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Abstract: We propose a novel procedure of assigning a pair of non-unitary topologi-
cal quantum field theories (TQFTs), TFT±[Trank 0], to a (2+1)D interacting N = 4 su-
perconformal field theory (SCFT) Trank 0 of rank 0, i.e. having no Coulomb and Higgs
branches. The topological theories arise from particular degenerate limits of the SCFT.
Modular data of the non-unitary TQFTs are extracted from the supersymmetric parti-
tion functions in the degenerate limits. As a non-trivial dictionary, we propose that
F = maxα

(
− log |S(+)

0α |
)

= maxα
(
− log |S(−)

0α |
)
, where F is the round three-sphere free

energy of Trank 0 and S(±)
0α is the first column in the modular S-matrix of TFT±. From the

dictionary, we derive the lower bound on F , F ≥ − log
(√

5−
√

5
10

)
' 0.642965, which holds

for any rank 0 SCFT. The bound is saturated by the minimal N = 4 SCFT proposed by
Gang-Yamazaki, whose associated topological theories are both the Lee-Yang TQFT. We
explicitly work out the (rank 0 SCFT)/(non-unitary TQFTs) correspondence for infinitely
many examples.
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1 Introduction

Supersymmetric quantum field theories with 8 supercharges (8 Qs) provide a fertile ground
for many interesting research topics connecting various areas in theoretical and mathemat-
ical physics. For example, Seiberg-Witten’s approach [1] to 4-dimensional (4D) N = 2
supersymmetric gauge theories provides analytic understanding of non-perturbative phe-
nomena, such as confinement, in strongly coupled gauge theories. 4D N = 2 superconfor-
mal field theories can be geometrically constructed using wrapped M5-branes in M-theory,
and the 4D-2D correspondence connects physics of 4D supersymmetric field theories with
mathematical structures on 2D Riemann surfaces in an unexpected way [2–4]. Interest-
ingly, there exist non-trivial superconformal field theories with 8 supercharges in higher
dimensional space-time, 5D and 6D, as predicted by String/M-theory [5–7]. More recently,
it is found that 2D chiral algebras (resp. 1D topological quantum mechanics) appear as
protected subsectors of 4D N = 2 (resp. 3D N = 4) superconformal field theories [8–14].

Extended SUSY gauge theories have rich structures in their vacuum moduli space, and
one natural invariant is the rank, i.e. the complex dimension of the Coulomb branch. There
have been numerous efforts in classifying SCFTs with 8 Qs for a given low rank in various
space-time dimensions [15–25]. For 3D N = 4 SCFTs, however, the rank is in general not
a duality-invariant concept since the Coulomb and Higgs branches are exchanged under
the 3D mirror symmetry [26]. For this reason, we hereby modify the definition of rank as
the maximum of the dimension of Coulomb branch and that of the Higgs branch. Another
peculiar fact about 3D N = 4 theories is that there exist non-trivial interacting SCFTs of
rank 0, as studied by two of the authors of this present paper in [27]. This is in contrast
with the case of D ≥ 4, where it is often implicitly assumed that there is no non-trivial
interacting rank 0 SCFTs with 8 Qs, so that the classification program starts with rank 1.
(Recently, 4D/5D rank 0 SCFTs were found through a geometrical engineering but it is yet
unclear if they are interacting SCFTs [28].) Note that most of the classification schemes
in previous studies do not work for rank 0 cases since the existence of Coulomb or Higgs
branch operators is an crucial assumption in the analysis.

In this paper, we initiate the classification of rank 0 3D N = 4 SCFTs by establishing
the following correspondence:

3D N = 4 superconformal field theories of rank 0
←→ A pair of 3D non-unitary topological quantum field theories (TQFTs) .

(1.1)

The non-unitary TQFTs emerge at particular choices of non-superconformal R-symmetry,
ν = ±1 in (2.3), of rank 0 N = 4 SCFTs. In the limits, due to huge Bose/Fermi cancel-
lations the unrefined superconformal index gets contributions only from Coulomb-branch
or Higgs-branch operators and their descendants. For rank 0 theories, the index becomes
trivial (i.e. 1) since there are no non-trivial Coulomb/Higgs branch operators. Other par-
tition functions on various rigid supersymmetric Euclidean backgrounds also drastically
simplify in the degenerate limits for rank 0 theories. Our correspondence says that the
simplified partition functions are actually equal to the partition functions of corresponding
non-unitary TQFTs on the same 3D spacetime. (See (2.7) for a precise statement.) Con-
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crete dictionaries of the correspondence are given in table 1. In the degenerate limits, as
seen in the superconformal index case, contributions from local operators become unim-
portant for rank 0 theories and only non-local loop operators become relevant physical
observables. Similarly, loop operators are the only physical observables in general TQFTs.
Using the correspondence, one can map the problem of classifying rank 0 SCFTs to the
classification of non-unitary TQFTs, which is much easier to handle. Mathematically,
TQFTs are described by modular tensor categories (MTCs) and classification of MTCs has
been studied intensively in the literature [29–34]. The most basic quantity characterizing
a 3D CFT is the round three-sphere free energy, usually denoted as F . The F always
monotonically decreases under the renormalization group (RG) flow and thus is regarded
as a proper measure of the degrees of freedom of 3D CFT [35–37]. In one of the most
interesting and surprising dictionaries of the correspondence, the F of a rank 0 CFT is
related to the modular S-matrix of a non-unitary TQFT in a very simple way as given in
table 2. Combining the dictionary and universal algebraic properties of the S-matrix, we
derive following lower bound on F

F ≥ − log

√5−
√

5
10

 , (1.2)

which should hold for any rank 0 SCFTs. Interestingly, the lower bound is saturated by
the minimal theory studied in [27].

The correspondence is similar in spirit with the (4D N = 2 SCFT)/(2D chiral algebra)
correspondence mentioned above. In both correspondences, non-unitary algebraic struc-
tures, chiral algebras on the one hand and modular tensor category on the other, appear as
protected subsectors of unitary superconformal field theories. But there are several crucial
differences. First, two theories in our correspondence are defined on the same 3D space-
time while the 2D chiral algebra lives in the 2D subspace of 4D space-time of the SCFT.
Secondly, basic physical objects are BPS local operators in the (4D SCFTs)/(2D chiral
algebra) story while BPS non-local loop operators are basic objects in our correspondence.
That non-local loop operators play crucial roles can be a great advantage of our classifica-
tion approach over the conventional conformal bootstrap approaches, since the latter are
based on correlation functions of local operators. We note that the 3D non-unitary TQFTs
are sensitive to the global structure of the 3D rank 0 SCFTs and two theories in the corre-
spondence share the same one-form symmetry as well as their ’t Hooft anomalies. In 3D,
the quantity F (unlike the stress-energy tensor central charge CT ) is sensitive to the global
structure of CFT and the conformal bootstrap approach never give a constraint on F but
only on CT , which is not a proper measure of the degrees of freedom in a strict sense [38].

The remaining part of paper is organized as follows. In section 2, we present the precise
statement of the correspondence with several concrete dictionaries. As an application of the
correspondence, we derive interesting lower bounds on F for rank 0 SCFTs. In section 3,
we explicitly work out the correspondence in detail with several classes of infinitely many
rank 0 SCFTs. The results are summarized in table 2. In appendix A, we give brief reviews
on supersymmetric partition functions of 3D N ≥ 3 gauge theories and modular data of
3D TQFTs which are basic ingredients of the dictionaries. In other appendices, we collect
technical details and supplementary materials.

– 3 –
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2 (Rank 0 SCFT)/(Non-unitary TQFTs) correspondence

In this section, we establish a correspondence between

Trank 0 : a 3D N = 4 interacting SCFT with empty Coulomb and Higgs branches
−−−→ TFT±[Trank 0] : a pair of 3D non-unitary TQFTs .

(2.1)

The basic dictionaries for the correspondence are summarized in table 1.

2.1 Non-unitary TQFTs from N = 4 SCFTs of rank 0

3D Rank 0 N = 4 SCFTs. In this paper, 3D N = 4 rank 0 SCFT is defined as

(Rank 0 theory) := (Theory with no Coulomb and Higgs branches) . (2.2)

3D N = 4 SCFTs have SO(4) ' SU(2)L × SU(2)R R-symmetry. The Coulomb (Higgs)
branch is parametrized by chiral primary operators charged under the SU(2)R (SU(2)L)
symmetry while neutral under the SU(2)L (SU(2)R) symmetry. In our definition, the rank
0 theory can have mixed branches parametrized by chiral primaries charged under both of
SU(2)L and SU(2)R. Rank 0 SCFTs in section 3 with N = 5 supersymmetry actually have
the mixed branches. Rank 0 theories cannot have a continuous flavor symmetry commuting
with the SO(4) R-symmetry, since a flavor current multiplet contains Higgs- or Coulomb-
branch operators. By the same reasoning, the rank 0 theories cannot have SUSY more
than N = 5.

Axial U(1) symmetry and R-symmetry mixing. Let Rν and A be the two Cartan
generators of the SO(4) R-symmetry:

Rν=0 := R+R′ , A := R−R′ ,
Rν := Rν=0 + νA .

(2.3)

Here R and R′ are the Cartans of SU(2)L and SU(2)R respectively. In our convention, they
are normalized as R,R′ ∈ 1

2Z. In terms of an N = 2 subaglebra, Rν is the R-charge while
A is the charge of a U(1) flavor symmetry (commuting with the N = 2 supersymmetry)
called the axial U(1) symmetry. The mixing between the U(1) R-symmetry and the axial
flavor symmetry is parametrized by ν. The IR superconformal R-symmetry corresponds
to ν = 0.

Supersymmetric partition functions. Generally, the partition function ZB
T (b2,m, ν; s)

of a 3d N = 4 SCFT T on a rigid supersymmetric background B depends on the followings:

M : topology of B ,

b2 (or q) : squashing (or Ω-deformation) parameter,
m (or η = em) : real mass (or fugacity variable) for axial U(1) symmetry,

ν : R-symmetry mixing parameter in (2.3),
s ∈ H1(M,Z2) : SUSY-compatible spin-structure.

(2.4)
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We consider supersymmetric backgrounds B whose topologies are given asMg,p, a degree
p bundle over a genus g Riemann surface Σg:

S1 p //Mg,p

��
Σg

(2.5)

We refer readers to appendix A.1 for a brief review on localizations on supersymmetric
backgrounds. We can turn on the Ω-deformation parameter (sometimes called squashing
parameter) only for g = 0. For even p, one can consider two supersymmetric backgrounds
depending on the choice of the spin structure along the fiber [S1] ∈ H1(M,Z2). We denote
s = +1 (s = −1) for the periodic (anti-periodic) boundary condition for fermionic fields
along the S1. For p = 0, the partition function can be regarded as a version of the BPS
index I(s) and its spin structure dependence can be interpreted as

I(s) =

TrHBPS(−1)Rν , for s = −1 ,
TrHBPS(−1)2j3 , for s = 1 .

(2.6)

As BPS indices, they can be defined without overall phase factor ambiguities. For p 6= 0,
on the other hand, local counterterms affect the phase factor of the partition function [39]
and it is non-trivial to keep track of the local counterterms. Throughout this paper, we
are for the most part interested in the absolute value of partition functions. For g = 1 and
p = 0, the supersymmetric partition function is independent of all the parameters and is
simply an integer number called the Witten index.

Emergence of non-unitary TQFT in the limits ν → ±1. As main result of the
paper, we propose that for any rank 0 N = 4 SCFT Trank 0 we can associate a pair of
non-unitary TQFTs denoted by TFT±[Trank 0], satisfying the following relation

Main proposal: ZB
Trank 0

(
b2,m (or η), ν; s

)
m→0 (or η→1), ν→±1−−−−−−−−−−−−−−−−−→ ZMg,p

TFT±[Trank 0](s) .
(2.7)

The partition function ZMg,p

TFT of the topological theory depends only on the topological
structureMg,p of B and (possibly) a choice of a spin-structure s on it.1 We claim that in
the degenerate limits i) the rigid supersymmetry partition function becomes independent
on the squashing parameter b2 (or Ω-deformation parameter q) and ii) it becomes the
partition function of a non-unitary topological quantum field theory.

We call a topological quantum field theory a non-spin (or bosonic) TQFT when its par-
tition function is independent on the choice of the spin structure, and a spin (or fermionic)

1The overall phase factor of the partition function depends also on the choice of the framing. As with
supersymmetric partition functions, there is no canonical choice of the framing for non-zero p and we mostly
focus on the absolute values of the partition functions.

– 5 –
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TQFT otherwise. We propose that

The non-unitary TFT±[Trank 0] is a spin (fermionic) TQFT,
if Rν=±1 + 2j2 ∈ 2Z + 1 for some BPS local operators.
or equivalently,

if Isci(q, η, ν = ±1; s) contains q
1
2 (odd integer) terms.

(2.8)

Here Isci is the superconformal index defined in (A.3) and the index at ν = ±1 is in
general a power series in q1/2 since Rν=±1 + 2j3 ∈ Z. From (2.6), we expect that the
supersymmetric partition on Mg,p=0 depends on the spin-structure s if the above con-
dition is met. This is because that the condition Rν=±1 + 2j3 ∈ 2Z + 1 implies that
(−1)Rν=±1 6= (−1)2j3 for some BPS local operators which acts on the Hilbert-space HBPS
non-trivially. The above condition gives sufficient but not necessary condition for TFT±
to be fermionic. To see this, consider a rank 0 SCFT Trank 0 not satisfying the above con-
dition whose associated non-unitary topological field theories, TFT±[Trank 0], are bosonic.
Then, Trank 0 ⊗ Tspin top with an unitary fermionic topological field theory Tspin top is still
a rank 0 SCFT not satisfying the above condition since the decoupled topological sector
does not contribute to the superconformal index. But its associated non-unitary TQFTs
TFT±[Trank 0 ⊗ Tspin top] = TFT±[Trank 0] ⊗ Tspin top are fermionic due to the decoupled
unitary spin TQFT Tspin top.

The proposal in (2.7) can be easily proven for the case when ZB is the superconformal
index (A.3). In the degenerate limit, ν → 1 and η = 1, the index becomes

Isci(q, η, ν; s) η=1,ν→1−−−−−−−→

TrHrad(S2)(−1)2j3qR+j3 , s = +1 ,
TrHrad(S2)(−1)RqR+j3 , s = −1 .

(2.9)

All unitary multiplets of 3D N = 4 superconformal algebra are listed in [40]. From the
classification, it is not difficult to check that the index above gets contributions only from
operators in a short multiplet denoted by B1[0](2R,2R

′)
∆ with R = 0 in [40]. The bottom

state inside the multiplet corresponds to a Coulomb branch operator parametrizing the
Coulomb branch. From the superconformal index in the degenerate limit, one can actually
compute the Hilbert-series of the Coulomb branch [41]. Since we are considering a rank
0 theory Trank 0 with empty Coulomb branch, the index gets contributions only from the
identity operator and becomes simply (q-independent) 1. Similarly, one can also confirm
that the index becomes 1 in the other degenerate limit, ν → −1 and η = 1, since there is no
Higgs branch. In summary, from the superconformal multiplet analysis, we conclude that

Isci
Trank 0(q, η, ν; s) η=1,ν→±1−−−−−−−−→ 1, for any rank 0 theory Trank 0 . (2.10)

This proves the proposal in (2.7) for the case when ZB= (superconformal index) since
ZS2×S1 = 1 for all topological theories.

We currently do not know the full proof of the proposal (2.7) for other supersymmetric
partition functions ZB. As noticed in [34], however, the triviality of superconformal index

– 6 –
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for a non-conformal choice of R-symmetry is a strong evidence for the appearance of non-
unitary TQFT, while the triviality of the index at the superconformal R-symmetry implies
an emergence of a unitary TQFT at the infra-red fixed point. We explicitly test the
proposal with infinitely many rank 0 SCFTs and various supersymmetric partition functions
in section 3.

2.2 Dictionaries

In table 1, we summarize basic dictionaries of the correspondence. The dictionary in
the first line is the most basic one and other dictionaries (except for the last one for F )
follow from it. On the one hand, partition functions (with insertion of loop operators
along the fiber S1) of a topological field theory on the geometriesMg,p are determined by
the modular data, i.e. S and T matrices, of the topological theory. On the other hand,
the supersymmetric partition function on B with topology Mg,p can be computed using
localization technique as briefly summarized in appendix A.2.

For a TQFT its rank, i.e. the size of modular matrices, is equal to the ground state
degeneracy on the two torus. For a supersymmetric field theory, the degeneracy is equal to
the Witten index. The dictionaries for S2

0α, Tαβ and Wβ(α) simply follow from comparison
between (A.57) and (A.44). The Bethe-vacuum corresponding to the trivial simple object,
α = 0, can be determined by requiring that

Trivial object α = 0: 1√
|Hα=0(m = 0, ν → ±1)|

= S±00 = |ZS3
b (m = 0, ν → ±1)| . (2.11)

In topological field theories simple objects (labeled by α) are loop operators, while in su-
persymmetric field theories α labels the types (gauge and flavor charge) of loop operators.
Therefore, we expect that for each Bethe-vacuum α there is a corresponding supersymmet-
ric loop operator Oα(~z), see around (A.44):

(Bethe vacua)-to-(loop operators) map: ~zα → O±α . (2.12)

The trivial object α = 0 corresponds to the identity operator. The map will be determined
by requiring the following consistency conditions

W±0 (α) = S±α0
S±00

=
√
Hα=0(m = 0, ν → ±1)
Hα(m = 0, ν → ±1) and W±0 (α) = O±α (~zα=0)

∣∣
ν→±1,m=0 ,

⇒ O±α (~zα=0) =
√
Hα=0(m = 0, ν → ±1)
Hα(m = 0, ν → ±1) .

(2.13)

The dictionary for F in the last line is one of the most non-trivial and interesting
statements in this paper. It says that

F [Trank 0]
= − log |S0α∗ | of TFT±[Trank 0] (α∗ is chosen such that |S0α∗ | ≤ |S0α| for other α) .

(2.14)

– 7 –
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TFT±[Trank 0] Trank 0

ZMg,p

TFT±(s) BPS partition function ZB
Trank 0

∣∣
ν→±1,m=0(s)

with (topology of B) =Mg,p

Spin or non-spin Equation (2.8)

Rank N Witten index

Bethe vacua {~zα}N−1
α=0

Simple objects or

BPS loop operators {O±α (~z)}N−1
α=0

(S±0α)−2 Hα(m = 0, ν → ±1; s = −1)

T±αβ (only for non-spin) δαβ
(
Fα
Fα=0

) ∣∣
ν→±1,m=0

(T 2)±αβ δαβ
(
Fα
Fα=0

)2 ∣∣
ν→±1,m=0,s=−1

S±00
∣∣ZS3

b
Trank 0

(m = 0, ν → ±1)
∣∣

W±β (α) O±α (~zβ)|ν→±1,m=0

maxα(− log |S±0α|) F (three-sphere free energy)

Table 1. Basic dictionaries in (rank 0 SCFT)/(non-unitary TQFTs) correspondence. S±αβ and
T±αβ are modular matrices of TFT±[Trank 0]. We define Wβ(α) := Sαβ

S0β
= 〈β|OAα |β〉, see (A.52),

from which one can compute S-matrix Sαβ = Wβ(α)W0(β)S00. Hα and Fα are handle gluing and
fibering operator at the α-th Bethe-vacuum respectively, see (A.40) and (A.43). Oα=0 corresponds
to the trivial loop and Wβ(0) = 1. The rank of a TFT (not to be confused with the rank of its
associated 3D N = 4 SCFT) is defined as the dimension of H(T2) for non-spin case while is defined
as the dimension of H−−(T2), i.e. Hilbert-space in NS-NS sector, for spin case. Similarly, the S and
T matrices (resp. S and T 2) for non-spin TQFT case (resp. spin TQFT case) are modular matrices
acting on H(T2) (resp. H−−(T2)). Simple objects are in one-to-one with a basis of H(T2) (resp.
H−−(T2)) for non-spin TQFT case (resp. spin TQFT case). We refer readers to appendix A.2 for
a general review on the modular data of non-spin and spin TQFTs.

F is the free energy on round three-sphere, which is the quantity appearing in the F-
theorem and is a proper measure of degree of freedom. The relation is surprising since it
relates the quantity (F ) at the superconformal point, ν = 0, to the quantity (S0α∗) in the
degenerate limits ν = ±1.

One possible explanation for the dictionary above is as follows. In general, S0α∗ in a
topological field theory computes the three-sphere partition function with an insertion of
loop operator OΓ=(unknot)

α∗ of type α∗ along the unknot in S3. In the rank 0 theory Trank 0,
on the other hand, there is a flavor vortex loop operator associated to the U(1) axial flavor
symmetry. The loop operator is known to act on the three-sphere partition as a difference

– 8 –
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operator shifting the parameter ν [42–44]

(flavor vortex loop)± of charge ±1 ←→ exp(±∂ν) . (2.15)

This means that the S3 partition function at the conformal point can be identified with
the S3 partition function with an insertion of the vortex loop operators of charge +1(−1)
in TFT− (TFT+)2

|ZS3(ν = 0)| = exp(∂ν) · |ZS3(ν = −1)| = |ZS3+Oflavor vortex(ν = −1)|

⇒ |ZS3(ν = 0)| = |S0α=(flavor vortex)+ of TFT−| .
(2.16)

Hence if one identify α = (flavor vortex)+ (α = (flavor vortex)−) of TFT− (TFT+) with
α=α∗ in (2.14), then the dictionary follows. Actually, according to F-maximization (A.28),
we expect that

|ZS3(ν = 0)| = |S0α=(flavor vortex)+ of TFT−| < |S00 of TFT−| = |ZS
3(ν = −1)| ,

|ZS3(ν = 0)| = |S0α=(flavor vortex)− of TFT+| < |S00 of TFT+| = |ZS
3(ν = 1)| .

(2.17)

It is compatible with the desired identification, (flavor vortex loop) = (α∗in (2.14)). The
property above is also compatible with the fact that TFT± are non-unitary since they
violate the unitarity condition (A.56).

The argument above gives circumstantial evidence but not a full proof for the dictionary
on F . The dictionary will be confirmed explicitly in section 3 with infinitely many examples.
We leave general proof or disproof of the dictionary for future work.

2.3 Application: lower bounds on F

Here we derive interesting lower bounds on F for rank 0 SCFTs using the correspondence
introduced in the previous subsection.

One immediate and interesting consequence of the dictionaries in table 1 is

F > − log 1√
Witten index

, for all interacting N ≥ 4 SCFT Trank 0 of rank 0 . (2.18)

This follows from the following fact
N−1∑
α=0

(S0α)2 = 1 ⇒ minα|S0α| = |S0α∗ in (2.14)| < 1√
N
, (2.19)

combined with the dictionaries for Witten index and F . More interestingly, using the
dictionary, one can prove following

F ≥ − log

√
5−
√

5
10 = 0.642965 , for any interacting N ≥ 4 SCFT Trank 0 of rank 0 .

(2.20)
2If we turn on the squashing parameter b, the partition function at ν = −1 with the flavor

vortex loop is given as ZS
3
b

+Oflavor vortex(m = 0, ν = −1) = ZS
3
b

(
m = iπ(b− 1

b
), ν = 0

)
. Interest-

ingly, the partition function is actually independent b [45, 46] and |ZS
3
b

(
m = iπ(b− 1

b
), ν = 0

)
| =

|ZS
3
b

(
m = iπ(b− 1

b
), ν = 0

)
|b=1 = |ZS

3
b (m = 0, ν = 0)| = e−F .
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The bound is saturated by the minimal Tmin theory which will be introduced in section 3.
The inequality above follows from the following fact combined with the dictionary for F

|S0α∗ in (2.14)| ≤

√
5−
√

5
10 = 0.525731 for all non-unitary TFT . (2.21)

Thanks to (2.19), we only need to check the inequality for non-unitary TQFTs up to rank
3 since and 1√

4 = 0.5 <
√

5−
√

5
10 . Let us first consider rank 2 case. Let x = S2

00 and y = S2
01

where Sαβ is the S-matrix of a non-unitary TQFT. Then the two positive real numbers x
and y should satisfy followings

GSDg=0 = x+ y = 1 , GSDg=2 = 1
x

+ 1
y

= k ∈ Z>0 . (2.22)

Here GSDg denotes the ground state degeneracy on genus g Riemann surface, see (A.58).
One can solve the equations and we have two solutions

x = 1
2 ±

1
2

√
k − 4
k

, y = 1
2 ∓

1
2

√
k − 4
k

. (2.23)

Imposing the conditions, x, y ∈ R>0 and x > y (non-unitarity condition, see (A.56)), we
have only one solution for each k > 4. As the natural number k increases, y1/2 = |S0α∗ | in
the solution decreases. Thus, we have

|S0α∗ | = y1/2 ≤ (y1/2 at k = 5) =

√
5−
√

5
10 ,

for any rank 2 non-unitary TQFT .

(2.24)

Now let us move on to the rank 3 case. Let x = S2
00, y = S2

01 and z = S2
02 = S2

0α∗ . Then,
the three positive real numbers should satisfy

GSDg=0 = x+ y + z = 1 , GSDg=2 = 1
x

+ 1
y

+ 1
z

= k1 ∈ Z>0 ,

GSDg=3 = 1
x2 + 1

y2 + 1
z2 = k2 ∈ Z>0 .

(2.25)

One can confirm that any solution to equations above satisfying the non-unitarity condi-
tions, min(x, y) ≥ z and max(x, y) > z, have following property3

|S0α∗ | = z1/2 ≤ (z1/2 at k1 = 10 and k2 = 36) = 1
2 <

√
5−
√

5
10 ,

for any rank 3 non-unitary TQFT .

(2.26)

We are not certain if there is a rank 3 non-unitary TQFT saturating the bound |S0α∗ | = 1
2 .

The results in (2.19), (2.24) and (2.26) imply the bound in (2.21), from which the conclusion
in (2.20) follows.

3Since 1
x

+ 1
y

+ 1
z
≤ 3

z
, 1
x2 + 1

y2 + 1
z2 ≤ 3

z2 and thus z ≤ min( 3
k1
,
√

3
k2

), it is enough to check that z1/2 ≤ 1
2

for only finitely many cases (0 < k1 ≤ 12 and 0 < k2 ≤ 48).
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Trank 0 TFT±[Trank 0] Set of {|S±0α|} exp(−F )

Tmin (Lee-Yang)
{√

5+
√

5
10 ,

√
5−
√

5
10

} √
5−
√

5
10

(U(1)1 +H) Gald(SU(2)6)/Zf2 {2ζ1
6 , 2ζ3

6} 2ζ1
6

(with d = ζ3
6 )

SU(2)
1
2⊕

1
2

k Gald(SU(2)4|k|−2)/Zf2
{
2ζ2n−1

4|k|−2
}|k|
n=1 2ζ1

4|k|−2

(|k| > 1) (with d = ζ
2|k|−1
4|k|−2 )

T [SU(2)]k1,k2 See the caption
{(

1√
2ζ
n
|k1k2−1|−2

)⊗2 }|k1k2−1|−1

n=1
1√
2ζ

1
|k1k2−1|−2

T [SU(2)]
SU(2)diag

|k|=3
(Lee-Yang)⊗2 ⊗U(1)2

{
1√
10
⊗4
, 5+
√

5
10
√

2
⊗2
, 5−
√

5
10
√

2
⊗2} 5−

√
5

10
√

2

T [SU(2)]
SU(2)diag

|k|=4

Gal
ζ710

(SU(2)10)×SU(2)2

Zdiag
2

{
1
2 ,

1
2
√

3
⊗5
, 3+
√

3
12
⊗2
, 3−
√

3
12
⊗2} 3−

√
3

12

T [SU(2)]
SU(2)diag

|k|=5
Gald

(
(G2)3

)
⊗U(1)−2

{
1√
6
⊗2
, 1√

14
⊗6
,

√
5
84 −

1
4
√

21(
d =

√
5
84 + 1

4
√

21

) √
5
84 ±

1
4
√

21
⊗2}

{
1√

2|k|−4
⊗(|k|−3)

, 1√
2|k|+4

⊗(|k|+1) 1√
8|k|−16

T [SU(2)]
SU(2)diag

|k|≥6
?

(
1√

8|k|−16
+ 1√

8|k|+16

)⊗2
, − 1√

8|k|+16(
1√

8|k|−16
− 1√

8|k|+16

)⊗2}

Table 2. Non-unitary TQFTs from rank 0 N = 4 SCFTs. Gald(TFT) denotes a Galois
conjugate of an unitary topological field theory TFT with S00(Gald[TFT]) = d. We define
ζnk :=

√
2
k+2 sin nπ

k+2 . For the rank 0 SCFT Trank 0 = T [SU(2)]k1,k2 := T [SU(2)]
SU(2)C

k1
×SU(2)H

k2
with

|k1k2 − 1| > 3 and min(|k1|, |k2|) > 2, the corresponding non-unitary TQFTs are TFT+ =[
Gal

ζ
|k2|
|k1k2−1|−2

(SU(2)|k1k2−1|−2)
]
⊗ U(1)2 and TFT− =

[
Gal

ζ
|k1|
|k1k2−1|−2

(SU(2)|k1k2−1|−2)
]
⊗ U(1)2.

For Trank 0 = T [SU(2)]
SU(2)diag

|k|≥6
, we could not identify their associatec TFTs with previously known non-

unitary TQFTs.

3 Examples

In this section, we introduce infinitely many examples of (2+1)D N = 4 interacting rank 0
superconformal field theories Trank 0. Using the dictionary in table 1, we compute the set
{|S±0α|} for non-unitary TQFTs TFT±[Trank 0]. We also independently compute the three-
sphere free energy F by performing the localization integral for ZS3

b at b = 1,m = 0, ν = 0
and confirm the non-trivial dictionary for F . See table 2 for the summary.
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3.1 The minimal N = 4 SCFT Tmin

3.1.1 SUSY enhancement

In [27], it was claimed that

(3D N = 2 gauge theory, U(1)k=−3/2 coupled to a chiral multiplet Φ of charge +1)
at IR−−−−−−−→ (3D N = 4 superconformal field theory Tmin) .

(3.1)

As a quick evidence for the SUSY enhancement, there are following two gauge invariant
monopole operators in the theory

φ̂φ̂|m = +1〉 , ψ̂∗|m = −1〉 , (3.2)

with following quantum numbers [27, 47, 48]

A = −m = −1, R = 1−RΦ
2 |m|+ 2RΦ = 1, j = 1 , ∆ = 2 ,

A = −m = 1, R = 1−RΦ
2 |m|+ (1−RΦ) = 1, j = 1 , ∆ = 2 .

(3.3)

Here A is the charge of U(1)top and R is the charge of the superconformal U(1) R-symmetry;
j ∈ Z

2 and ∆ are the Lorentz spin and the conformal dimension respectively. We use the
fact that [27]

RΦ := (Superconformal U(1) R-symmetry charge of Φ) = 1
3 , (3.4)

which can be determined by the F-maximization [49]. Here |m〉 ∈ Hrad(S2) (the radially
quantized Hilbert-space on S2) is a half BPS bare monopole operator. The bare monopole
operator has a U(1) gauge charge −3

2m+ 1
2 |m| and should be dressed by excitations (φ̂, ψ̂ and

their complex conjugations) of matter fields to be gauge-invariant. The dressed monopole
operators are 1/4 BPS local operators. According to the classification in [40], the monopole
operators above, if they survive at the IR superconformal point, must belong to an extra
SUSY-current multiplet of the 3D N = 2 superconformal algebra. The multiplet con-
sists of conformal primaries of the following quantum numbers as well as their conformal
descendants,[

(R, j,∆) =
(

0, 1
2 ,

3
2

)]
Q,Q̄−−−−−→ [(R, j,∆) = (±1, 1, 2)] Q,Q̄−−−−−→

[
(R, j,∆) =

(
0, 3

2 ,
5
2

)]
.

(3.5)

Here Q := Q1 + iQ2 and Q̄ := Q1 − iQ2 are the N = 2 supercharges. The local operators
in the top component with (R, j,∆) =

(
0, 3

2 ,
5
2

)
correspond to the conserved current for

the extra supersymmetry, whose existence guarantees the SUSY enhancement.
Further, it was claimed in [27] that the infra-red (IR) superconformal field theory

(SCFT) Tmin is the minimal 3D N = 4 SCFT having the smallest three-sphere free-energy
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F and the smallest non-zero stress-energy tensor central charge CT whose exact values
are [27, 50]

F (Tmin) = − log

√
5−
√

5
10

' 0.642965 ,

CT (Tmin)
CT (free theory with single Φ) = 8

26

8−
5
√

5 + 2
√

5
π


' 0.992549 .

(3.6)

There is no vacuum moduli space in the minimal theory and thus the minimal SCFT is of
rank 0.

Superconformal index. Applying the localization results in [51, 52] (see also ap-
pendix A of [53]), the superconformal index for Tmin can be written as

Isci
Tmin

(
q, η, ν; s = 1

)
=
∑
m∈Z

∮
|a|=1

da

2πia q
|m|
6 (a(−1)m)−

3m
2 −

|m|
2 (ηq

ν
2 )−mP.E.[fsingle(q, a;m)]

with fsingle(q, a;m) := q
1
6 + |m|2 a

1− q −
q

5
6 + |m|2 a−1

1− q . (3.7)

In the above, we use the superconformal R charge of Φ given in (3.4). At the conformal
point, ν = 0, the index becomes

Isci
Tmin

(
q, u, ν = 0; s = 1

)
= 1− q +

(
η + 1

η

)
q3/2 − 2q2 +

(
η + 1

η

)
q5/2 − 2q3 + . . . . (3.8)

The terms in q3/2 come from the monopole operators in (3.3) and the index is compatible
with the claimed SUSY enhancement [54]. On the other hand, the index at the non-
conformal point ν = ±1 is

Isci
Tmin

(
q, η, ν, s = 1

)∣∣
ν→±1

= 1 +
(
−1 + η∓1

)
q +

(
−2 + η + 1

η

)
q2 +

(
−2 + η + 1

η

)
q3 + . . . .

(3.9)

As anticipated from the superconformal multiplet analysis in (2.10), the index becomes
(q-independent) 1 in the degenerate limits, ν → ±1 and η → 1. This reconfirm that the
N = 4 theory is of rank 0 and gives a strong signal that a topological field theory emerges
in the limits.

3.1.2 Lee-Yang TQFT in degenerate limits

Here we claim that

TFT±[Tmin] = (Lee-Yang TQFT) (3.10)

– 13 –
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with explicit checks of the dictionaries in table 1. The non-unitary TQFT has following
modular data

S =


√

1
10

(√
5 + 5

)
−
√

1
10

(
5−
√

5
)

−
√

1
10

(
5−
√

5
)
−
√

1
10

(√
5 + 5

)
 , T =

(
1 0
0 exp

(
−2πi

5

)) . (3.11)

Squashed three-sphere partition function. The squashed three-sphere partition
function for the minimal theory is (~ = 2πib2, b ∈ R)

ZS
3
b
Tmin

(b,m, ν) =
∫

dZ√
2π~

e−
Z2+2Z(m+(iπ+ ~

2)ν)
2~ ψ~(Z) . (3.12)

Here ψ~ is a special function called the quantum dilogarithm, for which readers are referred
to appendix D. The partition function in the limit b → 1 was studied in [50] and one can
check that∣∣∣ZS3

b
Tmin

(b,m = 0, ν → ±1)
∣∣∣ b→1−−−−−−→

√
1
10
(√

5 + 5
)

+
∞∑
n=2

sn(1− b)n ,

with sn = 0 up to arbitrary higher order n .
(3.13)

That the partition function becomes independent on the squashing parameter b in the
degenerate limit is a strong signal that the theory becomes topological. Furthermore, the
partition function is identical to the S3 partition function (S00, see (3.11)) of the Lee-Yang
TQFT, ∣∣∣ZS3

b
Tmin

(b,m = 0, ν = ±1)
∣∣∣ =

∣∣∣ZS3
Lee−Yang

∣∣∣ . (3.14)

The free energy F = − log
∣∣ZS3

b
Tmin

(b = 1,m = 0, ν = 0)
∣∣ of the minimal theory, given

in (3.6), nicely matches with maxα(− log |S0α|), see (3.11) for the S-matrix,

(F of Tmin) =
(
max
α

(− log |S0α|) of Lee-Yang TQFT
)
, (3.15)

which confirms the dictionary for F in table 1.

Perturbative invariants Sαn . The integrand in (3.12) can be expanded as

log I~(Z,m, ν) = log
(
e−

Z2+2Z(m+(iπ+ ~
2)ν)

2~ ψ~(Z)
)

~→0−−−−−→ 1
~
W0(Z,m, ν) +W1(Z,m, ν) + . . . with

W0 = Li2(e−Z)− Z2

2 − Z(m+ iπν) , W1 = −1
2 log(1− e−Z)− Zν

2 .

(3.16)

There are two Bethe-vacua (A.31) determined by the following algebraic equation

Bethe-vacua of Tmin :
{
z : (z − 1)e−m−iπν

z2 = 1
}
. (3.17)
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In the degenerate limits, m = 0 and ν → ±1, the two Bethe-vacua approach following
values

zα=0 →
1
2
(√

5− 1
)
, zα=1 →

1
2
(
−
√

5− 1
)
. (3.18)

Perturbative invariants (A.33) of two saddle points associated to the two Bethe-vacua in
the degenerate limits are

Sα=0
0 → 7π2

30 , Sα=0
1 → −1

2 log
(

5−
√

5
2

)
, Sα=0

2 → − 7
120 ,

Sα=1
0 → −17π2

30 , Sα=1
1 → −1

2 log
(

5 +
√

5
2

)
, Sα=1

2 → − 7
120 ,

Sαn≥3 → 0 .

(3.19)

That this is compatible with the expected properties in (A.35) is a highly non-trivial
evidence for emergence of topological theory in the degenerate limits.

Fibering and Handle gluing. Using the formulae in (A.43) and (A.40) combined
with the above computation of Sαn , we have{

Fα(m = 0, ν → ±1, s = −1)
}
α=0,1

−→
{

exp
(
−7iπ

60

)
, exp

(17iπ
60

)}
,

{
Hα(m = 0, ν → ±1, s = −1)

}
α=0,1

−→
{5−

√
5

2 ,
5 +
√

5
2

}
.

(3.20)

Since the 1/
√
Hα=0 is equal to |ZS3

b | at ν = ±1 in (3.13), the zα=0 is indeed the Bethe-
vacuum corresponding to the trivial object according to the criterion in (2.11). The compu-
tations above also confirm the dictionary for S−2

0α and Tαβ in table 1, see (3.11) for modular
matrices of Lee-Yang TQFT.

Supersymmetric loop operator. For a U(1) gauge theory, the supersymmetric dyonic
loop operator O(p,q) of (electric charge, magnetic charge)=(p, q) is

O(p,q) = zp(1− z−1)q . (3.21)

The consistency condition in (2.13) is met when we choose the (Bethe vacua)-to-(loop
operators) map as follow

Oα=0 = (identity operator) , Oα=1 = O(p,q)=(1,0) . (3.22)

Then, using the dictionary in table 1

Wβ=0,1(0) = 1 , Wβ=0(1) = z0 = 1
2(
√

5− 1) , Wβ=1(1) = z1 = 1
2(−
√

5− 1) . (3.23)

From Wβ(α), one can compute the S-matrix using the formula Sαβ = S00Wβ(α)W0(β),
and confirm that it is identical to the S-matrix of the Lee-Yang TQFT given in (3.11).
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3.2 U(1)1 +H: SUSY enhancement N = 3→ N = 5

3.2.1 SUSY enhancement

We define

(U(1)k +H) := (3D N = 4 U(1) gauge theory with CS level k
coupled to a hypermultiplet of charge +1) .

(3.24)

For non-zero k, the theory has N = 3 supersymmetry instead of N = 4 since the CS
term breaks some of the N = 4 supersymmetry. The N = 3 theory has the U(1)top flavor
symmetry associated to the dynamical U(1) gauge theory. As pointed out in [55, 56]

For k = 1, the (U(1)k +H) has enhanced N = 5 supersymmetry at IR
and the resulting IR SCFT is of rank 0 .

(3.25)

The U(1)top = SO(2)top symmetry becomes the U(1) axial symmetry, which is a subgroup
of SO(4) ⊂ SO(5) R-symmetry, in the supersymmetry enhancement.

SO(3)R × SO(2)top
RG−−−−−→ SO(5)R . (3.26)

For |k| = 1, there are two BPS monopole operators whose quantum numbers are

A = +1, j = 1
2 , R = 1, ∆ = 3

2 and

A = −1, j = 1
2 , R = 1, ∆ = 3

2 .
(3.27)

Here A is the charge of U(1)top and R ∈ Z
2 is the spin of SO(3) R-symmetry. j and ∆ are

the Lorentz spin and the conformal dimension respectively. The BPS operators belong to
extra SUSY-current multiplet [40] of N = 3 superconformal algebra, which consists of the
following conformal primaries and their descendants

[(R, j,∆) = (0, 0, 1)] Q−−−−−→
[
(R, j,∆) =

(
1, 1

2 ,
3
2

)]
Q−−−−−→

[(R, j,∆) = (1, 1, 2)]⊕ [(R, j,∆) = (0, 0, 2)] Q−−−−−→
[
(R, j,∆) =

(
0, 3

2 ,
5
2

)]
.

(3.28)

Here Q = (Q1, Q2, Q3) are the N = 3 supercharges. The local operators in the top compo-
nent of the supermultiplet with (R, j,∆) =

(
0, 3

2 ,
5
2

)
correspond to the conserved current for

extra supersymmetry, and thus the existence of the multiplet implies the supersymmetry
enhancement [55, 56].

Superconformal index. Using the localization summarized in A.1, the index is given as

Isci
U(1)k+H(q, η, ν; s = 1)

=
∑
m

∮
|a|=1

da

2πiaq
|m|
4 ((−1)ma)km(ηq

1
2ν)−mP.E.[fsingle(q,a, η;m)] , (3.29)
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where η is a fugacity of U(1)top and

fsingle(q, a, η;m) :=
q

1
4 + 1

2 |m|(a+ 1
a)

1− q −
q

3
4 + 1

2 |m|(a+ 1
a)

1− q . (3.30)

Using the above expression, the index can be evaluated and we find4

Isci
U(1)k+H(q, η, ν; s = 1)

=

1 + q1/2 +
(
−η − 1

η − 1
)
q +

(
η + 1

η + 2
)
q3/2 + . . . , |k| = 1

1 + q1/2 − q + . . . , |k| > 1
(3.31)

The term (−η − 1
η )q comes from the monopole operators (3.27) in extra SUSY-current

multiplet and implies the SUSY enhancement. Note that the SUSY enhancement occurs
only at |k| = 1.

In the degenerate limit ν = ±1 and η = 1, the index becomes

Isci
U(1)k+H(q, η = 1, ν = ±1; s = 1)

=
{

1 +
(
1− η∓1) q1/2 +

(
η∓1 − 1

)
q + . . .

∣∣
η=1 = 1 , (|k| = 1)

Non-trivial power series in q1/2 , (|k| > 1)
. (3.32)

It is compatible the expectation that the theory is a N = 4 (actually N = 5) SCFT of rank
0 when |k| = 1. It also implies that there emerge non-unitary TQFTs in the degenerate
limits only when |k| = 1. The non-unitary TQFTs are expected to be fermionic according
to (2.8).

3.2.2 Non-unitary TQFTs in degenerate limits

Here we extract modular data of TFT±[U(1)k=1+H] by computing various supersymmetric
partition functions.

Squashed three-sphere partition function. It can be written as (see appendix A.1)

ZS
3
b

U(1)k+H(b,m, ν) =
∫ dZ√

2π~
I~(Z,m, ν) with

I~(Z,m, ν) = exp
(
kZ2

2~

)
exp

(
−ZW

~

) ∣∣∣∣
W=m+(πi+ ~

2 )ν

∏
ε1∈{±1}

Ψ~

[
ε1Z + πi

2 + ~
4

]
.

(3.33)

Here Ψ~(X) := ψ~(X) exp
(
X2

4~

)
as defined in (A.25). In a round sphere limit (b = 1) with

k = 1 and m = 0, the integral reduces to (using appendix D)

ZS3

U(1)1+H(b = 1,m = 0, ν) = eiδ

4π

∫
dZ e

kZ2
4πi e−Zν

cosh(Z/2) .
(3.34)

4The same computation was done in [55, 56].
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∞−∞

×

ReZ

ImZ

πi

C1

C2A1C3

Figure 1. A contour for the evaluation of (3.34). There is a simple pole at Z = πi inside the
contour.

Here eiδ is an unimportant phase factor sensitive to local counterterms. For ν = 0, this
integration can be exactly evaluated by applying the residue theorem to the integral along
the contour depicted in figure 1:

∫ ∞
−∞

dZ e
Z2
4πi

cosh(Z/2) +
∫ −∞
∞

dZ e
Z2
4πi e

Z
2 e

πi
4

i sinh(Z/2) + πi(−2ie
πi
4 ) = 2πi(−2ie

πi
4 ) ,

⇒
∫ ∞
−∞

dZ e
Z2
4πi

cosh(Z/2) = 2πe
πi
4 + e−

πi
4

∫ ∞
−∞

dZ e
Z2
4πi e

Z
2

sinh(Z/2)

= 2πe
πi
4 + e−

πi
4

2

(∫ ∞
−∞

dZ e
Z2
4πi e

Z
2

sinh(Z/2) −
∫ ∞
−∞

dZ e
Z2
4πi e−

Z
2

sinh(Z/2)

)

= 2πe
πi
4 + e−

πi
4

∫ ∞
−∞

dZe
Z2
4πi

= 2π(e
πi
4 + e−

πi
2 ) = 4πe−

πi
8 sin

(π
8
)
. (3.35)

Here, the residue at the simple pole Z = πi is −2ieπi4 . The first, second, and third term
in the first line comes from the path C1, C2 + C3, and an arc A1 respectively. At the
third equality, we have used the changing variable as Z → −Z from the last term in the
second line.

Likewise, the integration for ν = ±1 can be computed exactly in a similar way by
using the same contour and we found

∫ ∞
−∞

dZ e
Z2
4πi e−Z

cosh(Z/2) = 4πe−
5π
8 sin

(3π
8
)
. (3.36)

Restoring the overall factor 1/(4π) in (3.34), we finally have

exp(−F ) =
∣∣∣ZS3

b

U(1)1+H(b = 1,m = 0, ν = 0)
∣∣∣ = sin

(
π

8

)
= (4 + 2

√
2)−1/2 ,

(S00 of TFT±) =
∣∣∣ZS3

b

U(1)1+H(b = 1,m = 0, ν → ±1)
∣∣∣ = sin

(3π
8

)
= (4− 2

√
2)−1/2 .

(3.37)

The partition functions in the degenerate limits ν → ±1 are actually independent on the
squashing parameter b, as we will check it perturbatively in (3.41), and equality in the 2nd
line holds for arbitrary b ∈ R.
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Perturbative invariants Sαn . The integrand in (3.33) at k = 1, after a shift Z →
Z + 1

2

(
πi+ ~

2

)
of dummy integral variable, can be expanded as

log I~(Z,m, ν)|Z→Z+ 1
2 (πi+ ~

2 )
~→0−−−−−−→ 1

~
W0(Z,m, ν) +W1(Z,m, ν) + . . . with

W0(m = 0) = Li2(e−Z+iπ) + Li2(eZ) + Z2 + πi(1− ν)Z + c0π
2 ,

W1(m = 0) = 1
2
(
−iπν − νZ + Z − log

(
1− eZ

))
+ ic1π ,

(3.38)

where c0 and c1 are Z-independent rational numbers. There are two Bethe-vacua (A.31)
determined by a following algebraic equation

Bethe-vacua of (U(1)1 +H) at m = 0 :
{
z : (−1)νz(z + 1)

z − 1 = 1
}
. (3.39)

In the degenerate limits, m = 0 and ν → ±1, the two Bethe-vacua approach following
values

zα=0 →
(√

2− 1
)
, zα=1 →

(
−
√

2− 1
)
. (3.40)

Perturbative invariants (A.33) of two saddle points associated to the two Bethe-vacua in
the degenerate limits are

Sα=0
0 → −11

12π
2 , Sα=0

1 → −πi8 −
1
2 log

(
4− 2

√
2
)
,

Sα=1
0 → 1

12π
2 , Sα=1

1 → −πi8 −
1
2 log

(
4 + 2

√
2
)
,

Im[Sαn=2] , Sαn≥3 → 0 .

(3.41)

That this is compatible with the expected properties in (A.35) is a highly non-trivial
evidence for emergence of topological theory in the degenerate limits.

Fibering and Handle gluing. Using the formulae in (A.43) and (A.40) combined
with the above computation of Sαn , we have{

Fα(m = 0, ν → ±1, s = −1)
}
α=0,1

−→
{

exp
(11iπ

24

)
, exp

(
− iπ24

)}
,{

Hα(m = 0, ν → ±1, s = −1)
}
α=0,1

−→
{(

4− 2
√

2
)
,
(
4 + 2

√
2
)}

. (3.42)

Since the 1/
√
Hα=0 is equal to |ZS3

b | at ν = ±1 in (3.37), the zα=0 is indeed the Bethe-
vacuum corresponding to the trivial object according to the criterion in (2.11).

Supersymmetric loop operators. The consistency condition in (2.13) is met when we
choose the (Bethe vacua)-to-(loop operators) map as follows:

Oα=0 = (identity operator) , Oα=1 = O(p,q)=(1,0) . (3.43)
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Then, using the dictionary in table 1,

Wβ=0,1(0) = 1 , Wβ=0(1) = z0 =
√

2− 1 , Wβ=1(1) = z1 = −
√

2− 1 . (3.44)

FromWβ(α), one can compute the S-matrix using the formula Sαβ = S00Wβ(α)W0(β) and
the result is

S =
(

sin 3π
8 sin π

8
sin π

8 − sin 3π
8

)
. (3.45)

Since the TQFTs, TFT±[U(1)1 + H], are spin TQFTs, only the modular T 2 matrix is
well-defined and according to the dictionary in table 1

T 2 =
(

1 0
0 −1

)
. (3.46)

The modular data (S and T 2) of the spin non-unitary TQFT, TFT±[U(1)1+H], is identical
to that of Gald(SU(2)6)/Zf2 with d = 1

2 sin
(

3π
8

)
.

3.3 SU(2)
1
2⊕

1
2

k : N = 5 theory

The theory is defined as(
SU(2)

1
2⊕

1
2

k

)
:= SU(2) gauge theory coupled to a half hypermultiplet

and a half twisted-hypermultiplet
in fundamental representations with Chern-Simons level k .

(3.47)

The theory is can be regarded as a special case of O(M) × Sp(2N) type quiver theories
(with M = N = 1) which have N = 5 supersymmetry [57].

3.3.1 IR phases

Superconformal index. The superconformal index (A.3) of the N = 5 theory is

Isci
SU(2)

1
2⊕

1
2

k

(q, η, ν; s = 1)

=
∞∑

m=0

∮
|a|=1

da

2πia∆(m, a)a2kmq
|m|
2 P.E.

[
fsingle(q, η, a; ν,m)

]
.

(3.48)

Here we define

fsingle(q, η, a; ν,m) := q
1
4 + |m|2

1 + q
1
2

(a+ a−1)
(
(ηq1/2ν)

1
2 + (ηq1/2ν)−

1
2
)
,

∆(m, a) := 1
Sym(m)q

−|m|(1− a2q|m|)(1− a−2q|m|) ,

with Sym(m) :=

2 if m = 0 ,
1 if m > 0 .

(3.49)
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Using the formula, one can compute the superconformal index and check that

Isci
SU(2)

1
2⊕

1
2

k

(q, η, ν = 0; s = 1)

=


∞ if k = 0
1 if |k| = 1
1 + q

1
2 +

(
−1− 1

η − η
)
q +

(
2 + η + 1

η

)
q

3
2 + . . . if |k| ≥ 2 .

(3.50)

The higher order terms (represented by . . .) depend on k for |k| ≥ 2. From the computation,
one can determine the basic property of theory appearing at the IR. The triviality of the
index for |k| = 1 implies that the theory has a mass gap and the IR physics is described
by an unitary TQFT. The divergence of the index is a signal of emergence of a free chiral
theory that decouples with the other part of the theory [58]. The non-triviality of the index
implies that the theory flows to a superconformal field theory. In summary, from the index
computation we conclude that

SU(2)
1
2⊕

1
2

k
at IR−−−−−−−→


Contains decoupled free chirals if |k| = 0 ,
Unitary TQFT if |k| = 1 ,
3D N = 5 SCFT if |k| ≥ 2 .

(3.51)

In the degenerate limits, ν → ±1 and η → 1, the index becomes (for |k| ≥ 2)

Isci
SU(2)

1
2⊕

1
2

k

(q, η, ν=±1; s=1) =1+ (1−η∓1)q1/2 − (η∓1−1)q + (2−η±1−η∓2)q3/2 +. . . ,

Isci
SU(2)

1
2⊕

1
2

k

(q, η=1, ν=±1; s=1) =1 . (3.52)

It implies that the theory is of rank 0 and non-unitary TQFTs, TFT±[SU(2)
1
2⊕

1
2

k ], emerges
when |k| ≥ 2 in the limits. In addition, we expect that they are spin TQFTs according
to (2.8). The TFT±[SU(2)

1
2⊕

1
2

k ] in the table 2 is indeed a spin TQFT since it is given by a
Zf2 quotient (fermionic anyon condensation) of a bosonic TQFT.

3.3.2 Non-unitary TQFTs in degenerate limits

Squashed three-sphere partition function. The partition function of the N = 5
theory is

ZS
3
b

SU(2)
1
2⊕

1
2

k

(b,m, ν) =
∫ dZ√

2π~
I~(Z,m, ν) with

I~(Z,m, ν) = 1
2
(
2 sinh(Z)

)(
2 sinh

(2πiZ
~

))
exp

(
kZ2

~

)

×
∏

ε1,ε2∈{±1}
Ψ~

[
ε1Z + ε2

m+ ν
(
iπ + ~

2

)
2 + πi

2 + ~
4

]
.

(3.53)
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At b = 1 and m = 0, the localization integral is simplified as

ZS
3
b

SU(2)
1
2⊕

1
2

k

(b = 1,m = 0, ν) = e
πi
12

2π

∫
dZ sinh2(Z)

cosh(Z) + cosh(iπν) exp
(
kZ2

2πi

)
. (3.54)

At ν = 0,±1, the partition function is exactly computable and we obtain

exp(−F ) =
∣∣∣ZS3

b

SU(2)
1
2⊕

1
2

k

(b = 1,m = 0, ν = 0)
∣∣∣ =

√
2
|k|

sin
(
π

4|k|

)
,

(S00 of TFT±) =
∣∣∣ZS3

b

SU(2)
1
2⊕

1
2

k

(b = 1,m = 0, ν → ±1)
∣∣∣ =

√
2
|k|

sin
(
π(2|k| − 1)

4|k|

)
.

(3.55)

Bethe-vacua and Handle gluing operators in the degenerate limits. Since there
is a Z2 symmetry (m, ν) ↔ (−m,−ν), we only consider the limit ν → 1. In the limit
ν → 1, the asymptotic expansion coefficients W0 and W1 of the integrand are

log I~(Z,m, ν) ~→0−−−−−−→ 1
~
W0(Z,m, ν) +W1(Z,m, ν) +O(~) with

W0(Z,m, ν = 1) = −π
2

2 + πim

2 + m2

4 ± 2πiZ + (k + 1)Z2 +
∑

ε1,ε2∈{±1}
Li2(e−ε1Z−ε2

m
2 ) ,

W1(Z,m, ν = 1) = 1
2

(
πi+ m

2 − log(1− e
m
2 −Z)− log(1− e

m
2 +Z)

)
+ log(sinh(Z)) .

(3.56)

The Bethe vacua equation at ν = 1 is

exp(∂ZW0(Z,m, ν = 1))
∣∣∣∣
Z→log(z),m→log(η)

=
(√η − z)(√ηz + 1)
(√η + z)(√ηz − 1)z

2k = 1 . (3.57)

In the degenerate limit η → 1, the equation simplifies as z2k = −1 and there are |k|
Bethe-vacua after taking into account of the Weyl Z2 quotient, z ↔ 1/z,

Bethe-vacua: zα = (−1)
2k−2α+1

2|k| , α = 1, · · · , |k| . (3.58)

Now, the handle gluing in the degenerate limit, m = 0, ν = 1, is given by

H(z) = exp (−2Sα1 ) |Z→log(z),ν→1,m→0 = 1
4e
−2W1∂Z∂ZW0

∣∣∣
Z→log(z),ν→1,m→0

= 2kz
(z + 1)2 . (3.59)

The factor 1/4 comes from 1/|Weyl(SU(2))|2, see (A.34). By plugging the eq. (3.58) in the
eq. (3.59), we have(

Hα of SU(2)
1
2⊕

1
2

k

)
=
(√

2
|k|

sin
(
π(2α− 1)

4|k|

))−2

, α = 1, . . . , |k| . (3.60)

The set of {|S0α| = (Hα)−1/2} is identical to the set {|S0α|} of the SU(2)4k−2/Zf2 the-
ory. It implies that the non-unitary TQFT TFT±[SU(2)

1
2⊕

1
2

k ] is a Galois conjugate of
SU(2)4|k|−2/Z

f
2 with S00 in (3.55).

– 22 –



J
H
E
P
0
8
(
2
0
2
1
)
1
5
8

q1 q2 q3 q4 φ0

U(1)gauge 1 1 −1 −1 0
U(1)H 1 −1 1 −1 0

U(1)axial 1
2

1
2

1
2

1
2 −1

U(1)C 0 0 0 0 0

Table 3. Charge assignment in T [SU(2)] theory. U(1)H ,U(1)C and U(1)axial denote the Cartans
of SU(2)H , SU(2)C and axial U(1) ⊂ SO(4)R symmetry respectively.

3.4 T [SU(2)]k1,k2 and T [SU(2)]k1,k2/Z2

T [SU(2)] is the 3D theory living on the S duality domain wall in 4D N = 4 SYM [59].
The theory is the 3d N = 4 SQED with two fundamental hyper-multiplets. See table 3
for the matter contents of the theory. Let the four N = 2 chiral fields in the two N = 4
hyper-multiplets be q1, q2, q3, q4 and the adjoint N = 2 chiral field in the N = 4 vector
multiplet be φ0. The theory has SU(2)H×SU(2)C flavor symmetry at the IR as well as the
SO(4) R-symmetry. The charge assignments for chiral fields under the Cartan subalgebra
of the gauge and global symmetries are:

By gauging the two SU(2)s with non-zero Chern-Simons level k1 and k2, we obtain
infinitely many rank 0 3D N = 4 SCFTs which will be denoted as

T [SU(2)]k1,k2 := T [SU(2)]
SU(2)Hk1

× SU(2)Ck2

:=
(
Gauging SU(2)H×SU(2)C of T [SU(2)] with Chern-Simons levels k1 and k2

)
.

(3.61)

As argued in [27], the gauging does not break the supersymmetry down to N = 3 thanks
to the nilpotent property of the moment map operators, ~µH and ~µC , of the two SU(2)s.

The theory has ZH2 × ZC2 one-form symmetry originating from the center symmetry
Z2 × Z2 of the SU(2)H × SU(2)C gauge group. The discrete one-form symmetry has ’t
Hooft anomaly characterized by the following bulk action5

Sanom = π

∫
M4

(
k1
P(wH2 )

2 + k2
P(wH2 )

2 + wH2 ∪ wC2

)
(mod 2π) . (3.62)

Here wH2 (wC2 ) is the 2nd Stiefel-Whitney class, valued in H2(M4,Z2), of the SO(3)H =
(SU(2)H)/Z2 and SO(3)C = SU(2)C/Z2 bundle respectively. P is the Pontryagin square
operation,

P : H2(M4,Z2)→ H4(M4,Z2) , (3.63)

5The anomaly can be interpreted as a dependence of the partition function ZM3=∂X4 on the choice
of a 4-manifold X4 having M3 as a boundary. The difference between two partition functions, ZM3=∂X4

and ZM3=∂Y4 , with two choices of 4-manifolds, X4 and Y4, is determined by the bulk action Sanom as
ZM3=∂X4

ZM3=∂Y4 = eiSanom[M4]. HereM4 = X4
⋃
Y4 is a closed 4-manifold obtained by gluing X4 and orientation

reversed Y4 along the common boundaryM3.
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which satisfies P(w2) = w2
2 (mod 2). On spin manifoldM4, the 1

2P(ω) ∈ Z. The first two
terms in (3.62) come from the Chern-Simons action of two SU(2) gauge fields [60] while
the last term is from the anomaly polynomial of T [SU(2)] theory [61]. From the anomaly
polynomial, one can confirm that the following Z2 one-form symmetry is anomaly free

Anomaly free one-form Z2 symmetry :


ZH2 , k1 ∈ 2Z and k2 ∈ 2Z + 1 ,
ZC2 , k2 ∈ 2Z and k1 ∈ 2Z + 1 ,
Zdiag

2 ⊂ ZC2 × ZH2 , otherwise .
(3.64)

The Z2 one-form symmetry can be gauged and we define

T [SU(2)]k1,k2/Z2

:= (Theory after gauging the anomaly free one-form Z2 symmetry in T [SU(2)]k1,k2) .
(3.65)

3.4.1 IR phases

Superconformal index. Index of the theory T [SU(2)]k1,k2 (or T [SU(2)]k1,k2/Z2) is

Isci(q, η, ν; s = 1)

=
∑

m1,m2

∮
|a1|=1,|a2|=1

( 2∏
i=1

∆(mi, ai)dai
2πiai

(ai(−1)mi)2kimi

)
Isci
T [SU(2)](a1, a2, η, ν;m1,m2) .

(3.66)

Here the generalized superconformal index for T [SU(2)] theory is

Isci
T [SU(2)](a1, a2, η, ν;m1,m2) = Isci

T [SU(2)](a1, a2, η, ν = 0;m1,m2)
∣∣
η→ηq

ν
2 with

Isci
T [SU(2)](a1, a2, η, ν = 0;m1,m2)

=
∑
n

∮
|u|=1

du

2πiu((−1)m2a2)−2n((−1)nu)−2m2(q
1
2 η−1)

1
2 (|m1+n|+|m1−n|)P.E.[fsingle] ,

where

fsingle(a1, a2, η, u;m1, n) =
q

1
4
√
η − q

3
4
√
η−1

1− q q
1
2 |m1+n|

(
a1u+ 1

a1u

)

+
q

1
4
√
η − q

3
4
√
η−1

1− q q
1
2 |m1−n|

(
a1
u

+ u

a1

)
+ q

1
2

1− q

(1
η
− η

)
.

(3.67)

From Dirac quantization conditions, following monopole fluxes are allowed

n,m1,m2 ∈
1
2Z with n±m1 ∈ Z . (3.68)

In the above formula, however, we are only summing over following monopole fluxes

for T [SU(2)]k1,k2 theory: n,m1,m2 ∈ Z , (3.69)
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since we are summing over SU(2) bundles, i.e. SO(3) bundles with trivial w2. The local-
ization saddle point (A.8) with SU(2) monopole flux m has non-trivial w2 if and only if

m ∈ Z + 1
2 . (3.70)

For the theory (3.65) after gauging the Z2 one-form symmetry, we also need to sum over
gauge bundle with non-trivial wZ2

2 . For the superconformal index for the T [SU(2)]k1,k2/Z2
theory (3.65), the summation range of monopole fluxes are

for T [SU(2)]k1,k2/Z2 theory:


n + m1, 2m1,m2 ∈ Z , k1 ∈ 2Z and k2 ∈ 2Z + 1 ,
n,m1, 2m2 ∈ Z , k2 ∈ 2Z and k1 ∈ 2Z + 1 ,
n + m1, 2m1,m1−m2 ∈ Z , otherwise .

(3.71)

From the formulae in (3.66), (3.67), (3.69), (3.71), one can compute the superconformal
indices and check followings

Isci(q, η, ν = 0; s = 1) of T [SU(2)]k1,k2 (or T [SU(2)]k1,k2/Z2)

=



Non-trivial power series in q1/2 if |k1k2 − 1| > 3 and min(|k1|, |k2|) > 1 ,
0 if |k1k2 − 1| = 1 ,
1 if |k1k2 − 1| = 3 or (|k1k2 − 1| > 3 and min(|k1|, |k2|) = 1) ,
1 (or 2) if |k1k2 − 1| = 2 ,
∞ if |k1k2 − 1| = 0 .

(3.72)

For the case when |k1k2 − 1| = 1, the index vanishes and it implies that SUSY is spon-
taneously broken. For the case when |k1k2 − 1| = 2, on the other hand, the index for
T [SU(2)]k1k2 is just 1 while the index for T [SU(2)]k1k2/Z2 is surprisingly 2. It implies
that theory T [SU(2)]k1k2 has a mass gap and flows to a topological theory and the UV Z2
one-form symmetry decouples at IR, i.e. the Z2 does not act faithfully on any IR observ-
ables. It means that the IR TQFT actually does not have the Z2 symmetry. The index for
T [SU(2)]k1k2/Z2 becomes 2 just because we perform the gauging of the decoupled (so ab-
sent) one-form symmetry by hand. At the level of S2×S1 partition function, the one-form
gauging procedure is

ZS2×S1

TFT/Z2
=

∑
[β2]∈H2(S2×S1,Z2)

ZS2×S1

TFT ([β2]) . (3.73)

Here the [β2] ∈ H2(S2×S1,Z2) = Z2 is the background 2-form Z2 flat connections coupled
to the one-form symmetry. Alternatively, the r.h.s. can be written as

ZS2×S1

TFT + Z
S2×S1+O[S1]

αZ2
TFT , (3.74)

where first term is the S2 × S1 partition function (with trivial [β2]) and the 2nd term
is the partition function with insertion of loop operator along the [S1], the generator of
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H1(S2 × S1,Z2) = H2(S2 × S1,Z2), with the Z2 symmetry generating anyon αZ2 . For
general TFT with a faithful Z2 one-form symmetry, the first term is just 1 while the 2nd
term vanishes and the total partition function ZS2×S1

TFT/Z2
becomes just 1 as expected. When

the Z2 one-form symmetry is decoupled at IR, however, the 2nd term is also 1 since the
anyon αZ2 actually becomes the trivial operator, Oα=0, at IR. So the result, ZS2×S1

TFT/Z2
= 2,

is an artifact due to the “gauging” of the “absent” Z2 symmetry. As we will see below, one
can actually confirm that the Z2 symmetry act trivially on Bethe-vacua of T [SU(2)]k1,k2

theory for the case when |k1k2 − 1| = 2. In summary, from the index computation, we can
conclude that
T [SU(2)]k1,k2

at IR−−−−→



Non-trivial N = 4 SCFT if |k1k2 − 1| > 3 and min(|k1|, |k2|) > 1 ,
SUSY broken if |k1k2 − 1| = 1 ,
Unitary TQFT if |k1k2 − 1| = 3 or (|k1k2 − 1| > 3 and min(|k1|, |k2|) = 1 ,
Unitary TQFT with decoupled Z2 if |k1k2 − 1| = 2 ,
Decoupled free chirals if |k1k2 − 1| = 0 .

(3.75)

In the degenerate limits (ν → ±1 and η → 1), on the other hand, the indices are (when
|k1k2 − 1| > 3 and min(|k1|, |k2|) > 1)

for T [SU(2)]k1,k2 theory ,
Isci (q, η, ν = ±1; s = 1) = (non-trivial power series in q)

and Isci (q, η = 1, ν = ±1; s = 1) = 1 ,
(3.76)

while
for T [SU(2)]k1,k2/Z2 theory ,

Isci (q, η, ν = ±1; s = 1) =

non-trivial power series in q1/2 if k1k2 ∈ 4Z + 1 .
non-trivial power series in q otherwise .

and Isci (q, η = 1, ν = ±1; s = 1) = 1 .
(3.77)

The computation implies that the IR theories are N = 4 SCFTs of rank 0 and non-unitary
TQFTs

TFT±
[
T [SU(2)k1,k2 ]

]
or TFT±

[
T [SU(2)k1,k2 ]/Z2

]
(3.78)

emerge in the degenerate limits, η → 1 and ν → ±1. According to the criterion in (2.8),
we further expect that TFT±

[
T [SU(2)]k1,k2/Z2

]
is a spin TQFT when k1k2 ∈ 4Z+ 1. The

non-unitary TQFTs associated to the N = 4 SCFT before the Z2 one-form symmetry
gauging are given in table 2 and the TQFTs after the gauging are

TFT±
[
T [SU(2)]k1,k2/Z2

]
=

TFT±
[
T [SU(2)]k1,k2

]
Z2

=
Gald±(SU(2)|k1k2−1|−2)⊗U(1)2

Z2
,

with d+ = ζ
|k2|
|k1k2−1|−2, d− = ζ

|k1|
|k1k2−1|−2 . (3.79)
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Here Z2 is the anomaly free Z2 one-form symmetry in Gald±(SU(2)|k1k2−1|−2)⊗U(1)2. The
topological theory has ZSU(2)

2 × ZU(1)
2 one-form symmetry and the following Z2 one-form

symmetry is non-anomalous

Anomaly free one-form Z2 symmetry :

ZSU(2)
2 if k1k2 ∈ 2Z + 1 ,

Zdiag
2 otherwise .

(3.80)

When k1k2 ∈ 4Z2 + 1, the one-form Z2 symmetry is fermionic and the theory after the Z2
quotient becomes a spin TQFT,

Gald±(SU(2)|k1k2−1|−2)⊗U(1)2

Z2
is a spin TQFT when k1k2 ∈ 4Z + 1 . (3.81)

It confirms the criterion (2.8) combined with the superconformal index computation (3.77).

3.4.2 Non-unitary TQFTs in degenerate limits

Squashed three-sphere partition function. The partition function ZS
3
b

(k1,k2)(b,m, ν)
of the T [SU(2)]k1,k2 theory is

ZS
3
b

(k1,k2)(b,m, ν) =
∫
dX1dX2dZ

(2π~)3/2 I~(X1, X2, Z,m, ν) ,

with I~(X1, X2, Z,m, ν) = Ivec
~ (X1, X2)× IT [SU(2)]

~ (X1, X2, Z,m, ν) .
(3.82)

Here Ivec
~ is the contribution from the vector multiplet for the SU(2)Hk1

× SU(2)Ck2
gauging:

Ivec
~ (Z1, Z2) = exp

(
k1X

2
1 + k2X

2
2

~

) 2∏
i=1

1
2

(
2 sinhXi

)(
2 sinh 2πiXi

~

)
. (3.83)

IT [SU(2)]
~ is the contribution from the T [SU(2)] theory whose squashed three-sphere parti-

tion function is

ZS
3
b

T [SU(2)](b,X1, X2,m, ν) =
∫

dZ√
2π~

IT [SU(2)]
~ (X1, X2, Z,m, ν), where

IT [SU(2)]
~ (X1, X2, Z,m, ν) =

∏
ε1,2=±1

Ψ~

(
ε1Z + ε2X1 +

m+ ν(iπ + ~
2)

2 + πi

2 + ~
4

)

×Ψ~

(
−2

m+ ν(iπ+~
2)

2 + πi+ ~
2

)
exp

(
− 2ZX2

~
−

(
πi+ ~

2

)
~

m+ ν
(
iπ+~

2

)
2

)
.

(3.84)

One of the non-trivial consistency checks is the mirror property

ZS
3
b

T [SU(2)](b,X1, X2,m = 0, ν) = ZS
3
b

T [SU(2)](b,X2, X1,m = 0,−ν) , (3.85)

which we have checked numerically for various values of X1, X2, and ν. Particularly for
b = 1,m = 0, ν = 0, we have [62–64] (see also appendix C.1)

ZS
3
b

T [SU(2)](b = 1, X1, X2,m = 0, ν = 0) = e
2πi
3

2
sin(X1X2

π )
sinh(X1) sinh(X2) .

(3.86)
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As in (3.54), this localization (3.82) also simplified at b = 1, m = 0, and is exactly
computable at ν = 0,±1 (see appendix C.2).

exp(−F ) =
∣∣∣ZS3

b

(k1,k2)(b = 1,m = 0, ν = 0)
∣∣∣ =

√
1

|k1k2 − 1| sin
(

π

|k1k2 − 1|

)
,

(S00 of TFT±) =
∣∣∣ZS3

b

(k1,k2)(b = 1,m = 0, ν → ±1)
∣∣∣

=
{√ 1

|k1k2−1| sin
(

π|k2|
|k1k2−1|

)
, ν → +1 ,√

1
|k1k2−1| sin

(
π|k1|
|k1k2−1|

)
, ν → −1 .

(3.87)

Bethe-vacua and Handle gluing operators in the degenerate limits. The asymp-
totic expansions, W0 and W1, of the localization integral are

log I~(X1, X2, Z,m, ν) ~→0−−−−−−→ 1
~
W0(X1, X2, Z,m, ν) +W1(X1, X2, Z,m, ν) +O(~) ,

where

W0 = (k1+1)X2
1 + k2X

2
2 ± 2πiX1 ± 2πiX2 − 2X2Z+Z2+

∑
ε1,ε2=±1

Li2(eε1X1+ε2Z−m+iπν
2 −πi2 ) ,

W1 = iπ(ν2 − ν + 1)
2 + 2mν −m

4 + 1
4

∑
ε1,ε2=±1

(ν − 1) log
(
1 + eε1X1+ε2Z−m+iπν

2 −πi2
)

− ν

2 log
(
1 + em+iπν

)
+ log(sinhX1) + log(sinhX2) .

(3.88)

In the W0 above, we have ignored terms which are independent on X1, X2 and Z. By
extremizing the twisted superpotential

exp(∂X1W0) = exp(∂X2W0) = exp(∂ZW0) = 1 , (3.89)

we have following Bethe-vacua equations

x2k1
1 (wx1 + iz)(wx1z + i)
(wz + ix1)(w + ix1z) = x2k2

2
z2 = (wz + ix1)(wx1z + i)

x2
2(wx1 + iz)(w + ix1z) = 1 ,

where x1 = eX1 , x2 = eX2 , z = eZ , w = e
m+iπν

2 .

(3.90)

At generic choice of w, there are 2×
∣∣(|k1k2 − 1| − 1)

∣∣ Bethe-vacua,
{(x1, x2, z) = ((x∗1)n,±, (x∗2)n,±, z∗n,±)}

∣∣|k1k2−1|−1
∣∣

n=1 , (3.91)

after removing the unphysical solutions, which are invariant under a non-trivial subgroup
of the Weyl Z2×Z2 acting as xi → 1/xi, and quotienting by the Weyl group. The one-form
symmetry ZH2 × ZC2 , on the other hand, acts on the Bethe-vacua in the following way

ZH2 : x1 → ±x1 , ZC2 : x2 → ±x2 . (3.92)
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When |k1k2 − 1| = 2, the anomaly free Z2 = Zdiag
2 ⊂ ZH2 × ZC2 act trivially (modulo Weyl

Z2 × Z2) on the Bethe-vacua, i.e.

x∗1, x
∗
2 ∈ {i,−i} . (3.93)

This explains why we obtain 2 (instead of 1) in the index computation of T [SU(2)]k1,k2/Z2
theory when |k1k2 − 1| = 2, see the paragraph below (3.72).

The handle gluing operator is

H(x1, x2, z;m, ν) = 1
16 exp(−2W1) det

i,j
(∂i∂jW0) . (3.94)

The set of the handle gluing operators evaluated at the Bethe-vacua in the degenerate
limits are

{
H
(
(x∗1)n,±, (x∗2)n,±, (z∗)n,±

)}∣∣|k1k2−1|−1
∣∣

n=1

(m,ν)→(0,±1)−−−−−−−−−−−→
{ |k1k2 − 1|

sin2
(

nπ
|k1k2−1|

)⊗2}∣∣|k1k2−1|−1
∣∣

n=1
.

(3.95)

3.5 T [SU(2)]/SU(2)diag
k and T [SU(2)]/“PSU(2)diag

k ”

Let us consider

T [SU(2)]
SU(2)diag

k

=
(
Gauging diagonal SU(2)diag of T [SU(2)] with Chern-Simons level k

)
.

(3.96)

Thanks to the nilpotency of the moment map ~µdiag for the SU(2)diag flavor symmetry, the
theory remains N = 4 theory even after the gauging with non-zero k [27, 55].

The theory has a Z2 one-form symmetry which corresponds to the center group of the
gauged SU(2)diag symmetry. The ’t Hooft anomaly polynomial for the one-form symme-
try is

Sanom = π

∫
M4

(
k
P(w2)

2

)
(mod 2π) . (3.97)

Thus, the one-form symmetry is anomalous for k = (odd) while non-anomalous for k =
(even). For odd k, the theory can be tensored with a topological theory U(1)2 = SU(2)1,
which also has anomalous Z2 one-form symmetry, and the diagonal Z2 one-form symmetry
becomes non-anomalous. We define

T [SU(2)]
“PSU(2)diag

k ”

:=


Gauging the Z2 one-form symmetry of T [SU(2)]

SU(2)diag
k

, even k ,

Gauging the (diagonal) Z2 one-form symmetry of
(
T [SU(2)]
SU(2)diag

k

⊗U(1)2

)
, odd k .

(3.98)
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3.5.1 IR phases

Superconformal index. The superconformal index of the T [SU(2)]
SU(2)diag

k

(
or T [SU(2)]

“PSU(2)diag
k

”

)
the-

ory is

Isci(q, η, ν; s = 1)

=
∑
m

∮
|a|=1

∆(m, a)da
2πia (a(−1)m)2km Isci

T [SU(2)](a, a, η, ν;m,m) ,
(3.99)

where Isci
T [SU(2)] is the index of T [SU(2)] theory given in (3.67). From the Dirac quantization

conditions, the following monopole fluxes are allowed

n,m ∈ Z
2 with n±m ∈ Z . (3.100)

The summation range of monopole fluxes is

for T [SU(2)]
SU(2)diag

k

: n,m ∈ Z ,

for T [SU(2)]
“PSU(2)diag

k ”
: n,m ∈ Z

2 with n−m ∈ Z .

(3.101)

From superconformal index computation [55, 56],

Isci(q, η, ν = 0; s = 1) for T [SU(2)]
SU(2)diag

k

or T [SU(2)]
“PSU(2)diag

k ”

=


1 , |k| < 2 ,
∞ , |k| = 2 ,
non-trivial power series in q1/2 , |k| > 2 .

(3.102)

we expect that

T [SU(2)]
SU(2)diag

k

or T [SU(2)]
“PSU(2)diag

k ”

at IR−−−−−−−→


Unitary topological field theory if |k| < 2 ,
Decoupled free chirals if |k| = 2 ,
3D N = 4 SCFT if |k| > 2 .

(3.103)

Superconformal indices in degenerate limits. In the degenerate limits (ν → ±1 and
η → 1), on the other hand, the indices are (when |k| > 2)

for T [SU(2)]
SU(2)diag

k

theory ,

Isci (q, η, ν = ±1; s = 1) = (non-trivial power series in q)
and Isci (q, η = 1, ν = ±1; s = 1) = 1 ,

(3.104)
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while

for T [SU(2)]
“PSU(2)diag

k ”
theory ,

Isci (q, η, ν = ±1; s = 1) =

non-trivial power series in q1/2 if k ∈ 4Z ,

non-trivial power series in q otherwise ,

and Isci (q, η = 1, ν = ±1; s = 1) = 1 .

(3.105)

The computation implies that non-unitary TQFTs, TFT±
[
T [SU(2)]
SU(2)diag

k

]
and

TFT±
[

T [SU(2)]
“PSU(2)diag

k
”

]
, emerge in the degenerate limits and that TFT±

[
T [SU(2)]

“PSU(2)diag
k

”

]
are spin TQFTs when k ∈ 4Z. From table 2, one can see that TFT±

[
T [SU(2)]

“PSU(2)diag
k

”

]
at

|k| = 4 are indeed spin TQFTs.

3.5.2 Non-unitary TQFTs in degenerate limits

Squashed three-sphere partition function. The squashed three-sphere partition
function of the T [SU(2)]/SU(2)diag

k theory is realized as

ZS
3
b

diagk(b,m, ν) ≡ 1
2

∫ dX√
2π~

(
2 sinh(X)

)(
2 sinh

(2πiX
~

))
e
kX2
~ ZS

3
b

T [SU(2)](b,X,X,m, ν) ,

(3.106)

where ZS
3
b

T [SU(2)] is given in (3.84). As in (3.54), this localization (3.106) also simplified at
b = 1, m = 0, and is exactly computable at ν = 0,±1 (see appendix C.3).

exp(−F ) =
∣∣∣ZS3

b
diagk(b = 1,m = 0, ν = 0)

∣∣∣ = 1√
8(|k| − 2)

− 1√
8(|k|+ 2)

,

(S00 of TFT±) =
∣∣∣ZS3

b
diagk(b = 1,m = 0, ν → ±1)

∣∣∣ = 1√
8(|k| − 2)

+ 1√
8(|k|+ 2)

.
(3.107)

Bethe-vacua and Handle gluing operators in the degenerate limits. Similar
to (3.88), the asymptotic expansions W0 and W1 of the localization integral are

W0 = (k + 1)X2 ± 2πiX − 2XZ + Z2 +
∑

ε1,ε2=±1
Li2(eε1X+ε2Z−m+iπν

2 −πi2 ) ,

W1 = πi(ν2 − ν + 1)
2 + 2mν −m

4 + 1
4

∑
ε1,ε2=±1

(ν − 1) log
(
eε1X+ε2Z−m+iπν

2 −πi2
)

− ν

2 log(1 + em+iπν) + log(sinh(X)) .

(3.108)

We have ignored terms which are independent on X and Z in the expression for W0 given
above. By extremizing the twisted superpotential

exp(∂XW0) = exp(∂ZW0) = 1 , (3.109)
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we have the Bethe-vacua equations

x2k(wx+ iz)(i+ wxz)
z2(x− iwz)(iw − xz) = (x− iwz)(i+ wxz)

x2(z − iwx)(w + ixz) = 1 ,

where x = eX , z = eZ and w = e
m+πiν

2 .

(3.110)

At generic choice of w, there are 2× (2|k|+ 2) Bethe-vacua,

(x, z) = (x∗n,±, z∗n,±)2|k|+2
n=1 , (3.111)

after removing the unphysical solutions, which are invariant under xi → 1/xi, and quoti-
enting by the Weyl group. The handle gluing operator is

H(x, z;m, ν) = 1
4 exp(−2W1) det

i,j
(∂i∂jW0) . (3.112)

The set of the handle gluing operators evaluated at the Bethe-vacua in the degenerate
limits are

{
H
(
x∗n,±, z

∗
n,±
)}2|k|+2

n=1

(m,ν)→(0,±1)−−−−−−−−−−−−→{ 1√
2Ak

⊗(|k|−3)
,

1√
2Bk

⊗(|k|+1)
,
( 1√

8Ak
+ 1√

8Bk

)⊗2
,
( 1√

8Ak
− 1√

8Bk

)⊗2}
,

(3.113)

where we define Ak := |k| − 2, Bk := |k|+ 2.
For |k| > 2, as concluded in (3.103), the theory T [SU(2)]/SU(2)diag

k lands on 3D N = 4
SCFT of rank 0 at the end of RG. According to the dictionary in table 1, the above set
should be equal to the set of {S2

0α} for a non-unitary TQFT for the case when |k| > 2.

|k| = 3 case. The set of handle gluing (and S00 in (3.107)) is identical to the set
of {|S−2

0α |} (and S00) for the (Lee-Yang)⊗(Lee-Yang)⊗U(1)2. From the computation, we
arrive the conclusion in table 2.

|k| = 4 case. The set is identical to the set of {|S−2
0α |} for (SU(2)10 × SU(2)2) /Zdiag

2 ,
see (A.99). Combined with the computation of S00 in (3.107), we arrive the conclusion in
table 2.

|k| = 5 case. The set of handle gluing is identical to the set of {|S−2
0α |} for

(G2)3 × U(1)−2, where G2 is a exceptional group with dimension 14. Combined with
the computation of S00 in (3.107), we arrive the conclusion in table 2.

|k| > 6 case. For the cases, we could not identify TFT±
[
T [SU(2)]
SU(2)diag

k

]
with previously

known non-unitary TQFTs in the literature. It would be an interesting future work to
better understand this novel series of non-unitary TQFTs.
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3.6 Dualities among rank 0 theories

In this paper, we introduce a pair of non-unitary TQFTs, TFT±[Trank0], as an invariant of
3D rank 0 N = 4 SCFT Trank0. One natural question is

Q: how powerful are TFT±[Trank0]s in distinguishing Trank0?
i.e. are TFT±[Trank0]s different for different Trank0s?

(3.114)

In this subsection, we provide evidences that the answer is affirmative. This is by examina-
tion of the duality between two Trank 0s whose associated non-unitary TQFTs are identical.
Having common non-unitary TQFTs in the degenerate limits, m = 0 and ν = ±1, au-
tomatically implies that equivalence of all supersymmetric partition function ZB in the
limits. Here we will confirm that the equivalence still holds at general values of m and ν.

Duality among (U(1)|k|=1 + H), SU(2)
1
2⊕

1
2

|k|=2 and T [SU(2)]k1=3,k2=3
Z2

. According to
table 2, the non-unitary TQFTs associated to the 3 theories are all identical to the following
theory

TFT± = Gald=sin( 3π
8 )(SU(2)6)/Zf2 . (3.115)

Using the explicit formulas in (3.29), (3.48), (3.49), (3.66), (3.67) and (3.71), one can
confirm that the superconformal indices for the 3 theories are all equal to

Isci(q, η, ν = 1; s = 1)

= 1 + q
1
2 −

(
1 + η + 1

η

)
q +

(
2 + η + 1

η

)
q

3
2 −

(
2 + η + 1

η

)
q2 + . . . .

(3.116)

One can check that computations of various other supersymmetric partition functions also
support the duality.

Duality between (Tmin)⊗2 ⊗U(1)2 and T [SU(2)]
SU(2)diag

|k|=3
. One can check that [27, 55]

Isci(q, η, ν = 0; s = 1) of T [SU(2)]
SU(2)diag

|k|=3
given in (3.67), (3.99), (3.101)


=

Isci(q, η, ν = 0; s = 1) of T [SU(2)]
“PSU(2)diag

|k|=3”
given in (3.67), (3.99), (3.101)


=
(
Isci(q, η, ν = 0; s = 1) of Tmin given in (3.8)

)2

= 1− 2q + 2
(
η + 1

η

)
q3/2 − 3q2 +

(
2 + η2 + 1

η2

)
q3 − 4

(
η + 1

η

)
q7/2 + . . . .

(3.117)

From the index computation, it is tempting to identify both T [SU(2)]
SU(2)diag

|k|=3
and T [SU(2)]

“PSU(2)diag
|k|=3”

with

(Tmin)⊗2. But this cannot be true since T [SU(2)]
SU(2)diag

|k|=3
has the one-form Z2 symmetry while the
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other two theories do not. Further, the Witten indices of the three theories do not match:(
Witten index of (Tmin)⊗2

)
= (Witten index of (Tmin))2 = 4 ,Witten index of T [SU(2)]

“PSU(2)diag
|k|=3”

 = 4 , but

Witten index of T [SU(2)]
SU(2)diag

|k|=3

 = 8 .

From the computation of superconformal indices, Witten indices, and one-form Z2 sym-
metry matching, we propose that

T [SU(2)]
SU(2)diag

|k|=3
= (Tmin)⊗2 ⊗U(1)2 at IR. (3.118)

The additional U(1)2 theory does not contribute to the superconformal index since there
is no non-trivial local operator in the topological sector. The additional topological sector,
however, doubles the Witten index since it has two ground states on two-torus and provide
the one-form Z2 symmetry. The proposal is also compatible with following fact

TFT±
[
T [SU(2)]

SU(2)diag
|k|=3

]
= (TFT±[Tmin])⊗2 ⊗U(1)2 , (3.119)

which is obvious from table 2. Using the duality, we can also confirm that

T [SU(2)]
“PSU(2)diag

|k|=3”
:=

 T [SU(2)]
SU(2)diag

|k|=3
⊗U(1)2

 /Zdiag
2 =

(
(Tmin)⊗2 ⊗U(1)2 ⊗U(1)2

)
/Zdiag

2

= (Tmin)⊗2 ⊗ U(1)2 ⊗U(1)2

Zdiag
2

' (Tmin)⊗2 .

(3.120)

The theory (U(1)2 ⊗ U(1)2)/Zdiag
2 is an almost-trivial theory, whose partition function on

any closed 3-manifold is a pure phase factor. Throughout this paper, we have ignored the
overall phase factor of the partition function and thus will also ignore such a decoupled
almost trivial theory. The duality above has natural interpretation in terms of the 3D-3D
correspondence for once-punctured torus bundles [65, 66], for which readers are referred to
appendix B for details.

Duality between SU(2)
1
2⊕

1
2

|k|=3 and T [SU(2)]
“PSU(2)diag

|k|=4”
. The superconformal index isIsci(q, η, ν = 0; s = 1) of T [SU(2)]

SU(2)diag
|k|=4


= 1− q +

(
η + 1

η

)
q3/2 − q2 − 2

(
η + 1

η

)
q5/2 + 2

(
3 + η2 + 1

η2

)
q3 + . . . ,Isci(q, η, ν = 0; s = 1) of T [SU(2)]

“PSU(2)diag
|k|=4”


= 1 + q1/2 −

(
1 + η + 1

η

)
q +

(
2 + η + 1

η

)
q3/2 − q2 −

(
η + 1

η

)(
2 + η + 1

η

)
q5/2 + . . . .

(3.121)
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Two indices are different unlike in the |k| = 3 case. Surprisingly, the index computation
shows that the two theories actually have different amount of supersymmetries [54]:

T [SU(2)]
SU(2)diag

|k|=4
has N = 4 SUSY ,

T [SU(2)]
“PSU(2)diag

|k|=4”
has N = 5 SUSY .

(3.122)

We can thus conclude that supersymmetry is enhanced under the Z2 one-form symmetry
gauging in (3.98). We further claim that the N = 5 theory is actually dual to the following
theory with manifest N = 5 supersymmetry: T [SU(2)]

“PSU(2)diag
|k|=4”

 =
(

SU(2)
1
2⊕

1
2

|k|=3 in (3.47)
)

at IR. (3.123)

The proposal can be checked using the superconformal index and various other supersym-
metric partition functions. Neither theories in the duality has any one-form Z2 symmetry.
The duality is also compatible with table 2 since

TFT±
[

T [SU(2)]
“PSU(2)diag

|k|=4”

]
= TFT±

[
T [SU(2)]

SU(2)diag
|k|=4

]
/Z2

=
(Galζ7

10
(SU(2)10)⊗ SU(2)2

Zdiag
2

)
/Z2 =

(Galζ7
10

(SU(2)10)
Z2

)
⊗
(SU(2)2

Z2

)

'
(Galζ7

10
(SU(2)10)
Z2

)
= TFT±

[
SU(2)

1
2⊕

1
2

|k|=3

]
.

(3.124)

In the last line, we again ignore the almost trivial spin TQFT SU(2)2
Z2

. In the second line,
we use the following fact(

TFT1 ⊗ TFT2

Zdiag
2

)
/Z2 =

(TFT1
Z2

)
⊗
(TFT2

Z2

)
, (3.125)

which holds for any two TQFTs, TFT1 and TFT2, which have non-anomalous Z2 one-form
symmetries. The theory T [SU(2)]/“PSU(2)diag

|k|=4” has yet another dual description with
only manifest N = 2 supersymmetry which is expected from the geometrical aspects of
the 3D-3D correspondence for a once-punctured torus bundle [65, 66]. The N = 2 dual is
presented in appendix B.

4 Discussion

There are several interesting questions we want to address in future.

Relation with Rozansky-Witten theory. One well-known method of constructing
a topological theory from a 3D N = 4 SCFT is using topological twisting as studied by
Rozansky and Witten in [67]. AnN = 4 SCFT T has SU(2)L×SU(2)R R-symmetry and we
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can consider a pair of topological twisted theories, RW+[T ] and RW−[T ], using the SU(2)L
or SU(2)R in the twisting respectively. It would be interesting to clarify the exact relation
between the pair of topological twisted theories, RW±[Trank 0], and our TFT±[Trank0] for
rank 0 SCFT Trank 0.6

Two theories, RW[Trank 0] and TFT[Trank 0], have the same ground state degeneracy
GSDg for all g ≥ 0 since the partitial topological twisting on Σg × S1 using the U(1) ⊂
SU(2)R (or U(1) ⊂ SU(2)L ) symmetry is actually equivalent to the full topological twisting
on the 3-manifold using the SU(2)R (SU(2)L) symmetry [69, 70]. But two theories cannot
be the same since one (RW) is unitary while the other (TFT) is non-unitary. From the
comparison, we naturally conjecture that

TFT±[Trank 0] is a Galois conjugate of RW±[Trank 0] . (4.1)

3D non-unitary TQFTs from 4D N = 2 SCFTs. In [71], the authors constructed
3D non-unitary TQFTs from some 4D N = 2 Argyres-Douglas theories. The construction
is somewhat similar to our construction of TFT, but the precise relation is not clear. In
our construction, semi-simple non-unitary TQFTs appear in 3D SCFTs of rank 0, while
their examples after dimension reduction to 3D are not of rank 0. It would be interesting
to clarify for which classes of 4D N = 2 SCFTs their construction works, and to see if we
can apply their construction in classification of 4D N = 2 SCFTs.

Are all non-unitary TQFTs correspond to rank 0 N = 4 SCFTs? In our paper,
we assign a pair of non-unitary TQFTs to 3D rank 0 N = 4 SCFTs. But it is not clear if all
non-unitary TQFTs can be constructed in this way. There are exotic non-unitary TQFTs
which cannot be related to any unitary TQFT via Galois conjugation, as found at rank 6
in [30]. If the proposed relation in (4.1) is true, such exotic non-unitary TQFTs cannot be
realized from rank 0 N = 4 SCFTs.
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A Some reviews

In order to help better understand the correspondence in (2.7), we briefly review basic rel-
evant aspects of (2+1)D non-unitary topological field theory and supersymmetric partition
functions of 3D superconformal field theories.

A.1 Localization on 3D N ≥ 3 gauge theories

In this paper, we consider following 4 types of supersymmetric partition functions of 3D
N = 4 SCFT T of rank 0 theory

Isci
T (q, η, ν; s) : Superconformal index [51, 52] ,

ZS
3
b
T (b,m, ν) : Squashed three-sphere partition function [49, 72] ,

IΣg
T (η, ν; s) : (Topologically) twisted indices on Σg [73–76] ,

ZMg,p

T (m, ν; s) : Twisted partition function onMg,p [77–81] .

(A.1)

These 4 types of partition functions are not totally exclusive.

ZS3
b (b = 1,m, ν) = ZMg=0,p=1(m, ν; s = 1) ,

IΣg(η, ν; s)
∣∣
η=em = ZMg,p=0(m, ν; s) .

(A.2)

In the partition function, m (resp. η) is the real mass parameter (resp. fugacity) associated
to the axial U(1) symmetry while ν is the R-symmetry mixing parameter (2.3). Rank 0
N = 4 SCFT cannot have any flavor symmetry commuting with N = 4 supersymmetries
and thus the BPS partition functions cannot be further refined.

3D N = 4 SCFTs can appear as IR fixed points of 3D quantum field theories. Since
there could be supersymmetry enhancement along the RG flow, we do not need to start
from a UV theory with manifest N = 4 symmetry. For the exact computation of super-
symmetric partition using localization, however, the UV theory should have at least N = 2
supersymmetry. In this paper, we study several examples of N = 4 rank 0 SCFTs which
appears as IR fixed points of N ≥ 3 supersymmetric theories. In the below, we summarize
localization formulae for the BPS partition functions introduced above for N ≥ 3 gauge
theories. In localization computations, N ≥ 3 gauge theories have several advantages over
N = 2 gauge theories. The local Lagrangian density of an N = 3 gauge theory is uniquely
determined by the choice of gauge group G, its Chern-Simons levels ~k and matter contents
(hypermultiplets and twisted hypermultilplets in unitary representations of G). When the
CS levels are all zero, i.e. ~k = ~0, the theory has N = 4 supersymmetry. For N ≥ 3 gauge
theories, the R-symmetry is non-abelian (SO(3)), and thus the IR R-symmetry is uniquely
fixed (i.e. is not mixed with other abelian flavor symmetries) and we do not need to per-
form the F-maximization [49]. The localization for general N ≥ 2 theories can be done in
a similar way but with some more complications.

Superconformal index. The superconformal index for a 3D N = 4 SCFT is defined as

Isci(q, η, ν; s) :=

TrHrad(S2)(−1)2j3q
Rν
2 +j3ηA , s = 1 ,

TrHrad(S2)(−1)Rνq
Rν
2 +j3ηA , s = −1 .

(A.3)
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Here the trace is taken over the radially quantized Hilbert-space Hrad(S2) on S2 whose
elements are local operators. j3 ∈ Z

2 is the Lorentz spin, the Cartan of SO(3) isometry on
the S2. The parameter q plays role as an Ω-deformation parameter. Only BPS operators
satisfying following relation contribute to the index

∆ = R+R′ + j3 , (A.4)

where ∆ is the conformal dimension. The index alternatively can be regarded as a partition
function on (S2×S1) =Mg=0,p=0 with a fixed metric, background electric fields coupled to
U(1)Rν and axial U(1) symmetry and spin-structure along the S1. The indices at different
ν are simply related as follows

Isci(q, η, ν; s = 1) = Isci(q, η, ν = 0; s = 1)
∣∣
η→ηq

ν
2 ,

Isci(q, η, ν; s = −1) = Isci(q, η, ν = 0; s = −1)
∣∣
η→η(−q

1
2 )ν

.
(A.5)

The two indices with different choices of the spin structure are related to each other in the
following way

Isci (q, η, ν = ±1; s = 1) = Isci (q, η, ν = ±1; s = −1)
∣∣
q

1
2→−q

1
2
. (A.6)

Using localization, the superconformal index at ν = 0 is given as

Isci(q, η, ν = 0; s = 1)

=
∑
m

∮
|ai|=1

(rankG∏
i=1

dai
2πiai

)
∆G(m,a; q)qε0(n)Ics0 (m,a)P.E.[fsingle(q, a, η; m)] .

(A.7)

In the localization, the saddle points are parametrized by {mi, ai}rank(G)
i=1 ,

1
2π

∫
S2
F = m, exp

(
i

∫
S1
A

)
= a and σ = m

2

with m :=
∑
i

mihi and a := exp(A) := exp
(∑

i

(log ai)hi
)
.

(A.8)

Here σ is the adjoint real scalar in the N = 2 vector multiplet and {hi} is a normalized
basis of Cartan subalgebra of G. For G = U(N) or SU(2) case, the basis is chosen as

G = U(N), hi := diag{0, . . . ,
i−th
1 , . . . , 0} ,

G = SU(2), h = hi=1 = diag{1,−1} .
(A.9)

∆G is the contribution from N = 2 vector multiplet

∆G(m,a; q) := 1
Sym(m)

∏
λ∈Λ+

adj

q−
|λ(m)|

2
(
1− q

1
2 |λ(m)|eλ(A)

) (
1− q

1
2 |λ(m)|e−λ(A)

)
. (A.10)

The monopole flux m in (A.8) breaks the gauge group G to its subgroup H(m)

H(m) := {h ∈ G : [h,m] = 0} , (A.11)
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and Sym(m) is the order of the Weyl group of the subgroup,

Sym(m) := |Weyl(H(m))| . (A.12)

Λ+
adj is the set of positive roots of G.

G = U(N), {λ(m) : λ ∈ Λ+
adj} = {mi −mj : 0 < i < j ≤ N} ,

G = SU(2), {λ(m) : λ ∈ Λ+
adj} = {m1 −m2} .

(A.13)

The single particle index is

fsingle(q, a, η; m) =
∑
Φ

∑
β∈ρRΦ

(
q

1
2 ∆Φ+ 1

2 |β(m)|eβ(A)ηqA(Φ)

1− q − q
1
2 (2−∆Φ)+ 1

2 |β(m)|e−β(A)η−qA(Φ)

1− q

)
.

(A.14)

Here the summation is over N = 2 chiral multiplets Φ in the representation of RΦ under
the gauge group G. ρR is the set of weights of the representation R. qA(Φ) and ∆Φ are
the axial U(1) symmetry and the conformal dimension of the chiral field Φ respectively.
An N = 4 hypermultiplet consists of two chiral multiplets with gauge charges R and R,
qA = 1

2 and ∆ = 1
2 . The adjoint chiral multiplet in N = 4 vector multiplet has qA = −1

and ∆ = 1. If one wants to introduce a Chern-Simons interaction in an N = 4 gauge
theory, it will break the N = 4 supersymmetry down to N = 3 symmetry. In the case, the
R-symmetry is broken to SO(3) and thus we cannot introduce the fugacity η for the U(1)
axial symmetry. The Casimir energy ε0 is

ε0 = 1
2
(
∂qfsingle

)∣∣
q,η→1 =

∑
Φ

∑
β∈ρRΦ

(1−∆Φ)|β(m)|
4 . (A.15)

Ics0 (m,a) is the contribution from the classical CS term

U(N)k :
N∏
i=1

(ui(−1)mi)kmi ,

SU(2)k : (u(−1)m)2km .

(A.16)

For a U(N) dynamical gauge group, there is a U(1) topological symmetry whose Noether
current is

jµtop = −εµνρTr(Fνρ) . (A.17)

The fugacity a and its background monpole flux ma for the topological symmetry can be
introduced by including the following term to Ics0

(a(−1)ma)−
∑N

i=1 mi

(
N∏
i=1

ui(−1)mi
)−ma

. (A.18)
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The monopole flux m should satisfy the following Dirac quantization conditions

λ(m) ∈ Z, ∀λ ∈ Λ+
adj and

β(m) ∈ Z, ∀β ∈ RΦ .
(A.19)

There could be additional constraints on the monopole fluxes depending on the global
structure of the N ≥ 3 gauge theories as we have seen in (3.69) and (3.71). In the
localization summation, we need to sum over monopole flux m modulo the redundant
Weyl symmetry of G.

Squashed three-sphere partition function ZS3
b (b,m, ν). This is a partition func-

tion on S3 =Mg=0,p=1 with the following metric

ds2(S3
b ) = |dz|2 + |dw|2 , (z, w) ∈ C2 are subject to b−2|z|2 + b2|w|2 = 1 . (A.20)

To preserve some supercharges, a background field coupled to the U(1)Rν symmetry is
properly turned on. Using localization, the partition function can be given in the following
integral form

ZS3
b (b,m, ν) =

∫ rank(G)∏
i=1

dZi√
2π~

∆G(Z; ~)I~(Z,m, ν) , ~ := 2πib2 . (A.21)

Here {Zi}rank(G)
i=1 parametrizes the Cartan subalgebra of G.

Z =
rank(G)∑
i=1

Zihi ∈ (Cartan subalgebra of G) , (A.22)

and ∆G(Z) is the contribution from the N = 2 vector multiplet associated to the gauge
group G

∆G(Z; ~) := 1
|Weyl(G)|

∏
λ∈Λ+

adj

[
4 sinh

(1
2λ · Z

)
sinh

(
πi

~
λ · Z

)]
. (A.23)

|Weyl(G)| is the order of the Weyl group of G.
The integrand I~ is determined by gauge group, matter contents and Chern-Simons

levels of the N = 3 gauge theory as follows:

• An N = 2 chiral multiplet in a representation R under G with U(1) axial charge qA
and conformal dimension ∆ contributes∏

Φ

∏
β∈ρRΦ

Ψ~

(
β · Z + qA

(
m+

(
iπ + ~

2

)
ν

)
+
(
iπ + ~

2

)
∆
)
. (A.24)

We define Ψ~ as

Ψ~(X) := ψ~(X) exp
(
X2

4~

)
, (A.25)
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with ψ~(x) being the non-compact quantum dilogarithm function. (We refer to D for
details of the definition and basic properties of the function.) An N = 4 hypermulti-
plet consists of two N = 2 chiral multiplets with gauge charge R and R, qA = 1

2 and
∆ = 1

2 . The adjoint N = 2 chiral multiplet in a N = 4 vector multiplet has qA = −1
and ∆ = 1.

• Chern-Simons term of gauge G of level k contributes the following term to the inte-
grand

exp
(
k

2~Tr(Z
2)
)
. (A.26)

The real mass m (FI parameter) and the R-symmetry mixing parameter ν of the
U(1) topological symmetry for G = U(N) are introduced by adding the following
term to the integrand

exp
(
−WTr(Z)

~

) ∣∣∣∣
W=m+(iπ+ ~

2 )ν
. (A.27)

The partition function at b = 1, which corresponds to round three-sphere, enjoys
interesting properties. Firstly, its free-energy is maximized at the superconformal
R-charge choice, i.e.

Fν=0 > Fν 6=0 , where Fν := − log |ZS3
b (b = 1,m = 0, ν)| . (A.28)

Secondly, the round sphere free-energy F at conformal point

F = − log |ZS3
b (b = 1,m = 0, ν = 0)| , (A.29)

always monotonically decreases under the RG flow. So the quantity F can be regarded
as a proper measure of degrees of freedom.

Perturbative expansion of squashed three-sphere partition function integral.
One can consider formal perturbative expansion of the localization integral in an asymptotic
limit ~→ 0, to obtain infinitely many 3D SCFT invariants. In the limit, the integrand I~
can be perturbatively expanded in the following form

log I~(~Z,m, ν) ~→0−−−−−−→
∞∑
n=0

~n−1Wn(~Z, n, ν) . (A.30)

The leading partW0 corresponds to the twisted superpotential. By extremizing the twisted
superpotential, we obtain Bethe-vacua

Bethe-vacua:

{
~z :

(
exp(∂ZiW0)

∣∣
~Z→log ~z

)
=1, w ·~z 6=~z ∀ non-trivial w∈Weyl(G)

}rank(G)

i=1
Weyl(G) .

(A.31)
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Here Weyl(G) is the Weyl group of gauge group G. A Bethe-vacuum ~zα can be promoted
to a saddle point ~Zα = log ~zα of the localization integral by properly shifting W0 as follows,

W~nα
0 =W0 + 2πi

∑
i

niαZi, niα ∈ Z is chosen such that ∂ZiW~nα
0 |~Z→log ~zα = 0 . (A.32)

Then we can consider formal perturbative expansion of the localization integral around the
saddle point

|Weyl(G)| ×
∫ rank(G)∏

i=1

d(δZi)√
2π~

exp
(

1
~
W~nα

0 (~Zα + δ ~Z,m, ν) +
∞∑
n=1

~n−1Wn(~Z + δ ~Z, ,m, ν)
)

~→0−−−−−−→ exp
( ∞∑
n=0

~n−1Sαn (m, ν)
)
.

(A.33)

The factor |Weyl(G)| is multiplied since that many saddle points, which all give the same
perturbative expansion, collapse into a single Bethe-vacuum after the Weyl quotient. The
perturbative expansion can be formally computed by performing Gaussian integrals [50, 82].
For example,

Sα0 =W~nα
0 (~Zα) , Sα1 = −1

2 log
(

det
i,j

∂2W0
∂Zi∂Zj

) ∣∣∣∣
~Z=~Zα

+W1(~Zα) + log |Weyl(G)| . (A.34)

The proposal in (2.7) implies the following highly non-trivial constraints on the perturbative
invariants for rank 0 SCFTs,

Im[Sα0 (m = 0, ν)] ν→±1−−−−−−−→ 0 , Im[Sα2 (m = 0, ν)] ν→±1−−−−−−−→ 0 ,

Sαn≥3(m = 0, ν) ν→±1−−−−−−−→ 0 .
(A.35)

This follows from the fact that the squashed three-sphere partition function becomes b-
independent in the degenerate limits, m = 0 and ν → ±1, modulo local counter terms
which affect an overall factor of the following form

exp
(
πiq1

(
b2 + 1

b2

)
+ iπq2)

)∣∣∣∣
q1,q2∈Q

. (A.36)

Twisted indices and twisted partition functions. The twisted index is defined as

IΣg(η, ν; s) =

TrH(Σg ;ν)(−1)2j3ηA , s = 1 ,
TrH(Σg ;ν)(−1)RνηA , s = −1 .

(A.37)

Here H(Σg; ν) is the Hilbert-space on Σg with topological twisting using the U(1)Rν sym-
metry. Unlike the radially quantized Hilbert-space Hrad(S2), the Hilbert-space depends on
the choice of the R-symmetry mixing parameter ν. Due to the topological twisting, the
index is well-defined only when following Dirac quantization condition is satisfied

Rν × (g − 1) ∈ Z for all local operators . (A.38)
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Note that the condition is always satisfied in the degenerate limit ν = ±1 since Rν=±1 ∈ Z
which obvious from the fact that Rν=1 = 2R ∈ Z and Rν=−1 = 2R′ ∈ Z. For g = 0
case, the quantization condition is satisfied for all ν and the index is independent on the
continuous parameter ν. Generally, the twisted indices can be written as follows

IΣg(η, ν; s) =
∑

~zα : Bethe-vacua
(Hα(η, ν; s))g−1 . (A.39)

Here Hα is called the handle gluing operator at the α-th Bethe-vacuum. For s = −1 case,
the operator is simply given as

Hα(η, ν; s = −1) = eiϕ exp (−2Sα1 (m, ν))
∣∣
m=log η . (A.40)

Here eiϕ is a α-independent overall phase factor, affected by the local counter term (A.36),
which can be fixed by requiring IΣg ∈ Z for all g up to a sign. For rank 0 SCFT, the
phase factor is uniquely determined by requiring IΣg=0 = 1 in the degenerate limits, η → 1
and ν → ±1. Upon the proper choice of the phase factor, furthermore, the handle gluing
operators become all positive real number in the degenerate limits,

Hα(η = 1, ν → ±1, s) > 0 , for all α . (A.41)

This is compatible with the dictionary for the handle gluing operators in table 1. More
generally, the twisted partition function is given in the following form

ZMg,p(m, ν, s) =
∑

~zα : Bethe-vacua
(Hα(η = em, ν; s))g−1(Fα(m, ν; s))p . (A.42)

Here Fα is called fibering operator at the α-th Bethe-vacuum. For s = −1 case, the operator
is simply given as

Fα(η, ν; s = −1) = exp
(Sα0 (m, ν)

2πi

)
. (A.43)

Supersymmetric loop operator O(~z). In the twisted partition functions computa-
tion, an inclusion of a supersymmetric loop operator along the fiber S1 inMg,p corresponds
to an inclusion of a (Weyl invariant) finite Laurent polynomial O(~z) in {zi}rank(G)

i=1 with in-
teger coefficients:

ZMg,p+O(m, ν, s) =
∑

~zα : Bethe-vacua
(Hα(m, ν; s))g−1(Fα(m, ν, s))pO(~zα) . (A.44)

Here ZMg,p+O is the twisted partition function on Σg,p with insertion of loop operator O.
For example, dyonic loop operator O(p,q) of charge (electric charge, magnetic charge) =
(p, q) in a U(1) gauge theory is given as

O(p,q)(z) = zp
(

1− 1
z

)q
. (A.45)
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A.2 Modular data of 3D TQFT

In Bosonic (i.e. non-spin) TQFT. One basic characteristic quantity of 3D bosonic
(i.e. non-spin) topological field theories is so-called modular data, which consists of S and
T matrices. Let us denote components of the two matrices by

Sαβ , Tαβ : α, β = 0, . . . N − 1 . (A.46)

To understand the physical meaning of the matrices, let us consider the Hilbert space H(T2)
on two-torus. In topological field theory, there is no local operator and the only physical
observables are loop operators OΓ

α=0,...,N−1. α labels types (gauge charge) of loop operators,
sometimes called anyons, and the natural number N is called the rank of the topological
field theory. Γ is the one-dimensional trajectory where the operator is supported. Oα=0 is
the trivial loop operator, i.e. identity operator,

Oα=0 = 1 . (A.47)

One natural basis of the Hilbert-space H(T2) is

Basis of H(T2) :
{
|α〉 := OBα |0〉

}N−1
α=0 , (A.48)

where B is a generator of H1(T2,Z) = 〈A,B〉. A mapping class element ϕ ∈ SL(2,Z) acts
on the Hibert-space as a unitary operator ϕ̂. The operators {ϕ̂}ϕ∈SL(2,Z) form a unitary
representation of SL(2,Z). The S and T matrices are nothing but7

Sαβ = 〈α|Ŝ|β〉 , Tαβ = exp
(2πic2d

24

)
× 〈α|T̂|β〉 . (A.49)

c2d (mod 24) is the chiral central charge of boundary 2d chiral CFT. Here S and T are two
canonical generators of SL(2,Z)

S =
(

0 1
−1 0

)
, T =

(
1 0
1 1

)
. (A.50)

The modular matrices contain a lot of information of the topological field theory. According
to the Verlinde formula, the fusion coefficients Nγ

αβ can be given as

Nγ
αβ =

N−1∑
δ=0

SδαSδβS
∗
δγ

S0δ
. (A.51)

The S-matrix determines how the basic operators OAα and OBα act on the Hilbert-space

OAβ |α〉 = Wβ(α)|α〉 = Sαβ
Sα0
|α〉 , OBβ |α〉 =

∑
γ

Nγ
αβ |γ〉 . (A.52)

7In our convention, T00 is fixed to be 1. Conventionally, Tαβ is defined as exp
(
− 2πic2d

24

)
× T ours

αβ such
that Tαβ is just 〈α|T̂|β〉 without the phase factor.
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T-matrix is a diagonal unitary matrix

Tαβ = δαβe
2πihα (hα=0 = 0) ,

hα = topological spin of α-th anyon .
(A.53)

The topological spin is defined only modulo 1. S and T matrices satisfies

S2 = C (C2 = 1) , (ST )3 = exp
(2πic2d

8

)
× C . (A.54)

The matrix Cαβ is called charge conjugation. S0α are real and they have following path-
integral interpretation

S0α = ZS
3+OΓ=(unknot)

β

:= (Partition function on S3 with a loop operator OΓ
α along the Γ=(unknot)) .

(A.55)

Especially, S00 is the partition function on S3. In an unitary topological field theory, S
matrix satisfies the following conditions

Unitarity: |S00| ≤ |S0α| . (A.56)

Partition functions onMg,p with insertion of a loop operator O[S1]
β along the fiber [S1] can

be written as follows

Z
Mg,p+O[S1]

β

TFT =
N−1∑
α=0

(S0α)2−2g(Tαα)pWβ(α) =
N−1∑
α=0

(S0α)2−2g−1(Tαα)pSαβ . (A.57)

The partition function at p = 0 without insertion of loop operator, i.e. β = 0, counts
ground state degeneracy GSDg on a genus g Riemann surface,

GSDg =
N−1∑
α=0

(S0α)2−2g . (A.58)

Since this counts actual numbers, the partition function at p = 0 can be defined without
any phase factor ambiguity. By contrast the partition function at non-zero p depends on
the framing choice of the 3-manifold Mg,p as well as of the knot along the fiber [S1], and
consequently there is no canonical framing choice. The formula above is only valid for
a certain choice of the framing. The framing change affects the partition function by an
overall phase factor of the form exp

(
2πic2d

24 Z +2πihβZ
)
. For example, whenMg=0,p=1 =S3

Z
Mg=0,p=1+O[S1]

β

TFT =
N−1∑
α=0

S0αTααSαβ = (STS)0β = exp
(2πic2d

8 − 2πihβ
)
× S0β ,

which is different from the ZS
3+OΓ=(unknot)=[S1]

β in (A.55) by a phase factor.
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In fermioinc (i.e. spin) TQFT. For this case the Hilbert space H(T2) depends on the
choice of a spin-structure H1(T2,Z2) = Z2 × Z2. Let us consider following NS-NS sector

H−−(T2) = (Hilbert-space on T2 with anti-periodic boundary conditions along both S1)

Similarly, one can consider four Hilbert-spaces H±± depending on the choice of the spin-
structure. On the H−−(T2), only a subgroup of SL(2,Z) generated by S and T 2 can act
since T maps a state in H−−(T2) into a state in H−+(T2). In other words, topological
spins of anyons are defined only modulo 1/2 in spin TQFT.

Under anyon condensation, /Z2 and /Zf2. In topological field theory, Z2 one-form
symmetry is generated by an anyon OαZ2

satisfying the fusion rule OαZ2
×OαZ2

= 1,

OaZ2
: The anyon generating the one-form Z2 symmetry . (A.59)

The topological spin for the anyon αZ2 can take only following values [83]

hαZ2
∈
{

0, 1
2 ,±

1
4

}
(mod 1) . (A.60)

When hαZ2
= ±1

4 , the Z2 symmetry is anomalous and cannot be gauged. When hαZ2
= 0

(resp. hαZ2
= 1/2), on the other hand, Z2 is non-anomalous and is called a bosonic Z2

(resp. fermionic Z2) symmetry and is sometimes denoted as Zb2 (resp. Zf2).

Z2 is


anomalous if hαZ2

= ±1
4 (mod 1) ,

non-anomalous and bosonic if hαZ2
= 0 (mod 1) ,

non-anomalous and fermionic if hαZ2
= 1

2 (mod 1) .
(A.61)

Starting from a bosonic topological field theory TFT with bosonic or fermionic Z2 one-form
symmetry, one can gauge the one-form symmetry to obtain another topological field theory,
TFT/Z2 or TFT/Zf2 . The gauging procedure is sometimes called the anyon condensation.
The resulting theory after gauging is a non-spin TQFT for bosonic Z2 case while the
resulting theory is spin TQFT for fermionic Zf2 case.

TFT/Zb2 : Bosonic (non-spin) TQFT ,

TFT/Zf2 : Fermionic (spin) TQFT .
(A.62)

The anomalous symmetry can be gauged only after tensoring with another TQFT, such
as U(1)±2, with anomalous Z2 one-form symmetry. At the level of modular data, the
anyon condensation process can be summarized as follows. First consider the bosonic Z2
one-form symmetry gauging. After the gauging, the Hilbert-space on H(T2) is spanned by
following basis

HTFT/Z2(T2) = HTFT/Z2
untwisted(T2)⊕HTFT/Z2

twisted (T2) ,

HTFT/Z2
untwisted(T2) = Span

{
|[α]〉 := 1√

2
(|α〉+ |αZ2 · α〉) : OAαZ2

|α〉 = |α〉, |αZ2 · α〉 6= |α〉
}
,

HTFT/Z2
twisted (T2) = Span

{
|α;±〉 : OAαZ2

|α〉 = |α〉, |αZ2 · α〉 = |α〉
}
.

(A.63)
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Here |α〉 is the basis in (A.48) and see (A.52) for the action of OAα and OBα on the basis. On
the basis given in (A.48), the OAαZ2

acts as a diagonal matrix whose entries are all +1 or −1
while OBαZ2

acts as a permutation matrix whose square is identity. In the above, we define
|αZ2 · α〉 := OBαZ2

|α〉. In the gauging procedure, we first discard basis elements which are
odd (having eigenvalue −1) under the OAαZ2

. Then, we quotient the reduced Hilbert-space
by the action of OBαZ2

. When a basis |α〉 is invariant under both OAαZ2
and OBαZ2

, the basis
will be doubled to {|α;±〉}. The modular data of the gauged theory is

S
TFT/Z2
[α][β] = 2STFT

αβ , S
TFT/Z2
[α=0](β;±) = STFT

0β ,

h
TFT/Z2
[α] = hTFT

α , h
TFT/Z2
(α;±) = hTFT

α

(A.64)

For other S-matrix elements, S(α;±)(β;±) and S[α](β;±), of TFT/Z2, we need to know more
information on the mother TFT beyond modular data [84].

In the fermionic Zf2 gauging, the Hilbert-space H−−(T2) of the resulting spin TQFT is

HTFT/Zf2
−− (T2) = Span

{
|[α]〉 := 1√

2
(|α〉+ |αZ2 · α〉) : OAαZ2

|α〉 = |α〉
}
. (A.65)

Unlike the bosonic Z2 gauging, there is no twisted sector in the Zf2 gauging since |αZ2 ·α〉 6=
|α〉. The modular data of the gauged theory is

S
TFT/Zf2
[α][β] = 2STFT

αβ ,

h
TFT/Zf2
[α] = hTFT

α (mod 1/2) .
(A.66)

Note that the topological spin of |[α]〉 is only defined modulo 1/2 (instead of 1) after the
quotient since hTFT

α − hTFT
αZ2 ·α

= ±1/2 for fermionic Z2. This is also compatible with the
fact that anyon spins are defined only modulo 1/2 in spin-TQFT.

Under Galois conjugation. For a given unitary TQFT satisfying (A.56), there could be
non-unitary TQFTs violating (A.56) called Galois conjugates. These non-unitary theories
have several properties in common with the unitary TQFT. Galois conjugate pair has the
same ground state degeneracy, GSDg = ZMg,p=0 , on any Riemann surface Σg. According
to the formula in (A.57), it implies that

Galois conjugate pair has the same set of {S2
0α}N−1

α=0 . (A.67)

But the pair has different S00 = |ZS3 | and the unitarity condition in (A.56) says that

S00(non-unitary Galois conjugate) > S00(unitary TQFT) . (A.68)

From the computation of ZMg,p=0 one can determines the set {S2
0α}N−1

α=0 , while from the
|ZS3 | one can determine S00. So, from the two computations, one can determine whether
the TQFT is unitary satisfying (A.56) or not.
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Example: U(1)k theory. The action for the theory is given as

S = k

4π

∫
M3

A ∧ dA = k

4π

∫
X4 : ∂X4=M3

F ∧ F . (A.69)

The action depends on the choice of a 4-manifold X4 whose boundary isM3. Two different
choices of the 4-manifolds, say X4 and Y4, give the following difference in the action

∆S = k

4π

(∫
X4
F ∧ F −

∫
Y4
F ∧ F

)
= k

4π

∫
M4:=X4∪Y4

F ∧ F . (A.70)

Here M4 is a closed orientable 4-manifold obtained by gluing X4 and Y 4, an orientation
reversal of Y4, along the common boundaryM3. Since∫

M4
F ∧ F ∈ 4π2Z (for any closed orientiableM4) , (A.71)

the action is well-defined modulo πk and thus

eiS depends only onM3 (but not on X4) when k ∈ 2Z . (A.72)

On the other hand, if we restrict the case whenM4 is a spin 4-manifold∫
M4

F ∧ F ∈ 8π2Z (for any closed spinM4) . (A.73)

It means that we choose a particular spin choice on M3 and the 4-manifold X4 is chosen
such that it has a spin structure which is compatible the spin structure of the boundary
M3. Then theM4 = X4∪Y 4 for two possible such extensions ofM3 has a spin structure.
Thus,

eiS depends only onM3 and its spin-structure (but not on X4) when k ∈ 2Z + 1 .
(A.74)

Actually, the U(1)k theory is a spin or non-spin TQFT depending on evenness/oddness
of k

U(1)k is

non-spin (bosonic) TQFT if k ∈ 2Z ,

spin (fermionic) TQFT if k ∈ 2Z + 1 .
(A.75)

Modular data (S and T matrices) of U(1)k with even k is

k ∈ 2Z>0 : Sαβ = 1√
k
e

2πiαβ
k , Tαβ = δαβe

2πihα with hα := α2

2k (mod 1) ,

where α, β = 0, 1, · · · , k − 1 .
(A.76)

On the other hand, modular data (S and T 2 matrices) of U(1)k with odd k is

k ∈ 2Z>0 − 1 : Sαβ = 1√
k
e

2πiαβ
k , (T 2)αβ = δαβe

4πihα with hα := α2

2k

(
mod 1

2

)
,

where α, β = 0, 1, · · · , k − 1 .
(A.77)
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The loop operator OΓ
α corresponds to the Wilson loop of U(1) gauge charge α, i.e.

OΓ
α = exp

(
iα

∮
Γ
A

)
. (A.78)

The fusion coefficients of U(1)k can be computed from (A.51) and (A.76) as

Nγ
αβ = δγα+β (mod k) , i.e. Oα ×Oβ = Oα+β(mod k) . (A.79)

The U(1)k theory has one-form Zk symmetry generated by

OαZk
= Oα=1 , which satisfies (OαZk

)k = 1 . (A.80)

For even k, the theory has Z2 ⊂ Zk one-form symmetry generated by OαZ2
= Oα= k

2
. The

topological spin of the symmetry generating anyon is

hαZ2
= k

8 (mod 1) =


1
4 (mod 1) if k ∈ 4Z + 2 ,
0 (mod 1) if k ∈ 8Z ,
1
2 (mod 1) if k ∈ 8Z + 4 .

(A.81)

Thus, according to A.61

Z2 in U(1)k∈2Z is


anomalous if k ∈ 4Z + 2 ,
non-anomalous and bosonic if k ∈ 8Z ,

non-anomalous and fermionic if k ∈ 8Z + 4 .
(A.82)

Example: modular data of SU(2)k. The action of the topological field theory is

S = k

4π

∫
M3

Tr
(
A ∧ dA+ 2i

3 A ∧A ∧A
)

= k

4π

∫
X4 : ∂X4=M3

Tr (F ∧ F ) . (A.83)

The topological theory is a non-spin TQFT with a Z2 one-form symmetry. Modular data
(S, T ) of SU(2)k>0 TFT are (α, β = 0, 1, . . . k)

Sαβ =
√

2
k + 2 sin

(
π(α+ 1)(β + 1)

k + 2

)
, Tαβ = δαβe

2πihα with hα = α(α+ 2)
4(k + 2) (mod 1) .

(A.84)

The loop operator Oα corresponds to the Wilson loop operator in the representation
Sym⊗α�, α-th symmetric product of the fundamental representation, i.e.

OΓ
α = TrR=Sym⊗α�

(
P exp

(
i

∮
Γ
A

))
. (A.85)

The Z2 one-form symmetry is generated by

OαZ2
= Oα=k with hαZ2

= k

4 . (A.86)

According to (A.61)

The Z2 is


anomalous if k ∈ 2Z + 1 ,
non-anomalous and bosonic if k ∈ 4Z ,

non-anomalous and fermionic if k ∈ 4Z + 2 .
(A.87)
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Example: U(1)4k/Z2 = U(1)k. The non-anomalous Z2 symmetry is generated by
Oα=2k which is bosonic (resp. fermionic) for even k (resp. odd k). After the one-form Z2
gauging, the Hilbert-space on the two-torus is

k∈2Z>0 : HU(1)4k/Z2(T2) = Span
{
|[α]〉 := 1√

2
(|2α〉+|2α+ 2k〉) : α = 0, 1, . . . , k−1

}
,

k∈2Z>0−1 : HU(1)4k/Z2
−− (T2) = Span

{
|[α]〉 := 1√

2
(|2α〉+|2α+ 2k〉) : α = 0, 1, . . . , k−1

}
.

(A.88)

The modular data of the U(1)4k/Z2 theory is (α, β = 0, 1, · · · , k − 1)

S
U(1)4k/Z2
[α][β] = 2√

4k
e

2πi(2α)(2β)
4k = S

U(1)k
αβ , h

U(1)4k/Z2
[α] =


(2α)2

8k (mod 1) if k ∈ 2Z>0 ,
(2α)2

8k (mod 1
2) if k ∈ 2Z>0 − 1 .

(A.89)

It implies that U(1)4k/Z2 is actually the U(1)k theory. From the Z2 gauging, one can also
confirm that the U(1)k is a non-spin (resp. spin) TQFT for even k (resp. odd k) since the
Z2 theory is bosonic (resp. fermionic).

Example: SU(2)2k/Z2. For odd k, the Z2 one-form symmetry is fermionic and we have
a spin topological theory after the Z2 gauging. The Hilbert-space on the two-torus in the
NS-NS sector is

k∈2Z≥0+1 : HSU(2)2k/Z2
−− (T2) = Span

{
|[α]〉 := 1√

2
(|2α〉+ |2k−α〉) : α = 0, . . . , (k−1)

2

}
.

(A.90)

On the basis, the modular S, T 2 matrices are

S
SU(2)2k/Z2
[α][β] = 2

√
2

2k + 2 sin
(π(2α+ 1)(2β + 1)

2k + 2
)
,

(T 2)SU(2)2k/Z2
[α][β] = δαβe

2πih[α] with h[α] = α(α+ 1)
2(k + 1)

(
mod 1

2

)
.

(A.91)

For even k, on the other hand, the Z2 one-form symmetry is bosonic and the resulting
theory after the gauging is a bosonic topological field theory. The Hilbert space on the
two-torus is

k ∈ 2Z>0 : HSU(2)2k/Z2(T2) = HSU(2)2k/Z2
untwisted (T2)⊕HSU(2)2k/Z2

twisted (T2) where

HSU(2)2k/Z2
untwisted = Span

{
|[α]〉 := 1√

2
(|2α〉+ |2k − α〉) : α = 0, . . . , (k − 2)

2

}
,

HSU(2)2k/Z2
twisted = Span

{
|k; +〉, |k;−〉

}
.

(A.92)
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The modular data of the topological theory is

S
SU(2)2k/Z2
[α][β] = 2

√
2

2k + 2 sin
(
π(2α+ 1)(2β + 1)

2k + 2

)
, S

SU(2)2k/Z2
[0](k;±) =

√
2

2k + 2 ,

and

h[α] = α(α+ 1)
2(k + 1) (mod 1) , h(k;±) = k(k + 2)

8(k + 1) (mod 1) .

(A.93)

Example: SU(2)10×SU(2)2

Zdiag
2

. The Hilbert-space of SU(2)10 × SU(2)2 theory on the two
torus is

HSU(2)10×SU(2)2(T2) = Span
{
|α1, α2〉 : 0 ≤ α1 ≤ 10, 0 ≤ α2 ≤ 2

}
. (A.94)

Modular data is

S
SU(2)10×SU(2)2
(α1,α2),(β1,β2) = S

SU(2)10
α1β1

× SSU(2)2
α2β2

, T
SU(2)10×SU(2)2
(α1,α2),(β1,β2) = T

SU(2)10
α1β1

× T SU(2)2
α2β2

. (A.95)

The theory has Z(1)
2 × Z(2)

2 one-form symmetry generated by

Oα
Z(1)
2

= O(α1=10,α2=0) , Oα
Z(2)
2

= O(α1=0,α2=2) . (A.96)

Both Z(1)
2 and Z(2)

2 are fermionic. The diagonal Zdiag
2 one-form symmetry is generated by

Oα
Zdiag
2

= O(α1,α2)=(10,2) (A.97)

and is bosonic. After the Zdiag
2 gauging, the Hilbert-space on the two torus is

H(SU(2)10×SU(2)2)/Zdiag
2 (T2) = H(SU(2)10×SU(2)2)/Zdiag

2
untwisted (T2)⊕H(SU(2)10×SU(2)2)/Zdiag

2
twisted (T2),

H(SU(2)10×SU(2)2)/Zdiag
2

untwisted (T2) = Span
{
|[α]〉 := 1√

2
(|2α, 0〉+ |10− 2α, 2〉) : α = 0, . . . , 5

}
⊕ Span

{
|[α̃]〉 := 1√

2
(|2α̃+ 1, 1〉+|9−2α̃, 1〉) : α̃ = 0, . . . , 1

}
,

H(SU(2)10×SU(2)2)/Zdiag
2

twisted (T2) = Span
{
|5, 1; +〉, |5, 1;−〉

}
.

(A.98)

There are 10 simple objects and their {S0α} are (|0〉 = |[α = 0]〉)

S0[α] =
√

1
6 sin

(
π(2α+ 1)

12

)
, S0[α̃] =

√
1
3 sin

(
π(2α̃+ 2)

12

)
,

S0,(5,1;+) = S0,(5,1;−) = 1
2
√

3
.

(A.99)
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Example: Lee-Yang TQFT as a Galois conjugation of Fibonacci TQFT. The
Fibonacci topological field is

Fibonacci TQFT: SU(2)3 ⊗U(1)2
Z2

or equivalently (G2)1 . (A.100)

The modular data of the bosonic topological field theory is

S =


√

1
10

(
5−
√

5
) √

1
10

(√
5 + 5

)
√

1
10

(√
5 + 5

)
−
√

1
10

(
5−
√

5
)
 , T =

(
1 0
0 exp

(
4πi
5

)
.

)
(A.101)

The non-unitary Lee-Yang TQFT, whose modular data is given in (3.11), is a Galois
conjugate of the Fibonacci TQFT.

B Dual description for T [SU(2)]
“PSU(2)diag

k ”

In term of the 3D-3D correspondence, the theory T [SU(2)]
“PSU(2)diag

k
”
corresponds to a 3-manifold

called the once-punctured torus bundle with monodromy matrix ϕ = STk [65, 66, 85]

T [(Σ1,1 × S1)ϕ=STk ;A = S1
punct)] = T [SU(2)]

“PSU(2)diag
k ”

. (B.1)

The once-punctured torus bundle (Σ1,1 × S1)ϕ with ϕ ∈ SL(2,Z) is defined as

(Σ1,1 × S1)ϕ = (Σ1,1 × [0, 1])/ ∼ , where
(x, 0) ∼ (ϕ(x), 1) .

(B.2)

Here Σg=1,h=1 is the once-punctured torus and ϕ ∈ SL(2,Z) is an element of mapping class
group of the Riemann surface. The mapping torus actually depends only on the conjugacy
class of ϕ in SL(2,Z), i.e.

(Σ1,1 × S1)ϕ1 = (Σ1,1 × S1)ϕ2 if and only if ϕ1 ∼ ϕ2 . (B.3)

Here ϕ1 ∼ ϕ2 means that ϕ1 are ϕ2 are related to each other by conjugation in SL(2,Z).
The mapping torus has a torus boundary. Generally, for 3-manifold N with a torus bound-
ary, we need to choose primitive boundary 1-cycle A ∈ H1(∂N,Z) to specify its associated
3D gauge theory T [N ;A] [42, 61]. In the once-puncture torus bundle, there is a natural
choice of the boundary 1-cycle A = S1

punct, which is the cycle encircling the puncture in Σ1,1.
In the view point of 3D-3D correspondence, the conformal window in (3.103) can be

geometrically understood from the following topological fact:

(Σ1,1 × S1)ϕ=STk is

non-hyperbolic if |k| < 2 ,
hyperbolic if |k| > 2 .

(B.4)
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We will focus on the case when the mapping torus (Σ1,1 × S1)ϕ is hyperbolic. For
the case, the conjugacy class of ϕ can be decomposed into positive powers of L and R (up
to sign)

ϕ = ±g (Ln1Rn2Ln3 . . .LnL(or RnL)) g−1 ni ∈ Z>0 ,

L =
(

1 1
0 1

)
, R =

(
1 0
1 1

)
.

(B.5)

The mapping torus (Σ1,1 × S1)ϕ has an alternative topological description based on
an ideal triangulation. Using an ideal triangulation of (Σ1,1 × S1)ϕ, one can give an
alternative description for T [(Σ1,1 × S1)ϕ;A = S1

punct] following the algorithm proposed
in [42]. Interestingly, the 3D gauge theory based on an ideal triangulation has only manifest
N = 2 supersymmetry. We expect that the N = 2 gauge theories have enhanced N = 4
supersymmetry at IR.

k = 3 (ϕ = LR ∼ ST3) case: (Tmin)⊗2. The corresponding mapping-torus can be
decomposed into two ideal tetrahedrons [66]. The corresponding 3D N = 2 theory is [27]

T [(Σ1,1 × S1)ϕ=LR;A = S1
punct] =

(
U(1)3/2 + Φ

)
⊗
(
U(1)−3/2 + Φ

)
. (B.6)

The theory is nothing but (Tmin)⊗2 using the duality between (U(1)3/2 + Φ) and
(U(1)−3/2 + Φ).

k = 4 (ϕ = LLR ∼ ST4) case: N = 2→ N = 5. The corresponding mapping torus
can be decomposed into three ideal tetrahedrons [66]. According to the algorithm in [42],
the corresponding 3D N = 2 field theory is

T [(Σ1,1 × S1)ϕ=LLR;A = S1
punct]

=
(
3D N = 2 U(1)×U(1) gauge theory with mixed CS level K coupled to
3 chiral multiplets (Φ1,Φ2,Φ3) of charge Q
with superpotential W = (Φ1Φ2Φ3)2 + Vm=(1,−1)

)
.

(B.7)

The mixed CS level K for U(1)×U(1) gauge group is

K =
(
−1 −1/2
−1/2 −1

)
. (B.8)

Gauge charges Q for 3 chirals are assigned as follows

U(1) U(1)
Φ1 1 0
Φ2 −1 1
Φ3 0 −1

Vm=(m1,m2) denotes the 1/2 BPS bare monopole operator with monopole fluxes (m1,m2)
coupled to the two gauge U(1)s. The bare monopole operator is a gauge-invariant 1/2 BPS
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chiral primary when m1 +m2 = 0. The superpotential breaks the U(1)3 flavor symmetry to
U(1). From the F-maximization, the IR superconformal R-charge (ν = 0) is determined as

Rν=0(Φ1) = Rν=0(Φ3) = 1, Rν=0(Φ2) = −1 . (B.9)

The superconformal index at the IR conformal fixed point is

Isci
T [(Σ1,1×S1)ϕ=LLR,A=S1

punct]
(q, η, ν = 0; s = 1)

= 1 + q1/2 −
(
η + 1

η
+ 1

)
q − (2 + η + η−1)q3/2 + . . . .

(B.10)

Surprisingly, the index show N = 5 supersymmetry instead of N = 4 [54]. Actually, from
the superconformal index computation, one can confirm that the theory is dual to the
following N = 5 gauge theory

T [(Σ1,1 × S1)ϕ=LLR;A = S1
punct] =

(
SU(2)

1
2⊕

1
2

|k|=3 in (3.47)
)
. (B.11)

C Contour integrals

We explicitly evaluate the contour integrals that appear in this paper.

C.1 ZS
3
b

T [SU(2)](b = 1, X1, X2,m = 0, ν)

With the properties in appendix D, the partition function (3.84) for b = 1, m = 0, and
ν = 0 is simplified as

ZS
3
b

T [SU(2)](b = 1, X1, X2,m = 0, ν = 0) = e
2πi
3

4π

∫
dZ e

ZX2
πi

cosh(Z) + cosh(X1) . (C.1)

The contour integral of the integrand in (C.1) along the path in figure 2 is

∫ ∞
−∞

dZ e
iZX2
π

cosh(Z)+sinh(Z) +
∫ −∞
∞

dZ e
iZX2
π e−2X2

cosh(Z)+sinh(Z) =2πi
(
e−

iX1X2
π e−X2

sinh(X1) − e
iX1X2
π e−X2

sinh(X1)

)

→
∫ ∞
−∞

dZ e
ZX2
πi

cosh(Z)+sinh(Z) =
4π sin

(
X1X2
π

)
sinh(X1)

(
eX2−e−X2

) =
2π sin

(
X1X2
π

)
sinh(X1) sinh(X2) . (C.2)

Here, the first and second term of the first line of (C.2) are for the path C1 and C2 in the
figure 2 respectively. Restoring the factor e

2πi
3

4π , we have

ZS
3
b

T [SU(2)](b = 1, X1, X2,m = 0, ν = 0) = e
2πi
3

2
sin
(
X1X2
π

)
sinh(X1) sinh(X2) , for

∣∣Im[X1]
∣∣ ≤ π . (C.3)

The computations for gauging SU(2)H or SU(2)C of this T [SU(2)] theory at the conformal
limit (ν = 0) are straightforward since they are always reduced to the simple Gaussian
integration at the three-sphere partition function level.
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∞−∞

•
−X1 + πi •

X1 + πi

ReZ

ImZ

C1

C22πi

Figure 2. A contour for the evaluation of (C.1). Assuming |Im[X1]| < π, there are two simple
poles at Z = ±X1 + πi inside the path.

For the degenerate limit, say ν = 1, the three-sphere partition function ZS
3
b

T [SU(2)](b =

1,m = 0, ν = 1) diverges due to the factor ψ~=2πi
(
2πi(1− ν)

)
from the adjoint matter. To

handle it, we expand the partition function divided by this divergence around ν = 1 as

ZS
3
b

T [SU(2)](b = 1,m = 0, ν)

ψ~=2πi
(
2πi(1− ν)

) =
(
e

13πi
12

2π

∫
dZ e

iZX2
π

)

+
(
e

19πi
12

2

∫
dZ e

iZX2
π

(
1− i

π

Z sinh(Z)−X1 sinh(X1)
cosh(Z)− cosh(X1)

))
(ν − 1) +O

(
(ν − 1)2) .

(C.4)

The divergence of ψ~=2πi
(
2πi(1− ν)

)
comes from the simple pole at ν = 1

ψ~=2πi
(
2πi(1− ν)

)
= −e

πi
12

2πi
1

(ν − 1) + e
πi
12 (π − i)

2π +O
(
(ν − 1)1) . (C.5)

The first term in (C.4) vanishes after SU(2)k gauging since∫
dXdZ e

iZX
π e

kX2
2πi sinh2(X) = 0 . (C.6)

This means that there is no divergence problem even for ν = 1 if we are considering, say,
the SU(2)k gauged T [SU(2)] theory, since (C.4) always starts with linear (ν−1) term which
cancels the diverging simple pole in (C.5) from the adjoint matter.

C.2 ZS
3
b

(k1,k2)(b = 1,m = 0, ν = ±1)

With the help of appendix D, (C.5), and (C.6), the partition function (3.82) for b = 1,
ν = 1 is simplified as (with Gaussian integral of X2)

ZS
3
b

(k1,k2)(b = 1,m = 0, ν = 1) = e
11πi
12

16π3

√
2
k2

∫
dZdX1 sinh2(X1)

(
Z sinh(Z)−X1 sinh(X1)

cosh(Z)− cosh(X1)

)
×
(
e
− 2πi
k2 e

2Z
k2 + e

− 2πi
k2 e
− 2Z
k2 − 2

)
e
− Z2

2πik2 e
k1X

2
1

2πi . (C.7)
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•

ReA

ImA
lπi

∞−∞

Figure 3. A path l for (C.10). There is a simple pole at A = πi.

Changing the variables as X1 → A+B, Z → A−B, we have

ZS
3
b

(k1,k2)(b = 1,m = 0, ν = 1) = e
11πi
12

2π3

√
2
k2

∫
dAdB sinh2(A+B)A cosh(A)

sinh(A)

× e
(k1k2−1)

2πik2
A2
e

(k1k2−1)
2πik2

B2
e

(k1k2+1)
πik2

AB
(
e

2A−2B−2πi
k2 −1

)
. (C.8)

where several even terms in the integrand under A→ −A, B → −B have been stacked up.
With Gaussian integral of B, (C.8) is further evaluated as

ZS
3
b

(k1,k2)(b = 1,m = 0, ν = 1) = e
2πi
3

4π2
1√

k1k2 − 1

∫
dAA cosh(A)

sinh(A)

×
[
e
− 2(A+πi)2

πik2

(
e
− 2(A+πi+k2πi)

2
πik2(k1k2−1) + e

− 2(A+πi−k2πi)
2

πik2(k1k2−1) − 2e−
2(A+πi)2

πik2(k1k2−1)

)

− e−
2A2
πik2

(
e
− 2(A+k2πi)

2
πik2(k1k2−1) + e

− 2(A−k2πi)
2

πik2(k1k2−1) − 2e−
2A2

πik2(k1k2−1)

)]
. (C.9)

The third and sixth terms of (C.9) can be evaluated from the following contour integrals,
see figure 3:∮

l
dAA cosh(A)

sinh(A) e
− 2A2
πik2 e

− 2A2
πik2(k1k2−1) = 0

→
∫

dAA cosh(A)
sinh(A)

(
e
− 2A2
πik2 e

− 2A2
πik2(k1k2−1) − e−

2(A+πi)2
πik2 e

− 2(A+πi)2
πik2(k1k2−1)

)
= πia+ + πi

2

∫
dAcosh(A)

sinh(A)

(
e
− 2(A+πi)2

πik2 e
− 2(A+πi)2
πik2(k1k2−1) − e−

2(A−πi)2
πik2 e

− 2(A−πi)2
πik2(k1k2−1)

)
. (C.10)

where a+ = πie
− 2πik1
k1k2−1 is the residue of A cosh(A)

sinh(A) e
− 2A2
πik2 e

− 2A2
πik2(k1k2−1) at A = πi. Again, the

last integral in (C.10) can be evaluated from the below contour integral, see figure 4:∮
l′
dA cosh(A)

sinh(A) e
− 2A2
πik2 e

− 2A2
πik2(k1k2−1) = −2πiã0

→
∫

dA cosh(A)
sinh(A)

(
e
− 2(A+πi)2

πik2 e
− 2(A+πi)2
πik2(k1k2−1) − e−

2(A−πi)2
πik2 e

− 2(A−πi)2
πik2(k1k2−1)

)
= −πi(ã− + 2ã0 + ã+) . (C.11)
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ReA

ImA
l′πi

−πi

∞−∞

Figure 4. A path l′ for (C.11). There are simple poles at A = 0,±πi.

where ã0 = 1, ã± = e
− 2πik1
k1k2−1 are the residues of cosh(A)

sinh(A) e
− 2A2
πik2 e

− 2A2
πik2(k1k2−1) at A = 0,±πi

respectively. Plugging this into (C.10), we have∫
dA A cosh(A)

sinh(A)

(
e
− 2A2
πik2 e

− 2A2
πik2(k1k2−1) − e−

2(A+πi)2
πik2 e

− 2(A+πi)2
πik2(k1k2−1)

)
= π2 . (C.12)

Likewise, the rest terms in (C.9) can also be evaluated in a similar way as∫
dA A cosh(A)

sinh(A)

[
e
− 2(A+πi)2

πik2

(
e
− 2(A+πi+k2πi)

2
πik2(k1k2−1) + e

− 2(A+πi−k2πi)
2

πik2(k1k2−1)

)

−e−
2A2
πik2

(
e
− 2(A+k2πi)

2
πik2(k1k2−1) + e

− 2(A−k2πi)
2

πik2(k1k2−1)

)]
= −2π2e

− 2πik2
k1k2−1 . (C.13)

Combining the two results (C.12) and (C.13), and restoring the overall factor in (C.9),
we have

ZS
3
b

(k1,k2)(b = 1,m = 0, ν = 1) = e
2πi
3

4π2
1√

k1k2 − 1

(
2π2 − 2π2e

− 2πik2
k1k2−1

)
= e

7πi
6 −

k2πi
k1k2−1

1√
k1k2 − 1

sin
(

k2π

k1k2 − 1

)
. (C.14)

For ν = −1, thanks to (3.85), the only difference is nothing but an exchange of the role of
k1 and k2:

ZS
3
b

(k1,k2)(b = 1,m = 0, ν = −1) = e
7πi
6 −

k1πi
k1k2−1

1√
k1k2 − 1

sin
(

k1π

k1k2 − 1

)
. (C.15)

C.3 ZS
3
b

diagk(b = 1,m = 0, ν = ±1)

By the mirror-symmetry property (3.85) it is enough to consider the case of ν = 1. With
the help of appendix D, (C.5), and (C.6), the partition function (3.106) for b = 1, ν = 1 is
simplified as

ZS
3
b

diagk(b=1,m=0, ν=1) = −e
5πi
12

4π3

∫
dZdX sinh2(X)e

iZX
π e

kX2
2πi

(
X sinh(X)− Z sinh(Z)

cosh(X)− cosh(Z)

)
.

(C.16)
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ReA

ImA
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l2

πi

−πi

∞−∞

Figure 5. Two paths l1 and l2 for (C.19). There are simple poles at A = ±πi.

Changing the variables as X → A+B, Z → A−B, we have

ZS
3
b

diagk(b = 1,m = 0, ν = 1) =− e
5πi
12

2π3

∫
dAdB sinh2(A+B)e

kAB
πi

× e
(k−2)A2

2πi e
(k+2)B2

2πi

(
A cosh(A)
sinh(A) + B cosh(B)

sinh(B)

)
. (C.17)

We first consider the first term in the integrand which is an Gaussian integral of B.∫
dAdB sinh2(A+B)e

kAB
πi e

(k−2)A2
2πi e

(k+2)B2
2πi

A cosh(A)
sinh(A)

→ π√
8i(k + 2)

∫
dA A cosh(A)

sinh(A)

(
e
− 2(A−πi)2

πi(k+2) + e
− 2(A+πi)2

πi(k+2) − 2e−
2A2

πi(k+2)

)
. (C.18)

Now, consider contour integrals along the paths shown below, see figure 5:∮
l1
dA A cosh(A)

sinh(A) e
− 2A2
πi(k+2) +

∮
l2
dA A cosh(A)

sinh(A) e
− 2A2
πi(k+2) = 0

→
∫

dA A cosh(A)
sinh(A)

(
e
− 2(A−πi)2

πi(k+2) + e
− 2(A+πi)2

πi(k+2) − 2e−
2A2

πi(k+2)

)
= πi(u− − u+)− πi

∫
dA cosh(A)

sinh(A)

(
e
− 2(A+πi)2

πi(k+2) − e−
2(A−πi)2
πi(k+2)

)
, (C.19)

where u± = ±πie−
2πi
k+2 are the residues of A cosh(A)

sinh(A) e
− 2A2
πi(k+2) at A = ±πi. Again, the integral

at the last term of (C.19) can be evaluated by considering the following path, see figure 6:∮
l3
dA cosh(A)

sinh(A) e
− 2A2
πi(k+2) = −2πiv0

→
∫

dA cosh(A)
sinh(A)

(
e
− 2(A+πi)2

πi(k+2) − e−
2(A−πi)2
πi(k+2)

)
= −πi(v− + 2v0 + v+) = −2πi(1 + e−

2πi
k+2 ) .

(C.20)

where v0 = 1, v± = e−
2πi
k+2 are the residues of cosh(A)

sinh(A) e
− 2A2
πi(k+2) at A = 0,±πi respectively.

Combining the results (C.19) and (C.20), we have∫
dAdB sinh2(A+B)e

kAB
πi e

(k−2)A2
2πi e

(k+2)B2
2πi

A cosh(A)
sinh(A) = − π3√

2i(k + 2)
. (C.21)
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Figure 6. A path l3 for (C.20). There are simple poles at A = 0,±πi.

Similarly, the second term in the integrand of (C.17) can be evaluated as∫
dAdB sinh2(A+B)e

kAB
πi e

(k−2)A2
2πi e

(k+2)B2
2πi

B cosh(B)
sinh(B) = − π3√

2i(k − 2)
. (C.22)

Finally, with the results (C.21) and (C.22), and restoring the overall factor in (C.17),
we have

ZS
3
b

diagk(b = 1,m = 0, ν = 1) = e
πi
6

(√
1

8(k − 2) +
√

1
8(k + 2)

)
. (C.23)

D Quantum dilogarithm function

The quantum dilogarithm function (Q.D.L) ψ~(Z) is defined by [86] (~ = 2πib2)

ψ~(Z) :=


∏∞
r=1

1−qre−Z
1−q̃−r+1e−Z̃

if |q| < 1 ,∏∞
r=1

1−q̃re−Z̃
1−q−r+1e−Z

if |q| > 1 ,
(D.1)

with

q := e2πib2 , q̃ := e2πib−2
, Z̃ := 1

b2
Z , (D.2)

where b is the squashing parameter. The function satisfies the following difference equa-
tions:

ψ~(Z + 2πib2) = (1− e−Z)ψ~(Z) , ψ~(Z + 2πi) = (1− e−
Z
b2 )ψ~(Z) . (D.3)

At the special value b = 1, the Q.D.L simplifies as

logψ~=2πi(Z) = −(2π + iZ) log(1− e−Z) + iLi2(e−Z)
2π , (D.4)

and there is a special limit at b = 1

lim
p→0

pψ~=2πi(p) = e
πi
12 . (D.5)
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On the other hand, the asymptotic expansion when ~ = 2πib2 → 0 is given by

logψ~(Z) b2→0−−−→
∞∑
n=0

Bn~n−1

n! Li2−n(e−Z) . (D.6)

Here Bn is the n-th Bernoulli number with B1 = 1/2. For several computations in the
main text, one needs to utilize the identity

Li2(u) + Li2(u−1) = −π
2

6 −
1
2
(

log(−u)
)2
. (D.7)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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