eν[aeb]ρ eµc (∂ρ + bρ)eνc −
1
4
(
2 ψ̄µiγ5γ[aψb]i + ψ̄ai γ

5γµψ
b i) ,

φµ
i = − 1

2i
(
γρσγµ −

1
3γµγ

ρσ
)(
Dρψiσ + 1

32iTab γabγρψiσ + 1
4γρσχ

i
)
, (A.1)

fµ
a = 1

2 R(ω, e)µa −
1
4

(
D + 1

3R(ω, e)
)
eµ
a − 1

2 R̃(A)µa −
1
32 T

−
µb T

+ ba + . . . ,

where the ellipses in the last equation denote fermionic contributions. Here and elsewhere
we use the notation R̃ab = 1

2εabcdR
cd. Furthermore, R(ω, e)µa = R(ω)µνabebν is the non-

symmetric Ricci tensor, and R(ω, e) the corresponding Ricci scalar. The uncontracted
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curvature R(ω)µνab is defined by

R(ω)µνab = ∂µων
ab − ∂νωµab − ωµac ωνcb + ων

ac ωµc
b . (A.2)

It is also useful to present explicitly the trace of the conformal boosts gauge field, including
fermions:

fµ
µ = 1

6 R(ω, e)−D + 1
12 e

−1εµνρσψ̄µiγνDρψiσ + 1
4 ψ̄µiγ

5γµχi . (A.3)

Throughout, the full superconformal covariant derivative is denoted by Dµ, while Dµ de-
notes a derivative covariant with respect to Lorentz, dilatation, chiral SO(1, 1), and SU(2)
transformations. Due to the fact that the dilatation gauge field bµ transforms under confor-
mal boosts, the superconformal d’Alembertian acting on a field with non-zero Weyl weight
contains the trace of fµa. In particular, on a scalar field ϕ of weight w,

�cϕ ≡ DµDµϕ = DµDµϕ+ w fµ
µϕ+ fermions . (A.4)

For completeness we present the definitions of all the supercovariant curvature tensors,

R(P )µνa = 2D[µ eν]
a − 1

2 ψ̄i[µγ
5γaψν]

i ,

R(Q)µνi = 2D[µψν]
i − i γ[µφν]

i + 1
16iTab γabγ[µψν]

i ,

R(D)µν = 2 ∂[µbν] − 2 f[µ
aeν]a −

1
2i ψ̄i[µγ5φν]

i + 3
4 ψ̄i[µγ

5γν]χ
i ,

R(A)µν = 2 ∂[µAν] + 1
2i ψ̄i[µφν]

i + 3
4 ψ̄i[µγν]χ

i ,

R(V)µνij = 2 ∂[µVν]
i
j + V[µ

i
k Vν]

k
j

− 2i ψ̄j[µγ5φν]
i + 3 ψ̄j[µγ5γν]χ

i + 1
2δ

i
j
(
2i ψ̄k[µγ

5φν]
k − 3 ψ̄k[µγ

5γν]χ
k) ,

R(M)µνab = 2 ∂[µων]
ab − 2ω[µ

acων]c
b − 4f[µ

[aeν]
b] + 1

2i ψ̄i[µγ5γabφν]
i (A.5)

− 1
8i ψ̄µ iγ5ψν

i T ab − 3
4 ψ̄i[µγ

5γν]γ
abχi − ψ̄i[µγ5γν]R(Q)ab i ,

R(S)µνi = 2D[µφν]
i + 2i f[µ

aγaψν]
i + 1

16i /DTab γabγ[µψν]
i

+ 3
2i γaψ[µ

iψ̄ν]jγ
5γaχj − 1

4iR(V)abijγabγ[µψν]
j − 1

2iR(A)abγ5γabγ[µψν]
i ,

R(K)µνa = 2D[µfν]
a − 1

4 φ̄i[µγ
5γaφν]

i − 1
8

[
i ψ̄i[µγ5DbT

ba ψiν] + 6e[µ
aψ̄ν]iγ

5 /Dχi

− 3Dψ̄i[µγ5γaψν]
i + 8ψ̄i[µγ5γν]DbR(Q)ba i

]
.

It is convenient to introduce two modified curvatures by including suitable covariant terms,

R(M)abcd ≡ R(M)abcd + 1
32
(
T−ab T

+cd + T+
ab T

−cd) ,
R(S)abi± ≡ R(S)abi± −

3
8 T
±
ab χ

i
± .

(A.6)
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By making use of the conventional constraints and the Bianchi identities of the supercon-
formal algebra, one can show that the modified curvature R(M)abcd satisfies the following
relations:

R(M)µνab eνb = R̃(A)µa + 3
2 D eµ

a ,

1
4 εab

ef εcdghR(M)ef gh = R(M)abcd ,

εcdeaR(M)cd eb = εbecdR(M)ae cd = 2 R̃(D)ab = 2R(A)ab .

(A.7)

Note that this modified curvature does not satisfy the pair exchange property,

R(M)abcd −R(M)cdab = 4 δ[a
[c R̃(A)b]d] . (A.8)

In addition to the Weyl multiplet, we must also consider matter multiplets. Even
though we restrict ourselves to minimal supergravity in most of this paper, the super-
conformal formulation of the theory is equivalent to the usual Poincaré formulation only
upon including suitable compensating multiplets [6, 13]. These multiplets act as gauge
compensators and allow one to gauge-fix the extra superconformal symmetries. After
eliminating the auxiliary fields, one is left with a supergravity theory invariant under the
super-Poincaré group which describes a physical metric, graviphoton field, and gravitini.
For this procedure, two compensating multiplets are required. One is necessarily a vector
multiplet, which contains the vector field that will become the graviphoton in the Poincaré
theory. The Euclidean version of this multiplet involves two real scalar fields X+ and X−,
one symplectic-Majorana spinor Ωi, the gauge field Wµ with field strength Fµν , and an
auxiliary field Y ij obeying the pseudo-reality condition (Y ij)∗ ≡ Yij = εikεjl Y

kl. We refer
the reader to [10] for more details.

The other compensating multiplet can be either a hypermultiplet, a tensor multiplet,
or the so-called non-linear multiplet, and different choices lead to different formulations
of Poincaré supergravity. These formulations have been discussed at the two-derivative
level26 in [11]. The hypermultiplet involves the scalars Aiα which are local sections of
an Sp(1) = SU(2) bundle, together with the symplectic-Majorana fermions ζα. There exists
a covariantly constant anti-symmetric tensor Ωαβ (and its complex conjugate Ωαβ satisfying
the reality condition Ωαγ Ωβγ = δα

β), which in principle depends on the scalars. The Sp(1)
connection is provided by the SU(2) R-symmetry gauge field Vµij . The sections Aiα are
pseudo-real, i.e. they are subject to the constraint εijΩαβAi

α = Ajβ ≡ (Ajβ)∗. The
target-space is a hyper-Kähler cone whose metric is encoded in the so-called hyper-Kähler
potential. In this paper, we only consider the case where the hyper-Kähler cone is flat. To
ensure that the Poincaré theory based on a hypermultiplet compensator is gauged, we must
include a coupling to the compensating vector multiplet [6]. Of course, this requires that the
tensor Ωαβ , as well as related quantities, are invariant under the gauge group. In addition
the covariant derivatives must be covariantized also with respect to the gauge group.

26We are not aware of a rigorous and thorough discussion of the various formulations of Poincaré super-
gravity based on different compensators when higher-derivative terms are present.
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vector multiplet tensor multiplet hypermultiplet
field X± Wµ Ωi± Y ij Lij Ea ϕi± G± Ai

α ζα±

w 1 0 3
2 2 2 3 5

2 3 1 3
2

c ∓1 0 ∓ 1
2 0 0 0 ± 1

2 ±1 0 ± 1
2

γ5 ± ± ±

Table 4. Weyl weights w, chiral SO(1, 1) weights c, and chirality γ5 for the fields in the Euclidean
vector multiplet, tensor multiplet, and hypermultiplet.

For completeness, we also consider the possibility of using a tensor multiplet as gauge
compensator in view of the discussion in appendix B. The Euclidean version comprises a
triplet of scalar fields Lij = εikεjl Lkl, a symplectic-Majorana spinor ϕi, an anti-symmetric
tensor gauge field Eµν and two real scalars G±. The supercovariant field strength of Eµν
is Eµ = 1

2 e
−1εµνρσ∂νEρσ modulo fermions. Just as for the hypermultiplet, we obtain a

gauged supergravity theory in the Poincaré frame provided we include a coupling to the
compensating vector multiplet. The field content of the three multiplets just mentionned
is summarized in table 4 together with their Weyl and chiral weights.

B An alternative off-shell formulation and the R2 invariant

Besides the Weyl-squared and T invariants introduced in section 2.1, it turns out that there
are additional four-derivative invariants that contain terms quadratic in the Ricci scalar R.
Those are built from tensor multiplets [14–16]. It is natural to wonder what is their effect
on the form of the PHD action (2.37) and how they affect the two-derivative solutions.
We already mentioned that there exists an alternative formulation of Poincaré gauged
supergravity that makes use of a tensor multiplet compensator instead of the hypermultiplet
used previously [11]. Before analyzing the R2 invariant proper, let us recall how this
alternative formulation works at the two-derivative level. To make use of existing results
in the papers just mentioned, we work in Lorentzian signature for the remainder of this
section.

The bosonic terms of the superconformally invariant Lagrangian density for the charged
compensating tensor multiplet take the form [14]:

e−1LT = − 1
2 L−1|DµLij |2 + L

(1
3R+D

)
+ L−1(EµEµ + |G|2

)
− L−1EµVµij Lik εjk

− 1
2i e−1εµνρσL−3LijEµν ∂ρLik ∂σLjl εkl (B.1)

+ g

[
XG+ X̄Ḡ− 1

2 Y
ijLij −

1
2 E

µWµ

]
,

where g is the gauge coupling and L2 ≡ LijLij . We now consider the two-derivative La-
grangian

L2∂ = LV − LT , (B.2)

– 72 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
3

where we recall that the Lagrangian density for the compensating vector multiplet in
Lorentzian signature is given by [6]

e−1LV = − 4 |X|2
(1

6R−D
)

+ 4DµX DµX̄ + 1
2
(
F̂−ab
)2 + 1

2
(
F̂+
ab

)2 (B.3)

− 1
4 XF̂

+
ab T

ab+ − 1
4 X̄F̂

−
ab T

ab− − 1
2 Y

ijYij −
1
32 X

2(T+
ab)

2 − 1
32 X̄

2(T−ab)
2 .

To go to the Poincaré frame, we impose the V-gauge Lij = δijL, the D-gauge L = constant,
the K-gauge bµ = 0 and the A-gauge X = X̄. The last two gauge choices are the same as
in the formulation with a hypermultiplet compensator. The two-derivative EoMs for the
auxiliary scalar fields D, G and Yij then impose, respectively,

X = 1
2 L1/2 , G = Ḡ = −1

2 g L3/2 , Yij = 1
2 g Lij , (B.4)

while the EoMs for the SU(2) R-symmetry connection and the vector field Eµ fix

Eµ = 0 , Vµij δik εjk = −1
2 gWµ . (B.5)

Using this in (B.2) gives the two-derivative Lagrangian density in the Poincaré frame,

e−1L2∂ = −1
2 LR+ 3

8 g
2 L2 − 1

2 FµνF
µν . (B.6)

We can now normalize the Einstein-Hilbert term by fixing the constant in the D-gauge
as L = κ−2. Defining L ≡ 2

√
2 g−1κ and implementing the redefinitions in footnote 5, we

recover precisely the two-derivative part of (2.37). Thus, as is well-known, the formulations
of Poincaré supergravity using a tensor multiplet or a hypermultiplet as a compensator are
equivalent at the two-derivative level.

We now turn on the R2 invariant of [14]. In particular, we use their equation (3.21)
with H(L) = c3 L−2, and add the resulting Lagrangian density to (2.24),

LHD = LV − LT + (c1 − c2)LW2 + c2 LGB + c3 LR2 , (B.7)

with

LR2 = L−2
[
−1

2 L2
(1

3R+D

)2
+ E2

(1
3R+D

)
+ |G|2

(1
6R+ 2D

)
−DaEb

(
LR(V)′ab − 1

2
(
T−abG+ T+abḠ

))
+ 1

8

(
LR(V)′ab −

1
2
(
T−abG+ T+

abḠ
))2

− 1
64

(
T−abG+ T+

abḠ

)2
+ |DµG|2 + 2 (D[aEb])2

]
(B.8)

− 4 L−4 (|G|2 + E2)2 .
Here, we have imposed the V- and D-gauge given above, and defined the diagonal piece
of the SU(2)R connection V ′µ ≡ Vµij δik εjk, and the corresponding curvature R(V)′ab. The
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EoMs for the superconformal fields are now modified due to the presence of this new
invariant. For the auxiliary scalar field D, we find

0 = L− 4X2 +
(
12 (c2 − c1) + c3

)
D − c3 L−2

(
2 |G|2 + EµEµ −

1
3 L2R

)
. (B.9)

The auxiliary complex scalar G of the tensor multiplet has become dynamical in the higher-
derivative theory, and its EoM reads

0 = LG+ g L2X

+ c3

(
DµDµG−G

(1
6R+ 2D

)
− 1

2 T
+
abD

aEb + 1
8 LR′abT

+ab − 1
32(T+

ab)
2 Ḡ

+ 8 L−2G (|G|2 + EµEµ)
)
.

(B.10)

The EoM for the field V ′µ picks up a c3-dependent correction,

0 = Eν + 2
(
c2 − c1 −

1
4 c3

)
DµR′µν + 2 c3 L−1Dµ

[
DµEν + 1

8 T
−
µνG+ 1

8 T
+
µνḠ

]
, (B.11)

while the Eµ-EoM in the higher-derivative theory reads

0 = V ′ν + 1
2 gWν − 2 L−1Eν

− 2 c3 L−2
(

4DµDµEν −Dµ
[
R′µν L− 1

2 T
−
µνG−

1
2 T

+
µνḠ

]
− Eν

[1
3R+D

]
+ 4 L−2Eν (|G|2 + EµEµ)

)
.

(B.12)

Lastly, the EoM for the U(1)R connection is given by

0 = X2Aν + (c2 − c1)
(
∇µR(A)µν + 1

16 T
+
ν
ρDµT−µρ −

1
16 T

−
ν
ρDµT+

µρ

)
− 1

8i c3 L−2 (GDνḠ− ḠDνG) , (B.13)

and the EoM for the (anti-)self-dual projections of the T -tensor by

0 = X

(
F±ab −

1
4 X T±ab

)
+ (c2 − c1)

(
Πef
± ab

[
DeDcT∓cf + 1

2 T
∓c
eRcf

]
− 1

128 T
±
ab(T

∓
cd)

2
)

+ c3 L−2G∓Πcd
± ab

[
DcEd −

1
4 LR′cd + 1

16
(
T−cdG+ T+

cd Ḡ
)]
,

(B.14)

where G− = Ḡ and G+ = G. It should be clear that, unlike the case when c3 = 0
analyzed in the main text, the two-derivative solutions for the superconformal fields are
not automatically solutions to the above EoMs. The nature of the obstruction warrants
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some comments. Plugging in the two-derivative solutions, we find the following constraint
from the G-EoM,

g c3

[
L
(1

6 R+ 2D∗
)

+ 1
4 (Fab)2 − 2 g2 L2

]
= 0 , (B.15)

where the D scalar appearing in the equation is taken at its on-shell value

D∗ = − c3
12 (c1 − c2)− c3

(1
2 g

2 L− 1
3R
)
. (B.16)

Another obstruction comes from the T -EoM, which gives

g c3 Fab = 0 . (B.17)

Note that there is no obstruction from the other EoMs. Thus we see that the two-derivative
solutions automatically solve the EoMs of the four-derivative theory only in the case where

g c3 = 0 . (B.18)

When we have both the R2 invariant and a gauging, we must instead resort to solving
the EoMs perturbatively in c3. From the obstruction just mentioned, we know that the G
and Tab two-derivative solutions should be modified at first order in c3. So we let

G = G0 + c3G1 , T±ab = T±ab,0 + c3 T
±
ab,1 . (B.19)

From the G-EoM expanded to first order, we obtain

G1 = −g8 L−1/2 F 2
ab + 7

8 g
3 L3/2 , (B.20)

where we have also used the trace of the two-derivative Einstein equation R = 3
2 g

2 L. For
the first correction to the T -tensor, we find

T±ab,1 = g2 L−1/2F±ab . (B.21)

Using this, the action (B.7) to first order in c3 reads

e−1LHD = −1
2 LR

(
1− g

2c3
12

)
+ 3

8 g
2 L2

(
1− 2g2c3

3

)
− 1

2 F
2
ab

(
1+ 3g2c3

16

)
− c3

18 R
2 , (B.22)

where we have set c1 = c2 = 0 for clarity. Although we still have the freedom to fix
the constant L via the D-gauge, it is clear that no choice of L will give rise to a canonical
normalization for both the Einstein-Hilbert and the cosmological constant term. Evidently,
this is remedied when considering ungauged supergravity where g = 0. But since we will
be interested in asymptotically AdS solutions for holographic applications, the analysis of
this section prompts us to set c3 = 0.

As a final remark, we note that the peculiarities of the R2 invariant highlighted here
originate from the fact that it has been constructed from a compensating multiplet, unlike
the W2 and T invariants based on the Weyl multiplet. While the latter contains physical
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fields for which it is sensible to consider higher-derivative corrections, the former should
ultimately be seen as a useful tool to formulate the supergravity theory of interest in
the Poincaré frame. As such, the reasons to consider higher-derivative corrections for a
compensator seem unclear in the first place. Of course, in the presence of physical tensor
fields, this point is moot and one should indeed include the R2 invariants of [14–16] when
considering four-derivative actions.

C Supergravity spectrum

In this appendix we present the details of the calculation of the supergravity spectrum
around the Euclidean AdS4 vacuum solution as discussed in section 4. We start with
the Euclidean superconformal higher-derivative action (2.24) and fix the K-, V-, D- and A-
gauges (2.25), (2.26), (2.27) and (2.28). The resulting action can be written out explicitly as

e−1L = −
(2X2

3 + 1
3κ2

)
R+

( 1
κ2 − 4X2

)
D − g2

κ4 −
8g2

κ2 X
2 − 4(∇µX)(∇µX)

+ 4X2AµA
µ + X2

32
(
T+
µνT

+µν + T−µνT
−µν

)
− 1

2
(
F̂+
µνF̂

+µν + F̂−µνF̂
−µν

)
+ X

4
(
F̂+
µνT

+µν + F̂−µνT
−µν

)
− 2g2

κ2 WµW
µ + 1

4κ2V
j

µ iV
µi
j + g

κ2W
µV j

µ i t
i
j

+ (c1 − c2)
[
CµνρσC

µνρσ + 2R(A)µνR(A)µν + 6D2 + 1
2R(V) i

µν jR(V)µν ji

+ 1
2D

µT−µνDρT+ρν − 1
4T
−
µνR

µρT+ ν
ρ + 1

512T
+
µνT

+µνT−ρσT
−ρσ

]
+ c2e

−1LGB ,

(C.1)

where we have dropped total derivative terms that are irrelevant for the equations of motion
as well as the irrelevant auxiliary field Yij , and we have defined

F̂±µν ≡ F±µν −
1
4XT

±
µν . (C.2)

From now on, we assume that c1− c2 6= 0, in order to actually have non-trivial higher-
derivative terms. The equations of motion for the superconformal action with higher-
derivative terms present were derived in section 2.2, but we now repeat them in detail in
order to study the fluctuation spectrum of all fields. First, we note that the D equation of
motion simply fixes D to be

D = 1
3(c1 − c2)

(
X2 − 1

4κ2

)
. (C.3)

The equations of motion for X, Wµ, V i
µ j , Aµ, and T±µν are given by

0 = �X +
(
− 1

6R−D −
2g2

κ2 +AµA
µ − 1

64TµνT
µν
)
X + 1

16FµνT
µν ,

0 = ∇µFµν −
1
2∇µ(XT µν)− 2g2

κ2 W
ν + g

2κ2V
νj
i t
i
j ,

0 = DµR(V)µνij + 1
4κ2(c2 − c1)

(
Vνij + 2gW νtij

)
,
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0 = ∇µR(A)µν + 1
16T

+νρDµT−µρ −
1
16T

−νρDµT+
µρ + X2

c2 − c1
Aν ,

0 = 1
2

(
δµ[λδ

ν
τ ] ±

1
2ε

µν
λτ

)(
DλDρT∓ τ

ρ + 1
2R

λρT∓ τ
ρ

)
− 1

128T
±µν(T∓ρσT∓ρσ) + X

c2 − c1

(
F±µν − 1

4XT
±µν

)
. (C.4)

We can use (anti-)self-duality identities to rewrite the equation of motion for T±µν as follows:

0 = −D[µDρT∓ν]ρ −
1
2R

ρ
[µ T

∓
ν]ρ −

1
4DρD

ρT∓µν −
1
8RT

∓
µν + 1

2
(
D[µDρ −DρD[µ

)
T∓ν]ρ

− 1
128T

±µν(T∓ρσT∓ρσ) + X

c2 − c1

(
F±µν − 1

4XT
±µν

)
.

(C.5)

The Einstein equation can be written as

0 =
(

2X2

3 + 1
3κ2

)(
Rµν −

1
2gµνR

)
+ gµν

( 1
2κ2 − 2X2

)
D − gµν

(
g2

2κ4 + 4g2X2

κ2

)

+ 8
3(∇µX)(∇νX)− 2

3gµν(∇ρX)(∇ρX)− 4
3X∇µ∇νX + 4

3gµνX�X

− (c1 − c2)
[
4RµρR ρ

ν − gµνRρσRρσ −
4
3RµνR+ 1

3gµνR
2 + 2�Rµν − 4∇ρ∇µRνρ

− 1
3gµν�R+ 4

3∇µ∇νR+ . . .

]
, (C.6)

where the dots indicate the four-derivative terms that are quadratic in fields that vanish
in the AdS4 vacuum.

We now want to study the spectrum of field fluctuations around the AdS4 vacuum.
We introduce the following notation for the field fluctuations:

δX = φ , δWµ = wµ , δV i
µ j = v i

µ j ,

δAµ = aµ , δT±µν = t±µν , δgµν = hµν .
(C.7)

We also impose the standard Lorenz gauge for the vector field fluctuations:

∇µwµ = ∇µv i
µ j = ∇µaµ = 0 , (C.8)

as well as the harmonic gauge for the metric fluctuations:

∇µhµν = ∇νh . (C.9)

It is important to notice that even if D is an auxiliary field that is fixed to zero for AdS4,
its linearized variation is non-zero:

δD = 1
3κ(c1 − c2)φ . (C.10)

– 77 –



J
H
E
P
0
8
(
2
0
2
1
)
1
7
3

The linearized variations of the equations of motion are then given by:

X : 0 =
(
�− 1

6κ2(c1 − c2)

)
φ− 1

4κL2h ,

Wµ : 0 =
(
� + 1

L2

)
wµ + 1

4κ∇
ν
(
t+µν + t−µν

)
+ 1

2κLv
j
µ it

i
j ,

V i
µ j : 0 =

(
� + 3

L2 −
1

4κ2(c1 − c2)

)
v i
µ j −

1
2κL(c1 − c2)wµt

i
j ,

Aµ : 0 =
(
� + 3

L2 −
1

4κ2(c1 − c2)

)
aµ ,

T±µν : 0 = −∇[µ∇ρt∓ν]ρ −
1
4

(
� + 4

L2

)
t∓µν + 1

16κ2(c1 − c2) t
±
µν −

1
2κ(c1 − c2)f

±
µν ,

gµν : 0 = 1
2κ2

(
−1

2�hµν + 1
2∇µ∇νh−

1
L2hµν −

1
2L2 gµνh

)
− 2
κL2 gµνφ

+ 2
3κ (gµν�−∇µ∇ν)φ− (c1 − c2)

[
−�2hµν −

6
L2�hµν −

8
L4hµν

+ �∇µ∇νh+ 1
L2 gµν�h+ 2

L2∇µ∇νh+ 2
L4 gµνh

]
.

(C.11)

Above, we have defined f±µν as the self-dual and anti-self-dual parts of the field strength
fµν ≡ ∇µwν −∇νwµ.

Note that when we take the trace of the linearized Einstein equation, the quartic
derivative terms drop out and we are simply left with another differential equation relating
φ and h:

0 =
(
�− 4

L2

)
φ− 3

4κL2h . (C.12)

We can combine (C.12) with the first equation in (C.11) to eliminate h in favor of φ and find

0 =
(
�−m2

φ

)
φ , m2

φL
2 = L2

4κ2(c1 − c2) − 2 . (C.13)

This in turn can be used to fix the trace mode h entirely in terms of the scalar fluctuation φ:

h = 4κ
3
(
m2
φL

2 − 4
)
φ = κ

3

(
L2

κ2(c1 − c2) − 8
)
φ . (C.14)

That is, the fields h and φ are not independent from one another, and there is a single
propagating scalar degree of freedom with an associated mass mφ. This massive scalar
mode is holographically dual to a scalar operator Oφ with conformal dimension

∆Oφ = 3
2 +

√
9
4 +m2

φL
2 = 3

2 +
√

1
4 + L2

4κ2(c1 − c2) . (C.15)

We now return to the linearized Einstein equation. We first decompose the metric
fluctuation into its transverse, traceless component hTTµν and its trace h as

hµν = hTTµν + 1
4gµνh . (C.16)
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We can then use the constraint (C.14) to eliminate the trace mode h in favor of φ, which
leaves us with:

0 = 1
2κ2

(
−1

2�−
1
L2

)
hTTµν + (c1 − c2)

(
�2 + 6

L2� + 8
L4

)
hTTµν

+ 2
κ

(
1− 32κ2(c1 − c2)

L2

)
∇〈µ∇ν〉φ ,

(C.17)

where we have defined the transverse, traceless differential operator

∇〈µ∇ν〉 ≡ ∇µ∇ν −
1
4gµν� . (C.18)

With this simplified form of the linearized Einstein equation, it is clear that there should
be a change of variables that eliminates the φ-dependence in the equation. In particular,
we can make the redefinition

ψµν ≡ hTTµν + λκL2∇〈µ∇ν〉φ , (C.19)

where λ is some arbitrary constant, such that the linearized Einstein equation becomes

0 = − 1
4κ2

(
� + 2

L2

)
ψµν + (c1 − c2)

(
�2 + 6

L2� + 8
L4

)
ψµν

+ λ

κ

(
−3

2 + 48κ2(c1 − c2)
L2

)
∇〈µ∇ν〉φ+ 2

κ

(
1− 32κ2(c1 − c2)

L2

)
∇〈µ∇ν〉φ .

(C.20)

We can then simply choose the value of λ such that all instances of ∇〈µ∇ν〉φ drop out of
the Einstein equation. In particular, if we choose λ = 4

3 , then the final expression for the
linearized Einstein equation is simply

0 = − 1
4κ2

(
� + 2

L2

)
ψµν + (c1 − c2)

(
�2 + 6

L2� + 8
L4

)
ψµν . (C.21)

This can be written in a somewhat more canonical form as(
� + 2

L2 −m
2
ψ

)(
� + 2

L2

)
ψµν = 0 , m2

ψL
2 = L2

4κ2(c1 − c2) − 2 . (C.22)

That is, the transverse traceless part of the metric fluctuations has a massless mode (with
two massless propagating degrees of freedom) as well as a massive mode (with five propa-
gating degrees of freedom) with mass mψ.27 The massless spin-2 mode corresponds to the
stress-energy tensor in the dual SCFT which has conformal dimension ∆ = 3. The massive
spin-2 mode is dual to a spin-2 operator Oψ with conformal dimension

∆Oψ = 3
2 +

√
9
4 +m2

ψL
2 = 3

2 +
√

1
4 + L2

4κ2(c1 − c2) . (C.23)

27Note that this is consistent with the results of [19, 56]. The quantities α and β used in these papers
can be expressed in terms of the parameters in our supergravity Lagrangian as

α = −4κ2(c1 − c2) , β = −α3 = 4κ2(c1 − c2)
3 .
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Importantly, the mass mφ and mψ of the spin-0 and spin-2 modes in (C.13) and (C.22) are
the same, and so are the conformal dimensions of their dual field theory operators. This is a
very non-generic situation, since general higher-derivative corrections to Einstein-Maxwell
theory will result in different masses for the spin-2 and spin-0 modes [19]. This special
property of the spectrum is a direct consequence of supersymmetry.

We now move on to the fluctuations of the vector and tensor fields. To deal with
the linearized T±µν equation of motion, we first apply a derivative to the equation and end
up with:

0 =
(
� + 3

L2

)
(∇µt∓µν)− 2∇ν∇ρ(∇µt∓µρ)

+ 1
4κ2(c1 − c2)(∇µt±µν)− 1

κ(c1 − c2)

(
� + 3

L2

)
wν .

(C.24)

The tensor fluctuations can be dualized to massive vectors by utilizing the following map:

∇µt±µν →
κ

L2 c
±
ν , (C.25)

where c±µ are massive vectors that satisfy ∇µc±µ = 0, and we have chosen a convenient
normalization in (C.25). This map between a tensor and a massive vector can be justified
by the Hodge decomposition theorem. Recall that for a closed Riemannian manifold, a
two-form t = 1

2 tµνdx
µdxν is uniquely decomposed into

t = dω1 + δω3 + ω2 , (C.26)

where δ is the co-differential, ω1 is a one-form, ω3 a three-form, and ω2 is harmonic. The
divergence of tµν is given by the component of the one-form

δt = − ? d ? t = ∇µtµν dxν . (C.27)

Using the above decomposition and the fact that δ is nilpotent and ω2 is harmonic, we
straightforwardly obtain δt = δdω1. Let c ≡ δdω1, then c is a co-closed one-form, which
gives the map in (C.25). We note that in our setup we need to use the Hodge decomposition
theorem on a manifold with boundary, see [137] for a review.

We can decompose the fluctuations of the spin-1 SU(2)R fields as follows

v i
µ j = iκ

L

3∑
a=1

v(a)
µ (σa)ij , (C.28)

where σa are the Pauli matrices and v(a)
µ are three transverse vectors.

Putting everything together and combining equations appropriately, the linearized
vector equations of motion are:

0 =
(
� + 1

L2

)
wµ −

1
4L2

(
c+
µ + c−µ

)
− 1
L2 v

(3)
µ ,

0 =
(
� + 3

L2 −
1

4κ2(c1 − c2)

)
v(1)
µ ,

0 =
(
� + 3

L2 −
1

4κ2(c1 − c2)

)
v(2)
µ ,
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0 =
(
� + 3

L2 −
1

4κ2(c1 − c2)

)
v(3)
µ −

1
2κ2(c1 − c2)wµ ,

0 =
(
� + 3

L2 −
1

4κ2(c1 − c2)

)
aµ ,

0 =
(
� + 3

L2 −
1

4κ2(c1 − c2)

)
c±µ −

1
κ2(c1 − c2)

(
2wµ + v(3)

µ

)
. (C.29)

After diagonalizing the corresponding mass matrix, we find the following eigenvectors, i.e.
the vectors that are annihilated by (� + 3/L2 −m2) for some value of the mass, and their
corresponding eigenvalues:

wµ − 2v(3)
µ : m2L2 = 0 ,

aµ : m2L2 = γ ,

v(1)
µ : m2L2 = γ ,

v(2)
µ : m2L2 = γ ,

c+
µ − c−µ : m2L2 = γ ,

1
2γ − 1−

√
4γ + 1wµ + 1

3−
√

4γ + 1v
(3)
µ + c+

µ + c−µ : m2L2 = γ + 1−
√

4γ + 1 ,

1
2γ − 1 +

√
4γ + 1wµ + 1

3 +
√

4γ + 1v
(3)
µ + c+

µ + c−µ : m2L2 = γ + 1 +
√

4γ + 1 ,

(C.30)

where we have defined
γ ≡ L2

4κ2(c1 − c2) (C.31)

This means that our fluctuation spectrum includes a single massless vector (with two
propagating degrees of freedom) and six massive vectors (each with three propagating
degrees of freedom). Four of these vectors have the same mass, while the remaining two
have their mass shifted due to the non-minimal couplings between vector and tensor fields
in our four-derivative action.

The massless vector field is dual to the R-current spin-1 operator in the field theory,
with conformal dimension ∆ = 2. The four vector fields with m2L2 = γ = L2

4κ2(c1−c2) are
dual to spin-1 operators in the field theory that all have the same conformal dimension as
the spin-2 operator Oψ, namely

∆ = 3
2 +

√
1
4 +m2L2 = 3

2 +
√

1
4 + L2

4κ2(c1 − c2) = ∆Oψ , (C.32)

while the remaining two vector fields are dual to spin-1 operators whose conformal dimen-
sions are shifted relative to Oψ:

∆ = 3
2 +

√
1
4 +m2L2 =

(3
2 ± 1

)
+
√

1
4 + L2

4κ2(c1 − c2) = ∆Oψ ± 1 . (C.33)
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The linearized fluctuations above can be organized into supersymmetric multiplets. To
do this it is important also to trace the charges of the linearized modes with respect to
the graviphoton. We find that the linear combinations v(1)

µ ± iv(2)
µ have charges ±2 and

all other bosonic fields, i.e. the other spin-1 fields as well as the spin-0 and spin-2 fields,
are neutral. We find that the bosonic fluctuations above fit into one massless graviton
multiplet and one massive long graviton multiplet, see appendix A of [138] for more details
on this terminology of 4d N = 2 supergravity multiplets. These supergravity multiplets
are mapped to 3d N = 2 superconformal multiplets which we discuss in more detail in
section 4.2.

D Boundary counterterms and the boundary stress-tensor

In this appendix, we will elaborate on the computation of the boundary stress-tensor τµν ,
defined by

τµν ≡
2√
−h

δL
δhµν

. (D.1)

In computing this, it is important that we vary both the bulk and boundary counterterms.
We will go through this computation in detail for the two-derivative action S2∂ and SGB,
the results for which appeared in (5.17) and (5.18) in the main text. Along the way, we
will also show that the counterterm actions presented in the main text lead to a well-posed
variational principle.

Throughout this appendix, we will denote by M the bulk spacetime manifold with
boundary ∂M. The induced metric on ∂M is hµν , which can be expressed as

hµν = gµν − nµnν , (D.2)

where n denotes the unit normal with respect to the boundary. For any tensor Tµ1...µn
ν1...νm ,

we will use the ⊥ symbol to represent its projection along the boundary, i.e.

⊥
(
Tµ1...µn

ν1...νm

)
= hµ1

ρ1 . . . h
µn
ρnh

σ1
ν1 . . . h σm

νm T ρ1...ρn
σ1...σm . (D.3)

We will also denote the extrinsic curvature by

Kµν ≡⊥ (∇µnν) , (D.4)

and we denote by Rµνρσ the Riemann tensor corresponding to the induced boundary metric
hµν . We will also use Dµ to denote the covariant derivative along the boundary compatible
with hµν .

We are interested in computing the boundary stress-tensor τµν for the Poincaré frame
actions in Lorentzian signature. The relevant ones are the two-derivative action and the
Gauss-Bonnet action:

S2∂ = 1
16πGN

∫
M
d4x
√
−g

(
R− 1

4FµνF
µν + 6

L2

)
,

SGB =
∫
M
d4x
√
−g E4 ,

(D.5)
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where E4 = RµνρσR
µνρσ − 4RµνRµν + R2 is the usual Gauss-Bonnet density. These two

bulk actions also have their corresponding counterterm actions:

SCT
2∂ = 1

8πGN

∫
∂M

d3x
√
−h

(
K − L

2R−
2
L

)
,

SCT
GB = 4

∫
∂M

d3x
√
−h (J − 2GµνKµν) ,

(D.6)

where J is the trace of the tensor Jµν , defined by

Jµν = 1
3
(
2KKµρK

ρ
ν +KµνKρσK

ρσ − 2KµρK
ρσKσν −K2Kµν

)
, (D.7)

and Gµν = Rµν − 1
2gµνR is the boundary Einstein tensor. Armed with these bulk and

boundary actions, we now need to compute their variations with respect to the boundary
metric in order to determine the corresponding boundary stress-tensors.

First, we tackle the variation of the bulk actions. Under an infinitesimal variation of
the metric gµν → gµν + δgµν , the Riemann tensor varies as

δRµνρσ = gµλ
(
∇[ρ|∇νδgλ|σ] +∇[ρ∇σ]δgνλ −∇[ρ|∇λδgν|σ]

)
. (D.8)

This in turn can be used to show that the bulk Ricci scalar varies as

δR = −Rµνδgµν +∇µ (∇νδgµν −∇µgνρδgνρ) . (D.9)

Additionally, the Gauss-Bonnet density varies as

δE4 =
(
−2RµρσλR

νρσλ + 4RµρνσRρσ + 4RµρRνρ − 2RRµν
)
δgµν

+ 4∇µ (Pµνρσ∇σδgνρ) ,
(D.10)

where we have defined Pµνρσ as the divergence-free part of the Riemann tensor:

Pµνρσ ≡ Rµνρσ − 2Rµ[ρgσ]ν + 2Rν[ρgσ]µ +Rgµ[ρgσ]ν , (D.11)

such that ∇µPµνρσ = 0. The second term of (D.9) and the second line of (D.10) are both
total derivatives, which means that we can employ Stokes’ theorem to write the variation
of the bulk actions as follows:

δS2∂ = 1
16πGN

∫
M
d4x
√
−g

(
−Gµν + 3

L2 g
µν + 1

2F
µρF νρ −

1
8g

µνFρσF
ρσ
)
δgµν

+ 1
16πGN

∫
∂M

d3x
√
−hnµ (∇νδgµν − gνρ∇µδgνρ) ,

δSGB = −2
∫
M
d4x
√
g Hµνδgµν + 4

∫
∂M

d3x
√
hnµP

µνρσ∇σδgνρ ,

(D.12)

where we use Hµν to denote the Lovelock tensor:

Hµν ≡ RµρσλR ρσλ
ν − 2RµρνσRρσ − 2RµρR ρ

ν +RRµν −
1
4gµνE4 . (D.13)

The bulk component of the two-derivative variation vanishes for any two-derivative solution,
due to the Einstein equation, and so only the boundary component of the variation remains.
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For the Gauss-Bonnet term, the Lovelock tensor can be rewritten as Hµ
ν = δµ[νR

ρσ
ρσR

λτ
λτ ],

and since any fully antisymmetrized product over five distinct indices must vanish in four
dimensions, the Lovelock tensor itself must vanish as well. Therefore we are left only with
a boundary term, as required by the well-known topological nature of the Gauss-Bonnet
invariant in four dimensions. As for this remaining boundary term, we can decompose
nµP

µνρσ into its components normal and tangent to the boundary. The result is

nµP
µνρσ =⊥ (nµPµνρσ) + 2 ⊥

(
nµnλP

µνλ[σ
)
nρ] . (D.14)

The Gauss-Codazzi relations then inform us that this can be further written as

nµP
µνρσ = 2Gν[ρnσ] + 2KµνK [ρ

µ nσ] − 2KKν[ρnσ] +
(
K2 −KµλK

µλ
)
hν[ρnσ]

+ 2D[σKρ]ν + 2DµK
µ[σhρ]ν + 2D[ρKhσ]ν ,

(D.15)

where Dµ denotes the covariant derivative with respect to the boundary metric hµν . Thus
the total variations of the bulk two-derivative and Gauss-Bonnet actions in four spacetime
dimensions are given purely by the following boundary integrals:

δS2∂ = 1
16πGN

∫
∂M

d3x
√
−hnµ (∇νδgµν − gνρ∇µδgνρ) ,

δSGB = 4
∫
∂M

d3x
√
h

[
2Gν[ρnσ] + 2KµνK [ρ

µ nσ] +
(
K2 −KµλK

µλ
)
hν[ρnσ]

− 2KKν[ρnσ] + 2D[σKρ]ν + 2DµK
µ[σhρ]ν + 2D[ρKhσ]ν

]
∇σδgνρ .

(D.16)

For the boundary counterterms, we first note that the variation of the normal vector
nµ is δnµ = 1

2nµn
νnρδgνρ. From this, it follows that the extrinsic curvature varies as

δKµν = 1
2Kµνn

ρnσδgρσ + 2n(µK
ρ

ν) n
σδgρσ −

1
2h

ρ
µ h

σ
ν nλ

(
2∇(ρδgσ)λ −∇λδgρσ

)
. (D.17)

The relevant part of this expression is the projection along the boundary, since all instances
of δKµν end up being contracted with tensors that are purely tangent to the boundary.
This tangential component is straightforward to calculate and reads

⊥ δKµν = h ρ
(µ h

σ
ν) n

λ∇[λδgρ]σ −
1
2D(µ

(
h ρ
ν) n

σδgρσ
)

+ 1
2K

ρ
(µ h σ

ν) δgρσ . (D.18)

We also need the variation of the boundary Ricci tensor Rµν . This variation is automati-
cally tangential to the boundary, and it is easily computed using the same procedure one
would use to find the variation δRµν in the bulk. The result is simply

⊥ δRµν = D(µD
λ
(
h ρ
ν) h

σ
λ δgρσ

)
− 1

2DµDν (hρσδgρσ)− 1
2D

λDλ

(
h ρ
µ h

σ
ν δgρσ

)
. (D.19)

From these expressions, we can also find δK and δR by contracting indices appropriately:

δK = hµνnρ∇[ρδgµ]ν −
1
2Dµ (hµνnρδgνρ)−

1
2K

µνδgµν ,

δR = DµDν (hµρhνσδgρσ)−DρDρ (hµνδgµν)−Rµνδgµν .
(D.20)
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Armed with these intermediate variations, let us first consider the two-derivative coun-
terterm action. Its variation is written as follows:

δSCT
2∂ = 1

16πGN

∫
∂M

d3x
√
−h

[(
K − L

2R−
2
L

)
hµνδgµν −Kµνδgµν + LRµνδgµν

− nµ (∇νδgµν − gνρ∇µδgνρ)−Dµ (hµνnρδgνρ)

− LDµDν (hµρhνσδgρσ) + LDρDρ (hµνδgµν)
]
.

(D.21)

The terms normal to the boundary are precisely opposite to the ones present in δS2∂ and
thus they end up cancelling. Additionally, we assume that the boundary ∂Σ is compact such
that we can freely integrate by parts and drop any total (boundary) covariant derivative
terms. Putting all this together, the total variation reads

δ
(
S2∂ + SCT

2∂

)
= 1

16πGN

∫
∂M

d3x
√
−h

[(
K − L

2R−
2
L

)
hµν −Kµν + LRµν

]
δgµν .

(D.22)
Everything contracted with δgµν has no components normal to the boundary, and so we
can replace δgµν in this variation with δhµν . Therefore the boundary stress-tensor is

τ (2∂)
µν = 1

8πGN

(
Kµν −Khµν − LGµν + 2

L
hµν

)
. (D.23)

For the Gauss-Bonnet counterterm, the computation is a little more involved. First, by
carefully keeping track of all terms and simplifying as much as possible, we compute that

δJ = −3
2J

µνδgµν +
(
2KKνρ − 2KνλKρ

λ +KµλK
µλhνρ −K2hνρ

)
nσ∇[σδgν]ρ

+ (KµνDρKµν +Dµ(KKµρ)−KDρK −Dµ(KµνKρ
ν ))nσδgρσ ,

(D.24)

as well as

δ (GµνKµν) = 1
2KR

µνδgµν −
1
2RK

µνδgµν −
3
2G

µρKν
ρδgµν + Gνρnσ∇[σδgν]ρ

+
(
h ρ
ν DσDµK

µν − 1
2h

ρσDµDνK
µν − 1

2DλD
λKρσ

)
δgρσ

+
(
−1

2D
µDνK + 1

2h
µνDρD

ρK

)
δgµν .

(D.25)

Note that in both of these expressions we freely moved derivatives around via integration
by parts, keeping in mind that we want these variations to be inside a boundary integral
eventually. Combining (D.24), (D.25), and (D.16), we find that a number of terms cancel,
and we are left with

δ
(
SGB + SCT

GB

)
= 4

∫
∂M

d3x
√
−h

[
− 3

2J
µνδgµν + 1

2J h
µνδgµν

+
(
3GµρKν

ρ − GρσKρσhµν +RKµν −RµνK
)
δgµν
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+ (KµνDρKµν +Dµ(KKµρ)−KDρK −Dµ(KµνKρ
ν ))nσδgρσ

+
(
DλD

λKρσ + hρσDµνK
µν − 2DσDµK

µρ +DρDσK − hρσDλD
λK
)
δgρσ

+
(
2D[σKρ]ν + 2DµK

µ[σhρ]ν + 2D[ρKhσ]ν
)
∇σδgνρ

]
. (D.26)

From here, we can use the following Gauss-Codazzi relation:

Xµνρ∇ρδgµν = Dρ (Xµνρδgµν) + 2X(µρ)σKρσn
νδgµν − (DρX

µνρ) δgµν , (D.27)

which applies for any tensor Xµνρ that has no components normal to the boundary, i.e.
⊥ (Xµνρ) = Xµνρ. We will continue to drop all total derivative terms in the boundary
action, so this identity lets us trade all instances of ∇ρδgµν in the full Gauss-Bonnet
variation (D.26) for terms that involve no derivatives acting on the metric fluctuation.
After a great deal of simplification, this identity yields

δ
(
SGB + SCT

GB

)
=
∫
∂M

d3x
√
−h

[
− 6J µν + 2J hµν + 4PµρνσKρσ

]
δgµν , (D.28)

where Pµνρσ is the divergence-free part of the boundary Riemann tensor Rµνρσ, which we
can obtain from Pµνρσ in (D.11) by replacing all instances of the Riemann tensor with the
boundary Riemann tensor and all instances of the metric with the boundary metric. The
total variation (D.28) is therefore such that everything contracted with δgµν is tangent to
the boundary. We can therefore freely replace δgµν with δhµν in this expression, and so
the resulting boundary stress-tensor is

τ (GB)
µν = 12Jµν − 4J hµν − 8PµρνσKρσ . (D.29)

E Euclidean off-shell BPS variations

Here we present the Euclidean off-shell BPS variations for the fermions of the supercon-
formal multiplets used in the main text and reviewed in appendix A. We then analyze the
consequences of demanding that a given field configuration is fully supersymmetric.

The (chiral) fermions we must consider are the gravitini ψµi± and the auxiliary χi±
in the Weyl multiplet, the gaugino Ωi

± in the vector multiplet, and the hyperino ζα± in
the hypermultiplet. In a bosonic background, their transformations under Q- and S-
supersymmetry are given by [10]

δψµ
i
± = 2Dµεi± + 1

16iT∓ab γ
abγµε

i
∓ − i γµηi∓ ,

δχi± = 1
24i γab /DT∓ab ε

i
∓ + 1

6R(V)∓ab
i
j γ

abεj± ∓
1
3R(A)∓ab γ

abεi± +D εi± + 1
24 T

∓
ab γ

abηi± ,

δΩi
± = − 2i /DX± εi∓ −

1
2

[
Fab −

1
4 X∓Tab

]
γabεi± + εkj Y

ikεj± + 2X± ηi± , (E.1)

δζα± = − i /DAiα εi∓ − 2g X∓ tαβ Aiβ εi± +Ai
α ηi± ,
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where tαβ generates the gauging. To analyze the consequences of preserving supersym-
metry, one must be mindful of the presence of the S-supersymmetry parameter ηi± in the
above variations. An efficient way to deal with this is to introduce auxiliary fermions that
transform inhomogeneously under S-supersymmetry [139]. Explicitly, we introduce the
following S-compensating fermions:

ζiV± ≡
1
2 (X±)−1 Ωi

± , and ζiH± ≡ −χ−1
H εij Ωαβ Aj

α ζβ± , (E.2)

where
χH = 1

2 ε
ijΩαβ Ai

αAj
β . (E.3)

Their variations are:

δζiV± = − iX−1
± /DX± εi∓ −

1
4 X

−1
±

[
F∓ab −

1
4 X∓T

∓
ab

]
γabεi± + 1

2 X
−1
± εkj Y

ikεj± + ηi± ,

δζiH± = − 1
2 i /k εi∓ − i /k ij εj∓ + 2g X∓ µkj εik εj± + ηi± ,

(E.4)

where we introduced the moment map

µij ≡ χ−1
H Ai

α Ωαβ t
β
γ Aj

γ , (E.5)

and an SU(2)R singlet and triplet through the equation

1
2 kµ δ

i
j + kµ

i
j = −χ−1

H εik Ωαβ Ak
αDµAjβ . (E.6)

Note that kµ = χ−1
H DµχH, while the explicit expression of kµij will not be needed.

With the help of ζiV± and ζiH± we can build S-invariant combinations of fermions. We
can then derive the consequences of requiring that the BPS variations of such combinations
vanish in order to preserve supersymmetry. The transformations we analyze are

δ
(
ζiV± − ζiH±

)
= 1

2i
(
X−2
± χH

)−1
/D
(
X−2
± χH

)
εi∓ + i /k ij εj∓ + 1

2 X
−1
± εkj Y

ikεj±

− 1
4 X

−1
±

[
F∓ab −

1
4 X∓T

∓
ab

]
γab εi± − 2g X∓ µkj εik εj± , (E.7)

δ
(
ζα± −AiαζiH±

)
= − iχ1/2

H /D
(
χ
−1/2
H Ai

α) εi∓ + i /k ijAiαεj∓

− 2g X∓
(
tαβ Aj

β + µkj ε
ik Ai

α) εj± , (E.8)

δ

(
χi± −

1
24 T

∓
abγ

abζiH±

)
= D εi± + 1

24iχ−1/2
H Dµ

(
χ

1/2
H T∓ab

)
γabγµ εi∓

+ 1
24iT∓ab kµ

i
j γ

abγµ εj∓ + 1
6 R(V)∓ab

i
j γ

ab εj±

∓ 1
3 R(A)∓ab γ

ab εi± −
1
12 g X∓ T

∓
ab µkj ε

ik γab εj± . (E.9)

In addition, rather than working with the gravitini themselves, it will be more convenient
to work with the Q-supersymmetry curvature given in (A.5). Note that this amounts to
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studying the integrability condition of the Q-supersymmetry parameter. Compensating for
the S-transformation, the relevant BPS variation is

δ

(
R(Q)abi± −

1
16T

∓
cd γ

cd γab ζ
iH
±

)
= 1

4iχ1/2
H /D

(
χ
−1/2
H T∓ab

)
εi∓ + 1

8iT∓[a
c γb]c /k ε

i
∓

+R(V)∓ab
i
j ε
j
± −

1
2 R(M)abcdγcd εi±

− 1
8 g T

∓
cd γ

cd γabX∓ µkj ε
ik εj± + . . . ,

(E.10)

where the . . . are terms proportional to kµij . We do not write them explicitly as we will
see that they vanish on the supersymmetric configurations considered below. The last BPS
variation to consider comes from the supercovariant derivative of the auxiliary fermion ζiH± .
This condition is needed to ensure that the S-supersymmetry has been compensated prop-
erly [139]. It is given by

δ

(
Dµζ

iH
± −

1
4 /kγµζ

iH
± − i εijX∓ µjk γµ ζkH

∓

)
=− i fµa γa εi∓ + 1

8iR(V)∓ab
i
j γ

abγµ ε
j
∓ ∓

1
4iR(A)∓ab γ

ab γµ ε
i
∓

− 1
16i g X∓ µkj εik T∓ab γ

abγµ ε
j
∓ −

1
32 χ

−1/2
H Dν

(
χ

1/2
H Tab

)
γνγabγµ ε

i
±

+ 2i g2X+X− µkj µ
ik γµ ε

j
∓ −

1
2iDµkν γν εi∓ + 1

8i kν kρ γνγµγρ εi∓

− g kµX∓ µkj εik εj± + . . . , (E.11)

Again, the . . . stands for terms proportional to kµij which we will not need. Recall that fµa
is the gauge field of special conformal transformations, which contains the Ricci scalar and
tensor once the conventional constraints are imposed, see appendix A.

Full-BPS conditions. For a bosonic field configuration to be full-BPS, we require the
variations above to vanish for any spinor parameter εi±. It will turn out this can be
satisfied only on a unique background, pure (Euclidean) AdS4. Since εi± is unconstrained,
we can decompose the BPS variations according to the number of γ-matrices they contain.
From (E.7) we find the conditions

Dµ
(
X−2
± χH

)
= 0 , kµ

i
j = 0 , F∓ab = 1

4 X∓ T
∓
ab , Yij = 4 g X+X− µij . (E.12)

From (E.8) we obtain

Dµ
(
χ
−1/2
H Ai

α) = 0 , tαβ Aj
β + εikµkj Ai

α = 0 , (E.13)

and from (E.9) we get

Da
(
χ

1/2
H T∓ab

)
= 0 , R(A)∓ab = 0 , D = 0 , R(V)∓ab

i
j = 1

2 g X∓ T
∓
ab ε

ikµkj . (E.14)
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Observe that the requirement of maximal supersymmetry imposes that D vanishes off-
shell, or in other words that D = 0 at any order in a derivative expansion of the action.
From (E.10) we find the additional conditions

DcT∓ab = 1
2 kd

(
δdc T

∓
ab − 2 δd[aT

∓
b]c + 2 ηc[aT∓ db]

)
, R(M)abcd = 0 , g X∓ T

∓
ab ε

ikµkj = 0 .
(E.15)

At this stage, it is convenient to fix the K- and D-gauge as in the main text (2.25) and (2.27).
Since χH is only charged under dilatations, it is clear that this gauge choice fixes

kµ = 0 . (E.16)

In this gauge, the additional conditions we obtain from (E.11) simplify rather drastically
to a single condition on the scalar curvature

R = 24 g2X+X− µ
ijµij . (E.17)

The above gauge choice also simplifies the analysis of the BPS conditions. First, since
the Aµ connection is constrained to be pure gauge we can locally set it to zero, and this
implies that the scalars X± must be constant. Second, when g 6= 0, the vanishing of
the tensor X∓ T∓ab implies that the Vµij connection is also pure gauge, and that the field
strength Fab vanishes. This in turn forces the scalars Aiα to be constant. We can fix their
value by choosing the V-gauge (2.26), and this gauge choice fixes the moment map in terms
of the gauging generators

µij = εik t
k
j . (E.18)

The remaining off-shell BPS conditions then impose that the space-time is conformally flat
with constant curvature, and that the auxiliary triplet Yij is constant:

Yij = 4 g X+X− εik t
k
j , R = 48 g2X+X− , Cabcd = 0 . (E.19)

We end the full-BPS analysis by noting that the above conditions are stronger than,
and therefore imply, the equations of motion for the superconformal fields Aµ, Vµij and Tab
derived in the main text from the four-derivative action (2.24). On the other hand, the Y
equation of motion (2.29) gives us the precise value of the constant scalars X± = 1

2 κ
−1,

which in turn fixes the scalar curvature on-shell,28

R = 12L−2 , (E.20)

with L−2 = g2 κ−2. Alternatively, we could use the above as the definition for L−2 which
would fix the scalars via (E.19) and imply the equation of motion for the Y ij triplet.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

28Note that we have not implemented the redefinitions of footnote 5 in this discussion in order to use the
conventions of the (gauged) supergravity literature for the BPS variations. Hence the Ricci scalar appears
constant and positive in these conventions.
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